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Highlights 
•Bootstrap DEA method overpasses the limitation attributed to DEA methods constantly 
applied to the agricultural sector. 
•The majority of EU countries show the potential to increase their production efficiency 
through decreasing their input use. 
•From 1993 to 2013 some of the best input-oriented efficient countries are Belgium-
Luxembourg, Estonia, France, and Germany. 
•Most of the oldest EU member countries have a more efficient crop production from the 
resource savings point of view. 
•There is an heterogeneity of countries efficiency performances and the potential for 
increasing agricultural production. 

Abstract 

Globally, agriculture is a dominant form of human use of land with agro-ecosystems 
covering about 40% of the terrestrial surface of the Earth. In this context, the European 
Union considers agriculture a key sector of the economy, recognizing, however, the related 
environmental implications. The aim of this paper is to examine the agricultural efficiency 
of EU countries, through a bootstrap-Data Envelopment Analysis (DEA) approach, an 
effective nonparametric method for evaluating the relative efficiency of the decision-
making units. European datasets, suitable for policies and focused on the integration 
between agricultural productivity and ecosystem services (ESs) conservation, have been 
used to support planners and managers. Data related to five inputs (labor, land, capital, 
fertilizers, and irrigation area) and to one output connected to the economic value of 
agricultural production were collected from 1993 to 2013. The results show that the 
majority of EU countries have been experiencing increasing or decreasing returns to scale, 
highlighting their potential to increase their production efficiency by modifying their input 
use. Both for the output-oriented approach and the input-oriented approach, the majority 
of EU countries could better rationalize their input use obtaining more outputs and 
achieving production efficiency. DEA, a non-parametric methodology has been applied, 



using the concept of a reference group of efficient decision-making units that produce a 
similar output (peer group). Input-oriented and output-oriented DEA results and 
comparison indicate that most of the oldest EU countries have a more efficient and 
optimized crop production process in terms of resource savings and output maximization. 
This is probably due to the application of the Common Agricultural Policy. Therefore, in 
policy planning but also in management decisions, attention should always be paid not 
only to the maximization of agricultural production, but also to the environmental 
resource overexploitation. In this sense, best agricultural practices could represent a model 
to follow because they can maintain ESs without depressing production by using practices 
like conservation tillage, crop diversification, legume intensification and biological control 
perform giving the same results as intensive, high-input systems. 
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1. Introduction 

The fundamental global role played by agriculture in terms of environmental conservation, 
economic development, and social support to nutrition of the ever-growing world 
population, has made it a field of research interest (Pang et al., 2016). Given the fact that 



food accessibility represents one of the main factors supporting human welfare and quality 
of life (MEA, 2005), the stability of agricultural production, expressed in terms of crop yield 
and cultivated area, is of scientific and practical relevance (Garibaldi et al., 2011). 
Agriculture is a dominant form of human land use globally, and agro-ecosystems cover about 
40% of the terrestrial surface of the Earth (Power, 2010). In this context, the European 
Union considers agriculture a key sector of the economy, recognizing, however, the related 
environmental implications. Being a sector in a continuous phase of structural changes and 
affecting efficiency and productivity growth significantly, agriculture still draws the 
dominant interest of European institutions in terms of sustainable management and 
efficiency of natural resources use. Therefore, measuring environmental and economic 
efficiency provides policy-makers with valuable information for designing policies focused 
on regional sustainable development (Picazo-Tadeo et al., 2011). 
In terms of sustainable development, it is important to recognize that ecological systems 
both contribute to and are affected by the production of goods and services, called ecosystem 
services (ESs), which are of value to people. Among the four categories of ESs, food in terms 
of agricultural products is part of the provisioning services with a direct economic use-value 
associated to human use (MEA, 2005; Krutilla and Fisher, 1975). As highlighted by Dale and 
Polasky (2007), agriculture can affect and be affected by ESs through synergies and trade-
offs, or by services and disservices (Zhang et al., 2007). 
The aim of this paper is to examine the agricultural efficiency of EU countries, through a 
bootstrap-Data Envelopment Analysis (DEA) approach and the use of datasets suitable for 
policies, focused on the integration between agricultural productivity and ESs conservation, 
in order to develop a support tool for planners and managers. 

In this paper, firstly, the general problem of trade-off between agricultural productivity and 
the maintenance of ES provision is presented as well as a comprehensive literature review 
of studies on agricultural efficiency based on the use of DEA. Afterwards, the methodology 
developed in this research is described with an overview of the model variables. Finally, the 
results are discussed, focusing on some insights for the optimization of agricultural 
production in the EU Countries in the light of the conservation of ESs. 

1.1. The relation between agriculture and ecosystem services: synergies and trade-offs 

Modern agriculture can be seen as a Green Revolution that has simplified traditional agro-
ecosystems and replaced biological functions with increased external inputs of energy 
and agrochemicals (Bommarco et al., 2013). Agricultural intensification usually assures that 
the increasing global food demands are met, because it raises the productivity per unit area. 
However, it can have significant negative impacts on the environment and ESs (Tilman et 



al., 2001, Moss, 2008, Potts et al., 2010, Matson, 1997), or even negative effects on sustained 
crop productivity (Matson, 1997, Dale and Polasky, 2007). As a consequence, agriculture 
and other environmental threats, such as climate change, pollution, and biotic invasions 
have eroded many ESs sustaining human well-being (MEA, 2005). Agriculture and ESs are 
interrelated in at least three ways (Dale and Polasky, 2007): (1) agro-ecosystems generate 
beneficial ESs such as fertile soil production and retention, food production, and aesthetics; 
(2) agro-ecosystems receive beneficial ESs from other ecosystems such as pollination from 
surrounding non-agricultural ecosystems; and (3) ESs from non-agricultural systems may 
be impacted by agricultural practices. 
Although agro-ecosystems may have low ES values per unit area when compared with other 
ecosystems, such as estuaries and wetlands (Costanza et al., 1997), they offer the best chance 
of increasing global ESs via definitions of appropriate goals for agriculture and the use of 
land-management regimes that favor ES provision. Therefore, as highlighted by Porter et al. 
(2009), agriculture can be seen as the largest ecological experiment on Earth, with a large 
potential to damage global ESs but also to promote them via ecologically informed 
approaches to the design of agro-ecosystems that value both marketed and non-marketed 
ESs. In this context, Bommarco et al. (2013) have proposed ecological intensification as an 
alternative to agricultural intensification, in order to make agriculture more productive, 
stable, and resilient while minimizing environmental impacts (Foley et al., 2005) and 
consisting in integrating the management of ESs into crop production systems. 

1.2. Literature review on the DEA method 

1.2.1. The data envelopment analysis (DEA) method 

Assessing efficiency for different levels of territoriality and economic sectors has relevant 
practical implications, and thus, efficiency has become an essential research field. The 
classic paradigm defines productivity as the ratio between an output and the inputs used to 
achieve it (Daraio and Simar, 2007). Similarly, according to Lovell (1993), the productivity 
of a unit is the ratio of its outputs to its inputs, as well as in the efficiency literature where 
many authors conceptualize both productivity and efficiency as the ratio between outputs 
and inputs, without underlying any difference between the two concepts (Sengupta, 
1995, Cooper et al., 2007). 
Efficiency can be better defined as a distance between a certain quantity of input and output, 
and the quantity of input and output that defines the best possible frontier for a unit in its 
cluster. However, efficiency and productivity are complementary concepts. Measures of 
efficiency are more accurate than measures of productivity, because the former are 



compared with the most efficient frontier, by integrating the information included in 
productivity measures (Daraio and Simar, 2007). 
The theme of productive efficiency has been analyzed since Adam Smith’s pin factory and 
even before. However, a rigorous analytical approach applied to the measurement of 
efficiency in production originated only with the theoretical approach of Koopmans 
(1951) and Debreu (1951), empirically applied by Farrell (1957). International literature 
contains a large number of surveys and case studies dealing with efficiency, which represents 
the key factor to reach the global target of sustainable development (Song et al., 2012). 
The two main approaches to measure efficiency are parametric and non-parametric, and in 
most cases, both methods achieve highly correlated results (Wadud and White, 2000, Thiam 
et al., 2001, Alene and Zeller, 2005). In this context, DEA is an effective non-parametric 
method for evaluating the relative efficiency of the decision-making units (DMUs), which 
does not need the exact functional form between inputs and outputs, overcoming some 
disadvantages of the parametric approach. 
Due to their advantages DEA methods have been constantly applied to the agricultural 
sector. The first model proposed in scientific literature considered an input orientation and 
constant returns to scale (CRS) assumption (Charnes et al., 1978). In order to account for 
variable returns to scale (VRS) conditions, Banker et al. (1984) went beyond the CRS DEA 
model. In fact, biased technical efficiency (TE) values can be generated by adopting the CRS 
assumption, due to scale efficiencies (SE) that occur when not all DMUs are operating on 
the optimal scale (Coelli et al., 2005). The main limitation is that, since it is based on a 
deterministic model, it does not take into account the uncertainty characterizing the real 
world (so-called stochastic error). In fact, the classical DEA technique does not allow for the 
construction of confidence intervals, nor for the carrying out of tests on the estimated values 
(Seiford and Thrall, 1990). In order to overcome the limitation of the construction of 
confidence intervals, Simar and Wilson, 2000a, Simar and Wilson, 2000b suggested to 
adopt a bootstrap DEA method, which allows to validate the results by obtaining confidence 
intervals and adjusted efficiency scores. 

1.2.2. DEA applied to agricultural studies 

As highlighted by the literature review of DEA application to agriculture (Table 1), there is a 
lack of studies evaluating agricultural efficiency at a regional or national level since scientific 
research addressing the efficiency evaluation of European agricultural sector is lacking. 

Table 1. Literature review of DEA application to agricultural sector. 



Author(s) 
(Year) Country(ies) Input variables Output 

variables Aim(s) of the study 

Atici and 
Podinovski 
(2015) 

Turkey 

Agricultural area; 
Labor costs; Crop 
production costs; 
Capital 
expenditures. 

Individual crop 
productions 

This paper estimates 
efficiency scores using 
data envelopment analysis 
(DEA) for the evaluation 
of units with output 
profiles exhibiting 
specialization. An 
application of this 
methodology is conducted 
considering agricultural 
farms in different areas of 
Turkey. 

Chebil et al. 
(2015) 

Tunisia 

Applied water; 
Seeds; Chemical 
fertilizer; Labor; 
Machinery. 

Output value 

This paper, through a DEA 
method, aims to measure 
the technical, scale and 
economic efficiencies for a 
sample of 170 farms 
producing cereals in a 
Central area of Tunisia. 

Kočišová 
(2015) 

EU Countries 

Annual Work Units; 
Total Utilized 
Agricultural Area; 
Total Assets. 

Total Output 
Crops and Crop 
Production; 
Total Output 
Livestock and 
Livestock 
Products 

This study, using Data 
Envelopment Analysis 
(DEA), analyzes the 
technical efficiency of the 
agricultural sector in the 
European Union (EU) 
during the period 2007–
2011. 

Liu et al. 
(2015) 

China 
Capital; Labor; 
Land; Machinery; 
Fertilizer. 

Gross value of 
agricultural 
output 

The paper is an application 
of Data Envelopment 
Analysis (DEA) to observe 
the efficiency and 
efficiency change of 
prefecture-level cities in 
the North-East China from 
2000 to 2012. 

Toma et al. 
(2015) 

Romania 

Land area (ha); 
Work (hours); 
Number of 
mechanical assets. 

Production 
value (thou 
RON) 

In this article DEA is 
applied at a regional level, 
under input orientation, 
CRS and VRS technical 
assumptions, to analyze 
the performance of 
agricultural practices in 
plain, hill and mountain 
areas of the Romanian 
territory. 

Bojnec et 
al. (2014) 

Bulgaria, the 
Czech Republic, 
Estonia, Hungary, 
Latvia, Lithuania, 
Poland, Romania, 
Slovakia, and 
Slovenia 

Total labor force (in 
working units); 
Number of 
agricultural tractors; 
Agricultural area in 
hectares; Total 
fertilizers use; 

Gross value 
added 

This paper, using Data 
Envelopment Analysis and 
econometric panel data 
analysis, analyzes the 
agricultural technical 
efficiency of 10 new EU 
member states. 



Author(s) 
(Year) Country(ies) Input variables Output 

variables Aim(s) of the study 

Number of animal 
livestock units 

Hoang and 
Alauddin 
(2012) 

30 OECD 
Countries 

Fertilizers; Land; 
Feed; Seed; Labor; 
Machinery 

Fisher quantity 
index (using 
price data as 
weights) 

In this study, an input-
oriented data envelopment 
analysis (DEA) framework 
is implemented to assess 
agricultural efficiency for 
a sample of 30 OECD 
countries. 

Yu et al. 
(2011) 

Asia-Pacific 
Economic 
Cooperation 

Arable land area; 
Agricultural 
population; Share of 
irrigated land; Total 
fertilizer 
consumption; 
Number of tractors 
and threshers 

Grain 
production 
output 

In this paper, an evaluation 
of land use efficiency in 
the APEC is conducted, 
through Data Envelopment 
Analysis, to test which 
agricultural sector could 
produce the same amount 
with less resource input. 

Moreira 
and Gomes 
(2011) 

The 40 countries 
with the largest 
value added by 
agricultural sector 
in 2005 

Agricultural area; 
Agricultural labor 
force; Fertilizer 
consumption; 
Capital stock in 
agriculture 

Value added by 
the agricultural 
sector 

This paper estimates an 
agricultural process 
function using DEA 
efficiency scores output-
oriented and with variable 
returns to scale. 

Armagan 
(2008) 

Turkey 

Labor (man power); 
Capital; Value of 
variable inputs; 
Value of production 
units. 

Gross 
production 
value. 

In this paper, efficiency 
scores of agricultural 
enterprises are calculated 
by using data envelopment 
analysis, as a first stage, 
and then some 
determinants of efficiency 
are investigated. 

Balcombe 
et al. (2008) 

Bangladesh 
Bullock Labor; 
Human Labor; Seed; 
Fertilizer; Rice area. 

Rice 
production 

In this article, the DEA 
double bootstrap is used to 
measure and evaluate the 
technical efficiency of rice 
farming in Bangladesh, 
overcoming severe 
limitations of the 
efficiency techniques 
traditionally used in the 
literature. 

Lilienfeld 
and Asmild 
(2007) 

USA 

Irrigation water; 
Labor; Capital; 
Seed; Fertilizer; 
Precipitation; AWS 

Production 
output per crop 

The aim of this article is to 
estimate irrigation water 
use efficiency, assessing 
the impacts of irrigation 
system types for a sample 
of 43 operators in Kansas 
between 1992 and 1999. 

Gocht and 
Balcombe 
(2006) 

Slovenia 
Purchased seed, 
home grown seed; 
Purchased fertilizer, 

Wheat 
production 
output 

This paper demonstrates 
how data envelopment 
analysis (DEA), adjusted 



Author(s) 
(Year) Country(ies) Input variables Output 

variables Aim(s) of the study 

manure; Chemicals, 
other direct costs, 
wages; Services and 
other costs. 

with a smoothed bootstrap 
method, is more effective 
in obtaining consistent 
efficiency rankings for 
farms. 

Latruffe et 
al. (2005) 

Poland 

Utilized agricultural 
area; Annual work 
units; Capital factor 
(depreciation plus 
interest); 
Intermediate 
consumption. 

Total output 
value. 

This study aims at 
measuring farm efficiency 
in Poland using a DEA 
method and assessing 
differences caused by farm 
specialization, in crop or 
livestock, in 1996 and 
2000. 

Dhungana 
et al. (2004) 

Nepal 

Land; Seed; Labor; 
Mechanical labor; 
Fertilizers; Other 
inputs. 

Rice yield. 

The aim of this article is to 
measure inefficiencies 
from an economic, 
technical and scale points 
of view using data 
envelopment analysis for a 
sample of 76 Nepalese rice 
farmers. 

Paul et al. 
(2004) 

USA 

Labor; fuel; 
Fertilizer; seed; 
Feed; Animal 
inputs; Crop inputs; 
Capital Machinery; 
Land; other. These 
input variables are 
annual per-farm 
expenditures. 

Total value of 
sales for each 
type of farm 
product. 

This study, through DEA 
estimation, explores the 
potential of small U.S. 
farms compared with 
larger U.S. enterprises in 
terms of economic 
efficiency. 

Iraizoz et 
al. (2003) 

Spain 

Labor (number of 
hours worked); 
Land (utilized 
agricultural area); 
Capital (average 
annual inventory of 
machinery and 
buildings); 
Cultivation costs. 

Sales of 
asparagus and 
gross tomato 
production. 

The aim of this study 
consists of the efficiency 
estimation of the tomato 
and asparagus production 
in Navarra, using both 
non-parametric and 
parametric techniques. 

Mao and 
Koo (1997) 

China 

Land; Labor; 
Machinery; 
Fertilizers; Draft 
animals. 

Added value of 
agricultural 
output. 

This article analyzes the 
Chinese agricultural sector 
from 1984 to 1993 in order 
to estimate technology and 
efficiency differences 
using DEA and TFP 
analysis. 

Piot-Lepetit 
et al. (1997) 

France 

Cereal acreage; 
Other acreage; 
Annual worker 
units; Equipment; 
Fertilizers; 

Cereal output; 
Other product 
output 

Potential input and 
environmental impact 
reductions in the 
agricultural production are 
the focus of this study, 
which demonstrates the 



Author(s) 
(Year) Country(ies) Input variables Output 

variables Aim(s) of the study 

Pesticides; Seeds; 
Others. 

benefit of DEA methods 
for this type of 
estimations. 

After many applications aiming to support the best management practices at a micro-level, 
since 2010 scientific interest has begun to rise in relation to the comparison of different 
agricultural policy visions among countries and their results in terms of efficiency (Table 1). 
In particular, Hoang and Rao (2010) adopted for the first time a country-based analysis to 
evaluate the sustainability efficiency of the agriculture sector of 29 OECD countries. In 2011 
Moreira and Gomes analyzed, globally, the 40 countries with the largest value added by 
agricultural sector in 2005, by using output-oriented DEA efficiency measures with variable 
returns to scale assumption. Their analysis has highlighted that the total agricultural added 
value could be increased by at least 53.9% without increasing input usage and with the 
prevailing technology. 
The potentials of DEA estimations for policy-makers in obtaining significant results 
referring to the agricultural productive patterns and, consequently, to sustainable 
development planning, have also been recently confirmed in the EU context by some studies 
based on country performance comparisons (Bojnec et al., 2014, Kočišová, 2015). 

2. Materials and methods 

The research design adopted is a secondary data analysis. Existing quantitative datasets 
have been used as data sources to realize a DEA analysis and to verify two supposed 
determinants of efficiency scores. 
The methodology consists of the non-parametric evaluation of a best practice frontier for 
the best possible productions, resulting from the observed sample, in relation to which we 
need to calculate the distance to be transformed into a measure of efficiency normalized in 
the interval [0,1], for each unit observed. 

The DEA method allows for the calculation of the relative efficiency of the data, and does 
not provide any information on the absolute efficiency. The most efficient DMUs are those 
situated on the frontier, the others can reach this allocation if: 

•they reduce the inputs, while maintaining a constant output; 
•they increase the outputs, while maintaining the inputs constant; 
•they perform a combination of the two previous solutions. 
The distance between each DMU and its related best point is a measure of the inefficiency, 
that is, how much it is possible to expand the output given the input (or how much it is 



possible to reduce the input given the output). Through DEA, therefore, the relative 
efficiency is measured, given by the ratio between the length of the segment joining the 
origin with the point representing the DMU and the length of the segment joining the origin 
with the best point associated with the same DMU. In DEA, we use the concept of “reference 
set”, which is useful to identify the best production unit with which to compare all the other 
observations concerning the sample. 

The DEA method is applied by adopting two different approaches that are both based on the 
concept of technical efficiency, defined as the ability of the DMU (the decision-making unit 
of production), given the existing technology, to produce the highest level of outputs from a 
given combination of inputs (output model − oriented), or alternatively, to use the least 
possible amount of inputs to obtain a given output (model input − oriented) (Reinhard et 
al., 2000). Therefore, this non-parametric methodology provides guidance on how the 
inefficient production units could become efficient, using the concept of reference group of 
efficient decision-making units that produce a similar output (peer group) (Simar and 
Wilson, 2008). 
The panel data used for the DEA efficiency evaluation of EU countries has been acquired 
from the FAOSTAT database, used for the dissemination of statistics by the Statistics 
Division of the FAO (FAOSTAT, 2016). However, the data concerning labor have been 
extracted from the Eurostat database (EUROSTAT, 2016). 
For the purpose of this study, a sample of Countries was selected among European Countries 
whose indicators chosen for this research have been previously computed and are annually 
available for the analyzed period of time. For this reason, Ireland and Latvia are the only EU 
countries that are not considered in the analysis, due to the lack of data. Data availability, 
and consequently, the choice of the analyzed period of time are conditioned also by the years 
of independence obtained by some eastern countries. 

In particular, the time series included in this research goes up to 2013 and it does not go 
further because the year 2013 is the last year when complete and reliable data for the 
variables used in our framework could be found. The approach is similar to the stochastic 
production frontier model of Tonini (2012) that tried to illustrate important differences 
among the levels and trends of agricultural productivity of European countries, using a 
Bayesian approach and a smaller time range. 
The definitions of both input and output variables are described below. In particular, the 
analysis is based on five input variables: labor, land, capital, fertilizers and irrigation area. 
These variables have been selected as the most important variables affecting agricultural 
productivity, according to the literature indicated in Table 1. For what concerns the main 



output related to the agricultural sector, it is represented by the value of agricultural 
production. Table 2 reports the descriptive statistics of these variables. The estimation of 
efficiency scores through DEA models was conducted using the R software. 
 

Table 2. Descriptive statistics of the variables used for the DEA. 
Empty 
Cell 

Empty 
Cell Inputs Outputs 

Empty 
Cell 

Empty 
Cell 

Labor 
(1,000 
AWU) 

Land 
(1,000 ha) 

Gross 
capital 
stock* 
(millions of 
USD $) 

Fertilizers 
(tonnes) 

Irrigation 
area 
(1,000 ha) 

Agricultural 
production 
value (1,000 I 
$) 

1993 

Mean 700.66 5,223 68,905 4,32,106 732 91,57,083 

Std. 
Dev. 976.72 5,822 98,487 5,57,932 1,145 1,07,42,056 

Min 4.75 13 178 1,000 1 66,836 

Max 4,039.69 19,657 3,95,544 22,22,000 3,648 3,81,12,085 

1994 

Mean 679.68 5,184 69,086 4,48,661 731 88,83,165 

Std. 
Dev. 950.19 5,812 98,856 5,93,927 1,167 1,05,28,746 

Min 4.56 13 189 1,000 1 70,601 

Max 3,912.86 19,496 3,99,695 23,08,300 3,657 3,77,04,490 

1995 

Mean 660.35 5,141 69,264 4,40,638 723 89,44,877 

Std. 
Dev. 924.92 5,736 99,153 6,03,886 1,157 1,05,72,537 

Min 4.57 11 194 1,000 1 71,953 

Max 3,786.04 19,348 3,99,522 23,91,700 3,642 3,86,46,092 

1996 

Mean 645.52 5,153 70,132 4,72,856 732 93,33,556 

Std. 
Dev. 893.79 5,771 1,00,608 6,35,017 1,169 1,12,54,206 

Min 4.47 11 207 1,000 2 88,345 

Max 3,368.80 19,368 4,07,335 25,23,900 3,639 4,07,20,575 

1997 

Mean 644.19 5,159 70,862 4,64,057 737 93,49,418 

Std. 
Dev. 901.57 5,769 1,01,477 6,29,687 1,178 1,13,28,372 

Min 4.48 10 221 1,000 1.5 80,530 

Max 3,473.00 19,421 4,11,718 25,13,100 3,639 4,07,75,963 

1998 
Mean 622.34 5,123 71,191 4,61,033 741 93,19,371 

Std. 
Dev. 864.2 5,730 1,02,148 6,35,669 1,185 1,13,38,007 



Empty 
Cell 

Empty 
Cell Inputs Outputs 

Empty 
Cell 

Empty 
Cell 

Labor 
(1,000 
AWU) 

Land 
(1,000 ha) 

Gross 
capital 
stock* 
(millions of 
USD $) 

Fertilizers 
(tonnes) 

Irrigation 
area 
(1,000 ha) 

Agricultural 
production 
value (1,000 I 
$) 

Min 4.65 9 235 1,159 1.5 87,975 

Max 3,460.00 19,462 4,14,187 24,88,100 3,710 4,08,89,585 

1999 

Mean 604.34 5,102 71,680 4,63,219 742 95,49,262 

Std. 
Dev. 853.25 5,730 1,02,980 6,58,664 1,197 1,16,64,610 

Min 4.66 9 249 451 1.5 87,159 

Max 3,648.00 19,497 4,17,333 25,71,400 3,780 4,13,09,252 

2000 

Mean 591.45 5,063 71,874 4,41,705 747 94,66,573 

Std. 
Dev. 851.57 5,729 1,03,286 5,95,383 1,207 1,16,71,126 

Min 4.74 9 257 450 1.5 84,316 

Max 3,645.00 19,495 4,16,806 23,16,300 3,856 4,04,37,977 

2001 

Mean 564.67 4,954 72,411 4,44,103 751 93,53,551 

Std. 
Dev. 779.82 5,700 1,04,405 6,02,050 1,221 1,13,89,096 

Min 4.47 10 266 300 1.5 84,082 

Max 3,121.00 19,481 4,21,398 23,97,000 3,896 3,85,70,813 

2002 

Mean 535.19 4,909 73,235 4,32,141 755 93,17,811 

Std. 
Dev. 702.5 5,642 1,05,353 5,72,990 1,234 1,14,57,189 

Min 4.3 10 275 598 1.5 82,450 

Max 2,765.00 19500 4,26,525 22,03,200 3,936 4,06,93,640 

2003 

Mean 523.69 4,864 74,195 4,55,564 741 91,70,131 

Std. 
Dev. 691.77 5,613 1,06,512 6,03,607 1,246 1,12,86,273 

Min 4.3 10 286 521 1.5 81,631 

Max 2,696.00 19,471 4,31,763 23,75,400 3,977 3,78,54,779 

2004 

Mean 499.36 4,860 74,321 4,33,182 740 96,90,184 

Std. 
Dev. 646.79 5,596 1,07,428 5,87,858 1,251 1,17,65,137 

Min 4.3 10 289 643 1.5 79,495 

Max 2,336.00 19,479 4,38,012 23,24,000 3,975 4,04,04,652 

2005 Mean 499.59 4,837 75,235 4,15,785 743 93,08,871 



Empty 
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Empty 
Cell Inputs Outputs 

Empty 
Cell 

Empty 
Cell 

Labor 
(1,000 
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Land 
(1,000 ha) 

Gross 
capital 
stock* 
(millions of 
USD $) 

Fertilizers 
(tonnes) 

Irrigation 
area 
(1,000 ha) 

Agricultural 
production 
value (1,000 I 
$) 

Std. 
Dev. 675.84 5,551 1,08,945 5,68,534 1,256 1,13,01,430 

Min 4.06 9 305 578 1.4 76,285 

Max 2,596.00 19,488 4,45,839 22,05,000 3,973 3,86,94,420 

2006 

Mean 489.08 4,816 75,277 4,10,555 737 92,22,995 

Std. 
Dev. 667.47 5,519 1,09,916 5,56,566 1,251 1,11,51,778 

Min 4.06 9 321 926 1 80,543 

Max 2,527.00 19,436 4,51,732 22,04,665 3,960 3,74,23,955 

2007 

Mean 464.78 4,750 76,438 4,35,229 763 90,88,097 

Std. 
Dev. 626.92 5,450 1,11,432 6,05,676 1,266 1,11,43,816 

Min 4.2 9 338 571 1 77,457 

Max 2,299.30 19,358 4,58,112 24,02,000 3,951 3,70,31,114 

2008 

Mean 453.77 4,774 77,181 3,99,220 731 94,24,729 

Std. 
Dev. 619.8 5,460 1,12,802 5,20,091 1,238 1,13,27,868 

Min 4.2 9 357 339 1 83,461 

Max 2,299.30 19,320 4,62,237 20,99,000 3,879 3,74,62,189 

2009 

Mean 439.33 4,765 77,746 3,75,357 719 95,32,377 

Std. 
Dev. 604.71 5,432 1,13,480 5,01,149 1,212 1,12,63,473 

Min 4.2 9 362 415 1 76,208 

Max 2,213.80 19,283 4,65,403 19,00,820 3,807 3,85,61,296 

2010 

Mean 403.73 4,862 78,142 4,08,064 711 94,17,847 

Std. 
Dev. 515.07 5,447 1,13,712 5,46,270 1,209 1,15,57,204 

Min 4.9 10 372 410 0.5 77,668 

Max 1,914.80 19,312 4,65,904 20,43,000 3,753 3,83,49,063 

2011 

Mean 392.75 4,848 78,940 3,99,937 721 95,94,521 

Std. 
Dev. 499.54 5,416 1,15,091 5,13,859 1,223 1,16,94,261 

Min 4.9 10 388 460 0.5 74,905 

Max 1,914.80 19,282 4,71,865 19,44,450 3,825 3,91,27,358 
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(tonnes) 

Irrigation 
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$) 

2012 

Mean 391.09 4,874 79,497 4,06,636 738 92,55,189 

Std. 
Dev. 500.9 5,467 1,15,470 5,19,045 1,262 1,13,55,394 

Min 4.9 10 403 2038 0.5 71,617 

Max 1,914.80 19,286 4,71,260 19,14,915 3,923 3,90,08,782 

2013 

Mean 386.87 4,781 79,845 4,20,681 747 95,61,086 

Std. 
Dev. 500.34 5,515 1,14,841 5,31,597 1,274 1,16,68,428 

Min 5 10 409 3458 0.4 72,123 

Max 1,937.10 19,302 4,65,401 20,04,605 4,005 3,82,77,824 

*It includes land development, machinery and equipment, farm structures and orchards. 

The first input, labor, has been measured by the “Employment in agriculture” data, 
expressed as the number of workers (1000 annual working units). Employment is defined 
as the number of people of working age engaged in agricultural activities. The second 
input, land, has been measured by the extension (in 1000 ha) of the land-use class “Arable 
Land and permanent crops”. The third input variable, capital, has been measured by the 
“Gross Capital stock” expressed in millions of US dollars at constant 2005 prices. It 
includes land development, machinery and equipment, farm structures and orchards, 
where the number of machines is a proxy of fuel and energy inputs. In order to quantify 
the forth input, fertilizers, a proxy given by the nitrogenous fertilizer consumption (in 
tonnes) has been used. Irrigation area is instead the input value used to measure the area 
(in 1000 ha) equipped for irrigation. Finally, the output given by the agricultural 
production value has been expressed as the net production value at constant 2004–2006 
International dollars. In this study, we adopt input and output oriented DEA models where 
the efficiency estimates measure how much a country could reduce the use of its inputs as 
compared to the best DMUs in the first specification, and how much a country could 
increase the production of its output as compared to the best DMUs in the second 
specification. 
Nevertheless, conventional point estimates are not enough to consider DEA a consistent 
efficiency estimator. Relevant scientific efforts have been addressed to the study of the 
statistical property of DEA estimators. In this context, Simar and Wilson (1998) have 
proposed a general methodology for bootstrapping in frontier models to construct 



confidence intervals, clarifying and developing this method in subsequent articles (Simar 
and Wilson, 2000a; 2000b). In particular, when the Data Generating Process (DGP) is 
unknown, as in this analysis, a non-parametric DEA approach shows distinct advantages, 
such as less severe constraints on the technology than parametric methods. Through 
bootstrapping a pseudo-replicate dataset is created to test the reliability of the original 
dataset. This method indicates if the distribution has been influenced by stochastic errors 
and, thus, it can be used to construct confidence intervals for point estimates, which 
cannot be derived analytically. 
Using Monte Carlo approximation, the bootstrap method can simulate the DGP and 
provide a reasonable estimator of the original unknown sampling distribution. 

Suppose that the DGP P generates a random sample χ={(xk,yk|k=1,…,n)}. Using the 
data χ with a nonparametric 
method θˆk=min{θ|yk≤∑i=1nγiyi|θxk≥∑i=1nγixi|∑i=1nγi=1,γi≥0|θ≥0|i=1,…,n} 
To obtain Xˆ(y),αXˆ(y), it is possible to estimate its efficiency θˆk=min{θ|θxk∈Xˆ(yk)}. 
The bootstrap procedure is used to determine Pˆ as a reasonable estimator of the true 
unknown DGP generated through the data χ. The efficiency estimates represent a new 
population, from which it is possible to build a new dataset χ*={(xi*,yi*)|i=1,…,n}. This 
pseudo-sample defines the corresponding quantities Xˆ*(y) and αXˆ*(y), whose 
distributions, conditionally on χ, are known, since Pˆ is known. Monte Carlo 
approximation is employed to overcome difficulty in the analytical computation of Pˆ and 
to obtain the sampling distributions, generating B pseudo-samples χb*, where b = 1, 
…, B and pseudo-estimates of the efficiency scores. The empirical distribution of these 
pseudo-estimates gives an approximation of the unknown sampling distribution of the 
efficiency scores, but unfortunately generates inconsistent estimates. 
Following Simar and Wilson (1998), a homogeneous smoothed bootstrap procedure is 
applied in this study. An algorithm for generating the bootstrap consistent 
values θˆb*from a kernel density estimate is implemented. 
For each Country k given the input–output data (xk,yk)k=1,…,n, θˆk is computed by the 
linear program to get the efficiency estimators. 
The smoothed bootstrap sample θ1*, …, θn* for i = 1, …, n is generated by letting β1*, 
…, βn*, a simple bootstrap sample obtained by drawing uniformly with replacement. 
Define sequence θ˜i*={βi*+hεi*ifβi*+hεi*≤1,2−βi*−hεi*otherwise} and obtain the 
corrected bootstrap sample 
by θi*=β¯*+1/(1+h2/σˆ2)(θ˜i*−β¯*) with β¯*=1/n∑i=1nβi* and σˆθˆ2 is the sample 
variance of θˆ1*, …, θˆn*. 



Through these procedures, the sample values assume the same mean and variance as the 
original values. The bandwidth factor h is calculated following a methodological procedure 
that has been discussed in detail by Simar and Wilson (2011). 
The smoothed bootstrap sample sequence is used to compute new 
data χb*={(xib*,yi)|i=1,…,n}, where, xib*=(θi/θib*)xi,{i=1,…,n}and obtain the bootstrap 
efficiency estimates {θˆki|i=1,…,n} by solving the DEA model for each χb*. Country using 
the data 
In this paper 2000 iterations (B) of these two last steps have been carried out in order to 
ensure adequate coverage of the confidence intervals. The bootstrap efficiency 
scores θˆk* represent approximations to the θˆk, just as the DEA efficiency 
scores θˆk represent approximations to θk. 
Since the bootstrap estimates {θˆk,b*=1,…,B} are biased by definition (Simar and Wilson, 
2000a) and BIAS(θˆk=E(θˆk)−θ, the empirical bootstrap bias for the original 
estimator θˆk can be calculated as BIASB(θˆk)=B−1(∑b=1Bθˆk,b*)−θˆk. The adjusted 
DEA scores are obtained by subtracting the bias from the original efficiency estimates. 
Since the bias correction introduces additional noise and could have a higher mean square 
error than the original point estimates, the analysis provides corrections to find interval 
estimations. 
The percentile method modified by Simar and Wilson (2000a) has been carried out to 
obtain confidence intervals, correcting automatically for bias without the use of a noisy 
biased estimator. Using the bootstrap score, we construct confidence intervals for each 
Country k. If we knew the distribution of (θˆ*(x,y)−θ(x,y)), it would be possible to 
find aα, bα such that Pr(−bα≤θˆk(x0,y0)−θ(x0,y0)≤−aα=1−α. Because aα, bα are unknown, 
we use {θˆk,b*=1,…,B} to find values bˆα,aˆα such 
that Pr(−bˆα≤θˆk(x0,y0)−θ(x0,y0)≤−aˆα|Pˆ(χn))=1−α. 
Finding bˆα,aˆα implies arranging the values θˆk,b*(x0,y0)−θˆk(x0,y0),b=1,…,B in 
increasing order and then eliminating a number of rows equal to [(α/2)×100]% at either 
end of the list and setting −bˆα,−aˆα to the endpoints of the array with aˆα≤bˆα. The 1 −α 
percent confidence interval is then:θˆk(x0,y0)+aˆα≤θ(x0,y0)≤θˆk(x0,y0)+bˆα 
This procedure is repeated n times to obtain n confidence intervals, one for each Country 
obtaining aˆα≤0,bˆα≤0 and θˆk values above the confidence interval. 

3. Results and discussion 

Input oriented efficiency scores of EU countries analyzed in this paper are 
summarized in Table 3. 



Table 3. Summary statistics of input-oriented efficiency scores (VRS model) for 
25 EU member Countries over 1993–2013 (average over time). 

Empty Cell Mean SD Change (%) 1993–2013 

AUT 0.391 0.025 0.009 

BEL-LUX 0.924 0.037 0.001 

BGR 0.859 0.059 0.002 

CYP 0.415 0.026 0.001 

DNK 0.771 0.140 0.027 

EST 0.902 0.036 0.000 

FIN 0.224 0.044 0.033 

FRA 0.923 0.035 −0.001 

DEU 0.920 0.024 0.000 

GRC 0.685 0.129 −0.023 

HUN 0.470 0.069 −0.013 

HRV 0.574 0.214 −0.048 

ITA 0.888 0.028 0.001 

LTU 0.769 0.124 0.003 

MLT 0.911 0.038 −0.002 

NLD 0.913 0.026 −0.001 

CZE 0.721 0.070 −0.021 

POL 0.914 0.039 −0.001 

PRT 0.384 0.027 0.011 

ROU 0.832 0.093 −0.006 

SVN 0.663 0.210 −0.027 

SVK 0.710 0.118 −0.024 

ESP 0.856 0.089 0.011 

SWE 0.397 0.042 0.017 

GBR 0.928 0.028 −0.002 

EU 0.676 0.055 −0.002 

The results obtained considering variable returns to scale (VRS) assumption have been 
analyzed, because the ratios between CRS and VRS estimates assumed values of scale 
efficiency (SE) different from 1, highlighting decreasing or increasing returns to scale. 

The CRS assumption, in fact, is only appropriate when all DMUs are operating at an optimal 
scale. The use of the CRS specification when all DMUs are not operating at the optimal scale 
results in measures of efficiency, which are confounded by scale efficiencies (SE). The use of 
the VRS specification allows for the calculation of efficiency devoid of these SE effects. 



The input-oriented analysis, summarized in Table 3, shows that the average efficiency score 
of the whole sample of EU countries over the period 1993–2013 is about 71.8% under the 
VRS assumption, meaning that the current level of output can be achieved using 28.2% 
fewer inputs on average. 
In particular, the average efficiency scores vary between a minimum of about 68.8% to a 
maximum of 75.1% (Fig. 1). Therefore, the majority of EU countries are experiencing 
increasing or decreasing returns to scale, highlighting their potential to increase their 
production efficiency through modifying their input use. 

 
Fig. 1. Comparison of input- and output-oriented efficiency trends of EU Countries. 
As shown in Table 3, the best efficient countries in the analyzed time period are Belgium and 
Luxembourg, Estonia, France, Germany, Malta, the Netherlands, Poland, and the United 
Kingdom, registering an average input-oriented efficiency score greater than 0.9. The worst 
countries are, instead, Finland, Austria, Cyprus, Hungary, Portugal, and Sweden, which do 
not even achieve the value of 0.5 in terms of average input-oriented efficiency score. 
Input-oriented efficiency score change, calculated as a geometrical mean of the annual 
change rate between 1993 and 2013, shows that the EU agricultural sector has generally 
stagnated over time, indicating a −0.2% value on average. The average annual change of the 
input-oriented efficiency scores, in fact, marks an overall decrease in EU countries with 
some significant exceptions represented by Finland, Denmark, Portugal, Spain, and Sweden, 
which register positive rates in a range between 1.1% and 3.3%. On the other hand, the 
above-mentioned most efficient countries highlight an almost steady average of change rates 
in the period of analysis, in line with the general trend. Among the less efficient ones, 
Hungary registers a rate of −1.3% in terms of an average decrease in the input-oriented 
efficiency score, while the others have positive average annual change rates varying between 
0.1% and 3.3%. 

The average input-oriented efficiency score at the beginning of the period was 75.1%, 
indicating that efficiency could be improved on average by 24.9%. This efficiency 
consistently varied over years and in 2012 reaches 68.8%, highlighting a positive peak in the 
room for efficiency improvement equal to 21.1%. 



Input-oriented DEA results and comparison between efficiency levels in 1993 and in 2013, 
indicate that older EU member countries, Germany, France, Belgium-Luxembourg and the 
Netherlands, have a more efficient and optimized crop production process from the resource 
savings point of view (Fig. 2, Fig. 3), obtaining a certain level of agricultural value added 
with fewer inputs compared to the other Countries. As clearly evident from Fig. 2, the above-
mentioned countries reveal a high median value and a relatively little inter-quartile range 
where the 50% of the efficiency scores are concentrated. The upper whisker coincides, in 
fact, with the maximum value 1, while the lower one, for these countries, is very close to the 
box, highlighting that 25% of the efficiency scores fall in a small range. 

 
Fig. 2. Boxplot distribution of agricultural input-oriented efficiency (VRS model) by 
Country between 1993 and 2013. 



 
Fig. 3. EU agricultural input-oriented efficiency spatial distribution patterns in 1993 and in 
2013. Low = Efficiency ≤ 0.5; Medium = 0.5 < Efficiency ≤ 0.8; High = Efficiency > 0.8. 
This condition could be due to the earliest application of the Common Agricultural 
Policy (CAP) in the oldest EU member countries, which set some conditions such as the 
increase in the environmental efficiency of inputs used during the agricultural production 
process that had to be achieved in order to receive subsidies. 
Output oriented efficiency scores of EU countries analyzed in this paper are summarized 
in Table 4. The output-oriented analysis shows that the average efficiency score for the 
whole sample of EU countries is about 72.5% under VRS assumption. This reflects that the 
current level of input serves to achieve on average about 72.5% of the output. Annual average 
efficiency scores for the whole sample of EU countries varies between a minimum of about 
69.2% to a maximum of 75.5%. In the case of the output-oriented approach, as well as the 
input-oriented approach, the majority of EU countries could better rationalize their input 
use obtaining more outputs and achieving production efficiency. 

Table 4. Summary statistics of output-oriented efficiency scores (VRS model) for 
25 EU member Countries over 1993–2013 (average over time). 

Empty Cell Mean SD Change (%) 1993–2013 

AUT 0.516 0.024 0.004 

BEL-LUX 0.915 0.097 0.001 



Empty Cell Mean SD Change (%) 1993–2013 

BGR 0.864 0.057 0.001 

CYP 0.436 0.026 0.001 

DNK 0.788 0.122 0.023 

EST 0.845 0.135 −0.032 

FIN 0.237 0.020 0.011 

FRA 0.950 0.020 −0.001 

DEU 0.938 0.023 0.000 

GRC 0.740 0.099 −0.018 

HUN 0.565 0.059 −0.009 

HRV 0.597 0.227 −0.047 

ITA 0.921 0.023 0.001 

LTU 0.780 0.122 0.003 

MLT 0.578 0.137 0.017 

NLD 0.924 0.024 −0.001 

CZE 0.727 0.073 −0.022 

POL 0.927 0.036 −0.002 

PRT 0.447 0.035 0.013 

ROU 0.868 0.072 −0.004 

SVN 0.643 0.208 −0.029 

SVK 0.719 0.119 −0.024 

ESP 0.870 0.089 0.011 

SWE 0.386 0.028 0.008 

GBR 0.939 0.023 −0.002 

EU 0.689 0.056 −0.004 

Belgium-Luxembourg, France, Germany, Italy, the Netherlands, Poland and the United 
Kingdom are the most efficient countries, registering an average output-oriented efficiency 
score greater than 0.9 (Table 4), meaning less production maintaining constant inputs, and 
confirming in part some input-oriented efficiency results. Finland, Portugal, Cyprus and 
Sweden, which are the worst using the input-oriented approach, confirm an average 
efficiency score less than 0.5 also in the case of output-oriented analysis. 
Output-oriented efficiency score change, calculated as the geometrical mean of the annual 
change rate between 1993 and 2013, highlights a general stagnation in the efficiency of the 
EU agricultural output over time. The average annual change of the output-oriented 
efficiency scores, in fact, shows an overall negative trend in EU countries (−0.4%) with some 



significant exceptions represented by Denmark, Malta, Portugal, Finland and Spain, which 
register positive rates in a range between 1.1% and 2.3%. 

The above-mentioned most efficient countries highlight almost steady average change rates 
in the period of analysis, in line with the general trend. Among the worst efficient countries, 
Portugal shows a rate of 1.3% in terms of average increase in the output-oriented efficiency 
score, confirming a general growth in the level of efficiency both from an input- and an 
output-oriented approach, followed by Finland. 

The average output-oriented efficiency score at the beginning of the period was 75.5%, 
indicating that outputs could be increased on average by 24.5%. In 2003, the average output-
oriented efficiency score reached 69.2%, highlighting the positive peak in the room for 
efficiency improvement equal to 30.8% (Fig. 1). In fact, the EU countries’ efficiency levels in 
1993 and in 2013, as illustrated in Fig. 4, Fig. 5, confirm that the oldest EU member 
countries have a more efficient and optimized crop production process also from the output 
maximization point of view. 

 
Fig. 4. Boxplot distribution of agricultural output-oriented efficiency (VRS model) by 
Country between 1993 and 2013. 



Fig. 5. EU agricultural output-oriented efficiency spatial distribution patterns in 1993 and 
in 2013. Low = Efficiency ≤ 0.5; Medium = 0.5 < Efficiency ≤ 0.8; High = Efficiency > 0.8. 
Fig. 4 illustrates that Germany, France, Belgium-Luxembourg, and the Netherlands confirm 
high median values and a limited inter-quartile range of efficiency scores, also analyzing the 
output-oriented approach. The upper whisker of the boxplot coincides, in fact, with the 
maximum value 1, while the lower one, for these countries, is very close to the inter-quartile 
range, highlighting limited variations in the efficiency scores around the high median value. 
The comparison of input- and output-oriented efficiency trends of the overall EU Countries 
(Fig. 1) points out a general decrease in efficiency over the analyzed period, with a trend 
reversal in the last year, which registers a level of efficiency higher for the input than the 
output perspective. 
A general consideration about the output-oriented framework from an agricultural policy 
perspective highlights a greater attitude towards intensive production, and an approach 
aimed at the generation of agricultural production value from given environmental resource 
inputs. This puts in evidence an interest more oriented towards the sectorial economic 
return that is accentuated in the agricultural oriented economy. 

4. Conclusions 



The results of this study provide information on the heterogeneity of countries’ efficiency 
performances and the potential for increasing agricultural production in the EU, balancing 
environmental resource savings with economic return. A consistent variation of agricultural 
efficiency scores among countries both for the output-oriented and the input-oriented 
approaches is observed. These differences demonstrate the existence of a competitive 
context in which efficient and non-efficient countries must develop their agricultural 
practices in a substantially open global market with low barriers. 

Even if the DEA approach is mainly used in economic analysis, from our perspective it can 
capture some relevant environmental aspects. Furthermore, the bootstrap version of DEA 
makes results statistically more consistent than the traditional approach, allowing us to 
obtain corrected efficiency measures and confidence intervals. Given that, the bootstrap-
DEA is a very promising approach as a policy and management assessment tool, providing 
measurable evidence of efficiency levels, also when investigating the most important factors 
for modeling a socio-economic and environmental competitive advantage. 
This paper ultimately contributes to a wider practical implementation of environmental 
planning and management programs based on the production process and bootstrap-DEA 
methodology, which represents an effective monitoring tool useful for decreasing human 
pressure, like agriculture, on environmental resources. Clearly, some of the input variables, 
such as fertilizer use, extension of irrigated area, but also the “capital” variable in terms of 
fuel and energy use can have some environmental effects. However, assessing resource use 
efficiency through input- and output-oriented DEA approaches helps planners and 
managers to understand if agricultural policy should be aimed at minimizing input (resource 
savings approach) or maximizing output using the current quantity of inputs (increasing 
productivity approach) (Toma et al., 2016). 
Ecological intensification in the place of agricultural intensification requires a substantial 
change of the target from the maximum attainable food production (high output-oriented 
approach) to the minimum agriculture-induced environmental impact (low input-oriented 
approach) in order to safeguard food security and human well-being (Baulcombe et al., 
2009). 
The largest agricultural support system worldwide, the Common Agricultural Policy (CAP) 
of the European Union, has now come to a critical point, given the recent change of funding 
priorities in a context of global economic crisis. This changed approach includes the 
conservation of farmland biodiversity, soil functionality, agricultural landscapes and rural 
vitality (Plieninger et al., 2012). 
The efficient expansion of the agricultural sector will be completely possible after the full 
implementation of the EU CAP for the period 2014–2020, which identifies rural 



and sustainable development as key factors and offers a unique opportunity to trigger a 
transition from commodity-based subsidy policies to policies based on the efficient 
provision of ESs from agricultural land in Europe (Tankosic and Stojsavljevic, 
2014, Plieninger et al., 2012). 
The inclusion of ESs into crop production can have the potential to ensure both productive 
and environmentally friendly agriculture globally, although management decisions often 
focus on the immediate provision of a commodity or service, at the expense of the same or 
another ES at a distant location or in the future (Power, 2010). Measuring tradeoffs between 
agricultural added value and its natural resource pressures can contribute to building policy 
instruments for an improved agricultural resource management (Azad and Ancev, 2014). 
Suitable unambiguous management objectives set in the context of agricultural policy allow 
a country to achieve outcomes more effectively (Cary and Roberts, 2011), and the 
measurement of agricultural performance can be a crucial aspect in the improvement of 
policy planning and management, allowing for the identification of important best practices 
in sustainability evaluation (Dong et al., 2015). 
When investigating the ability of agricultural production processes in combining inputs and 
outputs, the knowledge of the level of efficiency is relevant, not only to policy makers, but 
also to agricultural farmers, which can benefit and base their decisions on the efficiency 
results. In this context, some examples of paying farmers for ESs have already been debated 
(Plieninger et al., 2012). However, further research could be addressed to better our 
framework to enhance the management of agro-ecosystems in order to support many ESs 
while still maintaining the provisioning services that agro-ecosystems were designed to 
produce. In such a framework, the output-oriented approach will be something more 
enlarged where the output variable given by the “Agricultural production value” will be 
modified as the “Agricultural ESs production value” output variable. In this novel and more 
inclusive output variable, the payments for ESs can increase the agricultural efficiency and 
ensure that the targeted public ES is actually provided. This in accordance with the EU 
Biodiversity Strategy 2020 that is moving through the enhancement of direct payments for 
environmental public ESs in the EU Common Agricultural Policy, and by better 
targeting rural development towards biodiversity conservation. 
Although this work has already widened the approach to environmental indicators linked to 
the agricultural process, future studies could also update the results of this paper, extending 
the assessment to other geographical and agriculturally relevant regions, analyzing the 
impact of other contextual variables on efficiency using non-parametric models (Bădin et 
al., 2012), assessing the technological convergence using Mastromarco et al. 
(2013) methodology, and including the assessment of ecosystem services in the productivity 



analysis. This could improve the economic concept of productivity in an ecological context, 
by also including the production of ecosystem services. 
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