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Primary Role of Kup�er Cell-Hepatocyte Communication in the
Expression of Oxidative Stress in the Post-Ischaemic Liver

JUAN C. CUTRIÂ N*1, 2, SUSANA LLESUY2 AND ALBERTO BOVERIS2

1Department of Experimental Medicine and Oncology, University of Torino, Italy
2Institute of Biological Chemistry and Physicochemistry, University of Buenos Aires, Argentina

It has been reported that hepatocyte metabolism and function can be modulated by the activated Kup�er cell
through the release of di�erent biomolecules like cytokines, eicosanoids, oxygen free radicals and enzymes. In
relation to these paracrine factors involved in circuits of intercellular communication, the existence of a hepatic
oxygen sensor located in the Kup�er cell has been postulated. According to this postulate the oxygen metabolism of
the liver parenchymal cells could be under the control of the Kup�er cells.

In order to study the role of the Kup�er cell in the reperfusion syndrome of the liver, a lobular ischaemia±
reperfusion model was performed in rats with or without previous treatment with gadolinium chloride to block
Kup�er cell function. Spontaneous chemiluminescence of the liver surface, oxygen uptake by tissue slices and tert-
butyl hydroperoxide-initiated chemiluminescence determinations were performed to evaluate the oxygen metabolism
and the oxy-radical generation by the liver. The lower basal photoemission, in parallel with a lower basal oxygen
uptake registered in the hepatic lobes from the animals pretreated with gadolinium chloride clearly indicates that the
gadolinium chloride-dependent functional inhibition of Kup�er cell leads to a downregulation of oxygen metabolism
by the liver. Moreover, the intensity of oxidative stress exhibited by the postischaemic lobes appears to be closely
linked with the Kup�er cell activity. On the basis of the data obtained we propose that a paracrine circuit between
activated Kup�er cell and hepatocytes is an early key event in the induction of postischaemic oxidative stress
in the liver. Furthermore the interference with the mitochondrial electron ¯ow by some biomolecules released from
the activated Kup�er cell, such as tumour necrosis factor, interleukins, eicosanoids, etc., would increase the
rate of generation of reactive oxygen species by the inhibited mitochondrial respiratory chain. # 1998 John Wiley
& Sons, Ltd.

Cell Biochem. Funct. 16: 65±72, 1998.
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INTRODUCTION

The term oxidative stress refers to the pathological
condition to which cells are exposed as a con-
sequence of an increased steady-state concentration
of reactive oxidant species (ROS).1 Most of these

molecules are reduced derivatives of molecular
oxygen, often with an unpaired electron in the
reactive orbital, so chemically de®ned as free
radicals.

Oxidative stress has been proposed as one of the
pathogenetic mechanisms of cell damage observed
in a variety of organs when a transient period of
ischaemia is followed by blood re¯ow and reperfu-
sion.2±4 However, little still is known about the
molecular mechanisms by which oxidative stress is
built up in the postischaemic tissue.

In the particular case of the post-reperfusion
damage of the liver, it has been reported that the
hepatocytes retain a very high total antioxidant
capacity; being in fact able to counteract conditions
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of extremely high oxidative stress without adverse
e�ects.5 Therefore, it seems unlikely that an
increased hepatocyte generation of ROS could
signi®cantly and consistently contribute to the
hepatic injury that constantly follows reperfusion,
as previously suggested.5, 6

In recent years a crucial role in the pathophysiol-
ogy of liver reperfusion injury has been attributed
to activated Kup�er cells.7, 8 Kup�er cells generate
a spectrum of bioactive molecules including eico-
sanoids, tumour necrosis factor-alpha (TNF),
interleukin-1 (IL-1), interleukin-6 (IL-6), platelet
activating factor, hydrolytic enzymes, nitric oxide
(NO.) and ROS, in response to soluble and
particulate stimuli.9 To this regard, it has been
shown in vitro that Kup�er cells are able actively to
produce ROS after a cycle of hypoxia±reoxygen-
ation.10 Therefore, it is conceivable that the
activated Kup�er cell is involved in the post-
ischaemic damage of the hepatocytes and that
such damage is oxidative stress-mediated.

In agreement with this hypothesis, it has been
reported that biomolecules released by activated
Kup�er cells can operate as paracrine factors to
modulate hepatocyte metabolism and function.
For example, prostaglandins have been demon-
strated to modulate hepatocyte glycogenolysis,11, 12

whereas TNF, IL-1 and IL-6 have been shown to be
major stimuli for the hepatic acute-phase
response.13 It has also been reported that two
bioproducts normally released by activated Kup�er
cell, namely TNF and NO., are able to exert
inhibition of the mitochondrial respiratory chain in
a mouse ®brosarcoma cell line and in the rat
gastrocnemius muscle, respectively.14, 15

One interesting development concerning non-
invasive techniques to estimate oxidative stress
in vivo is that based on the measurement of
increased chemiluminescence by sensitive photon
capture techniques applied to an exposed organ in
an anaesthetized animal.16±18 Liver chemilumine-
scence in situ provides an organ-speci®c and non-
invasive method to measure the rate of formation
of excited species, mostly singlet oxygen, and
represents an indirect but very reliable index of
the steady-state level of oxy-radicals and organic-
peroxyradicals.16±18

Liver chemiluminescence has been adopted to
monitor oxidative stress in the experimental in vivo
model designed to evaluate the role of Kup�er
cells in the ischaemia-reperfusion syndrome. Rats
were subjected to a selective hepatic ischaemia±
reperfusion cycle, a subgroup being pretreated with

gadolinium chloride (GdCl3), a speci®c blocker of
Kup�er cell function.19

Evidence is provided of intercellular communi-
cation between Kup�er and parenchymal cells in
the generation of oxidative stress in the post-
ischaemic rat liver. In addition, a general role for
the Kup�er cell in the regulation of oxygen
consumption by the liver is here proposed.

MATERIALS AND METHODS

Animals

Male Wistar rats weighing 180±200 g fed a
conventional laboratory diet and water ad libitum
were maintained under alternating 12 h cycles of
light and dark until the start of the experiment. All
animals received human care in compliance with
the institutional guidelines.

Experimental Model

The animals were heparinized (440 IU kg71

body weight, i.p.) and then anaesthetized with
sodium pentobarbital (50 mg kg71 body weight,
i.p.) diluted in a sterile 0.9 per cent NaCl solution
(w/v). The liver was exposed by a midline
abdominal incision. The liver lobes were gently
moved to expose the hilum and then the right
branches of the hepatic artery and portal vein were
occluded with an atraumatic bulldog clamp
(Roboz Surgical Instrument Co., Washington,
DC), rendering about one-third of the total hepatic
mass ischaemic. As the blood ¯ow from the portal
vein continued to pass through the medial, the left
lateral and the caudate lobes splanchnig congestion
was prevented. According to previous results,4 the
increased blood supply to these lobes did not
produce any modi®cation of their functions, as
indicated in terms of oxygen uptake and surface
photon emission. By this view it is possible to
assume that the medial, left lateral and caudate
lobes represent control tissue. Then the abdominal
cavity was closed and the rats were positioned
under warming lamps to maintain a constant body
temperature. After 3 h of ischaemia, reperfusion
was initiated by removal of the clamp. The animals
received 2 ml of a sterile 0.9 per cent NaCl solution
(w.v) subcutaneously and the wound was closed
with 3±0 silk. The rats were allowed to recover
and after 0.5 h of reperfusion the animals were
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reanaesthetized and the abdominal cavity was
opened again.

Treatment

Kup�er cell activity was inhibited by the
administration of GdCl3 , (Aldrich Chemical Co.,
Milwaukee, WI), (10 mg kg71 body weight)
diluted in a sterile 0.9 per cent NaCl solution
(w/v) and administered through the tail vein 24 h
before the start of the ischaemia±reperfusion cycle.
Animals without treatment used as a control
group, received an equivalent volume of a sterile
0.9 per cent NaCl solution (w.v).

Spontaneous Liver Surface Chemiluminescence

Spontaneous liver surface chemiluminescence of
the right lateral lobes of the in situ liver was
monitored during the ischaemia±reperfusion cycle
using a photon counter (JohnsonResearchFounda-
tion, University of Pennsylvania, Philadelphia, PA)
with a model 9658 photomultiplier (responsive in
the range 300±900 nm; Thorn EMI, Ruislip,
Middlesex, U.K.) as described.16±18 The emission
was expressed as counts per second per square
centimetre of liver surface (c.p.s. cm72).

Sample Heading

At the end of the reperfusion phase the animals
were killed and fragments from the postischaemic
and the control lobes were taken for processing.

Oxygen Uptake

Liver slices (1 mm thick) from the postischaemic
and the control lobes were placed in Krebs±Ringer
solution containing 10 mM glucose in the reaction
chamber of a Clark-type oxygen electrode at 308C.
The medium was air equilibrated at 0.22 mM

oxygen. The initial rate of oxygen uptake was moni-
tored during 10 min. The results were expressed as
mmol oxygen min71 g71 of tissue.20

Liver Homogenates

Liver homogenates were prepared in a medium
consisting of 120 mM KCl and 30 mM phosphate
bu�er (pH 7.4) and centrifuged at 600 g for 10 min
at 48C to remove nuclei and cellular debris. The
supernatants were used as `homogenates'.

Tert-Butyl Hydroperoxide-Initiated
Chemiluminescence

Tert-butyl hydroperoxide (T-BOOH)-initiated
chemiluminescence was measured in a liquid scintil-
lation counter in the `out-of coincidence' mode.21

Homogenates were placed in low photoemission
glass vials in a reaction medium consisting of
120 mM KCl, 30 mM phosphate bu�er (pH 7.4).
Measurements were started by the addition of
3 mM tert-butyl hydroperoxide. The back-
ground level of emission of the empty vials was
2500±3000 counts per min (c.p.m.). Determi-
nations were carried out at 308C with occasional
stirring. The results, registered in c.p.m. mg71 of
protein, were expressed as the ratio between the
initiated chemiluminescence of the lobes subjected
to ischaemia±reperfusion cycles (designated B) and
the control lobes (designated A). In the basal
condition, previous to the start of the ischaemia-
reperfusion cycles, the ratio between the lobes was
1.0+ 0.1.

Protein Determination

Protein was measured by the method of Lowry
et al.22 using bovine serum albumin as standard.

Statistical Analysis

All the numbers in the tables and ®gures repre-
sent mean values of three experiments+ standard
error of the mean (SEM). The di�erences between
both experimental groups were analysed statisti-
cally by the Student's t-test for unpaired samples.23

RESULTS

Spontaneous Liver Surface Chemiluminescence

Exposure of liver to a sensitive phototube
allows the direct detection of spontaneous chemi-
luminescence of the in situ organ under physio-
logical conditions. The surface chemiluminescence
of the liver in situ at time zero of the experiment,
i.e. previous to the start of the ischaemia±
reperfusion cycles, was 13+ 2 and 7+ 1 c.p.s.
cm72 for the non-treated and the GdCl3-treated
groups respectively. The photon emission by the
livers of the GdCl3-treated rats indicates a lower
singlet oxygen concentration with respect to the
physiological steady state level of singlet oxygen,
estimated to be about 10714

M.16±18 The light
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emission detected in the ischaemic lobes from both
experimental groups just before declamping was
1/3 lower than the relative values registered at time
zero, indicating a low ROS generation due to the
fall in the availability of molecular oxygen. When
the blood ¯ow was restored, the chemilumines-
cence emission by the postischaemic lobes from
both treated and GdCl3-treated rats showed a rapid
and strong increase. Once again, the percentage
variation was similar in the two experimental
groups, but overall, spontaneous chemilumines-
cence in the reperfused liver was signi®cantly
higher in non-treated rats (21+ 2 versus 12+ 2
c.p.s. cm72; p5 0.01) (Figure 1).

Oxygen Uptake

The treatment with GdCl3 altered the oxygen
uptake by the liver. In fact, tissue slices from the

control lobes of non-treated rats showed a rate of
oxygen uptake of 1.27+ 0.04 mmol min71 g71 of
tissue liver, whereas a 44 per cent decrease in the
rate of oxygen consumption was detected in the
control lobes from the GdCl3 group. An increased
rate of oxygen uptake was evident after reperfusion
in the non-treated group, indicating an additional
consumption of oxygen due to oxy-radical genera-
tion and lipid peroxidation. A lower rate of oxygen
uptake was detectable in the tissue slices from the
postischaemic lobes of GdCl3-treated rats, that
were not statistically di�erent from its relative basal
control (Figure 2).

Tert-Butyl Hydroperoxide-Initiated
Chemiluminescence

Tissue homogenates from postischaemic and
control lobes of the non-treated and the GdCl3-
treated rats were subjected to in vitro oxidative
stress by incubation in the presence of T-BOOH.
This assay allows determination of the integral
level of endogenous chain-breaking antioxidants
and, indirectly, the previous occurrence of oxidative

Figure 1. Spontaneous chemiluminescence of the liver
surface during a cycle of lobular ischaemia-reperfusion. 0/0,
Spontaneous chemiluminescence previous to the start of the
cycle of ischaemia±reperfusion; 3/0, spontaneous chemi-
luminescence of the lobes subjected to 3 h of ischaemia;
3/0.5, spontaneous chemiluminescence of the lobes subjected
to 3 h of ischaemia and 0.5 h of reperfusion. WT, animals
without treatment; Gd, animals treated with GdCl3 (see
Materials and Methods). a, signi®cantly di�erent with respect
to the WT group (p5 0.01).

Figure 2. Oxygen uptake by liver slices after a cycle of lobular
ischaemia±reperfusion. 0/0, Rate of oxygen uptake of the lobes
previous to the start of the cycle of ischaemia±reperfusion;
3/0.5, rate of oxygen uptake of the lobes subjected to 3 h of
ischaemia and 0.5 h of reperfusion. WT, animals without
treatment; Gd, animals treated with GdCl3 (see Materials and
Methods). a, signi®cantly di�erent with respect to the WT
group (p5 0.01).

ischaemia/reperfusion

ischaemia/reperfusion
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stress in a tissue with marked tissue damage.21 As
shown in Figure 3, the T-BOOH-initiated chemi-
luminescence of the homogenates from the lobes
subjected previously to ischaemia-reperfusion of
the non-treated and the GdCl3-treated animals was
higher than the photoemission recovered in their
respective internal controls, with values of the B/A
ratio greater than 1.0+ 0.1. The di�erence in
T-BOOH initiated chemiluminescence exhibited
by the two experimental groups after reperfusion
was statistically signi®cant (p5 0.01).

DISCUSSION

Because the liver is well suited for antioxidant
capacity, the physiological steady-state concentra-
tion for superoxide anion and hydrogen peroxide is
maintained in the order of 10711

M and 1077
M,

respectively.24,25 However, under experimental
pathological conditions, e.g. ischaemia reper-
fusion,4 suprahepatic vein occlusion,26 acetamino-
phen toxicity,27 ethanol toxicity,28 vitamin

E-selenium de®cient diets29 and mitoxantrone and
doxorubicin toxicity,30 a marked change occurs
in the equilibrium between prooxidant and anti-
oxidant reactions, leading to reported biochemical
and histological signs of liver damage.

Under physiological conditions, mitochondria
account for about 15 per cent of the hepatocytes
ROS generation.31 Two sites have been described
in the mitochondrial respiratory chain related to the
superoxide anion production: NADH-ubiquinone
oxidoreductase (complex I) and ubiquinone cyto-
crome c reductase (complex III). The amount of
anion superoxide production by the mitochondrial
respiratory chain at complexes I and III normally
occurs at a rate of 0.6 nmol min71 mg71 of protein
and 3.2 nmol min71 mg71 of protein, respect-
ively.32,33 However, the extent of the intramito-
chondrial anion superoxide and hydrogen peroxide
production is increased up to maximal values when
the respiratory chain is under fully reduced condi-
tions, such as when mitochondrial inhibitors of the
electron transport are used.34, 35 During ischaemia,
the lack of the electron acceptor, molecular
oxygen, and the inhibition of the electron trans-
port system by ischaemia by-products and/or
morphological changes, could lead to a high level
of reduction of the components of the mitochon-
drial respiratory chain. Upon reperfusion, a burst
of anion superoxide would be expected to occur
owing to the increased autooxidation rate of
the intramitochondrial sources of the anion super-
oxide, namely the semiquinone (QH

.
) of complexes

I and III.4

Over the last few years, a likely regulation of
hepatic function by the interaction of speci®c cell
populations in the liver has become increasingly
evident. The bioactive molecules generated by
activated Kup�er cells in response to a variety of
stimuli have been shown to modify the hepatocyte
function, as mentioned before.11±13 In addition,
Kup�er cells appear to be implicated in the regula-
tion of the hepatic oxygen consumption. Actually,
it has been postulated that in response to oxygen
stimulus, the Kup�er cell produces speci®c signal
molecules (eicosanoids and/or cytokines) that
regulate the oxygen uptake by liver paranchymal
cells.36 In a low ¯ow±re¯ow model of rat liver
perfusion, the authors obtained the following
®ndings: (1) activation of Kup�er cells was
associated with an increase in the oxygen uptake
by the liver; (2) oxygen uptake during re¯ow, when
Kup�er cells were activated, was signi®cantly
greater than the basal values; (3) oxygen uptake

Figure 3. Tert-butyl hydroperoxide-initiated chemilumines-
cence of the liver after a cycle of lobular ischaemia±reperfusion.
The measurement was done 0.5 h after reperfusion of the lobes
previously subjected to 3 h of ischaemia. The results are
expressed as the ratio between the initiated chemiluminescence
of the postischaemic lobes (designated B) and their respective
control lobes (designated A). WT, animals without treat-
ment; Gd, animals treated with GdCl3 (see Materials and
Methods). a, signi®cantly di�erent with respect to the WT
group (p5 0.01).
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did not increase over basal values at re¯ow in liver
of rats previously treated with methyl palmitate, an
inhibitor of Kup�er cell function. Taken together
these data allowed the authors to suppose the
existence of a hepatic oxygen sensor located in the
Kup�er cell.36

In order to examine the participation of the
Kup�er cell in a model of ischaemia±reperfusion of
the liver, we used a speci®c inhibitor of its function,
namely GdCl3 . The hepatic lobes from the animals
pretreated with GdCl3 showed, with respect to those
from the animals used as control group, a lower
basal photonemission, corresponding to a lower
basal oxygen uptake. These results clearly indicate
that the GdCl3-dependent functional inhibition of
Kup�er cells leads to a down-regulation of oxygen
metabolism by the liver. A signi®cant di�erence
in spontaneous chemiluminescence between the
two experimental groups was also maintained
during both ischaemia and reperfusion. Hence,
the intensity of oxidative stress appears to be tightly

dependent on Kup�er cell activity. This concept is
strengthened by the consistent ®nding achieved
when T-BOOH-initiated chemiluminescence was
measured ex vivo in both groups after a cycle of
ischaemia±reperfusion.

A few years ago, our group proposed that the
increased ROS production by inhibited mito-
chondria, owing to the increased autooxidation
rate of the major intramitochondrial sources of
anion superoxide, appeared to be the initial cause
of oxidative stress during the early reperfusion in
the rat liver.4 New experimental evidence now
points to the direct participation of TNF on the
generation of superoxide anion by the mitochond-
rial respiratory chain as a possible mechanism of
TNF-induced cytotoxicity. In fact, it has been
reported that TNF-induced inhibition of mito-
chondrial electron transport was able to damage
the mitochondrial chain at complex III with
an increased production of ROS inside the
mitochondria.14, 37

Figure 4. Proposed mechanism to explain the ROS production by hepatocyte mitochondria associated with ischaemia±
reperfusion as the result of the Kup�er cell±hepatocyte communication. O2 , molecular oxygen; O

.
2 , anion superoxide; H2O2 ,

hydrogen peroxide; ROS, reactive oxygen species; TNF, tumour necrosis factor; IL, interleukins; E, eicosanoids; HE, hydrolytic
enzymes.

70 J. C. CUTRIÂ N, S. LLESUY AND A. BOVERIS

# 1998 John Wiley & Sons, Ltd. CELL BIOCHEMISTRY AND FUNCTION VOL. 16: 65±72 (1998)



Since the Kup�er cell is one of the most
important sources of TNF production,13 it seems
reasonable to expect an increased TNF release once
Kup�er cells are activated by an ischaemia±anoxia/
reperfusion±reoxygenation cycle.7, 8, 10 In support
of this view, a transient elevation of TNF, as well as
of IL-1 plasma concentrations, was observed after a
reperfusion phase in a total ischaemia rat liver
model.38 After being internalized by neighbouring
hepatocytes, TNF and maybe other Kup�er cell
bioproducts would interfere with the mitochondrial
electron ¯ow, most probably at complex III,
increasing the rate of ROS production by the
inhibited mitochondrial respiratory chain. In this
sense, TNF could act as an enhancer for the
generation of ROS by the reduced components of
the mitochondrial respiratory chain.

On the other hand, when Kup�er cell function is
inhibited by GdCl3 , less intensive oxidative stress is
actually detectable in the reperfused hepatic lobes,
possibly due to the lack of enhancers like TNF.

On the basis of these data Figure 4 summarizes
the proposed communication between the activated
Kup�er cell and the hepatocyte as an early key
event in the induction of postischaemic oxidative
stress of the liver.
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