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Abstract

The aim of this study is the design and preparation of Mater-Bi/halloysite nanocomposite materials
that could be employed as bioplastics alternative to the petroleum derived products. The
biocomposite materials at variable halloysite content (from 0 to 30 wt%) were prepared by using the
solvent casting method. We investigated the mechanical behaviour and the thermal properties of the
prepared nanocomposites in order to estimate their suitability as biocompatible packaging materials.
The thermo-mechanical characteristics were correlated to the nanocomposites’ morphologies, which
were studied by Scanning Electron Microscopy (SEM). As a general result, the physico-chemical
performances of Mater-Bi were improved by the presence of small amounts of nanotubes, which
evidenced a homogenous distribution in the polymer matrix. The strongest enhancements of the
thermal stability and tensile properties were achieved for Mater-Bi/halloysite 10 wt%. A further
addition of nanotubes determined the worsening of both thermal stability and mechanical
behaviour.

The attained knowledge represents the starting step for the development of packaging films

composed by Mater-Bi and halloysite nanotubes.
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1. Introduction

Environmental issues, e.g. pollution and climate change, are the most urgent challenges that science
must tackle in the medium period. The need to exploit and strengthen all the possibilities that green
chemistry offers is compelling. Therefore, scientists and researchers are making great efforts with
the aim to provide new green tools to the society, thus ensuring a more respectful development
model. Herein, the use of petroleum derived materials must be restricted due to their harmful
impact on the ecosystem and their non-biocompatibility. In the most recent years, new bio-derived
materials have been designed and studied with the purpose to replace traditional plactics. Hence, the
term “bioplastics” derived from the need to develop novel eco-sustainable systems without waiving
some important physico-chemical properties.

Biopolymers represent a profitable alternative for the design of new eco-friendly functional
materials being completely green, eco-sustainable and non-toxic (Liu et al., 2012; Gorrasi, 2015;
Biddeci et al., 2016; Rebitski et al., 2018). They can display some different features in relation with
the natural source where the raw matter is extracted and used during the preparation procedure
(Tharanathan, 2003; Mensitieri et al., 2011). The biopolymers charge is one of the most important
feature that affect their suitability in numerous applications (Bertolino et al., 2016). Among the
sustainable polymers, chitosan is positively charged, alginate and pectin are negatively charged,
starch and cellulose are neutral. It 1s also important to consider the different
hydrophilic/hydrophobic behaviours of such species that, in light of these reasons, offer a wide
range of choice to material scientists and engineers.

Nevertheless, some limitations to the use of pure biopolymers still exist and they are related to the
mechanical, thermal or gas barrier properties (Gorrasi et al., 2014; Lvov et al., 2016; Sharma et al.,
2018). In order to overcome these constraints, the most promising bioplastics are prepared through
the combination of both organic moieties and some inorganic fillers, such as clay nanoparticles

(Dziadkowiec et al., 2017; Almeida et al., 2019; Rebitski et al., 2019). Nanoclays are attracting the
3
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attention of the scientific community due to their peculiar features in terms of chemistry,
morphology, aspect ratio and charge (Peyne et al., 2017; Djellali et al., 2019; Lisuzzo et al., 2019b).
Among the clay nanoparticles, halloysite (Hal) is a 1:1 aluminosilicate that can be found in nature,
whose main property is its distinctive hollow tubular shape combined with its eco-compatibility,
no-toxicity and low cost (Joo et al., 2013; Zhang, 2017). Each halloysite nanotube is composed by a
layer of tetrahedral siloxanes and a layer of octahedral aluminols forming a sheet that rolls up, thus
creating two chemically different surfaces (Joussein et al., 2005). The outer surface (composed by
Si-O-Si groups) is negatively charged and the inner one (composed by Al-OH groups) is positively
charged in the 2-8 pH range (Lazzara et al., 2018). Moreover, halloysite nanotubes show a high
aspect ratio, since the inner diameter is about 10-20 nm, the outer diameter is 50-70 nm and the
length is 1-2 pm. Within this, it should be noted that the polydispersion degree in sizes is strongly
affected by the specific geological source of halloysite (Cavallaro et al., 2018a). Recently,
halloysite nanotube-based functional materials have received increasing attention as evidenced by
research articles (Tan et al., 2014; Zeng et al., 2019) and reviews (Yuan et al., 2015; Papoulis,
2019). Halloysite is a promising nanoclay in numerous applications, including drug delivery
(Viseras et al., 2008; Aguzzi et al., 2013; Dzamukova et al., 2015), catalysis (Liu et al., 2018;
Sadjadi et al., 2018) and remediation (Berthonneau et al., 2015; Nyankson et al., 2015; Panchal et
al., 2018; Deng et al., 2019; Wei et al., 2019) . There are many examples proving the importance of
halloysite in addition to ecocompatible polymers as starting building blocks for the preparation of
novel green materials with specific biomedical and technological functionalities (Silva et al., 2014;
Naumenko et al., 2016; Qin et al., 2016; Liu et al., 2017; Zhou et al., 2017; Ali and Ahmed, 2018;
Zhao et al., 2018; Suner et al., 2019). For instance, biocomposites with a multilayered morphology
based on a layer of halloysite sandwiched between two layers of chitosan were designed for medical
or fire retardancy applications (Bertolino et al., 2018). Literature reports the formation of a chitosan
film with embedded clay nanotubes used for the preparation of alginate covered tablets, which

exhibited pH controlled drug delivery capacity (Lisuzzo et al., 2019a). Bioplastics were prepared
4
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by filling halloysite into the pectin matrix for food packaging applications (Makaremi et al., 2017)
and by combining lisozyme loaded nanotubes and poly (g-caprolactone) (PCL) for the preparation
of antimicrobial packaging membrane (Bugatti et al., 2017). Moreover, bionanocomposites based
were obtained by the halloysite addition into cellulose and chitosan for the delivery of curcumin or
tissue engineering applications, respectively (Liu et al., 2013; Huang et al., 2017).

In our previous work (Cavallaro et al., 2018), we investigated the effect of different nanoclays
(sepiolite, halloysite, laponite and kaolinite) in the mechanical properties of Mater-Bi polymer
based nanocomposites with a fixed polymer/nanofiller ratio. The results showed that halloysite is
the most promising nanoclay for the preparation of bioplastics that present Mater-Bi as polymeric
matrix. Here, we studied the influence of the halloysite content on both the mechanical and thermal
features of the bionanocomposites in order to determine an effective protocol for the development

of Mater-Bi/halloysite hybrid films with proper characteristics for packaging purposes.

2. Materials and methods

2.1 Materials

Halloysite (Hal) was supplied as a “processed product” by Imerys from their Matauri Bay
operation. Mater-Bi is a Novamont product (Novara, Italy) and 1,2-Dichloroethane was purchased

by Sigma-Aldrich.

2.2 Preparation of the nanocomposites

The nanocomposites based on halloysite nanotubes and Mater-Bi were prepared by solvent casting
method. Firstly, the biopolymer (2 wt %) was solubilized in 1,2-Dichloroethane and Hal was added
as dry powder to the solution at different concentrations, from 0 to 30% w/w. Thereafter, each
mixture was magnetically stirred overnight at 25 °C and poured down into glass Petri dishes in
order to evaporate the solvent, thus obtaining different nanocomposite films, which were stored in a

desiccator at 25 °C.

5
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2.3 Methods

2.3.1. Dynamic Mechanical Analysis

A DMA Q800 instrument (TA Instruments) was used in order to study the tensile properties of the
Mater-Bi/Hal nanocomposites. In particular, the films were cut into rectangular shaped portions
(10.00%5.00x0.20 mm®) and the measurements were performed with a stress ramp of 1 MPa min™"

at 25.0 £ 0.5 °C. The analysis of the stress vs strain curves allowed us to determine the Young
modulus (Ym), the tensile strenght (o,) and the percentage of clongation at break (eo). The

integration of each curve provided the stored energy (E) for each film due to the mechanical stress

until the breaking point.

2.3.2. Thermogravimetry

Thermogravimetric analysis (TGA) was performed using a Q5000 IR apparatus (TA Instruments)
under the nitrogen flow of 25 cm® min~ ' for the sample and 10 cm® min~ ' for the balance. The
calibration was carried out by means of Curie temperature of standards (nickel, cobalt and their
alloys) as reported in literature (Blanco et al., 2014, 2017). Each sample, whose mass was ca. 5 mg,
was heated from room temperature to 750 °C with a rate of 20 °C min™. TGA allowed to study the
thermal degradation of Mater-Bi/Hal nanocomposites and to investigate any effects on the thermal

stability of these materials.

2.3.3. Scanning Electron Microscopy

The morphological features of the nanocomposites were studied by scanning electron microscopy,
which was conducted using a ESEM FEI QUANTA 200F microscope. In order to avoid any
charging under electron beam, each sample was coated with gold in argon by means of an Edwards

Sputter Coater S150A before the analysis. The measurements were carried out in high-vacuum



154 mode ( < 6 x 10~* Pa) for simultaneous secondary electrons. The energy of the beam was 20 kV,
155  while the working distance was set at 10 mm.

156

157  2.3.4. Fourier transform infrared (FTIR) spectroscopy

158  Fourier transform infrared (FTIR) measurements were performed at room temperature through a
159  Frontier FTIR spectrometer (PerkinElmer). The spectra were recorded using 64 scans in the range
160  between 4000 and 450 cm™, while the spectral resolution was set at 2 cm™. The experiments were
161  conducted on KBr pellets with a low content (< 2 wt%) of milled sample.

162

163 3. Results and discussion

164  3.1. Mechanical properties of Mater-Bi/Halloysite composite films

165  Some examples of stress vs. strain curves for Mater-Bi and Mater-Bi/halloysite films are presented

166  in Figure 1.
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169  Figure 1. Stress vs. strain curves for pure Mater-Bi and Mater-Bi/Halloysite films as a function of
170  the nanoclay content.
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The stress vs. strain curves (Figure 1) showed that all the prepared samples are elastic at first, since
the strain increases linearly with the stress, and they convert into plastic materials when the yelding
point is reached, thus the deformation becomes irreversible. Moreover, it was observed that the
strain at break is much higher for the Mater-Bi/Hal 10 wt% nanocomposite in comparison with the

other samples. The dependence of the elongation at break on the nanofiller content is shown in

Figure 2.
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Figure 2. Elongation at break for Mater-Bi/Halloysite composite films as a function of the nanoclay
content. The relative error is 2%.

It is clearly observed that the concentration of inorganic nanotubes deeply influences the ultimate
elongation of Mater-Bi based films (Figure 2). In particular, we detected that the percentage of
ultimate elongation is 30 and 100% for the pure Mater-Bi film and Mater-Bi/Hal 10 wt%,
respectively The further addition of nanotubes decreased the elongation at break up to ca. 10% for
the composite material with the largest Hal content (30 wt%). According to the literature (Tang and

Alavi, 2012; Cavallaro et al., 2013), the reduction of the maximum elongation can be explained by



187  considering the nanotubes/Mater-Bi interactions, which avoid the sliding of the polymer chains.
188  Similar effects were observed for the stored energy of the films during the tensile experiments

189  (Figure 3).
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191  Fig. 3. Stored energy up to breaking for Mater-Bi/Halloysite composite films as a function of the
192  nanoclays content. The relative error is 2%.

193

194  Specifically, we determined that the film based on pristine Mater-Bi possess a stored energy of
195 1718 kI m™. This value was significantly enhanced in the composite with Hal concentration of 10
196 wt% (ca. 7300 kJ m™), while the Mater-Bi/Hal 30 wt% exhibited a much lower stored energy (254
197 kJ m™). These observations are in good agreement with the data of both stress at break and Young

198  modulus (see Supporting Information).
199
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3.2. Thermal properties and structure

Thermogravimetric analysis was aimed to study the thermal stability and the degradation properties
of the Mater-Bi/Hal nanocomposite film. As examples, Figure 4 reports the thermogravimetric

curves for both pure Mater-Bi and Mater-Bi/Hal 10 wt% materials.
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Figure 4. Thermogravimetric (up) and differential thermogravimetric (bottom) curves for Mater-Bi
and Mater-Bi/Hal 10 wt% materials. The inset shows the thermogravimetric curves for for Mater-Bi
and Mater-Bi/Hal 10 wt% within the temperature range between 200 and 340 °C.

Compared to pristine Mater-Bi, the nanocomposite presents a larger residual mass at high
temperature as a consequence of the presence of the inorganic nanotubes (Figure 4). In this regards,
the residual masses at 700 °C for all the investigated materials are presented in Supporting

Information. These results evidenced that the nanocomposites with higher Hal contents possess
10
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larger residual masses at 700 °C. All the investigated materials showed a mass loss in the
temperature range between 25 and 150 °C that can be attributed to the moisture content of the
bioplastics. Both Mater-Bi and Mater-Bi/Hal 10 wt% nanocomposite exhibited two different
degradation steps in the 300-400°C range as highlighted by the corresponding differential
thermogravimetric curves (Figure 4). In order to explore the effect of halloysite on the thermal
stability of Mater-Bi, we determined the onset temperatures from the analysis of the
thermogravimetric curves. The onset temperature refers to the initial decomposition of Mater-Bi.
Namely, it represents the temperature where the polymer starts to decompose. The onset
temperature is obtained by the intersection of a line tangent to the baseline the with a line tangent to

the inflection point of the thermogravimetric curve.
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Figure 5. Onset temperature values for pure Mater-Bi and Mater-Bi/Halloysite composite films as a

function of the nanoclay content. The relative error is 2%.

Similarly to the tensile properties, the presence of small amounts of halloysite generated a slight
improvement of the Mater-Bi thermal stability (Figure 5). In particular, the nanocomposite with Hal

content of 10 wt% showed an enhancement of ca. 4 °C for the onset temperature with respect to that
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of pristine Mater-Bi. The slight thermal stabilization effect induced by the presence of small
amounts of halloysite can be observed by the comparison of the thermogravimetric curves for
Mater-Bi and Mater-Bi/Hal 10 wt% within the temperature range between 200 and 340 °C (see
inset in Figure 4). Larger filler contents (> 10 wt%) induced a worsening of the polymer thermal
stability as evidenced by the decrease of the onset temperature (Figure 5). Similar trends are
reported for the degradation temperatures estimated by the maxima of the DTG peaks (see
Supporting Information).These effects might be related to the peculiar morphological characteristics
of the nanocomposites that can be influenced by their specific composition. Based on
thermogravimetric results, the nanotubes should be uniformly dispersed in the polymeric matrix for
the composite materials with Hal < 10 wt%. This hypothesis was supported by SEM images (Figure
6), which showed that Mater-Bi/Hal 10 wt% presents the nanotubes randomly dispersed in its

surface.

Mater-Bi/Hal 30 wt%

Figure 6. Scanning Electron Microscopy image of the Mater-Bi/Hal nanocomposites at variable
composition. The scale bar is 10 um.

As reported in literature (Du et al.,, 2006, 2010; Makaremi et al., 2017), the homogenous
distribution of inorganic fillers within polymer can cause an enhancement of the thermal stability as
a consequence of the barrier effect towards the volatile products of the polymer degradation.
Furthermore, the encapsulation process within the Hal cavity can contribute to the improvement of

the Mater-Bi resistance to the thermal degradation. On the other hand, the decrease of the onset

12
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temperature at larger Hal contents could be an indication of the phase separation between polymer
and nanotubes, which are not more able to create a barrier towards the volatile products of the
Mater-Bi degradation. In this regards, it is reported that nanocomposites with a large Hal content
exhibit a lower thermal stability compared to the corresponding pure polymers because of their
layered structure (Cavallaro et al., 2011) and/or formation of nanotubes aggregates within the
matrix (Cavallaro et al., 2013). As evidenced in Figure 6, Mater-Bi/Hal 30 wt% presents a rough
surface with several clusters and holes indicating that the nanotubes are not homogeneously
dispersed in the polymeric matrix. Accordingly, both the thermal and mechanical properties of
Mater-Bi were worsened by the addition of a large amounts of halloysite nanotubes. The nature of
interactions between Mater-Bi and halloysite nanotubes in the nanocomposites was investigated by
FTIR spectroscopy. Figure 7 shows the FTIR spectra for Mater-Bi and Mater-Bi with variable Hal

content (10 and 30 wt%).
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Figure 7. Fourier Transform Infrared spectra for Mater-Bi, Mater-Bi/Hal 10 wt% and Mater-Bi/Hal
30 wt% materials.
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We observed that the characteristic FTIR signals of Mater-Bi are not influenced by the presence of
halloysite. In particular, we focused on the peaks centered at 2951 and 1730 cm™, which are related
to C-H aliphatic stretching and C=0 stretching vibration of polyester, respectively (Cataldi et al.,
2015). Both signals did not show neither shifting nor splitting phenomena in the Mater-Bi/Hal
nanocomposites highlighting that the polymer structure was not altered by the addition of the
nanotubes. Based on FTIR spectra, we can state that Mater-Bi is physically adsorbed onto halloysite

surfaces ruling out the presence of covalent bonds between matrix and filler.

4. Conclusions

We successfully prepared a novel biohybrid material based on Mater-Bi and halloysite nanotubes
by using the casting method from 1,2-Dichloroethane. The effect of the halloysite content on the
tensile and thermal properties of the nanocomposites was extensively investigated by Dynamic
Mechanical Analysis (DMA) and Thermogravimetry (TGA), respectively.

As a general result, we detected that the presence of small amounts (< 10 wt%) of nanotubes
confers improved thermo-mechanical performances with respect to those of Mater-Bi. Compared to
the pure biopolymer, Mater-Bi/Hal 10 wt% composite exhibited improvements of ca. 320 and 230%
for the ultimate elongation and the stored energy at the breaking point, respectively. Opposite
results were detected for nanocomposites with Hal concentrations larger than 10 wt%. As example,
the stored energy at break evidenced a decrease of ca. 85% in the nanocomposite with halloysite
content of 30 wt%. Similar effects were observed for the elastic modulus and the stress at breaking
point. As concerns the thermal behavior, we observed that the thermal stability of Mater-
Bi/halloysite nanocomposites slightly depends on their specific filler content. The addition of
nanotubes generated enhancements (up to 4 °C) of the polymer degradation temperature for
halloysite contents lower than 10 wt%. Oppositely, a thermal destabilization of Mater-Bi was

detected for nanocomposites with halloysite concentrations larger than 10 wt%. In particular,
14
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Mater-Bi/halloysite 30 wt% evidenced a slight decrease (ca. 5 °C) of the polymer degradation
temperature with respect to that of pure Mater-Bi that can be attributed to the formation of
halloysite clusters within the matrix. According to both TGA and DMA data, we can conclude that
the most promising performances were achieved for Mater-Bi/halloysite 10 wt% composite film,

which might be considered as a suitable biomaterial for packaging applications.

S. Supporting Information

Young modulus as a function of halloysite content for Mater-Bi/Hal nanocomposites. Stress at
breaking point as a function of halloysite content for Mater-Bi/Hal nanocomposites. Polymer
degradation temperature (first DTG peak) as a function of halloysite content for Mater-Bi/Hal
nanocomposites. Polymer degradation temperature (second DTG peak) as a function of halloysite
content for Mater-Bi/Hal nanocomposites. Thermogravimetric curves and thermogravimetric
parameters (residual mass at 700 °C and mass loss in temperature range between 25 and 150 °C) of

all investigated Mater-Bi based materials.
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