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Abstract: Population aging is a conspicuous demographic trend shaping the world 
profoundly. Walking is a critical travel mode and physical activity for older adults. As 
such, there is a need to determine the factors influencing the walking behavior of older 
people in the era of population aging. Streetscape greenery is an easily perceived built-
environment attribute and can promote walking behavior, but it has received 
insufficient attention. More importantly, the non-linear effects of streetscape greenery 
on the walking behavior of older adults have not been examined. We therefore use 
readily available Google Street View imagery and a fully convolutional neural network 
to evaluate human-scale, eye-level streetscape greenery. Using data from the Hong 
Kong Travel Characteristic Survey, we adopt a machine learning technique, namely 
random forest modeling, to scrutinize the non-linear effects of streetscape greenery on 
the walking propensity of older adults. The results show that streetscape greenery has 
a positive effect on walking propensity within a certain range, but outside the range, the 
positive association no longer holds. The non-linear associations of other built-
environment attributes are also examined. 
 
Keywords: Streetscape greenery; Big data; Machine learning; Random forest; Travel 
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1. Introduction 

The aging of the population, as a result of rising life expectancy, a decreasing 
fertility rate, and the aging of baby boomers (born between 1946 and 1964), is 
profoundly shaping a wide variety of regions around the world (e.g., Japan and Hong 
Kong). The absolute number and percentage of older people worldwide are ballooning. 
In 2019, there were 700 million older adults (defined as people aged ≥ 65) worldwide. 
By 2050, this number will nearly double to 1.3 billion. Additionally, the percentage of 
older people was 9.1% in 2019 and is predicted to climb to 15.9% in 2050 (United 
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Nations, 2019). Similarly, Hong Kong is facing the issue of population aging and 
dramatic and unprecedented changes in its demographic profile. Second only to Japan 
(28.4% in 2020, topping the global list) in the Asian context, Hong Kong has a high 
percentage of older people (18.2% in 2020). The percentage of its older people is 
predicted to grow to 34.7% in 2050 (United Nations, 2019). 

Older people's mobility has been widely documented to be closely related to their 
participation in activities, social integration, physical and psychological health, and life 
satisfaction (Alsnih and Hensher, 2003; Metz, 2000; Chen et al., 2021). Their mobility 
is a determinant of quality of life and subjective wellbeing (Banister and Bowling, 
2004). For older adults, an insufficient level of mobility leads to difficulty in 
participating/engaging in social activities and interacting with the wide community and, 
consequently, low morale, depression, and loneliness (Wong et al., 2018).  

Walking is a form of active mobility (low-intensity physical activity) for residents 
and a travel mode with considerable economic, environmental, social, safety, and health 
advantages (Frank et al., 2007; Heath et al., 2012; Sælensminde, 2004; Wong et al., 
2021). Walking has thus received much attention from governments, non-government 
organizations, and researchers. It has been advocated and promoted universally. As 
Cervero and Kockelman (1997) state, a paramount transportation objective is diverting 
travel demand from motorized to active modes such as walking. Moreover, walking is 
a critical travel mode for older adults, who generally have limited access to cars (Hu et 
al., 2013; Yang, 2018), in many locations (e.g., Chinese cities) (Cheng et al., 2019b; 
Liu et al., 2021b; van Wee and Handy, 2016). This is particularly true for Hong Kong. 
Owing to its mixed land use, pedestrian-friendly urban design, and high walkability, 
Hong Kongers have a predilection for and habit of walking, as evidenced by Hong 
Kongers taking the highest number of walking steps all over the world (Althoff et al., 
2017). 

Urban greenery may facilitate physical activity (due in part to humankind's 
biophilia nature) and alter people's walking behavior (Lu et al., 2018). Traditionally, its 
evaluation heavily relies on in-person assessments, field observations, aerial 
photography, and remote sensing imagery. However, these methods have limitations, 
such as high labor intensity, a restriction to small areas, a restriction to a bird's eye 
(overhead) view, and the inability to represent the human scale (Kang et al., 2020). 
Fortunately, owing to the availability of street-view imagery data and the rapid 
development of urban analytics, streetscape greenery has garnered increasing attention 
from researchers (especially those in the public health field) in recent years. We can 
now efficiently and accurately estimate streetscape greenery from street-view imagery 
(Kang et al., 2020). 

Existing literature has extensively emphasized the effects of socio-demographic 
characteristics and built-environment attributes (e.g., population density and street 
connectivity) on the travel behavior of older adults. However, few studies have 
evaluated the role of streetscape greenery (Yang et al., 2020; Yang et al., 2019; Zang et 
al., 2020). More importantly, most, though not all, of these studies have assumed a pre-
determined (often linear) relationship between travel behavior and its contributory 
factors. Nevertheless, the connection between the built environment and the travel 
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behavior of older people may be non-linear (Ding et al., 2019; Liu et al., 2021a; van 
Wee and Handy, 2016). This non-linearity can be explained by the peer effect (or 
collective socialization) and travel utility (Cheng et al., 2020a; Galster, 2018; 
Mokhtarian and Salomon, 2001). In recent years, pioneering research has focused on 
the issue of non-linearity (Cheng et al., 2020a; Ding et al., 2018b; Ding et al., 2018c; 
Zhang et al., 2020). However, to our best knowledge, only one study (Cheng et al., 
2020a) concentrates on the non-linearity of the connection between the built 
environment and the travel behavior of older people. No studies on the effect of 
streetscape greenery on travel behavior have considered the issue of non-linearity. As 
ignoring a genuinely non-linear effect may result in misunderstandings and erroneous 
practical implications (Cheng et al., 2020a), delving deeper into the non-linearity issue 
is crucial. 

To address the above issues, we use data from the Hong Kong Travel 
Characteristic Survey (TCS) 2011 and Google Street View (GSV) imagery (detailed in 
Section 3) to assess the walking propensity (or propensity of walk trip-making, 
propensity to walk) of older people and streetscape greenery, respectively. A random 
forest model is adopted to evaluate the non-linear effects of streetscape greenery on 
walking propensity. A binary logistic regression model is generated to make a 
comparison with the random forest model. Notably, socio-demographic and built-
environment attributes (measured by TCS 2011 data or geo-data) are controlled. The 
contributions of this study are (1) the examination of the connection between 
streetscape greenery and older people's walking propensity; (2) the scrutinization of the 
non-linear and threshold effects of streetscape greenery on travel behavior for the first 
time; and (3) the assessment of the non-linear and threshold effects of built-
environment attributes on older people's walking behavior. 

The remainder of this paper is organized as follows. The ensuing section reviews 
the literature on the contributory factors of the walking behavior of older adults. 
Sections 3 introduces the data and methodology of random forest modeling. Section 4 
presents the results of random forest modeling and compares them with the outcomes 
of logit modeling. Section 5 winds up the paper, discusses theoretical and practical 
implications, and summarizes research limitations. 

 
2. Literature review 

A voluminous body of the existing literature has confirmed the effects of the built 
environment on the walking behavior of older people. We conducted electronic searches 
in the database of Web of Science and retrieved pertinent articles published between 
2006 and 2020. We first screened the papers by title and then by abstracts. We 
considered their relevance to this study and manually chose papers for detailed reviews.  

Table 1 summarizes selected studies on the link between the built environment and 
the travel behavior of older people. Normally, socio-demographic characteristics (e.g., 
sex and income) are controlled to single out the effect of the built environment and 
remove the effects of confounders. Furthermore, the built environment is primarily 
measured either objectively or subjectively, but rarely both (Hou et al., 2020; Van Holle 
et al., 2016). Objectively assessed built-environment attributes have garnered the most 
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attention. 
The effects of a few built-environment attributes (e.g., population density and 

access to services) are relatively consistent. However, empirical findings (e.g., on 
walking facilities' effect) remain elusive, which can be attributed to differences in 
contexts, predicted and controlled variables, and research methodologies.  

In terms of study areas, North American cities have received the most scholarly 
attention. Asian cities (e.g., Hong Kong and Nanjing) have gradually entered the public 
discourse in the past decade. Most, if not all, Asian studies were completed after 2010. 
Furthermore, as a characteristic of the built environment, streetscape greenery has only 
very recently been spotlighted (Yang et al., 2019; Zang et al., 2020), mainly because of 
(1) advances in the techniques for measuring greenery that can precisely and efficiently 
estimate the perceived greenery at the eye level, and (2) the availability of street-view 
imagery data, which can be downloaded from mapping websites freely. Most 
importantly, the non-linear effect of the built environment on the walking behavior of 
older people has seldom been investigated. The only exception is the work of Cheng et 
al. (2020a), which is published very recently. Additionally, Van Cauwenberg et al. (2011) 
and Cerin et al. (2017) offer systematic reviews and meta-analyses of previous studies 
on the effects of the built environment on the walking behavior of older people. 
Interested readers can refer to the two studies for a better understanding of this topic. 
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Table 1  
Review of selected studies on walking behavior of older people and built-environment attributes. 
  

Reference Context Sample Walking behavior 
measure(s) 

Built environment 
measures 

Modeling approach Empirical findings 

North America 
Mendes de Leon 
et al. (2009) 

Chicago, the 
U.S. 

4,317 people aged 
≥ 65 

Walking time Neighborhood disorder 
(e.g., littering, trash, 
vandalism, and crumbled 
sidewalks) 

Multilevel linear 
regression model 

Neighborhood disorder is adversely 
associated with walking time. 

Shigematsu et al. 
(2009) 

King 
County/Seat
tle, the U.S. 

360 people aged ≥ 
66 

Transport walking 
time and 
recreational 
walking time 

Population density, street 
connectivity, etc. 

Partial correlation 
analysis 

Land-use mix significantly impacts both 
transport walking time and recreational 
walking time. 

Procter-Gray et 
al. (2015) 

Boston, the 
U.S. 

745 people aged ≥ 
70 

Transport walking 
propensity and 
recreational 
walking propensity 

Access to the bus, access 
to the hospital, etc. 

Logistic regression 
model 

Transport walking is strongly associated 
with measures of access to facilities 
while recreational walking is not. 

Maisel (2016) New York, 
the U.S. 

121 people aged ≥ 
65 

Walking time Population density, land-
use mix, street 
connectivity, etc. 

Spearman rank 
correlation analysis 

The built environment is insignificantly 
related to walking time. 

Barnes et al. 
(2016) 

British 
Columbia, 
Canada 

3,860 people aged 
≥ 45 

Transport walking 
propensity 

Walkability and transit 
access 

Logistic regression 
model 

Walkability and transit access are 
significantly correlated with walking-
for-transport trip propensity. 

Moniruzzaman 
et al. (2013) and 

Montreal, 
Canada 

31,631 one-way 
home-based trips 

Walking propensity Population density, job 
density, etc. 

Logistic regression 
model 

Population density, job density, and 
land-use mix positively influence the 
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Moniruzzaman 
and Páez (2016) 

made by people 
aged ≥ 55 

propensity to walk. 

Moniruzzaman 
et al. (2015) 

Montreal, 
Canada 

13,127 people 
aged ≥ 65 

Walking trip 
frequency 
 

Population density, land-
use mix, activity locations, 
etc. 

Ordered probit 
regression model 
 

Walking trip frequency is significantly 
influenced by job density but not by 
population density. 

Europe 
Van Holle et al. 
(2014) 

Ghent, 
Belgium 

438 people aged ≥ 
65 

Transport walking 
time and 
recreational 
walking time 

Walkability Multilevel linear 
regression model 

Walkability is positively related to 
transport walking time but 
insignificantly associated with 
recreational walking time. 

Van Holle et al. 
(2016) 

Ghent, 
Belgium 

438 people aged ≥ 
65 

Transport walking 
time 

Land-use mix, street 
connectivity, walkability, 
etc. 

Multilevel linear 
regression model 

Walkability and street connectivity 
significantly affect transport walking 
time. 

Etman et al. 
(2014) 

Spijkenisse, 
Rotterdam, 
the 
Netherlands 

408 people aged ≥ 
65 

Walking time Access to functional 
features, aesthetics, 
destination accessibility, 
etc. 

Linear regression 
model 

Access to functional features is 
significant associated with walking 
time. 

Böcker et al. 
(2017) 

Greater 
Rotterdam, 
the 
Netherlands 

147 people aged ≥ 
65 

Walking propensity Building diversity, green 
space cover, etc. 

Logistic regression 
model 

Building density is positively related to 
walking propensity. 

Australia 

Boruff et al. 
(2012) 

Perth, 
Australia 

325 people living 
in 32 retirement 
villages 

Walking trip 
frequency 
 

Land-use exposure Logistic regression 
model 

Commercial and institution land 
exposure does not significantly 
influence walking trip frequency. 
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Ghani et al. 
(2018) 

Brisbane, 
Australia 

11,035 people 
aged 58 to 65 

Transport walking  
duration 

Population density,  
street connectivity, etc. 

Multilevel binary 
logistic regression 
model 

The built environment has a larger 
walking time effect on older people than 
on younger counterparts. 

Asia 
Leung et al. 
(2018) 

Hong Kong 679 people aged ≥ 
65 

Daily step counts Land-use mix, access, etc. Structural equation 
model 

Land-use mix and street connectivity 
significantly affect daily step counts. 

Yang et al. 
(2019) 

Hong Kong 10,700/1,083 
people aged ≥ 65 

Walking propensity 
and walking time 

Population density, land-
use mix, access to 
recreational facilities, 
streetscape greenery, etc. 

Two-level binary 
logistic regression 
model and two-
level linear 
regression model 

Streetscape greenery positively impacts 
walking propensity and walking time. 

Zang et al. 
(2020) 

Hong Kong 180 able-bodied 
people aged ≥ 65 

Walking time Population density, land-
use mix, street 
connectivity, and 
streetscape greenery 

Bivariate 
correlation analysis 

Streetscape greenery positively affects 
walking time, but other built-
environment variables do not. 

Koh et al. (2015) Singapore 168 people aged ≥ 
65 

Walking time Presence of stairs/slope, 
scenery, directional sign, 
accessibility to 
opportunities within the 
neighborhood, etc. 

Generalized linear 
regression model 

Road crossing delays and access to 
shops and sheltered social interaction 
areas significantly affect walking time. 

Hou (2019) Singapore Around 7500 
people ≥ 55 

Non-work walking 
trip frequency 

Population density, land-
use mix, access to regional 
centers, access to the rail 
transit, access to cultural 
facilities, etc. 

Zero-inflated 
ordered probit 
regression model 

Access to regional centers is positively 
related to walking trip frequency. The 
built environment-travel link varies 
across older adult subgroups. 

Hou et al. (2020) Singapore 1002 people aged Daily walking trip Population density, street Multivariate Perceived access to recreational 
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≥ 55 frequency connectivity, transit 
accessibility, access to 
recreational facilities, etc. 

ordered probit 
regression model 

facilities is positively related to walking 
trip frequency. Objectively assessed and 
perceived built-environment variables 
jointly affect walk trip-making. 

Cheng et al. 
(2020a) 

Nanjing, 
China 

702 people aged ≥ 
60 

Walking time Population density, land-
use mix, access to the bus, 
access to bike-sharing, etc. 

Random forest Built-environment attributes affect 
walking time in a non-linear manner, 
and they matter only at certain levels. 
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3. Data and methodology 
3.1. TCS 2011 data 

TCS 2011 is a wide-ranging and comprehensive travel survey that was conducted 
by the Transport Department of the Hong Kong government during September 2011 
and January 2012. The TCS is conducted roughly every ten years. It includes three main 
surveys, namely household interview survey (for collecting the trip information of 
Hong Kong residents), stated preference survey (for identifying the contributory factors 
of transport mode choices for users), and hotel/guesthouse tourists survey (for gathering 
the trip-making characteristics and trip information of tourists who stayed in 
hotels/guesthouses). Among them, the household interview survey is the backbone of 
TCS 2011. The data from this survey were acquired from 101,385 residents in 35,401 
randomly selected households on weekdays. The sampling rate of the TCS 2011 
household interview survey is around 1.5%. 

Akin to most large-scale official travel surveys, the TCS 2011 household interview 
survey collects much information on the respondents at three levels: (1). Household-
level information (e.g., residential location, house type, monthly household income, the 
number of family numbers, and car availability); (2). household member-level 
information (e.g., age, sex, employment status, and industry engaged); and (3). trip-
level information, namely the 24-hour trip document for every family member (e.g., 
trip origin and destination, trip mode, trip start time and end time, trip legs, and 
interchange locations). TCS 2011 includes the residential locations of respondents, and 
we therefore geo-code the data in the ArcGIS software (Version 10.6) for subsequent 
residence-centric built-environment measurement. 

According to international standards (United Nations, 2019) and local conditions 
of Hong Kong (e.g., eligibility for social services specifically targeting older citizens) 
(Loo and Lam, 2012), this study defines older people as people aged ≥ 65. This 
definition is also used in the literature (Cheng et al., 2020b; Yang et al., 2019). We 
categorize the respondents of TCS 2011 into two groups: people who had done at least 
some walking (walking propensity = 1) in the reference 24 hours and those who had 
not done so (walking propensity = 0). 
 
3.2. Streetscape greenery 

Street-view imagery describes the urban physical environment with a view highly 
similar to human vision and virtually represents a static 360-degree street-view 
panorama. It has particular advantages (e.g., high geographical coverage, few data bias, 
cost-effectiveness, time-effectiveness, and human-centered scale) over traditional data 
sources (Kang et al., 2020). GSV is the earliest online street-view service (initiated in 
2007), covering cities in around 90 countries. Its data are collected by drive-by sensing 
cars equipped with Global Positioning System devices. 

Using GSV imagery, the eye-level streetscape greenery index (or green view 
index), which reflects people's visual contact with, or exposure to, streetscape greenery, 
is estimated as follows. First, the residential locations of sampled older adults are geo-
coded according to coordinates (longitude and latitude) into the ArcGIS platform. 
Second, all street segments near a residential location are automatically identified. 
Third, GSV-generating positions with a fixed spacing of 50 m are determined. Fourth, 
hundreds of thousands of GSV images are downloaded from the Google Maps website. 
For each GSV-generating position, four images that are mutually exclusive but 
collectively represent the 360-degree panorama are needed. Fifth, a machine learning 
technique (more specifically, fully convolutional neural network, see Fig. 1) (Long et 
al., 2015) is used to automatically distill greenery pixels from the street-view imagery 
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(Fig. 1). The streetscape greenery calculation formula for a GSV-generating position is 
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = ∑ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖

4
𝑖𝑖=1
∑ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖4
𝑖𝑖=1

. 

 

 
Fig. 1. Illustration of the GSV-based eye-level streetscape greenery estimation method 
 
3.3. Variables 

The selection of predictor variables is guided by the literature and data availability. 
Eight socio-demographic variables and six built-environment variables are selected. In 
addition to streetscape greenery (variable of our main focus), five built-environment 
control variables are chosen, as guided by the "5Ds" built-environment assessment 
framework (Ewing and Cervero, 2010). All the built-environment variables are 
measured within the ArcGIS framework using the geo-data from an online mapping 
service website, OpenStreetMaps (https://www.openstreetmap.org).  

Table 2 gives the descriptions and summary statistics of the predicted and predictor 
variables. Sixty-three percent of older people had done at least some walking during 
the reference 24 hours, while the other thirty-seven percent had not done so.  
 
Table 2 
Descriptions and summary statistics of the predicted and predictor variables 

Variable Description Mean/Pe
rcentage 

Std. 
Dev. 

Predicted variable 
Walking 
propensity 

Indicator variable; = 1 for having done some walking 
on the reference day, = 0 otherwise 

0.63  
 

 

Predictor variables: socio-demographics 
House type Indicator variable; = 1 for person living in a privately 

owned house, = 0 otherwise 
0.47    

Household size Number of family numbers 2.76  1.38 
Male Indicator variable; = 1 for male, = 0 for female 0.49   
Age Age of older adults (unit: year) 73.82  6.93  
Automobile Indicator variable; = 1 for person with household car 0.07   
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availability, = 0 otherwise 
Low-income 
household 

Indicator variable; = 1 for person with monthly 
household income less than HK$ 15,000 

0.57   

Middle-income 
household 
(reference) 

Indicator variable; = 1 for person with monthly 
household income between HK$ 15,000 and 
HK$ 50,000 

0.37   

High-income 
household 

Indicator variable; = 1 for person with monthly 
household income no less than HK$ 50,000 

0.06   

Predictor variables: built environment 
Population 
density 

Population density within the neighborhood (unit: 
103 people/km2) 

47.98  32.95  

Land-use mix Entropy for land uses within the neighborhood. 
= ∑ (pii ln pi)/ ln N, where pi  is the proportion of 
the i-th land use, and N is the number of land use 
categories. In this study, three land uses (residential, 
office, and retail) are considered (N = 3). 

0.44  0.23  

Intersection 
density 

Density of street intersections within the 
neighborhood (unit: 1/km2) 

72.14  49.75  

Access to bus 
stops 

Number of bus stops within 400 m 
20.10  11.34  

Access to 
recreational 
facilities 

Number of recreational facilities within 400 m 
18.12  9.02  

Streetscape 
greenery 

Green view index, calculated by the proportion of 
greenery pixels to total pixels (see Fig. 2) 

0.15  0.03  

Sample size 10,700 
  
3.4. Methodology 

The random forest (a.k.a., random decision forest) is among the most popular and 
powerful supervised machine learning algorithms. It can execute both classification and 
regression tasks and often performs better in the former (classification tasks) than in 
the latter (regression tasks). This ensemble machine learning algorithm based on the 
concept of "random decision forests," first proposed by Ho (1995), creates a forest with 
many trees for classification or regression.  

Fig. 2 presents the random forest algorithm. The algorithm combines the simplicity 
of decision trees with flexibility, and only a subset of samples and predictor variables 
are used for a single tree. The algorithm thus reduces variance and is robust against 
noise and outliers, leading to better stability and accuracy. Meanwhile, the algorithm 
does not overfit data because of the law of large numbers, so it is unlikely to have poor 
accuracy on unseen data and can generalize well for training data. In stark contrast to 
traditional regression-based analyses, the random forest algorithm does not pre-
determine a specific relationship between the predicted and predictor variables and thus 
has fewer restrictions. Consequently, it better represents the genuine relationship 
between the predicted and predictor variables. Moreover, the random forest algorithm 
handles missing values and maintains accuracy in the event of missing data. 
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Fig. 2. Illustration of the random forest algorithm. 
Source: Cheng et al. (2019a) and Cheng et al. (2020a) 

 
In sharp contrast to traditional regression-based statistical analyses that pre-

determine a (usually linear) relationship between the predicted and predictor variables, 
the random forest and most, if not all, other machine learning techniques do not produce 
t-statistics, p-values, and statistical significance indicators. Instead, a key result of 
random forest modeling is relative importance, which is the importance of each 
predictor variable in predicting the focal variable. Hence, the interpretation of random 
forest modeling results must be treated with caution. In addition to relative importance, 
random forest modeling produces partial dependence plots (PDPs) to characterize the 
relationship between the predicted and predictor variables, which depends on the levels 
of predictor variables. 

Three parameters need to be specified or tuned before using the random forest 
algorithm. They are the maximum depth of a tree, the number of features (splitting 
variables) for each tree, and the number of trees (forest size). In this study, to obtain the 
optimal combination of the three parameters, we employ a widely used technique, 
namely grid search (Claesen and De Moor, 2015), rather than arbitrarily determining 
the parameters. We conduct the grid search as follows. First, we determine the ranges 
of the three parameters (from 1 to 20 for the maximum tree depth, from 2 to 10 for the 
number of features for each tree, and from 10 to 1000 with an interval of 10 for the 
number of trees). Second, we estimate a total of 18,000 (= 20×9×100) possible 
combinations and test the model performance using out-of-bag error (Cheng et al., 
2019a). After conducting the 18,000 tests, we find that the model performs best when 
the maximum depth of a tree is 12, the number of features for each tree is 3, and the 
number of trees is 850. Further analyses are conducted using this optimal model.  
 

4. Results 
4.1. Relative importance of predictor variables 

Table 3 presents the random forest results and shows the relative importance of 
predictor variables. Fig. 3 graphically describes the relative importance. The variable 
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of primary interest, namely Streetscape greenery, has the second-highest relative 
importance (12.82%), exceeded only by Age (16.65%). This outcome supports the 
critical role of streetscape greenery in determining the walking propensity of older 
adults. Furthermore, the other "5Ds" built-environment variables closely follow 
Streetscape greenery in terms of relative importance (ranging from 9.27% to 10.55%). 
This result demonstrates that the "5Ds" framework is useful in capturing the built 
environment.  

Collectively, the built-environment variables account for 62.89% of the total 
relative importance, while the socio-demographic variables constitute the other 37.11%. 
This result indicates that the walking propensity of older adults is primarily a function 
of the built environment and secondarily a function of the socio-demographic 
characteristics of older people. It is in agreement with the work of Cheng et al. (2020a), 
which deciphers the relationship between the built environment and the walking 
behavior of older adults in a Chinese city (Nanjing). Moreover, the result reinforces 
empirical findings from other regions (e.g., North America): built-environment 
variables have larger effects than socio-demographics on many travel outcomes (Ding 
et al., 2018a; Ewing and Cervero, 2001, 2010; Gim, 2013; Wang and Ozbilen, 2020). 
 
Table 3 
Predictor variables’ relative importance calculated by the random forest 

Variable category 
Variable Rank Relative importance 

(%) 
Total 
(%) 

Socio-demographics House type 12 1.79 37.11 
 Household size 8 8.09  
 Male 10 3.22  
 Age 1 16.65  
 Automobile 11 2.03  
 Household income  9 5.33  

Built environment Population density 5 9.92 62.89 
 Land use mix 7 9.27  
 Intersection density 6 9.87  
 Access to bus stops 3 10.55  

 
Access to recreational 
facilities 4 10.46 

 

 Streetscape greenery 2 12.82  
Note: The relative importance of household income is calculated by the sum of the importance of 
household income dummies. 
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Fig. 3. Relative importance of predictor variables 
 
4.2. Non-linear effect of Streetscape greenery 

As previously mentioned, in addition to relative importance, random forest 
modeling produces PDPs for predictor variables. Fig. 4 shows the PDP of Streetscape 
greenery (the variable of dominant interest) and illustrates the non-linear effect of the 
streetscape greenery on the walking propensity of older adults. The x-axis of a PDP 
shows the distribution of the predictor variable. A smoothed curve (shown in red) is 
drawn to reduce the noise and better describe the relationship, following the work of 
Tao et al. (2020).  

Fig. 4 offers strong evidence of the non-linear effect of the streetscape greenery 
on the walking propensity of older adults and demonstrates that the facilitating effect 
of the streetscape greenery on walking propensity is by no means unconditional and not 
always true. A green view index smaller than 0.24 is positively related to walking 
propensity. However, when the green view index exceeds 0.24, it has a limited (even 
slightly negative) effect on walking propensity. A possible explanation is that an ultra-
high green view index often means the absence or insufficiency of other attractions for 
older adults. 
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Fig. 4. Non-linear effect of streetscape greenery on walking propensity 
 
4.3. Non-linear effects of other built-environment variables 

Fig. 5 presents the PDPs of the other five built-environment variables. The positive 
effect of population density on walking propensity is observed when the population 
density is lower than 75,000 people/km2 (Fig. 5a). It is reasonably inferred that a high 
population density always means that there are abundant opportunities nearby, thereby 
promoting walking behavior. However, the population density has marginal (slightly 
adverse) effects when it exceeds 75,000 people/km2. A possible explanation is that a 
higher risk of injury is expected in ultra-dense areas (Cheng et al., 2020a). 

Fig. 5b reveals the effect of the land-use mix on walking propensity. When the 
land-use mix index is smaller than 0.55, it mostly has a positive effect on walking 
propensity. This outcome matches our expectations and the literature (Cerin et al., 2017; 
Cheng et al., 2020a). A compelling explanation is that a high land-use mix index 
indicates that there are diverse opportunities in the neighborhood, satisfying the need 
for walking. However, this does not hold if the land-use mix index is over 0.55. That is, 
a negative relationship is observed if the land-use mix index ranges from 0.55 to 0.80.  

Fig. 5c shows the effect of the density of street intersections (a street connectivity 
measure) on walking propensity. When the intersection density increases from 25/km2 
to 65/km2, walking propensity increases sharply and reaches a peak value at 65/km2. 
However, in other ranges, the intersection density has a marginal or even adverse effect 
on walking propensity. This interesting finding is largely consistent with Cheng et al. 
(2020a). The causes of the relationship are unclear, and more studies are needed to 
support or reject our results. 

Figs. 5d and 5e illustrate the effects of access to bus stops and access to 
recreational facilities, respectively, on walking propensity. As expected, non-linear 
effects are again observed. 
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Fig. 5. Non-linear effects of other built-environment attributes on walking propensity  
 
4.4. Comparison of random forest modeling and binary logistic modeling 

We use 10-fold cross-validation to evaluate the performances of random forest 
modeling and binary logistic modeling. (Pearson's correlation analysis results and the 
binary logistic modeling results are provided in Tables A1 and A2, Appendices.) Two 
common metrics of classification, namely accuracy and precision (Powers, 2020), are 
used. The formula of the two metrics are as follows: 

𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
∑ 𝑇𝑇𝑇𝑇𝑖𝑖 + 𝑇𝑇𝑇𝑇𝑖𝑖𝑁𝑁
𝑖𝑖=1

∑ 𝑇𝑇𝑇𝑇𝑖𝑖 + 𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖𝑁𝑁
𝑖𝑖=1

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
∑ 𝑇𝑇𝑇𝑇𝑖𝑖𝑁𝑁
𝑖𝑖=1

∑ 𝑇𝑇𝑇𝑇𝑖𝑖 + 𝐹𝐹𝐹𝐹𝑖𝑖𝑁𝑁
𝑖𝑖=1

 

where N is the number of samples in the validation set, 𝑇𝑇𝑇𝑇𝑖𝑖  is true positive (the 
observed walking propensity is 1, and the predicted walking propensity is also 1), 𝑇𝑇𝑇𝑇𝑖𝑖 
is true negative (the observed walking propensity is 0, and the predicted walking 
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propensity is also 0), 𝐹𝐹𝐹𝐹𝑖𝑖 is false positive (the observed walking propensity is 0, but 
the predicted walking propensity is 1), 𝐹𝐹𝐹𝐹𝑖𝑖 is false negative (the observed walking 
propensity is 1, but the predicted walking propensity is 0).  
 
Table 4 
Comparison of results from the random forest and the binary logistic regression model 

Model 
Accuracy Precision 
Mean Std. Mean Std. 

Random forest 0.640 0.013 0.666 0.012 
Binary logistic 
model 0.639 0.010 0.646 0.008 

 
Table 4 presents the 10-fold cross-validation results. It is seen that random forest 

modeling outperforms the traditional logit modeling for both metrics. 
 

5. Conclusions and discussions 
The aging of the population has become a popular phenomenon in many cities 

worldwide (Jing et al., 2021), such as Hong Kong. Given that walking is a prevalent 
travel mode for older adults and has multiple health and wellbeing benefits, determining 
the correlates of the walking behavior of older adults is of paramount importance. 
Furthermore, as an easily perceived built-environment attribute, streetscape greenery 
has seldom been investigated in the travel behavior literature of older adults but can 
now be accurately estimated using cutting-edge machine learning techniques. 
Therefore, this study scrutinizes its non-linear and threshold effects on the walking 
propensity of older people in Hong Kong by adopting random forest modeling. The 
findings of this study are that (1) the walking propensity of older adults is primarily a 
function of the built environment and secondarily a function of the socio-demographic 
characteristics of those older people; (2) streetscape greenery has considerable 
importance in predicting walking propensity; (3) streetscape greenery has non-linear 
and threshold effects on walking propensity; (4) a green view index smaller than 0.24 
is positively related to walking propensity. However, when the green view index 
exceeds 0.24, it has a limited (even slightly adverse) effect on walking propensity; and 
(5) built-environment characteristics affect walking propensity in a non-linear way. 

This study has profound methodological and practical implications, and its 
findings will be of great interest to decision-makers, researchers, and urban 
planners/designers. On the one hand, research on the non-linear relationship between 
travel behavior and the built environment has proliferated in the last four years. This 
study and its counterparts collectively illustrate that pre-determining a relationship 
between travel behavior and the built environment and overlooking the possible 
presence of complexity in the relationship result in unreliable, deceptive parameter 
estimates and lead to erroneous practical implications. Therefore, using techniques that 
are more sophisticated than traditional regression-based analyses, such as machine 
learning techniques, can help us to better understand the complex link between the built 
environment and travel behavior. On the other hand, this study benefits current practice. 
Traditionally, due to the dominance of linear association studies (or the insufficiency of 
non-linear association studies), decision-makers and urban planners/designers often 
have limited knowledge of the dose-response effect between built-environment 
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characteristics and travel outcomes (and other indicators, such as health, economic, and 
equity) and assume linear effects. It is tempting for them to focus myopically on merely 
increasing the value of a specific favorable characteristic (e.g., blindly uplifting urban 
greenery or offering green spaces). On the basis of the evidence gathered in this study 
and similar research, modifying the physical environment to a specific level may be 
optimal. As an example, for a while, the conventional thinking was that the population 
density has a monotonically positive effect on walking activity because a high density 
always means that there are abundant opportunities nearby, promoting walking 
behavior. However, as Lu et al. (2019) and Cheng et al. (2020a) indicated, the effect of 
population density on walking becomes negative after it exceeds a certain threshold, or 
a population density within a certain range is optimal in terms of promoting walking 
behavior. An explanation is that an ultra-dense area induces crowdedness and higher 
risks of injury, discouraging walking (Cheng et al., 2020a). Likewise, this study implies 
that a green view index of 0.24 is optimal from the perspective of promoting the 
walking activity of older adults. Hence, the traditional approach of immoderate 
increases may be ineffective and even bring about side effects, and keeping built-
environment variables within a certain range may be the most effective approach. The 
effective range of a variable should be carefully assessed in theoretical and empirical 
studies. 

Owing to the rapid development of urban analytics, the built environment can be 
now measured at a more nuanced, fine-grained, human-centered scale and quantified 
more accurately and comprehensively. Using GSV imagery to sense and quantify the 
built environment (more broadly, the physical or living environment) and estimate the 
eye-level real-world landscape (e.g., streetscape greenery, sky view, and street canyon) 
has become increasingly popular in recent years. We believe that the use of street-view 
imagery can substantially enrich our understanding of the connection between the built 
environment and travel behavior. Most empirical studies can be devoted to this issue. 
We argue that the use of street-view imagery does supplement, augment, and advance 
(but by no means fully replaces) traditional built-environment assessment methods. The 
traditional methods can still play an essential role because of their ease of use. 

Despite providing many insightful findings, this study has limitations. First, Hong 
Kong is an ultra-dense, mixed land-use city (Bao et al., 2020). The transferability or 
generalizability of the findings of this study to other places is unclear. More empirical 
studies conducted in other settings are needed to provide consistent/conflicting 
evidence and reach more persuasive conclusions. Second, there may be the combined 
or synergistic effects of built-environment variables (e.g., streetscape greenery and 
population density) on promoting walking behavior (Ding et al., 2018a; Wang and 
Ozbilen, 2020), which this study fails to analyze. Third, the empirical results of this 
study (e.g., relative importance and PDP) are surely conditional on the independent 
variables. Theoretically, the choice of independent variables should be mutually 
exclusive but collectively exhaustive. In practice, however, this cannot be 
accomplished, and the missing variable bias commonly exists. In other words, we 
cannot control for all factors contributing to the dependent variable. Although this study 
is well informed by the literature in the choice of contributory factors, more potential 
factors can be incorporated into the model to increase accountability. Fourth, in reality, 
people see and experience greenery in three dimensions. Hence, the greenery exposure 
estimates based on GSV imagery cannot fully capture human perceptions (Kang et al., 
2020). We suspect that this difference only affects our results in a marginal way. 
Nevertheless, we believe that street-view imagery data are far from perfect for 
environmental exposure, so more sophisticated research methods (e.g., virtual reality 
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and wearable cameras) can be used to assess population exposure to greenery and other 
elements with the advance of science and technology. 
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Appendix 
Table A1.  
Pearson’s correlation coefficient of predictor variables 

Variable X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 
House type (X1) 1             

Household size (X2) <0.01  1             
Male (X3) -0.02  0.04  1            
Age (X4) -0.01  -0.09  -0.03  1           

Automobile (X5) 0.15  0.21  <0.01  -0.04  1          
Low-income household (X6) -0.15  -0.55  -0.03  0.14  -0.23  1         
High-income household (X7) 0.20  0.26  <0.01  -0.04  0.32  -0.29  1        

Population density (X8) 0.02  0.02  -0.01  -0.01  -0.08  -0.01  -0.04  1       
Land-use mix (X9) 0.36  -0.02  <0.01  0.03  <0.01  -0.03  0.05  -0.04  1      

Intersection density (X10) 0.29  -0.02  -0.01  0.03  -0.05  -0.01  0.01  0.61  0.50  1     
Access to bus stops (X11) 0.05  -0.02  -0.02  0.04  -0.08  0.03  -0.04  0.40  0.29  0.50  1    

Access to recreational facilities (X12) -0.02  <0.01  -0.01  0.01  -0.03  -0.01  <0.01  0.22  0.23  0.35  0.40  1   
Streetscape greenery (X13) -0.09  -0.01  0.01  <0.01  0.04  0.04  -0.03  -0.42  -0.21  -0.53  -0.49  -0.28  1  

 
Table A2.  
Binary logistic modeling results 

Variable Coefficient Standard deviation p-value 
House type -0.164** 0.047 <0.001 

Household size 0.150** 0.019 <0.001 
Male -0.309** 0.041 <0.001 
Age 0.048** 0.003 <0.001 
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Automobile -0.412** 0.086 <0.001 
Low-income household 0.185** 0.052 <0.001 

Middle-income household Reference   
High-income household -0.504** 0.093 <0.001 

Population density 0.005** 0.001 <0.001 
Land-use mix 0.315** 0.103 0.002 

Intersection density 0.002* 0.001 0.029 
Access to bus stops 0.007** 0.002 0.003 

Access to recreational facilities 0.003 0.003 0.213 
Streetscape greenery 3.316** 0.751 <0.001 

Constant -4.404** 0.290 <0.001 
Performance statistics 

Pseudo R-squared 0.044 
Log-likelihood -6738.3 

Note: ** Significant at the 1% level. * Significant at the 5% level. 
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