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The complexity of a class of vehicle routing and scheduling problems is investigated.
We review known NP-hardness results and compile the results on the worst-case per-
formance of approximation algorithms. Some directions for future research are sug-
gested. The presentation is based on two discussion sessions during the Workshop to

Investigate Future Directions in Routing and Scheduling of Vehicles and Crews, held
at the University of Maryland at College Park, June 4-6, 1979.

i. INTRODUCTION

In this paper the computational complexity of a class of vehicle routing and schedul-
ing problems is investigated. The problem class is defined in Sec. II. We review known
NP-hardness results for the problems in this class in Sec. III, and we compile the results
on the worst-case performance of approximation algorithms designed for their solution
in Sec. IV. Some directions for future research are suggested in Sec. V.

The results presented in this paper were the subject of two discussion sessions during
the Workshop to Investigate Future Directions in Routing and Scheduling of Vehicles
and Crews, held at the University of Maryland at College Park, June 4-6, 1979.

il. A CLASS OF PROBLEMS

The general single vehicle routing problem (VRP) [26] is defined as follows: Given a
strongly connected mixed graph G consisting of a set V of v vertices, a set £ of e
(undirected) edges and a set A4 of a (directed) arcs, with specified subsets V' C V,
E'CE and A' € A, and given non-negative weights on the edges and the arcs, find a
tour containing V', E’ and A’ which is of minimum total weight. Various well-known
routing problems emerge for specific restrictions on E, A, V', E', and A'; they are
defined in Table 1.

The m-vehicle routing problem (mVRP) is a natural extension of the VRP. The
purpose is to find m tours, each containing a common distinguished vertex (the depot)
and collectively containing the sets V', E’ and 4, such that the maximum of the total

NETWORKS, Vol. 11 (1981) 221-227
© 1981 John Wiley & Sons, Inc. CCC 0028-3045/81/020221-07%01.00



222 LENSTRA AND RINNOOY KAN

TABLE 1. Single vehicle routing problems.

Name Code E A Vi E A’
Traveling salesman problem TSP —4 ¢ Vv ¢ ¢
Directed traveling salesman problem DTSP 0 — VvV ¢ ¢
Chinese postman problem CPP — ¢ ¢ E ¢
Directed Chinese postman problem DCPP ¢ — ¢ @ A
Mixed Chinese postman problem MCPP — — @ E A
Rural postman problem RPP ~ ¢ ¢ - 9
Directed rural postman problem DRPP ¢ — ¢ ¢ —
Stacker-Crane problem SCP — — ¢ @ A

¢_. Arbitrary.

weights of the tours is minimized. The resulting special cases are referred to as the
mTSP, the mDTSP, etc. |

The generic single depot vehicle scheduling problem (VSP) is the following: given a
depot d and n trips j from b; to ¢;, which have to be completed within specified time
intervals [#;,%;] (7=1,...,n), and given the traveling times between all pairs (d, b;),
(b}, ¢j), (cj, by) and (cj,d), find a feasible schedule which requires a minimum number
of vehicles. Special cases to be considered correspond to restrictions such as #; = u; or

tj=0,u]-=u fOI‘f’m A (7

The l-depot vehicle scheduling problem (IVSP) is a generalization in which there are
[ depots d;, where m; vehicles are located (i=1,...,[); each vehicle has to return to
its depot.

ill. NP-HARDNESS RESULTS

The basic results on the computational complexity of vehicle routing and scheduling
problems are listed in Table II. For the easy problems, which are solvable in poly-
nomial time, the running time of the most efficient known algorithm for their solution
is given. The NP-hard problems are not solvable in polynomial time, unless $=N2%.
We refer to [13, 19, 23] for introductions to the theory of NP-completeness and to
[13, A1.3, A2.3] for additional details.

The NP-hardness results for routing problems still apply if G is planar; see, e.g., [14,
27]. We also note that even the geometric TSP, which is defined by points and dis-
tances in the Euclidean plane, is NP-hard [11, 28].

All NP-hardness results mentioned are “strong” in the sense that they hold even
with respect to a unary encoding of the problem data [12]. However, for any fixed
m = 2, the mCPP and the mDCPP are only known to be binary NP-hard.

In summary, almost all vehicle routing and scheduling problems are NP-hard and
hence unlikely to be solvable in polynomial time. As a means to differentiate further
within the class of NP-hard problems, we will consider the worst-case performance of
fast approximation algorithms in the next section. A less formal indication of the
complexity of routing problems is the number of disconnected components in the
graph induced by V', E’' and A'. For example, when there are ¢ of such components,
the RPP can be solved recursively in O(v*¢*1/c!) time [9].
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TABLE II. Complexity of vehicle routing and
scheduling problems.

Problem Complexity Reference
Routing
VRP NP-hard
TSP NP-hard [18]
DTSP NP-hard [18]
CPP O(v3) [7]
mCPP NP-hard [10]
DCPP O(v> log a) [8]
mDCPP NP-hard [10]
MCPP NP-hard [27]
RPP NP-hard [21]
DRPP NP-hard [21]
SCP NP-hard [10]
Scheduling
VSP (all t; = u;) O(n3) [6]
VSP (allt; = 0, all uj = u) NP-hard [22]
I'VSP (all ¢; = uy) open

IV. WORST-CASE PERFORMANCE OF APPROXIN

IATION ALGORITHMS

All results on the worst-case performance of specific approximation algorithms for
vehicle routing problems that we are aware of are listed in Table III. The performance
is usually measured by the maximum ratio p of the approximate solution value to the
optimum value, over all instances of the problem in question. The table gives global
upper bounds on p, as well as lower bounds on p that can (asymptotically) be achieved
for a class of “bad” instances. All terms that tend to zero when v increases have been
deleted; log denotes the logarithm to the base 2.

The theory of NP-completeness has been applied to show that, for some NP-hard
optimization problems, certain approximation algorithms which guarantee a fixed
maximum performance ratio p do not exist, unless $#=J19. Results of this type for ve-
‘hicle routing problems are listed in Table IV. These problems require some comments.

The capacitated mTSP (mCPP) is a modification of the mTSP (mCPP), in which each
vertex (edge) has a given demand and the total demand in each tour should not exceed
a given limit. The objective in this case is to minimize the sum of the total tour
weights rather than their maximum.

The general TSP is usually defined as the problem of finding a tour of minimum
total weight which visits each vertex exactly once. The TSP in our definition allows
multiple visits, but can be seen as a special case of the general TSP in which the weights
satisfy the triangle inequality. Conversely, the TSP with arbitrary weights can be
transformed into the TSP for which the triangle inequality holds by adding a suitably
large constant to all weights. The distinction between both problem types, however, is
justified by the results in Tables 11l and IV.

Additional results for the general TSP are the following. Local search over polynomial-
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TABLE IV. Nonexisting vehicle routing approximation algorithms (unless $=1%).
Problem Algorithm o, Reference
Any unary NP-hard problem Algorithm polynomial in problem 1 +€ [12]
size and -él" foralle > 0
General TSP Polynomial-time algorithm < oo [33]
Local search with polynomial time <oo [29]
per iteration
Capacitated mTSP on a tree  Polynomial-time algorithm < -23- [16]
Capacitated mCPP on a tree = Polynomial-time algorithm < -% [16]

size neighborhoods will never guarantee optimality [34], and instances have been con-
structed for which local search would be particularly ineffective [30].

Altogether, there appear to be considerable differences in complexity within the
class of NP-hard problems. Many of the polynomial transformations between these
problems that preserve optimality, clearly do not preserve the performance of approxi-
mation algorithms. The transformation of the general TSP to the TSP provides a
striking example of this phenomenon. Transformations that preserve the problem
structure to a greater extent are the subject of ongoing research [1, 24, 31].

V. CONCLUDII

The survey presented in Secs. III and IV bears witness to an impressive research
effort in analyzing the inherent complexity of vehicle routing and scheduling prob-
lems. It is also clear that more work needs to be done. The complexity status of the
[VSP is still open. The worst-case analysis of some of the standard approximation
algorithms is nonexistent or incomplete. And for the DTSP, no polynomial-time algo-
rithm is known to guarantee a constant maximum performance ratio.

It should be pointed out that the worst-case approach is pessimistic in the sense that
approximation algorithms rarely attain their maximum performance ratio in practice.
For example, the TSP algorithm from [3], in which a spanning tree is combined with
a matching on its odd-degree vertices, yields a solution value that tends to be much
closer to the optimum than the guaranteed 50% deviation. In a clever implementation
of this algorithm [4], a spanning tree is found using v subgradient iterations as in [17];
by then, the number of odd-degree vertices is often so small that a matching is found
quickly by complete enumeration. This produces both a lower bound and an upper
bound on the optimum, which usually differ by no more than a few percent.

Probabilistic analyses of the average-case or almost-everywhere periormance of ap-
proximation algorithms have to provide a theoretical explanation of these phenomena.
For the geometric TSP, such an approach has led to some remarkable results [20].

Finally, we note that there are several developments on the interface of mathe-
matical programming and complexity theory that might ultimately influence the area
of routing and scheduling as well. Suffice it to mention the efforts to relate the exis-
tence of polynomial-time algorithms to the existence of good characterizations of the
polytope of feasible solutions, and the recent development of a polynomial-time algo-
rithm for linear programming [2]. It seems that complexity theory interpreted in a
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broad sense will continue to have a direct impact on the study of vehicle routing and
scheduling problems.

This research was partially supported by National Science Foundation Grant MCS76-
17605 and by NATO Special Research Grant 9.2.02 (SRG.7).
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