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Abstract
High-dimensional semi-competing risks data consisting of two probably correlated events,
namely terminal event and non-terminal event, arise commonly in many biomedical studies.
However, the corresponding statistical analysis is rarely investigated. A joint model-free
feature screening procedure for both terminal and non-terminal events is proposed, which
could allow the associated covariates to be in an ultra-high dimensional feature space. The
joint screening utility is constructed from distance correlation between each predictor’s sur-
vival function and joint survival function of terminal and non-terminal events. Under rather
mild technical assumptions, it is demonstrated that the proposed joint feature screening
procedure enjoys sure screening and consistency in ranking properties. An adaptive thresh-
old rule is further proposed to simultaneously identify important covariates and determine
number of these covariates. Extensive numerical studies are conducted to examine the finite-
sample performance of the proposed methods. Lastly, the suggested joint feature screening
procedure is illustrated through a real example.
Keywords: Clayton copula; Distance correlation; Feature screening; Semi-competing risks
data; Ultra-high dimensionality.

1. Introduction

In various biomedical fields, researchers frequently collect semi-competing risks data (Fine
et al., 2001), which are significantly different from the traditional survival data with only
one type of failure and typical competing risks data including several mutually exclusive
failures. Under the semi-competing risks context, multiple potential event times, one ter-
minal event and some non-terminal events, could be observed. The terminal event censors
the non-terminal ones, but non-terminal events could not hinder the occurrence and hence
observation of the terminal event. For instance, in a clinical trial, one patient may drop out
the study before the end of follow-up and time to the interested failure. Then interested
failure and drop out could be regarded as the terminal and non-terminal events respectively
in this scenario.
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There is a broad literature on statistical methods for semi-competing risks failure time
data. See Fine et al. (2001), Peng and Fine (2007), Lakhal et al. (2008), Lin et al. (2014),
Li and Peng (2015) and the references therein. As for all we know, substantially all of the
existing work has focused on situations without or only with low-dimensional covariates,
and little literature has paid attention to the statistical analysis of high-dimensional semi-
competing risks data so far. Although there already exist plenty of statistical procedures
for complete data, missing data, traditional survival data and competing risks data with
high-dimensional predictors, such as Zhang and Lu (2007), Zhao and Li (2012), Fu et al.
(2017), Lai et al. (2017), Hong et al. (2018), Chen et al. (2018), Yan et al. (2018), Chen et al.
(2019c) to cite a few, they could not be naively applied to semi-competing risks data. New
approaches tailored for high-dimensional semi-competing risks data should be developed.

In high-dimensional data analysis, it is commonly assumed that only a few of all covariates
are truly predictive of the response, which is called sparsity assumption in the literature (Zhu
et al., 2011). Under this assumption, regularization-based variable selection methods have
been well developed for varieties of types of data with moderate-high dimensional covariates.
However, for the ultra-high dimensional feature space, they will come across the challenges
of computational expediency, statistical accuracy and algorithmic stability simultaneously
(Fan et al., 2009). As a feasible alternative before the more sophisticated penalization-based
approaches could be used, marginal independence screening procedures pioneered by Fan and
Lv (2008) for complete data under linear regression model have been substantially explored
in recent years. The purpose of this article is to put forward a new feature screening method
for ultra-high semi-competing risks data.

As mentioned above, there are two types of event times in semi-competing risks data,
in which the terminal event censors the non-terminal events, but not vice versa. Without
loss of generality, we assume that there exists only one non-terminal event subsequently.
Methods of feature screening could be developed for terminal event and non-terminal event
separately. However, we believe that the joint feature screening for both events is neces-
sary in practice for two reasons. Firstly, almost all the existing survival feature screening
methods at least require the assumption of independent censoring. Nevertheless, while con-
ducting feature screening for non-terminal event, the terminal event and censoring times
in semi-competing risks constitute the hypothetical censoring time for non-terminal event.
It is obviously that non-terminal event and hypothetical censoring are dependent, thus the
existing survival feature screening procedures are not applicable. Secondly, in spite of the
feasibility of performing feature screening for terminal event only, the correlation informa-
tion between terminal and non-terminal events is ignored completely during the individual
feature screening. Therefore, executing feature screening solely for terminal event is not the
most ideal method. In fact, in some cases, the marginal feature screening approach could
completely fail, however our joint feature screening procedure behaves quite satisfactory; see
Section 3 for more details.

In this paper, we come up with a new joint feature screening method for ultra-high di-
mensional semi-competing risks data. To the best of our knowledge, this problem has only
been considered by Peng (2019) in the literature, where Pearson correlations between the
covariates and the joint survival distribution of both terminal and non-terminal events are
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used to construct marginal screening utility. Here, we carry out the joint feature screening
via distance correlation (Székely et al., 2007) of survival function of each predictor and the
joint survival function of both terminal and non-terminal events. Compared with Pearson
correlation, the distance correlation has a remarkable property that the distance correlation
of two random vectors equals zero if and only if these two random vectors are independent.
This makes our screening method significantly better than that of Peng (2019). In addition,
by transforming each predictor through its survival function, we not only avoid the subex-
ponential tail probability assumption for covariates, but also establish a better convergence
rate than that in Peng (2019). Moreover, robustness is obtained numerically when some fea-
tures contain outliers or follow heavy-tailed distributions. Besides these, we also develop an
adaptive threshold rule for our suggested joint feature screening method to pick out the im-
portant covariates and determine the number of important covariates simultaneously. Last
but not the least, we want to emphasis that our suggested approach is model-free, and thus
do not need to specify a specific regression structure.

The rest of the article is organized as follows. Section 2 describes our methodology
of joint model-free feature screening procedure and presents the corresponding theoretical
properties. In Section 3, we provide an adaptive feature screening algorithm to automatically
determine the threshold of number of active features, and present extensive simulation studies
to evaluate the finite-sample performance of suggested methods. A real data example is
illustrated in Section 4, while a brief summary and discussion is given in Section 5. All the
technical proofs are relegated to the Appendix.

2. Methodology

2.1. Joint Model-free Feature Screening
Let’s begin this section with some notations. Denote the times to non-terminal and

terminal events by T1 and T2, respectively. Let x = (X1, · · · , Xp)
T be a p-dimensional

vector of covariates. Both of T1 and T2 are subject to right censoring, the time to which is
written as C. It is assumed, throughout this paper, that C is independent of T1, T2 and
x. Define Y = min{T1, T2, C}, δ1 = I(T1 ≤ T2 ∧ C), Z = min{T2, C} and δ2 = I(T2 ≤ C),
where I(·) is the indicator function and ∧ is the minimum operator. Assume that one
observes n independent and identically distributed copies of {Y, δ1, Z, δ2,x}, expressed as
{Yi, δ1i, Zi, δ2i,xi}ni=1. In the ultra-high dimensional circumstances considered here, p is on
a large or huge scale, and much larger than n, which means that p could increase at an
exponential rate of n technically.

To pick up the small number of predictors, which have influences on only one of T1 and T2

or both, we first define the active and inactive predictors without specifying the correlation
structure of non-terminal and terminal events and specific regression model. Denote by
S(t1, t2|x) = Pr(T1 > t1, T2 > t2|x) the joint survival function of T1 and T2 conditional on x.
Then we define the index set of jointly active predictors as

A={k : S(t1, t2|x) functionally depends on Xk for some k = 1, · · · , p}.

If k ∈ A, Xk is regarded as an active feature; otherwise, an inactive one.
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Before presenting our joint screening utility, we will review the distance correlation and
its estimation (Székely et al., 2007) briefly. Assume that U and V are two random vectors,
the dimensionality of which are dU and dV respectively. The distance covariance is defined
as the nonnegative number of dcov(U, V ) given by dcov2(U, V ) = S1 + S2 − 2S3, where
S1 = E(∥U − Ũ∥dU∥V − Ṽ ∥dV ), S2 = E(∥U − Ũ∥dU )E(∥V − Ṽ ∥dV ), S3 = E{E(∥U −
Ũ∥dU |U)E(∥V − Ṽ ∥dV |V )}, (Ũ , Ṽ ) is an independent copy of (U, V ) and ∥a∥d represents the
Euclidean norm for a d-dimensional vector a. Then distance correlation between U and V
is defined as

dcorr(U, V ) = dcov(U, V )/
√

dcov(U,U)dcov(V, V ). (1)
Given an independent and identically distributed sample {Ui, Vi}ni=1, we could estimate
dcov(U, V ) by

d̂cov(U, V ) = Ŝ1 + Ŝ2 − 2Ŝ3 (2)
with

Ŝ1 =
1

n2

n∑
i=1

n∑
j=1

∥Ui − Uj∥dU∥Vi − Vj∥dV , (3)

Ŝ2 =
1

n2

n∑
i=1

n∑
j=1

∥Ui − Uj∥dU
1

n2

n∑
i=1

n∑
j=1

∥Vi − Vj∥dV , (4)

and
Ŝ3 =

1

n3

n∑
i=1

n∑
j=1

n∑
l=1

∥Ui − Ul∥dU∥Vj − Vl∥dV . (5)

d̂cov(U,U) and d̂cov(V, V ) could be obtained in the similar way. Thus, from a sample,
dcorr(U, V ) could be estimated by d̂corr(U, V ) = d̂cov(U, V )/

√
d̂cov(U,U)d̂cov(V, V ). As a

measure of correlation, the distance correlation has an attractive property, i.e. dcorr(U, V ) =
0 if and only if U and V are independent. This makes distance correlation particularly suit-
able for variable screening of ultra-high dimensional data. Li et al. (2012), Zhong and Zhu
(2014), Zhong et al. (2016), Chen et al. (2019a), and Chen et al. (2018) have investigated
distance correlation-based screening in the complete data and traditional survival data set-
ting.

Just like the scenario of distance correlation-based screening for traditional survival data
(Chen et al., 2018), the original distance correlation (1) could not be directly applied to
our current circumstances to measure the correlation of each predictor and (T1, T2)

T . In
the same sprite of Chen et al. (2018), we propose a modified distance correlation for the
semi-competing risks context as

ρk =
dcov{Sk(Xk), S(T1, T2)}√

dcov{Sk(Xk), Sk(Xk)}
√

dcov{S(T1, T2), S(T1, T2)}
, (6)

where Sk(xk) = Pr(Xk > xk) is the survival function of Xk and S(t1, t2) = Pr(T1 > t1, T2 >
t2) is the joint survival function of (T1, T2)

T . It is noted that the distance correlation could
evaluate the correlation between two random vectors. Thus the correlation between Xk
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and (T1, T2)
T could be measured directly by the distance correlation dcorr{Xk, (T1, T2)

T}.
However, due to the right censoring, it is not easy to estimate dcorr{Xk, (T1, T2)

T} based on
an independent and identically distributed sample. But, as explained below, our suggested
modified distance correlation could be estimated without difficulties. Based on the modified
distance correlation, the joint screening utility is defined by ωk = ρ2k for k = 1, · · · , p.

To conduct feature screening, we need to derive the sample version of ωk based on
{Yi, δ1i, Zi, δ2i,xi}ni=1. As for Sk(x), it could be easily estimated by the empirical survival
function, i.e. Ŝk(xk) = n−1

∑n
i=1 I(Xki > xk). A number of estimators of the joint survival

function have been suggested in the literature; see the references in Lin and Ying (1993).
Lin and Ying’s estimator is the simplest, and enjoys many desirable properties, such as the
weak convergence. It should be emphasized that the joint survival function could only be
estimated on the upper wedge of entire plane without other additional information. For
0 < t1 < t2, Lin and Ying’s estimator takes the following form

Ŝ(t1, t2) =
n−1

∑n
i=1 I(Yi ≥ t1, Zi ≥ t2)

Ĝ(t2)
, (7)

where Ĝ(·) is the Kaplan-Meier estimator of survival function of C based on {Zi, 1− δ2i}ni=1,
and can be expressed as

Ĝ(t2) =
n∏

i=1

(
1− 1∑n

j=1 I(Zj ≥ Zi)

)(1−δ2i)I(Zi≤t2)

. (8)

The feasibility of (7) and (8) is due to the assumption that T1 and T2 are rightly censored by C
independently. From Equations (2), (7) and (8), we could estimate dcov{Sk(Xk), S(T1, T2)}
by

d̂cov{Sk(Xk), S(T1, T2)} = Ŝ1k + Ŝ2k − 2Ŝ3k, (9)

where Ŝ1k, Ŝ2k and Ŝ3k are defined by replacing Ui, Uj, Vi, Vj and Vl with Ŝk(Xki), Ŝk(Xkj),
Ŝ(Yi, Zi), Ŝ(Yj, Zj) and Ŝ(Yl, Zl). In the similar way, we could get d̂cov{Sk(Xk), Sk(Xk)}
and d̂cov{S(T1, T2), S(T1, T2)}. Then the sample version of ωk could be achieved as ω̂k = ρ̂2k
for k = 1, · · · , p, where ρ̂k is the estimated modified distance correlation of (6).

From the values of ωks, we identify the indexes of important covariates by selecting out
the covariates with large ωks. Specifically, the index set of active predictors are estimated
by

Â={k : ω̂k ≥ γn, k = 1, · · · , p},

where γn is a threshold sequence given in advance and varies with sample size n. For practical
use, we can find a pre-determined size d0 (may change with sample size) and pick out the
covariates with corresponding ωks among the first d0 largest of all. In the sequel, the joint
model-free distance correlation-based sure independence screening procedure is referred to
as JMDC-SIS for short.
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2.2. Theoretical Properties
Ahead of the presentation of theoretical properties, let’s introduce the necessary technical

assumptions as follows:

(A1): There exists a positive constant η such that Pr(t2 ≤ T2 ≤ C) ≥ η, where t2 ∈ (0, τ ]
with τ being the maximum follow-up time; Furthermore, sup{t2 : Pr(T2 > t2) > 0} ≥
sup{t2 : Pr(C > t2) > 0}; G(·) has uniformly bounded first order derivative.

(A2): It holds that mink∈A ωk ≥ 2c1n
−κ for some constants c1 > 0 and κ ∈ [0, 1/2).

Assumption (A1) is common in survival analysis literature to guarantee the well perfor-
mance of Kaplan-Meier estimator, and has been imposed in much survival feature screening
literature, such as He et al. (2013), Zhou and Zhu (2017), Chen et al. (2019b) and so on.
Assumption (A2) is standard in feature screening investigation to make sure that the min-
imal signal does not degenerate too fast, and then guarantee the sure screening property.
It should be noted that, in Assumption (A1), we only make assumptions on survival time
of terminal event and censoring time, but not on non-terminal event. This is different from
assumptions in Peng (2019), in which assumptions are made on joint distribution of termi-
nal and non-terminal events besides that on censoring time. Due to the fact that terminal
event will censor the non-terminal event, but not vice versa, we believe that our assumption
is more flexible than that in Peng (2019). Variances of all the covariates are required to
be uniformly bounded in Peng (2019), while our suggested procedure avoids this restrictive
assumption through transformation.

The sure screening property is stated in the following Theorem 1.

Theorem 1. (Sure Screening Property) Under Assumptions (A1) and (A2), there exist
positive constants d1 and d2 such that

Pr

(
max
1≤k≤p

|ω̂k − ωk| ≥ c1n
−κ

)
≤ d1p exp{−d2n

1−2κ}.

Furthermore, if taking γn = c1n
−κ, we have

Pr(A ⊆ Â) ≥ 1− d1q exp{−d2n
1−2κ},

where q is the number of truly important covariates.
From the result in Theorem 1, it can be seen that our JMDC-SIS could manage covariates

with dimensionality log(p) = o(n1−2κ), which is better than that of Peng (2019). The
subsequent corollary provides a result about the size of selected predictors by JMDC-SIS
with γn = c1n

−κ.

Corollary 1. (False Discovery Control) Under Assumptions (A1) and (A2), we have that,
for γn = c1n

−κ, there exist positive constants d3 and d4 such that

Pr

(
|Â| ≤ 2c1n

κ
∑

1≤k≤p

|ωk|

)
≥ 1− d3p exp{−d4n

1−2κ},

where |Â| represents the number of elements in Â.
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Let xA denote the subvector of x consisting of all Xk with k ∈ A. Define xAc in the
same way. Theorem 2 below affords JMDC-SIS’s ranking consistency under some additional
assumptions.

Theorem 2. Assuming that (i) (T1, T2)
T and xAc are conditionally independent given xA;

(ii) xA is independent of xAc. Under Assumption (A2), we have that

max
k∈Ac

ωk < min
k∈A

ωk,

and ωk = 0 if and only if k ∈ Ac. Furthermore, it holds that

Pr

(
min
k∈A

ω̂k > max
k∈Ac

ω̂k

)
≥ 1− 2d1p exp{−d2n

1−2κ}.

3. Numerical Studies

3.1. JMDC-SIS with adaptive threshold rule
To perform our JMDC-SIS, one needs to specify a threshold sequence in advance, which is

hard in practice. Instead, we could assign an integer sequence d0 and keep the covariates with
the estimated screening utilities being among the first d0 largest ones. The most frequently
used reference sequences are d0 = [n/ log(n)] or n− 1 (Fan and Lv, 2008), where [a] denotes
the integer part of a. The choice of threshold sequence will substantially influence the
performance of feature screening on one hand, and on the other hand, is hard to interpret in
both of theory and practice. Several methods have been advocated to address this problem,
such as those based on combination of soft and hard thresholding rules (Zhu et al., 2011),
false positive rate control (Zhao and Li, 2012) and p-values of multiple testing (Wen et al.,
2017).

In this subsection, we propose a data-driven means for JMDC-SIS to conduct feature
screening without pre-specification of threshold value based on an inequality of distance
covariance (Kong et al., 2015). Suppose that U and V are two random vectors with the
same dimensionality, i.e. dU = dV , and W is an additional dW -dimensional random vector.
It has been proved, in Kong et al. (2015), that dcov(U+V,W ) ≤ dcov(U,W ) on the condition
of V being independent of (U,W ). Besides that, Theorem 4 of Székely et al. (2007) declares
that dcov(U + V, U + V ) ≤ dcov(U,U) + dcov(V, V ). Therefore, we can conclude that

dcorr(U + V,W ) ≤ dcorr(U,W ) (10)

according to the definition of distance correlation (1). The inequality (10) motivates us
to identify features in a sequential and model-free fashion just as the well-known forward
variable selection, and terminate the process once the decrease of distance correlation occurs.
A similar procedure based on distance covariance has been applied to feature screening for
complete data (Kong et al., 2015). Here, we tailor our JMDC-SIS based on (10) to determine
the number of retained covariates in an adaptive way, and name the corresponding procedure
as adaptive JMDC-SIS (aJMDC-SIS for short), the steps of which are summarized below:
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Step 1: Obtain Ŝ(t1, t2), and Ŝk(xk) for k = 1, · · · , p. Then compute ω̂k for each Xk, k =
1, · · · , p.

Step 2: Sort ω̂k, k = 1, · · · , p, in decreasing order. Reorder the covariates according to the
sorted ω̂ks, and denoted them by X(1), X(2), · · · , X(p). Initialise by setting m = 1 and
Ã(1) = {k : Xk = X(1)}.

Step 3: Update Ã(m+1) = Ã(m)
⋃
{k : Xk = X(m+1)}. If d̂corr

(∑
k∈Ã(m+1) Ŝk(Xk), Ŝ(T1, T2)

)
≤

d̂corr
(∑

k∈Ã(m) Ŝk(Xk), Ŝ(T1, T2)
)

, stop and set Â = Ã(m); otherwise, set m = m + 1

and continue this process.

3.2. Simulation Settings and Results
In this subsection, we assess via simulation studies the finite sample performance of

the proposed JMDC-SIS and aJMDC-SIS, also compare them with joint correlation rank
screening (JCR) of Peng (2019) and robust censored distance correlation screening (RCDCS)
of Chen et al. (2018) for terminal event only. To make easy comparisons between joint feature
screening for both terminal and non-terminal events and marginal feature screening RCDCS
for terminal event only, the truly predictive covariates are designed to be the same for the
two events in Examples 1 to 5.

In all the following examples, we generate the censoring times from the uniform distri-
bution on interval (0, 6), which causes censoring rates from 30% to 78% for terminal events.
The dimensionality p of covariates is set to be 2000. We specify the threshold value for JCR,
RCDCS and JMDC-SIS to be d0 = [n/ log(n)]. Based on 500 simulation runs, we evaluate
the performance of these screening procedures using the following criteria: selection pro-
portions for each truly predictive covariate for (T1, T2)

T , selection proportions for all active
covariates, and quantiles of the minimum model size to include all active covariates.

Example 1. In this example, we consider the log-linear model for times of non-terminal
and terminal events. Specifically, non-terminal and terminal event times are generated from
the following models:

log(T1) = xTβ − 0.5e1

and

log(T2) = xTα + e2,

where β = (1.0, 0.5, 1.0, 0, · · · , 0)T , α = (0.2,−0.45, 0.25, 0, · · · , 0)T , x = (X1, X2, · · · , Xp)
T

follows the multivariate normal distribution N(0p×1,Σ = (ρ|i−j|)p×p) with ρ = 0.6 and 0.9,
and the joint distribution of error vector (e1, e2)T satisfies the Clayton copula (Nelsen, 2007),
that is, Pr(e1 > t1, e2 > t2) = [S∗(t1)

−θ + S∗(t2)
−θ − 1]−1/θ with Pr(e1 > t) = Pr(e2 > t) =

S∗(t) = exp{− exp(t)}. Here we choose the parameter θ = 0.5, 2 and 8, which reflect different
associations between the two events through Kendall’s τ (Nelsen, 2007). The censoring rates
for T1 and T2 are approximately 32% and 30%, respectively.

Insert Figure 1 about here
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We firstly make use of this relative simple example to examine the feasibility of adaptive
threshold rule for JMDC-SIS, i.e. the aJMDC-SIS. Under several different sample sizes, the
threshold values selected by aJMDC-SIS are recorded for chosen settings. We repeat this
operation 100 times for each combination of different sample sizes and settings. Figure 1
exhibits the line charts of adaptive threshold value versus sample size for aJMDC-SIS under
different settings. It is easy to see that the adaptive threshold value gets closer and closer
to the number of truly important features as the sample size increases. When the sample
size is equal to 400, the threshold values identified by aJMDC-SIS are quite close to the true
number 3.

Insert Tables 1 and 2 about here

The results for the three criteria based on 500 data repetitions are listed in Tables 1 and 2,
from which we could easily see that our suggested aJMDC-SIS and JMDC-SIS outperform
the JCR under each setting. The correlations among covariates play greater impacts on
the performance of JCR than those of aJMDC-SIS and JMDC-SIS, that is, JCR is more
sensitive to the change of correlations among covariates. It is so amazing to observe that
RCDCS, which performs feature screening only for terminal event, fails completely. This
observation makes the use of joint feature screening for semi-competing risks data more
necessary. Besides, these results also show that different choices of levels of association
between the two events have little influences on the behavior of the proposed screening
methods. As we anticipate, the performance of various methods become better as the sample
size increases.

Example 2. We consider in this example complex varying-coefficient nonlinear models for
both of non-terminal and terminal events’ times. To be concrete, non-terminal and terminal
event times are generated from the following models:

log(T1) = β1(U) sin(X1) + β2(U)X2
2 + β3(U)X3 + e1

and

log(T2) = α1(U)X2
1 + α2(U)X2X3 + α3(U)|X3|+ e2,

where β1(U) = 1+U , β2(U) = 2 cos(2πU), β3(U) = 2U , α1(U) = 1+U , α2(U) = 2 sin(2πU),
α3(U) = U2, and U is a standard uniform random variable. The other elements are the same
as those in Example 1. The censoring rates for T1 and T2 are approximately 42% and 66%,
respectively.

Insert Tables 3 and 4 about here

Tables 3 and 4 present the simulation results for Example 2, and the similar phenomena as
those in Example 1 could be observed. However, in this example, the advantages of JMDC-
SIS and aJMDC-SIS over JCR and RCDCS are more significant than those in Example 1.
The threshold value determined by aJMDC-SIS decreases as the sample size increases, and
is far smaller than that specified by convention under the cases with n = 300 and ρ = 0.9.
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Example 3. This example presents general nonlinear models for non-terminal and termi-
nal events’ times. T1 and T2 satisfy the beneath regression models:

log(T1) = 0.5(X1 + 0.5X2 + 0.5|X3|)2 + sin(XTβ) + e1

and

log(T2) = 0.5(XTβ)2 + cos(X1X2 + 0.5 sin(X2) + 0.5|X3|)2 + e2,

where β = (1, 0.5, 0.5, 0, · · · , 0)T and the other elements are the same as those in Example
1. The censoring rates for T1 and T2 are also about 42% and 66%, respectively.

Insert Tables 5 and 6 about here

Tables 5 and 6 summarize the simulation results with similar observations as those in
Examples 1 and 2.

Example 4. We consider other general nonlinear regression models for non-terminal and
terminal events’ times here. The regression models for T1 and T2 are

log(T1) = 0.5(X1X2 + 2X2 +X3)
3 + 0.5 exp(|X1|2 + 2 tan(X2) +X2

3 ) + e1

and

log(T2) = 0.5(XTα)2 + 0.5 tan(XTα) + e2,

where α = (2, 1, 1, 0, · · · , 0)T and the other settings are the same as those in Example 1.
The censoring rates for T1 and T2 are around 63% and 78%, respectively. Compared with
former examples, the censoring rates are rather high in this example.

Insert Tables 7 and 8 about here

The simulation results are presented in Tables 7 and 8. In addition to the phenom-
ena similar to those in former examples, we could see that JCR behaves badly when the
correlations among covariates are low, even when the sample size is relatively large.

Example 5. In this example, we change the autoregressive type correlation structure to
the simple independent and identically distributed case. The regression models for T1 and
T2 are

log(T1) = 0.15X1X2 + 0.15X2 + 0.15 sin(X3) + 0.15e1

and

log(T2) = 0.15X1 + 0.15X2
2 + 0.35|X3|+ 0.15e2,

where x = (X1, X2, · · · , Xp)
T follows the multivariate normal distribution N(0p×1, Ip×p) with

Ip×p being an identity matrix of size p. The other settings are the same as those in former
examples. The censoring rates for T1 and T2 are approximately 20% and 39%, respectively.
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Insert Tables 9 and 10 about here

Simulation results are exhibited in Tables 9 and 10. Different from previous examples,
JCR fails completely in this example. The improvement of JCR is very limited as the sam-
ple size increases from 200 to 300, even the RCDCS obtains satisfactory results. Although
RCDCS, which performs feature screening only for terminal event, achieves acceptable per-
formance, the gaps between RCDCS and JMDC-SIS or aJMDC-SIS are still fairly wide.

Example 6. As suggested by one reviewer, it is interested to examine the situation with
different sets of the truly important convariates for non-terminal and terminal events. Thus
in this example, we consider the following regression models for T1 and T2:

log(T1) = 0.5(X1 + 0.5X2 + 0.5|X3|)2 + sin(XTβ) + e1

and

log(T2) = 0.5(XTα)2 + cos(X2X3 + 0.5 sin(X3) + 0.5|X4|)2 + e2,

where β = (1, 0.5, 0.5, 0, · · · , 0)T , α = (0, 1, 0.5, 0.5, 0, · · · , 0)T ) and the other elements are
the same as those in Example 1. The censoring rates for T1 and T2 are approximately
57% and 83%, respectively. It is easy to see that the predictors X2 and X3 are commonly
important covariates for T1 and T2. However, X1 is only truly predictive for T1, while X4 is
only important for T2.

Insert Tables 11 and 12 about here

The simulation results are displayed in Tables 11 and 12, from which similar phenomena
as that in the former examples are observed. In addition, it is worth noting that X1 and X4,
which are truly important for T1 and T2 respectively, have significantly different inclusion
frequencies. The inclusion frequency of X4 is dramatically lower than that of X1. There
may be two reasons for this. Firstly, the signal for X1 is stronger than that of X4. This
could be seen by comparing the coefficients of X1 and X4 in the regression models of T1 and
T2. Secondly, the censoring rate for T2 is very high, which leads that the data contain less
information of T2 than that of T1. Furthermore, the high censoring rate results in that the
information of X4 is less than that of X1.

4. Real Data Analysis

As an illustration, in this section, we apply JMDC-SIS and aJMDC-SIS, along with
JCR and RCDCS, to a breast cancer dataset (van De Vijver et al., 2002). In this dataset,
there are 295 patients from the Netherlands Cancer Institute. In addition to the main in-
terested event, death from breast cancer, data about time to distant metastasis were also
collected. Thus, in this application, distant metastasis is the non-terminal event, while
death from breast cancer is the terminal event. Among all 295 patients, 101 persons ex-
perienced distant metastasis and 79 experienced death, corresponding to around 65% cen-
soring rate for non-terminal event and 75% censoring rate for terminal event. Besides the
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clinical data, this dataset contains data for 24,881 genes for each patient. Our goal is to
identify the genes which are predictive for distant metastasis or death from breast can-
cer. The data for our analysis could be obtained from the R package ”cancerdata” at
https://www.bioconductor.org/packages/release/data/experiment/html/cancerdata.html.

To conduct JMDC-SIS, JCR and RCDCS, we specify the threshold value as [295/ log 295] =
51. As described in Section 3.1, aJMDC-SIS will determine the model size in an adaptive
way, and does not need to appoint one. It should be noted that aJMDC-SIS, JMDC-SIS
and JCR aim to identify the genes which are predictive for distant metastasis or death from
breast cancer, while RCDCS is used to screen predictive genes for death from breast cancer
only.

The names of selected genes by various procedures are listed in Table 13. It is easy to see
that aJMDC-SIS confirms that 25 genes are predictive for distant metastasis or death from
breast cancer, which is significantly smaller than the threshold 51 used for the other three
methods. This shows that our aJMDC-SIS is effective to determine the predictive genes and
number of them simultaneously for this dataset. Among the 25 genes, Contig48328−RC and
Contig38288−RC have been confirmed to be related to at least death from breast cancer
(van’t Veer et al., 2002). However, JCR could not select out Contig48328−RC even with the
threshold value 51.

There are 21 genes picked out by both of JMDC-SIS and JCR. It is more likely that these
21 genes are truly important for either distant metastasis or death from breast cancer. For
the 51 genes chosen by RCDCS, 34 are also selected by JMDC-SIS. With the same threshold
value considered, this result is reasonable, and shows that JMDC-SIS is more flexible than
RCDCS by selecting out the genes associated with distant metastasis too.

5. Summary and Discussion

In this article, we propose a joint model-free feature screening procedure for ultra-high
dimensional semi-competing risks data via distance correlation, and name it JMDC-SIS. The
joint approach could pick out the covariates associated with either non-terminal or terminal
events, both of which are important in semi-competing risks data analysis. Theoretical
properties of JMDC-SIS are established under rather mild assumptions. To determine the
number of important features, an adaptive threshold rule is suggested for JMDC-SIS. The
JMDC-SIS with the adaptive threshold rule is called aJMDC-SIS. Simulation studies have
shown the usefulness of JMDC-SIS and aJMDC-SIS, and the advantages over the existing
JCR. In addition, we find surprisingly that, compared with joint screening methods, the
marginal screening for just terminal event do not only lose efficiency (see Example 5 in
Section 3), but also could fail completely in some cases (see Examples 1 to 4 in Section 3).

To the best of our knowledge, the literature about ultra-high dimensional data analysis
for semi-competing risks data is very limited. The feature screening is only the first step
to reduce the dimension to a moderate scale. More sophisticated regularized approaches
are urgently needed for further data analysis. This guarantees the future investigation for
ultra-high dimensional semi-competing risks data.
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Appendix: Lemmas and Proofs of the Theorems

Lemma 1. (Bitouzé et al., 1999) Let {T2i}ni=1 and {Ci}ni=1 be independent sequences of inde-
pendently and identically distributed nonnegative random variables with survival functions S
and G, respectively. Let Ĝ be the Kaplan-Meier estimator of G. Then there exists a positive
constant d5 such that

Pr
(
n

1
2 ∥ S(Ĝ−G) ∥∞> λ

)
≤ 2.5 exp{−2λ2 + d5λ},

for any positive constant λ.

Lemma 2. Under Assumption (A1), for any positive constant ε ∈ (0, η/2), there exist
positive constants d6 and d7 such that

Pr

(
sup

y∈[0,τ ]

∣∣∣∣ 1

Ĝ(y)
− 1

G(y)

∣∣∣∣ ≥ ε

)
≤ 5 exp{−d6nε

2 + d7n
1/2ε}.
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Furthermore, if n1/2ε → ∞ as n goes to ∞, for sufficiently large n, we have

Pr

(
sup

y∈[0,τ ]

∣∣∣∣ 1

Ĝ(y)
− 1

G(y)

∣∣∣∣ ≥ ε

)
≤ 5 exp{−d8nε

2},

where d8 is a positive constant.

Proof: Under the event {supy∈[0,τ ] |Ĝ(y)−G(y)| ≤ ε}, we have Ĝ(y) ≥ η/2 for any y ∈ [0, τ ].
In addition, by Assumption (A1), it can be obtained that

sup
y∈[0,τ ]

∣∣∣∣ 1

Ĝ(y)
− 1

G(y)

∣∣∣∣ = sup
y∈[0,τ ]

∣∣∣∣Ĝ(y)−G(y)

Ĝ(y)G(y)

∣∣∣∣ ≤ 2η−2 sup
y∈[0,τ ]

|Ĝ(y)−G(y)|.

Then

Pr

(
sup

y∈[0,τ ]

∣∣∣∣ 1

Ĝ(y)
− 1

G(y)

∣∣∣∣ ≥ ε

)
≤ Pr

(
sup

y∈[0,τ ]

∣∣∣∣ 1

Ĝ(y)
− 1

G(y)

∣∣∣∣ ≥ ε, sup
y∈[0,τ ]

|Ĝ(y)−G(y)| ≤ ε

)
+Pr

(
sup

y∈[0,τ ]
|Ĝ(y)−G(y)| ≥ ε

)
≤ Pr

(
sup

y∈[0,τ ]
|Ĝ(y)−G(y)| ≥ ε2−1η2

)
+ Pr

(
sup

y∈[0,τ ]
|Ĝ(y)−G(y)| ≥ ε

)
≤ 2Pr

(
sup

y∈[0,τ ]
|Ĝ(y)−G(y)| ≥ εmin{2−1η2, 1}

)
≤ 2Pr

(
n1/2 sup

y∈[0,τ ]
|S(y)(Ĝ(y)−G(y))| ≥ n1/2εηmin{2−1η2, 1}

)
≤ 5 exp{−2η2min{2−2η4, 1}nε2 + d5ηmin{2−1η2, 1}n1/2ε}
≜ 5 exp{−d6nε

2 + d7n
1/2ε}, (A.1)

where the fourth inequality is arrived by Assumption (A1) and the last inequality is obtained
based on Lemma 1.

Moreover, from the assumption that n1/2ε → ∞, we could conclude that d6−d7/(n
1/2ε) >

d6/2 for sufficiently large n. Thus

−d6nε
2 + d7n

1/2ε = −nε2{d6 − d7/(n
1/2ε)} < −nε2d6/2 ≜ −d8nε

2.

The second part is achieved by combing this result with Equation (A.1).

Lemma 3. Suppose that (U, V ) is a 2-dimensional random vector with joint survival function
H(u, v). Let Ĥ(u, v) = n−1

∑n
i=1 I(Ui ≥ u, Vi ≥ v) be the empirical estimator of H(u, v)

based on an independent and identically distributed sample {Ui, Vi}, i = 1, · · · , n. For any
ε > 0, there exist positive constants d9 and d10 such that

Pr

(
sup
u,v

|Ĥ(u, v)−H(u, v)| ≥ ε

)
≤ d9 exp{−d10nε

2}.
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Proof: It is noted that
Ĥ(u, v)−H(u, v)

=

{
n−1

n∑
i=1

I(Ui < u, Vi < v)− Pr(U < u, V < v)

}
−
{
n−1

n∑
i=1

I(Ui < u)− Pr(U < u)

}
−
{
n−1

n∑
i=1

I(Vi < v)− Pr(V < v)

}
=

{
F̂U,V (u, v)− FU,V (u, v)

}
−
{
F̂U(u)− FU(u)

}
−
{
F̂V (v)− FV (v)

}
, (A.2)

where FU,V (u, v), FU(u) and FV (v) are cumulative distribution functions of (U, V ), U and
V , and F̂U,V (u, v), F̂U(u) and F̂V (v) are empirical versions of FU,V (u, v), FU(u) and FV (v).
From Equation (A.2), it is easy to see that

sup
u,v

|Ĥ(u, v)−H(u, v)|

= sup
u,v

|F̂U,V (u, v)− FU,V (u, v)|+ sup
u

|F̂U(u)− FU(u)|+ sup
v

|F̂V (v)− FV (v)|. (A.3)

According to the well-known Dvoretzky-Kiefer-Wolfowitz inequality (Dvoretzky et al.,
1956), there exist positive constants C1 and C2 such that

Pr

(
sup
u

|F̂U(u)− FU(u)| ≥
ε

3

)
≤ C1 exp

{
− 2

9
nε2
}

(A.4)

and

Pr

(
sup
v

|F̂V (v)− FV (v)| ≥
ε

3

)
≤ C2 exp

{
− 2

9
nε2
}
. (A.5)

Applying the multi-dimensional extension of Dvoretzky-Kiefer-Wolfowitz inequality (Kiefer,
1961), we could obtain

Pr

(
sup
u,v

|F̂U,V (u, v)− FU,V (u, v)| ≥
ε

3

)
≤ C3 exp

{
− C4nε

2
}
, (A.6)

where C3 and C4 are generic positive constants. Based on Equations (A.3) to (A.6), we
finally arrive at

Pr

(
sup
u,v

|Ĥ(u, v)−H(u, v)| ≥ ε

)
≤ Pr

(
sup
u,v

|F̂U,V (u, v)− FU,V (u, v)| ≥
ε

3

)
+Pr

(
sup
u

|F̂U(u)− FU(u)| ≥
ε

3

)
+Pr

(
sup
v

|F̂V (v)− FV (v)| ≥
ε

3

)
≤ 3C5 exp

{
− C6nε

2
}

≜ d9 exp
{
− d10nε

2
}
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where C5 = max{C1, C2, C3}, C6 = min{2/9, C4}, d9 = 3C5 and d10 = C6.

Lemma 4. Under Assumption (A1), if n1/2ε → ∞ as n goes to ∞, for sufficiently large n,
we have

Pr

(
sup

0≤t1≤t2≤τ
|Ŝ(t1, t2)− S(t1, t2)| ≥ ε

)
≤ d11 exp

{
− d12nε

2

}
,

where d11 and d12 are generic positive constants.

Proof: Due to the fact that T1 and T2 are rightly censored by C independently, we could
obtain

Pr(Y ≥ t1, Z ≥ t2) = Pr(T1 ≥ t1, T2 ≥ t2, C ≥ t2) = S(t1, t2)G(t2),

for any t1 ≤ t2. Thus S(t1, t2) can be expressed as S(t1, t2) = Pr(Y ≥ t1, Z ≥ t2)/G(t2).
And

|Ŝ(t1, t2)− S(t1, t2)|

=

∣∣∣∣n−1
∑n

i=1 I(Yi ≥ t1, Zi ≥ t2)

Ĝ(t2)
− Pr(Y ≥ t1, Z ≥ t2)

G(t2)

∣∣∣∣
≤

∣∣∣∣n−1
∑n

i=1 I(Yi ≥ t1, Zi ≥ t2)

Ĝ(t2)
− n−1

∑n
i=1 I(Yi ≥ t1, Zi ≥ t2)

G(t2)

∣∣∣∣
+

∣∣∣∣n−1
∑n

i=1 I(Yi ≥ t1, Zi ≥ t2)

G(t2)
− Pr(Y ≥ t1, Z ≥ t2)

G(t2)

∣∣∣∣
≤

∣∣∣∣ 1

Ĝ(t2)
− 1

G(t2)

∣∣∣∣+ 1

G(t2)

∣∣∣∣n−1

n∑
i=1

I(Yi ≥ t1, Zi ≥ t2)− Pr(Y ≥ t1, Z ≥ t2)

∣∣∣∣.
According to Lemma 2,

Pr

(
sup

t2∈[0,τ ]

∣∣∣∣ 1

Ĝ(t2)
− 1

G(t2)

∣∣∣∣ ≥ ε

2

)
≤ 5 exp

{
− d8

4
nε2
}
.

In addition,

Pr

(
sup

0≤t1≤t2≤τ

1

G(t2)

∣∣∣∣n−1

n∑
i=1

I(Yi ≥ t1, Zi ≥ t2)− Pr(Y ≥ t1, Z ≥ t2)

∣∣∣∣ ≥ ε

2

)
≤ Pr

(
sup
t1,t2

∣∣∣∣n−1

n∑
i=1

I(Yi ≥ t1, Zi ≥ t2)− Pr(Y ≥ t1, Z ≥ t2)

∣∣∣∣ ≥ ε

2
η

)
≤ d9 exp

{
− d10n

ε2η2

4

}
,
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where the first inequality is obtained based on Assumption (A1), and the second is from
Lemma 3. At last, we have

Pr

(
sup

0≤t1≤t2≤τ
|Ŝ(t1, t2)− S(t1, t2)| ≥ ε

)
≤ Pr

(
sup

t2∈[0,τ ]

∣∣∣∣ 1

Ĝ(t2)
− 1

G(t2)

∣∣∣∣ ≥ ε

2

)
+Pr

(
sup
t1,t2

∣∣∣∣n−1

n∑
i=1

I(Yi ≥ t1, Zi ≥ t2)− Pr(Y ≥ t1, Z ≥ t2)

∣∣∣∣ ≥ ε

2
η

)
≤ 5 exp

{
− d8

4
nε2
}
+ d9 exp

{
− d10n

ε2η2

4

}
≤ d11 exp

{
− d12nε

2

}
,

where d11 = max{5, d9} and d12 = min{d8/4, d10η2/4}.

To facilitate the presentation of the proof, we firstly define an oracle estimator of ωk as
if the empirical survival functions of covariates and the joint survival function of (T1, T2)

T

are known in advance. Denote this oracle estimator by ω̃k = ρ̃2k, where

ρ̃k =
d̃cov{Sk(Xk), S(T1, T2)}√

d̃cov{Sk(Xk), Sk(Xk)}
√

d̃cov{S(T1, T2), S(T1, T2)}
,

where d̃cov{Sk(Xk), S(T1, T2)}, d̃cov{Sk(Xk), Sk(Xk)} and d̃cov{S(T1, T2), S(T1, T2)} are de-
fined according to (2) with Sk(·)’s and S(·, ·) being regarded already known.
Proof of Theorem 1:

Due to the boundness of Sk(·)’s and S(·, ·), according to the remark of Theorem 1 of Li
et al. (2012), it is easily obtained that there exist positive constants C7 and C8 such that

Pr(|ω̃k − ωk| ≥ 2−1c1n
−κ) ≤ C7 exp{−C8n

1−2κ}. (A.7)

We now consider Pr(|ω̂k − ω̃k| ≥ 2−1c1n
−κ). Let us deal with the numerator of ω̂k and

ω̃k firstly. Recall that

d̂cov
2
{Sk(Xk), S(T1, T2)} = Ŝ1k + Ŝ2k − 2Ŝ3k

and

d̃cov
2
{Sk(Xk), S(T1, T2)} = S̃1k + S̃2k − 2S̃3k,

where Ŝ1k, Ŝ2k and Ŝ3k are defined by replacing Ui, Uj, Vi, Vj and Vl in (3) to (5) with
Ŝk(Xki), Ŝk(Xkj), Ŝ(Yi, Zi), Ŝ(Yj, Zj) and Ŝ(Yl, Zl), S̃1k, S̃2k and S̃3k are given by replacing
Ui, Uj, Vi, Vj and Vl with Sk(Xki), Sk(Xkj), S(Yi, Zi), S(Yj, Zj) and S(Yl, Zl).
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For any positive ε satisfying n1/2ε → ∞ as n goes to ∞,

Pr(|Ŝ1k − S̃1k| ≥ ε)

= Pr

(∣∣∣∣ 1n2

n∑
i,j=1

|Ŝk(Xki)− Ŝk(Xkj)||Ŝ(Yi, Zi)− Ŝ(Yj, Zj)|

− 1

n2

n∑
i,j=1

|Sk(Xki)− Sk(Xkj)||S(Yi, Zi)− S(Yj, Zj)|
∣∣∣∣ ≥ ε

)

≤ Pr

(
1

n2

n∑
i,j=1

|Ŝk(Xki)− Ŝk(Xkj)|||Ŝ(Yi, Zi)− Ŝ(Yj, Zj)| − |S(Yi, Zi)− S(Yj, Zj)|| ≥ 2−1ε

)

+Pr

(
1

n2

n∑
i,j=1

||Ŝk(Xki)− Ŝk(Xkj)| − |Sk(Xki)− Sk(Xkj)|||S(Yi, Zi)− S(Yj, Zj)| ≥ 2−1ε

)
.

(A.8)

By the fact that

||Ŝ(Yi, Zi)− Ŝ(Yj, Zj)| − |S(Yi, Zi)− S(Yj, Zj)||
≤ |Ŝ(Yi, Zi)− S(Yi, Zi)|+ |Ŝ(Yj, Zj)− S(Yj, Zj)|
≤ 2 sup

0≤t1≤t2≤τ
|Ŝ(t1, t2)− S(t1, t2)|

and |Ŝk(Xki)− Ŝk(Xkj)| ≤ 1, we have

Pr

(
1

n2

n∑
i,j=1

|Ŝk(Xki)− Ŝk(Xkj)|||Ŝ(Yi, Zi)− Ŝ(Yj, Zj)| − |S(Yi, Zi)− S(Yj, Zj)|| ≥ 2−1ε

)
≤ Pr

(
sup

0≤t1≤t2≤τ
|Ŝ(t1, t2)− S(t1, t2)| ≥ 4−1ε

)
≤ d11 exp{−16−1d12nε

2}, (A.9)

where the last inequality comes from Lemma 4. In the similar way, we could prove that

Pr

(
1

n2

n∑
i,j=1

||Ŝk(Xki)− Ŝk(Xkj)| − |Sk(Xki)− Sk(Xkj)|||S(Yi, Zi)− S(Yj, Zj)| ≥ 2−1ε

)
≤ Pr

(
sup
xk∈R

|Ŝk(xk)− Sk(xk)| ≥ 4−1ε

)
≤ 2 exp{−8−1nε2}, (A.10)

where the last inequality is obtained based on Dvoretzky-Kiefer-Wolfowitz inequality (Dvoret-
zky et al., 1956). From Equations (A.8) to (A.10), it is gotten that

Pr(|Ŝ1k − S̃1k| ≥ ε) ≤ C9 exp{−C10nε
2},

20



where C9 = max{d11, 2} and C10 = min{16−1d12, 8
−1}.

The same convergence rates could be proved for Pr(|Ŝ2k− S̃2k| ≥ ε) and Pr(|Ŝ3k− S̃3k| ≥
ε). By the techniques used in Lemmas S4 and S5 of Liu et al. (2014), there exist positive
constants C11 and C12 such that

Pr(|d̂cov
2
{Sk(Xk), S(T1, T2)} − d̃cov

2
{Sk(Xk), S(T1, T2)}| ≥ ε) ≤ C11 exp{−C12nε

2}.

We could achieve the same convergence rates for denominators of ω̂k and ω̃k likewise. Uti-
lizing the techniques in Lemmas S4 and S5 of Liu et al. (2014), we have

Pr(|ω̂k − ω̃k| ≥ ε) ≤ C13 exp{−C14nε
2}, (A.11)

where C13 and C14 are positive constants. Under Assumption (A2), it is easy to see that
n1/2−κ → ∞ as n goes to ∞. Thus taking ε = 2−1c1n

−κ, Equation (A.11) becomes

Pr(|ω̂k − ω̃k| ≥ 2−1c1n
−κ) ≤ C13 exp{−C15n

1−2κ}, (A.12)

where C15 = 4−1c21C14. Combing Equations (A.7) and (A.12), we could conclude that

Pr(|ω̂k − ωk| ≥ c1n
−κ) ≤ C16 exp{−C17n

1−2κ},

where C16 = max{C7, C13} and C17 = min{C8, C15}. Furthermore,

Pr

(
max
1≤k≤p

|ω̂k − ωk| ≥ c1n
−κ

)
≤

p∑
k=1

Pr(|ω̂k − ωk| ≥ c1n
−κ)

≤ C16p exp{−C17n
1−2κ}.

Let d1 = C16 and d2 = C17. This complete the proof of first part of Theorem.
In the next, let us turn to the proof of the second part. Noting that Â = {k : ω̂k ≥

c1n
−κ, k = 1, · · · , p}, we can conclude that {A * Â} ⊆ {|ω̂k−ωk| ≥ c1n

−κ, for some k ∈ A}.
Thus {maxk∈A |ω̂k − ωk| ≤ c1n

−κ} ⊆ {A ⊆ Â}. Consequently,

Pr(A ⊆ Â)

≥ Pr

(
max
k∈A

|ω̂k − ωk| ≤ c1n
−κ

)
= 1− Pr

(
max
k∈A

|ω̂k − ωk| ≥ c1n
−κ

)
≥ 1− q Pr(|ω̂k − ωk| ≥ c1n

−κ

)
≥ 1− d1q exp{−d2n

1−2κ}.
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Proof of Corollary 1: Define

B = {k : ωk ≥ 2−1c1n
−κ, k = 1, · · · , p}

and

C =

{
max
1≤k≤p

|ω̂k − ωk| ≤ 2−1c1n
−κ

}
.

On one hand, it is easy to see that, for any k ∈ B, 2c−1
1 nκωk ≥ 1. Thus |B| ≤ 2c−1

1 nκ
∑

1≤k≤p ωk.
On the other hand, we could show that C ⊆ {|Â| ≤ |B|}. Therefore, we could conclude that
there exist positive constants d3 and d4

Pr

{
|Â| ≤ 2c−1

1 nκ
∑

1≤k≤p

ωk

}
≥ Pr{|Â| ≤ |B|} ≥ Pr{C} ≥ 1− d3p exp{−d4n

1−2κ},

where the last inequality is gotten in the similar way as the proof in Theorem 1.

Proof of Theorem 2: For k ∈ Ac, Xk is independent of (T1, T2) according to the As-
sumption (i) in Theorem 2. Thus Sk(Xk) and S(T1, T2) are independent. From Theorem 3
of Székely et al. (2007), we could conclude that ρk = 0, and furthermore ωk = 0. For k ∈ A,
from Assumption (A2), we have that ωk ≥ 2c1n

−κ. Therefore, we could draw the conclusion
that

max
k∈Ac

ωk < min
k∈A

ωk,

and ωk = 0 if and only if k ∈ Ac. Thus, the first part of Theorem 2 is proved.
Now, let’s deal with the second part. Under Assumption (A2) and the assumptions listed

in Theorem 2, we have

Pr

(
min
k∈A

ω̂k ≤ max
k∈Ac

ω̂k

)
= Pr

(
max
k∈Ac

ω̂k −max
k∈Ac

ωk −min
k∈A

ω̂k +min
k∈A

ωk ≥ min
k∈A

ωk

)
≤ Pr

(
max
k∈Ac

|ω̂k − ωk| ≥ c1n
−κ

)
+ Pr

(
max
k∈A

|ω̂k − ωk| ≥ c1n
−κ

)
≤ 2Pr

(
max
1≤k≤p

|ω̂k − ωk| ≥ c1n
−κ

)
≤ 2d1p exp{−d2n

1−2κ}.

Finally, we could arrive at

Pr

(
min
k∈A

ω̂k > max
k∈Ac

ω̂k

)
≥ 1− 2d1p exp{−d2n

1−2κ}.

This finishes the proof of second part.
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Figure 1: The line charts of adaptive threshold value versus sample size for aJMDC-SIS under
different settings in Example 1: (a) θ = 0.5, ρ = 0.6; (b) θ = 0.5, ρ = 0.9; (c) θ = 2, ρ = 0.6; (d)
θ = 2, ρ = 0.9; (e) θ = 8, ρ = 0.6; (f) θ = 8, ρ = 0.9. The black dashed lines are the number of truly
important covariates, while the red broken lines are the threshold values identified by aJMDC-SIS.
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Table 1: Pk, Pa and threshold value d0 in Example 1.

θ n Method ρ = 0.6 ρ = 0.9
P1 P2 P3 Pa d0 P1 P2 P3 Pa d0

0.5 100 aJMDC-SIS 0.920 0.258 0.948 0.248 99 0.966 0.898 0.966 0.892 84
JMDC-SIS 0.788 0.102 0.872 0.100 21 0.890 0.754 0.892 0.736 21

RCDCS 0.008 0.558 0.030 0.000 21 0.010 0.040 0.016 0.000 21
JCR 0.806 0.038 0.900 0.038 21 0.880 0.686 0.890 0.678 21

200 aJMDC-SIS 0.992 0.534 1.000 0.532 57 1.000 0.992 0.998 0.992 26
JMDC-SIS 0.994 0.486 1.000 0.484 37 0.998 0.994 0.998 0.992 37

RCDCS 0.028 0.916 0.084 0.000 37 0.020 0.098 0.020 0.002 37
JCR 0.992 0.212 0.996 0.212 37 0.998 0.980 0.998 0.980 37

2 100 aJMDC-SIS 0.912 0.260 0.948 0.250 99 0.962 0.902 0.972 0.896 84
JMDC-SIS 0.772 0.088 0.858 0.084 21 0.886 0.742 0.890 0.728 21

RCDCS 0.012 0.536 0.028 0.000 21 0.008 0.036 0.014 0.000 21
JCR 0.814 0.044 0.910 0.044 21 0.876 0.680 0.896 0.676 21

200 aJMDC-SIS 0.994 0.516 1.000 0.512 55 0.998 0.996 1.000 0.994 28
JMDC-SIS 0.992 0.480 1.000 0.476 37 0.998 0.988 0.998 0.988 37

RCDCS 0.022 0.918 0.098 0.002 37 0.014 0.096 0.020 0.004 37
JCR 0.994 0.196 0.998 0.196 37 0.998 0.982 0.998 0.982 37

8 100 aJMDC-SIS 0.908 0.260 0.956 0.250 98 0.960 0.894 0.968 0.884 88
JMDC-SIS 0.776 0.084 0.858 0.080 21 0.874 0.716 0.908 0.704 21

RCDCS 0.012 0.542 0.036 0.000 21 0.006 0.034 0.012 0.000 21
JCR 0.812 0.044 0.912 0.044 21 0.876 0.674 0.888 0.670 21

200 aJMDC-SIS 0.996 0.530 1.000 0.528 58 1.000 1.000 1.000 1.000 29
JMDC-SIS 0.994 0.488 1.000 0.484 37 0.998 0.994 0.996 0.994 37

RCDCS 0.028 0.916 0.106 0.004 37 0.020 0.108 0.020 0.006 37
JCR 0.992 0.202 0.998 0.202 37 0.998 0.982 0.998 0.982 37
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Table 2: The 5%, 25%, 50%, 75% and 95% quantiles of minimum model size to include all the
important covariates in Example 1.

θ n Method ρ = 0.6 ρ = 0.9
5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

0.5 100 JMDC-SIS 10 89 250 576 1376 3 4 6 24 210
RCDCS 334 949 1371 1712 1937 325 983 1462 1777 1966

JCR 27 201 579 1252 1865 3 5 9 35 258
200 JMDC-SIS 4 10 42 126 429 3 3 4 5 9

RCDCS 170 675 1195 1585 1921 409 1125 1520 1776 1963
JCR 5 49 212 663 1603 3 4 5 6 15

2 100 JMDC-SIS 13 88 260 600 1424 3 4 6 26 218
RCDCS 324 955 1374 1680 1942 380 1015 1469 1782 1966

JCR 25 207 606 1254 1803 3 4 8 32 301
200 JMDC-SIS 4 11 40 131 498 3 3 4 5 9

RCDCS 188 734 1137 1572 1938 425 999 1473 1763 1963
JCR 5 52 202 705 1558 3 4 5 6 16

8 100 JMDC-SIS 13 81 255 614 1351 3 4 6 29 268
RCDCS 337 890 1331 1730 1953 361 1011 1460 1775 1960

JCR 24 192 665 1258 1813 3 4 8 37 299
200 JMDC-SIS 4 11 39 138 527 3 3 4 5 9

RCDCS 215 661 1158 1575 1919 432 996 1434 1740 1972
JCR 6 53 222 694 1674 3 4 5 6 19
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Table 3: Pk, Pa and threshold value d0 in Example 2.

θ n Method ρ = 0.6 ρ = 0.9
P1 P2 P3 Pa d0 P1 P2 P3 Pa d0

0.5 200 aJMDC-SIS 0.924 0.73 0.848 0.654 61 0.928 0.896 0.896 0.850 38
JMDC-SIS 0.928 0.652 0.800 0.576 37 0.932 0.886 0.884 0.836 37

RCDCS 0.328 0.020 0.022 0.006 37 0.470 0.098 0.060 0.032 37
JCR 0.786 0.428 0.710 0.374 37 0.768 0.712 0.724 0.650 37

300 aJMDC-SIS 0.990 0.894 0.940 0.854 57 0.992 0.974 0.962 0.952 19
JMDC-SIS 0.994 0.876 0.952 0.860 52 0.996 0.982 0.976 0.968 52

RCDCS 0.756 0.046 0.050 0.010 52 0.856 0.196 0.108 0.078 52
JCR 0.926 0.594 0.844 0.556 52 0.930 0.882 0.902 0.858 52

2 200 aJMDC-SIS 0.938 0.722 0.840 0.646 60 0.924 0.886 0.882 0.836 37
JMDC-SIS 0.920 0.652 0.804 0.572 37 0.922 0.874 0.878 0.826 37

RCDCS 0.344 0.022 0.030 0.004 37 0.470 0.080 0.062 0.032 37
JCR 0.766 0.442 0.696 0.382 37 0.752 0.700 0.716 0.634 37

300 aJMDC-SIS 0.992 0.896 0.932 0.850 56 0.990 0.964 0.956 0.942 20
JMDC-SIS 0.988 0.884 0.954 0.862 52 0.996 0.982 0.976 0.968 52

RCDCS 0.762 0.048 0.048 0.010 52 0.852 0.198 0.116 0.080 52
JCR 0.916 0.590 0.844 0.554 52 0.934 0.886 0.910 0.862 52

8 200 aJMDC-SIS 0.940 0.718 0.840 0.644 61 0.918 0.864 0.864 0.816 37
JMDC-SIS 0.932 0.644 0.796 0.572 37 0.920 0.866 0.858 0.804 37

RCDCS 0.348 0.024 0.026 0.006 37 0.474 0.076 0.064 0.036 37
JCR 0.758 0.434 0.706 0.382 37 0.754 0.706 0.710 0.640 37

300 aJMDC-SIS 0.992 0.880 0.950 0.848 56 0.994 0.968 0.966 0.952 20
JMDC-SIS 0.990 0.874 0.946 0.848 52 0.996 0.984 0.978 0.968 52

RCDCS 0.772 0.046 0.048 0.012 52 0.854 0.204 0.124 0.086 52
JCR 0.914 0.592 0.838 0.550 52 0.942 0.892 0.898 0.866 52
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Table 4: The 5%, 25%, 50%, 75% and 95% quantiles of minimum model size to include all the
important covariates in Example 2.

θ n Method ρ = 0.6 ρ = 0.9
5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

0.5 200 JMDC-SIS 3 6 22 107 532 3 3 5 18 166
RCDCS 214 709 1100 1441 1858 55 227 499 871 1417

JCR 3 13 80 393 1517 3 4 13 87 907
300 JMDC-SIS 3 3 7 24 121 3 3 3 5 31

RCDCS 215 633 980 1378 1797 30 142 350 579 1088
JCR 3 5 31 203 1123 3 3 5 16 213

2 200 JMDC-SIS 3 6 24 101 506 3 3 5 20 177
RCDCS 245 689 1086 1465 1847 54 241 466 826 1440

JCR 3 14 87 400 1543 3 4 13 100 904
300 JMDC-SIS 3 3 8 29 133 3 3 3 5 32

RCDCS 206 625 981 1389 1797 27 146 323 591 1127
JCR 3 5 33 213 1164 3 3 5 18 236

8 200 JMDC-SIS 3 6 23 108 536 3 3 5 22 220
RCDCS 269 720 1052 1447 1850 54 242 447 815 1438

JCR 3 14 80 419 1513 3 4 13 90 1062
300 JMDC-SIS 3 3 8 26 134 3 3 3 5 36

RCDCS 220 619 974 1398 1775 31 152 329 597 1069
JCR 3 5 36 213 1161 3 3 5 17 210
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Table 5: Pk, Pa and threshold value d0 in Example 3.

θ n Method ρ = 0.6 ρ = 0.9
P1 P2 P3 Pa d0 P1 P2 P3 Pa d0

0.5 200 aJMDC-SIS 0.920 0.826 0.782 0.678 72 0.982 0.966 0.952 0.942 48
JMDC-SIS 0.848 0.758 0.716 0.574 37 0.990 0.976 0.944 0.934 37

RCDCS 0.048 0.046 0.030 0.002 37 0.050 0.058 0.036 0.022 37
JCR 0.458 0.512 0.600 0.284 37 0.580 0.634 0.688 0.524 37

300 aJMDC-SIS 0.992 0.944 0.890 0.862 50 1.000 0.994 0.986 0.986 36
JMDC-SIS 0.992 0.948 0.922 0.896 52 1.000 0.998 0.994 0.994 52

RCDCS 0.072 0.058 0.040 0.002 52 0.056 0.072 0.066 0.030 52
JCR 0.692 0.746 0.844 0.558 52 0.786 0.824 0.886 0.760 52

2 200 aJMDC-SIS 0.924 0.816 0.780 0.686 69 0.986 0.976 0.964 0.956 48
JMDC-SIS 0.862 0.770 0.722 0.586 37 0.986 0.976 0.960 0.942 37

RCDCS 0.044 0.048 0.022 0.002 37 0.052 0.052 0.032 0.014 37
JCR 0.454 0.526 0.604 0.282 37 0.584 0.624 0.690 0.528 37

300 aJMDC-SIS 0.992 0.950 0.892 0.870 49 1.000 0.996 0.984 0.984 35
JMDC-SIS 0.994 0.942 0.922 0.890 52 1.000 0.998 0.998 0.998 52

RCDCS 0.072 0.062 0.040 0.002 52 0.064 0.064 0.064 0.030 52
JCR 0.698 0.744 0.856 0.566 52 0.798 0.852 0.894 0.772 52

8 200 aJMDC-SIS 0.942 0.838 0.772 0.692 70 0.984 0.976 0.964 0.956 48
JMDC-SIS 0.880 0.768 0.722 0.592 37 0.984 0.982 0.968 0.958 37

RCDCS 0.042 0.042 0.022 0.000 37 0.044 0.056 0.030 0.016 37
JCR 0.468 0.534 0.614 0.292 37 0.594 0.656 0.704 0.552 37

300 aJMDC-SIS 0.996 0.962 0.888 0.876 49 1.000 0.998 0.988 0.988 34
JMDC-SIS 0.994 0.946 0.920 0.888 52 1.000 0.998 0.996 0.996 52

RCDCS 0.078 0.066 0.032 0.004 52 0.070 0.070 0.064 0.030 52
JCR 0.710 0.760 0.864 0.580 52 0.808 0.854 0.896 0.774 52
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Table 6: The 5%, 25%, 50%, 75% and 95% quantiles of minimum model size to include all the
important covariates in Example 3.

θ n Method ρ = 0.6 ρ = 0.9
5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

0.5 200 JMDC-SIS 3 6 26 100 644 3 3 3 5 46
RCDCS 375 1009 1459 1723 1957 96 601 1080 1578 1919

JCR 4 29 145 570 1635 3 7 30 208 1074
300 JMDC-SIS 3 3 5 15 155 3 3 3 3 9

RCDCS 346 905 1321 1702 1938 107 487 947 1442 1816
JCR 3 9 38 184 823 3 4 10 47 391

2 200 JMDC-SIS 3 6 25 93 613 3 3 3 5 43
RCDCS 387 985 1422 1749 1947 105 602 1088 1571 1902

JCR 5 29 139 570 1525 3 7 31 192 1074
300 JMDC-SIS 3 3 5 13 129 3 3 3 3 6

RCDCS 307 914 1334 1699 1936 115 473 925 1387 1833
JCR 3 8 32 165 810 3 4 9 41 339

8 200 JMDC-SIS 3 5 24 87 622 3 3 3 5 35
RCDCS 399 985 1438 1719 1945 102 597 1090 1603 1902

JCR 4 27 145 533 1586 3 6 28 180 1106
300 JMDC-SIS 3 3 5 13 118 3 3 3 3 6

RCDCS 313 929 1343 1676 1923 105 466 926 1450 1861
JCR 3 7 30 160 756 3 4 8 43 338
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Table 7: Pk, Pa and threshold value d0 in Example 4.

θ n Method ρ = 0.6 ρ = 0.9
P1 P2 P3 Pa d0 P1 P2 P3 Pa d0

0.5 200 aJMDC-SIS 0.540 0.852 0.636 0.356 63 0.968 0.984 0.974 0.960 47
JMDC-SIS 0.430 0.804 0.590 0.294 37 0.960 0.986 0.962 0.940 37

RCDCS 0.138 0.096 0.026 0.006 37 0.252 0.214 0.124 0.076 37
JCR 0.066 0.590 0.486 0.044 37 0.562 0.768 0.784 0.544 37

300 aJMDC-SIS 0.810 0.938 0.802 0.642 59 0.996 0.998 0.994 0.992 22
JMDC-SIS 0.766 0.956 0.808 0.630 52 0.994 0.998 0.998 0.992 52

RCDCS 0.268 0.154 0.056 0.012 52 0.626 0.610 0.290 0.246 52
JCR 0.104 0.768 0.696 0.082 52 0.764 0.928 0.944 0.758 52

2 200 aJMDC-SIS 0.546 0.840 0.638 0.372 64 0.962 0.980 0.972 0.950 48
JMDC-SIS 0.422 0.806 0.584 0.290 37 0.946 0.980 0.956 0.926 37

RCDCS 0.134 0.090 0.032 0.012 37 0.246 0.230 0.134 0.076 37
JCR 0.066 0.582 0.482 0.048 37 0.556 0.772 0.792 0.538 37

300 aJMDC-SIS 0.814 0.930 0.788 0.636 60 0.996 0.998 0.996 0.994 22
JMDC-SIS 0.764 0.952 0.806 0.632 52 0.994 0.998 0.996 0.992 52

RCDCS 0.258 0.152 0.058 0.012 52 0.612 0.600 0.282 0.230 52
JCR 0.108 0.768 0.702 0.084 52 0.766 0.928 0.944 0.760 52

8 200 aJMDC-SIS 0.558 0.842 0.636 0.382 63 0.964 0.986 0.968 0.952 51
JMDC-SIS 0.420 0.810 0.588 0.280 37 0.942 0.980 0.958 0.924 37

RCDCS 0.132 0.086 0.034 0.010 37 0.256 0.228 0.134 0.082 37
JCR 0.062 0.576 0.484 0.044 37 0.542 0.772 0.790 0.524 37

300 aJMDC-SIS 0.820 0.930 0.790 0.638 62 0.996 0.998 0.994 0.994 23
JMDC-SIS 0.764 0.950 0.814 0.630 52 0.994 0.998 0.996 0.992 52

RCDCS 0.268 0.154 0.052 0.012 52 0.616 0.582 0.286 0.234 52
JCR 0.112 0.764 0.694 0.086 52 0.770 0.924 0.940 0.762 52
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Table 8: The 5%, 25%, 50%, 75% and 95% quantiles of minimum model size to include all the
important covariates in Example 4.

θ n Method ρ = 0.6 ρ = 0.9
5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

0.5 200 JMDC-SIS 6 29 109 284 844 3 3 4 7 55
RCDCS 206 511 859 1339 1828 26 133 268 511 1175

JCR 41 314 754 1279 1846 3 6 28 165 893
300 JMDC-SIS 3 9 29 87 392 3 3 3 4 7

RCDCS 99 359 691 1111 1627 11 54 128 285 667
JCR 28 206 588 1199 1776 3 5 9 48 307

2 200 JMDC-SIS 5 32 110 289 953 3 3 4 7 62
RCDCS 191 506 875 1357 1831 26 128 266 519 1211

JCR 44 322 738 1260 1781 3 6 27 160 903
300 JMDC-SIS 3 10 30 90 413 3 3 3 4 7

RCDCS 101 344 685 1121 1680 12 55 130 278 689
JCR 27 204 595 1198 1784 3 5 9 50 347

8 200 JMDC-SIS 5 32 107 291 949 3 3 4 7 54
RCDCS 193 488 886 1329 1836 27 122 262 534 1168

JCR 42 311 742 1271 1835 3 6 29 170 917
300 JMDC-SIS 3 10 31 97 420 3 3 3 4 7

RCDCS 120 355 682 1092 1730 13 56 136 279 685
JCR 23 205 615 1216 1777 3 5 9 46 323
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Table 9: Pk, Pa and threshold value d0 in Example 5.

θ n Method P1 P2 P3 Pa d0

0.5 200 aJMDC-SIS 0.906 0.812 0.936 0.686 71
JMDC-SIS 0.868 0.736 0.906 0.584 37

RCDCS 0.988 0.484 0.950 0.456 37
JCR 0.732 0.280 0.212 0.046 37

300 aJMDC-SIS 0.982 0.964 0.992 0.940 67
JMDC-SIS 0.988 0.970 0.990 0.948 52

RCDCS 1.000 0.892 1.000 0.892 52
JCR 0.924 0.386 0.340 0.106 52

2 200 aJMDC-SIS 0.906 0.814 0.940 0.694 72
JMDC-SIS 0.860 0.724 0.890 0.556 37

RCDCS 0.990 0.482 0.946 0.452 37
JCR 0.728 0.284 0.212 0.044 37

300 aJMDC-SIS 0.982 0.966 0.984 0.932 65
JMDC-SIS 0.986 0.968 0.990 0.944 52

RCDCS 1.000 0.886 1.000 0.886 52
JCR 0.924 0.388 0.336 0.112 52

8 200 aJMDC-SIS 0.896 0.804 0.938 0.680 72
JMDC-SIS 0.850 0.718 0.886 0.540 37

RCDCS 0.990 0.478 0.938 0.442 37
JCR 0.724 0.286 0.210 0.044 37

300 aJMDC-SIS 0.974 0.968 0.988 0.930 66
JMDC-SIS 0.982 0.970 0.988 0.940 52

RCDCS 1.000 0.876 1.000 0.876 52
JCR 0.922 0.386 0.344 0.116 52
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Table 10: The 5%, 25%, 50%, 75% and 95% quantiles of minimum model size to include all the
important covariates in Example 5.

θ n Method 5% 25% 50% 75% 95%
0.5 200 JMDC-SIS 4 11 28 77 273

RCDCS 7 19 44 99 286
JCR 40 234 620 1191 1848

300 JMDC-SIS 3 4 6 15 53
RCDCS 3 6 11 28 91

JCR 18 130 415 1037 1779
2 200 JMDC-SIS 4 12 28 77 288

RCDCS 7 20 42 101 272
JCR 43 226 643 1184 1823

300 JMDC-SIS 3 4 6 15 53
RCDCS 3 5 11 27 88

JCR 19 128 418 1024 1782
8 200 JMDC-SIS 4 12 29 79 291

RCDCS 7 20 44 100 286
JCR 40 222 643 1208 1816

300 JMDC-SIS 3 4 7 16 61
RCDCS 3 5 11 27 94

JCR 19 127 416 1033 1764
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Table 11: Pk, Pa and threshold value d0 in Example 6.

θ n Method ρ = 0.6 ρ = 0.9
P1 P2 P3 P4 Pa d0 P1 P2 P3 P4 Pa d0

0.5 200 aJMDC-SIS 0.960 0.870 0.756 0.356 0.324 102 0.998 0.990 0.974 0.900 0.898 81
JMDC-SIS 0.892 0.764 0.646 0.212 0.178 37 0.988 0.972 0.954 0.822 0.816 37

RCDCS 0.020 0.042 0.028 0.030 0.000 37 0.040 0.056 0.036 0.046 0.016 37
JCR 0.488 0.512 0.558 0.204 0.108 37 0.596 0.646 0.694 0.596 0.466 37

300 aJMDC-SIS 1.000 0.962 0.906 0.436 0.422 77 1.000 0.996 0.996 0.946 0.946 46
JMDC-SIS 0.998 0.948 0.880 0.392 0.376 52 1.000 0.996 0.998 0.950 0.950 52

RCDCS 0.026 0.072 0.048 0.038 0.000 52 0.028 0.068 0.084 0.040 0.010 52
JCR 0.744 0.746 0.810 0.392 0.300 52 0.820 0.852 0.890 0.842 0.744 52

2 200 aJMDC-SIS 0.962 0.870 0.768 0.360 0.332 104 0.998 0.984 0.978 0.916 0.910 81
JMDC-SIS 0.916 0.760 0.652 0.216 0.176 37 0.986 0.974 0.956 0.820 0.816 37

RCDCS 0.016 0.050 0.030 0.028 0.002 37 0.036 0.052 0.032 0.050 0.016 37
JCR 0.500 0.538 0.576 0.216 0.116 37 0.600 0.670 0.706 0.592 0.480 37

300 aJMDC-SIS 1.000 0.970 0.912 0.438 0.434 75 1.000 0.998 0.996 0.968 0.968 46
JMDC-SIS 1.000 0.952 0.888 0.406 0.394 52 1.000 0.998 0.996 0.954 0.954 52

RCDCS 0.020 0.076 0.048 0.038 0.000 52 0.034 0.066 0.082 0.036 0.010 52
JCR 0.766 0.758 0.812 0.388 0.296 52 0.820 0.862 0.900 0.838 0.744 52

8 200 aJMDC-SIS 0.976 0.876 0.776 0.350 0.322 101 0.994 0.990 0.982 0.910 0.908 80
JMDC-SIS 0.920 0.784 0.654 0.242 0.214 37 0.988 0.976 0.966 0.814 0.810 37

RCDCS 0.022 0.044 0.032 0.034 0.002 37 0.040 0.046 0.036 0.036 0.010 37
JCR 0.506 0.532 0.572 0.216 0.110 37 0.602 0.658 0.702 0.604 0.486 37

300 aJMDC-SIS 1.000 0.970 0.894 0.438 0.426 72 1.000 1.000 0.998 0.968 0.968 46
JMDC-SIS 0.998 0.964 0.890 0.398 0.386 52 1.000 0.998 0.998 0.958 0.958 52

RCDCS 0.026 0.084 0.054 0.038 0.000 52 0.046 0.068 0.078 0.032 0.012 52
JCR 0.782 0.756 0.808 0.384 0.296 52 0.830 0.866 0.896 0.840 0.750 52

34



Table 12: The 5%, 25%, 50%, 75% and 95% quantiles of minimum model size to include all the
important covariates in Example 6.

θ n Method ρ = 0.6 ρ = 0.9
5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

0.5 200 JMDC-SIS 7 63 249 866 1608 4 4 6 23 155
RCDCS 578 1211 1562 1808 1966 152 735 1255 1645 1936

JCR 15 115 452 1092 1804 4 9 49 273 1137
300 JMDC-SIS 4 20 95 367 1170 4 4 4 6 48

RCDCS 634 1177 1532 1770 1957 159 642 1136 1544 1916
JCR 5 37 179 475 1550 4 5 12 55 468

2 200 JMDC-SIS 6 56 235 818 1654 4 4 6 21 144
RCDCS 578 1256 1602 1830 1954 182 755 1296 1666 1937

JCR 15 108 429 1037 1793 4 8 44 245 1098
300 JMDC-SIS 4 19 95 352 1191 4 4 4 6 40

RCDCS 638 1157 1522 1766 1957 164 655 1123 1502 1910
JCR 5 35 166 456 1522 4 5 10 54 420

8 200 JMDC-SIS 7 50 229 828 1604 4 4 5 22 147
RCDCS 579 1228 1603 1810 1969 183 710 1263 1667 1923

JCR 14 105 419 1028 1817 4 8 41 234 1165
300 JMDC-SIS 4 18 87 325 1104 4 4 4 6 42

RCDCS 600 1120 1491 1795 1957 153 630 1127 1517 1910
JCR 5 34 152 430 1531 4 5 10 52 434
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Table 13: Names of genes selected by various approaches.
aJMDC-SIS JMDC-SIS RCDCS JCR
NM−005480 NM−005480 Contig38288−RC NM−001109
NM−003600 NM−003600 NM−005480 NM−001333
NM−003981 NM−003981 NM−007057 NM−018410

Contig38288−RC Contig38288−RC NM−003981 NM−000633
Contig31288−RC Contig31288−RC Contig48328−RC NM−005628
Contig48328−RC Contig48328−RC NM−003600 Contig58368−RC

NM−003158 NM−003158 NM−003158 NM−001809
Contig46044−RC Contig46044−RC Contig31288−RC NM−001605

NM−013277 NM−013277 NM−001605 NM−006607
NM−018410 NM−018410 NM−013438 NM−001168
NM−007057 NM−007057 NM−005733 NM−005480

D14678 D14678 NM−004805 NM−020142
NM−003258 NM−003258 Contig33814−RC NM−005733
NM−001605 NM−001605 NM−018410 NM−004119
NM−004701 NM−004701 D14678 NM−003258
NM−007019 NM−007019 NM−014585 Contig51749−RC
NM−005733 NM−005733 AL117629 Contig56390−RC
Contig41652 Contig41652 NM−013277 NM−014863
NM−004336 NM−004336 NM−004336 AB007916
NM−004217 NM−004217 NM−006607 NM−013277

U74612 U74612 NM−001809 D14678
AB040926 AB040926 Contig51749−RC NM−004217

NM−001168 NM−001168 NM−006845 NM−003600
NM−001809 NM−001809 NM−004701 Contig38288−RC
NM−004805 NM−004805 Contig34766−RC NM−000909

NM−006845 NM−000270 NM−003430
NM−014585 Contig8818−RC NM−013299
NM−006607 U74612 NM−007184
NM−001109 AB040926 D38553
AL117629 NM−006819 NM−017702

NM−014501 NM−003258 AL049265
Contig45816−RC NM−014501 NM−019013

NM−006819 Contig44615−RC AF007153
Contig57584−RC NM−001109 NM−005375

NM−014176 Contig38726−RC NM−000125
NM−007274 NM−007019 Contig31288−RC
NM−003686 AL137566 AL160131

Contig8818−RC NM−004217 NM−006027
AB024704 Contig45816−RC NM−007057

NM−002466 NM−004456 Contig56843−RC
NM−016359 Contig56843−RC NM−003686

D38553 Contig55069−RC NM−003158
NM−020974 Contig46044−RC NM−018455
NM−004219 Contig39061−RC NM−005412

Contig34766−RC NM−020974 Contig57584−RC
Contig33814−RC Contig57584−RC NM−006819

AL117530 NM−001333 NM−007019
NM−001333 NM−001255 NM−005005
NM−006027 Contig41652 AK001166

Contig51749−RC NM−003686 NM−003981
AL161983 NM−006082 NM−020974
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