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ABSTRACT

In this paper we introduce fully generalized Fibonacci se-

quences as useful tools for the generation of integers that

can be interpreted in the musical context for algorithmic

composition. In particular, we take into account the mod-

ulo operation on Fibonacci sequences resulting in various

periodic behaviors that we interpret in the pitch class do-

main. First we introduce Fibonacci sequences and general-

ized Fibonacci sequences, then we discuss the modulo op-

erator applied to sequences. We propose various interpre-

tations of the resulting sequences in terms of pitches and

pitch classes, and describe some possible operations. Fi-

nally, we introduce fully generalized Fibonacci sequences

and describe a possible implementation in an algorithmic

composition environment.

1. INTRODUCTION

Use of the Fibonacci sequence has a long tradition in 20th

Century Music. Kramer [1] provides an early account of

references including Bartók, Stockhausen and Nono (on

the latter see also [2], on Ferneyhough see [3]). In these

cases, Fibonacci sequences are used to define time propor-

tion, like in [4]. Mathematical and musicological discus-

sions mostly deal with the relation between Fibonacci se-

quences and golden ratio (see e.g. [5, 6]). Mongoven [6]

also reports contemporary uses while proposing an appli-

cation to tuning systems.

In this paper we are mostly interested in pitch and pitch

class interpretation of Fibonacci sequences, e.g. when num-

bers are mapped onto pitches and pitch classes. First, we

discuss some general features of Fibonacci numbers, then

we consider some musical applications to pitch domain, fi-

nally we generalize Fibonacci sequences and describe pos-

sible music developments.

2. MATHEMATICAL ASPECTS OF FIBONACCI

SEQUENCES

The Fibonacci numbers are the integer numbers in the se-

quence (the Fibonacci sequence) defined by the recurrence
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relation

F :





F0 = 0
F1 = 1
Fi = Fi−1 + Fi−2.

(1)

The Fibonacci numbers have been widely studied and

satisfy many and varied identities. Many of the identities

involve both addition and multiplication and so the full ring

structure of the integers is required to prove them.

In matrix representation, given

U =

(

0 1
1 1

)

then

U i =

(

Fi−1 Fi

Fi Fi+1

)

.

It is worth to mention two other well-known sequences.

• The Pell sequence

P :





P0 = 0
P1 = 1
Pi = 2Pi−1 + Pi−2.

(2)

• The Lucas sequence

L :





L0 = 2
L1 = 1
Li = Li−1 + Li−2.

(3)

Hence the first 9 steps of the three sequences are

i 0 1 2 3 4 5 6 7 8 9 · · ·

Fi 0 1 1 2 3 5 8 13 21 34 · · ·

Pi 0 1 2 5 12 29 70 169 408 985 · · ·

Li 2 1 3 4 7 11 18 29 47 76 · · ·

(4)

Fibonacci, Pell and Lucas sequences are respectively

sequences A000045, A000129 and A000032 in the On-

Line Encyclopedia of Integer Sequences (OEIS) 1 .

3. PISANO PERIODS

In the following we consider the sequence F (modn) ob-
tained by taking the remainders of the Fibonacci sequence
modulo n, where n is an integer. For example, if n = 3
one has

i 0 1 2 3 4 5 6 7 8 9 · · ·

Fi 0 1 1 2 3 5 8 13 21 34 · · ·

F (mod 3) 0 1 1 2 0 2 2 1 0 1 · · ·

(5)

1 https://oeis.org/
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π(n) 0+ 1+ 2+ 3+ 4+ 5+

+1 1 10 16 30 40 72

+2 3 24 30 48 48 84

+3 8 28 48 40 88 108

+4 6 48 24 36 30 72

+5 20 40 100 80 120 20

+6 24 24 84 24 48 40

+7 16 36 72 76 32 72

+8 12 24 48 18 24 42

+9 24 18 14 56 112 58

+10 60 60 120 60 300 120

Table 1. Pisano periods

F (modn) is a bi-infinite sequence, that is, given any

two consecutive terms, we can find the terms preceding and

following those terms. In other terms any pair of consec-

utive terms of F (modn) determines the entire sequence

both forward and backward.

Note that there are only n2 pairs of possible terms hence

the serie repeats, and the recurrence of a pair results in

recurrence of all following terms. By the recursive term in

(1) and the definition of F (modn) we have that if Ft+1 ≡
Fs+1 mod n and Ft ≡ Fs mod n then

Ft+1 ≡ Fs+1, · · · , Ft−s+1 ≡ F1 mod n

and Ft−s ≡ F0 mod n. Hence we have the following

Theorem 3.1 ([7]). F (modn) forms a simply periodic se-

ries. That is, the series is periodic and repeats by returning

to its starting values.

Denote by π(n) the least positive integer k such that

Fk ≡ 0 mod n and Fk+1 ≡ 1 mod n. Thus, π(n) denotes

the period of F (modn). For example, according to (5),

F (mod 3) has period 8, so π(3) = 8.

Definition 3.1.1. π(n) is called Pisano period of the se-

quence F (modn).

The existence of periodic functions in Fibonacci num-

bers was noted by Joseph Louis Lagrange in 1774 [8].

In Table 1, the first 60 Pisano periods are shown. Here

the rows represent units while columns represent decimals.

Hence, to check the Pisano period of, for example, 43, it

is enough to control the intersection between the column

4+ and the row +3. In Figure 1 there is the plot of the first

10,000 Pisano periods 2 .

We can notice that Uk ≡ I mod n precisely when π(n)|k,

where I is the identity matrix 3 .

We now collect some results about Pisano periods.

Theorem 3.2 ([7]). For n > 2, π(n) is even.

Proposition 3.2.1. π(lcm(n1, n2)) = lcm(π(n1), π(n2)),
where lcm is the lowest common multipole.

2 A clear visualization of Pisano periods in relation to periodicity has
been proposed by YouTube user Jacob Yatsko here: https://www.
youtube.com/watch?v=o1eLKODSCqw

3 We remind that | stands for “divides”.

Figure 1. Plot of the first 10,000 Pisano periods;

Source: Robodile, CC BY-SA 4.0

https://creativecommons.org/licenses/by-sa/4.0, via Wiki-

media Commons.

As a corollaries we get the following ones.

Corollary 3.2.1. if k|n then π(k)|π(n).
For example, 17|51 and π(17) = 36 divides π(51) =

72. Observe, however that 51/17 = 3 but π(51)/π(17) =
2. Similarly, 11|22 and π(11) = 10 divides π(22) = 30,

but this time, one has 22/11 = 2 but π(22)/π(11) = 3.

Corollary 3.2.2. if n has prime factorization

n = pe11 pe22 · · · penn ,

then

π(n) = lcm(π(pe11 ), π(pe22 ), . . . , π(penn )).

The following propositions give bounds for π(n).

Proposition 3.2.2. π(n) ≤ 6n, with equality holds if and

only if n = 2 · 5n.

In Figure 1 we can notice that π(250) = 1500 and

π(1250) = 7500 stand out.

Proposition 3.2.3 ([9]). Given n, let t > 0 such that Lt ≤
n where Lt is the t−th Lucas number. Then π(n) ≥ 2t.

Since 0 represents the initial step, it is important to make

some considerations about the appearance of 0.

Note that 0 is in the sequence (as F0 = 0) and since

F (modn) is periodic, we get that, for any integer n, in-

finitely many Fibonacci numbers are divisible by n.

Proposition 3.2.4. The zeros of the sequence F (modn)
are evenly spaced, that is if Fs and Ft are congruent to 0

modulo n, then Fs+t and Fs−t are congruent to 0 modulo

n.

This follows from the well-know equalities

Fs+t = Fs−1Ft + FsFt+1 (6)

and

Fs−t = (−1)t(FsFt+1 − Fs+1Ft). (7)
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3.1 Generalized Fibonacci sequences

A first kind of generalization of the Fibonacci sequence

consists in considering different initial steps. To this aim

we define the sequences G[a,b] of the form

G[a,b] :





G0 = a
G1 = b
Gi = Gi−1 +Gi−2.

(8)

for integers a, b. Clearly G[0,1] is the usual Fibonacci se-

quence and G[2,1] is the Lucas sequence.

Again, we can consider the sequence G[a,b](modn). In

the following table we have the first steps of G[a,b] and

G[a,b](modn) for a = 3, b = 2 and n = 3:

i 0 1 2 3 4 5 6 7 8 · · ·

Gi 3 2 5 7 12 19 31 50 81 · · ·

G[3,2](mod 3) 0 2 2 1 0 1 1 2 2 · · ·

(9)

Proposition 3.2.5. Let a, b, n be integers with m ≥ 2.

(a) G[a,b] satisfies Gi = Fi−1a+ Fib.

(b) G[a,b](modn) is periodic.

Part (a) of the previous proposition shows an important

link between G[a,b] sequences and Fibonacci sequence F
and part (b) tells us that sequences G[a,b] have Pisano pe-

riod.

We denote by π(a, b, n) the Pisano periods of the se-

quences G[a,b](modn). We have the following important

result.

Proposition 3.2.6. The Pisano period of G[a,b](modn) di-

vides the Pisano period of F (modn), that is

π(a, b, n)|π(n).

Also for π(a, b, n) we have the same results of Proposi-

tion 3.2.1 and Corollaries 3.2.1 and 3.2.2 (see [7]).

Let D = b2 − ab− a2. The value D plays an important

role to determine π(a, b, n).

Theorem 3.3. If LCD(D,n) = 1 then π(a, b, n) = π(n).

For example, the Lucas sequence has D = −5. Thus,

for any n that is not a multiple of 5, the Pisano period of

the Lucas sequence mod n is the same of F (modn).
Many papers on sequences G[a,b] mainly focus on the

case LCD(a, b) = 1, that is a and b are coprime. However,

for the topics of the following sections, also the case in

which b divides a is of particular interest. In this context,

we establish the following result.

Proposition 3.3.1. If a = kb and b divides n then all se-

quences G[kb,b](modn) give the same set of numbers, for

all non-negative integers k.

Proof. Write n = t · b. Given any k, we have k = qn+ r
for suitable integers q and r. Thus the sequence G[kb,b] can

be written as

(qn+r)b, b, (qn+r+1)b, (qn+r+2)b, (qn+r+3)b, . . .

Thus, when we consider this sequence mod n we get

rb mod n, b mod n, (r + 1)b mod n, . . .

This shows that all elements of the sequence are all the

multiple of b modulo n, independently of the value of r or,

equivalently, of the value of k.

4. FIBONACCI SEQUENCES AND PITCH

CLASSES

Pitch classes are defined in relation to Forte’s set theory for

atonal music, where each pitch class (e.g. C representing

the class of all possible Cs, regardless of octave) is indexed

by an integer number (e.g. 0 for C) (see [10, 11, 12], in

other contexts defined as chroma values). In this context,

we assume: equal temperament; octave equivalence; and

enharmonic equivalence. The first assumption says that

the octave range ([f, 2f ], where f is frequency) can be di-

vided into 12 equal steps where fi+1 = 12
√
2fi (12 equal

temperament, 12-ET)), the second that each corresponding

step in different octaves shares a perceptual ”sameness”

feature, the third that, in relation to Western harmony, al-

terations are not relevant, so there is properly no difference

among e.g. B♯, C, D♭♭, as they are all represented by pitch

class index 0. These three constraints allow for integer no-

tation, that is, each step in an equally tempered octave can

be indexed by an integer in the range 0-11. As the pattern

repeats itself, there are only 12 pitch classes [12].

The first application of Fibonacci numbers to the pitch

domain can be traced back to Joseph Schillinger [13]. In

the chapter devoted to Theory of Melody of his System he

suggests to use Fibonacci sequences as a way to generate

pitches, like in Figure 2 (omitting 0, 1). Here Schillinger

is also proposing a specific interpretation of Fibonacci se-

quences as incremental positive intervals rather than pitch

classes. This means that [0, 1, 1, 2, 3] can be interpreted

not as C, D♭, D♭, D, E♭ but rather as C, D♭, D, E, G. It can

be easily seen that, due to the accumulation process, num-

bers mapped onto pitches very soon exceed the available

piano range. As a solution to this problem, Schillinger sug-

gests to transpose each pitch to a viable octave, by means

of “readjustment of the range” [13, p. 334] (Figure 3).

This operation is indeed equivalent to apply mod 12 to

the number. This modulo operation has relevant impli-

cations. Much more recently, Haek [14] has proposed an

application of Fibonacci mod n to serial composition. In

a 2023 YouTube video, Evanstein presents the application

Fibonacci Music Box that deals with modulo application to

Fibonacci series so to obtain pitch sequences 4 . In the fol-

lowing we discuss some more general features with num-

ber sequences interpreted as pitch class indices.

5. FIBONACCI MOD N AND PITCH CLASSES

In this section we propose an application to the pitch do-

main of Fibonacci sequences. Generalized Fibonacci se-

quences provide a very simple yet powerful formalism to

4 https://www.youtube.com/watch?v=_aIf4WUCNZU
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Figure 2. “Unilateral symmetry of Fibonacci series”.

From [13, p. 334]

Figure 3. “Readjustment of the range”. From [13, p. 334]

generate infinite sequences of integers. Thus, they are right-

ful candidates to enter the algorithmic composer’s toolbox.

As already observed by Schillinger, Fibonacci sequences

rapidly grow outside a useful pitch range. Modulo appli-

cation solves this issue but at the same time provides a new

feature. When modulo n is applied, the result is a cyclic

pattern that can be interpreted in relation to pitch domain.

In this case, pitch sequences are interesting as they pro-

vide a non-uniform distribution of pitches while ensuring

a variable periodicity. We can start by considering three

cases:

1. n < 12

2. n = 12

3. n > 12

5.1 n <12

While discussing the first case, we also introduce some

general aspects.

If n < 12, then pitch classes ≥ n are necessarily missing

from the resulting cycle. Figure 4 shows the pitch class

pattern for G[2,1] with n = 11 (Lucas Sequence mod 11)

(Figure 5 shows a line visualization for the melodic pro-

file). It can be observed that pitch class 11 (= B) is miss-

ing. But while this holds true by definition, not all the

other 11 pitch classes are present. It is possible to study

various features of this pattern. Pitch classes in the se-

quence are only 7, the set being {0, 1, 2, 3, 4, 7, 10}. The

Pisano period is 10. Finally, the number of occurrences

for each pitch class is the following (in which the items in

the array indicate occurrences for pitch classes 0 − 11):

[1, 1, 1, 2, 1, 0, 0, 3, 0, 0, 1, 0]. This means that there are

single occurrences of C, C♯, D, E, B♭, 2 occurrences of D♯,
3 occurrences of G. Of course, there are no occurrences for

B, but neither for F, F♯, G♯, A (Figure 6).

How to interpret the sequence in Figure 4? First, it can

be seen as a specific melodic form. Second, it can be taken

        

Figure 4. Pitch class sequence for a = 2, b = 1, n = 11.

into account as a generative cell, such as those used e.g. by

Stravinskij ([15, 16]). Third, it can be exploited as a sort

of weighted pitch class sequence: in the case of Figure 4

pitch class 7 (G) has more occurrences than all the other

pitch classes, so it acts like a “modal” pivot for the whole

sequence. By taking into account the resulting pitch class

set, many analytical features can be explored. Ian Ring’s

website provides an extensive analytical approach to scale

patterns 5 . Ring has automatically computed an extensive

set of analytical features from existing literature. In this

context, a scale is an ordered sequence of pitch classes

starting from 0 and including no intervals < 4. A scale

can be represented in bit form with the lowest bit (repre-

senting pitch class 0) at the right. The bit form of the set

{0, 1, 2, 3, 4, 7, 10} is thus [0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1]. This

allows to compute the decimal form, that is, 1183. As a

scale starts by definition from 0, the decimal is always odd.

This number can be used as a pointer to a page in Ring’s

website, so to explore the resulting scale pattern in relation

e.g. to Forte number, Tonnetz, prime form, interval vector,

chirality and many others 6 .

In short, generalized Fibonacci sequences mod n al-

lows to generate simultaneously a scale and a repeating

melody. A “Sequence Graph” like the one in Figure 7

shows in a compact way this twofold nature for the pre-

viously discussed G[2,1] with n = 11. The pitch sequence

is [2, 1, 3, 4, 7, 0, 7, 7, 3, 10]. Nodes represent pitch classes

(integers as labels), their radius being proportional to the

number of occurrences (node 7 is the largest). Edges repre-

sent the sequencing order, as specified by each edge label.

The graph is by definition directed and cyclic [17]. The

dotted edge indicates the cycle loop and can also be used

to quickly identify the starting node. Its label indicates the

Pisano period.

5.2 n = 12

All the previous considerations apply to n = 12, with the

difference that it is indeed possible to create a full chro-

matic pitch set (decimal notation: 4095). While this is

theoretically possible, by considering all combinations of

generalized Fibonacci sequences with 0 < a < 100 and

1 < b < 100 this does not happen, the best approxima-

tion being the pitch class {0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11},

that is, the chromatic set without F♯ (decimal: 4031), in

all cases with π(n) = 24. Figure 8 shows the patterns with

pitch class set 4031 generated by lowest a (= 0) and b,
respectively 1 (classic Fibonacci sequence) and 5 (G[0,1]

and G[0,5] with n = 12). Even in case of the same pitch

class set, still pitch sequences and occurrence counts are

different.

5 https://ianring.com/musictheory/scales/
6 https://ianring.com/musictheory/scales/1183
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Figure 5. Melodic profile in a = 2, b = 1, n = 11.
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Figure 6. Occurrences for pitch classes in a = 2, b = 1,

n = 11.

Figure 7. Sequence Graph for in a = 2, b = 1, n = 11.
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Figure 8. Patterns for a = 0 and , b = 1 (top) and b = 5
(bottom).
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Figure 9. Patterns for a = 2 and , b = 1 and n =
12, 15, 18, 21, 24.

If b = 2, then all sequences with a = kb (where k is

an integer), result in the pitch class set {0, 2, 4, 6, 8, 10},

with π(n) = 24, that is, a whole tone scale. Yet, pitch se-

quences are different, with different occurrence counts. In

short, various hexatonic patterns can be generated. When

b = 4, then all sequences with a = kb result in the pitch

class set {0, 4, 8}, with n = 8, that is, an augmented triad.

Similarly, with b = 3 and a = kb, the pitch class set is

{0, 3, 6, 9}, a diminished 7th chord.

In general, by Proposition 3.3.1, if b is a divisor of n,

then all sequences G[kb,b](modn) result in the same set of

pitch classes.

5.3 n >12

If n is greater than 12 all the previous considerations apply

but the obtained remainders result in a range of more than

one octave. This feature can be exploited in order to dis-

tribute pitches over a larger span, in this sense privileging

a pitch interpretation rather than a pitch class one. Figure

9 shows Lucas sequence (G[2,1]) with five moduli ranging

from n = 12 (top) to n = 24 (bottom). Meter is kept in the

music notation so that different Pisano periods are clearly

visible (respectively: 24, 8, 24, 16, 24). Extension of pitch

range is clearly visible, and in particular top and bottom se-

quences (n = 12 and n = 24) show how the same pitches

are distributed over 1 and 2 octaves respectively.

This approach leads to interesting results in terms of

pitch sequences but does not allow to take into account the

analytical features discussed in subsections 5.1 and 5.2, as

those features apply not to pitches but to pitch classes. A

second approach can thus be proposed so to exploit the

richness of variable n while still placing the discussion at

the pitch class level. The algorithm is the following:

1. Generate a generalized Fibonacci sequence G
2. Apply modulo n > 12 to G so to get G1

3. Apply modulo n1 = 12 to G1 so to get G2

G2 represents a sequence of pitches in the range [0, 1, ..., 11],
that is one octave, and actual pitches can be interpreted as

pitch classes. Figure 10 shows the further application of

modulo n = 12 to the patterns from Figure 9. Pitch pat-

terns with n = 12 and n = 24 (top and bottom) result in

the same pitch class sequence.
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Figure 10. Patterns from Figure 9 with further n1 = 12.

6. MORE GENERALIZATIONS

The classic Fibonacci sequence allows for several gener-

alizations. An interesting case is given by the so-called

k−Fibonacci sequence [18]:

Fk :





Fk,0 = 0
Fk,1 = 1
Fk,i = kFk,i−1 + Fk,i−2.

(10)

If k = 2, the Pell sequence appears. If k = 3 we get the

following sequence

i 0 1 2 3 4 5 6 7 8 · · ·

F3,i 0 1 3 10 33 109 360 1189 3927 · · ·

(11)

The k−Fibonacci sequences satisfy nice properties. For

example the following ones show useful relationship among

the terms of the sequence:

• Catalan’s identity:

Fk,n−rFk,n+r − F 2
k,n = (−1)n+1−rF 2

k,n;

• Simson’s identity:

Fk,n−1Fk,n+1 − F 2
k,n = (−1)n;

• d’Ocagne’s identity:

Fk,mFk,n+1 − Fk,m+1Fk,n = (−1)nFk,m−n.

More properties, with details of the proofs can be found

in [19, 20, 21].

Also for this sequences we can talk of Pisano period

thanks to the following result.

Theorem 6.1 ([18]). Fk(modn) is a simple periodic se-

quence.

In particular, the results of Corollaries 3.2.1 and 3.2.2

are valid also for k−Fibonacci sequences.

Taking a step further, as a new contribution, we define

fully generalized Fibonacci as in the following:

H[a,b,k1,k2,s] :





H0 = a
H1 = b
Hi = k1Hi−1 + k2Hi−2 + s.

(12)

where a, b, k1, k2, s are integers. Parameters a and b pro-

vide the initial steps, while k1 and k2 determine the size

of the recursive steps and s is called the shift of the se-

quence. Obviously the Fibonacci sequence F corresponds

to H[0,1,1,1,0], the sequences G[a,b] are obtained for H[a,b,1,1,0]

Finally, with H[0,1,k,1,0] we get the k−fibonacci sequences

Fk.

A larger amount of different sequences can be obtained

by changing some parameters in the definition of Fibonacci

recursion laws. By means of generalization a very large

palette of numerical sequences becomes easily available

to the music composer. Moreover, use of moduli intro-

duces further richness. The previous discussion has shown

how it may be complex to choose in advance the generator

parameters that lead to a certain sequence without empir-

ically verifying the results. In this sense, an experimen-

tal approach is the most viable approach to explore fully

generalized Fibonacci sequences, as slight modifications

of available parameters may have dramatic effects. As an

example, let us consider the fully generalized Lucas se-

quence H[2,1,3,5,3], with n = 23 and n1 = 12. The Pisano

period is very large (π(n) = 176) and the sequence graph

particularly complex, as it can be seen in Figure 11. In

a computational environment for algorithmic composition,

visualization and sonification displays allow to navigate

these kinds of datascapes.

7. IMPLEMENTATION

Implementation of fully generalized Fibonacci sequences

is straightforward. Listing 1 shows two Python functions

fiboR and fiboI that compute a sequence of length ln

by passing a, b, k1, k2, s as arguments. The first

is recursive, the second iterative. Length must be empiri-

cally large enough to comprise Pisano period (here, 1000).

Modulo can be applied by making use of list comprehen-

sion on the resulting seq sequence (line 9) by applying n
and then n1 = 12 so to get pitch classes. Here we are com-

puting H[2,1,3,5,3] with n = 23 and n1 = 12 as discussed

in section 6.

1 def fiboR(a=0, b=1, k1=1, k2=1, s=0, seq = [], i
= 0, ln = 1000):

2 if i < ln:
3 c = (a*k1) + (b*k2) + s
4 seq.append(c)
5 fiboR(b, c, k1, k2, s, seq, i+1, ln)
6 return [a,b]+seq
7

8 def fiboI(a=0, b=1, k1=1, k2=1, s=0, ln=1000):
9 seq = [a, b]

10 for x in range(ln):
11 a, b = b, (a*k1) + (b*k2) + s
12 seq.append(b)
13 return seq
14

15 n = 23
16 seq = [(x % n) % 12 for x in fiboI(2,1,3,5,3)]

Listing 1. Python example.
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Functions for period estimation and for data analysis

(e.g. occurrence count) and conversion (e.g. decimal nota-

tion of pitch class set) are similarly trivial. Jupyter Note-

book 7 provides a web-based computing platform that of-

fers an interactive environment for Python development 8 .

In the context of algorithmic composition, Jupyter Note-

book allows to exploit the large ecosystem of Python li-

braries. As an example, after computing the decimal repre-

sentation of a pitch class set, by means of the webbrowser

module it is possible to automatically access Ian Ring’s

pages dedicated to that scale. Figures 5 and 6 have been

generated using the standard matplotlib module for

plotting. The sequence graph in Figure 7 has been gener-

ated with the pydotmodule, a Python interface for Graphviz

[22]. The same module has been used to generate the se-

quence graph for H[2,1,3,5,3] with n = 23 and n1 = 12
computed in Listing 1, shown in Figure 11. The Python

Music21package provides an integrated bridge towards mu-

sic computation and notation [23]. It includes functional-

ities to analyse, plot and notate music data. In relation to

music notation, it allows to generate MusicXML that can

be further manipulated in music notation softwares (e.g.

Musescore 9 ). Like the other previously mentioned mod-

ules, Music21 can be directly accessed via Jupyter Note-

book, so that notation output can be displayed in the Note-

book itself (via Musescore backend) and results can be

heard (via MIDI playback). All music examples (Figg. 4,

8, 9, 10), have been generated via Music21 and Musescore.

Further data sonification can be obtained by the direct us-

age of the SuperCollider 10 environment into Jupyter Note-

book by means of the sc3nb Python-interface [24].

8. CONCLUSIONS AND FUTURE

DEVELOPMENTS

Fully generalized Fibonacci sequences are simple yet pow-

erful generative devices that results in complex, unpredictable

patterns that, once the modulo operation is applied, never-

theless lead to repeating organizations. These sequences

can be interpreted in the music domain in various ways.

In our proposal, we mapped integers onto indices for pitch

and pitch class description. In the latter case, modulo 12
is the key operation that enables to lead back the obtained

results to the vast music theory literature dedicated to the

topic. It is worth mentioning that obtained sequences can

indeed be manipulated further. As an example, transpo-

sition results in adding a factor t to all the integers in a

sequence. As the operation is obvious, we have focused on

sequence properties rather than on pitch classes in them-

selves (e.g. we have not taken into account that Fibonacci

starts on C while Lucas on D, as pitch organization can be

transposed at will). Fully generalized Fibonacci sequences

favors an experimental, empirical approach, as through com-

putational environments it is possible for each sequence to

7 https://jupyter.org/
8 See the implementation on colab: https://github.com/

vanderaalle/FullyGeneralizedFibonacciSequences/
blob/main/FibonacciModuloN.ipynb

9 https://musescore.org/
10 https://supercollider.github.io/

explore pitch class set composition, occurrence distribu-

tion, Pisano period. In short, fully generalized Fibonacci

sequences are useful tools for algorithmic composition.

The previous discussion focused on pitch classed based

on 12-ET. We can think of extending the approach by tak-

ing into account non-integer numbers. As an example,

4 mod 2.5 = 1.5. Fractional parts can be interpreted

as semitone fractions, like in MIDI notation, where e.g.

60.5 indicates a middle C raised of a quarter tone. In-

deed, other fractions can be obtained. Non-integers can

be applied in fully generalized Fibonacci both to param-

eters a, b, k1, k2, s and to mod n. If holding the octave

constraint, by further applying mod n = 12 it is pos-

sible to create non-12-ET pitch class sets. In relation to

this, a different approach to be explored is to define a spe-

cific mapping function that maps the output integers from

H onto specific sets of non-integers values. Finally, while

we consider pitch and pitch class interpretation as partic-

ularly promising, fully generalized Fibonacci mod n can

be used to generate values to control arbitrary cycling pa-

rameters for sound and music computing. As a suggestion,

periodic sequences can be used to fill looping wavetables

for audio synthesis. In this sense, one can think of Figure

5 as a wavetable plot. An interesting feature is that these

wavetables are amplitude limited, as the amplitude range

is by definition in the range [0, n − 1], where n is the last

applied modulo.
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