A Framework of Traveling Companion Discovery on Trajectory
Data Streams

LU-AN TANG, University of Illinois at Urbana-Champaign and Microsoft Research Asia
YU ZHENG and JING YUAN, Microsoft Research Asia

JIAWEI HAN, University of Illinois at Urbana-Champaign

ALICE LEUNG, BBN Technologies

WEN-CHIH PENG, National Chiao Tung University

THOMAS LA PORTA, Pennsylvania State University

The advance of mobile technologies leads to huge volumes of spatio-temporal data collected in the form of
trajectory data streams. In this study, we investigate the problem of discovering object groups that travel
together (i.e., traveling companions) from trajectory data streams. Such technique has broad applications in
the areas of scientific study, transportation management, and military surveillance. To discover traveling
companions, the monitoring system should cluster the objects of each snapshot and intersect the clustering
results to retrieve moving-together objects. Since both clustering and intersection steps involve high com-
putational overhead, the key issue of companion discovery is to improve the efficiency of algorithms. We
propose the models of closed companion candidates and smart intersection to accelerate data processing. A
data structure termed traveling buddy is designed to facilitate scalable and flexible companion discovery
from trajectory streams. The traveling buddies are microgroups of objects that are tightly bound together.
By only storing the object relationships rather than their spatial coordinates, the buddies can be dynam-
ically maintained along the trajectory stream with low cost. Based on traveling buddies, the system can
discover companions without accessing the object details. In addition, we extend the proposed framework to
discover companions on more complicated scenarios with spatial and temporal constraints, such as on the
road network and battlefield. The proposed methods are evaluated with extensive experiments on both real
and synthetic datasets. Experimental results show that our proposed buddy-based approach is an order of
magnitude faster than the baselines and achieves higher accuracy in companion discovery.

Categories and Subject Descriptors: H.2.8 [Database Applications]: Data Mining
General Terms: Algorithms, Experimentation, Performance

Additional Key Words and Phrases: Trajectory, data stream, clustering

L.-A. Tang is currently affiliated with NEC Labs America.

The work was supported in part by U.S. NSF grants I11S-0905215, CNS-0931975, CCF-0905014, 11S-1017362,
the U.S. Army Research Laboratory under Cooperative Agreement no. W911NF-09-2-0053 (NS-CTA). The
views and conclusions contained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the Army Research Laboratory or the U.S.
Government.

Authors’ addresses: L.-A. Tang (corresponding author), University of Illinois at Urbana-Champaign, 601 E
John St, Champaign, IL 61820; email: leon.tang82@gmail.com; Y. Zheng and J. Yuan, Microsoft Research
Asia; J. Han, University of Illinois at Urbana-Champaign, 601 E John St, Champaign, IL 61820; A. Leung,
BBN Technologies; W.-C. Peng, National Chiao Tung University, 300, Taiwan, Hsinchu City, Dong District,
Taiwan, ROC; T. La Porta, Pennsylvania State University, 201 Old Main, University Park PA 16802.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2013 ACM 2157-6904/2013/12-ART3 $15.00

DOLI: http://dx.doi.org/10.1145/2542182.2542185

ACM Transactions on Intelligent Systems and Technology, Vol. 5, No. 1, Article 3, Publication date: December 2013.

3:2 L.-A. Tang et al.

ACM Reference Format:

Tang, L.-A., Zheng, Y., Yuan, J., Han, J., Leung, A., Peng, W.-C., and Porta, T. L. 2013. A framwork of traveling
comanion discovrey on trajectory data streams. ACM Trans. Intell. Syst. Technol. 5, 1, Article 3 (December
2013), 34 pages.

DOTI: http://dx.doi.org/10.1145/2542182.2542185

1. INTRODUCTION

The technical advances in mobile devices and tracking technologies have generated
huge amount of trajectory data recording the movement of people, vehicles, animals,
and natural phenomena in a variety of applications, such as social network, trans-
portation management, scientific studies, and military surveillance [Zheng and Zhou
2011]: (1) In Foursquare!, the users check in the sequence of visited restaurants and
shopping malls as trajectories. In many GPS-trajectory-sharing Web sites like Ge-
olife [Zheng et al. 2010], people upload their travel or sports routes to share with
friends. (2) Many taxis in major cities have been embedded with GPS sensors. Their
locations are reported to the transportation system in the format of streaming tra-
jectories [Yuan et al. 2010; Tang et al. 2011]. (3) Biologists solicit the moving trajec-
tories of animals like migratory birds for their research?. (4) The battlefield sensor
network watches the designated area and collects the movement of possible intrud-
ers [Tang et al. 2010]. Their trajectories are watched by military satellites all the
time.

In the aforementioned applications, people usually expect to discover the object
groups that move together, that is, traveling companions. For example, commuters
want to discover people with the same route to share car pools. Scientists would like to
study the pathways of species migration. Information about traveling companions can
also be used for resource allocation, security management, infectious disease control,
and so on.

Despite wide applications, the discovery of traveling companions is not efficiently
supported in existing systems, partly due to the following challenges.

—Colocation. Companions are objects that travel together. Here “travel together”
means the objects are spatially close at the same time. Many state-of-the-art tra-
jectory clustering methods, retrieving the object’s major moving direction from their
trajectories, ignore the temporal information of objects [Lee et al. 2007; Har-Peled
2003; Li et al. 2004; Yang et al. 2009; Zhang and Lin 2004; Jensen et al. 2007]. Hence
they cannot be directly used for companion discovery.

—Incremental discovery. In several applications like military surveillance, the system
needs to monitor objects for a long time and discover companions as soon as possible.
Hence the algorithm should report the companions in an incremental manner, that
is, output the results simultaneously while receiving and processing the trajectory
data stream.

—Efficiency. Most trajectories are generated in a format of data stream. Huge amounts
of data arrive rapidly in a short period of time. The monitoring system has to cluster
the data and intersect the clusters for companions. These steps involve high compu-
tational overhead. The algorithm should develop efficient data structures to process
large-scale data.

—Effectiveness. The number of companions is usually large. The system should re-
port the large and long-lasting companions rather than small and short-time ones.

Thttp:/foursquare.com.
2http://www.movebank.org.

ACM Transactions on Intelligent Systems and Technology, Vol. 5, No. 1, Article 3, Publication date: December 2013.

A Framework of Traveling Companion Discovery on Trajectory Data Streams 3:3

The companion discovery algorithm should be effective to select the most important
results.

—Spatio-temporal constraints. In real applications, objects move with several spatial
and temporal constraints, such as where a vehicles travel along the road network, the
military objects need to follow certain orders to leave the team for a short time. The
algorithm should be adapted for such constraints to improve the system feasibility
and applicability.

We are aware that several studies have retrieved object groups similar to the traveling
companions, such as flock [Gudmundsson and Kreveld 2006], convoy [Jeung et al.
2008], and swarm [Li et al. 2010]. However, most of them are designed to work on
static datasets on 2D Euclidean space, and some methods need multiple scans of the
data, or cannot output results in an incremental manner. Hence it is still desirable to
provide high-quality but less costly techniques for companion discovery on trajectory
streams with spatio-temporal constraints.

In this study, we investigate the models, principles, and methodologies to discover
traveling companions from trajectory streams. Since the objects keep on moving in
the trajectory streams, it is hard to maintain an index for their spatial positions.
However, the relationships among most objects are gradual evolutions rather than
fierce mutations. The traveling buddy is proposed to store the relationship. Such a
model can be easily maintained along the data streams. Thus, in this article, we explore
the traveling-buddy-based companion discovery, which is able to discover companions
without accessing the object details and significantly improve the system’s efficiency.
The main contributions of this study include: (1) introducing the companion models
to define the problem; (2) proposing the concepts of smart intersection and closed
companions to accelerate data processing; (3) analyzing the bottleneck of the problem
and proposing a traveling-buddy-based approach; (4) extending the proposed methods
to complicated scenarios with spatio-temporal constraints, developing the methods
to discover the road companions and loose companions; and (5) demonstrating the
scalability and feasibility of the proposed methods by experiments on both real and
synthetic datasets.

This article substantially extends the version on ICDE 2012 conference [Tang et al.
2012], in the following ways: (1) introducing the concepts of road companion and loose
companion to model the companion discovery problems on more complicated scenar-
ios; (2) analyzing the main bottleneck of road companion discovery and proposing a
filtering-and-refinement-based framework; (3) designing new algorithms with the road
buddy for efficient companion discovery on road networks; (4) proposing the leaving
time threshold and introducing the concept of loose companion to release the time con-
straints for more effective companion discovery; (5) carrying out the time complexity
analysis for proposed algorithms; (6) providing complete formal proofs for lemmas and
propositions; (7) covering the related work in more details and including recent ones;
and (8) expanding our performance studies on datasets on road networks and battle-
field. The experimental results show that the new proposed methods are an order of
magnitude faster than the old ones in Tang et al. [2012].

The rest of the article is organized as follows. Section 2 defines the problem;
Section 3 introduces the general framework of companion discovery; Section 4 pro-
poses the traveling-buddy-based method; Section 5 extends the proposed methods to
discover companions on road networks; Section 6 discusses the techniques to discover
companions with released temporal constraints; Section 7 evaluates the algorithms’
performances; Section 8 gives a survey of the related work and finally in Section 9 we
conclude the work.

ACM Transactions on Intelligent Systems and Technology, Vol. 5, No. 1, Article 3, Publication date: December 2013.

3:4 L.-A. Tang et al.

! \ \ \
i i i i
! \.0 ! | oemmmmmmes o g 3.05 \
i N 05 i V0 -
I/ 01 02 \\‘ | \.‘\-..___!_8—,’ \l’ 0 .) |
i e@ i | 01020504 05 \72 5 @/
i b0 N P -8
L@ 03 | | @ ga N ‘ ‘
\ 0 \

i @9, i 20. ® ®osi i o \
NG . I 3 [Qo i O¢ N i
i T i 04.. 08 | P i '@ @ oy i
b @os ; . 05 07 A

1 05 07 [[[[
[C N \ I .. O19" | R I) i
ey i I 09 @ 'Y D \
\ @09 | s e i O10 i
! e / w I 0s 09059 i |
i i i i i
i %10 i i i i
: S7 ‘ S2 ‘ S3 ‘ Sy ‘

Fig. 1. Example: discover traveling companions.

2. PROBLEM DEFINITION

In the various applications of traveling companion, there are some common principles
shared in different scenarios. We illustrate the characteristics of companion discovery
by the following example.

Example 1. Ten objects are tracked by a monitoring system. Figure 1 shows their
positions in four snapshots. There are three key issues to discover the companions.

—~Cluster. The companions are the objects that travel together, that is, in the same
cluster. Since the people, vehicles, and animals often move and organize in arbitrary
ways, the companion shape is not fixed. In Figure 1, the objects are grouped in
round shape in snapshots s; and sy, while in s3, they are moving in a queue and the
companions are formed as thin and long ellipses.

—Consistency. The companions should be consistent enough to last for a few snapshots.
This feature makes it possible to find the companions by intersecting the clusters of
different snapshots.

—Size. Most users are only interested in object groups that are big enough. They may
have requirements on the companion’s size. For example, if the user sets the size
threshold as four and requires the companion to last for at least four snapshots, then
{01, 02, 03, 04} is the result companion.

To discover the traveling companions with various shapes, we employ the concepts of
density-based clustering [Ester et al. 1996] in this study.

Definition 1 (Direct Density Connection). Let O be the object set in a snapshot, ¢ be
the distance threshold, u be the density threshold, and N,(0;) = {o; € O | dist(0;,0;) <
e}. Object o} is directly density connected from object o; if o; C N,(0;) and |N; (0;) | > w.

Definition 2 (Density Connection). Let O be the object set in a snapshot, object o;
is density connected to object o;, if there is a chain of objects {01, ..., 0,} € O where
01 = 0}, 0, = 0; such that 0;,1 is directly density connected from o;.

With the concepts of density connection, we formally define the traveling companion
as follows.

Definition 3 (Traveling Companion). Let ;s be the size threshold and §; be the du-
ration threshold, a group of objects g is called traveling companion if:

ACM Transactions on Intelligent Systems and Technology, Vol. 5, No. 1, Article 3, Publication date: December 2013.

A Framework of Traveling Companion Discovery on Trajectory Data Streams

Notation Explanation Notation Explanation
S the trajectory stream S, Siy §; the snapshots in stream
C the cluster set Ciy G the clusters
0 the companion set q the traveling companion
R the candidate set ry ¥ the companion candidates
B the buddy set b, b; the traveling buddies
[0} the object set 0}, 05, 0; |the objects
& the distance threshold u the density threshold
O the size threshold Oy the duration threshold
o, the buddy radius threshold Vi Vi the buddy radius
M the road network o the leaving time threshold

35

Fig. 2. List of notations.

(1) the members of g are density connected by themselves for a period ¢ where ¢t > §;;
(2) q’s size size(q) > §;.

Problem Definition. Let trajectory data stream S be denoted by a sequence of
snapshots {s1, s2, ..., si, . ..}. Each snapshot s; = {(01, x1.i, y1.i), (02, X2, ¥2.i), - . ., (On, Xni,
Yni)}, Where x;;, y;; are the spatial coordinates of object o; at snapshot s;. When the
data of snapshot s; arrives, the task is to discover companion set @ that contains all
the traveling companions so far.

We will introduce the framework and techniques for companion discovery in the next
few sections. Figure 2 lists the notations used throughout this article.

3. COMPANION DISCOVERY FRAMEWORK
3.1. The Clustering-and-Intersection Method

A general framework of clustering and intersection is proposed in Gudmundsson and
Kreveld [2006] and Jeung et al. [2008] to retrieve the convoy patterns. This framework
can also be adapted to discover companions on trajectory streams: The idea is to re-
trieve companion candidates by counting common objects in the clusters from different
snapshots. The system keeps clustering the objects in coming snapshots and intersect-
ing them with the stored candidates. In this way the candidates are gradually refined
to become resulting companions.

Definition 4 (Companion Candidate). Let 55 be the size threshold and §; be the du-
ration threshold, a group of objects r is a companion candidate if:

(1) the members of r are density connected by themselves for a period ¢ where ¢ < §;;
(2) size(r) > 6.

Intuitively, the companion candidates are the object groups with enough size but
shorter duration. The candidate’s size reduces when intersecting with the clusters from
other snapshots, but its lasting time increases. Once a candidate’s time grows longer
than the threshold, it will be reported as a traveling companion. Meanwhile, as soon
as the candidate is not large enough, it is no longer qualified and should be removed
from memory. Figure 3 lists the steps of the clustering-and-intersection algorithm.

Algorithm 1 first performs density-based clustering for all the objects in coming
snapshots (lines 1-3). Then the system refines companion candidates by intersecting
them with new clusters (lines 4-7). The intersection results with enough size are

ACM Transactions on Intelligent Systems and Technology, Vol. 5, No. 1, Article 3, Publication date: December 2013.

3:6 L.-A. Tang et al.

ALGORITHM 1: Clustering-and-Intersection

Input: size threshold Jy, duration threshold J,, distance threshold &, density
threshold u, candidate set R and the trajectory data stream S

Output: every qualified companion ¢

1. for each coming snapshot s of S

2 initialize new candidate set R,

3 cluster the objects in s w.r.f to ¢ and u;

4. for each candidate 7; € R, do

5. for each cluster ¢; € s, do

6 new candidate ;' € 7; N ¢

7 duration (r;") = duration (r;)+duration (s);
8. if size(r;) > J, then

9 add r;"to R";

10. if duration (r;") > 0, then

11. output ;' as a qualified companion g¢;
12. add all the new clusters to R”;

13. R<€ R

Fig. 3. Algorithm: the clustering-and-intersection method.

stored as new candidates (lines 8-9). The ones with enough duration are reported as
traveling companions (lines 10-11). The new clusters are added to the candidate set
(line 12). At last the candidate set R is updated to process following snapshots (line 13).

ProposiTioN 1. Let ny be the size of objects and ng be the total size of candidate set R.
The time complexity of Algorithm 1 is O(n% + ny * ng).

Proor. In the clustering step, the algorithm needs O(n%) time to generate density-
based clusters®. In the intersection step, suppose there are average m; clusters and
mg candidates, the system carries out m; * myp intersections, and the intersection takes
[1 x [y time, where [is the average cluster size and [y is the average candidate size.
Since my * [= ny, my x lo = ng, thus the time complexity of the intersection step is
O(my * mg * [1 xl3) = O(ny x ng) and the total time complexity is O(n% +n1%ng). O

Example 2. Figure 4 shows the running process of the clustering-and-intersection
algorithm. Suppose each snapshot lasts for 10 minutes, the size threshold is 3 and the
time threshold is 40 minutes. The objects are first clustered in each snapshot. Two
clusters in s; are taken as the candidates, namely r; and ry. Then they are intersected
with the clusters in sy, meanwhile, the cluster of s; is also added as a new candidate
rs. The clustering and intersection steps are carried out in each snapshot. Finally, the
algorithm reports {01, 02, 03, 04} as a traveling companion in s4. The total intersection
times are 29, and the largest candidate set R appears in s3 with 23 objects involved.

3.2. The Smart-and-Closed Algorithm

The computational overhead of the clustering-and-intersection method is high in both
time and space. In each snapshot, the intersection is carried out in every pair of can-
didate and cluster. However, most intersections cannot generate qualified results with
enough size. In this section we introduce the methods to improve the efficiency: (1) the

3The clustering process can be improved to O(n; xlogn;) with a spatial index, however, it is costly to maintain
such a spatial index in each time snapshot [Lee et al. 2003].

ACM Transactions on Intelligent Systems and Technology, Vol. 5, No. 1, Article 3, Publication date: December 2013.

A Framework of Traveling Companion Discovery on Trajectory Data Streams 3.7

1 0y, 010}, 20m

:09, 050}, 10m 04 05},30m

r3 ={0}, 02, 03,
04, 054,20 m
r4 =40, 09,
O]()} 20m

rs ={0y1, 02, 03,
04 05}, 10 m
rs ={0s, 09,
050}, 10m

R's size: 23
Intersect: 11

r3 ={04, 0, 03,
04, 05, Og, 07, Og,
09, 019}, 10 m

r3 ={0y, 03 03,
04, 055,20 m

R's size: 14
Intersect: 29

R's size: 19
Intersect: 2

i
| R's size: 9
I Intersect: 0

| | | | |
I e @ ! I [P — 03__‘0‘5 I
e, 05 F N @@
VA 02 N T P Ly @ o N
i 0@ Vo LT [0] 07 03 04 Os [‘\\ 2 04 ® ./ |
[i I / 0 o N~ i N 08
il @93 . @ PO ‘ |
| ‘\\ @) 0oy / | i 2@ .. ‘7‘ [- ! Lo !
LD e O eTen 1 oy
! = \ P T \\ /I
| VT @05 i 05 07 L 0,07
. 0% 07 \ /
/e N 9@ o v [® i
' 0s@ P! . I e RN i
Y @0 ! ~05-- @ 0@, 019 |
e S ! I 0g 090p : !
| N I | i
[070 i i i ‘
: s;=10m : s;=10m : s3=10m : s4=10m :
11 ={01, 05, 05 i 11 ={01, 05 05 | ={o, 0505 | ri={o, 0505 |
Loy}, 10m Loy },20m ! 04} 30 m ' 04}, 40 m !
i i i ‘
ir2 ={06 07, 05, | r2={06 07,05 | 27 105, 09, 010}’\ ry={0y1, 05 03, |
i i i 30m ‘
| \ |
i i ‘
i i |
i i ‘
[\ i
| \ |
i i ‘
i i |
i i ‘
[\ i
| \ |
i i ‘
i i i

Fig. 4. Example: the clustering-and-intersection method.

smart algorithm stops the intersection step early once it is impossible to generate qual-
ified candidates, and (2) the closed candidates are used to help reduce the memory cost.

LemMA 1. Let r be a companion candidate and &5 be the size threshold, if there are
more than size(r) — 8s objects of r already appearing in intersected clusters, continuously
intersecting r with remaining clusters will not generate any meaningful results with
size larger than §;.

Proor. Since each object only appears once in a single snapshot and only belongs to
one cluster?, if there are more than size(r) — 8, objects appearing in already intersected
clusters, even in the best case (all the remaining objects are in a single cluster), the
intersection result will still be smaller than size(r) — (size(r) — §;) = 8;. O

Lemma 1 can be used to improve the candidate refining process with smart intersec-
tion. Once an object is found in the cluster, the algorithm removes it from the candidate.
The intersection process will stop earlier if there are less than §; objects remaining in
the candidate.

Another problem of the clustering-and-intersection method is the space efficiency;
if all new clusters are added as candidates, the size of the candidate set will in-
crease rapidly as the trajectory stream passes-by. Such a huge candidate set is a

4The clustering methods used in this study are all “hard-clustering”, that is, an object can only belong to one
cluster.

ACM Transactions on Intelligent Systems and Technology, Vol. 5, No. 1, Article 3, Publication date: December 2013.

3:8 L.-A. Tang et al.

ALGORITHM 2: Smart-and-Closed Algorithm

Input: size threshold J;, duration threshold J,, distance threshold ¢, density
threshold u, candidate set R and the trajectory data stream S

Output: every qualified companion ¢

1. for each coming snapshot s of §

2. initialize new candidate set R’
cluster the objects in s w.r.f to ¢ and y;
for each candidate ; € R, do

if 7;’s size is less than J; then break;
new candidate 7,'< r; N ¢
. duration (r;") = duration (r;)+duration (s);
9 remove intersected objects from 7;;

3
4
5. for each cluster ¢; € s, do
6
7
8

10. if size(r;') > o, then

11. add r;'to R';

12. if duration (r;") > o, then

13. output ;" as a qualified companion g;
14. for each cluster ¢; do

15. if ¢; is closed then add to R’;

16. R< R

Fig. 5. Algorithm: the smart-and-closed discovery.

burden for system memory. In the worst case, all the clusters stay constant in the
series of snapshots, the intersection process cannot prune any existing candidates,
and all the new clusters are added to the candidate set. After m snapshots, the
system needs to maintain an m * n size candidate set, where n is the number of
objects.

In Figure 4, candidates r3 and r5 in s3 contain the same objects with different lasting
time. In such cases, the system only needs to store the one with longer time (e.g., r3).
Such candidates like r3 are called closed candidates.

Definition 5 (Closed Candidate). For a companion candidate r;, if there does not
exist another candidate r; such that r; C r;, and r;’s duration is less than r;’s duration,
then r; is a closed candidate.

Armed with Lemma 1 and Definition 5, we propose the smart-and-closed algorithm.
The modifications are underlined in Figure 5: the algorithm removes intersected objects
from the candidate set and checks its remaining size before the next intersection (lines
5 and 9); when adding the new clusters to the candidate set, the algorithm always
checks if there is already a candidate containing the same objects but with longer
duration, and only the ones passing the closeness check are added as new candidates
(lines 14-15).

In the worst case, Algorithm 2 cannot prune any candidates and the time complexity
is the same as Algorithm 1. However, we find out that the smart-and-closed algorithm
can save about 50% time and space in the experiments.

Example 3. Figure 6 shows the running process of the smart-and-closed algorithm.
In snapshot s3, when making intersections for candidate r; with three clusters, the
process ends early after the first round. Since the system only stores closed candidates,
the largest candidate set size is only 19 in sy, and the total intersection time is 12, less
than half of the cost in the clustering-and-intersection algorithm.

ACM Transactions on Intelligent Systems and Technology, Vol. 5, No. 1, Article 3, Publication date: December 2013.

A Framework of Traveling Companion Discovery on Trajectory Data Streams 3:9

| | |
I -"\\. | | %——*" 9305 |
i N 05 T i
| 0] 0 v | N / 02. ¥
[O® L e W1 o &0
e [e g e :
! I jo L

NIV Ao LU R— L@ |
i N i 043. o5 | | ‘_.__“__.» | ﬁ. @0, I
! o ! ®os ;! o5 o7 N A !
I 96 7 I I I
| / (X} \‘ | .. O]y | |) |
10s® 09" e @@ !
| \ @ % I 4 [- | () |
I @ S 1 0 090jp | i
I et | I | I

00
| | | | |
os;=10m 1+ s,=10m 1 s3=10m 1+ s,=10m i
| I — | _ | _ I
=105, 05 1 {011’ 92y rp={on 05 | ri={on 05 |
'03, 04}, 10 m! 03,04 },20m ' 05,044,30m 03 0,},40m
! ' ry ={os 07, 0s," ! [
ry; ={0g 07, U ={og 00, | 2={01, 02 !
"2 ©C7 i 09 0108, 20m i S T i
105,00, 010}, | py={0, 0, | 0105,30m 1 050405,
| | - | — | |
r; ={0}, 05, 30m

! 10m I 03 04, 05, Og, | s =los }2 I I
1 1 | 03, 04, Os | |
| i 07, 08 09,) m4 T |
! ! 0]()}, 10 m i | I
'R'ssize: 9 | R'ssize: 19 !'R'ssize: 15 ! R'ssize: 9 !
Intersect: 0 Intersect: 2 Intersect: 9 Intersect: 12

Fig. 6. Example: smart-and-closed algorithm.

Ci (&) C3

|

|
“ .
07
|
|
|
|
|

S S2
Fig. 7. Example: individual sensitivity problem.

4. TRAVELING-BUDDY-BASED DISCOVERY

The smart-and-closed algorithm improves the efficiency of the intersection step to
generate companions, but the system still has to cluster the objects in each snap-
shot. The density-based clustering costs O(n?) time without a spatial index, where
n is the number of objects [Han and Kamber 2006]. Due to the dynamic nature
of streaming trajectories (i.e., the objects’ positions are always changing), maintain-
ing traditional spatial indexes (such as R-tree or quad-tree) at each time snapshot
incurs high cost [Lee et al. 2003]. In this section, we introduce a new structure,
called traveling buddy, to maintain the relationship among objects and help discover
companions.

4.1. The Traveling Buddy

In streaming trajectories, the objects keep on moving and updating their positions,
however, the changes of object relationships are gradual evolutions rather than fierce
mutations. The object relationships are possible to be retained in a few snapshots, that
is, the objects are likely to stay together with several members of the current cluster.
It is attractive to reuse such information to speed up the clustering tasks. However,
the system cannot reuse it directly. The major issue is about the intrinsic feature of

ACM Transactions on Intelligent Systems and Technology, Vol. 5, No. 1, Article 3, Publication date: December 2013.

3:10 L.-A. Tang et al.

density-based clustering. Unlike other types of clusters, the results of density-based
clustering may be quite different due to minor position changes of an individual object.
This phenomenon is called individual sensitivity as illustrated in Example 4.

Example 4. Figure 7 shows two consecutive snapshots of the trajectory stream.
Suppose the density threshold u is set to three. In snapshot s;, two clusters ¢; and
¢ are independent. However in sy, object 0; moves a little to the south, and this
movement makes the two clusters density connected and merged as one cluster cs.
Such cases may impose important meanings in real applications, for instance, in the
scenario of infected disease monitoring, the people in the two clusters should then be
watched together since the disease may spread among them.

The time cost of checking individual sensitivity is quadratic to the cluster size,
and in many cases the system has to generate large clusters to produce meaningful
companions. Hence high computational overhead is still involved in the clustering
stage.

Then is it possible to explore a smaller and more flexible structure? In the real world,
there are some kinds of microgroups in a trajectory stream. For example, couples would
like to stay together on trips, military units operate in teams, families of birds, deer, and
other animals often move together in species migration. Such objects stay closer to each
other than outside members. Even though they might not be as big as the companion,
their information can be used to help clustering. Since they are way smaller than the
cluster, their maintenance cost is much lower.

Definition 6 (Traveling Buddy). Let O be the object set and 4, be the buddy radius
threshold, traveling buddy b is defined as a set of objects satisfying: (1) b € O; (2) for
Yo; € b, dist(o;, cen(b)) < §,, where cen(b) is the geometry center of . The buddy’s radius
y is defined as the distance from cen(b) to &’s farthest member.

The traveling buddies can be initialized by incrementally merging the objects in
two steps: (1) treating all objects as individual buddies; and (2) merging them with
their nearest neighbors. This process stops if the buddy’s radius is larger than y.
The initialization step costs O(n?) time for n objects. However, this step only needs to
be carried out once and the traveling buddies are dynamically maintained along the
stream.

There are two kinds of operations to maintain buddies on the data stream, namely,
split and merge, as shown in the following example.

Example 5. Figure 8 shows the traveling buddies in two snapshots. Traveling buddy
by is split into three parts in snapshot s;. At the same time, b9, b3, and a part of b; are
merged as a new buddy in ss.

When the data of a new snapshot s;1 arrives, the maintenance algorithm first up-
dates the center of each buddy &. For object o; € b, the system calculates the shift (Ax;,
Ay;) between s, 1 and s;. And the new center is updated as

cen1(b) = ceny(b) +) _(Axi, Ayy).

0; eb

Then every object o; € b checks its distance to the buddy center; if the distance
is larger than §,, o; will be split out as a new buddy. The cen(d) is also updated by
subtracting the shift of o;.

The second operation is to merge the buddies that are close to each other. If
two buddies b; and b; satisfy the following equation, they should be merged as a

ACM Transactions on Intelligent Systems and Technology, Vol. 5, No. 1, Article 3, Publication date: December 2013.

A Framework of Traveling Companion Discovery on Trajectory Data Streams

by

b;

bs

Fig. 8. Example: merge and split buddies.

ALGORITHM 3: Traveling Buddy Maintenance

Input: the radius threshold J,, the traveling buddy set B and the coming

snapshot s
Output: updated buddy set B’

for each b; in B do
update cen(b;);
for o;in b;, do
if dist(o;, cen(b;)) > o, then // Split Operation
split o; out as a new buddy b;;
add b; to B';
update cen(b);
add b; to B';
//Merge Operation
for each b, b;in B, b; # b; do
if dist(cen(b;), cen(b))) + y;+ y; < 26, then
merge b;, b; as by;
remove b, b;and add b to B’
return B';

XNAN R WD~

—_— = = = O
PR =or

Fig. 9. Algorithm: buddy maintenance.

new buddy.
dist(cen(b;), cen(db;)) + y; + vj < 26,

3:11

Suppose b; has m; objects and b; has m; objects, the new buddy b;’s center is computed
as cen(by) = (m; * cen(b;) + m; * cen(b;))/(m; + m;). Therefore, the system does not need
to access the detailed coordinates of each object to merge buddies; the computation can

be done with the information from the old buddy’s center and size.

The detailed steps of buddy maintenance are shown in Figure 9. When the data of
a new snapshot arrives, the algorithm first updates the center of each buddy (line 2).
Then each buddy member is checked to see whether a split operation is needed (lines
3-7). At last, the system scans the buddy set and merges the buddies that are close to

each other (lines 10-13).

ProposiTioN 2. Let mbe the average number of traveling buddies and n be the number

of objects. The time cost of Algorithm 3 is O(n + m?).

ACM Transactions on Intelligent Systems and Technology, Vol. 5, No. 1, Article 3, Publication date: December 2013.

3:12 L.-A. Tang et al.

dist (cen(b;), cen(b;))

G b

(Ie—)
dist (b;, b)) @Y an
bi xs oL b @
o6y e (gesiee
oo e o Ogie’

_@,/’ ./, -~ . o W

dist (0;, 0)) dist (0;, 0;)

(@) (b)

Fig. 10. Proof of Lemmas 3 and 4.

Proor. The split operation needs to check each object and the time cost is O(n). The
merge operation has to check the buddies pairs with time complexity O(m?). Therefore
the total maintenance cost is O(n + m?). DO

In the worst case, if the objects are sparse and each of them is an individual buddy,
where m = n, the maintenance cost is still O(n?). However, the number of m is
usually much smaller than n and the algorithm is likely to strike a relatively high
efficiency.

4.2. Buddy-Based Clustering

In the clustering step, the system has to check the density connectivity for each
object. The traveling buddies can help the clustering process avoid accessing
those object details. To bring down computational overhead, we introduce following
lemmas.

LeEmMma 2. Let b be a traveling buddy, ¢ be the distance threshold, and u be the density
threshold. If b’s size is larger than u + 1 and the buddy radius y < ¢/2, then all the
objects in b are directly density reachable to each other. Such a traveling buddy is called
a density-connected buddy.

Proor. Note that y < ¢/2, thus for Yo;,0; € b, dist(o;,0;) < 2y < e. Then all the

members of b are included in N,(o;). If b’s size is larger than u + 1, then |N8(o,~)| > u.
By Definition 1, o; and o; are directly density reachable. DO

Lemma 2 shows that, if a traveling buddy is tight and large by itself, then all its
members can be considered as density connected. Lemma 2 also gives the directions
that the radius threshold §, should not be set larger than ¢/2.

LEMMA 3. Let b; and b; be two traveling buddies with radius y; and yj, and ¢ be the
distance threshold. If dist(cen(b;), cen(b;)) — y; — v; > ¢, then the objects in b; and b; are
not directly density reachable.

Proor. As shown in Figure 10(a): if dist(cen(d;), cen(b;)) — y; — y; > ¢, then for Vo; €
bi,0; € bj, dist(o;,0;) > ¢. Therefore, o; does not belong to N,(0;) and they are not
directly density reachable. 0O

Lemma 3 tells us that, when searching for the directly density reachable objects for
a traveling buddy, if another buddy is too far away, then the system can prune all its
members without further computation. This lemma is very helpful. In the experiments
it helps prune more than 80% of the objects.

For the traveling buddies that are close to each other, the detailed distance compu-
tation still needs to be carried out. But with the following lemmas, the system does not

ACM Transactions on Intelligent Systems and Technology, Vol. 5, No. 1, Article 3, Publication date: December 2013.

A Framework of Traveling Companion Discovery on Trajectory Data Streams 3:13

ALGORITHM 4: Buddy-based Clustering

Input: the distance threshold ¢, the density threshold u, the coming snapshot s and
the buddy set B.

Output: the cluster set C.

update buddy set B; //Algorithm 3

1.

2. randomly pick a buddy b;

3. initialize cluster ¢ € b, add ¢ to C;

4. remove b from B;

5. for each unvisited buddy b; in ¢

6. mark b; as visited;

7. for each buddy b;in B, do

8. if dist(cen(b;), cen(by)) - yi- y; > ¢, then

9. continue; / Lemma 3

10. for each o; in b;, o; in b;, do

11. if dist(o;, 0;) < ¢, then

12. if b;, b;are density connected then

13. add b; to c; //Lemma 4

14. remove b; from B;

15. break;

16. else if o; is density connected from o; then
17. split b; to objects;

18. add o;to c;

19. repeat steps 2 - 18 until all buddies are processed;
20. return the cluster set C;

Fig. 11. Algorithm: buddy-based clustering.

need to compute distances between all the pairs. Lemma 4 provides heuristics to speed
up the computation.

LemmA 4. Let b;, bj be two density-connected buddies and ¢ be the distance threshold.
If 30; € b;,0; € bj such that dist(o;,0;) < ¢, then all the objects of b; and b; are density
connected.

Proor. As Figure 10(b) shows, since b; is a density-connected traveling buddy and
IN:(0;)| > w, if dist(o;,0j) < ¢, then o; and o; are directly density reachable. Since
all the objects in b; and b; are directly density reachable from o; and o}, respectively,
therefore, all the objects in the two traveling buddies are density connected. O

Based on Lemma 4, once the system finds a pair of objects close to each other, it
ends the computation and considers the corresponding buddies density connected. The
detailed algorithm is listed in Figure 11. The algorithm first updates the buddy set in a
new snapshot (line 1). Then it randomly picks a buddy and initializes it as a new cluster
(lines 2—4). For each buddy in the cluster, the algorithm checks its density connectivity
to others (lines 5-18). The far-away buddies are filtered out (Lines 8-9). With the help
of Lemma 4, the algorithm searches density reachable buddies and objects and adds
them to the cluster (lines 10-18). Finally, the algorithm outputs clustering results when
all the buddies are processed (line 20).

In the worst case, Algorithm 4 is still with O(n?) time complexity, where n is the
number of objects. But in most cases, Lemmas 3 and 4 can prune the majority of
buddies and save time for distance computation. The experiment results show that
buddy-based clustering is an order of magnitude faster than the original clustering
algorithm.

ACM Transactions on Intelligent Systems and Technology, Vol. 5, No. 1, Article 3, Publication date: December 2013.

3:14 L.-A. Tang et al.

ALGORITHM 5: Buddy-based Companion Discovery

Input: Size threshold dy, duration threshold J,, candidate set R, buddy index B/ and the
trajectory data stream S

Output: every qualified companion ¢

1. for each coming snapshot s of S;

2 initialize new candidate set R’

3 buddy based clustering; / Algorithm 4

4 update B/ and corresponding candidates;

5. for each candidate ; in R, do

6 if size(r;) < J, then break;

7 for each cluster ¢;in s, do

8 ;' € buddy-based-intersection(r;, ¢;);

9. duration (r;") = duration (r;)+duration (s);

10. remove intersected objects and buddies from r;;
11. if size(r;") > 6, then

12. add r'to R';

13. if duration (r;") > o, then

14. output ;" as a qualified companion ¢;

15. for each cluster ¢; do

16. if ¢; is closed then add to R

17. R <€ R

Fig. 12. Algorithm: buddy-based companion discovery.

4.3. Companion Discovery with Buddies

The buddies are not only useful in the clustering step, they are also helpful for the
intersection process to generate companions. When intersecting a candidate with a
cluster, the system needs to check whether each candidate’s objects appear in the cluster
or not. The information of traveling buddies can provide a shortcut to this process: If a
buddy stays unchanged during the period, and it appears both in the candidate and the
cluster, then the system can put all its members into the intersection result without
accessing the detailed objects.

To efficiently utilize the buddy information, a buddy index is designed to keep the
candidates dynamically updated with the buddies.

Definition 7 (Buddy Index). The buddy index is a triple {BID, ObjSet, CanIDs},
where BID is the buddy’s ID, ObjSet is comprised of the object members of the buddy,
and CanlDs records the IDs of candidates containing the buddy.

As long as the buddy stays unchanged, the candidates only store the BID instead of
detailed objects. While making intersections, the buddy is treated as a single object.
When the buddy changes, the system updates all the candidates in CanIDs and replaces
BID with the corresponding objects in ObjSet. The buddy-based companion discovery
algorithm is listed in Figure 12.

When a new snapshot arrives, the algorithm performs buddy-based clustering and
updates the buddy index (lines 2—4), then selects out the candidates with enough size
(lines 5-6). The candidates are intersected with the generated clusters with the help of
the buddy index (lines 7-10). The candidate’s duration and size are checked again after
the intersection, and the qualified ones are output as the companions (lines 11-14).
Finally, the closed candidates are added to the memory for further processing (lines
15-17).

Example 6. Figure 13 shows the running process for buddy-based companion dis-
covery. There are four buddies initialized in snapshot s;. In the candidates, the buddy

ACM Transactions on Intelligent Systems and Technology, Vol. 5, No. 1, Article 3, Publication date: December 2013.

A Framework of Traveling Companion Discovery on Trajectory Data Streams 3:15

042, .
8 @93 o3
{6, 9 @@)
\ 02 @
. 04 /03’)

|
|
|
|
|
|
|
|
I
|
'
|
'
\
(R
|
|
|
|
|
|
|
|
|

@
s,=10m s3=10m s4=10m

L7 ={by, by}, ! T =101 bays v ={by, by},
110 m 120 m 30m
:,,2 ={bs, by}, : r2={bs by}, ' 1y ={os by}, r2={b;, bz,
110 m | 20 m 30m 05}a 30m
| 7 ={b,, b, r; ={by, b,
| | b3 by 053,100 53 20 m
I "'m

b] :{01’ 02} : b[:{01, 02}
b2:{03, 04} : b2:{03; 04}

by ={09, 010 } !

(b1 ={0,0,} | by ={0, 05}
‘bg ={03, 04} ! b2={03, 04}
:b3 ={06: o7, : b3 :{06, 07,

1 08} 1 0g}

:b4 ={09, 019 }: by ={09, 019}
:R's size: 9 : R's size: 10

i Intersect: 0 i Intersect: 2

R's size: 5
Intersect: 12

R's size: 8

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
:
|
40 m [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Intersect: 9 [
|
|

Fig. 13. Example: buddy-based discovery.

ID is stored instead of detailed objects. In snapshot s3, the four buddies stay the same
and the algorithm makes intersections by only checking their BIDs. Although the total
intersection time is not reduced, the time cost for each intersection operation has been
brought down. It is common that different candidates contain the same objects, such as
r1 and r3 in sg. The buddy index helps to keep only one copy of the objects and add only
pointers (the BIDs) to candidates. Therefore, the space cost is further reduced. In s3,
the buddy b3 is no longer valid, then the system updates candidate rq, using the objects
to replace the buddy’s ID. In s4, traveling companion r; is discovered as {b1, by }. With
the help of the buddy index, the system can easily look up detailed objects and output
the companion as {01, 02, 03, 04}.

5. ROAD COMPANION DISCOVERY

In the previous sections, we have investigated the problem of companion discovery on
2D Euclidean space. However, many objects move on road networks in real applications.
There are several unique difficulties for companion discovery on the road network. In
this section we explore the problem of discovering road companions.

5.1. Problem Formulation

Example 7. Figure 14 shows the example of moving vehicles on the road network.
There are several issues different from the companion discovery in 2D Euclidean space.

ACM Transactions on Intelligent Systems and Technology, Vol. 5, No. 1, Article 3, Publication date: December 2013.

3:16 L.-A. Tang et al.

Fig. 14. Example: traveling companions on road network.

—Distance computation. In the road network, the distance between two objects should
be the length of the shortest path connecting them, rather than a straight line
between them. As shown in the figure, o; and og are close to each other in the
Euclidean space, but they are on different directions. The road network distance
between them is actually much larger.

—DMoving direction. In most cases, the road companion moves in the shape of a line. The
moving direction of the object is an important factor in determining the companion.
For example, 07, 0g, and o9 in Figure 14 have neighboring vehicles 019 and 01; moving
in opposite direction. Such vehicles should not be counted as the companion mem-
bers. Therefore, traditional density-based clustering should be modified to model the
vehicle’s moving directions.

Since the road companion discovery is a new type of problem, it is necessary to
modify some basic concepts of the traveling companion and redefine the task with new
constraints.

Definition 8 (Direct Road Connection). Let O be the object set in a snapshot, M be
the road network, and ¢ be the distance threshold. Object o; is directly road connected
from object o; on M if netd(o;, 0;) < e, where netd(o;, 0;) is the road network distance
between o; and o; on M.

Note that we remove the requirements about density and replace the Euclidean
distance with the road network distance in Definition 8.

Definition 9 (Road Connection). Let O be the object set in a snapshot, M be the
road network, object o; is road connected to object o; on M, if there is a chain of objects
{01,...,0,} € O where 01 =0}, 0, = 0; such that 0;,; is directly road connected from o;
on M.

Based on the previous definitions, we can formally define the task of road companion
discovery as follows.

Definition 10 (Road Companion). Let M be the road network, &; be the size thresh-
old, and &; be the duration threshold, a group of objects g is called road companion
if:

(1) the members of g are road connected on M for a period ¢ where ¢ > §;;
(2) ¢’s size size(q) > §;.

Problem Definition. Let trajectory data stream S be denoted by a sequence of snapshots
{s1,82,...,si,...}. Each snapshot s; = {(o1,%1,y1.), (02, %24, ¥2.0), - - -, (On, Xnis Yn.i)}s

ACM Transactions on Intelligent Systems and Technology, Vol. 5, No. 1, Article 3, Publication date: December 2013.

A Framework of Traveling Companion Discovery on Trajectory Data Streams 3:17

ALGORITHM 6: Road-connection-based Clustering

Input: the distance threshold ¢, the size threshold J;, the object set O in a
snapshot

Output: the road-connected cluster set C

1. for each unvisited object o of O, do

2 mark o as visited;

3 initialize a new cluster c;

4. add o to ¢;

5. for each unexpanded object o; in ¢, do
6 mark o; as expanded;

7 for each unvisited object o; of O, do
8 if netd(o;, 0)) <e, then

9. mark o; as visited;

10. add o;to c;

11. ifsize(c) > J, then

12. add ¢ to C;

13. return C;

Fig. 15. Algorithm: road-connection-based clustering.

where x;;, y;; are the spatial coordinates of object 0; at snapshot s;, and all the objects
move on a road network M. When the data of snapshot s; arrives, the task is to discover
the road companion set @ that contains all the road companions so far.

Note that we assume the system can match the spatial coordinates of the moving
objects to the road network efficiently. There are many state-of-the-art studies on this
map-matching problem. In our previous studies, we have developed several methods
for map matching; the details can be found in Yuan et al. [2010] and Zheng et al. [2012].

5.2. The Discovery Framework

The general framework of clustering and intersection can be adapted to discover road
companions. In each snapshot, the system first generates the road connected clusters
and intersects them with the road companion candidates. The candidates are gradually
refined to be the road companions.

Definition 11 (Road Companion Candidate). Let M be the road network, §; be the
size threshold, and §; be the duration threshold, a group of objects ¢ is called road
companion candidate if:

(1) the members of g are road connected on M for a period ¢ where ¢ < §;;
(2) size(q) > 6.

Similarly, the ideas of the smart-and-closed algorithm also work for this framework.
To apply those algorithms on road networks, the only difference is to replace the
process of density-based clustering with the following algorithm of road-connection-
based clustering.

Algorithm 6 first picks a random object as the seed to initialize a cluster (lines 1-4),
then expands the cluster (lines 5-10). In the expansion process, the algorithm starts
from the seed, and adds in any objects that are directly road connected to the cluster
member (lines 7-10). Once a cluster is generated, the system compares its size with
the threshold, and only the ones with enough size are included in the final clustering
results (lines 11-13).

ACM Transactions on Intelligent Systems and Technology, Vol. 5, No. 1, Article 3, Publication date: December 2013.

3:18 L.-A. Tang et al.

ProposiTioN 3. Let n be the size of object set O and N be the total node number of
road network M. The time complexity of Algorithm 6 is O(n? x N).

Proor. There are three loops in Algorithm 6 (lines 1, 5, and 7). In the worst case,
no objects are road connected. Hence the algorithm has to run »n times for the loops
in lines 1 and 7, and 1 time for the loop in line 5 (each cluster only contains one
object in such a case). The total running number is O(n?). In each run, the system
has to find the shortest path between objects o; and o; to compute their road network
distance. The time cost of the shortest path searching step is determined to the detailed
algorithm and heuristics [Pearl 1984]. In the worst case, the algorithm has to visit all
the nodes of M to find out the shortest path, hence the time complexity of Algorithm 6
is O(n®>« N). O

In many applications, the road network M contains millions of nodes, that is, N
is a quite large number. To make things worse, the system may not have enough
memory to load in M in one time. Therefore the shortest path computation involves
huge I/0 overhead. The time cost of Algorithm 6 is much larger than the density-based
clustering, and it is not feasible for efficient road companion discovery on trajectory
streams.

The bottleneck in Algorithm 6 is searching for the directly road connected objects
(lines 7-10). For a particular object o;, the system has to find the shortest paths between
0; and all unvisited objects. This computation process is the most costly step of the
algorithm. However, it is actually not necessary to compute all those shortest paths,
and the algorithm’s time cost can be reduced significantly with the following lemma.

LemmA 5. In the road network M, if the Euclidean distance between two objects o;
and o; is larger than the distance threshold ¢, o; and o are not directly road connected.

Proor. In the Euclidean space, the shortest path between o; and o; is a straight line
connection. Since the road network M is also in the same Euclidean space, the Eu-
clidean distance must be less than or equal to the road network distance: dist(0;,0;) <
netd(o;, 0;). If dist(o;,0;) > ¢, then netd(o;, 0;) > ¢. According to Definition 8, 0; and o;
are not directly road connected. O

Lemma 5 can help accelerate the road connection clustering process. We develop
a new clustering algorithm with the filtering-and-refinement strategy, as listed in
Figure 16.

The main step of Algorithm 7 is at line 8. Since the main workload of the road-
connection-based clustering is on the shortest path computation, Algorithm 7 is de-
signed to reduce such computation and avoid the huge I/O cost of accessing the road
network data. When searching for the directly road connected objects for object o;, the
system first computes the Euclidean distance dist(o;, 0;), the measure whose compu-
tation only needs the coordinates of o; and o; and involves no I/O cost. If dist(o;, 0;)
is already larger than the threshold ¢, according to Lemma 5, o; is not possible to be
road connected with o, and the system can filter it without any further computation.
In such way, about 80% of the objects are pruned and the algorithm is nearly an order
of magnitude faster in our experiments.

ProprosiTiON 4. Let n be the size of object set O, N be the total node number of road
network M, and m be the number of objects that pass the filtering process. The time
complexity of Algorithm 7 is O(n®> + mN).

Proor. With the filtering-and-refinement strategy, the algorithm only needs to com-
pute road network distances for the m objects which pass the filtering process. Therefore
the total time complexity is O(n? + mN). O

ACM Transactions on Intelligent Systems and Technology, Vol. 5, No. 1, Article 3, Publication date: December 2013.

A Framework of Traveling Companion Discovery on Trajectory Data Streams 3:19

ALGORITHM 7: Clustering with Filtering-and-refinement

Input: the distance threshold ¢, the size threshold Jy, the object set O in a
snapshot

Output: the road-connected cluster set C

1. for each unvisited object o of O, do

2 mark o as visited;

3 initialize a new cluster c;

4. add o to c;

5. for each unexpanded object o; in ¢, do
6 mark o; as expanded;

7 for each unvisited object o, of O, do
8 if dist(o;, 0;) > &. then continue;

9. if netd(o;, 0;) <e, then
10. mark o; as visited;
11. add o; to c;

12. if size(c) > J, then
13. add cto C;
14. return C;

Fig. 16. Algorithm: clustering with filtering-and-refinement.

Note that m is much smaller than n with a reasonable distance threshold ¢. And
the Euclidean distance computation does not need to access the road network M. The
computation time and I/O overhead are reduced dramatically.

5.3. The Road-Buddy-Based Approach

The road-connection-based clustering algorithm also has the problem of individual sen-
sitivity. The similar idea of traveling buddy can be applied to improve the algorithm’s
efficiency. The road buddy is thus proposed to maintain small groups of objects moving
together along the roads.

Definition 12 (Road Buddy). Let M be the road network, O be the object set, and §,
be the buddy radius threshold, the road buddy b is defined as a set of objects satisfying:
(1) b € O; (2) for Yo; € b, netd(o;, netcen(b)) < §,, where netcen(b) is the projection of
the geometry center of b on the road network M. The buddy’s radius y is defined as the
road network distance from netcen(b) to b’s farthest member.

To obtain netcen(b), the system needs to first compute the geometry center of b, then
employ a map-matching algorithm to project the geometry center to the nearest road.
In this study, we use the map matching algorithm developed in our previous works
[Yuan et al. 2010].

The road buddy has the same operations of split and merge as the traveling buddy.
Their initializations are also similar. Their major difference is at the maintenance
process. Because it is costly to compute the road network distance from netcen(b) to each
member, the maintenance algorithm employs the filtering-and-refinement strategy to
reduce time cost, as listed in Figure 17.

When the data of a new snapshot arrives, Algorithm 8 first computes the network
center of each buddy (lines 2—-3), then checks each road buddy to see whether a split
operation is needed (lines 4-11), finally scans the buddy set and merges the ones that
are close to each other (lines 12—-17). The key steps of filtering-and-refinement are at
lines 5, 6, 14, and 15. Before computing the road network distance between two points,

ACM Transactions on Intelligent Systems and Technology, Vol. 5, No. 1, Article 3, Publication date: December 2013.

3:20 L.-A. Tang et al.

ALGORITHM 8: Road Buddy Maintenance

Input: the road network M, the radius threshold J,, the road buddy set B and
the coming snapshot s

Output: updated buddy set B’

1. for each b; in B do

2. update cen(b,);

3. match cen(b;) to M and compute netcen(b;);

4. for o; in b;, do

5. if dist(o;, cen(b;)) > 9, then isSplit € true;

6. else if netd(o,, cen(b;)) > J, then isSplit < true;
7. if isSplit = true, then //Split Operation

8. split o; out as a new buddy b;;

9. add b, to B’

10. update netcen(b;);

11. add b, to B,

12. //Merge Operation

13. for each bl" bj in B', b,‘ ;ﬁ bj do

14. if dist(netcen(b,), netcen(b))) + y;+ y; < 20, then
15. if netd(netcen(b,), netcen(b;)) + y;+y; < 26, then
16. merge b;, b; as by,

17. remove b, b;and add by to B’

18. return B';

Fig. 17. Algorithm: road buddy maintenance.

the algorithm checks whether their Euclidean distance is passing the threshold and
only carries out further computation on the qualified pairs.

The road buddy can be used to improve the efficiency of road-connection-based clus-
tering and companion generation by avoiding accessing the object details. Similar to
the traveling buddy, we propose several lemmas that are helpful for road companion
discovery.

LEmMA 6. Let b be a road buddy, ¢ be the distance threshold. If the buddy radius
y < ¢/2, then all the objects in b are directly road connected to each other. Such a road
buddy is called a road connected buddy.

Proor. Note that y < ¢/2, thus for Vo;,0; € b, netd(o;, netcen(b)) < y and
netd(o;, netcen(b)) < y. Hence there exists a path ¢ bypassing netcen(b) that connects
o; and o}, and length(¢) < 2y < e. Therefore netd(o;,0;) < length(¢) < e. According to
Definition 8, o; and o; are directly road connected. O

LEmMMA 7. Let b;, bj be two road connected buddies and ¢ be the distance threshold.
If 30, € b;,0; € bj such that netd(o;, 0;) < ¢, then all the objects of b; and b; are network
connected.

Proor. If netd(o;,0;) < ¢, then o; and o; are directly road connected. Since all the
objects in b; and b; are directly road connected from o; and o;, respectively, therefore,
all the objects in the two traveling buddies are road connected. O

Lemma 6 and 7 can be used to speed up the road-connection-based clustering. The
lemmas show that if two buddies are tight by themselves and close to each other, the
system can consider all their members as road connected without further computation.

ACM Transactions on Intelligent Systems and Technology, Vol. 5, No. 1, Article 3, Publication date: December 2013.

A Framework of Traveling Companion Discovery on Trajectory Data Streams 3:21

ALGORITHM 9: Road-Buddy-based Clustering
Input: the distance threshold &, the coming snapshot s and the buddy set B.
Output: the cluster set C

update buddy set B; //Algorithm 3

1.

2. randomly pick a buddy b;

3. initialize cluster ¢ € b, add ¢ to C;

4. remove b from B;

5. for each unvisited buddy b; in ¢

6. mark b; as visited;

7. for each buddy b;in B, do

8. if dist(netcen(b;), netcen(b;)) - y;- y; > ¢, then
9. continue; / Lemma 3

10. for each o; in b;, o; in b;, do

11. if netd(o;, 0;) < ¢, then

12. if b;, b;are road connected then

13. add b, to ¢; //Lemma 4

14, remove b; from B;

15. break;

16. else if o; is road connected from o, then
17. split b; to objects;

18. add o; to c.

19. repeat steps 2 - 18 until all buddies are processed;
20. return the cluster set C;

Fig. 18. Algorithm: road-buddy-based clustering.

Lemma 8. Let b; and b; be two road buddies with radius y; and yj, and ¢ be the
distance threshold. If dist(netcen(b;), netcen(b;)) > y; + yj + ¢, then the objects in b; and
b; are not directly road connected.

Proor. As Lemma 5 shows, the Euclidean distance is the lower bound of road net-
work distance, netd(netcen(b;), netcen(b;)) > dist(netcen(b;), netcen(b;)) > y;+y;+e, then
for Yo, € b;,0; € bj, netdist(o;,0;) > e. Therefore, o; and o; are not directly network
connected. O

Lemma 8 is helpful to prune most of the unconnected buddies in road-connection-
based clustering. Especially the lemma does not require the system to compute any
road network distance on M. The system only needs the network center of buddies and
their radius as input (which are already computed), and the huge I/O cost could be
saved.

The detailed algorithm is listed in Figure 18. Algorithm 9 first calls Algorithm 8 to
update the road buddies with new data (line 1), then randomly picks a road buddy
as the seed to form a cluster (lines 2—4). The algorithm searches for the buddies that
are road connected and adds them to the cluster (lines 2—-18). The buddies that are
distant from the seed are filtered out directly without detailed distance computation
(lines 8-9). The algorithm searches road connected buddies with Lemmas 6 and 7 (lines
10-18). Finally, the algorithm outputs the clustering results when all road buddies are
processed (line 20).

The buddy index can be retrieved from road buddies and help companion genera-
tion. Because this technique is actually independent from the metrics and distance
computation, Algorithm 5 can be applied directly on road buddies.

ACM Transactions on Intelligent Systems and Technology, Vol. 5, No. 1, Article 3, Publication date: December 2013.

3:22 L.-A. Tang et al.

| I I I I |
i i i i i i
i i i i i i
| | (o)} | L | | i
| I @ | "0 I, I i
I i i o @ T i i
I 01 ! I @0 I 05. ® - I ,,0—5’024’5\\ i
[05N | @010 05 L1 Ory @gN I @@ G010, |
| /o PR 2 i i, P i 0}0}. | Q@9 e |
/02@ 090 jo,@ @ 1, 192@ P o | ® |
i 03 Vi 09 @ i 03 i Y @ L
04.. Og 14 ‘@ oy 0@ Og o, @ 09/0/0 I
| .05 [04. ® | .05 | ./, O e ;0770&, |
| A @0 Os5 11 (“ Jo¥d [® o I 6 i
i ..OI!} i N @ /@ -0g 9 i i
I N [N A \ I N----07 I i
~0g.- ~ . 09
| i ~~-09--- i ~ I Og¢ i i
i i i i i i
i i i i i
o1 =10m ; s,=3m Cos3=10m s4= 4m . ss=10m !

Fig. 19. Example: movement of military troops.

6. LOOSE COMPANION DISCOVERY

In many applications such as military object monitoring, several members may tem-
porarily leave the group and go back in short time. The companion discovery algorithm
will miss such companions if strictly following the time constraints.

Example 8. Figure 19 shows the trajectory streams of a small team of military
troops. At snapshot s;, the team members move together. They send out a member o
to scout around at s and o7 returns to the team at s3. The team then splits to two parts
at s4 to conduct a “pincer attack” against enemies. Finally they reunite at s5. Suppose
the size threshold is 6 and the duration threshold §; is set as 30 minutes. The system
cannot discover any companion from the data if strictly following the constraints.

In most cases, the rigid time constraints may lead to no result or not the best results
of discovered traveling companion. It is necessary to release the constraints for more
effective discovery. To this end, we introduce the concept of loose companion as follows.

Definition 13 (Loose Companion). Let §; be the size threshold, §; be the duration
threshold, and §; be the leaving time threshold, a group of objects ¢ is called loose
companion if:

(1) let T be the total time that the members of q are density connected, T' > §;;

(2) g’s size size(q) > &;

(3) for each member o of g, let ¢ be the maximum period that o is not density connected
with other members of q, ¢ < §;.

The loose companion allows the member objects temporarily leaving the companion,
as long as the leaving time is less than the threshold §;. In Figure 19, if we set §; as 5
minutes, the military team could be discovered as a companion.

Similarly we propose the definition of loose buddy.

Definition 14 (Loose Buddy). Let s be a snapshot of the trajectory stream, §, be the
buddy radius threshold, and §; be the leaving time threshold, loose buddy b is defined
as a set of objects, for Vo, € b:

(1) dist(o;, cen(b)) < §,, where cen(b) is the geometry center of b;
(2) dist(o;, cen(b)) > 5, but the total time of dist(o;, cen(b)) > §,, is less than 4.

To discover the loose companions and maintain the loose buddies, the system can
follow the same frameworks proposed in previous sections. Only minor modifications
need to be carried out in the intersection and split operations. When an object leaves

ACM Transactions on Intelligent Systems and Technology, Vol. 5, No. 1, Article 3, Publication date: December 2013.

A Framework of Traveling Companion Discovery on Trajectory Data Streams 3:23

Dataset Obj.# Duration Sample Freq. Snapshot# Record#
Taxi (D)) 500 4.2 hours 5 minutes 50 25,000
Military (D) | 780 3 hours 1 minute 180 140,400
Syn1(Ds;) | 1,000 24 hours 1 minute 1,440 1.44 M
Syn2 (D4) | 10,000 24 hours 1 minute 1,440 14.4 M

The companion size threshold Jd,: 5 — 40, default 10

The companion duration threshold d,: 3 — 15, default 10

The clustering parameter ¢ and u are set according to different datasets.
The buddy radius threshold d,: &2— ¢/10, default ¢/2.

The leaving time threshold J;: 0 — 6, default 0

Fig. 20. Experiment settings.

the companion candidate or buddy, the system does not remove that object or split the
buddy immediately, instead puts the object/buddy in a buffer to be removed/split after a
time period of §;. If the object returns in §;, the remove/split command will be canceled.
Such modification does not influence the general frameworks of companion discovery.
The other steps of the clustering-and-intersection algorithm, smart-and-closed method,
and the buddy-based approach remain the same for loose companion discovery, hence
we omit the details here due to space limitation.

7. PERFORMANCE EVALUATION
7.1. Experiment Setup

Datasets. We evaluate the proposed methods on both real and synthetic trajectory
datasets. The taxi dataset (D;) is retrieved from the Microsoft GeoLife and T-Drive
projects [Yuan et al. 2010; Zheng et al. 2010] with the road network of Beijing. The
trajectories are generated from GPS devices installed on 500 taxis in the city of Beijing.
The dataset is available to the public®. The military trajectory dataset (D) is retrieved
from the CBMANET project [Krout 20071, in which an infantry battalion of 780 units,
divided as 30 teams, moves from Fort Dix to Lakehurst for a mission on two routes
in 3 hours. Meanwhile, to test the algorithm’s performance in large datasets, we also
generate two synthetic datasets (D3 and D), being comprised of 1,000 to 10,000 objects,
with more than 10 million data records.

Baselines. The proposed Smart-and-Closed algorithm (SC) and Buddy-based discov-
ery algorithm (BU) are compared with Clustering-and-Intersection method (CI), which
is used as the framework to find convoy patterns [Jeung et al. 2008]; and two state-
of-the-art algorithms: (1) The Swarm pattern (SW) [Li et al. 2010] that captures the
objects moving within arbitrary shape of clusters for certain snapshots that are possi-
bly nonconsecutive; (2) the TraClu algorithm (TC) [Lee et al. 2007] that discovers the
common subtrajectories with a density-based line-segment clustering algorithm.

Environments. The experiments are conducted on a PC with Intel 6400 Dual CPU
2.13 GHz and 2.00GB RAM. The operating system is Windows 7 Enterprise. All the
algorithms are implemented in Java on the Eclipse 3.3.1 platform with JDK 1.6.0. The
parameter settings are listed in Figure 20.

7.2. Comparisons in Discovery Efficiency

In this section we conduct experiments to evaluate the efficiency of companion discov-
ery algorithms in Euclidean space. Since both SW and TC cannot output the results
incrementally, we take the running time of the entire dataset as the measure for time

5GeoLife GPS Trajectories Datasets. Released at: http://research.microsoft.com/en-us/downloads/b16d359d-
d164-469e-9fd4-daa38f2b2e13/default.aspx.

ACM Transactions on Intelligent Systems and Technology, Vol. 5, No. 1, Article 3, Publication date: December 2013.

3:24 L.-A. Tang et al.
mBU =SC Cl aSW &aTC mBU =SC Cl BSW
7
1
0000 T e vecond) 10 Candidate size (#)
1000 10 -
5
100 - 10
10 E e 10 I
1 R 10
D1 D2 D1 D2 D3 D4
(a) (b)

Fig. 21. Efficiency: (a) time, (b) space on different datasets.
—o—BU -&-SC Cl1 —o—BU -® SC —& CI =X=SW
-X=8W —X- TC 6

10000 Time (second) 10 Candidate size (#)
X m s 5 —_—
1000 MR R R 10
=R ——a 3 5
100 4 R
10 il ™4
.\.‘—.—.
10 1
1 T %) 103 T T T % |
10 20 30 40 10 20 30 40
(a) (b)

Fig. 22. Efficiency: (a) time, (b) space versus &;.

cost. The size of candidate set (number of objects) is used to measure the space cost of
companion computation. The only exception is TC, where since the algorithm only car-
ries out the subtrajectory clustering task and does not store any companion candidates,
TC’s space cost is not included in the experiment.

We first evaluate the algorithm’s time and space costs on different datasets with
default settings. Figure 21 shows the experiment results. Note that the y-axes are in
logarithmic scale. BU achieves the best performances on all the datasets. In the largest
dataset D4, BU is an order of magnitude faster than CI and SW. BU’s space cost is only
20% of SW and less than 5% of CI.

Figure 22 illustrates the influences of companion size threshold §; in the experi-
ments. The experiment is carried on dataset Ds. Based on default settings, we evaluate
the algorithms with different values of §;. Generally speaking, when the size threshold
grows larger, the filtering mechanism is more effective to prune more companion can-
didates in each snapshot. The space costs reduce significantly, and the running times
also decrease for fewer intersections.

We also study the influence of duration threshold §;. Based on default settings, the
experiments are conducted on dataset Ds. The value of §; is changed from 3 to 15, and
the algorithm’s performances are shown in Figure 23. BU, SC, and CI are all faster
when §; grows larger, because many companion candidates are not consistent enough
to last for a long time. When setting §; as 15 snapshots, BU can process the dataset
in less than 20 seconds (Figure 23(a)). It is almost an order of magnitude faster than
SC and CI. TC is not influenced by §; and §;, since it is only a clustering algorithm and
does not generate any companion candidates. Beside TC, SW also could not improve
the performance when §; increases. The reason is SW utilizes the object growth strategy
to prune candidates. Such heuristics could only work with the size threshold §;, but
cannot benefit from larger &;.

ACM Transactions on Intelligent Systems and Technology, Vol. 5, No. 1, Article 3, Publication date: December 2013.

A Framework of Traveling Companion Discovery on Trajectory Data Streams 3:25

—o—BU -4 -SC CI

——BU —® -SC CI =X—=SW
=X =SW —X- TC 6
. 10 . .
10000 Time (second) Candidate size (#)
5
1000 RE SR TERE RS 10
: TS e e s —— -
100

’_\‘__‘ 104 SN, e ™
61 103 ‘\. 61

3 7 11 15 3 7 11 15
@ (b)

10

1

Fig. 23. Efficiency: (a) time, (b) space versus &.

In summary, §; and §; are two important factors that influence the efficiency of
companion discovery algorithms. When increasing the threshold, more companion can-
didates are pruned and the time and space costs are reduced. BU outperforms other
methods in the efficiency evaluations, especially in the scenarios of long-lasting streams
with a large number of objects.

7.3. Efficiency Analysis for Buddy-Based Discovery

Why is the buddy-based discovery algorithm more efficient? In this section we carry
out the experimental analysis to reveal the advantages of the buddy-based discovery
method.

In the beginning, we tune the parameters of BU to study the factors that influence its
efficiency. With §; and §; set as default values, we test BU with different buddy radius
threshold §, from /10 to ¢/2, and record the average buddy size |b|, buddy number,
and algorithm’s running time. Their relationships are demonstrated in Figure 24. One
can clearly learn from Figure 24(a) the total buddy number is inversely proportional
to the average buddy size |b|. In addition, the number of unchanged buddies decreases
rapidly as |b| grows larger. However, as shown in Figure 24(b), the running time of both
buddy-based clustering (B-Cluster) and BU decreases with larger |6|. This phenomenon
can be explained by Proposition 2, where the cost of buddy’s maintenance algorithm is
O(n+m?), where nis the number of objects and m is the number of buddies. If n is fixed,
then m is inversely proportional to |6|. Hence BU costs less time if |b| is larger. Based
on the efficiency analysis, we recommend setting the buddy radius as a relatively large
value (such as ¢/2). Figure 24(b) also records the time cost of the DBSCAN clustering
algorithm as a reference. Even if less than 20% buddies stay unchanged (which is rare
for real-world objects), as long as the average size of the buddies is larger than 3,
the buddy-based clustering algorithm can still outperform DBSCAN. The experiment
results show that BU is especially feasible for processing a trajectory stream with
dense object clusters.

BU has three steps, namely the maintenance step (M-step, Algorithm 3), clustering
step (C-step, Algorithm 4), and intersection step (I-step, Algorithm 5). To study the
time cost of each step, the system carries out BU on the four datasets and records the
time costs of each step, as well as their proportions in the total running time, as shown
in Figure 25. The results denote that the clustering step is actually the most efficient
in the three, costing less than 5% of the total running time, compared to the DBSCAN
clustering which usually takes 40—-50% of the total running time of SC. BU spends an
extra 10%—15% time in maintaining the buddies to save more time from the clustering
task.

From the aforesaid experiments, one can clearly see the two key advantages of BU:
(1) utilizing the buddy information to filter out most objects without accessing their

ACM Transactions on Intelligent Systems and Technology, Vol. 5, No. 1, Article 3, Publication date: December 2013.

3:26 L.-A. Tang et al.

—o—Total# —M— Split# —i— B-Cluster BU
Merge# —X-—Same# —X=DBSCAN
900 400
\Buddy # Time (second)
300
600 X
. 200
300 X B Mﬁ:x =X
ol 100 ==X
SR k=
0 ST X]
1.26 2.22 bl 4.31 9.17 1.26 2.22 bl 4.31 9.17
())
Fig. 24. Efficiency analysis: (a) buddy number; (b) time versus buddy size.
® M-step = C-Step ©1-Step [Total EM% =2C% =21%
1000 Time (second) 100%

80% —

100

60% —

40% —

10 -

TR A A B A AR A

20% —

£

0% -
D4 DI D2 D3 D4
(b)

Fig. 25. Efficiency analysis: (a) running time; (b) percentage of BU steps on diffeferent datasets.

details; (2) employing the buddy index to reduce the size of the candidate set, and so
decrease the intersection times of companion discovery.

7.4. Evaluations on Algorithm’s Effectiveness

The third part of the experiment is to evaluate the quality of the retrieved companions.
In dataset Dy, an infantry battalion of 780 units moves from Fort Dix to Lakehurst
for a mission on two routes in 3 hours. The objects are organized in 30 teams, with
each team having 25 to 30 units. The information of team partitioning is retrieved as
the ground truth. The algorithm’s outputs are matched to the ground truth and the
measures of precision and recall are calculated as follows.

Precision. The proportion of true companions over all the retrieved results of the algo-
rithm is the precision. It represents the algorithm’s selectivity in finding out meaningful
companions.

Recall. The proportion of detected true companions over the ground truth is the
precision. This criteria shows the algorithm’s sensitivity for detecting traveling com-
panions.

We conduct experiments with different values of the size threshold §;. The results of
effectiveness evaluation are shown in Figure 26. BU and SC have the same precision
and recall since they output identical companions. They have about 20% precision
improvement over SW, and near 40% precision improvement over CI. SW generates
the swarm patterns of frequently meeting objects, which is actually a superset of
the companions. The swarm pattern is highly sensitive to helping find out all the
companions (i.e., 100% recall), but SW also generates more false positives that bring
down the algorithm’s selectivity. CI has the same problem with even lower precision.
Since there are many redundant and nonclosed companions in the results, more than
half of CI’s results are not useful.

ACM Transactions on Intelligent Systems and Technology, Vol. 5, No. 1, Article 3, Publication date: December 2013.

A Framework of Traveling Companion Discovery on Trajectory Data Streams 3:27

——BU -43-SC C1 ——BU -43-SC C1
—X=SW —x- TC —X=SW —x- TC
Precision
100% 100% 0w
80% 80% \
60% - 60% N oo e — Ko — - XK
40% e 40%
20% 20%
6_\‘ 6.\'
0% ; ‘ 0%
10 15 20 25 10 15 20 25
(a) (b)

Fig. 26. Effectiveness: (a) precision, (b) recall versus §s.

—o—BU -++-SC Cl —o—BU -£-SC CIl
=X=SW —X- TC —xX=SW —x- TC
Precision Recall
100% o 100% — & ——W——— s ——a—
X
80% == =K 80%
60% > 60% S ——
40% < 40%
20% —=X P 20%
. ye t o o,
A T T T 0%
3 7 11 15 3 7 11 15
(@ (b)

Fig. 27. Effectiveness: (a) precision, (b) recall versus §;.

Again, TC is not affected by the parameters of §; and §;. TC takes the movement
direction as an important measure to compute subtrajectory clusters; its results reflect
the major directions of the object movements. However, such clusters may not capture
the information of companions, because the companion member’s moving direction
might be different. As an illustration, please go back to Figure 1. From snapshot ss to
s, the moving directions of og and o9 are different, hence they may be put in different
subtrajectory clusters.

Another interesting observation is that, in Figure 26, BU, SC, CI, and SW’s precisions
all increase when §; becomes larger, since fewer companions can pass a higher size
threshold. However, if §; is set too high (more than 25), several true companions will
also be filtered out and the algorithm cannot achieve 100% recall.

In the next experiment, we study the influence of time threshold ;. Figure 27 shows
the precision and recall of the five algorithms with different §; on Dy. BU and SC achieve
better performance than SW and CI. When increasing §;, the algorithm’s precision
increases, but they can still keep a high recall. Since all the true companions last for
a long period in Dy, if we set §; greater than 11, both BU and SC can achieve 100%
precision and recall. However, if §; is set too high, for example, 15, no companion can
be discovered since there exist no object groups moving together for such a long time.

In general, BU and SC can guarantee 100% recall (i.e., not missing any real com-
panion), we suggest that in real applications, the user should set a relatively high time
threshold to filter out false positives, but a moderate size threshold to guarantee the
algorithm’s sensitivity.

7.5. Experiments on Road Companion Discovery

To test the efficiency of road companion discovery, we perform the evaluation on dataset
D; with the road network of Beijing, which has 106,579 road nodes and 141,380

ACM Transactions on Intelligent Systems and Technology, Vol. 5, No. 1, Article 3, Publication date: December 2013.

3:28 L.-A. Tang et al.

=—BU -#-SC CI =<FR =—BU -®-SC CI =<FR
i 5
10,000 Time (second) 1 Ac'_c'ess Nodeg -

B 4
1,000 — 10

— . . : s

100 10

10 ‘ 10
4 8 12 16
4 8 12 16
(b)

Fig. 28. Efficiency: (a) time; (b) I/O of road companion discovery versus ;.

—4—RB -8~ SC ClI =X -FR =——RB =B SC ClI =X FR
Time (second) 5 Access Node #
10000 W ==m = o
B 4
1000 i e 10 VIS VIS V S—.
=D L VA —
3
100 10
oy 2 oy
10 10
3 7 11 15 3 7 1 15
(@ (b)

Fig. 29. Efficiency: (a) time; (b) I/O of road companion discovery versus §;.

road segments. The default size threshold §; is set as 8 and the time threshold §;
is set as 11. In this experiment, we compare the performance of four methods: (1) the
Clustering-and-Intersection framework with road network distance computation (CI);
(2) the Smart-and-Closed algorithm with road network distance computation (SC);
(3) the smart-and-closed algorithm with Filtering-and-Refinement strategy (FR); and
(4) The Road-Buddy-based method (RB).

We first evaluate the time and space costs of road companion discovery. The number
of accessed road nodes is used as the measure for I/O cost. Based on default settings, we
evaluate the algorithms with different values of §;. Figure 28 shows the running time
and accessed node number. Generally speaking, when the size threshold grows larger,
both running time and I/O costs decrease. The computation cost of road companion
discovery is much larger than the traveling companion discovery on Euclidean space.
This is mainly caused by the high I/O overhead in road network distance computation.
Since the road network distance computation becomes the major cost, SC cannot save
much time comparing to CI. However, FR and RB are an order of magnitude faster
than SC and CI, because they utilize the filtering-and-refinement strategy to avoid
most unnecessary road network distance computations. The effects of RB are better,
since RB groups the objects in small buddies and limits the distance computation in a
small region with lower I/O overhead.

The influence of duration threshold §; is also studied in our experiment. Based on
default settings, the value of §; is changed from 3 to 15; the algorithms’ performances
are shown in Figure 29. All the algorithms run faster when §; grows larger, because
fewer road companion candidates can last for a long time. Again, RB and FR only cost
20%—50% time as CI and SC.

The experiment results show that the main bottleneck of road companion discovery
is at the distance computation stage. The traditional companion discovery methods,

ACM Transactions on Intelligent Systems and Technology, Vol. 5, No. 1, Article 3, Publication date: December 2013.

A Framework of Traveling Companion Discovery on Trajectory Data Streams 3:29

—o—BU -4-SC Cl 6—‘—BU —® SC C1
. 10 : :
100 Time (second) . Candidate size (#)
- 5
80 ptad 10
— _—
L —— - 4 .-
40 10 -
20 —————* —o ~—
3
N i 10 %
0 2 4 6 0 2 4 6
(@ ()
Fig. 30. Efficiency: (a) time; (b) space versus §;.
—o—BU —fF=§C CI ——BU -£3+-SC Cl
.. Recall
100% Precision 100% s

80% sove |
60% \ 60%
40% 40%
20% — \"\-! 20%

0% T T —) 0% T]

Fig. 31. Effectiveness: (a) precision; (b) recall versus §;.

BU and SC, do not work well on the road networks. The new frameworks of RB and
FR reduce the time cost on unnecessary shortest path computation, therefore they can
achieve higher efficiency peformances.

7.6. Evaluations on Loose Companion Discovery

In the previous experiments, we set the leaving threshold §; as 0. In this section, we
conduct experiments on loose companion discovery. We run the algorithms of BU, SC,
and CI on dataset D3 by tuning §; from 0—6 snapshots.

Figure 30 shows the algorithms’ time and space costs. With larger §;, all the algo-
rithms’ space costs increase rapidly since they cannot prune the candidates if several
objects temporarily leave the companion, hence the system has to spend more time in
making intersections with a larger candidate set. However, even with large §;, BU still
can discover the loose companions in about 20 seconds.

Finally we carry out the effectiveness experiment on the military dataset Ds. §; is
changed from 0 to 6 snapshots, and other parameters are set as the default values.
As shown in Figure 31(a), the precision of companion discovery decreases with larger
87, since more companions are generated and inevitably the number of false positives
increases. However, the good news is that the recall increases as §; grows (Figure 31(b)).

The experiment results show the necessity of loose companion discovery. With a
released time constraint, BU and SC can discover more meaningful companions and
achieve a higher recall. The system’s feasibility is increased in real applications.

8. RELATED WORK

According to the methodologies, the related works of traveling companion discovery can
be loosely classified into two categories: trajectory clustering and movement pattern
discovery.

ACM Transactions on Intelligent Systems and Technology, Vol. 5, No. 1, Article 3, Publication date: December 2013.

3:30 L.-A. Tang et al.

8.1. Trajectory Clustering

The works in this category focus on developing efficient algorithms to cluster moving
objects. Gaffney and Smyth first proposed the fundamental principles of clustering
moving objects based on the theories of probabilistic modeling [Gaffney and Smyth
1999; Cadez et al. 2000]. Many distance functions, such as DTW [Yi et al. 1998] and
LCSS [Gunopoulos 2002] are proposed. Lee et al. proposed a novel partition-and-group
framework to find the clusters based on subtrajectories [Lee et al. 2007].

In Har-Peled [2003], Har-Peled shows that the moving objects can be clustered when
the resulting clusters are competitive at any time during the motion. Yang et al. pro-
posed the idea of a neighbor-based pattern detection method for windows [Yang et al.
2009]. Ester et al. made the progress to generate incremental clusters [Ester et al.
1998]. Li et al. propose a microcluster [Li et al. 2004] based schema to cluster moving
objects. Zhang and Lin use the k-center clustering algorithm [Gonzalez 1985] for his-
togram construction. A distance function combining velocity and position differences
is proposed in their work [Zhang and Lin 2004]. More recently, Jensen et al. utilize the
velocity features to cluster objects for the current and near future positions [Jensen
et al. 2007].

However, as pointed out in Jeung et al. [2008], most of the aforsaid methods cannot
be used directly for traveling companion discovery. The major problem is that those
algorithms tend to generate clusters for the entire trajectory dataset, instead of each
snapshot. Hence the detailed object relationships and evolving companion patterns
are all lost. In addition, some algorithms require the object’s velocity in advance and
need to scan the data for multiple times. Such requirements are not fit for trajectory
streams.

8.2. Movement Pattern Discovery

Movement pattern discovery is a hot topic in recent years. The problem has been
variously referred to as the search for flocks [Gudmundsson and Kreveld 2006], moving
clusters [Kalnis et al. 2005], spatial-tempo joins [Bakalov et al. 2005], spatial colocations
[Yoo and Shekhar 2004], meetings [Gudmundsson et al. 2004], convoys [Jeung et al.
2008], moving groups [Aung 2008], swarms [Li et al. 2010] and so on.

One of the earliest works is flock discovery [Gudmundsson et al. 2004]. A flock is
defined as a group of objects moving together within a circular region [Gudmundsson
and Kreveld 2006]. There are several variations of this model: Variable flock permits
the members to change during the time span [Benkert et al. 2008],while meeting is
a circle similar to flock but fixed in a single location all the time [Gudmundsson and
Kreveld 2006]. However, such shapes are restricted to circles and the results are also
sensitive to the parameter of radius.

Li et al. designed a flow scan algorithm for hot route mining [Li et al. 2007]. Liu et
al. mined frequent trajectory patterns by using RF tag arrays. Their work successfully
demonstrated the feasibility and the effectiveness of movement patterns in real life [Liu
et al. 2007]. Tao et al. proposed the technique of spatio-temporal aggregation using a
sketch index. This method can process the queries an order of magnitude faster than
the previous works [Tao et al. 2004]. Giannotti et al. proposed the interest-region-based
mining algorithm [Giannotti et al. 2007]. Horvitz et al. propose the models of using
groups of mobile users to discover congestions in urban areas [Horvitz et al. 2005].
The shortest path problem has been studied on land surface [Xing and Shahabi 2010;
Liu and Wong 2011] and this technique has been used to process the k-NN queries
[Shahabi et al. 2008; Xing et al. 2009]. Tao et al. propose the techniques to find k-skip
shortest paths [Tao et al. 2011]. Yuan et al. present a cloud-based system computing
customized and practically fast driving routes for an end-user using traffic conditions
and driver behavior, which is a milestone study in this field [Yuan et al. 2011].

ACM Transactions on Intelligent Systems and Technology, Vol. 5, No. 1, Article 3, Publication date: December 2013.

A Framework of Traveling Companion Discovery on Trajectory Data Streams 3:31

Name Pattern Object Partnership | Increment | Released Time
Shape Number Discover al Output Constraints
TraCluster arbitrary multiple No No No
Flock circle multiple Yes No No
Meeting circle multiple Yes No No
Hot Route road segment multiple No No No
Swarm arbitrary multiple Yes No Yes
Convoy arbitrary multiple Yes No No
Travelu?g arbitrary multiple Yes Yes No
companion
Road companion | along the roads multiple Yes Yes No
Loose companion arbitrary multiple Yes Yes Yes

Fig. 32. The comparison with related works.

Zhang et al. propose the techniques to produce intersections of streaming moving
objects [Zhang et al. 2008, 2011]. This method is a big improvement from existing
algorithms by the speedup of several orders of magnitude. Nutanong et al. use a safe
region to report objects that do not change over time [Nutanong et al. 2008, 2010].
The proposed V*-Diagram has much smaller I/O and computation costs than previous
methods. It outperforms the best existing technique by two orders of magnitude.

However, since the preceding methods focus more on discovering hot spots, regions, or
routes rather than object groups, they cannot be used directly for companion discovery.

Kalnis et al. proposed the first study to automatic extraction of moving clusters from
large spatial datasets [Kalnis et al. 2005]. In a recent work, Jeung et al. proposed the
framework of convoy query [Jeung et al. 2008]. It is a significant step forward in the
works of movement pattern mining, since it allows the objects to organize in arbitrary
shapes. Li et al. further released the constraints of convoy and proposed the swarm
pattern to discover object groups in a sporadic way [Li et al. 2010].

The concepts of convoy and swarm patterns are similar to traveling companion.
However, the convoy mining algorithm needs to scan the entire trajectory into memory
to make trajectory simplification, and the system also needs to load the whole dataset
into memory to search for swarms. It is impractical to use such a method in a data
stream environment. The swarm pattern is a frequent itemset-based concept. Since it
is difficult to detect large size frequent itemsets [Zhu et al. 2007], the swarm pattern
has limited applicability for datasets with large-scale objects. The major advantage of
the companion discovery technique is about the discovery efficiency. The buddy-based
method can discover the companions of arbitrary shapes an order of magnitude faster.
Hence it is a feasible method to be applied in the data stream scenarios of huge amount
of trajectories.

Figure 32 compares the features of some related methods with the proposed algo-
rithms to discovery of traveling companions, road companions, and loose companions.

9. CONCLUSION AND FUTURE WORK

In this study we investigate the problem of traveling companion discovery on trajectory
data streams. We propose the algorithms of smart-and-closed discovery to efficiently
generate companions from trajectory data. The model of traveling buddy is proposed
to help improve both the clustering and intersection processes for companion discov-
ery. The proposed methods are extended to more complex scenarios for road compan-
ion and loose companion discovery. We evaluate the proposed algorithms in extensive

ACM Transactions on Intelligent Systems and Technology, Vol. 5, No. 1, Article 3, Publication date: December 2013.

3:32 L.-A. Tang et al.

experiments on both real and synthetic datasets. The buddy-based method is shown to
be an order of magnitude faster than existing approaches on both Euclidean space and
road networks. The effectiveness of the buddy-based algorithm also outperforms other
competitors in terms of precision and recall.

In the future, we are going to integrate the companion discovery methods to
real application services such as battlefield monitoring systems and traffic analysis
services.

REFERENCES

Aung, H.-H. 2008. Discovering moving groups of tagged objects. Tech. rep., National University of Singapore.
http:/www.nus.edu.sg/.

Baxkavrov, P., HADJIELEFTHERIOU, M., AND TsoTRAs, V. J. 2005. Time relaxed spatiotemporal trajectory joins.
In Proceedings of the 13" Annual ACM International Workshop on Geographic Information Systems
(GIS’05). 182-191.

BenkerT, M., GUDDMUNDSSON, J., HUBNER, F., AnD WoLLE, T. 2008. Reporting flock patterns. Comput. Geom.
Theory Appl. 41, 3, 111-125.

Capgz, 1. V., GAFFNEY, S., AND SmyTH, P. 2000. A general probabilistic framework for clustering individuals
and objects. In Proceedings of the 6" ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD’00). 140-149.

EstER, M., KrIEGEL, H.-P., SANDER, J.,WIMMER, M., AND XU, X. 1998. Incremental clustering for mining in a
data warehousing environment. In Proceedings of the 24 International Conference on Very Large Data
Bases (VLDB’98). 323-333.

EstER, M., KRIEGEL, H.-P., SANDER, J., AND Xu, X. 1996. A density-based algorithm for discovering clusters
in large spatial databases with noise. In Proceedings of the 2" International Conference on Knowledge
Discovery and Data Mining (KDD’96). 226-231.

GAFFNEY, S. AND SMyTH, P. 1999. Trajectory clustering with mixtures of regression models. In Proceedings
of the 5" ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’99).
63-72

GiannorTi, F., Nanni, M., PEprescHl, D., AND PINELLI, F. 2007. Trajectory pattern mining. In Proceedings of
the 13" ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD07).
330-339.

Gonzarez, T. 1985. Clustering to minimize the maximum intercluster distance. Theor. Comput. Sci. 38,
293-306.

GUDMUNDSSON, J. AND KreEVELD, M. V. 2006. Computing longest duration flocks in trajectory data. In Proceed-
ings of the 14" Annual ACM International Symposium on Advances in Geographic Information Systems
(GIS’06). 35—42.

GUDMUNDSSON, dJ., KREVELD, M. V., AND SPECKMANN, B. 2004. Efficient detection of motion patterns in spatio-
temporal data sets. In Proceedings of the 12" Annual ACM International Workshop on Geographic
Information Systems (GIS’04). 250-257.

GunopouLos, D. 2002. Discovering similar multidimensional trajectories. In Proceedings of the 18" Interna-
tional Conference on Data Engineering (ICDE’02). 673-684.

HaN, J. AND KAMBER, M. 2006. Data Mining: Concepts and Techniques 2°4 Ed. Morgan Kaufmann.

HAR-PELED, S. 2003. Clustering motion. Discr. Comput. Geom. 31, 4, 545-565.

Horvitz, E., APACIBLE, J., SARIN, R., AND Liao, L. 2005. Prediction, expectation, and surprise: Methods, designs,
and study of a deployed traffic forecasting service. In Proceedings of the 215 Conference on Uncertainty
in Artificial Intelligence (UAI'05).

JENSEN, C. S., Lin, D., anp Oor, B. C. 2007. Continuous clustering of moving objects. IEEE Trans. Knowl. Data
Engin. 19, 9, 1161-1174.

JEUNG, H., Yy, M. L., Znou, X., JENSEN, C. S., AND SHEN, H. T. 2008. Discovery of convoys in trajectory databases.
Proc. VLDB Endow. 1, 1, 1068-1080.

Karnis, P.,, MamouLis, N., aAND Bakiras, S. 2005. On discovering moving clusters in spatial-temporal data.
In Proceedings of the 9™ International Conference on Advances in Spatial and Temporal Databases
(SSTD’05). 364-381.

Krour, T. 2007. Cb manet scenario data distribution. Tech. rep., BBN.

LEE, J.-G., HaN, J., AND WHANG, K.-Y. 2007. Trajectory clustering: A partition-and-group framework. In Pro-
ceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD’07). 593—-604.

ACM Transactions on Intelligent Systems and Technology, Vol. 5, No. 1, Article 3, Publication date: December 2013.

A Framework of Traveling Companion Discovery on Trajectory Data Streams 3:33

Leg, M., Hsu, W., JENsEN, C. S., Cul, B., anp Tro, K. 2003. Supporting frequent updates in r-trees: A bottom-up
approach. The VLDB J. 18, 3, 719-738.

L1, X., Haxn, J., LEE, J.-G., aND GonzaLez, H. 2007. Traffic density based discovery of hot routes in road
networks. In Proceedings of the 10" International Conference on Advances in Spatial and Temporal
Databases (SSTD’07). 441-459.

L1, Y., Hax, J., aND Yang, J. 2004. Clustering moving objects. In Proceedings of the 10" ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD’04). 617-622.

L1, Z., Ding, B., HaN, J., aND Kays, R. 2010. Swarm: Mining relaxed temporal moving object clusters accurate
discovery of valid convoys from moving object trajectories. Proc. VLDB Endow. 3, 723-734.

Liu, L. anD Wong, R. C.-W. 2011. Finding shortest path on land surface. In Proceedings of the ACM SIGMOD
International Conference on Management of data (SIGMOD’11). 433—444.

Ly, Y., CuEN, L., PE1, J., CHEN, Q., AND ZHAO, Y. 2007. Mining frequent trajectory patterns for activity
monitoring using radio frequency tag arrays. In Proceedings of the 5'* IEEE International Conference
on Pervasive Computing and Communications (PerCom’07).

Nutanong, S., ZHANG, R., TaniN, E., anp KuLik, L. 2008. The v*-diagram: A query dependent approach to
moving knn queries. Proc. VLDB Endow. 1, 1, 1095-1106.

Nutanong, S., ZHANG, R., Taniy, E., anp Kurik, L. 2010. Analysis and evaluation of v*-knn: An efficient
algorithm for moving knn queries. VLDB J. 19, 3, 307-332.

PrarL, J. 1984. Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-Wesley
Longman Publishing Co.

SuaHABI, C., TaNG, L. A., aND XiNG, S. 2008. Indexing land surface for efficient knn query. Proc. VLDB Endow.
1, 1, 1020-1031.

Tang, L.-A., Yu, X., Kiv, S., HaN, J., Hung, C.-C., aND PenG, W.-C. 2010. Tru-alarm: Trustworthiness analysis
of sensor networks in cyber-physical systems. In Proceedings of the IEEE International Conference on
Data Mining (ICDM’10). 1079-1084.

Tang, L.-A., ZHENG, Y., XIE, X., YUAN, J., YU, X., AND HaN, J. 2011. Retrieving k-nearest neighboring trajectories
by a set of point locations. In Proceedings of the 12" International Conference on Advances in Spatial
and Temporal Databases (SSTD’11). 223—-241.

Tang, L.-A., ZHENG, Y., YUaN, J., HAN, J., LEUNG, A., Hung, C.-C., aND PEng, W.-C. 2012. On discovery of traveling
companions from streaming trajectories. In Proceedings of the 28" IEEE International Conference on
Data Engineering (ICDE’12). 186-197.

Tao, Y., KoLLios, G., CONSIDINE, J., L1, F., AND Papanias, D. 2004. Spatio-temporal aggregation using sketches.
In Proceedings of the 20" IEEE International Conference on Data Engineering (ICDE’04). 214.

Tao, Y., SHENG, C., AND PEL, J. 2011. On k-skip shortest paths. In Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data (SIGMOD’11). 421-432.

XING, S. AND SHaHABI, C. 2010. Scalable shortest paths browsing on land surface. In Proceedings of the 18
SIGSPATIAL International Conference on Advances in Geographic Information Systems (GIS’10). 89-98.

XING, S., SHAHABI, C., AND Pan, B. 2009. Continuous monitoring of nearest neighbors on land surface. Proc.
VLDB Endow. 2, 1, 1114-1125.

Yanc, D., RUNDENSTEINER, E. A., AND WaRrD, M. O. 2009. Neighbor-based pattern detection for windows over
streaming data. In Proceedings of the 12" International Conference on Extending Database Technology:
Advances in Database Technology (EDBT’09). 529-540.

Y1, B., JacapisH, H. V., anp Faroutsos, C. 1998. Efficient retrieval of similar time sequences under time
warping. In Proceedings of the 14" International Conference on Data Engineering (ICDE’98). 201-208.

Yoo, J. S. AND SHEKHAR, S. 2004. A partial join approach for mining co-location patterns. In Proceedings of the
12" Annual ACM International Workshop on Geographic Information Systems (GIS’04). 241-249.

Yuan, dJ., ZHENG, Y., X1E, X., AND SUN, G. 2011. Driving with knowledge from the physical world. In Proceedings
of the 17" ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’11).
316-324.

Yuan, J., ZHENG, Y., ZHANG, C., XiE, W., XIE, X., SUN, G., AND HuaNg, Y. 2010. T-drive: Driving directions based
on taxi trajectories. In Proceedings of the 18" SIGSPATIAL International Conference on Advances on
Geographical Information Systems (GIS’10). 99-108.

ZHANG, Q. AND LN, X. 2004. Clustering moving objects for spatial-temporal selectivity estimation. In Proceed-
ings of the 15" Australasian Database Conference (ADC’04). 123—130.

ZHANG, R., LiN, D., RaAMaMoHANARAO, K., AND BERTINO, E. 2008. Continuous intersection joins over moving
objects. In Proceedings of the 24'" International Conference on Data Engineering (ICDE’08). 863—872.

ZHANG, R., Q1, J., LN, D., Wang, W., anD Wong, R. C.-W. 2011. A highly optimized algorithm for continuous
intersection join queries over moving objects. VLDB J. 21, 4, 561-586.

ACM Transactions on Intelligent Systems and Technology, Vol. 5, No. 1, Article 3, Publication date: December 2013.

3:34 L.-A. Tang et al.

ZuENG, K., ZHENG, Y., XiE, X., AND ZHoU, X. 2012. Reducing uncertainty of low-sampling-rate trajectories. In
Proceedings of the 28" IEEE International Conference on Data Engineering (ICDE’12). 1144-1155.

ZHENG, Y., XiE, X., AND MA, W. 2010. GeoLife: A collaborative social networking service among user, location
and trajectory. IEEE Data Engin. Bull. 33, 2, 32—40.

ZHENG, Y. AND ZHoU, X. 2011. Computing with Spatial Trajectories. Springer.

Zuu, F., Yan, X., Han, J., Yy, P. S., anp Cueng, H. 2007. Mining colossal frequent patterns by core pattern
fusion. In Proceedings of the 23"¢ International Conference on Data Engineering (ICDE’07). 706-715.

Received February 2012; revised March 2012; accepted May 2012

ACM Transactions on Intelligent Systems and Technology, Vol. 5, No. 1, Article 3, Publication date: December 2013.

