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A NONCOOPERATIVE MODEL OF NETWORK FORMATION

BY VENKATESH BALA AND SANJEEV GOYAL1

We present an approach to network formation based on the notion that social
networks are formed by individual decisions that trade off the costs of forming and
maintaining links against the potential rewards from doing so. We suppose that a link with
another agent allows access, in part and in due course, to the benefits available to the
latter via his own links. Thus individual links generate externalities whose value depends
on the level of decay�delay associated with indirect links. A distinctive aspect of our
approach is that the costs of link formation are incurred only by the person who initiates
the link. This allows us to formulate the network formation process as a noncooperative
game.

We first provide a characterization of the architecture of equilibrium networks. We
then study the dynamics of network formation. We find that individual efforts to access
benefits offered by others lead, rapidly, to the emergence of an equilibrium social
network, under a variety of circumstances. The limiting networks have simple architec-
tures, e.g., the wheel, the star, or generalizations of these networks. In many cases, such
networks are also socially efficient.

KEYWORDS: Coordination, learning dynamics, networks, noncooperative games.

1. INTRODUCTION

THE IMPORTANCE OF SOCIAL AND ECONOMIC networks has been extensively
documented in empirical work. In recent years, theoretical models have high-
lighted their role in explaining phenomena such as stock market volatility,
collective action, the career profiles of managers, and the diffusion of new
products, technologies and conventions.2 These findings motivate an examina-
tion of the process of network formation.

We consider a setting in which each individual is a source of benefits that
others can tap via the formation of costly pairwise links. Our focus is on benefits

1 A substantial portion of this research was conducted when the first author was visiting Columbia
University and New York University, while the second author was visiting Yale University. The
authors thank these institutions for their generous hospitality.

We are indebted to the editor and three anonymous referees for detailed comments on earlier
versions of the paper. We thank Arun Agrawal, Sandeep Baliga, Alberto Bisin, Francis Bloch,
Patrick Bolton, Eric van Damme, Prajit Dutta, David Easley, Yossi Greenberg, Matt Jackson,
Maarten Janssen, Ganga Krishnamurthy, Thomas Marschak, Andy McLennan, Dilip Mookherjee,
Yaw Nyarko, Hans Peters, Ben Polak, Roy Radner, Ashvin Rajan, Ariel Rubinstein, Pauline
Rutsaert, and Rajeev Sarin for helpful comments. Financial support from SSHRC and Tinbergen
Institute is acknowledged. Previous versions of this paper, dating from October 1996, were circulated
under the title, ‘‘Self-Organization in Communication Networks.’’

2 Ž . Ž . Ž .For empirical work see Burt 1992 , Coleman 1966 , Frenzen and Davis 1990 , Granovetter
Ž . Ž . Ž .1974 , and Rogers and Kincaid 1981 . The theoretical work includes Allen 1982 , Anderlini and

Ž . Ž . Ž . Ž . Ž .Ianni 1996 , Baker and Iyer 1992 , Bala and Goyal 1998 , Chwe 1998 , Ellison 1993 , Ellison and
Ž . Ž . Ž .Fudenberg 1993 , Goyal and Janssen 1997 , and Kirman 1997 .

1181



V. BALA AND S. GOYAL1182

that are nonri�al.3 We suppose that a link with another agent allows access, in
part and in due course, to the benefits available to the latter via his own links.
Thus individual links generate externalities whose value depends on the level of
decay�delay associated with indirect links. A distinctive aspect of our approach
is that the costs of link formation are incurred only by the person who initiates
the link. This allows us to model the network formation process as a noncooper-
ative game, where an agent’s strategy is a specification of the set of agents with
whom he forms links. The links formed by agents define a social network.4

We study both one-way and two-way flow of benefits. In the former case, the
link that agent i forms with agent j yields benefits solely to agent i, while in the
latter case, the benefits accrue to both agents. In the benchmark model, the
benefit flow across persons is assumed to be frictionless: if an agent i is linked

� 4with some other agent j via a sequence of intermediaries, j , . . . , j , then the1 s
benefit that i derives from j is insensitive to the number of intermediaries.
Apart from this, we allow for a general class of individual payoff functions: the

Žpayoff is strictly increasing in the number of other people accessed directly or
.indirectly and strictly decreasing in the number of links formed.

Our first result is that Nash networks are either connected or empty.5 Connect-
edness is, however, a permissive requirement: for example, with one-way flows a
society with 6 agents can have upwards of 20,000 Nash networks representing
more than 30 different architectures.6 This multiplicity of Nash equilibria
motivates an examination of a stronger equilibrium concept. If an agent has
multiple best responses to the equilibrium strategies of the others, then this may
make the network less stable as the agent may be tempted to switch to a
payoff-equivalent strategy. This leads us to study the nature of networks that can
be supported in a strict Nash equilibrium.

We find that the refinement of strictness is very effective in our setting: in the
one-way flow model, the only strict Nash architectures are the wheel and the empty
network. Figure 1A depicts a wheel, which is a network where each agent forms

Žexactly one link, represented by an arrow pointing to the agent. The arrow also
.indicates the direction of benefit flow . The empty network is one where there

are no links. In the two-way flow model, the only strict Nash architectures are the
center-sponsored star and the empty network. Figure 1B depicts a center-sponsored

3 Examples include information sharing concerning brands�products among consumers, the
opportunities generated by having trade networks, as well as the important advantages arising out of
social favors.

4 The game can be interpreted as saying that agents incur an initial fixed cost of forging links with
others�where the cost could be in terms of time, effort, and money. Once in place, the network
yields a flow of benefits to its participants.

5 A network is connected if there is a path between every pair of agents. In recent work on social
learning and local interaction, connectedness of the society is a standard assumption; see, e.g.,

Ž . Ž . Ž . Ž .Anderlini and Ianni 1996 , Bala and Goyal 1998 , Ellison 1993 , Ellison and Fudenberg 1993 ,
Ž .Goyal and Janssen 1997 . Our results may be seen as providing a foundation for this assumption.

6 Two networks have the same architecture if one network can be obtained from the other by
permuting the strategies of agents in the other network.
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FIGURE 1A.�Wheel network.

FIGURE 1B.�Center-sponsored star.

Žstar, where one agent forms all the links agent 3 in the figure, as represented by
.the filled circles on each link adjacent to this agent .

These results exploit the observation that in a network, if two agents i and j
Ž .have a link with the same agent k, then one of them say i will be indifferent

between forming a link with k or instead forming a link with j. We know that
Nash networks are either connected or empty. This argument implies that in the
one-way flow model a nonempty strict Nash network has exactly n links. Since
the wheel is the unique such network, the result follows. In the case of the
two-way model, if agent i has a link with j, then no other agent can have a link
with j. As a Nash network is connected, this implies that i must be the center of
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FIGURE 1C.�Flower and linked star networks.

a star. A further implication of the above observation is that every link in this
star must be made or ‘‘sponsored’’ by the center.

While these findings restrict the set of networks sharply, the coordination
problem faced by individuals in the network game is not entirely resolved. For

Ž .example, in the one-way flow model with n agents, there are n�1 ! networks
corresponding to the wheel architecture; likewise, there are n networks corre-
sponding to the star architecture. Thus agents have to choose from among these
different equilibria. This leads us to study the process by which individuals learn
about the network and revise their decisions on link formation, over time.

We use a version of the best-response dynamic to study this issue. The
network formation game is played repeatedly, with individuals making invest-
ments in link formation in every period. In particular, when making his decision
an individual chooses a set of links that maximizes his payoffs given the network
of the previous period. Two features of our model are important: one, there is
some probability that an individual exhibits inertia, i.e., chooses the same
strategy as in the previous period. This ensures that agents do not perpetually
miscoordinate. Two, if more than one strategy is optimal for some individual,
then he randomizes across the optimal strategies. This requirement implies, in
particular, that a non-strict Nash network can never be a steady state of the
dynamics. The rules on individual behavior define a Markov chain on the state
space of all networks; moreover, the set of absorbing states of the Markov chain
coincides with the set of strict Nash networks of the one-shot game.7

Our results establish that the dynamic process converges to a limit network.
In the one-way flow model, for any number of agents and starting from any initial
network, the dynamic process con�erges to a wheel or to the empty network, with
probability 1. The proof exploits the idea that well-connected people generate
positive externalities. Fix a network g and suppose that there is an agent i who
accesses all people in g, directly or indirectly. Consider an agent j who is not
critical for agent i, i.e., agent i is able to access everyone even if agent j deletes

7 Our rules do not preclude the possibility that the Markov chain cycles permanently without
converging to a strict Nash network. In fact, it is easy to construct examples of two-player games with
a unique strict Nash equilibrium, where the above dynamic cycles.
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all his links. Allow agent j to move; he can form a single link with agent i and
access all the different individuals accessed by agent i. Thus if forming links is at
all profitable for agent j, then one best-response strategy is to form a single link
with agent i. This strategy in turn makes agent j well-connected. We now
consider some person k who is not critical for j and apply the same idea.
Repeated application of this argument leads to a network in which everyone
accesses everyone else via a single link, i.e., a wheel network. We observe that in
a large set of cases, in addition to being a limit point of the dynamics, the wheel
is also the unique efficient architecture.

In the two-way flow model, for any number of agents and starting from any
initial network, the dynamic process con�erges to a center-sponsored star or to the
empty network, with probability 1. With two-way flows the extent of the externali-
ties are even greater than in the one-way case since, in principle, a person can
access others without incurring any costs himself. We start with an agent i who
has the maximum number of direct links. We then show that individual agents
who are not directly linked with this agent i will, with positive probability,
eventually either form a link with i or vice-versa. Thus, in due course, agent i
will become the center of a star.8 In the event that the star is not already
center-sponsored, we show that a certain amount of miscoordination among
‘spoke’ agents leads to such a star. We also find that a star is an efficient network
for a class of payoff functions.

The value of the results on the dynamics would be compromised if conver-
gence occurred very slowly. In our setting, there are 2 nŽn�1. networks with n
agents. With n�8 agents for example, this amounts to approximately 7�1016

networks, which implies that a slow rate of convergence is a real possibility. Our
simulations, however, suggest that the speed of con�ergence to a limiting network
is quite rapid.

The above results are obtained for a benchmark model with no frictions. The
introduction of decay�delay complicates the model greatly and we are obliged
to work with a linear specification of the payoffs. We suppose that each person
potentially offers benefits V and that the cost of forming a link is c. We

� �introduce decay in terms of a parameter �� 0, 1 . We suppose that if the
shortest path from agent j to agent i in a network involves q links, then the
value of agent j’s benefits to i is given by � qV. The model without friction
corresponds to ��1.

We first show that in the presence of decay, strict Nash networks are connected.
We are, however, unable to provide a characterization of strict Nash and
efficient networks, analogous to the case without decay. The main difficulty lies
in specifying the agents’ best response correspondence. Loosely speaking, in the

8 It would seem that the center-sponsored star is an attractor because it reduces distance between
different agents. However, in the absence of frictions, the distance between agents is not payoff
relevant. On the other hand, among the various connected networks that can arise in the dynamics,
this network is the only one where a single agent forms all the links, with everyone else behaving as
a free rider. This property of the center-sponsored star is crucial.
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absence of decay a best response consists of forming links with agents who are
connected with the largest number of other individuals. With decay, however,
the distances between agents also becomes relevant, so that the entire structure
of the network has to be considered. We focus on low levels of decay, where
some properties of best responses can be exploited to obtain partial results.

In the one-way flow case, we identify a class of networks with a flower
Ž .architecture that is strict Nash see left-hand side of Figure 1C . Flower networks

Ž .trade-off the higher costs of more links as compared to a wheel against the
benefits of shorter distance between different agents that is made possible by a
‘‘central agent.’’ The wheel and the star 9 are special cases of this architecture.
In the case of two-way flows, we find that networks with a single star and linked

Ž . 10stars are strict Nash see right-hand side of Figure 1C . We also provide a
characterization of efficient networks and find that the star is the unique efficient
network for a wide range of parameters. Simulations of the dynamics for both

Ž .one-way and two-way models show that convergence to a limit strict Nash
network is nearly universal and usually occurs very rapidly.

The arguments we develop can be summarized as follows: in settings where
potential benefits are widely dispersed, individual efforts to access these benefits
lead fairly quickly to the emergence of an equilibrium social network. The
limiting networks have simple architectures, e.g., the wheel, the star, or general-
izations of these networks. Moreover, in many instances these networks are
efficient.

Our paper is a contribution to the theory of network formation. There is a
large literature in economics, as well as in computer science, operations re-

Ž .search, and sociology on the subject of networks; see, e.g., Burt 1992 , Marshak
Ž . Ž .and Radner 1972 , Wellman and Berkowitz 1988 . Much of this work is

concerned with the efficiency aspects of different network structures and takes a
planner’s viewpoint.11 By contrast, we consider network formation from the
perspective of individual incentives. More specifically, the current paper makes
two contributions.

The first contribution is our model of link formation. In the work of Boorman
Ž . Ž .1975 , Jackson and Wolinsky 1996 , among others, a link between two people
requires that both people make some investments and the notion of stable
networks therefore rests on pairwise incentive compatibility. We refer to this as
a model with two-sided link formation. By contrast, in the present paper,
link-formation is one-sided and noncooperative: an individual agent can form
links with others by incurring some costs. This difference in modelling method-

9 Star networks can also be defined with one-way flows and should not be confused with the star
networks that arise in the two-way flows model.

10 The latter structure resembles some empirically observed networks, e.g., the communication
Ž Ž ..network in village communities Rogers and Kincaid 1981, p. 175 .

11 Ž . Ž .For recent work in this tradition, see Bolton and Dewatripont 1994 and Radner 1993 .
Ž .Hendricks, Piccione, and Tan 1995 use a similar approach to characterize the optimal flight

network for a monopolist.
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ology is substantive since it allows the notion of Nash equilibrium and related
refinements to be used in the study of network formation.12

The difference in formulation also alters the results in important ways. For
Ž .instance, Jackson and Wolinsky 1996 show that with two-sided link formation

the star is efficient but is not stable for a wide range of parameters. By contrast,
in our model with noncooperative link formation, we find that the star is the
unique efficient network and is also a strict Nash network for a range of values
Ž .Propositions 5.3�5.5 . To see why this happens, suppose that V�c. With
two-sided link formation, the central agent in a star will be better off by deleting
his link with a spoke agent. In our framework, however, a link can be formed by
a ‘spoke’ agent on his own. If there are enough persons in the society, this will
be worthwhile for the ‘spoke’ agent and a star is sustainable as a Nash
equilibrium.

The second contribution is the introduction of learning dynamics in the study
of network formation.13 Existing work has examined the relationship between
efficient networks and strategically stable networks, in static settings. We believe
that there are several reasons why the dynamics are important. One reason is
that a dynamic model allows us to study the process by which individual agents
learn about the network and adjust their links in response to their learning.14

Relatedly, dynamics may help select among different equilibria of the static
game: the results in this paper illustrate this potential very well.

In recent years, considerable work has been done on the theory of learning in
games. One strand of this work studies the myopic best response dynamic; see

Ž . Ž . Ž .e.g., Gilboa and Matsui 1991 , Hurkens 1995 , and Sanchirico 1996 , among
others. Gilboa and Matsui study the local stability of strategy profiles. Their
approach allows for mixing across best responses, but does not allow for
transitions from one strategy profile to another based on one player choosing a
best response, while all others exhibit inertia. Instead, they require changes in

12 The model of one-sided and noncooperative link formation was introduced and some prelimi-
Ž .nary results on the static model were presented in Goyal 1993 .

The literature on network games is related to the research in coalition formation in game-theo-
Ž . Ž .retic models. This literature is surveyed in Myerson 1991 and van den Nouweland 1993 . Jackson

Ž .and Wolinsky 1996 present a detailed discussion of the relationship between the two research
Ž . Ž .programs. Dutta and Mutuswamy 1997 and Kranton and Minehart 1998 are some other recent

papers on network formation. An alternative approach is presented in a recent paper by Mailath,
Ž .Samuelson, and Shaked 1996 , which explores endogenous structures in the context of agents who

play a game after being matched. They show that partitions of society into groups with different
payoffs can be evolutionary stable.

13 Ž .Bala 1996 initially proposed the use of dynamics to select across Nash equilibria in a network
context and obtained some preliminary results.

14 Two earlier papers have studied network evolution, but in quite different contexts from the
Ž .model here. Roth and Vande Vate 1990 study dynamics in a two-sided matching model. Linhart,
Ž .Lubachevsky, Radner, and Meurer 1994 study the evolution of the subscriber bases of telephone

companies in response to network externalities created by their pricing policies.
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social behavior to be continuous.15 This difference with our formulation is
significant. They show that every strict Nash equilibrium is a socially stable
strategy, but that the converse is not true. This is because in some games a Nash
equilibrium in mixed strategies is socially stable. By contrast, under our dynamic
process, the set of strict Nash networks is equivalent to the set of absorbing
networks.

Ž . Ž .Hurkens 1995 and Sanchirico 1996 study variants of best response learning
in general games. They show that if the dynamic process satisfies certain
properties, which include randomization across best responses, then it ‘con-
verges’ to a minimal curb set, i.e., a set that is closed under the best response
operation, in the long run. These results imply that weak Nash equilibria are not
limit points of the dynamic process. However, in general games, a minimal curb
set often consists of more than one strategy profile and there are usually several
such sets. The games we analyze are quite large and the main issue here is the
nature of minimal curb sets. Our results characterize these sets as well as show
convergence of the dynamics.16

The rest of the paper is organized as follows. Section 2 presents the model.
Section 3 analyzes the case of one-way flows, while Section 4 considers the case
of two-way flows. Section 5 studies network formation in the presence of decay.
Section 6 concludes.

2. THE MODEL

� 4Let N� 1, . . . , n be a set of agents and let i and j be typical members of this
set. To avoid trivialities, we shall assume throughout that n�3. For concrete-
ness in what follows, we shall use the example of gains from information sharing
as the source of benefits. Each agent is assumed to possess some information of
value to himself and to other agents. He can augment this information by
communicating with other people; this communication takes resources, time,
and effort and is made possible via the setting up of pair-wise links.

Ž . Ž .A strategy of agent i�N is a row vector g � g , . . . , g , g , . . . , gi i, 1 i, i�1 i, i	1 i, n
� 4 � 4where g � 0, 1 for each j�N 
 i . We say agent i has a link with j ifi, j

Ž .g �1. A link between agent i and j can allow for either one-way asymmetrici, j
Ž .or two-way symmetric flow of information. With one-way communication, the

link g �1 enables agent i to access j’s information, but not vice-versa.17 Withi, j
two-way communication, g �1 allows both i and j to access each other’si, j

15 Specifically, they propose that a strategy profile s is accessible from another strategy profile s�

if there is a continuous smooth path leading from s� to s that satisfies the following property: at
each strategy profile along the path, the direction of movement is consistent with each of the
different players choosing one of their best responses to the current strategy profile. A set of
strategy profiles S is ‘stable’ if no strategy profile s� �S is accessible from any strategy profile s�S,
and each strategy profile in S is accessible from every other strategy profile in S.

16 Ž .For a survey of recent research on learning in games, see Marimon 1997 .
17 For example, i could access j’s website, or read a paper written by j.
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information.18 The set of all strategies of agent i is denoted by GG . Throughouti
the paper we restrict our attention to pure strategies. Since agent i has the
option of forming or not forming a link with each of the remaining n�1 agents,

� � n�1the number of strategies of agent i is clearly GG �2 . The set GG�GG � ��� �i 1
GG is the space of pure strategies of all the agents. We now consider the gamen
played by the agents under the two alternative assumptions concerning informa-
tion flow.

2.1. One-way Flow

Ž .In the one-way flow model, we can depict a strategy profile g� g , . . . , g in1 n
GG as a directed network. The link g �1 is represented by an edge starting at ji, j

with the arrowhead pointing at i. Figure 2A provides an example with n�3
agents. Here agent 1 has formed links with agents 2 and 3, agent 3 has a link
with agent 1 while agent 2 does not link up with any other agent. Note that there
is a one-to-one correspondence between the set of all directed networks with n
vertices and the set GG.

dŽ . � 4Define N i; g � k�N �g �1 as the set of agents with whom i maintainsi, k

a link. We say there is a path from j to i in g either if g �1 or there existi, j
distinct agents j , . . . , j different from i and j such that g �g � ��� �g1 m i, j j , j j , j1 1 2 m

�1. For example, in Figure 2A there is a path from agent 2 to agent 3. The
g

notation ‘‘ j � i’’ indicates that there exists a path from j to i in g. Furthermore,
g

Ž . � 4 � 4we define N i; g � k�N �k � i � i . This is the set of all agents whose
information i accesses either through a link or through a sequence of links. We

Ž .shall typically refer to N i; g as the set of agents who are observed by i. We use
Ž . dthe convention that i�N i; g , i.e. agent i observes himself. Let � : GG�i

� 4 � 4 dŽ . � dŽ . � Ž .0, . . . , n�1 and � : GG� 1, . . . , n be defined as � g � N i; g and � gi i i
� Ž . � dŽ .� N i; g for g�GG. Here, � g is the number of agents with whom i hasi

Ž .formed links while � g is the number of agents observed by agent i.i

FIGURE 2A

FIGURE 2B

18 Thus, i could make a telephone call to j, after which there is information flow in both
directions.
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To complete the definition of a normal-form game of network formation, we
specify a class of payoff functions. Denote the set of nonnegative integers by

2 Ž .Z . Let � : ZZ �RR be such that � x, y is strictly increasing in x and strictly	 	
decreasing in y. Define each agent’s payoff function � : GG�RR asi

Ž . Ž . Ž Ž . d Ž ..2.1 � g �� � g , � g .i i i

Ž .Given the properties we have assumed for the function � , � g can bei
interpreted as providing the ‘‘benefit’’ that agent i receives from his links, while

dŽ .� g measures the ‘‘cost’’ associated with maintaining them.i
Ž .The payoff function in 2.1 implicitly assumes that the value of information

does not depend upon the number of individuals through which it has passed,
i.e., that there is no information decay or delay in transmission. We explore the
consequences of relaxing this assumption in Section 5.

Ž .A special case of 2.1 is when payoffs are linear. To define this, we specify
two parameters V�0 and c�0, where V is regarded as the �alue of each

Ž .agent’s information to himself and to others , while c is his cost of link
formation. Without loss of generality, V can be normalized to 1. We now define
Ž .� x, y �x�yc, i.e.

Ž . Ž . Ž . d Ž .2.2 � g �� g �� g c.i i i

In other words, agent i’s payoff is the number of agents he observes less the
total cost of link formation. We identify three parameter ranges of importance.

Ž .If c� 0, 1 , then agent i will be willing to form a link with agent j for the sake
Ž .of j’s information alone. When c� 1, n�1 , agent i will require j to observe

some additional agents to induce him to form a link with j. Finally, if c�n�1,
then the cost of link formation exceeds the total benefit of information available
from the rest of society. Here, it is a dominant strategy for i not to form a link
with any agent.

2.2. Two-way Flow

Ž .In the two-way flow model, we depict the strategy profile g� g , . . . , g as a1 n
nondirected network. The link g �1 is represented by an edge between i and j:i, j
a filled circle lying on the edge near agent i indicates that it is this agent who
has initiated the link. Figure 2B below depicts the example of Figure 2A for the
two-way model. As before, agent 1 has formed links with agents 2 and 3, agent 3
has formed a link with agent 1 while agent 2 does not link up with any other
agent.19 Every strategy-tuple g�GG has a unique representation in the manner
shown in the figure.

To describe information flows formally, it is useful to define the closure of g :
Ž .this is a nondirected network denoted g�cl g , and defined by g �i, j

19 Since agents choose strategies independently of each other, two agents may simultaneously
initiate a two-way link, as seen in the figure.
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� 4 20 Ž .max g , g for each i and j in N. We say there is a tw-path for two-way ini, j j, i

g between i and j if either g �1 or there exist agents j , . . . , j distinct fromi, j 1 m
g

each other and i and j such that g � ��� �g �1. We write i � j toi, j j , j1 m
dŽ . dŽ .indicate a tw-path between i and j in g. Let N i; g and � g be defined as inig

Ž . � 4 � 4Section 2.1. The set N i; g � k � i � k � i consists of agents that i observes
Ž . � Ž . �in g under two-way communication, while � g � N i; g is its cardinality. Thei

payoff accruing to agent i in the network g is defined as
dŽ . Ž . Ž Ž . Ž ..2.3 � g �� � g , � g ,i i i

Ž . Ž .where � �, � is as in Section 2.1. The case of linear payoffs is � x, y �x�yc as
Ž .before. We obtain, analogously to 2.2 :

dŽ . Ž . Ž . Ž .2.4 � g �� g �� g c.i i i

Ž . Ž .The parameter ranges c� 0, 1 , c� 1, n�1 , and c�n�1 have the same
interpretation as in Section 2.1.

2.3. Nash and Efficient Networks

Given a network g�GG, let g denote the network obtained when all of�i
agent i’s links are removed. The network g can be written as g�g �g wherei �i
the ‘�’ indicates that g is formed as the union of the links in g and g . Underi �i
one-way communication, the strategy g is said to be a best-response of agent ii
to g if�i

Ž . Ž . Ž � . �2.5 � g �g �� g �g , for all g �GG .i i �i i i �i i i

Ž .The set of all of agent i’s best responses to g is denoted BR g . Further-�i i �i
Ž . Ž .more, a network g� g , . . . , g is said to be a Nash network if g �BR g1 n i i �i

for each i, i.e. agents are playing a Nash equilibrium. A strict Nash network is
one where each agent gets a strictly higher payoff with his current strategy than
he would with any other strategy. For two-way communication, the definitions
are the same, except that � replaces � everywhere. The best-responsei i

Ž .mapping is likewise denoted by BR � .i
We shall define our welfare measure in terms of the sum of payoffs of all

Ž . n Ž .agents. Formally, let W : GG�RR be defined as W g �Ý � g for g�GG. Ai�1 i
Ž . Ž �. �network g is efficient if W g �W g for all g �GG. The corresponding welfare

function for two-way communication is denoted W. For the linear payoffs
Ž . Ž .specified in 2.2 and 2.4 , an efficient network is one that maximizes the total

value of information made available to the agents, less the aggregate cost of
communication.

Two networks g�GG and g� �GG are equivalent if g� is obtained as a
permutation of the strategies of agents in g. For example, if g is the network in
Figure 2A, and g� is the network where agents 1 and 2 are interchanged, then g

20 Note that g �g so that the order of the agents is irrelevant.i, j j, i
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and g� are equivalent. The equivalence relation partitions GG into classes: each
class is referred to as an architecture.21

2.4. The Dynamic Process

We describe a simple process that is a modified version of naive best response
dynamics. The network formation game is assumed to be repeated in each time
period t�1, 2, . . . . In each period t�2, each agent observes the network of the

22 Ž .previous period. With some fixed probability r � 0, 1 , agent i is assumed toi
exhibit ‘inertia’, i.e. he maintains the strategy chosen in the previous period.
Furthermore, if the agent does not exhibit inertia, which happens with probabil-
ity p �1� r , he chooses a myopic pure strategy best response to the strategy ofi i
all other agents in the previous period. If there is more than one best response,
each of them is assumed to be chosen with positive probability. The last
assumption introduces a certain degree of ‘mixing’ in the dynamic process and
in particular rules out the possibility that a weak Nash equilibrium is an
absorbing state.23

Ž .Formally, for a given set A, let � A denote the set of probability distribu-
Ž .tions on A. We suppose that for each agent i there exists a number p � 0, 1i

Ž .and a function 	 : GG�� GG where 	 satisfies, for all g�g �g �GG:i i i i �i

Ž . Ž . Ž Ž ..2.6 	 g �Interior � BR g .i i �i

Ž . Ž .Ž .For g in the support of 	 g , the notation 	 g g denotes the probabilityˆ ˆi i i i
Ž .assigned to g by the probability measure 	 g . If the network at time t�1 isî i

21 For example, consider the one-way flow model. There are n possible ‘star’ networks, all of
which come under the equivalence class of the star architecture. Likewise, the wheel architecture is

Ž .the equivalence class of n�1 ! networks consisting of all permutations of n agents in a circle.
22 As compared to models where, say, agents are randomly drawn from large populations to play a

two-player game, the informational requirements for agents to compute a best response here are
much higher. This is because the links formed by a single agent can be crucial in determining a best
response. Some of our results on the dynamics can be obtained under somewhat weaker require-
ments. For instance, in the one-way flow model, the results carry over if, in a network g, an agent i

Ž .knows only the sets N k; g , and not the structure of links of every other agent k in the society.�i
Further analysis under alternative informational assumptions is available in a working paper version,
which is available from the authors upon request.

23 We can interpret the dynamics as saying that the links of the one-shot game, while durable,
must be renewed at the end of each period by fresh investments in social relationships. An
alternative interpretation is in terms of a fixed-size overlapping-generations population. At regular

Žintervals, some of the individuals exit and are replaced by an equal number of new people. In this
.context, p is the probability that an agent is replaced by a new agent. Upon entry an agent looksi

around and informs himself about the connections among the set of agents. He then chooses a set of
people and forms links with them, with a view to maximizing his payoffs. In every period that he is
around, he renews these links via regular investments in personal relations. This models the link
formation behavior of students in a school, managers entering a new organization, or families in a
social setting.
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g t �g t �g t , the strategy of agent i at time t	1 is assumed to be given byi �i

Ž . Ž .Ž .g �support 	 g , with probability p �	 g g ,ˆ ˆi i i i it	1Ž .2.7 g �i t½ g , with probability 1�p .i i

Ž . Ž .Equation 2.7 states that with probability p � 0, 1 , agent i chooses a naivei
best response to the strategies of the other agents. It is important to note that

Žunder this specification, an agent may switch his strategy to another best-re-
.sponse strategy even if he is currently playing a best-response to the existing

strategy profile. The function 	 defines how agent i randomizes between besti
responses if more than one exists. Furthermore, with probability 1�p agent ii
exhibits ‘inertia’, i.e. maintains his previous strategy.

We assume that the choice of inertia as well as the randomization over best
responses by different agents is independent across agents. Thus our decision
rules induce a transition matrix T mapping the state space GG to the set of all

Ž . � 4probability distributions � GG on GG. Let X be the stationary Markov chaint
starting from the initial network g�GG with the above transition matrix. The

� 4process X describes the dynamics of network evolution given our assumptionst
on agent behavior.

The dynamic process in the two-way model is the same except that we use the
Ž . Ž .best-response mapping BR � instead of BR � .ii

3. THE ONE-WAY FLOW MODEL

In this section, we analyze the nature of network formation when information
flow is one-way. Our results provide a characterization of strict Nash and
efficient networks and also show that the dynamic process converges to a limit
network, which is a strict Nash network, in all cases.

3.1. Static Properties

Given a network g, a set C
N is called a component of g if for every
g

Ž Ž ..distinct pair of agents i and j in C we have j � i equivalently, j�N i; g and
there is no strict superset C� of C for which this is true. A component C is said
to be minimal if C is no longer a component upon replacement of a link g �1i, j
between two agents i and j in C by g �0, ceteris paribus. A network g is saidi, j
to be connected if it has a unique component. If the unique component is
minimal, g is called minimally connected. A network that is not connected is

Ž . � 4referred to as disconnected. A network is said to be empty if N i; g � i and it
dŽ . � 4is called complete if N i; g �N 
 i for all i�N. We denote the empty and

the complete network by g e and g c, respectively. A wheel network is one where
� 4the agents are arranged as i , . . . , i with g � ��� �g �g �1 and1 n i , i i , i i , i2 1 n n�1 1 n

there are no other links. The wheel network is denoted g w. A star network has
� 4a central agent i such that g �g �1 for all j�N 
 i and no other links.i, j j, i
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Ž .The geodesic distance from agent j to agent i in g is the number of links in
Ž . Ž .the shortest path from j to i, and is denoted d i, j; g . We set d i, j; g �
 if

there is no path from j to i in g. These definitions are taken from Bollobas
Ž .1978 .

Our first result highlights a general property of Nash networks when agents
are symmetrically positioned vis-a-vis information and the costs of access: in
equilibrium, either there is no social communication or every agent has access to
all the information in the society.

Ž .PROPOSITION 3.1: Let the payoffs be gi�en by 2.1 . A Nash network is either
empty or minimally connected.

The proof is given in Appendix A; the intuition is as follows. Consider a
nonempty Nash network, and suppose that agent i is the agent who observes the
largest number of agents in this network. Suppose i does not observe everyone.
Then there is some agent j who is not observed by i and who does not observe i
Ž .for otherwise j would observe more agents than i . Since i gets values from his
links, and payoffs are symmetric, j must also have some links. Let j deviate from
his Nash strategy by forming a link with i alone. By doing so, j will observe
strictly more agents than i does, since he has the additional benefit of observing
i. Since j was observing no more agents than i in his original strategy, j
increases his payoff by his deviation. The contradiction implies that i must
observe every agent in the society. We then show that every other agent will
have an incentive to either link with i or to observe him through a sequence of
links, so that the network is connected. If the network is not minimally
connected, then some agent could delete a link and still observe all agents,
which would contradict Nash.

Figures 3A and 3B depict examples of Nash networks in the linear payoffs case
Ž . Ž .specified by 2.2 with c� 0, 1 . The number of Nash networks increases quite

rapidly with n; for example, we compute that there are 5, 58, 1069, and in excess
of 20,000 Nash networks as n takes on values of 3, 4, 5, and 6, respectively.

A Nash network in which some agent has multiple best responses is likely to
be unstable since this agent can decide to switch to another payoff-equivalent

Ž .FIGURE 3A.�The star and the wheel one-way model .
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FIGURE 3B.�Other Nash networks.

strategy. This motivates an examination of strict Nash networks. It turns out
there are only two possible architectures for such networks.

Ž .PROPOSITION 3.2: Let the payoffs be gi�en by 2.1 . A strict Nash network is
Ž . Ž . Ž .either the wheel or the empty network. a If � x	1, x �� 1, 0 for someˆ ˆ

� 4 Ž . Ž .x� 1, . . . , n�1 , then the wheel is the unique strict Nash. b If � x	1, x �ˆ
Ž . � 4 Ž . Ž .� 1, 0 for all x� 1, . . . , n�1 and � n, 1 �� 1, 0 , then the empty network and

Ž . Ž . Ž .the wheel are both strict Nash. c If � x	1, x �� 1, 0 holds for all x�
� 4 Ž . Ž .1, . . . , n�1 and � n, 1 �� 1, 0 , then the empty network is the unique strict
Nash.
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PROOF: Let g�GG be strict Nash, and assume it is not the empty network. We
show that for each agent k there is one and only one agent i such that g �1.i, k
Since g is Nash, it is minimally connected by Proposition 3.1. Hence there is an
agent i who has a link with k. Suppose there exists another agent j such that
g �1. As g is minimal we have g �0, for otherwise i could delete the linkj, k i, j

with k and g would still be connected. Let g be the strategy where i deletes hisî
link with k and forms one with j instead, ceteris paribus. Define g�g �g ,ˆ î �i

dŽ . dŽ . dŽ . dŽ .where g�g. Then � g �� g . Furthermore, since k�N j; g �N j; g ,ˆ ˆ ˆi i
Ž . Ž .clearly � g �� g as well. Hence i will do at least as well with the strategy gˆ ˆi i i

as with his earlier strategy g , which violates the hypothesis that g is the uniquei i
best response to g . As each agent has exactly one other agent who has a link�i
with him, g has exactly n links. It is straightforward to show that the only

Ž . Ž .connected network with n links is the wheel. Parts a � c now follow by direct
verification. Q.E.D.

Ž . Ž . dŽ . Ž . Ž .For the linear payoff case � g �� g �� g c of 2.2 , Proposition 3.2 ai i i
Ž �reduces to saying that the wheel is the unique strict Nash when c� 0, 1 .

Ž .Proposition 3.2 b implies that the wheel and the empty network are strict Nash
Ž . Ž .in the region c� 1, n�1 , while Proposition 3.2 c implies that the empty

network is the unique strict Nash when c�n�1. The final result in this
subsection characterizes efficient networks.

Ž . Ž . Ž . Ž .PROPOSITION 3.3: Let the payoffs be gi�en by 2.1 . a If � n, 1 �� 1, 0 ,
Ž . Ž . Ž .then the wheel is the unique efficient architecture, while b if � n, 1 �� 1, 0 ,

then the empty network is the unique efficient architecture.

Ž . Ž Ž . dŽ ..PROOF: Consider part a first. Let � be the set of values � g , � g as gi i
dŽ . Ž . dŽ . � 4ranges over GG. If � g �0, then � g �1, while if � g � 1, . . . , n�1 , theni i i

Ž . � dŽ . 4 � 4 � 4 �Ž .4� g � � g 	 1, n . Thus, � 
 1, . . . , n � 1, . . . , n � 1 � 1, 0 . Giveni i
Ž . �Ž .4 Ž . Ž . Ž .x, y �� 
 1, 0 , we have � n, 1 �� n, y �� x, y since � is decreasing
in its second argument and increasing in its first. For the wheel network g w,

Ž w . dŽ w . wnote that � g �n and � g �1. Next consider a network g�g : for eachi i
dŽ . Ž . dŽ . Ž .i�N, if � g �1, then � g �n, while if � g �0, then � g �1. In eitheri i i i

case,

Ž . Ž w . Ž . Ž Ž . d Ž .. Ž .3.1 � g �� n , 1 �� � g , � g �� g ,i i i i

Ž . Ž .where we have used the assumption that � n, 1 �� 1, 0 . It follows that
Ž w . Ž . Ž Ž . dŽ .. Ž . wW g �Ý � n, 1 �Ý � � g , � g �W g as well. Thus g is ani� N i� N i i

efficient architecture. To show uniqueness, note that our assumptions on �
Ž . dŽ . Ž .imply that equation 3.1 holds with strict inequality if � g �1 or if � g �n.i i

w dŽ . Ž .Let g�g be given; if � g �1 for even one i, then the inequality 3.1 isi
Ž w . Ž . dŽ .strict, and W g �W g . On the other hand, suppose � g �1 for all i�N.i

As the wheel is the only connected network with n agents, and g�g w, there
Ž . Ž .must be an agent j such that � g �n. Thus, 3.1 is again a strict inequality forj

Ž w . Ž .agent j and W g �W g , proving uniqueness.
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Ž . eIn part b , let g be different from the empty network g . Then there exists
dŽ . Ž e. Ž . Ž .some agent j such that � g �1. For this agent � g �� 1, 0 �� n, 1 �j j

Ž Ž . dŽ .. Ž . Ž e. Ž .� � g , � g �� g while for all other agents i, � g �� 1, 0 �j j j i
Ž Ž . dŽ .. Ž .� � g , � g �� g . The result follows by summation. Q.E.D.i i i

3.2. Dynamics

To get a first impression of the dynamics, we simulate a sample trajectory with
Ž . 24n�5 agents, for a total of twelve periods Figure 4 . As can be seen, the

choices of agents evolve rapidly and settle down by period 11: the limit network
is a wheel.

The above simulation raises an interesting question: under what conditions�
on the structure of payoffs, the size of the society, and the initial network�does
the dynamic process converge? Convergence of the process, if and when it
occurs, is quite appealing from an economic perspective since it implies that
agents who are myopically pursuing self-interested goals, without any assistance
from a central coordinator, are nevertheless able to e�ol�e a stable pattern of
communication links over time. The following result shows that convergence
occurs irrespective of the size of the society or the initial network.

Ž .THEOREM 3.1: Let the payoff functions be gi�en by equation 2.1 and let g be the
Ž . � 4 Ž .initial network. a If there is some x� 1, . . . , n�1 such that � x	1, x �ˆ ˆ ˆ

Ž .� 1, 0 , then the dynamic process con�erges to the wheel network, with probability 1.
Ž . Ž . Ž . � 4 Ž .b If instead, � x	1, x �� 1, 0 for all x� 1, . . . , n�1 and � n, 1 �
Ž .� 1, 0 , then the process con�erges to either the wheel or the empty network, with

Ž . Ž . Ž . � 4probability 1. c Finally, if � x	1, x �� 1, 0 for all x� 1, . . . , n�1 and
Ž . Ž .� n, 1 �� 1, 0 , then the process con�erges to the empty network, with probability

1.

PROOF: The proof relies on showing that given an arbitrary network g there
is a positive probability of transiting to a strict Nash network in finite time, when
agents follow the rules of the process. As strict Nash networks are absorbing
states, the result will then follow from the standard theory of Markov chains. By
Ž .2.7 there is a positive probability that all but one agent will exhibit inertia in a
given period. Hence the proof will follow if we can specify a sequence of

Ž .networks where at each stage of the sequence only one suitably chosen agent
selects a best response. In what follows, unless specified otherwise, when we
allow an agent to choose a best response, we implicitly assume that all other
agents exhibit inertia.

24 Ž . Ž .We suppose that payoffs have the linear specification 2.2 and that c� 0, 1 . The initial
Ž .network labelled t�1 has been drawn at random from the set of all directed networks with 5

agents. In period t�2, the choices of agents who exhibit inertia have been drawn with solid lines,
while the links of those who have actively chosen a best response are drawn with dashed lines.
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Ž .FIGURE 4.�Sample path one-way model .
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Ž . 25We consider part a first. Assume initially that there exists an agent j for1
Ž .whom � g �n, i.e. j observes all the agents in the society. Let j �j 1 21

Ž .argmax d j , m; g . In words, j is an agent furthest away from j in g. Inm� N 1 2 1g�j2 �

particular, this means that for each i�N we have i j , i.e. agent j observes1 1
every agent in the society without using any of j ’s links. Let j now choose a2 2
best response. Note that a single link with agent j suffices for j to observe all1 2g�j2 � � 4the agents in the society, since i j for all i�N 
 j , j . Furthermore, as1 1 2
Ž . Ž . Ž . Ž . Ž .� n, 1 �� x	1, 1 �� x	1, x �� 1, 0 , forming a link with j weaklyˆ ˆ ˆ 1

dominates not having any links at all for j . Thus, j has a best response g ofˆ2 2 j2

the form g �1, g �0 for all m� j . Let agent j play this best response.ˆ ˆj , j j , m 1 22 1 2

Denote the resulting network as g1 where g1 �g �g . Note that the prop-ĵ �j2 2
g1

erty i � j for all i�N holds for this network.1
More generally, fix s satisfying 2�s�n�1, and let g s�1 be the following

� 4network: there are s distinct agents j , . . . , j such that for each q� 2, . . . , s we1 s
g s�1

s�1 s�1 �

have g �1 and g �0 for all m� j , and furthermore, i j for allj , j j , m q�1 1q q�1 q

i�N. Choose j as follows:s	1

Ž . Ž s�1 .3.2 j �argmax d j , m; g .s	1 m� N 
� j , . . . , j 4 11 s

Note that given g s�1, a best response g for j is to form a link with jĵ s	1 ss	 1

alone. By doing so, he observes j , . . . , j , and through j , the remaining agentss 1 1
in the society as well. Let g s �g �g s�1 be the resulting network when jĵ �j s	1s	 1 s	1

chooses this strategy. Note also that since j ’s link formation decision iss	1
g s

irrelevant to j observing him, we have j � j , with the same also holding for1 s	1 1
j , . . . , j . Thus we can continue the induction. We let the process continue untils 2
j chooses his best response in the manner above: at this stage, agent j is then 1

Ž .only agent with possibly more than one link. If agent j is allowed to move1
again, his best response is to form a single link with j , which creates a wheeln

w Ž . wnetwork g . By Proposition 3.2 a , g is an absorbing state.
Ž .The above argument shows that a holds if we assume there is some agent in

g who observes the rest of society. We now show that this is without loss of
generality. Starting from g, choose an agent i� and let him play a best response
g � . Label the resulting network g � �g � as g�. Note that we can supposeˆ ˆi i �i

dŽ �.�� g �1. This is because zero links yield a payoff no larger than forming x̂i
Ž . Ž � .�links and observing x	1 or more agents. If � g �n we are done. Other-ˆ i

Ž �. 	 Ž � �.� 	wise, if � g �n, choose i �N i ; g and let him play a best response g .ˆi i
Define g	 �g 	 �g�

	 . As before, we can suppose without loss of generality thatî �i
Ž 	 . Ž �.	 	 �g involves at least one link. We claim that � g �� g 	1. Indeed, byî i i

forming a link with i�, agent i	 can observe i� and all the other agents that i�

Ž Ž �. .�observes, and thereby guarantee himself a payoff of � � g 	1, 1 . The claimi

25 We thank an anonymous referee for suggesting the following arguments, which greatly simplify
our original proof.
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Ž Ž �. . Ž . Ž .�now follows because � � g 	1, 1 �� x, y for any x, y pair satisfyingi
Ž � .�x�� g and y�1. Repeating this argument if necessary, we eventually arrivei

at a network where some agent observes the entire society, as required.
Ž . Ž . Ž . Ž .We now turn to parts b and c . If � n, 1 �� 1, 0 , it is a dominant strategy

Ž .for each agent not to form any links. Statement c follows easily from this
Ž . Ž .observation. We consider b next. Note from Proposition 3.2 b that the wheel

is strict Nash for this payoff regime. Suppose there exists an agent i�N such
Ž . Ž .that � g �n. Then the argument employed in part a ensures convergence toi

Ž .the wheel with positive probability. If, instead, � g �n, let x�2 be the largestˆi
Ž . Ž . Ž . Ž .number such that � x, 1 �� 1, 0 . Note that x�n�1 since � n, 1 �� 1, 0 .ˆ ˆ

Ž . � 4Suppose there exists i�N such that � g � x, . . . , n�1 . Then the argumentˆi
Ž .used in the last part of the proof of part a can be applied to eventually yield an

agent who observes every agent in the society. The last possibility is that for all
Ž . � �agents i in g we have � g �x. Choose an agent i and consider the network gˆi

dŽ �. Ž �.� �formed after he chooses his best response. Suppose � g �1 and � g �x.̂i i
Ž �. Ž Ž �. dŽ �.. Ž . Ž .� � �Then � g �� � g , � g �� x, 1 �� 1, 0 and forming no links doesˆi i i

strictly better. Hence, if i� has a best response involving the formation of at least
Ž .one link, he must observe at least x agents including himself in the resultingˆ

network. Thus we let each agent play in turn�either they will all choose to
form no links, in which case the process is absorbed into the empty network, or
some agent eventually observes at least x agents. In the latter event, we canˆ
employ the earlier arguments to show convergence with positive probability to a
wheel. Q.E.D.

Ž . Ž . dŽ .In the case of linear payoffs � g �� g �� g c, Theorem 3.1 says thati i i
Ž .when costs are low 0�c�1 the dynamics converge to the wheel, when costs

Ž .are in the intermediate range 1�c�n�1 , the dynamics converge to either
Ž .the wheel or the empty network, while if costs are high c�n�1 , then the

system collapses into the empty network.
Ž .Under the hypotheses of Theorem 3.1 b , it is easy to demonstrate path

dependence, i.e. a positive probability of converging to either the wheel or the
empty network from an initial network. Consider a network where agent 1 has
n�1 links and no other agent has any links. If agent 1 moves first, then
Ž . Ž . � 4� x	1, x �� 1, 0 for all x� 1, . . . , n�1 implies that his unique best

response is not to form any links, and the process collapses to the empty
network. On the other hand, if the remaining agents play one after another in
the manner specified by the proof of the above theorem, then convergence to
the wheel occurs.

Ž . Ž .Recall from Proposition 3.3 that when � n, 1 �� 1, 0 , the unique efficient
Ž . Ž .network is the wheel, while if � n, 1 �� 1, 0 the empty network is uniquely

Ž . Ž .efficient. Suppose the condition � x	1, x �� 1, 0 specified in Theoremˆ ˆ
Ž . Ž . Ž . Ž .3.1 a holds. Then as � n, 1 �� x	1, 1 �� x	1, x with at least one ofˆ ˆ ˆ

Ž . Ž .these inequalities being strict, we get � n, 1 �� 1, 0 . Thus we have the
following corollary.
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Ž . Ž .COROLLARY 3.1: Suppose the hypothesis of Theorem 3.1 a or Theorem 3.1 c
holds. Then starting from any initial network, the dynamic process con�erges to the
unique efficient architecture with probability 1.

Ž .Efficiency is not guaranteed in Theorem 3.1 b : while the wheel is uniquely
efficient, the dynamics may converge to the empty network instead. However, as
the proof of the theorem illustrates, there are many initial networks from which
convergence to the efficient architecture occurs with positive probability.

Ž .Rates of Con�ergence: We take payoffs according to the linear model 2.2 , i.e.
Ž . Ž . dŽ . Ž . Ž .� g �� g �� g c. We focus upon two cases: c� 0, 1 and c� 1, 2 . Ini i i

Ž .the former case, Theorem 3.1 a shows that convergence to the wheel always
Ž .occurs, while in the latter case, Theorem 3.1 b indicates that either the wheel

or the empty network can be the limit.
ˆIn the simulations we assume that p �p for all agents. Furthermore, let 	 bei

such that it assigns equal probability to all best responses of an agent given a
ˆnetwork g. We assume that all agents have the same function 	. The initial

network is chosen by the method of equiprobable links: a number k�
� Ž .40, . . . , n n�1 is first picked at random, and then the initial network is chosen
randomly from the set of all networks having a total of k links.26 We simulate
the dynamic process starting from the initial network until it converges to a
limit. Our simulations are with n�3 to n�8 agents, for p�0.2, 0.5, and 0.8.

Ž .For each n, p pair, we run the process for 500 simulations and report the
Ž .average convergence time. Table I summarizes the results when c� 0, 1 and

Ž .c� 1, 2 . The standard errors are in parentheses.
Table I suggests that the rates of convergence are very rapid. In a society with

8 agents we find that with p�0.5, the process converges to a strict Nash in less
than 55 periods on average.27 Secondly, we find that in virtually all the cases
Ž .except for n�3 the average convergence time is higher if p�0.8 or p�0.2

TABLE I

RATES OF CONVERGENCE IN ONE-WAY FLOW MODEL

Ž . Ž .c � 0, 1 c � 1, 2

n p � 0.2 p � 0.5 p � 0.8 p � 0.2 p � 0.5 p � 0.8

Ž . Ž . Ž . Ž . Ž . Ž .3 15.29 0.53 7.05 0.19 6.19 0.19 8.58 0.35 4.50 0.17 5.51 0.24
Ž . Ž . Ž . Ž . Ž . Ž .4 23.23 0.68 12.71 0.37 13.14 0.42 11.52 0.38 5.98 0.18 6.77 0.22
Ž . Ž . Ž . Ž . Ž . Ž .5 28.92 0.89 17.82 0.54 28.99 1.07 15.19 0.40 9.16 0.27 14.04 0.59
Ž . Ž . Ž . Ž . Ž . Ž .6 38.08 1.02 26.73 0.91 55.98 2.30 19.93 0.57 12.68 0.41 28.81 1.16
Ž . Ž . Ž . Ž . Ž . Ž .7 45.90 1.30 35.45 1.19 119.57 5.13 25.46 0.71 18.51 0.57 57.23 2.29
Ž . Ž . Ž . Ž . Ž . Ž .8 57.37 1.77 54.02 2.01 245.70 10.01 27.74 0.70 26.24 0.89 121.99 5.62

26 An alternative approach specifies that each network in GG is equally likely to be chosen as the
initial one. Simulation results with this approach are similar to the findings reported here.

27 The precise significance of these numbers depends on the duration of the periods and more
generally on the particular application under consideration.
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compared to p�0.5. The intuition for this finding is that when p is small, there
is a very high probability that the state of the system does not change very much
from one period to the next, which raises the convergence time. When p is very
large, there is a high probability that ‘‘most’’ agents move simultaneously. This
raises the likelihood of miscoordination, which slows the process. The conver-
gence time is thus lowest for intermediate values of p where these two effects
are balanced. Thirdly, we find that the average convergence time increases
relatively slowly as n increases. So, for instance, as we increase the size of the
society from three agents to eight agents, the number of networks increases

16 Žfrom 64 to more than 10 networks. Yet the average convergence time for
.p�0.5 only increases from around 8 periods to around 54 periods. Finally, we

note that the average times are even lower when the communication cost is
Ž .higher, as seen when c� 1, 2 . This is not simply a reflection of the possibility of

absorption into the empty network when c�1: for example, with n�8 this
occurred in no more than 3% of all simulations. Instead, it seems to be due to
the fact that the set of best responses decreases with higher costs of communica-
tion.

4. TWO-WAY FLOW MODEL

In this section, we study network formation when the flow of information is
two-way. Our results provide a characterization of strict Nash networks and
efficient networks. We also show that the dynamic process converges to a limit
network that is a strict Nash network, for a broad class of payoff functions.

4.1. Static Properties

Let the network g be given. A set C
N is called a tw-component of g if for
all i and j in C there is a tw-path between them, and there does not exist a
tw-path between an agent in C and one in N 
C. A tw-component C is called

Ž .minimal if a there does not exist a tw-cycle within C, i.e. q�3 agents
� 4 Ž .j , . . . , j 
C such that g � ��� �g �1, and b g �1 implies g �01 q j , j j , j i, j j, i1 2 q 1

for any pair of agents i, j in C. The network g is called tw-connected if it has a
unique tw-component C. If the unique tw-component C is minimal, we say that
g is minimally tw-connected. This implies that there is a unique tw-path between
any two agents in N. The tw-distance between two agents i and j in g is the

Ž .length of the shortest tw-path between them, and is denoted by d i, j; g . We
begin with a preliminary result on the structure of Nash networks.

Ž .PROPOSITION 4.1: Let the payoffs be gi�en by 2.3 . A Nash network is either
empty or minimally tw-connected.

We make some remarks in relation to the above result. First, by the definition
of payoffs, while one agent bears the cost of a link, both agents obtain the
benefits associated with it. This asymmetry in payoffs is relevant for defining the
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FIGURE 5A.�Center-sponsored.

FIGURE 5B.�Periphery-sponsored.

FIGURE 5C.�Mixed-type.

architecture of the network. As an illustration, we note that there are now three
types of ‘star’ networks, depending upon which agents bear the costs of the links
in the network. For a society with n�5 agents, Figures 5A�5C illustrate these
types. Figure 5A shows a center-sponsored star, Figure 5B a periphery-sponsored
star, and Figure 5C depicts a mixed-type star.

Second, there can be a large number of Nash equilibria. For example,
Ž . Ž .consider the linear specification 2.4 with c� 0, 1 . With n�3, 4, 5, and 6

agents there are 12, 128, 2000, and 44352 Nash networks, respectively. Figures
6A and 6B present some examples of Nash networks.

Ž .FIGURE 6A.�Star networks two-way model .
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FIGURE 6B.�Other Nash networks.

We now show that the set of strict Nash equilibria is significantly more
restrictive.

Ž .PROPOSITION 4.2: Let the payoffs be gi�en by 2.3 . A strict Nash network is
Ž .either a center-sponsored star or the empty network. a A center-sponsored star is

Ž . Ž . � 4 Ž .strict Nash if and only if � n, n�1 �� x	1, x for all x� 0, . . . , n�2 . b
Ž . Ž .The empty network is strict Nash if and only if � 1, 0 �� x	1, x for all

� 4x� 1, . . . , n�1 .

Ž .PROOF: Suppose g is strict Nash and is not the empty network. Let g�cl g .
� � 4�Let i and j be agents such that g �1. We claim that g �0 for any j � i, j .i, j j, j

If this were not true, then i can delete his link with j and form one with j�

instead, and receive the same payoff, which would contradict the assumption
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that g is strict Nash. Thus any agent with whom i is directly linked cannot have
any other links. As g is minimally tw-connected by Proposition 4.1, i must be
the center of a star and g �0. If j� � j is such that g � �1, then j� can switchj, i j , i
to j and get the same payoff, again contradicting the supposition that g is strict
Nash. Hence, the star must be center-sponsored.

Ž .Under the hypothesis in a it is clear that a center-sponsored star is strict
Nash, while the empty network is not Nash. On the other hand, let g be a

�center-sponsored star with i as center, and suppose there is some x� 0, . . . , n�
4 Ž . Ž .2 such that � x	1, x �� n, n�1 . Then i can delete all but x links and do

at least as well, so that g cannot be strict Nash. Similar arguments apply under
Ž .the hypotheses in b . Q.E.D.

Ž . Ž .For the linear specification 2.4 , Proposition 4.2 implies that when c� 0, 1
the unique strict Nash network is the center-sponsored star, and when c�1 the
unique strict Nash network is the empty network.

We now turn to the issue of efficiency. In general, an efficient network need
not be either tw-connected or empty.28 We provide the following partial charac-
terization of efficient networks.

Ž .PROPOSITION 4.3: Let the payoffs be gi�en by 2.3 . All tw-components of an
Ž . Ž . �efficient network are minimal. If � x	1, y	1 �� x, y , for all y� 0, . . . , n�

4 � 42 and x� y	1, . . . , n�1 , then an efficient network is tw-connected.

As the intuition provided below is simple, a formal proof is omitted. Minimal-
ity is a direct consequence of the absence of frictions. In the second part,
tw-connectedness follows from the hypothesis that an additional link to an
unobserved agent is weakly preferred by individual agents; since information
flow is two-way, such a link generates positive externalities in addition and
therefore increases social welfare.

With two-way flows, the question of efficiency is quite complex. For example,
a center-sponsored star can have a different level of welfare than a periphery-
sponsored one, since the number of links maintained by each agent is different

Ž .in the two networks. However, for the linear payoffs given by 2.4 , it can easily
be shown that if c�n a network is efficient if and only if it is minimally

Ž .tw-connected in particular, a star is efficient , while if c�n, then the empty
network is uniquely efficient.

4.2. Dynamics

Ž .We now study network evolution with the payoff functions specified in 2.3 .
To get a first impression of the dynamics we present a simulation of a sample

28 Ž . Ž . Ž .For example, consider a society with 3 agents. Let � 1, 0 �6.4, � 2, 0 �7, � 3, 0 �7.1,
Ž . Ž . Ž .� 2, 1 �6, � 3, 1 �6.1, � 3, 2 �0. Then the network g �1, and g �0 for all other pairs of1, 2 i, j

Ž .agents and its permutations constitutes the unique efficient architecture.
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path in Figure 7.29 The process converges to a center-sponsored star, within nine
periods. The convergence appears to rely on a process of agglomeration on a
central agent as well as on miscoordination among the remaining agents. In our
analysis we exploit these features of the dynamic.

We have been unable to prove a convergence result for all payoff functions
along the lines of Theorem 3.1. In the following result, we impose stronger
versions of the hypotheses in Proposition 4.2 and prove that the dynamics
converge to the strict Nash networks identified by that proposition. The proof
requires some additional terminology. Given a network g, an agent j is called

Ž . �� Ž .an end-agent if g �1 for exactly one agent k. Also, let � i; g � k �d i, k; gj, k
4 ��1 denote the number of agents at tw-distance 1 from agent i.

Ž .THEOREM 4.1: Let the payoff functions be gi�en by 2.3 and fix any initial
Ž . Ž . Ž . � 4 �network g. a If � x	1, y	1 �� x, y for all y� 0, 1, . . . , n�2 and x� y

4	1, . . . , n�1 , then the dynamic process con�erges to the center-sponsored star,
Ž . Ž . Ž . � 4with probability 1. b If � x	1, y	1 �� x, y for all y� 0, 1, . . . , n�2 and

� 4x� y	1, . . . , n�1 , then the dynamic process con�erges to the empty network,
with probability 1.

PROOF: As with Theorem 3.1, the broad strategy behind the proof is to show
that there is a positive probability of transition to a strict Nash network in finite

Ž .time. We consider part a first. Note that the hypothesis on payoffs implies that
Ž . Ž . Ž .� n, n�1 �max � x	1, x , which, by Proposition 4.2 a , implies�0 � x � n�24

that the center-sponsored star is the unique strict Nash network. Starting from
g, we allow every agent to move in sequence, one at a time. Lemma 4.1 in
Appendix B shows that after all agents have moved, the resulting network is
either minimally tw-connected or is the empty network. Suppose first that the

Ž .network is empty. Then we allow a single agent to play. As � n, n�1 �
Ž .max � x	1, x , the agent’s unique best response is to form links with�0 � x � n�24

Ž .all the others. This results in a center-sponsored star, and a will follow. There
is thus no loss of generality in supposing that the initial network g itself is
minimally tw-connected.

Ž . Ž .Let agent n�argmax � i; g . Since g is tw-connected, � n; g �2. Fur-i� N
thermore, as g is also minimal, there is a unique tw-path between agent n and

� 4every other agent. Thus if i�n then either g �1 or there exist i , . . . , i suchn, i 1 q

that g � ��� �g �1. We shall say that i is outward-pointing with respect ton, i i , i1 q

n if g �1 in the former case and g �1 in the latter case. Likewise, i isi, n i, i q

inward-pointing with respect to n if g �1 in the former case and g �1 inn, i i , iq

Ž .the latter case. Suppose that i is an outward-pointing agent and d i, n; g �2. It
can be shown that agent i has a best response in which he deletes the link gi, i q

29 Ž . Ž .Here, the payoffs are given by the linear model 2.4 with c� 0, 1 . The initial network
Ž .labelled t�1 has been drawn at random from the set of all directed networks with 5 agents. In
period t�2, the choices of agents who exhibit inertia have been drawn with solid lines, while those
whose choices are best responses have been drawn using dashed lines.
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Ž .FIGURE 7.�Sample path two-way model .
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Žand instead forms a link g �1 see Lemma 4.2 and the Remark in Appendixi, n
.B . Let all such outward-pointing agents move in sequence in this manner and

form a link with n. Denote the resulting network by g1. By construction of g1,
1Ž .for every outward-pointing agent i vis-a-vis n, it is true that d n, i; g �1; thus

1Ž .if d n, j; g �2, then j must be an inward-pointing agent with respect to n.
1Ž .Consider an agent j, with d n, j; g �3. Using the argument of Lemma 4.1, it

is easily shown that g1 is minimally tw-connected; thus there is a unique path
between n and j and there are at least two agents, j and j , on the tw-path1 2
between j and n such that g1 �g1 �1. From Lemma 4.2 and the Remark inj , j j , j1 2 2

Appendix B, we can infer that it is a best response for j to maintain all links1
except the link with j , and to switch the link with j to a link with j instead.2 2
Let g� denote the resulting network. Note that j is an outward-pointing agent2
vis-a-vis n in g�. The arguments above concerning outward-pointing agents apply
and it is a best response for agent j to delete his link with j and instead form a2
link g �1. Denote the new network by g 2. We have thus shown thatj , n2

2 1 2Ž . Ž .� n; g �� n; g 	1. We use the argument of Lemma 4.1 to deduce that g
Ž .is minimally tw-connected. Since � n; � increases with positive probability as

long as the furthest away inward-pointing agent is at distance q�3, we eventu-
3 3Ž .ally arrive at a minimally tw-connected network g such that � n; g �2 and

3Ž .d n, j; g �2 for all j�N.
As all agents are at a tw-distance no larger than 2 from agent n, it can be

seen that there are four possible configurations for an agent i linked with agent
Ž . 3 Ž . 3 Ž .n. a g �1 and i has no other links. b g �1 and i has no other links. ci, n n, i

3 3 30 Ž .g �1 and g �1 for all j�E, where E is the set of end-agents of i. di, n i, j

g 3 �1 and g 3 �1 for all j�E, where E is again the set of end-agents of i.n, i i, j

Ž . Ž .We also note that case d can be reduced to case c by applying the switching
argument presented above.

Ž .Suppose there is an agent i in configuration c with end-agents E so that
3 3 3Ž .g �1 and g �1 for all j�E. Since � n; g �2 there is at least one otheri, n i, j

agent k at tw-distance 1 from n. Suppose that g 3 �1. Let agent i and agent kk , n

both choose a best response simultaneously. Specifically, it is a best response for
i to maintain his links with the agents in E and switch his link from agent n to
agent k. Likewise, it is a best response for k to switch his link from n to i. In
the resulting network n no longer has a tw-path with either agent: thus k and i
miscoordinate. We now allow agent n to choose a best response. It is easily

Ž .checked using Lemma 4.2 and the Remark in Appendix B , that it is a best
response for him to form a link with some agent j�E, ceteris paribus. Now, if i
and k again move simultaneously, i can delete his links g �g �1 and onlyi, j i, k

� 4form links with the agents in E
 j in addition to forming a link with n.
Ž .Likewise, k will not form any links in particular, he will delete his link with i .

Finally, if n moves again, he will form a link with k, ceteris paribus. Label the
resulting network g 4. Since n now also has a link with j, in addition to links with

30 These are the set of end-agents in g 3 whose unique link is with agent i.
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TABLE II

RATES OF CONVERGENCE IN TWO-WAY FLOW MODEL

n p� 0.5 p � 0.65 p � 0.8 p � 0.95

Ž . Ž . Ž . Ž .3 191.12 16.89 47.78 4.22 17.34 1.43 18.19 0.71
Ž . Ž . Ž . Ž .4 318.23 22.93 71.34 4.93 17.55 1.02 14.83 0.53
Ž . Ž . Ž . Ž .5 613.28 36.08 70.08 4.49 16.27 0.83 13.23 0.46
Ž . Ž . Ž . Ž .6 753.88 43.94 89.84 5.07 17.90 0.88 11.89 0.37
Ž . Ž . Ž . Ž .7 1010.64 54.86 123.44 6.78 22.11 1.02 10.28 0.35
Ž . Ž . Ž . Ž .8 1625.63 87.52 174.62 9.40 27.87 1.24 10.34 0.34

4 3Ž . Ž . Ž .i and k we get � n; g �� n; g 	1. The other combinations of cases a ,
Ž . Ž .b , and c can be analyzed with a combination of switching and miscoordina-
tion arguments to eventually reach a minimally tw-connected network g
 where


 
Ž .� n; g �n�1. If g is a center-sponsored star, we are done. Otherwise,
miscoordination arguments can again be used to show transition to a center-
sponsored star.

Ž .Part b of the result is proved using similar arguments; a sketch is presented
in Appendix B. Q.E.D.

Ž . Ž .For linear payoffs 2.4 , Theorem 4.1 a implies convergence to the center-
Ž . Ž .sponsored star when c� 0, 1 , while Theorem 4.1 b implies convergence to the

empty network for c�1. In particular, since a star is efficient for c�n and the
empty network is efficient for c�n, the limit network if efficient when c�1 or
c�n.

Rates of Con�ergence: We study the rates of convergence for the linear
dŽ . Ž . Ž . Ž . Ž .specification in 2.4 , i.e. � g �� g �� g c. We shall suppose c� 0, 1 .i i i

Our simulations are carried out under the same assumptions as in the one-way
model, with 500 simulations for each n and for four different values of p. Table
II summarizes the findings.

We see that when p�0.5, average convergence times are extremely high, but
come down dramatically as p increases. When n�8 for example, it takes more
than 1600 periods to converge when p�0.5, but when p�0.95, it requires only
slightly more than 10 periods on average to reach the center-sponsored star. The
intuition can be seen by initially supposing that p�1. If we start with the empty
network, all agents will simultaneously choose to form links with the rest of
society. Thus, the complete network forms in the next period. Since this gives
rise to a perfect opportunity for free riding, each agent will form no links in the
subsequent period. Thus, the dynamics will oscillate between the empty and the

Žcomplete network. When p is close to 1, a similar phenomenon occurs as seen
.in Figure 7, where p�0.75 except there is now a chance that all but one agent

happen to move, leaving that agent as the center of a center-sponsored star. On
the other hand, when p is small, few agents move simultaneously. This makes
rapid oscillations unlikely, and greatly reduces the speed of convergence.
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5. DECAY

In the analysis above, we exploit the assumption that information obtained
through indirect links has the same value as that obtained through direct links.
This assumption is strong; in general, there will be delays as well as lowering of
quality, as information is transmitted through a series of agents. In this section,
we study the effects of relaxing the no-decay assumption. Since this is a difficult
and voluminous topic, we shall assume a specific functional form for the payoffs,
and also largely restrict our study to ‘‘small’’ societies.

5.1. One-way Flow Model with Decay

Ž .We consider a modification of the linear payoff structure given by 2.2 , i.e.
where the value of information is V�1 and its cost is c�0. We measure the

Ž �level of decay by a parameter �� 0, 1 . Given a network g, it is assumed that if
an agent i has a link with another agent j, i.e. g �1, then agent i receivesi, j

information of value � from j. More generally if the shortest path in the
network from j to i has q�1 links, then the value of agent j’s information to i
is � q. The cost of link formation is still taken to be c per link. The payoff to an
agent i in the network g is then given by

Ž . Ž . dŽ i , j ; g . d Ž .5.1 � g �1	 � �� g c,Ýi i
Ž . � 4j�N i ; g 
 i

Ž . Ž .where d i, j; g is the geodesic distance from j to i. The linear model of 2.2
corresponds to ��1. Henceforth, we shall always assume ��1 unless specified
otherwise.

Nash Networks: The trade-off between the costs of link formation and the
benefits of having short information channels to overcome transmission losses is
central to an understanding of the architecture of networks in this setting. If
c���� 2, the incremental payoff from replacing an indirect link by a direct
one exceeds the cost of link formation; hence it is a dominant strategy for an
agent to form links with everyone, and the complete network g c is the unique
Ž . 2strict Nash equilibrium. Suppose next that ��� �c�� . Since c�� , an
agent has an incentive to directly or indirectly access everyone. Furthermore,
c���� 2 implies the following: if there is some agent who has links with every
other agent, then the rest of society will form a single link with him. Hence a

Ž .star is always a strict Nash equilibrium. Third, it follows from continuity and
the fact that the wheel is strict Nash when ��1 that it is also strict Nash for �
close to 1. Finally it is obvious that if c�� , then the empty network is strict
Nash. The following result summarizes the above observations and also derives a
general property of strict Nash networks.

Ž .PROPOSITION 5.1: Let the payoffs be gi�en by 5.1 . Then a strict Nash network is
Ž .either connected or empty. Furthermore, a the complete network is strict Nash if
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Ž .FIGURE 8A.�Strict Nash networks one-way model, n�4 .

2 Ž .and only if 0�c���� , b the star network is strict Nash if and only if
2 Ž . Ž . Ž . Ž .��� �c�� , c if c� 0, n�1 , then there exists � c � 0, 1 such that the

Ž Ž . . Ž .wheel is strict Nash for all �� � c , 1 , d the empty network is strict Nash if and
only if c�� .

Appendix C provides a proof for the statement concerning connectedness,
Ž . Ž . 31while parts a � d can be directly verified. Figure 8A provides a characteriza-

tion of strict Nash equilibria, for a society with n�4 agents.32

Ideally, we would like to have a characterization of strict Nash for all n. This
appears to be a difficult problem and we have been unable to obtain such
results. Instead, we focus on the case where information decay is ‘‘small’’ and
identify an important and fairly general class of networks that are strict Nash.
To motivate this class, consider the networks depicted in Figures 9A�9C. Assume

Ž .that c� 0, 1 and consider the network in Figure 9A. Here, agent 5 has formed
three links, while all others have only one. Thus, agent 5’s position is similar to

Ž .that of a ‘‘central coordinator’’ in a star network. When ��1, agent 1 say does

31 In the presence of decay, a nonempty Nash network is not necessarily connected. Suppose
n�6. Let �	� 2 �1 and �	� 2 �� 3 �c��	� 2. Then it can be verified that the network given
by the links, g �g �g �g �g �g �g �1 is Nash. It is clearly nonempty and it is1, 2 2, 4 4, 3 3, 2 5, 2 6, 5 2, 6
disconnected since agent 1 is not observed by anyone.

32 To show that the networks depicted in the different parameter regions are strict Nash is
Žstraightforward. Incentive considerations in each region e.g. that the star is not strict Nash when

.c�� rule out other architectures.
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Ž .FIGURE 8B.�Efficient networks one-way model, n�4 .

FIGURE 9A

FIGURE 9B
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FIGURE 9C

not receive any additional benefit from a link with agent 5 as compared to a link
with agent 2 or 3 or 4 instead. Hence this network cannot be strict Nash.
However, when � falls below one, agent 1 strictly benefits from the link with
agent 5 as compared to a link with any other agent, since agent 5 is at a shorter
distance from the rest of the society. Similar arguments apply for agent 2 and
agent 4 to have a link with agent 5. Thus, decay creates a role for ‘‘central’’
agents who enable closer access to other agents. At the same time, the logic
underlying the wheel network�of observing the rest of the society with a single
link�still operates. For example, under low decay, agent 3’s unique best
response will be to form a single link with agent 2. The above arguments suggest
that the network of Figure 9A can be supported as strict Nash for low levels of
decay. Analogous arguments apply for the network in Figure 9B. More generally,
the trade-off between cost and decay leads to strict Nash networks where a
central agent reduces distances between agents, while the presence of small
wheels enables agents to economize on the number of links.

Formally, a flower network g partitions the set of agents N into a central
Ž . � 4agent say agent n and a collection PP� PP , . . . , PP where each P�PP is1 q

� �nonempty. A set P�PP of agents is referred to as a petal. Let u� P be the
� 4cardinality of petal P, and denote the agents in P as j , . . . , j . A flower1 u

network is then defined by setting g �g � ��� �g �g �1 for eachj , n j , j j , j n, j1 2 1 u u�1 u

� �petal P�PP and g �0 otherwise. A petal P is said to be a spoke if P �1. Ai, j

flower network is said to be of le�el s�1 if every petal of the network has at
least s agents and there exists a petal with exactly s agents. Note that a star is a
flower network of level 1 with n�1 spokes, while a wheel is a flower network of
level n�1 with a single petal.

We are interested in finding conditions under which flower networks can be
supported as strict Nash. However, we first exclude a certain type of flower
network from our analysis. Figure 9C provides an example. Here agent 5 is the
central agent, and there are exactly two petals. Moreover, one petal is a spoke,
so that it is a flower network of level 1. Note that agent 4 will be indifferent
between forming a link with any of the remaining agents, since their position is
completely symmetric. Thus, this network can never be strict Nash. In what
follows, a flower network g with exactly two petals, of which at least one is a
spoke, will be referred to as the ‘‘exceptional case.’’
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Ž . Ž .PROPOSITION 5.2: Suppose that the payoffs are gi�en by 5.1 . Let c� s�1, s
� 4 Žfor some s� 1, 2, . . . , n�1 and let g be a flower network other than the
. Ž .exceptional case of le�el s or higher. Then there exists a � c, g �1 such that, for

Ž Ž . .all �� � c, g , 1 , g is a strict Nash network. Furthermore, no flower network of a
Ž .le�el lower than s is Nash for any �� 0, 1 .

The proof is given in Appendix C. When s�1 the above proposition rules out
any networks with spokes as being strict Nash. In particular, the star cannot be
supported when c�1.

Finally, we note the impact of the size of the society on the architecture of
strict Nash networks. As n increases, distances in the wheel network become
larger, creating greater scope for central agents to reduce distances. This
suggests that intermediate flower networks should become more prominent as
the society becomes larger. Our simulation results are in accord with this
intuition.

Ž . n Ž .Efficient Networks: The welfare function is taken to be W g �Ý � g ,i�1 i
Ž .where � is specified by equation 5.1 . Figure 8B characterizes the set ofi

efficient networks when n�4.33 The trade-off between costs and decay men-
tioned above also determines the structure of efficient networks. If the costs are
sufficiently low, efficiency dictates that every agent should be linked with every
other agent. For values of � close to one, and�or if the costs of link formation
are high, the wheel is still efficient. For intermediate values of cost and decay,
the star strikes a balance between these forces.

A comparison between Figures 8A and 8B reveals that there are regions where
Ž 2 2 3.strict Nash and efficient networks coincide when c���� or c��	� 	� .

The figures suggest, however, that the overall relationship is quite complicated.

Dynamics: We present simulations for low values of decay, i.e., � close to 1,
for a range of societies from n�3 to n�8.34 This helps to provide a robustness
check for the convergence result of Theorem 3.1 and also gives some indication
about the relative frequencies with which different strict Nash networks emerge.

Ž . � .For each n, we consider a 25�25 grid of � , c values in the region 0.9, 1 �
Ž . 20, 1 , but discard points where c���� or c�� . For the remaining 583 grid
values, we simulate the process for a maximum of 20,000 periods, starting from a
random initial network. We also set p�0.5 for all the agents.

33 The assertions in the figure are obtained by comparing the welfare levels of all possible
network architectures to obtain the relevant parameter ranges. We used the list of architectures

Ž .given in Harary 1972 .
34 For n�4 it is possible to prove convergence to strict Nash in all parameter regions identified

in Figure 8a. The proof is provided in an earlier working paper version. For general n, it is not
difficult to show that, from every initial network, the dynamic process converges almost surely to the

2 Ž . 2complete network when c���� and to the empty network when c��	 n�2 � .
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Figure 10 depicts some of the limit networks that emerge. In many cases,
these are the wheel, the star, or other flower networks. However, some variants

Žof flower networks left-hand side network for n�6 and right-hand side
.network for n�7 also arise. Thus, in the n�7 case, agent 2 has an additional

link with agent 6 in order to access the rest of the society at a closer distance.
Since c�0.32 is relatively small, this is worthwhile for the agent. Likewise, in
the n�6 example, two petals are ‘‘fused,’’ i.e. they share the link from agent 6
to agent 3. Other architectures can also be limits when c is small, as in the
left-hand side network for n�8.35

Ž .Table III below provides an overall summary of the simulation results.
Column 2 reports the average time and standard error, conditional upon con�er-
gence to a limit network in 20,000 periods. Columns 3�6 show the relative
likelihood of different strict Nash networks being the limit, while the last
column shows the likelihood of a limit cycle.36 With the exception of n�4, the
average convergence times are all relatively small. Moreover, the chances of
eventual convergence to a limit network are fairly high. The wheel and the star
become less likely, while other flower networks as well as nonflower networks
become more important as n increases. This corresponds to the intuition
presented in the discussion on flower networks. We also see that when n�8,
56.6% of the limit networks are not flower networks. In this category, 45.7% are

Žvariants of flower networks e.g. with fused petals, or with an extra link between
.the central agent and the final agent in a petal while the remaining 10.9% are

networks of the type seen in the left-hand side network for n�8. Thus, flower
networks or their variants occur very frequently as limit points of the dynamics.

5.2. Two-way Flow Model with Decay

Ž .This section studies the analogue of 5.1 with two-way flow of information.
The payoffs to an agent i from a network g are given by

dŽ i , j , g . dŽ . Ž . Ž .5.2 � g �1	 � �� g c.Ýi i
Ž . � 4j�N i ; g 
 i

Ž .The case of ��1 is the linear model of 2.4 . We assume that ��1 unless
otherwise specified.

Nash Networks: We begin our analysis by describing some important strict
Nash networks.

Ž .PROPOSITION 5.3: Let the payoffs be gi�en by 5.2 . A strict Nash network is
Ž . 2either tw-connected or empty. Furthermore, a if 0�c���� , then the tw-com-

Ž . 2plete network is the unique strict Nash, b if ��� �c�� , then all three types of
Ž . Ž .stars center-sponsored, periphery-sponsored, and mixed are strict Nash, c if

35 Due to space constraints, we do not investigate such networks in this paper.
36 We assume that the process has entered a limit cycle if convergence to a limit network does not

occur within the specified number of periods.
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Ž .FIGURE 10.�Limit networks one-way model .
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TABLE III

DYNAMICS IN ONE-WAY FLOW MODEL WITH DECAY

Flower NetworksAvg. Time Other Limit
Ž .n Std. Err. Wheel Star Other Networks Cycles

Ž .3 6.5 0.2 100.0% 0.0% 0.0% 0.0% 0.0%
Ž .4 234.2 61.7 71.9% 27.8% 0.0% 0.0% 0.3%
Ž .5 28.1 6.2 20.6% 11.5% 58.7% 4.6% 4.6%
Ž .6 26.4 3.6 3.6% 6.3% 58.8% 27.1% 4.1%
Ž .7 94.3 14.7 0.9% 4.1% 56.1% 28.0% 11.0%
Ž .8 66.5 8.5 0.7% 3.8% 37.2% 56.6% 1.7%

Ž . 2��c��	 n�2 � , then the periphery-sponsored star, but none of the other
Ž .stars, is strict Nash, d if c�� , then the empty network is strict Nash.

Ž . Ž . 37Parts a � d can be verified directly. The proof for tw-connectedness is a
Ž .slight variation on the proof of Proposition 4.1 in the case with no decay and is

omitted. Figure 11A provides a full characterization of strict Nash networks for a
society with n�4.

Ideally we would like to have a similar characterization for all n. We have
been unable to obtain such results; as in the previous subsection, we focus upon

Ž .FIGURE 11A.�Strict Nash networks two-way model, n�4 .

37 Ž .A tw-complete network g is one where, for all i and j in N, we have d i, j; g �1 and g �1i, j
implies g �0.j, i
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Ž .FIGURE 11B.�Efficient networks two-way model, n�4 .

� � � �FIGURE 12A.� S � S 	1.1 2

� � � �FIGURE 12B.� S � S �1.1 2
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� � � �FIGURE 12C.� S � S .1 2

Ž .low levels of decay. When c� 0, 1 we can identify an important class of
networks, which we label as linked stars. Figures 12A�C provide examples of such
networks.

Ž .Linked stars are described as follows: Fix two agents say agent 1 and n and
� �partition the remaining agents into nonempty sets S and S , where S �1 and1 2 1

� �S �2. Consider a network g such that g �1 implies g �0. Further2 i, j j, i

suppose that g �1. Lastly, suppose one of the three mutually exclusive1, n

Ž . Ž . Ž . Ž . � � � � � 4conditions a , b , or c holds: a If S � S 	1, then max g , g �1 for1 2 1, i i, 1

Ž . � � � � � 4all i�S and g �1 for all j�S . b If S � S �1, then max g , g �11 n, j 2 1 2 n, j j, n

Ž . � � � � � �for all j�S and g �1 for all i�S . c If S � S �1, then g �1 for all2 1, i 1 1 2 1, i

i�S and g �1 for all j�S .1 n, j 2

The agents 1 and n constitute the ‘‘central’’ agents of the linked star. If � is
Žsufficiently close to 1, a spoke agent will not wish to form any links if the

.central agent has formed one with him and otherwise will form at most one
Ž . Ž .link. Conditions a and b ensure that the spoke agents of a central agent will

not wish to switch to the other central agent.38

If c�1 and decay is small, it turns out that there are at most two strict Nash
networks. One of them is, of course, the empty network. The other network is
the periphery-sponsored star. These observations are summarized in the next
result.

Ž . Ž .PROPOSITION 5.4: Let the payoffs be gi�en by 5.2 . Let c� 0, 1 and suppose g
Ž . Ž Ž . .is a linked star. Then there exists � c, g �1 such that for all �� � c, g , 1 the

Ž . Ž .network g is strict Nash. b Let c� 1, n�1 and suppose that n�4. Then there
Ž . Ž Ž . .exists � c �1, such that if �� � c , 1 then the periphery-sponsored star and the

empty network are the only two strict Nash networks.

38 Thus, note that in Figure 12A, if g �1 rather than g �1, then agent 7 would strictly prefer7, 8 8, 7
forming a link with agent 1 instead, since agent 1 has more links than agent 8. Likewise, in Figure
12B, each link with an agent in S must be formed by agent 1 for otherwise the corresponding1

Ž .‘spoke’ agent will gain by moving his link to agent n instead. The logic for condition c can likewise
� �be seen in Figure 12C. We also see why S �2. In Figure 12C, if agent 5 were not present, then2

agent 1 would be indifferent between a link with agent 6 and one with agent 4. Lastly, we observe
� � � �that since S �1 and S �2, the smallest n for which a linked star exists is n�5.1 2
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Ž .The proof of Proposition 5.4 a relies on arguments that are very similar to
those in the previous section for flower networks, and is omitted. The proof of

Ž .Proposition 5.4 b rests on the following arguments: first note from Proposition
5.3 that any strict Nash network g that is nonempty must be tw-connected. Next
observe that for � sufficiently close to 1, g is minimally tw-connected. Consider
a pair of agents i and j who are furthest apart in g. Using arguments from

Ž .Theorem 4.1 b , it can be shown that if c�1, then agents i and j must each
have exactly one link, which they form. Next, suppose that the tw-distance

Ž .between i and j is more than 2 and that say agent i’s payoff is no larger than
agent j’s payoff. Then if i deletes his link and forms one instead with the agent

Ž .linked with j, his tw-distance to all agents apart from j and himself is the same
as j, and he is also closer to j. Then i strictly increases his payoff, contradicting
Nash. Thus, the maximum tw-distance between two agents in g must be 2. It
then follows easily that g is a periphery-sponsored star. We omit a formal proof
of this result.

Ž . Ž .The difference between Proposition 5.4 b and Proposition 4.2 b is worth
noting. For linear payoffs, the latter proposition implies that if c�1 and ��1,
then the unique strict Nash network is the empty network. The crucial point to
note is that with ��1, and c�n�1, the periphery-sponsored star is a Nash
but not a strict Nash network, since a ‘spoke’ agent is indifferent between a link
with the central agent and another ‘spoke’ agent. This indifference breaks down
in favor of the central agent when ��1, which enables the periphery-sponsored

Ž .star to be strict Nash in addition to the empty network .

Efficient Networks: We conclude our analysis of the static model with a
characterization of efficient networks.

Ž .PROPOSITION 5.5: Let the payoffs be gi�en by 5.2 . The unique efficient network
Ž . Ž 2 . Ž . Ž 2 .is a the complete network if 0�c�2 ��� , b the star if 2 ��� �c�2�
Ž . 2 Ž . Ž . 2	 n�2 � , and c the empty network if c�2�	 n�2 � .

The proof draws on arguments presented in Proposition 1 of Jackson and
Ž .Wolinsky 1996 and is given in Appendix C. The nature of networks�complete,

stars, empty�is the same, but the range of values for which these networks are
efficient is different. This contrast arises out of the differences in the way we
model network formation: Jackson and Wolinsky assume two-sided link forma-
tion, unlike our framework. Figure 11B displays the set of efficient networks for
n�4 in different parameter regions.

Dynamics: We now turn to simulations to study the convergence properties of
the dynamics. As in the one-way case, for each n we consider a 25�25 grid of
Ž . � . Ž . 2� , c values in the region 0.9, 1 � 0, 1 , with points satisfying c���� or
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c�� being discarded. As earlier, there are a total of 583 grid values for each n.
We also fix p�0.5 as in the one-way model.39

Figure 13 depicts some of the limit networks. In most cases, they are stars of
different kinds or linked stars. However, as the right-hand side network for
n�7 shows, other networks can also be limits. To see this, note that the
maximum geodesic distance between two agents in a linked star is 3, whereas
agents 5 and 7 are four links apart in this network. We also note that limit cycles
can occur.40

Table IV provides an overall summary of the simulations. For n�6, conver-
gence to a limit network occurred in 100% of the simulations, while for n�7
and n�8 there is a positive probability of being absorbed in a limit cycle.
Column 2 reports the average convergence time and the standard error, condi-
tional upon con�ergence to a limit network. Columns 3�8 show the frequency with
which different networks are the limits of the process. Among stars, mixed-type
ones are the most likely. Linked stars become increasingly important as n rises,

Ž .while other kinds of networks such as the right-hand-side network when n�7
may also emerge. Limit cycles are more common when n�7 than when n�8.
In contrast to Table II concerning the two-way model without decay, conver-
gence occurs very rapidly even though p�0.5. A likely reason is that under
decay an agent has a strict rather than a weak incentive to link to a well-con-
nected agent: his choice increases the benefit for other agents to do so as well,
leading to quick convergence. Absorption into a limit network is also much more
rapid as compared to Table III for the one-way model, for perhaps the same
reason.

6. CONCLUSION

In this paper, we develop a noncooperative model of network formation
where we consider both one-way and two-way flow of benefits. In the absence of
decay, the requirement of strict Nash sharply delimits the case of networks to
the empty network and the one other architecture: in the one-way case, this is a
wheel network, where every agent bears an equal share of the cost, while in the
two-way case it is a center-sponsored star, where as the name suggests, a single
agent bears the full cost. Moreover, in both models, a simple dynamic process

39 For n�4 convergence to strict Nash can be proved for all parameter regions identified in
Figure 11A. For general n, it is not difficult to show that, starting from any initial network, the
dynamic process is absorbed almost surely into the tw-complete network when c���� 2 and into

Ž . 2the empty network when c��	 n�2 � .
40 To see how this can happen, consider the left-hand side network for n�7 in Figure 13, which

is strict Nash. However, if it is agent 3 rather than agent 5 who forms the link between them in the
figure, we see that agent 3 can obtain the same payoff by switching this link to agent 1 instead, while
all other agents have a unique best response. Thus, the dynamics will oscillate between two Nash
networks.

Ž .For n�6 it is not difficult to show that given c� 0, 1 , the dynamics will always converge to a
star or a linked star for all � sufficiently close to 1. Thus, n�7 is the smallest value for which a limit
cycle occurs.
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Ž .FIGURE 13.�Limit networks two-way model .
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TABLE IV

DYNAMICS IN TWO-WAY FLOW MODEL WITH DECAY

StarsAvg. Time Linked Other Limit
Ž .n Std. Err. Center Mixed Periphery Stars Networks Cycles

Ž .3 166.5 14.2 100.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Ž .4 5.2 0.2 37.6% 56.9% 5.5% 0.0% 0.0% 0.0%
Ž .5 8.9 0.4 34.0% 53.7% 3.6% 8.7% 0.0% 0.0%
Ž .6 8.8 0.3 26.8% 42.9% 4.3% 26.1% 0.0% 0.0%
Ž .7 10.2 0.4 20.4% 43.4% 3.9% 24.8% 3.8% 3.6%
Ž .8 12.3 0.4 16.6% 34.6% 6.0% 34.5% 7.4% 0.9%

converges to a strict Nash network under fairly general conditions, while
simulations indicate that convergence is relatively rapid. For low levels of decay,
the set of strict Nash equilibria expands both in the one-way and two-way
models. Many of the new strict equilibria are natural extensions of the wheel
and the center-sponsored star, and also appear frequently as limits of simulated
sample paths of the dynamic process. Notwithstanding the parallels between the
results for the one-way and two-way models, prominent differences also exist,
notably concerning the kinds of architectures that are supported in equilibrium.

Our results motivate an investigation into different aspects of network forma-
tion. In this paper, we have assumed that agents have no ‘‘budget’’ constraints,
and can form any number of links. We have also supposed that contacting a
well-connected person costs the same as contacting a relatively idle person.
Moreover, in revising their strategies, it is assumed that individuals have full
information on the existing social network of links. Finally, an important
assumption is that the benefits being shared are nonrival. The implications of
relaxing these assumptions should be explored in future work.
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APPENDIX A

Ž . Ž .PROOF OF PROPOSITION 3.1: Let g be a Nash network. Suppose first that � n, 1 �� 1, 0 . Let
Ž . dŽ . Ž . Ž Ž . dŽ .. Ž dŽ ..i�N. Note that � g �n. Thus � g �1 implies � g �� � g , � g �� n, � g �i i i i i i

Ž . Ž .� n, 1 �� 1, 0 , which is impossible since g is Nash. Hence it is a dominant strategy for each agent
Ž . Ž .to have no links, and g is the empty network. Consider the case � n, 1 �� 1, 0 . An argument

dŽ . � 4 dŽ .analogous to the one above shows that � g � 0, 1 for each i�N. Furthermore � g �1 cani i
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Ž .hold if � g �n. It is now simple to establish that if g is nonempty, it must be the wheel network,i
which is connected.41

Ž . Ž .Henceforth assume that � n, 1 �� 1, 0 . Assume that g is not the empty network. Choose
� �Ž . Ž . dŽ .i�argmax � g . Since g is nonempty, x �� g �2 and y �� g �1. Furthermore, since gi � N i i i i i
Ž . Ž . Ž .is Nash, � g �� x , y �� 1, 0 . We claim that i observes everyone, i.e. x �n. Suppose insteadi i i i

Ž . Ž . Ž .that x �n. Then there exists j�N i; g . Clearly, i�N j; g either, for otherwise N i; g would bei
Ž . Ž . Ž . dŽ .a strict subset of N j; g and � g �x �� g , contradicting the definition of i. If y �� g �0j i i j j

Ž . Ž .let j deviate and form a link with i, ceteris paribus. His payoff will be � x 	1, 1 �� x , 1 �i i
Ž . Ž .� x , y �� 1, 0 , so that he can do strictly better. Hence y �1. By definition of i, we havei i j

Ž .x �� g �x . Let j delete all his links and form a single link with i instead. His new payoff will bej j i

Ž . Ž . Ž . Ž .� x 	1, 1 �� x , 1 �� x , 1 �� x , y , i.e. he does strictly better. The contradiction impliesi i j j j
that x �n as required, i.e. there is a path from every agent in the society to agent i.i

Ž . Ž . Ž . Ž . Ž .Let i be as above. An agent j is called critical to i if � g �� g ; if instead � g �� g ,i � j i i � j i
� Ž � .agent j is called noncritical. Let E be the set of noncritical agents. If j�argmax d i, i ; g ,i � N

Ž .clearly j is noncritical, so that E is nonempty. We show that j�E implies � g �n. Suppose thisj
dŽ .were not true. If y �� g �0, then j can deviate and form a link with i. His new payoff will bej j

Ž . Ž . Ž .� n, 1 �� 1, 0 . Thus y �1. If x �� g �n, let j delete his links and form a single link with i.j j j
Ž . Ž . Ž .Since he is noncritical, his new payoff will be � n, 1 �� x , 1 �� x , y , i.e. he will again doj j j

Ž .better. It follows that � g �n as required.j
� 4 Ž .We claim that for every agent j �E� i , there exists j�E such that j�N j ; g . Since j is1 1 1

Ž .critical, there exists j �N j ; g such that every path from j to i in g involves agent j . Hence2 1 2 1
Ž . Ž .d i, j ; g �d i, j ; g . If j �E we are done; otherwise, by the same argument, there exists2 1 2

Ž . Ž . Ž .j �N j ; g such that d i, j ; g �d i, j ; g . Since i observes every agent and N is finite, repeating3 2 3 2
Ž .the above process no more than n�2 times will yield an agent j�E such that j�N j ; g . Since1

Ž . Ž .we have shown � g �n, we have � g �n as well. Hence g is connected. If g were notj j1
minimally connected, then some agent could delete a link and still observe every agent in the society,
thereby increasing his payoff, in which case g is not Nash. The result follows. Q.E.D.

APPENDIX B

PROOF OF PROPOSITION 4.1: Let g be a nonempty Nash network and suppose it is not tw-con-
� �nected. Since g is nonempty there exists a tw-component C such that C �x�2. Choose i�C

d d dŽ . Ž . Ž Ž .. Ž Ž . Ž .. Ž .satisfying � g �1. Then we have � x, 1 �� x, � g �� � g , � g �� g . Note that gi i i i i � i

Ž . Ž .can be regarded as the network where i forms no links. Since g is Nash, � g �� g �i i � i
Ž Ž . . Ž . Ž . Ž .� � g , 0 �� 1, 0 . Thus, � x, 1 �� 1, 0 . As g is not tw-connected, there exists j�N suchi � i

that j�C. If j is a singleton tw-component then the payoff to agent j from a link with i is
Ž . Ž . Ž .� x	1, 1 �� x, 1 �� 1, 0 , which violates the hypothesis that agent j is choosing a best

� �response. Suppose instead that j lies in a tw-component D where D �w�2. By definition there is
at least one agent in D who forms links; assume without loss of generality that j is this agent. As

Ž . Ž .with agent i we have � w, 1 �� g .j
� �Suppose without loss of generality that w�x� C . Suppose agent j deletes all his links and

Ž . Ž . Ž .instead forms a single link with agent i�C. Then his payoff is at least � x	1, 1 �� w, 1 �� g .j
This violates the hypothesis that agent j is playing a best response. The contradiction implies g is
tw-connected. If g is not minimally tw-connected, there exists an agent who can delete a link and
still have a tw-path with every other agent, so that g is not Nash. The result follows. Q.E.D.

Ž .LEMMA 4.1: Let the payoffs be gi�en by 2.3 . Starting from any initial network g, the dynamic process
Ž .2.7 mo�es with positi�e probability either to a minimally tw-connected network or to the empty network,
in finite time.

41 Ž . Ž .This assertion requires the assumption that n�3. If n�2 and � 2, 1 �� 1, 0 , then the
disconnected network g �1, g �0 is a Nash network.1, 2 2, 1
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PROOF: We first show that the process transits with positive probability to a network all of whose
components are tw-minimal. Starting with agent 1, let each agent choose a best response one after
the other and let g� denote the network after all agents have moved. Let C be a tw-component of

� �� 4g . Suppose there is a tw-cycle in C, i.e. there are q�3 agents j , . . . , j 
C such that g � ���1 q j , j1 2
� � 4�g �1. Let S
 j , . . . , j consist of those agents who have formed at least one link within thej , j 1 qq 1

tw-cycle. Note that S is nonempty. Let j be the agent who has played most recently amongst thoses
in S, and assume without loss of generality that g� �1. Let g	 be the network prior to agent j ’sj , j ss s�1

move. By definition of j we haves

	 	 	Ž .B.1 g � ��� �g � ��� �g �1.j , j j , j j , js	1 s	2 q 1 s�2 s�1

Consider agent j ’s best response to g	 . There are two possibilities: either g	 �1, ors � j j , js s	1 s
	 Ž .g �0. In the former case, by virtue of B.1 , agent j can get the same information as beforej , j ss	1 s

without forming the link with j . In the latter case, j forms links with both j and j as parts�1 s s�1 s	1
Ž .of his best response. However, B.1 again implies that he is strictly better off by forming a link with

only one of them. This contradiction shows that C cannot have a tw-cycle. A similar argument shows
that g� �1 for two agents i and j in C implies g� �0. Since C is an arbitrary tw-component of g�,i, j j, i
every such tw-component must be minimal.

� � � � �Let C be the largest tw-component in g . If C �n or C �1 we are done. Suppose instead1 1 1
� � Ž . Ž .that C �x where 1�x�n. Denote the agents in N 
C as S. There are now two cases 1 and 2 .1 1

Ž .1 The unique best response of every agent in S is not to form any links: let all agents in S move
simultaneously, with all the agents in C exhibiting inertia. Call the resulting network g1. Clearly, g1

1
� � Ž .has one nonsingleton tw-component C and S singleton tw-components. Let j�S. 1a Suppose j’s1

Ž . Ž . � � �4unique best response is not to form any links. Then � x	u, u �� 1, 0 for all u� 1, . . . , S since
� �he has the option of forming links with any subset of the remaining S tw-components. If i�C has1

Ž . Ž .formed any links, the highest payoff from u�1 links is � x	u, u �� 1, 0 so that to delete all
links is a best response. If all the agents in C who have links are allowed to move simultaneously,1

Ž .the empty network results. 1b Suppose instead that all of j’s best responses involve forming one or
more links. Since C is the unique nonsingleton tw-component, any best response g must involveˆ1 j
forming a link with C . Define g 2 �g �g1 . Using above arguments it is easily seen that allˆ1 j � j

tw-components of g 2 are minimal. Let C be the largest tw-component in g 2. Clearly, C 
C with2 1 2
the inclusion being strict. Now proceed likewise with the other singleton tw-components to arrive at
a minimal tw-connected network.

Ž . �2 There exists an agent j in S all of whose best responses to g involve forming one or more
Ž . 	links: as is 1b , if we let j choose a best response, we obtain a new network g where the largest

component C satisfies C 
C with the inclusion being strict. Moreover, it can be seen that all2 1 2
	 Ž . Ž . 	 �tw-components of g are minimal. We repeat 1 or 2 with g in place of g and so on until either

the empty network or a minimal tw-connected network is obtained. Q.E.D.

dŽ .LEMMA 4.2: Let g be a minimally tw-connected network. Suppose � g �u�0. If agent i deletesi
s�u links, then the resulting network has s	1 minimal tw-components, C , . . . , C , with i�C .1 s	1 s	1

� � 4PROOF: Let g be the network after i deletes s links, say, with agents j , . . . , j . Since g is1 s
minimally tw-connected there is a unique tw-path between every pair of agents i and j in g. In
particular, if i deletes s links, then each of the s agents j , j , j , . . . , j , have no tw-path linking1 2 3 s
them with agent i as well as no tw-path linking them with each other either. Thus each of the s
agents and agent i must lie in a distinct tw-component, implying that there are at least s	1
tw-components in the network g�.

We now show that there cannot be more than s	1 tw-components. Suppose not. Let j , j , . . . , j1 2 s
and i belong to the first s	1 tw-components and consider an agent k who belongs to the s	2th
tw-component. Since g is minimally tw-connected there is a unique tw-path between i and k in g ;
the lack of any such tw-path in g� implies that the unique tw-path between i and k must involve a
now deleted link g for some q�1, 2, . . . , s. Thus in g there must be a tw-path between k and j ,i, j qq
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which does not involve agent i. Since only agent i moves in the transition from g to g�, there is also
a tw-path between k and j in g�. This contradicts the hypothesis that k lies in the s	2thq
tw-component. The minimality of each tw-component in g� follows directly from the hypothesis that
g� is obtained by deleting links from a minimally tw-connected network. Q.E.D.

Lemma 4.2 implies that the following strategy is a best response.

Ž . Ž . � 4 � 4Remark: Suppose � x	1, y	1 �� x, y for all y� 0, . . . , n�2 and x� y	1, . . . , n�1 .
Let g and C , . . . , C be as in Lemma 4.2 above. Define g
 as g
 �1 for one and only one k in1 s	1 i i, k


 Ž � 4. 
each of C , . . . , C and g �g for all k�N 
 C � ��� C � i . Then g is a best response1 s i, k i, k 1 2 i
to g .�i

Ž . Ž . Ž .PROOF OF THEOREM 4.1 b Sketch : The hypothesis on the payoffs implies that � 1, 0 �
Ž . Ž .max � x	1, x . Proposition 4.2 b then implies that the empty network is the unique�1� x � n�14

strict Nash network, and hence is an absorbing state for the dynamic process. Next note that if
Ž . Ž . Ž .� 1, 0 �� n, 1 , then it is a weakly dominant strategy for a player to form no links. In this case

Ž . Ž .convergence to the empty network is immediate. We focus on the case where � n, 1 �� 1, 0 .
Fix an initial nonempty network g. From Lemma 4.1 we can assume without loss of generality

Ž . Ž . Ž .that g is a minimal tw-connected network. Let n�argmax � i; g and let P n; g and I n; gi� N
be the set of outward-pointing agents and the set of inward-pointing agents vis-a-vis n, respectively.

Ž . eŽ . Ž . Ž .In addition, define E n; g as the end-agents in the network g and let P n; g �E n; g �P n; g
Ž . Ž .be the set of outward-pointing end-agents. Since � n, 1 �� 1, 0 , we can apply the argument for

Ž . eŽ .outward-pointing agents in part a of Theorem 4.1 to have every agent j�P n; g form a link
� eŽ .g �1. Let g be the network that results after every j�P n; g has moved, and formed a linkj, n

eŽ � . eŽ � .with n. Define P n; g analogously, and proceed as before, with every j�P m; g . Repeated
application of this argument leads us eventually to either the periphery-sponsored star or a network
in which all end-agents more than one link away from agent n are inward-pointing with respect to n.
In the former case a simple variant of the miscoordination argument establishes convergence to the
empty network. In the latter case, label the network as g1 and proceed as follows.

Note that the hypothesis on payoffs implies that if agent i has a link with an end-agent, i’s best
response must involve deleting that link. Let j be the agent furthest away from n in g1. Since g1 is
minimally tw-connected, there is a unique path between j and n. Then either g1 �1 or there is ann, j
agent j �n on the path between n and j, such that g �1. In the former case, g1 must be a star:q j , jq

if n chooses a best response, he will delete all his links, after which a miscoordination argument
ensures that the empty network results. In the latter case, let j choose a best response and let g 2

q

denote the resulting network. Clearly j will delete his link with j, in which case j will become a2
singleton component. Moreover, if j forms any link at all, we can assume without loss of generality2

that he will form it with n. Let S and S be the set of agents in singleton components in g 2 and g1,2 1
respectively. We have S 
S where the inclusion is strict. Repeated application of the above1 2
arguments leads us to a network in which either an agent is a singleton component or is part of a
star. If every agent falls in the former category, then we are at the empty network while in the latter
case we let agent n move and delete all his links. Then a variant of the miscoordination argument
Ž .applied to the periphery-sponsored star leads to the empty network. Q.E.D.

APPENDIX C

Ž .PROOF OF PROPOSITION 5.1 Sketch : If c�� , then it is immediate that a Nash network is
connected. In the proof we focus on the case c�� . The proof is by contradiction. Consider a strict
Nash network g that is nonempty but disconnected. Then there exists a pair of agents i and i such1 2
that g �1. Moreover, since c�� and g is strict Nash, there is an agent i � i such thati , i 3 11 2

g �1. The same property must hold for i ; continuing in this way, since N is finite, there musti , i 32 3
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� 4exist a cycle of agents, i.e. a collection i , . . . , i of three or more agents such that g � ��� �1 q i , i1 2

g �1. Denote the component containing this cycle as C. Since g is not connected there exists ati , iq 1

least one other component D. We say there is a path from C to D if there exists i�C and j�D
g

Ž . Ž .such that i � j. There are two cases: 1 there is no path from C to D or vice-versa, and 2 either
g g

C � D or D � C.
Ž .In case 1 , let i�C and j�D. Since g is strict Nash we get

Ž . Ž . Ž � . � �C.1 � g �g �� g �g , for all g �GG , where g �g ,i i � i i i � i i i i i

Ž . Ž . Ž � . � �C.2 � g �g �� g �g , for all g �GG , where g �g .j j � j j j � j j j j j


 
 � 4 
 
Consider a strategy g such that g �g for all k� i, j and g �0. The strategy g thusi i, k j, k i, j i

Ž . Ž .‘‘imitates’’ that of agent j. By hypothesis, j�N i; g and i�N j; g . This implies that the strategy
of agent i has no bearing on the payoff of agent j or vice-versa. Hence, i’s payoff from g
 satisfiesi

Ž . Ž 
 . Ž .C.3 � g �g �� g �g .i i � i j j � j

Likewise, the payoff to agent j from the corresponding strategy g
 that imitates i satisfiesj

Ž . Ž 
 . Ž .C.4 � g �g �� g �g .j j � j i i � i

We know that C is not a singleton. This immediately implies that the strategies g and g
 must bei i
Ž . Ž . 
 � 
 �different. Putting together equations C.2 � C.4 with g in place of g and g in place of g yieldsi i j j

Ž . Ž . Ž 
 . Ž . Ž 
 . Ž .C.5 � g �g �� g �g �� g �g �� g �g �� g �g .i i � i i i � i j j � j j j � j i i � i

Ž . Ž . � Ž .The contradiction completes the argument for case 1 . In case 2 we choose an i �N i; g who is
Ž .furthest away from j�D and apply a similar argument to that in case 1 to arrive at a

contradiction. The details are omitted. The rest of the proposition follows by direct verification.
Q.E.D.

Ž .PROOF OF PROPOSITION 5.2: Consider the case of s�1 and c� 0, 1 first. Let g be a flower
Ž .network with central agent n. Let M�max d i, j; g . Note that 2�M�n�1 by the definitioni, j � N

Ž . Ž . � Ž . � Ž .Ž M .of a flower network. Choose � c, g � c, 1 such that for all �� � c, g , 1 we have n�2 ���
� Ž . � � 4�c. Henceforth fix �� � c, g , 1 . Suppose P� j , . . . , j is a petal of g. Since c�� and no other1 u

agent has a link with j , agent n will form a link with him in his best response. If n formed any moreu
Ž .Ž M .links than those in g, an upper bound on the additional payoff he can obtain is n�2 ��� �c

�0; thus, n is playing a best response in g. The same argument ensures that agents j , . . . , j are2 u
Žalso playing their best response. It remains to show the same for j . If there is only a single petal i.e.1

.g is a wheel symmetry yields the result. Suppose there are two or more petals. For j to observe all1
the other agents in the society, it is necessary and sufficient that he forms a link with either agent n
or some agent j� �P�, where P� �P is another petal. Given such a link, the additional payoff from
more links is negative, by the same argument used with agent n. If he forms a link with j� rather

� � 4than n, agent j will get the same total payoff from the set of agents P � n since the sub-network1
� Žof these agents is a wheel. However, the link with j means that to access other petals including the

. �remaining agents in P, if any agent j must first go through all the agents in the path from n to j ,1
whereas with n he can avoid these extra links. Hence, if there are at least three petals, forming a
link with j� will make j strictly worse compared to forming it with n, so that g is a strict Nash
network as required. If g contains only two petals P and P�, both of level 2 or higher, j ’s petal will1
contain at least one more agent, and the argument above applies. Finally, if there are two petals P
and P� and g is of level 1, then g is the exceptional case, and it is not a strict Nash. Thus, unless g

� Ž . .is the exceptional case, it is a strict Nash for all �� � c, g , 1 .
Ž . � .4Next, consider c� s�1, s for some s� 1, . . . , n�1 . If g is a flower network of level less than

� �4 �s, there is some petal P� j , . . . , j with s �s�1. Clearly the central agent n can increase his1 s
payoff by deleting his link with j � , ceteris paribus. Hence, a flower network of level smaller than ss
cannot be Nash.
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Ž . Ž .Let g now be a flower network of level s or more. Let M�max d i, j; g . Choose � c, g toi, j � N

� Ž . � Ž . Ž .Ž M . Ž . s qensure that for all �� � c, g , 1 both 1 n�2 ��� �� and 2 Ý � �c�0 are satisfied.q� 1
� 4 Ž .Let P� j , . . . , j be a petal with u�s. The requirement 2 ensures that agent n will wish to form1 u

Ž .a link with j . The requirement 1 plays the same role as in s�1 above to ensure that n will notu
Ž .form more than one link per petal. If g has only one petal i.e. it is a wheel we are done. Otherwise,

� 4analogous arguments show that j , . . . , j are playing their best responses in g. Finally, for j , note2 p 1
Ž .that u�2 implies that each petal is not a spoke. In this event, the argument used in part a shows

that j will be strictly worse off by forming a link with an agent other than agent n. The result1
follows. Q.E.D.

PROOF OF PROPOSITION 5.5: Consider a network g, and suppose that there is a pair of agents i
and j, such that g �1. If agent i forms a link g �1, then the additional payoffs to i and j willi, j i, j

Ž 2 . Ž 2 .be at least 2 ��� . If c�2 ��� , then this is clearly welfare enhancing. Hence, the unique
efficient network is the complete network.

� �Fix a network g and consider a tw-component C , with C �m. If m�2 then the nature of a1 1
component in an efficient network is obvious. Suppose m�3 and let k�m�1 be the number of

� � Ž . � Ž .links in C . The social welfare of this component is bounded above by m	k 2��c 	 m m�11
� 2 Ž .� Ž . 2 ��2k � . If the component is a star, then the social welfare is m�1 2��c	 m�2 � 	m.

Ž 2 .Under the hypothesis that 2 ��� �c, the former can never exceed the latter and is equal to the
latter only if k�m�1. It can be checked that the star is the only network with m agents and m�1
links, in which every pair of agents is at a distance of at most 2. Hence the network g must have at
least one pair of agents i and j at a distance of 3. Since the number of direct links is the same while
all indirect links are of length 2 in a star, this shows that the star welfare dominates every other
network with m�1 links. Hence the component must be a star.

Clearly, a tw-component in an efficient network must have nonnegative social welfare. It can be
calculated that the social welfare from a network with two distinct components of m and m� agents,
respectively, is strictly less than the social welfare from a network where these distinct stars are
merged to form a star with m	m� agents. It now follows that a single star maximizes the social
welfare in the class of all nonempty networks. An empty network yields the social welfare n. Simple

Ž . 2calculations reveal that the star welfare dominates the empty network if and only if 2�	 n�2 �
�c. This completes the proof. Q.E.D.
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