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The temperature dependence of radiationless

transition rates from ab-initio computations
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Abstract

The calculation of radiationless transition rates and of their temperature de-

pendence from first principles is addressed by combining reliable electronic compu-

tations of the normal modes of the two electronic states with Kubo’s generating

function approach for the evaluation of the Franck-Condon weighted density of

states. The whole sets of normal modes of the involved cofactors have been em-

ployed, taking into account the effects of nuclear equilibrium position displacements,

of vibrational frequency changes, and of mixing of the normal modes. Application

to the case of the elementary electron transfer step between bacteriopheophytin and

ubiquinone cofactors of bacterial photosynthetic reaction centers yields a temper-

ature dependence of the electron transfer rates in very good agreement with the

experimental data.
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1 INTRODUCTION

1 Introduction

Radiationless transitions between two electronic states are of outstanding importance in

chemistry, since they affect the electronic spectrum of almost all chemicals and control pro-

cesses of relevant technological and biochemical interest, such as electron transfer (ET)

and photoisomerization. Progresses in the area of fluorescent dyes,1 microelectronics,2

single-molecule charge transport,3 and light driven molecular machines4–6 have led to a

crescent demand of computational approaches for obtaining reliable estimates of radia-

tionless transition rates, and, overall, of their temperature dependence, which represents

an important piece of information for determining from experimental data the parameters

which control transition rates.

The quantum theory of radiationless processes has been developed in the fifties by Lax

and Kubo,7,8 in parallel with Marcus’ classical ET theory.9,10 Those theories, and their

extensions,11 have been extensively applied to determine the rates of chemical reactions,

especially in the field of ET in biosystems,12–15 however in some cases the lack of detailed

information about equilibrium geometries, normal modes and vibrational frequencies of

the involved molecules had imposed the use of drastic approximations which could limit

the possibility of extracting from experimental data the parameters which control tran-

sition rates. More refined models for radiationless rates based on the spin-boson theory

have also been developed, and widely applied to the study of ET in condensed media.16–18

A significant improvement has been provided by Warshel and coworkers, who in-

troduced the dispersed polaron model which, combined with the quantum mechanical

consistent force field method (QCFF/PI), and its extensions, has allowed to determine

rate constants from classical trajectory simulations.19–21 Indeed, that methodology has

provided deep insights into the role of protein motion on their chemical activity.22,23 In

the dispersed polaron approach the microscopic parameters which drive a radiationless

transition, i.e. the variations of the equilibrium geometries and vibrational normal modes

are usually determined by an a posteriori analysis of the autocorrelation function of the

energy gap between the electronic states of reactants and products, so that disentangling

the various contributions of the nuclear motion to the overall kinetics may become quite
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2 THE FRANCK-CONDON WEIGHTED DENSITY OF STATES

laborious. Nowadays modern computational tools provide the possibility of reliably cal-

culating such parameters both for the ground and the excited states of the molecules,

thus opening the way toward the direct calculation of radiationless transition rates from

ab initio electronic computations.24–36

In this paper we present a computational approach which combines use of reliable ab-

initio computations of molecular equilibrium geometries and vibrational frequencies with

Kubo’s generating function (GF) method for computing the Franck-Condon weighted

density of states. The approach takes into account both the linear and the quadratic cou-

pling terms arising from equilibrium position displacements, mixing of normal modes, and

frequency changes, and allows to include in computations the whole set of intramolecular

normal modes, thus providing a powerful computational tool for evaluating radiationless

transition rates and their temperature dependence. The approach discussed here is valid

for those limiting cases of radiationless transitions which can be described by the Fermi

Golden Rule (FGR) expression in the harmonic and Condon approximations, however

the theory can be easily extended to tackle with problems which go beyond the Condon

approximation. Of course it is well known that, in cases of strong electronic coupling the

FGR breaks down and dynamical calculations become necessary.37,39 Application to the

case of ET between bacteriopheophytin and ubiquinone occurring in the photosynthetic

reaction center (PRC) of Rhodobacter sphaeroides shows that the temperature dependence

of ET rates is very reliably predicted and the parameters which control ET rates obtained

by a best fitting of the experimental data are in very good agreement with those already

reported in the literature.

2 The Franck-Condon weighted density of states

The Fermi golden rule expression for the rate of radiationless transition between two

electronic states is:

W =
2π

~
V 2F (∆E, T ), (1)

where V is the coupling element, which has been assumed in deriving eq. (1) to be

independent of vibrational coordinates, and F (∆E, T ) is the Franck-Condon weighted
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2 THE FRANCK-CONDON WEIGHTED DENSITY OF STATES

density of states, given by:

F (∆E, T ) =
∑
vg ,ve

1

Z(vg)
e−βE(vg)|〈vg|ve〉|2δ(E(ve)− E(vg)−∆E) (2)

where E(vg) and E(ve) are the energies of the vibrational states of the initial and final

electronic state
∣∣g〉 and

∣∣e〉, respectively, ∆E is the electronic energy difference between

the minimum energy configurations of
∣∣g〉 and

∣∣e〉, 〈vg|ve〉 is the Franck-Condon (FC)

integral, Z(vg) is the vibrational partition function of the electronic state
∣∣g〉, β = 1/kT ,

and the sum runs over all vibrational states of
∣∣g〉 and

∣∣e〉.
The evaluation of F (∆E, T ) for large ET cofactors is not an easy task, even in the

harmonic approximation. The calculation of FC integrals by use of multi-index recurrence

relations,40–45 poses problems for the extremely large amount of data which has to be

stored, and its direct formulation, originally proposed by Sharp and Rosenstock for two

and three simultaneously excited modes,40 proved to be difficult to implement.46–49 Data

storage problems can be somewhat limited by using algorithms based on an judicious

way of choosing normal mode excitations,44,49–51 and completely overcome by using a

perturbative treatment of the normal mode mixing effect,52 the so called Duschinsky

effect.53 From a computational point of view, the most efficient method for evaluating

F (∆E, T ) is the generating function approach developed in the fifties by Lax and Kubo.7,8

The GF approach is based on the Fourier transformation of the delta function of

eq. (2), and on the coordinate representation of the vibrational Hamiltonian operators of

the initial and final states, Hg and He in eq. (4) below. In short, the approach consists

in i): writing F (∆E, T ) as the inverse Fourier transform of a correlation function f(τ)

F (∆E, T ) =
1

2π

∫ +∞

−∞
ei∆Eτf(τ)dτ, (3)

where

f(τ) = Tr{e−iτHee−(β−iτ)Hg}/Tr{e−βHg}; (4)

ii) modeling Hg and He in harmonic approximation, with normal modes of vibration (Qg

and Qe) differing for equilibrium positions, frequencies, and directions, and related each

other by Duschinsky’s transformation:

Qe = JQg +K; (5)
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3 TEMPERATURE DEPENDENCE OF ET RATE

iii) integrating over normal modes and performing the trace operation finally give:

f(τ) = [detΦ]−1/2 exp
(
−K̃JTg(Tg +Te)

−1TeJ̃K
)
, (6)

where

Tg = ωg tanh[(β − iτ)ωg/2]; Te = J̃ωe tanh(iτωe/2)J (7)

Cg = ωg/ tanh[(β − iτ)ωg/2]; Ce = J̃ωe/ tanh(iτωe/2)J (8)

Φ = [2 sinh(βωg/2)]
−2ω−1

g sinh[(β − iτ)ωg](Tg +Te)(Cg +Ce)ω
−1
e sinh(iτωe), (9)

ωg,ωe being the diagonal matrices of the vibrational frequencies of the initial and final

states.

The above formulation is very efficient for numerical treatments because the calculation

of F (∆E, T ) can be recast into a discrete Fourier transform problem

F (∆E, T ) =
1

N

N∑
k=1

w(τk)f(τk)e
i∆Eτk (10)

where w(τ) is a proper window function, necessary to avoid boundary and spectral leakage

problems.54

The appealing feature of the GF approach is in the fact that, at variance with quantum

dynamics, its computational cost is independent of the value of the temperature used in

calculation, making thus it possible the analysis of the temperature dependence of ET

rates between large redox cofactors.

3 Temperature dependence of ET rate

Here, we will consider the elementary ET step from bacteriopheophytin (BPh) anion to

the primary ubiquinone (Q), one of the best characterized ET step in bacterial PRCs,55,56

which exhibits a moderate but significant temperature dependence.57,58 The first pio-

neering measurements yielded an unusual behavior, with the ET rate increasing about

threefold with decreasing temperature in the range between 300 and 25 K, and then de-

creasing abruptly at temperature below 25 K. In subsequent measurements the abrupt

decrease of the rate below 25 K was no longer observed, even though in one series of
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3 TEMPERATURE DEPENDENCE OF ET RATE

measurements, those based on the absorption at 545 nm, corresponding to the bleaching

of the Qx absorption of BPh, a slight decrease of the rate at 5 K was indeed observed, see

fig. 5 of ref 58 and fig. 3.

That non-Arrhenius behavior of ET rates could be attributed either to the electronic

coupling factor, which could exhibit a weak T dependence due to conformational changes

which allow a shorter contact between the two cofactors at lower temperature,59 or to

the temperature dependence of the FC weighted density of states. Since the latter effect

cannot be anyway reasonably neglected, we started by assigning the whole temperature

dependence of ET rates to the thermal weighted FC factors.

The rotation matrix J and the equilibrium position displacement vector K, the main

ingredients for the calculation of the thermal weighted FC factors via eq. (1)-eq. (6), have

been evaluated using the equilibrium geometries, the normal modes, and the vibrational

frequencies of BPh and Q cofactors in their neutral and anionic forms computed at density

functional theory level, by using the hybrid B3LYP exchange correlation potential and the

6-311+G** basis set. The native PRC cofactors were modeled by the molecules reported

in fig. 1.

insert figure 1

The discrete Fourier transform has been carried out using 216 sampling points with a

spacing δτ chosen to have a resolution δω = 2π
Nδτ

of 0.6 cm−1. These parameters have been

determined from Nyquist’s theorem on the basis of the overall bandwidth of the expected

density of states, and of the desired resolution.60

The resulting FC weighted density of states (F (∆E, T )) as a function of the electronic

energy difference between the initial and final state (∆E = Ei−Ef ), computed at different

T between 5 and 300 K, are reported in fig. 2. At very low temperature and for lower ∆E’s,

F (∆E, T ) shows peaks characteristic of a system consisting of a discrete set of quantum

states superimposed to a continuum, which smoothly rises as ∆E rises. As ∆E increases,

F (∆E, T ) becomes a smooth function of the vibrational energy of the final state for all

T, exhibiting a broad maximum, which shifts at longer wavenumbers as the temperature

increases. The maximum density of states significantly depends on temperature; in the
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3 TEMPERATURE DEPENDENCE OF ET RATE

range T=5-70 K, the maximum falls at wavenumbers ω = 4000 − 4500 cm−1, and shifts

at 11000 cm−1 at T=300 K.

insert figure 2

For T ranging from 5 to 70 K, the computed F (∆E, T ) curves are very close to

each other and cross in the region of ∆E between 4500 and 5500 cm−1, see the inset of

fig. 2. Thus in that energy region, assuming that ∆E is independent of temperature, the

computed ET rates will roughly be temperature independent in the range T= 5-100 K, as

observed by Kirmaier et al.58 Noteworthy, that value of ∆E is fully compatible with the

existing experimental data, estimated by delayed fluorescence measurements of isolated

reaction centers.61,62

The computed temperature dependence of ET rates is reported in fig. 3 together

with the experimental results. The computed values have been obtained from the Fermi

Golden rule expression (c.f. eq. (1)), using the FC weighted densities calculated at the

temperatures of the available experimental data, and evaluating the two parameters ∆E

and V by a least squares fit. That procedure yields ∆E = 5830 cm−1 and V = 10.0

cm−1, the latter in agreement with Kuhn’s theoretical estimate (10 cm−1), obtained by

evaluating the coupling element between the highest occupied and the lowest unoccupied

molecular orbitals of the donor and acceptor groups in the Slater potential field.63 The

other two curves reported in fig. 3 have been obtained by setting ∆E to 5400 cm−1 and

6200 cm−1, and evaluating V by least squares. The resulting values are V = 9.9 cm−1for

∆E = 5400 cm−1 and V = 10.1 cm−1 for ∆E = 6200 cm−1.

insert figure 3

The temperature dependence of the ET rates is well reproduced by computations.

At lower temperatures there is a close agreement between theoretical and experimental

data, the computed rates being within the range of the experimental error reported by

Kirmaier et al. At higher temperatures, above 250 K, the computed rates are slightly

underestimated, suggesting that the role of the surrounding medium in promoting ET

dynamics, not considered in the present treatment, but for the adopted values of ∆E and

V , becomes more important.
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4 Discussion

The non-Arrhenius behavior of ET from BPh− to Q, characterized by a temperature

independent rate up to T=130 K and a rough T− 1
2 dependence at higher temperatures,

requires a quantum mechanical treatment of the vibrational states of the system. Indeed,

Jortner’s ET quantum theory predicts a T− 1
2 dependence for an activationless ET, a

process for which the nuclear potential energy surfaces of the initial and final electronic

states cross at the minimum energy configuration of the initial state.11 The single mode

approximation of the multiphonon ET theory, although giving a reasonable qualitative

trend of the T dependence of ET rates, failed in reproducing either the temperature at

which the rates start to decreases or the exact ratio of rate decreasing.14,58 Inclusion of a

few higher energy quantum modes did not improve the situation. A more satisfying fit of

ET rates was obtained by using a slightly modified version of Jortner’s quantum theory,

including quadratic coupling terms originated by the vibrational frequency changes.64

The importance of quadratic coupling terms in ET processes is now well recognized.65–69

Those terms arise both from normal mode mixing and frequency changes. Frequency

changes have an important physical meaning, inasmuch they lead to different densities of

vibrational states for the initial and final electronic states, allowing for entropy changes,

which make ∆G to be a function of temperature. Kirmaier et. al assigned the observed

temperature dependence of ET rates to a weak temperature dependence of ∆G: from the

fit of the rates they found a decrease of ∆G by 500-1000 cm−1 as the temperature is

lowered from 295 to 100 K.

The generating function approach used here takes into account both the linear and

the quadratic coupling terms, i.e. equilibrium position displacements, mixing of normal

modes, and frequency changes. Disentangling the contribution of each effect to ET rates

is not an easy task. In an attempt to understand a little more, we have evaluated the

FC weighted density of states at different temperatures including only one effect at a

time. Since the effects are not additive, but rather act in a cooperative way (interference

between probability amplitudes), that can give just a hint on the importance of each

contribution. The results are reported in fig. 4 for T=170 K, and in the inset of fig. 4
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4 DISCUSSION

for T=5 K. To allow a better judgment, we have also included in fig. 4 the FC weighted

density of states obtained by including or removing altogether these effects. fig. 4 clearly

shows that equilibrium position displacements play the predominant role, both at T=5

K and at T=170 K, but the effect of normal mode mixing is not negligible. Frequency

changes seem to play no role, because the FC weighted densities of states computed by

considering only frequency changes are very similar, both at T=5 K and at T=170 K,

to those obtained by removing all the effects (at 5 K the FC weighted density of states

without both linear and quadratic coupling terms becomes the delta function, not visible

in the inset of fig. 4). This is not really true, however; a deeper analysis shows that,

because of cooperative effects, the density of states computed including both mixing and

equilibrium position displacements of the normal modes (curve d of fig. 4) is significantly

different from that obtained by including all the first and second order effects (curve f of

fig. 4).

Although all contributions are significant, fig. 4 undoubtedly shows that in a hierarchic

order the displacements of the equilibrium position have to be considered first. The most

strongly displaced modes of BPh/BPh− and Q/Q− redox couples, computed at B3LYP/6-

311+G** level, are reported in tables 1 and 2, respectively, together with the component

of the K vector in dimensionless units.

Both cofactors possess several modes whose equilibrium positions are significantly

displaced upon ET. These modes cover a wide range of wavenumbers, from 25 to 1800

cm−1. In the quantum dynamics approach to ET from BPh− to Q,32 low frequency

displaced modes were important for achieving tight degeneracy between the initial and

final vibronic states, a necessary condition for ET to occur by tunneling. High frequency

modes were also very important, especially for the case under consideration, because they

made it possible to fill up large electronic energy gaps between the initial and final states

with a modest increase in vibrational quantum numbers.

As concerns BPh, there are only two high frequency modes whose equilibrium position

is predicted to be slightly displaced, one falling at 1010 cm−1, the other at 1639 cm−1in the

neutral form. The mode at 1010 cm−1 is an in-plane mode, with main contributions from

CC(N)H and CCC bending, which involve almost the whole macrocycle, including the two
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4 DISCUSSION

inner hydrogens. The other mode at higher wavenumber is also an in-plane vibration,

appearing as a breathing motion of the whole macrocycle, with large contribution of

the CC stretching, especially those involving the three CH carbons connecting the five-

membered rings. The displacements of both modes are modest, having their origin in small

variations of bond distances and valence angles of the macrocycle. The most displaced

mode of BPh is a low-frequency mode falling at 39 cm−1 in the neutral form. It is an

out-of-plane mode, whose large equilibrium position displacement originates from an out-

of-plane distortion of the unsaturated carbons of the R1 ring, cf. fig. 1, in the anionic form

of BPh. This out-of-plane distortion of BPh− also determines the smaller displacements

of several low-frequency modes of the pair BPh/BPh−.

The minimum energy geometries of the Q−/Q pair shows larger differences with respect

to those of the BPh−/BPh pair. Indeed, quinone contributes to a larger extent, ca. 3000

cm−1, to the computed reorganization energy, whereas BPh contribution is ca. 1300 cm−1.

Both CO bond distances of the two carbonyl groups are significantly elongated in the anion

(1.27 vs 1.22 Å), as well as the unsubstituted CC double bond (1.37 vs 1.33 Å), whereas

the formally single CC bonds are significantly shortened (1.44 vs 1.49 Å). The CO bond

distances between the ring carbons and the methoxy oxygens are also elongated in the

anion (1.38 vs 1.34 Å), and the COC valence angle is significantly smaller (116 vs 121

degrees). All these significant geometry distortions lead to several high and low frequency

vibrations whose equilibrium positions are significantly displaced. The low frequency

displaced modes are mainly torsional motions; the two lowest ones involve torsions of

the two methoxyl groups coupled to a libration motion of the whole ring, whereas the

higher frequency one corresponds to torsions of the two methyl groups. Among the high

frequency displaced modes, the most displaced one falls at 460 cm−1 in the neutral form

and corresponds to a breathing motion of the whole ring including all heavy atoms, then

there is a mode at 1174 cm−1, corresponding to a CCH bending including both ring and

methyl hydrogens, and other two modes mainly attributable to CO stretchings, falling at

1703 and 1715 cm−1 in the neutral form.

insert tables 1 and 2

None of these displaced modes appear to play a predominant role. Several tests carried
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5 CONCLUSION

out by setting some of the normal mode equilibrium position displacements to zero did not

allow for recognition of one or more dominant modes. The same situation was found in

studying the dynamics of ET process at T=0 K by numerically solving the time dependent

Schrödinger equation. It came out that all the most displaced modes of the two cofactors

play a role in the vibronic transition.32,70 The only mode recurrently populated, often with

more than one quantum, was the highly displaced mode of Q predicted at 460 cm−1 by

B3LYP/6-311+G**, see table 2, and, because of the high ∆E, the excess energy was

always taken up by some high-frequency displaced modes of Q and, to a lesser extent, of

BPh too.

5 Conclusion

In this paper we have shown that, within the limits of appicability of the Fermi Golden

rule, the generating function approach by Kubo and Toyozawa combined with reliable

computations of the equilibrium geometries and normal modes of the involved electronic

states yield an efficient and powerful tool for studying the temperature dependence of

the rates of nonradiative transitions, which allows for disentagling from experimental

data other important parameters, such as the electronic coupling factor and the energy

difference between the involved electronic states, which are not easily obtained by com-

putations in the case of large size biosystems. The approach proposed here is able to

take into account both the linear coupling terms, arising from nuclear equilibrium posi-

tion displacements, and the quadratic ones, which depend on normal mode mixings and

frequency changes. The test case we have considered here indicates that all these effects

play a role. The elementary electron transfer step from BPh− to Q is characterized by the

existence of a multitude of parallel reaction channels, provided by the excitations of low

and high frequency intramolecular vibrations of the two redox cofactors. Linear coupling

terms appear to play a major role, but quadratic coupling terms are not negligible.

The computational approach used here could be easily implemented within the com-

mercially available packages for electronic calculations, providing a helpful tool for exper-

imentalists working in the field of nonradiative transition; indeed the electronic coupling
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factor (10cm−1) and the energy difference between the two electronic states (≈0.7 eV)

obtained by the best fitting of the experimental data are in very good agreement with

those previously reported in the literature.

6 Computational details

The equilibrium geometries and the vibrational frequencies of BPh, BPh−, Q and Q−

have been computed with density functional theory using the Becke three parameters

functional for the exchange part, and the Lee-Yang-Parr functional for the correlation

(B3LYP).71 In all calculations the standard Pople basis set 6-311+G** has been used.

All calculations have been performed with the Gaussian09 package.72

Kubo’s GF method has been implemented in a locally modified version of the MolFC

software.73
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Table 1 Progressive normal mode number, wavenumbers (cm−1), and dimensionless

displacements, of the most displaced normal modes of the pair BPh−/BPh.

wavenumber K

Mode BPh BPh−

1 30.6 20.0 0.485

2 39.7 35.2 1.042

3 58.2 56.8 0.197

6 92.2 96.7 -0.304

10 135.7 140.6 0.420

11 146.5 147.3 0.967

19 273.0 272.1 0.320

68 1011.9 1010.4 0.404

114 1644.5 1639.3 -0.365

Figure 1 The structures of the molecules employed for modeling native BPh, and UQ

cofactors
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Table 2 Progressive normal mode number, wavenumbers (cm−1), and dimensionless

displacements, of the most displaced normal modes of the pair Q/Q−

wavenumber K

Mode Q− Q

1 75.8 42.3 4.801

4 126.8 82.1 -1.097

5 147.2 156.0 1.238

9 319.0 267.3 0.314

12 367.2 377.8 -0.436

13 421.4 406.6 -0.691

15 474.2 460.0 1.490

25 995.8 1003.6 0.318

30 1168.0 1174.3 -0.728

32 1214.1 1228.2 -0.404

41 1486.6 1495.9 -0.460

45 1537.0 1703.9 0.720

46 1635.4 1715.3 0.832
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Figure 2 Franck-Condon weighted density of states for ET from BPh− to UQ as a function of

the electronic energy difference between the initial and final state. Inset: magnification of the

most interesting energy region.
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Figure 3 Computed (lines) and observed temperature dependence of ET rates Circles and

squares refer to measurements at 545 nm and 665 nm,respectively. Computed curves:

∆E = 5400 cm−1 (dashed line), ∆E = 6200 cm−1 (dotted line), ∆E = 5830 cm−1 (full line).

Experimental values are taken from ref. 58
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Figure 4 Franck-Condon weighted densities of states at T=170 K obtained by including one

effect at a time: only displaced modes (a), only rotated modes (b), only frequency changes (c),

only displaced and rotated modes (d), no effects at all (e), all effects (f). Inset: the same for

T=5 K and only for the wavenumber region of interest for ET.
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