AUTOMATA for FORMAL METHODS:
LITTLE STEPS TOWARDS PERFECTION

FrantiSek Blahoudek

PHD THESIS

Faculty of Informatics
Masaryk University
Brno

March 2018

Acknowledgements

I will always remember my postgraduate years as an intensive period of my
life, full of both amazing and tough experiences. It was a period of joy and
constant personal growth. I could never finish my thesis without inspiration
and support of many people around me. In the following paragraphs, I would
like to express my gratitude to at least some of them.

First of all, I would like to thank my supervisor Jan Strej¢ek. He is the one
who showed me the beauty of automata more than ten years ago and who gave
me the opportunity to spread the beauty among my students as a teacher. I
especially value his trust and patience, and I am more than grateful for his
method of supervising through careful, inspiring, and close collaboration. I
like the way he writes, and I hope I learnt at least some bits from him. I en-
joyed sharing my passions for chocolate, good drinks, running, and colorful
automata with this great teacher and mentor. And what I appreciate the most
is that I can call Jan my friend with whom I can discuss science, life, love, and
jokes. I will never forget that we were able to experience good laughs even
at 4 in the morning before deadlines. And I also have to mention the unfor-
gettable travel experiences from our business trips; it was a pure pleasure to
watch Jan falling to the river Okawango after he attempted to drive a Mokoro
boat.

I was also honoured to have Mojmir Kretinsky as a supervisor for a year. I
am thankful to him for his attitude to me, his willingness to help, and for his
support and care in difficult days.

Alexandre Duret-Lutz is our exceptional collaborator. He disclosed me
how much can scientists profit from mutual collaboration and he also en-
couraged me to learn and explore new technologies and to develop own use-
ful tools. My research would be much harder and less enjoyable without him
and his work on Spot. The integration of Spot with Jupyter had an enormous
impact on my performance and saved me a lot of precious time.

As an attendee of the MOVEP summer school, I had the unique opportu-
nity to share a good time with Sven Schewe. I enjoyed our talks about auto-
mata and life, and I appreciate his notorious good mood and the willingness
to share ideas.

I have shared my office with three inspiring colleagues and friends. Petr
Novotny, starting his PhD two years before me, was always a good source
of inspiration and good advice; he taught me to appreciate good rum and to
enjoy preparing my presentations properly. Lubo§ Korendiak is an infinite
source of jokes and good mood and a great companion to travels; he taught
me to procrastinate and to be open to people. Martin Jonda$ never hesitates
to share his opinion and good taste; he taught me to drink up to four cups of
coffee a day and to be concerned with typography.

Our office is a part of the Formela lab, a place where I have been meeting
many wonderful colleagues and friends. I especially enjoyed meeting Tomas
Babiak, Tom Brazdil, Marek Chalupa, Jakub Gajarsky, Mirek Klimos$, Jéna

Kreal, Honza Kretinsky, Kdja Mald, Mikulas Klokocka, Honza Obdrzalek,
Vojta Rujbr, Vojta Rehak, Mima Sasarakov4, Marek Trtik, Dominik Velan,
Martina Vitovska, and Tana Zbonc¢akova. I wish to meet them on many oc-
casions in the future. I also hope to meet the friends from the ParaDiSe lab,
who contributed to the positive environment in the school.

Teaching has been an enjoyable part of my studies and it often served as a
source of energy for me. I am thankful to my students that brought fun and
good mood into my lessons. I am also grateful to all people that helped me to
bring TeachingLab into life. I especially enjoyed the cooperation with Ondras
Ptibyla, who brought many new insights and views into my life. A great deal
of my gratitude goes to Martin Ukrop who continues in my effort to improve
the quality of the student’s teaching at our university.

It would be hardly possible to survive the PhD studies without the sup-
port of friends. I would especially like to thank Dédek, Vojta Duba, Roman
Klein, Michal Klivicky, Tom Kocmi, Honza Kudr, Sasa Kuckir, Luka$ Straka,
and Michal Zeman for their help and the wonderful time we spent together.
I would also like to thank Vérka Slezékova, who supported me in my diffi-
cult times and who taught me much about life. I feel exceptional gratitude
to my friends from Instruktofi Brno for many memorable experiences,! per-
sonal growth, and fun they have brought into my life. But most of all I value
the close friendships I found there, notably with Déblice, Entiro, Finn, Glum,
Jitka, Lenka, Myca, and Rissie.

I feel the deepest gratitude to my parents, Marie and Franti$ek. They have
always offered me a warm place to return to, unconditional support, empathy,
and love. They have encouraged me to pursue my goals and they have always
been curious about my various adventures not only from business trips. Be-
yond all of this, I thank them for teaching me not to forget about fun in my
life. I have the great luck to have a broad, supportive family whose members
have kind words for me when needed and they also never miss an opportunity
to make fun of me. I would like to especially mention my brother Petr and my
aunts Anca and Petra and thank them for being close to me. I have always en-
joyed the company and smiles of other members of my family, namely Anduj,
Eva, Fanda, Honza, Marie, Miluska, Petra, Tafa, Vasek, and Zuzka.

Fanda Blahoudek
Brno
March 2018

! They made my group carry a boat for more
than five km through a forest at night, for ex-
ample.

Abstract

As w-automata are a convenient representation of languages of infinite words,
they are widespread in the area of formal methods; many algorithms that an-
alyze systems with infinite behaviours rely on w-automata. The efficient algo-
rithms for the intersection, union, and emptiness checking for various classes
of w-automata made them appealing for model checking of properties ex-
pressed as w-regular languages or as formulae in (not only) Linear Temporal
Logic (LTL).

On the contrary, determinization and complementation of w-automata are
notoriously difficult problems. This fact complicates usage of the automata-
based methods that need deterministic automata® or inherently employ lan-
guage difference or complementation of w-automata?

This dissertation approaches w-automata and formal methods from var-
ious directions and presents several contributions towards perfect automa-
ta for formal methods. The presentation of the contributions is divided into
three parts.

o The first part is tightly connected to the model checker Spin and nondeter-
ministic Biichi automata. We investigate how different automata for one
language can influence the performance of Spin and we bring several in-
teresting observations and recommendations for LTL translators. More-
over, we introduce a method that enables the creation of automata that are
suited for a particular verification task. The automata convey knowledge
about the system to be verified; this knowledge sometimes helps to make
the automata significantly smaller and to speed up the model checking.

o The second part of the thesis is dedicated to the translation of LTL into de-
terministic automata. We present an efficient translation of a fragment of
LTL into automata with generalized Rabin acceptance condition. We also
discuss other approaches to the translation and offer an extensive experi-
mental comparison of available tools.

o The last part discusses semi-deterministic automata, which are automata
that are deterministic in the limit. We develop an algorithm (and a tool)
for semi-determinization of Biichi automata, and an efficient algorithm for
complementation of these automata.

% like model checking of probabilistic systems
or synthesis of reactive systems

?like termination analysis in the tool Ulti-
mate Automizer

Contents

List of Figures
List of Tables

1 Introduction

1.1 OUTLINE AND CONTRIBUTION OF THE THESIS
1.2 AUTHOR’S PUBLICATIONS AND HIS CONTRIBUTION

2 Preliminaries
2.1 W-AUTOMATA
2.2 LINEAR TEMPORAL LOGIC (LTL)

I HOW BUCHI AUTOMATA INFLUENCE MODEL CHECKING

3 Is There a Best Biichi Automaton for Spin?

3.1 MOTIVATION BY EMPIRICAL DATA: HOW MUCH CAN AUTOMATA INFLUENCE SPIN
3.2 STANDARD APPROACH TO OPTIMIZATION: HELPING THE PRODUCT

3.3 ANOTHER VIEW TO OPTIMIZATION: HELPING THE EMPTINESS CHECK

3.4 SUMMARY OF THE CHAPTER

4 Specifications meet systems
4.1 SPECIFICATION REFINEMENT AND CONSTRAINTS
4.2 FORMULA REFINEMENT
4.3 AUTOMATON REFINEMENT
4.4 EXPERIMENTAL EVALUATION
4.5 LABEL SIMPLIFICATION
4.6 WHEN REFINEMENT HARMS AND FOUND BUGS
4.7 FINAL REMARKS

I LTL TO DETERMINISTIC AUTOMATA

5 Translation of LTL Fragments into Generalized Rabin Automata
5.1 ALTERNATING AUTOMATA AND THEIR SUBCLASSES
5.2 TRANSLATION OF LTL(Fg,Gg) TO MMAA
5.3 TRANSLATION OF MMAA TO LTL(Fg,Gs)

10

12

15
18
19

23
23
26

27

29
32
34
36
40

43
44
45
46
47
53
55
57

61

63
63
66
67

10

5.4
5.5
5.6
5.7

TRANSLATION OF MMAA TO DETERMINISTIC AUTOMATA
MMAA IN THE LIMIT AND LTL\G(U,X)
DEGENERALIZATION FOR RABIN AUTOMATA
IMPLEMENTATION AND TRANSLATION IMPROVEMENTS

6 LTL to Deterministic Automata Translators: Experimental Evaluation

6.1
6.2
6.3
6.4
6.5
6.6

EVALUATED TOOLS

BENCHMARK FORMULAE

HARDWARE, BENCHMARK SETTINGS, AND ERRORS
RESULTS: NON-PARAMETRIC BENCHMARKS
RESULTS: THE PARAMETRIC BENCHMARKS

FINAL WORDS

IIT SEMI-DETERMINISTIC AUTOMATA

7 Semi-Determinization of TGBA

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

SEMI-DETERMINISM AND CUT-DETERMINISM
CUT-DETERMINISM CHECK & STATE SPACE PARTITION
SUBSET CONSTRUCTION

SEMI-DETERMINIZATION OF BUCHI AUTOMATA
CUT-DETERMINIZATION OF BUCHI AUTOMATA
SEMI-DETERMINIZATION OF GENERALIZED BUCHI AUTOMATA
CUT-DETERMINIZATION OF TGBA

IMPLEMENTATION

EXPERIMENTAL EVALUATION

8 Complementation of Semi-Deterministic Biichi Automata

8.1
8.2
8.3
8.4
8.5
8.6

COMPLEMENTATION OF NBA
COMPLAMENTATION OF SDBA
RANKS AND CORRECTNESS
ON-THE-FLY APPROACH
IMPLEMENTATION
EXPERIMENTAL EVALUATION

Bibliography

68
72
72
74

77
79
83
85
86
98
101

103

105

105
106
107
107
112
113
116
116
118

125
125
126
129
133
133
134

137

List of Figures

Figure 1.1 Biichi automaton for G(request = Fprint).
Figure 1.2 Powerset construction.
Figure 1.3 Various automata for GFa A GFb.

Figure 2.1 NSBA, NTGBA, and a DTGRA for FGa v (GFb A GF-b).

Figure 3.1 Automata-theoretic approach to model checking.
Figure 3.2 Impact of the Biichi automata on model checking.
Figure 3.3 Two BA for GFa and a state space.

Figure 3.4 Two BA for anG(a = X(aa X(anaXa))).
Figure 3.5 Various automata for GFa A GFb.

Figure 3.6 Two TGBA for GFa A GFb.

Figure 3.7 Automata for -(GFa = GFb).

Figure 4.1 Promela code of a process from bakery protocol.

Figure 4.2 Incompatible propositions in action.

Figure 4.3 Specification refinement applied on an automaton.

Figure 4.4 Performance of formula refinement.

Figure 4.5 Distribution of the improvement ratios of formula refinment.
Figure 4.6 Performance of automata refinement.

Figure 4.7 Distribution of the improvement ratios of automata refinement.
Figure 4.8 Formula vs.automaton refinement.

Figure 4.9 Formula vs.automata refinement - distributions.

Figure 4.10 C code generated by Spin for a transition.

Figure 4.11 A, () much smaller than A.

Figure 5.1 An example linear alternating automaton .A.
Figure 5.2 A runof the LAA A.

Figure 5.3 State styles of May/must AA.

Figure 54 The MMAA A,, for ¢ = G(Fsa AFsb) v Gb.
Figure 5.5 The semiautomaton for A,,.

Figure 5.6 The DTGRA for A,,.

Figure 6.1 LTL to deterministic automata: evaluated tool chains.
Figure 6.2 LTL to deterministic automata: workflow of Spot.
Figure 6.3 LTL formulae from literature and their classification.
Figure 6.4 Minimal automata by approaches.

Figure 6.5 Unique minimal automata by approaches.

Figure 6.6 Minimal automata by tools (literature).

Figure 6.7 Minimal automata by tools (random).

Figure 6.8 Quantile plot for selected tool chains with Spot.
Figure 6.9 Scatter plots comparing Itl2dstar and Spot.

Figure 6.10 Scatter plots comparing Rabinizer 4 and Spot.

Figure 6.11 Scatter plot comparing Rabinizer 4 against Spot combined with LTL3TELA.

16
16
18

24

29
33
34
36
36
37
39

43
43
45
50
50
52
52
54
54
54
55

64
65
65
67
69
70

79
80
82
88
88
89
90
93
96
97
98

12

Figure 7.1 Structure of semi-deterministic automata.
Figure 7.2 Marks pushed to transitions.

Figure 7.3 Semi-determinization.

Figure 7.4 SCC-aware semi-determinization.

Figure 7.5 Cut-determinization.

Figure 7.6 Degeneralization of GBA.

Figure 7.7 Two-step semi-determinization of GBA.

Figure 7.8 One-step semi-determinization of GBA.

Figure 7.9 Formulae from literature and their classification.
Figure 7.10 Comparison of Seminator and ltl2ldba.

Figure 7.11 Comparison of Seminator and nba2ldba.

Figure 7.12 Comparison of Seminator and Seminator 2-step.

Figure 8.1 NCSB construction: an example.

Figure 8.2 Comparison of the NCSB construction and other complementations.

105
107
108
111
112
113
113
115
119
122
122
123

128
136

List of Tables

Table 3.1
Table 3.2
Table 3.3
Table 3.4

Table 4.1
Table 4.2
Table 4.3
Table 4.4
Table 4.5
Table 4.6
Table 4.7
Table 4.8
Table 4.9

LTL-to-BA translators.

Benchmark based on automata and product sizes.

Benchmark based on automata sizes and Spin’s runs (bakery.7.pm).
Benchmark based on automata sizes and Spin’s runs (peterson.4.pm).

LTL-to-BA translators.

Solved verification tasks (formula refinement).

Effect on property automata (formula refinement).
Improvement ratios distributions (formula refinement).
How transitions affect run time of Spin.

Solved verification tasks (automaton refinement).

Effect on property automata (automaton refinement).
Improvement ratios distributions (automaton refinement).
Solved verification tasks (automaton vs.formula refinement).

Table 4.10 Effect on property automata (formula vs.automaton refinement).

Table 4.11 Improvement ratios distributions (formula vs.automaton refinement).

Table 4.12 More data on refinement impact (formula refinement).

Table 4.13 More data on refinement impact (formula refinement) II.

Table 6.1
Table 6.2
Table 6.3
Table 6.4
Table 6.5
Table 6.6
Table 6.7
Table 6.8
Table 6.9

Tool references.

Tool chains and their ltlcross commands.

Concrete formulae benchmarks.

Errors summary (literature).

Errors summary (random).

The cumulative numbers for the literature benchmarks.
The cumulative numbers for the random benchmarks.
Cross-comparison (direct translations).
Cross-comparison (lt12dstar)

Table 6.10 Cross-comparison (Spot)

Table 6.11 Cross-comparison (Rabinizer 4, Spot, and 1tI2dpa).
Table 6.12 Parametric formulae benchmark (gh I).

Table 6.13 Parametric formulae benchmark (gh II).

Table 6.14 Parametric formulae benchmark (ms and go).

Table 6.15 Parametric formulae benchmark (kr and other).

Table 7.1
Table 7.2
Table 7.3
Table 7.4
Table 7.5

Table 8.1
Table 8.2
Table 8.3

Tool references.

Tool configurations (semi-deterministic).

Tool configurations (cut-deterministic).

Evaluation of tools producing semi-deterministic automata.
Evaluation of tools producing semi-deterministic automata.

Complementation constructions and their GOAL commands.
Complementation benchmark without simplifications.
Complementation benchmark without and with simplifications.

32
35
37
39

47
48
49
51
51
52
53
53
53
53
53
58
59

81
81
83
85
85
91
91
92
94
95
97
99
99
100
100

118
119
119
120
120

135
135
136

Introduction

Automata play an essential role in the history of computer science. In the
1960s and 1970s automata over finite words were seen as abstract machines
that process inputs and accept or reject them. This kind of view was mainly
driven by their application at that time - automata were used to build lex-
icographic analysers, parsers and compilers. Their primary purpose was to
check syntax. With the development in formal methods, automata became a
popular formalism used to describe behaviours and specification of software
and hardware systems; they became a data structure for representing sets of
behaviours. Their popularity stems from the fact that automata allow efficient
implementation of operations like union, intersection, and complement. An-
other appealing aspect of automata over words is their intuitive graphical rep-
resentation.

Automata over infinite words (w-words), also known as w-automata, were
introduced by Biichi in 1962 as a tool to prove the decidability of the monadic
second-order logic with Presburger arithmetic? An infinite word cannot be
read to its end by an automaton and thus Biichi had to innovate the acceptance
mechanism of automata. His solution was the following: an w-automaton A
accepts an w-word w if A can visit some accepting state infinitely often while
reading w. Automata with this kind of acceptance condition are nowadays
named after Biichi and they are the most widely used type of w-automata to
these days. However, as we will discuss later, their acceptance mechanism is
not powerful enough for some applications, and thus more acceptance con-
ditions like Muller, Rabin, Streett, parity, and others were introduced.

Vardi and Wolper started amazing scientific progress in the area of w-
automata in 1986° when they realized that w-automata are a natural choice as
a data structure for methods that analyze systems with infinite behaviour? w-
automata lie at the heart of many solutions of interesting problems from the
area of formal methods ranging from system monitoring through system anal-
ysis and verification to system synthesis. Solutions to these problems are typi-
cally computationally hard and the computation time and memory consump-
tion often hugely depend on automata used on the way. While w-automata
inherit the decidability properties of automata over finite words, some op-
erations like determinization, complementation, etc. are substantially harder
for w-automata. The needs of efficient construction of practical w-automata
and eflicient manipulation of w-automata has driven the scientific progress
to these days. This thesis confirms the previous statement and presents part
of my contribution to the fascinating world of automata-theory, mostly moti-
vated by practical needs of verification methods. In the next few paragraphs,
we will discuss areas of automata theory touched by this thesis.

! specification in the form of a set of intended
or erroneous behaviours

2 Biichi (1962), “On a Decision Method in
Restricted Second Order Arithmetic”, [1].

? Vardi and Wolper (1986), “An Automata-
Theoretic Approach to Automatic Program
Verification (Preliminary Report)”, [2].

* A print server or a controller of a power
plant, for example.

A notable example of an w-automata-based
verification method is the automata-
theoretic approach to model checking
discussed in Chapter 3.

https://www.researchgate.net/publication/221442685_An_Automata-Theoretic_Approach_to_Automatic_Program_Verification_Preliminary_Report
https://www.researchgate.net/publication/221442685_An_Automata-Theoretic_Approach_to_Automatic_Program_Verification_Preliminary_Report
https://www.researchgate.net/publication/221442685_An_Automata-Theoretic_Approach_to_Automatic_Program_Verification_Preliminary_Report

16 AUTOMATAFORFORMALMETHODS: LITTLESTEPS TOWARDS PERFECTION

LTL translations. 'The inputs of a verification task are typically a system to
be verified and its formal specification. The specification is often given as a
formula of some modal logic. Linear Temporal Logic (LTL) is often the logic
of choice as it allows to reason about the evolution of the system in time and
thus can express many useful properties. For example, the natural expecta-
tion from a print server that every print request is eventually processed can be
written as an LTL formula ¢ = G(request = Fprint). A standard step
in verification is a translation of this formula into an w-automaton that rep-
resents all behaviours that satisfy ¢; see Figure 1.1 for a Biichi automaton for
@. As many chapters of the thesis are somehow related to the construction of
w-automata for LTL formulae, we will discuss LTL translations in more detail.

Every LTL formula ¢ can be translated to a nondeterministic Biichi au-
tomaton (NBA) A, with the number of states exponentially dependent on
the size of @. The translation of LTL into NBA is a well-studied problem.
Scientists have already suggested many approaches to the translation. Eval-
uations show that no approach is superior to the others on its own, without
further optimizations. Therefore, rewriting of the input formulae and reduc-
tions of the automata at different stages of the translation became the most
powerful weapons in the battle for the best LTL-to-BA translator. The rapid
development brought to the community translators like Spot and LTL3BA
that are very efficient in practice, and they often avoid the exponential blow-
up. Many experts, including authors of the mentioned tools, believe that there
is not much hope for smaller NBA here. However, this is not the end of the
story of LTL translations as we show in the next three paragraphs.

Some applications cannot be solved using NBA directly. For example, con-
troller synthesis for reactive systems® is addressed by reduction to the prob-
lem of finding a winning strategy in a two-player game. The game is usually
constructed from an w-automaton for the specification, and we need a de-
terministic w-automaton for this task® Further, problems from the family of
model checking of probabilistic systems are typically solved using deterministic
w-automata. How can we efficiently construct them? A natural choice is to
take efficient translators of LTL to NBA and determinize the NBA we get for
our formula. Let us discuss this option in more detail.

Determinization of w-automata is substantially harder than the one of au-
tomata over finite words. For finite words, we have an eflicient procedure
known as the powerset construction that takes a nondeterministic automaton
with n states and constructs an equivalent deterministic automaton with at
most 2™ states’ This method is known to be tight and is well understood. In
the world of Biichi automata, the powerset construction is not correct any-
more; see Figure 1.2. The increase in complexity of a correct determinization
is two-fold. First, deterministic Biichi automata are less expressive than their
nondeterministic counterparts and thus we have to use some more complex
acceptance condition. Second, for a Biichi automaton with n states we can
build, using the tight upper bound on determinization® a Rabin automaton
with at most (1.65n)™ states and 2™*! accepting sets. If we aim for parity

a b

(A) N P (P) b
S -

—request v print —print
request
—
print

(G(request = Fprint))

Figure 1.1: Biichi automaton A, for ¢.

> The problem of controller synthesis for re-
active systems takes as input a specification
@, set of available actions of an environment,
and set of available actions of a controller.
While the actions of the environment are out
of our control, we can control the actions
of the controller. A solution to this prob-
lem is to automatically generate a controller
that will react to the actions of the environ-
ment in a way that guarantees satisfaction of
@ no matter what actions the environment
performs.

¢ Alternatively, so-called good-for-games Ra-
bin or parity automata do not need to be fully
deterministic and still can be reduced effec-
tively to a two-player game.

7 Rabin and Scott (1959), “Finite Automata
and Their Decision Problems”, [3].

8 Schewe (2009), “Tighter Bounds for the
Determinisation of Biichi Automata”, [4];
Colcombet and Zdanowski (2009), “A Tight
Lower Bound for Determinization of Transi-
tion Labeled Biichi Automata”, [5].

Figure 1.2: The automata A and P demon-
strate that the powerset construction is not
correct for w-automata. The automaton P
is the result of the powerset construction ap-
plied on \A. While A accepts all w-words
with only a finite number of as, PP accepts all
w-words that have infinitely many bs (and
possibly also infinitely many as).

http://dx.doi.org/10.1147/rd.32.0114
http://dx.doi.org/10.1147/rd.32.0114
http://dx.doi.org/10.1007/978-3-642-00596-1_13
http://dx.doi.org/10.1007/978-3-642-00596-1_13
http://dx.doi.org/10.1007/978-3-642-02930-1_13
http://dx.doi.org/10.1007/978-3-642-02930-1_13
http://dx.doi.org/10.1007/978-3-642-02930-1_13

acceptance which is more suitable for solving games (and thus controller syn-
thesis), we can have automata with at most O(n!?) states and 2n priorities.
I would like to mention two approaches that researchers pursue to over-
come the high complexity of w-automata determinization. The first approach
is a direct translation of LTL into various deterministic w-automata. The sec-
ond approach investigates new methods of solving model checking of proba-
bilistic systems using w-automata that are not fully deterministic, for example
unambiguous or semi-deterministic’ w-automata. These methods brought
us a new challenge of efficient translation of LTL into semi-deterministic w-
automata, either directly or via nondeterministic automata with subsequent

efficient semi-determinization.

Complementation. Complementation is another operation that is substan-
tially harder for w-automata than for automata over finite words. It took
over half a century of research to find matching upper!® and lower!! bounds
©((0.76n)™) for complementing Biichi automata. Despite the high com-
plexity, complementation of Biichi automata is a valuable tool for verifica-
tion, language inclusion, or language subtraction. With the growing under-
standing of the worst-case complexity, the practical cost of complementing
Biichi automata has become a second line of research as the worst case can
often be avoided. Our motivation to tackle complementation of Biichi auto-
mata comes from the program termination analysis of ULTIMATE BUcHI Au-
tomizeR!? The aim of a program termination analysis is to decide whether
a given program terminates on all inputs. In other words, it tries to estab-
lish or disprove that all infinite execution paths in the program flowgraph are
infeasible. The UrTiMATE BUCHI AUTOMIZER uses Biichi automata to rep-
resent infinite paths that are already known to be infeasible and it subtracts
these paths (using complement and product) from the program flowgraph to
identify the set of infinite execution paths whose infeasibility still needs to be
proven.

Suitability of automata for model checking. The set of languages that can
be recognized by automata over finite words are exactly the regular languages
and the w-regular languages for (most types of) w-automata. While there is a
unique minimal deterministic automaton for each regular language, the situ-
ation is more complicated for w-automata — there is no equivalent to the min-
imization algorithm that we know for automata over finite words. Moreover,
size is not the only relevant property of w-automata that influences the pro-
cess of model checking. Small size, the degree of determinism, and the sim-
plicity of the acceptance condition can positively influence the performance
of verification tools but they are often contradictory requirements from the
perspective of LTL translators at the same time!® Furthermore, other aspects
of particular w-automata may influence model checking even more dramati-
cally, for example, the location of accepting or initial states. With the variety of
available tools for LTL to w-automata translation, we have many w-automata
to consider to use for verification. Figure 1.3 shows six automata for the for-
mula GFa A GFb. Which one is the most suitable for a given verification task?
We cannot answer this question entirely, but we offer at least some deeper
insight for tasks solved by the model checker Spin.

INTRODUCTION 17

° An unambiguous automaton has at most
one accepting run for each word. In a
semi-deterministic automaton, each accept-
ing run avoids nondeterministic states from
some point on. Semi-deterministic automa-
ta are also known as limit-deterministic or
deterministic-in-the-limit.

10 Schewe (2009), “Biichi Complementation
Made Tight, [6].

"' Yan (2008), “Lower Bounds for Comple-
mentation of Omega-Automata Via the Full
Automata Technique”, [7].

2 Hejzmann, Hoenicke, and Podelski
(2014), “Termination Analysis by Learning
Terminating Programs”, [8].

" For example, we can have a one-state de-
terministic Rabin automaton for the formula
@ = FGa while no deterministic Biichi can
express @. Moreover, no Biichi automaton
with less then two states exists for ¢.

http://dx.doi.org/10.4230/LIPIcs.STACS.2009.1854
http://dx.doi.org/10.4230/LIPIcs.STACS.2009.1854
http://dx.doi.org/10.2168/LMCS-4(1:5)2008
http://dx.doi.org/10.2168/LMCS-4(1:5)2008
http://dx.doi.org/10.2168/LMCS-4(1:5)2008
http://dx.doi.org/10.1007/978-3-319-08867-9_53
http://dx.doi.org/10.1007/978-3-319-08867-9_53

18 AUTOMATAFORFORMALMETHODS: LITTLESTEPS TOWARDS PERFECTION

ab b ab a ? . b ab)
T Tb ab
- a - a <4 P a - ab
T T T T a b a

(C1) (C2) (C3) (Cs)
Spin LTL2BA & LTL3BA MoDeLLa LTL3BA (det)

1.1 OUTLINE AND CONTRIBUTION OF THE THESIS

Chapter 2 provides preliminaries and most definitions used throughout the
thesis. In particular it introduces w-automata and LTL. The rest of the thesis
is divided into three parts; each part is devoted to w-automata with varying
degrees of determinism. The first part focuses on nondeterministic automata.
It is followed by a part that deals with deterministic automata. Finally, the last
part of the thesis discusses algorithms for semi-deterministic automata. The
thesis contributes to the automata theory in the following areas.

Nondeterministic Biichi automata for explicit model checking. We study
the connection of Biichi automata and concrete verification tasks performed
by a successful explicit model checker called Spin. In particular we focus on
two aspects.

o In Chapter 3 we search for properties of Biichi automata that really influ-
ence the performance of the central algorithm of Spin — Nested Depth First
Search. We do so by manual analysis of several automata and by experi-
ments with common LTL-to-BA translators and realistic verification tasks.
As aresult of these experiences, we gain a better insight into the character-
istics of automata that work well with Spin.

« In Chapter 4 we provide methods that take a particular system to be ver-
ified, analyze the meaning of atomic propositions that are present in the
system, and use this analysis to improve Biichi automata built from LTL
specifications. As a result, we get smaller automata with shorter edge la-
bels that are easier to understand. Thanks to these w-automata we can
improve the run time of Spin.

Translation of LTL into deterministic w-automata.

« In Chapter 5 we define May/Must alternating automata (MMAA), show
(constructively) their expressive equivalence to LTL(Fs, Gs), and provide a
procedure that converts MMAA into deterministic transition-based gen-
eralized Rabin automata. These steps connect into an efficient translation
of LTL(Fs, Gs) into deterministic w-automata. We have implemented this
method in the tool LTL3DRA that is publicly available.

o Chapter 6 offers an exhaustive experimental evaluation and comparison of
various methods that transform formulae of LTL (and its fragments) into

deterministic w-automata.

(Cs) (Ce)
Spot & Spot (det) Spot (no jump)

Figure 1.3: Automata for GFa A GFb gen-
erated by different tools and options.

LTL(Fs, Gs) is a fragment of LTL which uses
the temporal operators strict eventually and
strict always only.

Semi-deterministic Biichi automata construction and complementation.

o In Chpater 7 we first describe a transition-based adoption of the stan-
dard semi-determinization procedure for Biichi automata by Courcoubetis
and Yannakakis'4 and we extend the algorithm with an SCC-aware!® op-
timization. We also show how to tweak the construction to produce cut-
deterministic automata (a stronger form of semi-determinism). We fur-
ther present an algorithm for semi-determinization of generalized Biichi
automata that is similar to the one presented by Hahn et al. in 2015° All
procedures were implemented in an open source tool called Seminator. We

also evaluate and compare Seminator to other relevant tools.

o In Chapter 8 we present a specialized algorithm for complementation of
semi-deterministic Biichi automata. For a semi-deterministic Biichi au-
tomaton with n states our algorithm creates an unambiguous Biichi au-
tomaton with at most4™ states that recognizes complement of the language
of the input automaton. Besides the theoretical result, this algorithm was
successfully used to speed-up termination analysis in the ULTIMATE BUCHI
AUTOMIZER.

1.2 AUTHOR’S PUBLICATIONS AND HIS CONTRIBUTION

1.2.1 Core of the Thesis

Each of Chapters 3-8 is based on a conference publication co-authored by me.
I list the publications and discuss my contribution, respecting the order of the
chapters.

SPIN 2014 FrantiSek Blahoudek, Alexandre Duret-Lutz, Mojmir Kfetinsky,
and Jan Strejéek.
“Is there a Best Biichi Automaton for Explicit Model Checking?” [11].
My contribution: Participated in discussions, performed all experiments,
participated in writing of the main body. 30%

SPIN 2015 FrantiSek Blahoudek, Alexandre Duret-Lutz, Vojtéch Rujbr, and
Jan Strejéek.
“On Refinement of Biichi Automata for Explicit Model Checking” [12].
My contribution: Participated in discussions, on experiments, and on writ-
ing of the main body. 25%

ATVA 2013 Tomas$ Babiak, Franti$ek Blahoudek, Mojmir Kfetinsky, and Jan
Strejcek.
“Effective Translation of LTL to Deterministic Rabin Automata: Beyond
the (F, G)-Fragment” [13].
My contribution: Participated in discussions, formulated the main algo-
rithms and devised and written most of the proofs. Marginally collaborated
on implementation and performed all experiments. Participated in writing
of the main body. 50%

LPAR 2013 Franti$ek Blahoudek, Mojmir Kietinsky, and Jan Strejcek.
“Comparison of LTL to Deterministic Rabin Automata Translators” [14].
My contribution: Participated in discussions, performed all experiments,
participated in writing of the main body. 55%

INTRODUCTION 19

4 Courcoubetis and Yannakakis (1988),
“Verifying Temporal Properties of Finite-
State Probabilistic Programs”, [9].

"> based on knowledge about strongly con-
nected components

“Hahn et al. (2015), “Lazy Probabilistic
Model Checking without Determinisation”,
[10].

http://dx.doi.org/10.1109/SFCS.1988.21950
http://dx.doi.org/10.1109/SFCS.1988.21950
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2015.354
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2015.354
http://dx.doi.org/10.1145/2632362.2632377
http://dx.doi.org/10.1007/978-3-319-23404-5_6
http://dx.doi.org/10.1007/978-3-319-02444-8_4
http://dx.doi.org/10.1007/978-3-319-02444-8_4
http://dx.doi.org/10.1007/978-3-642-45221-5_12

20 AUTOMATAFORFORMALMETHODS: LITTLESTEPS TOWARDS PERFECTION

LPAR 2017 Franti$ek Blahoudek, Alexandre Duret-Lutz, Mikula$ Klokocka,
Mojmir Kfetinsky, and Jan Strejcek.
“Seminator: A Tool for Semi-Determinization of Omega-Automata” [15].
My contribution: Participated in discussions and in formulation of algo-
rithms, participated in writing the paper. Marginally participated in imple-
mentation and performed all experiments. 30%

TACAS 2016 Frantisek Blahoudek, Matthias Heizmann, Sven Schewe, Jan
Strejéek, and Ming-Hsien Tsai.
“Complementing Semi-deterministic Biichi Automata” [16].
My contribution: Participated in discussions and together with Sven Schewe
formulated the algorithm. Substantially participated in writing the paper,
performed the data analysis and prepare the final version of the experimen-
tal evaluation. 25%

The thesis is based on these conference papers. However, some of the ma-
terial was completely rewritten and some parts were substantially extended.
In particular,

« the thesis uses a definition of w-automata that rely on acceptance marks
and Emerson-Lei acceptance condition in formal constructions,

o incomparison to ATVA 2013 [13], the proofs in Chapter 5 have been refor-
mulated using new terminology and concept of escaping multitransitions.
The degeneralization of Rabin automata was completely rewritten.

o The comparison of tools from LPAR 2013 [14] has been fully rewritten and
revised. New tools have been included (determinization methods of Spot,
Rabinizer 3, Rabinizer 4, LTL3TELA) and those that did not well in LPAR
2013 [14] have been omitted.

o The presentation of material from LPAR 2017 [15] has been completely
rewritten, enhanced with formal descriptions of more algorithms, with il-
lustrations and with proofs. Moreover, SCC-aware optimization has been
described and implemented. New versions of Seminator and of other tools
have been used in experimental evaluation.

Tools. The research done for this thesis has impact on several tools from
the community. LTL3DRA!7 is an implementation of the translation of LTL
to deterministic w-automata presented in ATVA 2014 [13]. Seminator!® im

plements all algorithms described in Chapter 7 and it was presented in LPAR
2017 [15]. The methods developed for SPIN 2015 [12] were added to Spot.19
The complementation algorithm described in TACAS 2016 [16] is imple-

mented in GOAL?® and UrtimaTE Bicur Automizer?!

1.2.2 Other Publications and Projects

Hanoi Omega-Automata (HOA) Format. HOA format?? is a flexible tex-
tual exchange format for w-automata. It enables one to express determinis-
tic, nondeterministic, or alternating automata in a uniform, human-readable,
and succinct way. HOA format supports various structural variants such as

' https://github.com/xblahoud/It13dra
'8 https://github.com/mklokocka/
seminator/

' https://spot.Irde.epita.fr/

20 http://goal.im.ntu.edu.tw/

! http://ultimate.informatik.uni- freiburg.
de/

22 Full specification of the format including
some examples can be found at https://adl.
github.io/hoaf/

https://easychair.org/publications/paper/340360
http://dx.doi.org/10.1007/978-3-662-49674-9_49
https://github.com/xblahoud/ltl3dra
https://github.com/mklokocka/seminator/
https://github.com/mklokocka/seminator/
https://spot.lrde.epita.fr/
http://goal.im.ntu.edu.tw/
http://ultimate.informatik.uni-freiburg.de/
http://ultimate.informatik.uni-freiburg.de/
https://adl.github.io/hoaf/
https://adl.github.io/hoaf/

labels on states or transitions, state-based or transition-based acceptance. Ev-
ery w-automaton is equipped with an Emerson-Lei acceptance condition (a
Boolean formula over the acceptance primitives infinitely often and finitely of-
ten) which can express all acceptance conditions mentioned so far and more.
The format was presented at the conference CAV 2015:

CAV 2015 Tomas Babiak, FrantiSek Blahoudek, Alexandre Duret-Lutz, Joa-
chim Klein, Jan Kietinsky, David Miiller, David Parker, and Jan Strejcek.
“The Hanoi Omega-Automata Format™ [17].

Translation of LTL into Transition-based Emerson-Lei Automata (TELA).
We have created LTL3TELA2?? which is a translator of LTL to (possibly nonde-
terministic) TELA. Similarly to LTL3BA and LTL3DRA, the translation uses
alternating automata as an intermediate step. This experimental approach
to LTL translation addresses the trade-off between complexity of acceptance
condition and size of w-automata — in comparison to Spot or LTL3BA it
can produce smaller w-automata with acceptance conditions that are usually
harder to check.

INTRODUCTION

 https://github.com/jurajmajor/ltl3tela

21

http://dx.doi.org/10.1007/978-3-319-21690-4_31
https://github.com/jurajmajor/ltl3tela

Preliminaries

This chapter introduces w-automata and Linear Temporal Logic (LTL).

Alphabets. An alphabet is a finite set of letters. We use two types of alpha-
bets. In classical alphabets, letters are symbols, like in £ = {a,b,c}. Letters
in propositional alphabets are subsets of a finite set of atomic propositions; if
AP = {a,b} is a set of atomic propositions, I = 277 = {@, {a}, {b},{a,b}}
is a propositional alphabet over AP. We usually use the symbol « to reference
the letters of an alphabet.

Infinite words. An infinite word (or simply a word) over L is an infinite
sequence of letters u = upujuy ... € Z%. By u;. we denote the ith suffix

Ui, = UiWi+1 ... of u.

2.1 W-AUTOMATA

w-automata are finite automata over infinite words. The thesis does not cover
automata over finite words and thus we also use the term automata to refer-
ence w-automata. An w-automaton is always equipped with some acceptance
condition, typically Biichi, Rabin, Streett, or parity. Even though acceptance
conditions of all automata used through the thesis could be classified as more
or less standard, for clarity reasons, our definition follows the approach of
the Hanoi Omega-Automata (HOA) format! and uses acceptance marks and
acceptance formulae to describe the acceptance mechanism of automata. To
clearly distinguish between the automata structure and its acceptance mech-
anism, we start with definition of a semiautomaton.

Semiautomata. A semiautomaton is a tuple T = (S,Z,5,s1), where S is
a finite set of states, X is an alphabet, § C S x X x S is a transition relation,
and sy € S is the initial state. A triplet = (s, «,s’) € § is a transition of
s leading to s’ under « and we also say that o is the label of t. A state s’
is reachable from s in T, denoted by s ~ s’, iff there exists a sequence of
transitions (sg, @0,51) ... (Sk—1, %K1, 5k) such that sp = sand s =s’. We
use s «»7 s’ to denote the fact that s and s’ are mutually reachable.

SCC. A strongly connected component (SCC) C C S is a set of states that are
all mutually reachable. An SCC C is maximal if no state outside C is mutually
reachable with states from C. For each automaton there is a unique decom-
position of the states into maximal strongly connected components.

Determinism. A state s € S is deterministic in b if it has at most one tran-
sition under « in 6 for each « € Z. An SCC is deterministic if it consists of

! Babiak et al. (2015), “The Hanoi Omega-
Automata Format”, [17], see also
https://adl.github.io/hoaf/.

We write s ~ s’ and s «» s’ instead of
s ~7 s’ and s «»7 s’ when T is clear
from context.

http://dx.doi.org/10.1007/978-3-319-21690-4_31
http://dx.doi.org/10.1007/978-3-319-21690-4_31
https://adl.github.io/hoaf/

24 AUTOMATAFORFORMALMETHODS: LITTLESTEPS TOWARDS PERFECTION

deterministic states only and finally, a semiautomaton 7 and the transition
relation b are deterministic if all states from S are deterministic in 6.

Runs. A run of a semiautomaton 7 over a word u = upug... € Z% isan
infinite sequence o = (sg, 1o, 871)(s1,11,82) ... € 5 of transitions such that
so = s1. A deterministic semiautomaton has at most one run for each word
uex®.

w-automata. An w-automaton is a tuple A = (S, Z,8,s1, M, , ®) where
(S,%,6,s1) is a semiautomaton, M is a finite set of marks, i: M — 25Y% is a
function that places marks on states and transitions, and finally @ is an accep-
tance formula. We say that a transition or a state has a mark ® e M if itis a
member of n(®). The acceptance formula is a positive Boolean combination

of terms Inf® and Fin® where ® ranges over the set of marks M.

Semantics. The semiautomaton defines the runs of .A and the acceptance
marks and formula give semantics to these runs. Let o be a run of A. Rec(o)
is the set of states and transitions that appear infinitely often (recurrently) in
the run. The marks of o is the set of marks that are placed on states and tran-
sitions from Rec(o), more precisely marks(o) = {® | w(®) nRec(0) + @}.
The run o satisfies Inf® if ® € marks(o) and it satisfies FinB if Bl ¢ marks(o)?
The run is accepting if it satisfies ®. The language of A is the set L(.A) of all
words u € Z such that A has an accepting run over u.

Visualisation. We draw automata as in Figure 2.1. States are represented by
nodes; the initial state has an incoming edge from an empty space, the accep-
tance formula is in the yellow box below the automaton itself, transitions are
depicted as edges. If the automaton has a propositional alphabet, transitions
between two states that have identical marks but different labels are merged
into one edge. The edge is labelled by a boolean formula over atomic proposi-
tions in a condensed notation; the label is satisfied by exactly all labels of the
merged transitions. For example, the label ab in the right automaton with
% = 21@:%} stands for —a A b and represents the unique transition under {b},
and any edge of the left automaton with label b represents transitions under
{a} and @. Sometimes a green box provides a corresponding LTL formula
as in the case of the right automaton. Names of automata are typeset using a
calligraphic alphabet and are enclosed in parenthesis in figures.

X~ a
T @0 veeOwms _
b
T b a
ve() b h T ab N ab
%b T R) %
B) ° 9) O%Ba (FGav (GFb A GF-b)]

(Infe AInfo] (FinB@v (Inf® A Info))

An w-automaton is a semiautomaton with
marks on states or transitions and with an ac-
ceptance formula. The marks with the accep-
tance formula say which runs of the semiau-
tomaton are accepting.

The intuitive meaning of Inf is to visit in-
finitely often and the one of Fin is to visit
only finitely often. For example, a generalized
Biichi condition with two marks is expressed

as Inf® A Inf®.

2 In this thesis we use a unique mark for each
term of @ and by convention we use cir-
cles for marks that appear in Inf-terms and
squares for those in Fin-terms.

The condensed notation omits conjunctions
and uses a for —a.

Tools that manipulate or generate automa-
ta usually also merge transitions into edges
(both internally and for input/output). An
edge is then a triple (s, 1,s”) where 1 is the
edge-label.

Figure 2.1: Three automata for the LTL for-
mula FGa v (GFb A GF-b). From left to
right: Biichi with marks on states, general-
ized Biichi with marks on transitions, and
deterministic generalized Rabin with marks
on transitions.

Standard acceptance conditions. We can express all standard acceptance
conditions in our setting, you can see some examples above in Figure 2.1. We
do not distinguish explicitly between state-based and transition-based accep-
tance> (we even allow to mix them). For Biichi and co-Biichi automata we
need only one mark and the corresponding acceptance formulae are Inf® and
Finll, respectively, for generalized Biichi with k acceptance sets we need k
marks and the formula is /\{‘:_O1 Inf®. For a Rabin automaton with h Rabin
pairs we need 2h marks and the formula is \/EZ! (Fin@ A Inf®). A Rabin pair
is a conjunction of a co-Biichi and a Biichi condition, in a generalized Rabin
pair the Biichi part is replaced by generalized Biichi and thus the acceptance
formula for generalized Rabin automata is Viex (Finﬂ A NjeJy InfO).

Abbreviations. We often need to refer to automata that have certain prop-
erties. As their description can be rather long, we use abbreviations for au-
tomata types. A type of an automaton is influenced by the following three
properties.

determinism: Deterministic [D], Nondeterministic [N], semi-deterministic
[sD], cut-deterministic [cD]

the placement of marks: transitions [T], states [S]

acceptance condition: Biichi [B], generalized Biichi [GB], Rabin [R], gener-
alized Rabin [GR]

In abbreviations, we use the same order as in the list and add an A which
stands for automaton (or automata, regarding the context). We leave out these
properties that are not of our interest. For example, the abbreviation BA de-
notes Biichi automata and DTGRA denotes deterministic generalized Rabin
automata with marks on transitions.

Expressibility remark. The definition of an automaton used in this thesis
allows for each label € X at most one transition between two states. In the
HOA format you can also describe automata that have more such transitions
that differ in the marks they carry. Such automata are not expressible by our
definition. That is on purpose as it simplifies the presentation of most of the
material and we also do not lose anything. Indeed, more transitions between
two states are only useful for automata with some Fin-terms in the acceptance
formula and marks on transitions. We use such automata only in Part Il where
all these automata are deterministic. Finally, no choice between transitions is
permitted anyway in deterministic automata.

PRELIMINARIES 25

? State-based automata have marks only on
states while transition-based automata have
marks on transitions.

26 AUTOMATAFORFORMALMETHODS: LITTLESTEPS TOWARDS PERFECTION

2.2 LINEAR TEMPORAL LOGIC (LTL)

The syntax of LTL is defined by
pu=T|a|l-0|eve | ere]| Xe | eUep,

where T stands for true, a ranges over a countable set AP of atomic proposi-
tions, X and U are temporal operators called next and until, respectively. LTL
formulae are interpreted over infinite words over the propositional alphabet
5 = 22P" where AP’ is a finite subset of AP.

We inductively define when a word u satisfies a formula @, written u = ¢,
as follows.

ukET

uEa iff aeug

UE —@ iff ut @

UE @i Ve iff uE @roruE @)

UE @1 A@2 iff uE @randuE @2

uE Xe iff ui_ E@

ukE @ U@piff 31>0.(ui. Fe2andVO<j<i.uj. For)

Given an alphabet T, a formula ¢ defines the language L= () = {ue Z% |
ukE @}. Wewrite L(¢) instead of 22 (@), where AP(¢) denotes the set
of atomic propositions occurring in the formula ¢.

We define the derived unary temporal operators eventually (F), always (G),
strict eventually (Fs), strict always (Gs), and releases (R) by the following equiv-
alences:

Fp=TUe Gy =-F-o
Fsp = XFo Gsop = XGo
©1Re2=-(-91U-92)

An LTL formula is in positive normal form if no operator occurs in the
scope of any negation. Each LTL formula can be transformed to this form
using De Morgan’s laws for A and v and the following equivalences:

-F = G- -Gy = F-y
R = Gs—p -G = F—
“(e1R@2)=-91 U9 (@1 U@2) =-¢01R-¢2
-X@ = X-¢@

We say that a formula is temporal if its topmost operator is neither con-
junction nor disjunction; note that a and —a are also temporal formulae.

We also use standard Boolean connectives
(like == and <=) in their usual mean-
ing as shorthands.

Part1

HOW BUCHI AUTOMATA INFLUENCE
EXPLICIT MODEL CHECKING

Is There a Best Biichi Automaton for Spin?

Model Checking

In the traditional view, the model checking® problem decides whether a given
system is a model of a given formula, that is whether all behaviours of the
system satisfy the formula. We see the model checking as a tool that decides
whether or not the system has an erroneous behaviour; we start with a formula
@ that describes the erroneous behaviour?and we consider the system correct
if no behaviour of the system satisfies ¢. Model checking of LTL expects that
@ is an LTL formula.

The automata-theoretic approach? to model checking relies on automata to
internally represent both the specification and the system; it usually proceeds
in the following four steps as illustrated by Figure 3.1.

1. Build the state space S; the state space represents all possible executions of
the system to be verified,

2. translate the LTL formula ¢ into a Biichi automaton* A, that accepts all
faulty behaviours,

3. build the synchronous product S ® A, of the system and the automaton;
the product represents all behaviours of S that conform to A and ¢ and
thus are erroneous, and finally

4. check this product for emptiness.

implicit description of specification of

the considered system erroneous behaviours

|

[LTL formula ¢]

model checker

[state space S]——»[SxAgp]<——[automaton A,]
L(SxAy) o

/N

YES NO
+

verified counterexample

! Baier and Katoen (2008), “Principles of
Model Checking’”, [18].

? We can simply negate the input formula to
switch between the two views.

? Vardi (1995), “An Automata-Theoretic Ap-
proach to Linear Temporal Logic”, [19].

*also called property automaton

Figure 3.1: Automata-theoretic approach to
model checking.

Although we anticipate here a specification
as an LTL formula, we may generalize many
results of this part to applications where the
erroneous behaviours are given directly as
Biichi automata or in another formalism that
can be converted into automata.

https://mitpress.mit.edu/books/principles-model-checking
https://mitpress.mit.edu/books/principles-model-checking
http://dx.doi.org/10.1007/3-540-60915-6_6
http://dx.doi.org/10.1007/3-540-60915-6_6

30 AUTOMATA FORFORMALMETHODS: LITTLESTEPS TOWARDS PERFECTION

The automata approach effectively reduces the problem of model checking
to the problem of language emptiness for Biichi automata. If L(S ® A,,) is
empty then we can consider S to be safe with respect to ¢. On the other hand,
if the product S ® A, accepts a word w then we have a concrete example of
the erroneous behaviour of S.

Spin® is a successful explicit model checker that relies on the automata ap-
proach. The word explicit emphasises the fact that it explicitly enumeratesall
the states of S and of the product S ® A, and stores them in the memory. The
explicit approach often suffers from the so-called state space explosion prob-
lem — the product is simply too large to be stored in memory or takes too
long to analyze. Many model checkers (including Spin) perform the steps 3
and 4 simultaneously — they build the product on-the-fly according to the
needs of the emptiness check. In this way, the model checkers build and store
only the relevant part of the product. To fight the state space explosion prob-
lem, developers of model checkers implemented many other methods how to
handle the given product more effectively®

When you want to make the product smaller, you have to focus on the
property automaton A; the system is given. This is where the LTL-to-BA
translators came into the play. There are many algorithms and tools for trans-
lating LTL formulae into Biichi automata and they produce various language
equivalent automata. For instance, Figure 3.5 on the page 36 shows several
Biichi automata for the LTL formula GFa A GFb” This chapter address the
following question. Should one be preferred over the others?

To pick the best automaton for a given formula is more than difficult — it is
even impossible if we do know how & looks like. The intuition that a smaller
A, produces a smaller synchronous product S ® A,, is not always correct®
We discuss various approaches to product reductions considered previously
by authors of LTL-to-BA translators or of automata reductions in Section 3.2.

The property automaton influences not only the number of states or transi-
tions in the product. The automaton can heavily influence also the emptiness
check (step 4). Before we discuss how the emptiness check depends on the
property automaton, we have to understand how the emptiness check of Spin
works. From the variety of possible emptiness check algorithms, Spin chooses
Nested Depth-First Search (NDFS)?

Indeed, the main work of a model checker
consists of building the product and check its
language for emptiness.

In the traditional view of model checking, w
is known as a counterexample.

>Holzmann (1997), “The Model Checker
SPIN”, [20]; Holzmann (2003), “The SPIN
Model Checker: Primer and Reference Man-
ual’, [21].

¢ See Pelédnek (2008), “Fighting State Space
Explosion: Review and Evaluation”, [22], for
a nice review.

7 This and the following chapter deal mainly
with Biichi automata with marks on states.
Therefore, we use the classic convention for
their visualization: the accepting states are
marked with a double circle and we omit the
acceptance formula.

8 See Figure 3.3 on page 34 for an example.

® Holzmann, Peled, and Yannakakis (1996),
“On Nested Depth First Search”, [23].

http://dx.doi.org/10.1109/32.588521
http://dx.doi.org/10.1109/32.588521
http://dx.doi.org/10.1007/978-3-642-03240-0_7
http://dx.doi.org/10.1007/978-3-642-03240-0_7
http://spinroot.com/gerard/pdf/inprint/spin96.pdf

ISTHEREABESTBUCHIAUTOMATON FORSPIN? 31

Nested Depth-First Search (NDFS)

To check the language emptiness of the product S ® A, Spin has to search
for a cycle that is reachable from the initial state and that contains at least
one accepting state. By default, Spin uses an algorithm that is based on two
nested depth-first searches: blue and red. The blue DFS plays the leading role.
It explores the product and every time it would backtrack from an accepting
state s'0 it starts a red DFS from s. If the red DFS reaches any state on the
blue DFS search stack then a reachable and accepting cycle is found!! and the
algorithm reports it as a counterexample. Otherwise, the red DFS terminates
and the blue DFS can continue. The two DFS always ignore states that have
been completely explored by an instance of the red DFS, so a state is never
visited more than twice.

Spin utilizes an extra optimization, if the blue DFS hits its own search stack
by following a transition that is either going to or coming from an accepting
state, Spin reports an accepting cycle without even starting any red DFS!?

Now we are ready to see that the number of states or transitions in not
always relevant: ultimately, only the part of the product that is explored by
the emptiness check does matter. Some authors of automata optimizations
or LTL-to-BA translation improvements provide also run times of a selected
emptiness check executed on the product of obtained automata and either
random state spaces or few realistic systems!® Etessami and Holzmann even
complained that the relation between the size of A, and the run time of the
model checking procedure was difficult to predict, especially in the presence
of a counterexample.

When a counterexample exists in the product, the emptiness check may
report it more or less rapidly depending on the order in which the NDEFS ex-
plores the transitions of the product. With any luck, the first transition se-
lected at each step of the DFS will lead to an accepting cycle. Conversely, the
first transitions followed might lead to a huge component of the product that
just turns out to be a dead-end, and from which the emptiness check has to
backtrack before finding the counterexample.

The selected transition order in S ® A, depends on the order of the transi-
tions in the property automaton .4,. Previous attempts to explore reordering
of the transitions of A to help the emptiness check have been inconclusive!*
Furthermore, the swarming techniques!® used nowadays makes this topic
even less attractive: in these approaches, several threads compete to find a
counterexample in S ® A, using a different, random transition order for A,,.
Therefore, we do not address the question of the transition order.

Like the previous two paragraphs and Figure 3.3 document, methods that
aim mainly to decrease the size and determinism of the automata cannot be
universal and we cannot hope for the best automaton for all verification tasks
with the same specification. Therefore we focus on other aspects that are help-
tul for Nested Depth First Search (NDFS) - the emptiness check of Spin. To
gain a better insight into the characteristics of automata that work well with
Spin, we look at concrete examples of how formulae are translated into auto-
mata differently by existing tools and how these automata influence NDFS.

19'We backtrack from s after all successors of
s have been explored by the blue DFS.

' Since s is reachable from all states on the
blue DFS search stack.

12 Gastin, Moro, and Zeitoun (2004), “Mini-
mization of Counterexamples in SPIN”, [24];
Schwoon and Esparza (2005), “A Note on
On-the-Fly Verification Algorithms”, [25].

3 Etessami and Holzmann (2000), “Opti-
mizing Biichi Automata” [26]; Dax,
Eisinger, and Klaedtke (2007), “Mechaniz-
ing the Powerset Construction for Restricted
Classes of w-Automata”, [27], for example.

'* Geldenhuys and Valmari (2005), “More
Efficient On-the-Fly LTL Verification with
Tarjans Algorithm”, [28].

> Holzmann, Joshi, and Groce (2011),
“Swarm Verification Techniques”, [29].

http://dx.doi.org/10.1007/978-3-540-24732-6_7
http://dx.doi.org/10.1007/978-3-540-24732-6_7
http://dx.doi.org/10.1007/978-3-540-31980-1_12
http://dx.doi.org/10.1007/978-3-540-31980-1_12
http://dx.doi.org/10.1007/3-540-44618-4_13
http://dx.doi.org/10.1007/3-540-44618-4_13
http://dx.doi.org/10.1007/978-3-540-75596-8_17
http://dx.doi.org/10.1007/978-3-540-75596-8_17
http://dx.doi.org/10.1007/978-3-540-75596-8_17
http://dx.doi.org/10.1016/j.tcs.2005.07.004
http://dx.doi.org/10.1016/j.tcs.2005.07.004
http://dx.doi.org/10.1016/j.tcs.2005.07.004
http://dx.doi.org/10.1109/TSE.2010.110

32 AUTOMATA FORFORMALMETHODS: LITTLESTEPS TOWARDS PERFECTION

3.1 MOTIVATION BY EMPIRICAL DATA: HOW MUCH CAN AU-
TOMATA INFLUENCE SPIN

First of all, we present experimental results showing how important the im-
pact of Biichi automata on Spin’s performance can be. We use the following
benchmark, software, and hardware.

Benchmark. We base our benchmark on the set of 769 realistic model
checking tasks BEEM!® A verification task consists of a system in Promela'”
and an LTL formula that describes a desired property of the system® We have
enriched the benchmark set by a few tasks. To each system describing some
mutual exclusion algorithm,® we added three specification formulae:

1. GF(Pp@CS) == GF(Py@NCS) meaning that if a process Py spends
infinitely many steps in a critical section, then it also spends infinitely many
steps in a non-critical section,

2. GF(Pp@NCS) == GF(Py@CS) meaning that if a process Py spends
infinitely many steps in a non-critical section, then it also spends infinitely
many steps in a critical section,

3. FG=((Po@CS A P1@CS) v (Po@CS A P,@CS) v (P;@CS A P,Q@CS))
meaning that after finitely many steps, it never happens that two of the
processes Py, P1, and P, are in a critical section at the same time.

To sum up, we consider 769 + 3 - 23 = 838 verification tasks. All the bench-
marks and measurements presented in this section are available at http://fi.
muni.cz/~xstrejc/publications/spin2014.tar.gz.

Software. We use the five LTL-to-BA translators presented in Table 3.1:
Spin and LTL2BA are well established and popular translators, MoDeLLa was
the first translator focusing on determinism of the produced automata, and
LTL3BA and Spot represent contemporary translators. The last two transla-
tors are used in several settings: the settings denoted by LTL3BA (det) and Spot
(det) aim to produce more deterministic automata, while the setting called
Spot (no jump) is explained in Section 3.3.

tool version command

Spin [21] 6.2.5 spin -f
LTL2BA [31] 1.1 1tW2ba -f
MoDeLLa [32] 1.5.9 mod2spin -f
LTL3BA [33] 1.0.2 1tl3ba -S -f

LTL3BA (det) 1t13ba -S -M -f

Spot [34] 1.2.4 1tl2tgba -s

Spot (det) 1t12tgba -s -D

Spot (no jump) 1t12tgba -s -x degen-1lskip=0

Spin version 6.2.5 is also used as the model checker in our evaluation. We
limited its maximal search depth to 100 000 000 and we kept the default set-
tings otherwise. In particular, the partial-order reduction, which severely
limits the exploration of the state-space, is enabled?? To obtain some of the
statistics, we used the Itlcross tool from the Spot library.

16 Pelanek (2007), “BEEM: Benchmarks for
Explicit Model Checkers”, [30].

7 PROcess MEta LAnguage is a modelling
language used by SPIN for both systems and
property automata.

'8 We negate the formula so that it describes
erroneous behaviours.

!9 altogether 23 instances of parametric
models called anderson, peterson, and
bakery

Table 3.1: Considered LTL-to-BA transla-
tors, for reference.

% See the script stat.pl in the archive for
the exact parameters we used with Spin.

http://dx.doi.org/10.1007/978-3-540-73370-6_17
http://dx.doi.org/10.1007/978-3-540-73370-6_17
http://fi.muni.cz/~xstrejc/publications/spin2014.tar.gz
http://fi.muni.cz/~xstrejc/publications/spin2014.tar.gz

ISTHEREABESTBUCHIAUTOMATON FORSPIN? 33

Hardware and settings. All computations were performed on a machine
with eight physical processors and 448 GiB RAM?! Each execution of Spin
has been restricted by 30 minutes timeout and a memory limit of 20GiB. The
memory limit was always reached first.

Workflow. For each of the 838 considered verification tasks, we negate the
specification formulaZ? we translate the negated formula by all the mentioned
translators and we run Spin on the system with each of the obtained automa-
ta. Translation of the negated formula to an automaton is instantaneous?? in
nearly all cases: there is only one formula for which the translator built in Spin
needs a couple of seconds to finish.

Originally, we have measured the impact of Biichi automata on Spin by its
run time. Unfortunately, our computation server is shared with other users
and its variable workload has led to enormous dispersion of measured run
times. We have observed a run time difference of over 300% on the same
input. Hence, instead of on run times, we focus on the count of visited tran-
sitions, which is a stable statistic produced directly by Spin. The number of
visited transitions accumulates the numbers of product transitions explored
in depth-first searches executed during a run of the NDFS algorithm. Hence,
the number of visited transitions should be proportional to the run time on a
dedicated machine. Spin also provides statistics for stored states, which is the
total count of constructed and stored product states and should be propor-
tional to the memory consumed by Spin.

Evaluation. Spin successfully finishes the computation within the given
limits for at least two automata obtained by different translation tools for ex-
actly 823 tasks. For each such verification task, we find the maximal and the
minimal numbers of visited transitions and we compute their ratio. Intu-
itively, the ratio represents how many times slower Spin can be if we choose
the worst of the produced automata compared to the best of those. Out of the
823 tasks, the ratio is exactly 1 in only 35 cases. In other words, in more than
95% of the considered verification tasks, the choice of an LTL-to-BA transla-

tor has an influence on the run time of Spin.

731 tasks 92 tasks
with counterexample without counterexample
T T T T
108 | o 2
o
_o108[g 8 .
g o
o o
%
2 10* 0 .
=
g
ks
Moq02 N
5.66 4.9 8
N ==
| | | |

transitions states transitions states

*'In more detail: the machine is an HP
DL980 G7 server with 8 eight-core 64-bit
2.26GHz processors Intel Xeon X7560 and
with 448 GiB DDR3 RAM. We ran at most
8 instances of Spin in parallel.

22 to have a formula for erroneous behaviour

2 It takes less than 0.1s.

Figure 3.2: Impact of the Biichi automata
on model checking. For each verification
task, we compute ratios between the maxi-
mum and minimum number of transitions
(or unique states) visited by Spin using all
available Biichi automata. In each column, a
box spans between the first and third quar-
tiles of the ratio, and is split by the me-
dian (whose value is given). The whiskers
show the range of ratios below the first and
above the third quartile that are not further
away from the quartiles than 1.5 times the in-
terquartile range. Other values are shown as
outliers using circles.

34 AUTOMATA FORFORMALMETHODS: LITTLESTEPS TOWARDS PERFECTION

As expected, the ratios significantly differ for verification tasks where the
model satisfies a given formula and for those with a counterexample. Out of
the 823 tasks, 731 tasks contain counterexamples while 92 tasks do not. The
ratios for these two sets are presented by box-plots in Figure 3.2. One can
clearly see that the selection of a Biichi automaton has a bigger impact on
the verification tasks with counterexamples (median ratio is over 5.6) than on
the tasks without counterexamples (median ratio is 1.4). Both sets contain
extreme cases where the ratios exceed 10°.

If we compute the ratios of maximal and minimal numbers of stored states,
we get the ratio 1 in only 68 out of the 823 tasks. The situation is analogous
to the ratios of visited transitions, but the ratios of stored states are slightly
lower.

To sum up, the choice of the Biichi automaton can have a dramatic impact
on speed and memory consumption of Spin.

3.2 STANDARD APPROACH TO OPTIMIZATION:
HELPING THE PRODUCT

Most of the work on optimizing the translation of LTL formulae to Biichi au-
tomata has focused on building Biichi automata with the smallest possible
number of states>* This is motivated by the observation that the synchronous
product of a Biichi automaton .4 with a state space S can have the same num-
ber of states as their Cartesian product in the worst case: |[S ® A| < |S| x |A|.
Therefore, decreasing |.A| lowers the upper bound on |S ® A|.

However, it is possible to build contrived examples where a smaller |.A|
yields a larger product. For instance, removing one state in the automaton
A of Figure 3.3 doubles the size of its product with the state space S of the
same figure from 3 to 6 states. Of course, if S was a similar cycle of 2 states,
the smaller automaton .4, would give a smaller product. Hence, one cannot
hope to build an optimal property automaton .A without a priori knowledge
of the system S.

With the introduction of LBTT?® a tool that checks the output of differ-
ent LTL-to-BA translators by doing many cross-comparisons, including some
products with random state spaces, tool designers started to evaluate not only
the size of the produced automata but also the size of their products with

random state spaces?® A recent clone of LBTT called 1t1cross?’

computes
multiple products with random state spaces to lessen the luck factor. Sebas-
tiani and Tonetta used this “product with a random state space” measurement
to benchmark their translator MoDeLLa against other available translators to
support the claim that producing “more deterministic” Biichi automata might

be more important than producing small Biichi automata?®

285

(A1) (A2) (S)

—

* e.g. Gastin and Oddoux (2001), [31]; Cou-
vreur (1999), [35]; Somenzi and Bloem
(2000), [36]; Giannakopoulou and Lerda
(2002), [37]; Thirioux (2002), [38].

* Taurjainen and Heljanko (2002), “Testing
LTL Formula Translation into Biichi Auto-
mata”, [39].

% e.g. Sebastiani and Tonetta (2003), [32];
Duret-Lutz and Poitrenaud (2004), [40].

¥ Duret-Lutz (2013), “Manipulating LTL
Formulas Using Spot 1.0%, [41].

28 Sebastiani and Tonetta (2003), “More De-
terministic vs. Smaller Biichi Automata for
Efficient LTL Model Checking”, [32].

Figure 3.3: Two BA for GFa and a state
space. S ® Aj has 3 states whereas S ® A,
has 6.

http://dx.doi.org/10.1007/s100090200070
http://dx.doi.org/10.1007/s100090200070
http://dx.doi.org/10.1007/s100090200070
http://dx.doi.org/10.1007/978-3-319-02444-8_31
http://dx.doi.org/10.1007/978-3-319-02444-8_31
http://dx.doi.org/10.1007/978-3-540-39724-3_12
http://dx.doi.org/10.1007/978-3-540-39724-3_12
http://dx.doi.org/10.1007/978-3-540-39724-3_12

ISTHEREABESTBUCHIAUTOMATON FORSPIN? 35

automata products cases with product trans bigger than...

n states ndst edges trans states trans (1) (2) 3) @) () (6) (7)) (8)

(1) Spin 161 1739 1474 9318 46252 260934 8892105 0 102 143 107 150 150 150 146
(2) LTL2BA 178 1003 802 3360 30159 191668 5556159 5 0 137 49 161 157 156 142
(3) MoDeLLa 178 1297 647 4311 23874 216938 4193567 15 33 0 41 110 116 114 91
(4) LTL3BA 178 795 595 2209 21240 151373 4273646 0 23 126 0 149 153 152 140
(5) LTL3BA (det) 178 830 326 2405 14414 155716 2901474 0 0 10 5 0 76 75 63
(6) Spot 178 657 94 1615 10304 127792 2326271 1 6 15 5 30 0 1

(7) Spot (det) 178 662 88 1639 10414 128178 2328422 1 7 17 6 33 4 0 0
(8) Spot (no jump) 178 785 104 1874 12273 152592 2719360 12 28 40 27 70 61 57 O

Table 3.2: Benchmark based on automata and product sizes. Column 7 indicates how many translations are successful within the allocated time.
The automata columns show accumulated values of standard automata characteristics for all successful translations. Column ndst gives the number
of non-deterministic states in the automata. All produced automata are synchronized with the same 100 random systems, and the median number
of states and transitions of these products is kept. The products columns represent the medians accumulated over all successful translations. The
right-most part of the table counts the number of formulae for which the translator on the row produces an automaton with higher median number

of transitions in the products that the translator of the column.

You can find a typical example of a benchmark based on product sizes in
Table 3.2. The table shows numbers for 178 formulae from the literature®®
translated by 8 different LTL-to-BA translators. The timeout for one transla-
tion was set to 60 seconds.

The table shows that MoDeLLa generates automata that are slightly big-
ger than LTL2BA (its competitor in 2003), but when looking at the product,
MoDeLLa causes fewer transitions to be built. If the number of transitions
is proportional to the run time of a model checker and the number of states
is proportional to its memory consumption, MoDeLLa has effectively traded
memory for speed.

MoDeLLa’s results do not appear to hold today: more recent translators
such as LTL3BA or the translator of Spot can produce automata that are sig-
nificantly smaller and yield smaller products with random state spaces. These
translators also have options to produce more deterministic automata, but the
resulting products are not always better.

The right part of Table 3.2 compares the translators by the sizes of products
of produced automata with a fixed set of random systems. For instance, one
can observe that even though Spot (6) produces the lowest accumulated num-
ber of product transitions in this benchmark, there are 30 formulae where the
generated products have more transitions than those obtained by LTL3BA
(det) (5). Conversely, automata from LTL3BA (det) produce products with
more transitions than those of Spot for 76 formulae.

As Spin constructs the product on-the-fly, if we optimize .4 to minimize
|S ® A, we may not necessarily optimize .4 for the model checking procedure.
The emptiness check may explore only a part of the product, or, conversely,
it may explore the whole product twice. Ultimately, any change to .4 should
be measured particularly by its effect on the model checker. For instance,
Dax et al. performed such an evaluation® In addition to explaining how to
build minimal weak deterministic Biichi automata (WDBA) for a subclass
of LTL, they showed that their minimal WDBA are smaller than the non-
deterministic BA produced by other translators and they also show that they
improved the run times of Spin on a few verification tasks>!

» Etessami and Holzmann (2000), [26];
Somenzi and Bloem (2000), [36]; Dwyer,
Avrunin, and Corbett (1998), [42].

¥ Dax, Eisinger, and Klaedtke (2007),
“Mechanizing the Powerset Construction
for Restricted Classes of w-Automata”
[271.

31 We had omitted their tool from our bench-
mark because (1) it only supports a subset
of LTL, and (2) their optimization is imple-
mented in Spot and both tools would, there-
fore, return the same automata. Besides, the
subset of LTL does not include the formulae
studied in Sections 3.3.2 and 3.3.4.

http://dx.doi.org/10.1007/978-3-540-75596-8_17
http://dx.doi.org/10.1007/978-3-540-75596-8_17

36 AUTOMATAFORFORMALMETHODS: LITTLESTEPS TOWARDS PERFECTION

3.3 ANOTHER VIEW TO OPTIMIZATION:
HELPING THE EMPTINESS CHECK

3.3.1 Weak Automata

Remember that the blue DFS can detect an accepting cycle without running
a red DFS? It happens when the blue DFS hits its own stack on (or from)
an accepting state. With this optimization in mind, we suggest that of the
two automata of Figure 3.4, 3, should be preferred. Indeed, when the blue
DEFS reaches a state of its search stack in the product S ® B, it is guaranteed
to come from (and go to) an accepting state, detecting the accepting cycle
without starting any red DFS. In the product S ® B7 we might be less lucky
if we close the cycle with the transition at the bottom of B1: in that case the
product has to be explored a second time by the red DFS.

We actually illustrate the distinction between weak automata and inher-
ently weak automata by this example. An inherently weak automaton is an
automaton in which strongly connected components (SCCs) cannot mix ac-
cepting cycles with non-accepting cycles. A weak automaton is an inherently
weak automaton in which the states of each SCC are either all accepting or
all non-accepting. Any inherently weak automaton can be easily transformed
into an equivalent weak automaton?

Having more accepting states is not necessarily good from the point of
view of the NDEFS since a red DFS is started every time the blue DFS back-
tracks from an accepting state. However, if an entire SCC is non-accepting,
the first red DFS will cover it fully, and each successive red DFS will immedi-
ately return because it attempts to process a state that has already been seen
by a previous red DFS.

3.3.2 Automata for GFa A GFb

Figure 3.5 shows six different Biichi automata for the formula GFa A GFb pro-
duced by the considered tools. Note that if you ignore the exchange of a and
b33 automata C4 and Cs differ only in the initial state and thus cannot be dis-
tinguished by any determinism-based or size-based metrics.

Table 3.3 captures data about Spin’s runs on the bakery mutual exclusion
protocol taken from BEEM and the property automata of Figure 3.5. The
propositions a and b describe situations that (different) pairs of processes are
in the critical section at the same time. The protocol prevents such situation,
so neither a nor b is ever true in the model. We observe that in case of prod-
ucts with automata Cs and Cg (both produced by Spot), Spin explores the

ab_> ab —> a —>
ab b ab a ﬁ? b ab ab ab ab T a
f T 2 [Tb 2 W/ T 2 [ab 2 [5 a 2 2
— — @—» — — @—»
a a a ab ab b
T T T T a b a b b a b a

(€1) (C2) (C3) (Ca)
Spin LTL2BA & LTL3BA MoDeLLa LTL3BA (det)

OO0

(B1) a
OO0
(B2) a

Figure 3.4: Two automata for the LTL for-
mula a AG(a = X(aaX(anaXa))).
B is inherently weak and B; is weak.

2 We can safely mark all states in accept-
ing strongly connected components as ac-
cepting, see: Boigelot, Jodogne, and Wolper
(2001), “On the Use of Weak Automata for
Deciding Linear Arithmetic with Integer and
Real Variables”, [43].

3 The atomic propositions a and b have a
symmetric purpose in the original formula.

Figure 3.5: Automata for GFa A GFb gen-
erated by different tools and options.

b

(Cs) (Ce)
Spot & Spot (det) Spot (no jump)

http://dx.doi.org/10.1007/3-540-45744-5_50
http://dx.doi.org/10.1007/3-540-45744-5_50
http://dx.doi.org/10.1007/3-540-45744-5_50

ISTHEREABESTBUCHIAUTOMATON FORSPIN? 37

automaton size

statistics from Spin’s execution

states ndst edges trans stored states visited trans time
C1 Spin 3 2 6 17 27531713 95071k 88s
Cy LTL2BA & LTL3BA 3 3 8 20 27531713 95071k 99s
C3 MoDeLLa 4 0 6 16 27531714 95071k 109s
C4 LTL3BA (det) 3 0 8 12 27531713 95071k 101s
Cs Spot & Spot (det) 3 0 8 12 27531714 190143k 211s
Ce Spot (no jump) 3 0 5 12 27531714 190143k 191s

products twice because Spin triggers the red DFS from the initial state of the
product. This is not the case for the other automata. This yields the following
hypothesis: When we suppose that there is no accepting cycle in the product,
the automaton should keep its accepting states as hard to reach from the initial
state as possible. The further the accepting states are from the initial state, the
more chance we have that the blue DFS will never reach any accepting state
and therefore no red DFS will be triggered.

For instance, if we ignore the renaming of atomic propositions, the au-
tomaton C3 could be obtained from Cg by unrolling the accepting cycle by
one step, so that the cycle is entered on a non-accepting state, and the accept-
ing state is actually the last one visited on the cycle>* This superfluous initial
state only makes a negligible difference on the product, and does not incur
any noticeable difference for Spin compared to Cy, Cz, or Cs.

Similarly, if we do not expect an accepting cycle in the product, the in-
herently weak automaton By of Figure 3.4 could be changed by letting the
right-most state be accepting instead of the middle one.

3.3.3 Translation Differences

Most LTL-to-BA translators follow a multi-step procedure where they first
translate a given LTL formula into a generalized Biichi automaton, often with
marks on transitions, such as those of Figure 3.6. Translators then degen-
eralize these automata to obtain a BA. Other simplification procedures may
be applied to these automata, but it turns out that the last three automata of
Figure 3.5 were all obtained by degeneralizing G in Figure 3.6, and their dif-
ferences are due to choices made in the degeneralization procedure.

When degeneralizing a TGBA G with acceptance marks ®° ... ®" (the
0 and O on the Figure 3.6), the structure of G is cloned h + 2 times. Let us
call each of these clones a level. For each state of level 1 < h, all transitions
originally marked with ®" have their destination redirected to the next level,
the destination of all transitions in level h + 1 are redirected to level 0. Finally,
all the states of the level h + 1 are made accepting. The initial state can be put
on any level.

This procedure ensures that words accepted by the degeneralized automa-
ton correspond to words recognized by runs of G that visit all acceptance
marks infinitely often. Accepting cycles in products involving these degen-
eralized automata will always involve at least h + 2 states.

The degeneralization applied to G1 with the initial state on the last level
and the acceptance marks ordered as @, then O, produces the automaton Cg

Table 3.3: Statistics about generated auto-
mata and Spin’s run on system bakery.7.pm
and formula GFa A GFb where neither a
nor b ever occurs in the system. The corre-
sponding automata are shown in Fig. 3.5.

* This is not actually the reason why Mo-
DeLLa produces C3. Internally, MoDeLLa
translates the formula into a Biichi automa-
ton with labels on states and has to deal with
possibly multiple initial states. When it out-
puts an automaton, it always adds an extra
initial state with copies of the outgoing tran-
sitions of all the original initial states, even
if the original automaton had only one ini-
tial state. See also D3 of Figure 3.7 where s¢
and s were the original initial states.

ab v ab ab v a

ab ab b T
@) (G2)

Figure 3.6: Two TGBA for GFa A GFb.

38 AUTOMATA FORFORMALMETHODS: LITTLESTEPS TOWARDS PERFECTION

of Figure 3.5. Changing the degeneralization order to O, then ©, and putting
the initial states on the first level would give automaton Cy.

An optimization introduced with LTL2BA3> consists in jumping levels. If
a transition of a level 1 < h is marked by all marks ®"...®, its destination
can be redirected directly to the level j + 1. Similarly, if a transition from the
level h + 1 is marked by ®° ... ®, it can be redirected to the level j + 1. Im-
plementing this optimization gives automaton Cs.

Often (but not in this example), jumping levels is a way to avoid creating
useless copies of some states. Another side effect of this optimization is that
some accepting cycles may be shorter than h + 2: the change effectively keeps
the automaton as close to the accepting level as possible. If we are looking for
counterexamples, Cs appear better than Cg because its accepting cycles are
shorter on average.

We recall that the initial state of a degeneralized automaton can be put on
any level. For example, Giannakopoulou and Lerda noticed that by changing
the initial level, they could sometimes save some states, so they try to use both
the first and the last level and keep the smallest automaton® In our example,
C4 and Cs differ only by the choice of the initial level?” there is no size differ-
ence, and yet it makes a huge difference in the run time of Spin, as discussed
in the previous section.

Another translation difference evidently comes from the difference be-
tween the generalized automata obtained from the LTL formula. In our case
Ca4, Cs, and Cg were obtained from G; while C; and C» were obtained from
G- 38 The difference between G and G is caused by choices made during the
translation to favour deterministic states in the case of G;. In our example of
Table 3.3, this improved determinism makes no difference since a and b are
never true in the system.

3.3.4 Automata for -(GFa = GFb)

We now focus on another concrete case: -(GFa == GFb) on mutex pro-
tocols. The formula without negation describes that if some process visits
infinitely often the critical section, it infinitely often leaves it. This property
holds in model peterson.4.pm and therefore Spin has to build the whole
product to find out that it contains no accepting cycle. Table 3.4 presents re-
sults of Spin runs on the model peterson. 4. pmand different Biichi automata
for this formula.

In this case, each tool produces a different automaton, as shown in the first
part of Figure 3.7. Note again that automata D, and D4 cannot be distin-
guished only by determinism and size metrics (see Table 3.4). They differ only
in the target of the outgoing edge of s, yet we observe a significant difference
in Spin’s behaviours.

We actually use 12 different automata for this formula. The first seven of
the table are generated by the considered tools. The others are handwritten
by modifying the previous automata to explore which aspects of the automata
make a significant difference in Spin’s behaviour as described further.

Dg is adapted from D¢ by changing the degeneralization level on which
we enter the SCC. Dy keeps the strong initial guard of D¢ but then uses the
accepting SCC of D3. D1 is a mix of Dg and D, to observe the influence

% Gastin and Oddoux (2001), “Fast LTL to
Biichi Automata Translation”, [31].

% Giannakopoulou and Lerda (2002), “From
States to Transitions: Improving Translation
of LTL Formulae to Biichi Automata”, [37].

%7 In fact, C4 and Cs differ also in degeneral-
ization order but this is negligible as a and
b are symmetric in our problem.

38 The difference between C; and C, is that
Spin (C1) performs no level jumping from
the accepting state.

http://dx.doi.org/10.1007/3-540-44585-4_6
http://dx.doi.org/10.1007/3-540-44585-4_6
http://dx.doi.org/10.1007/3-540-36135-9_20
http://dx.doi.org/10.1007/3-540-36135-9_20
http://dx.doi.org/10.1007/3-540-36135-9_20

ISTHEREABESTBUCHIAUTOMATON FORSPIN? 39

"

:
G)o ab

(Dy) Spin (D;) LTL2BA (D3) MoDeLLa (D4) LTL3BA (Ds) LTL3BA (det) (Dg) Spot
& Spot (det)

MO
b
ab ab
ab
(Do) (D11) (D12)
Figure 3.7: Automata for the LTL formula -(GFa = GFb).
automaton size statistics from Spin’s execution
states ndst edges trans stored states visited trans time
D1 Spin 3 2 6 12 1577846 7680k 6.04s
D, LTL2BA 3 3 6 12 1577440 7684k 5.95s
D3 MoDeLLa 5 2 8 18 1580893 7670k 6.13s
D4 LTL3BA 3 3 6 12 2299250 15583k 12.10s
Ds LTL3BA (det) 4 1 7 14 2297625 15561k 12.00s
Ds Spot 3 1 6 9 848641 2853k 2.26s
D7 Spot (no jump) 3 1 5 9 852094 2863k 2.34s
Ds 3 1 6 9 848641 2853k 2.43s
Do 3 3 6 11 852094 2878k 2.43s
Dio 3 1 7 10 1575844 7658k 7.38s
D11 3 1 6 10 1577440 7657k 7.07s
D12 3 1 6 10 2297625 15561k 12.30s

Table 3.4: Statistics about generated automata and Spin’s run on the empty product model peterson.4.pmand automata for -(GFa == GFb).
The automata are shown in Fig. 3.7.

40 AUTOMATAFORFORMALMETHODS: LITTLESTEPS TOWARDS PERFECTION

of the guards ab compared to b. D17 is a version of D, in which the SCC is
made deterministic as in Dg. Finally, D1, fixes D5 by removing the spurious
initial state s;.

Based on Table 3.4 we can group these automata into three categories, listed
from the best to the worst with respect to Spin’s performance. Before we dis-
cuss these categories, it is important to notice that in a model where a means
the process is in the critical section and b means the process leaves the critical
section, we can expect most of the state space to be labelled by ab.

D¢, D7,Dg, Dy Automata with the smallest number of transitions. Note
that the no jump version (D7) and the one with a non-deterministic SCC
(Do) both yields a few more states and transitions in the product, but the
difference is not significant. The key property of these automata is that
they can leave the state so only by reading ab, whereas other automata are

more permissive.

D1,D3,D3,D19,D11 Allthese automata exhibit more non-determinism on
state so and will enter the accepting SCC even after reading ab. However,
when this happens, they do not reach the accepting state before ab is read,
so this limits the number of red DFS.

D4, Ds, D12 These automata go from sy to the accepting state s7 each time
they read ab. This both makes the product unnecessarily large and forces
many calls to the red DFS3® The non-determinism in accepting SCC of Dy
causes it to visits only slightly more states than the other two automata.

A comparison of automata Dg and D71 and their impact on Spin’s perfor-
mance show that the hypothesis of Section 3.3.2 cannot be used alone to select
the best automaton. Indeed, D¢ outperforms D11 even if the distance from
the initial to the accepting state is shorter in Dg. Here the more restrictive
label of transition from sg to s1 in Dg plays an important role as well. These
automata demonstrate that we should both try to “improve the product” (Sec-
tion 3.2) by using more restrictive labels for A, and keep accepting states as
hard to reach as possible (compare D11 to D12).

To sum up, if we suppose that there is no accepting cycle in the product,
the automaton should

1. keep accepting states as far as possible from the initial state (compare D1
to Dy2) and

2. use more restrictive labels (compare Dg to D1 ,)

in order to make the accepting states as hard to reach as possible. Moreover,
making use of more restrictive labels can also help to reduce the product.

3.4 SUMMARY OF THE CHAPTER

There is no such thing as a best Biichi automaton for explicit model checking.
Although building a small product generally helps the emptiness check we
have provided evidence that the size of A, and even the size of S ® A, does
not always correlate to the performance of the NDFS on the product. For
instance, the locations of accepting states of A, can have a dramatic impact

¥ A state of the product has two compo-
nents: a system’s state and an automaton’s
state. Every time the blue DFS backtracks
from a product’s state with s; in the com-
ponent for the property automaton.

ISTHEREABESTBUCHIAUTOMATON FOR SPIN?

on the run time of Spin. Unfortunately, there is no single general rule we could
give here. The right choice vastly depends on the particular verification task
we aim to solve.

We show how can we tailor automata for particular system of the given
verification task in Chapter 4 where we exploit some knowledge about the
system. Without any such knowledge, we may at least predict the expected
result of the model checking and based on this prediction we can at least place
accepting states accordingly.

If S ® A, contains no accepting cycle, the best automaton for Spin to ver-
ify it should have accepting states that are hard to reach from the initial state,
as it will lessen the chance that a red DFS is started. We observed that such
a choice can be made during the degeneralization procedure, or by unrolling
some accepting cycles.

If, on the contrary, S ® A, contains an accepting cycle, Spin can find it
faster if the accepting states of A, are easy to reach from the initial state and
the accepting cycles are short. Moreover, NDFS can benefit greatly from weak
automata.

41

Specifications meet systems

In the previous chapter, we learnt that we can place accepting states of auto-
mata in a way that is helpful for Spin — under the assumption that we guess
the expected result of the emptiness check correctly. If we were able to guess
the result, we would not need to run the model checker, thus the assumption
is unrealistic in practice.

In this chapter, we continue further with our campaign for ideal automata
that are tailored for a particular verification task! Our approach differs from
the one of the previous chapter in three directions: we aim to build a smaller
product rather than to make Nested DFS more effective, we build upon infor-
mation about the system itself rather than on knowledge about the product,
and we rely on information that we can acquire with only little effort for each
system.

Spin verifies systems given in a modelling language called Promela. The
Promela code is an implicit and compact representation of the system. A sys-
tem in Promela consists of several interacting processes. The Figure 4.1 shows
a skeleton of a process PO in the Promela language. The labels NCS, waiting,
and CS are labels of process’s locations, the process can move between loca-
tions by goto commands. For every process P and each location loc, Spin
recognizes atomic propositions of the form P@loc which holds if the last lo-
cation reached by P is loc.

A process cannot be in two different locations at the same time. Thus we
say that the atomic propositions PO@NCS, P@@waiting, and PO@CS are mu-
tually incompatible — no two of them can hold at the same time. Why do
we care about incompatible propositions? Consider the LTL formula ¢ =
GPO@waiting v FG-PO@CS and the two automata of Figure 4.22 The two au-
tomata differ in the languages they accept. The left one accepts L(¢) while
the language of the right automaton accepts a smaller language: it accepts a
subset of L(¢). For example, the left automaton accepts the word {a, b}« =
{PO@waiting, PO@CS}* while the right one does not? However, we can use
them interchangeably for model checking of a system that contains PO with-
out changing the result. Indeed, the languages of the two automata differ only
in words that make no sense for systems that contain P@ — the words are cer-
tainly not behaviours of the systems. Therefore such words are never present
in the language of the product, and thus the language does not change.

Moreover, the automaton from the right would apparently lead to a smaller
product. When we know that a and b are never valid at the same time, then
Ga implies G-b and thus also FG-b. The right-hand side automaton makes
use of this fact and checks only for FG—=b. Not only will the product be smaller,
also the number of the red DFS runs will be lower with this automaton.

In the rest of this chapter we shall discuss formally how to use the infor-
mation about incompatible propositions to refine the specification when it
is given either by an LTL formula or by a Biichi automaton. We talk about

' A verification task is a pair of a system and
an LTL formula.

active proctype PO() {
NCS: if
1t ...; goto waiting;

fi;

waiting: if

it ...; goto CS;
fi;

CS: if

i ...; goto NCS;
fi;

}

Figure 4.1: Skeleton of a code for a process
PO that is used in the bakery mutual exclu-
sion protocol description in the Promela lan-
guage. Locations and the process name are
in blue. The actual function code is left out
for brevity.

(Ga VvFG-b)
A
(G=(anb))

Figure 4.2: Biichi Automata for Ga v FG-b
produced by Spot without (left) and with
(right) information about the incompatibil-
ity of propositions a and b.

2Where a stands for PO@waiting and b
stands for PO@CS.

*To be more precise, runs of the right au-
tomaton even blocks when reading {a, b}
for the first time.

In fact, we can apply the results also to spec-
ifications given as PSL formulae or as other
types of w-automata.

44 AUTOMATAFORFORMALMETHODS: LITTLESTEPS TOWARDS PERFECTION

formula refinement or automaton refinement, respectively. Both these opera-
tions were implemented by Alexandre Duret-Lutz in Spot 1.99.1, available at
https://spot.Irde.epita.fr/.

Using refinement, we get a property automaton that may have fewer edges
or even fewer states than the initial property automaton. All these changes
often have a positive effect on the rest of the model checking process, as doc-
umented by experimental evaluation.

As a side effect of the specification refinement, we typically obtain auto-
mata with long edge labels. Besides the fact that such automata are harder to
read by humans, Spin needs more time when building the product to evaluate
these long edge labels. However, the labels explicitly contain the information
about the incompatible propositions. As the information is already implicitly
in the verified systems, we can employ the incompatibility of propositions to
make these labels short again (and even shorter than they were originally).

The chapter is concluded by interesting cases discovered during our inten-
sive experiments.

4.1 SPECIFICATION REFINEMENT AND CONSTRAINTS

The Promela code of the system implicitly describes an underlying automa-
ton* for the system and the code already provides us with some relevant infor-
mation about the automaton. In particular, we can detect that some combina-
tions of propositions in AP(¢) and their negations are never valid at the same
time. We can express this information by a constraint k, which is a Boolean
formula over AP() satisfied by all combinations of atomic propositions ex-
cept the invalid combinations.

For instance, x>10, y<5, and x<y cannot hold together. This informa-
tion follows directly from the meaning of the atomic propositions and the re-
lated constraint is =((x>10) A (y<5) A (x<y)). As already discussed, atomic
propositions saying that a process P is in various locations® are always incom-
patible. Moreover, they are even mutually exclusive. If E is a set of mutually
exclusive atomic propositions, the corresponding constraint is:

/\ —|(C1 A b)
a,beE
a#b
While such constraints may seem obvious to the reader, tools that translate

LTL formulae into Biichi automata do not analyze the semantics of atomic
propositions, and thus they do not know that x>10 and x<4 are incompatible.
It is the job of the refinement algorithms for formulae and for automata to
make the constraint k explicit for the tools and thus gain smaller automata.

The aforementioned examples of incompatible propositions can be easily
detected: by an SMT solver or even better by a regular expression. A more
complicated static analysis of the system can identify more impossible com-
binations. For instance, the analysis can find out that if a process P is in a lo-
cation loc, then local variable P: x has value 0, and thus atomic propositions
P@loc and P: x>0 never hold together, expressed as —((P@loc) A (P:x>0)).
We do not focus on finding incompatible propositions; we show how this in-
formation can be used to improve model checking.

*1t is, in fact, a Kripke structure. A Kripke
structure can be seen as an automaton with
labels on states instead of edges and with all
states accepting.

® For example P@locl, P@loc2, and P@loc3

https://spot.lrde.epita.fr/

SPECIFICATIONS MEET SYSTEMS 45

4.2 FORMULA REFINEMENT

The refinement of an LTL formula ¢ with respect to a constraint is a formula
1(@); it explicitly encodes « into the formula and is defined by

T() = ¢ A Gk.

This extra information allows tools that translate LTL formulae into automata
to produce smaller automata. For instance the Biichi automaton A, in Fig-
ure 4.3(a) was generated by Spot from the formula ¢ = F(Gav (GFb «—
GFc)). For the refined formula 7 (¢) using the constraint for the mutual ex-
clusivity of {a, b, c}, Spot produced the automaton in Figure 4.3(b). This au-
tomaton is smaller: the edge between states 3 and 5 labelled by bc is known

to be never satisfiable, and the state 0 is found to be superfluous®

abvbe acvbe
() Ae () A () = as(1(Aep))

abvbecvae bc

@ aﬁé\% bc @

abvbe acvbe b c
(0) (Ao) () 1s(Ar () = Is(as(1(Aep)))

®Indeed, the incoming edges of state O
would be labelled by abg, so that part of the
automaton is covered by the state 2 already.

Figure 4.3: Automata without and with
specification refinement for the LTL formula
¢ = F(Gav (GFb <= GFc¢)) and
the constraint k = =(aAb) A=(arc)A
-(bAc).

46 AUTOMATAFORFORMALMETHODS: LITTLESTEPS TOWARDS PERFECTION

4.3 AUTOMATON REFINEMENT

Alternatively, the refinement can be performed directly on the property au-
tomaton which allows us to benefit from some known constraints even if we
want to specify erroneous behaviours directly as an automaton. In order to
refine a given automaton .4 by a constraint k, we add « in conjunction to all
edge labels of A and remove the edge whenever the new label reduces to false.
We denote the refined automaton by 1 (.A).

Figure 4.3(c) shows a refined automaton for the automaton of Figure 4.3(a).
In this case, state 0 is not removed. However, we can get rid of this state if
we run some simplification algorithms, such as simulation-based reductions.
which are often employed in LTL to automata translators. The result of this
simplification pass is then again in Figure 4.3(b). If as(.A,) is the result of
the same simplifications which are used by the translator that translated ¢ to
A, one would expect that the A, () = as(n(A¢)) always holds as in the
example of Figure 4.3(b). This is not true in practice for two reasons:

« Some translators have LTL rewriting rules that may react strangely to the
refined formula, sometimes to the point of producing larger automata.

« Some translators include automata simplification algorithms that can only
be applied when the formula is known, so they cannot be run on arbitrary

automata. For instance, Spot employs WDBA-minimization®

Nonetheless, both formula refinement and automaton refinement have three
noticeable effects on the model checking process:

« First, the automaton constructed with formula or automaton refinement
is often smaller than the original automaton (for example, removing some
transitions can make two states equivalent and such states can be merged).
This can have a very positive effect on the model checking process.

 Second, if the unsatisfiable transitions are removed, Spin does not need
to repeatedly evaluate the labels of these transitions during the product
construction, only to finally ignore them.

o Last, the longer labels produced by this refinement may take longer to eval-
uate depending on how the model checker is implemented. This is the only
negative effect, and we fix it in Section 4.5.

It is equivalent to replacing every edge of A
in the form (v1,€,12) by (11,£ A K, T2).

7 Babiak et al. (2013), “Compositional Ap-
proach to Suspension and Other Improve-
ments to LTL Translation”, [44].

8 Dax, Eisinger, and Klaedtke (2007), “Mech-
anizing the Powerset Construction for Re-
stricted Classes of w-Automata” [27];
Duret-Lutz (2014), “LTL Translation Im-
provements in Spot 1.0%, [34].

http://dx.doi.org/10.1007/978-3-642-39176-7_6
http://dx.doi.org/10.1007/978-3-642-39176-7_6
http://dx.doi.org/10.1007/978-3-642-39176-7_6
http://dx.doi.org/10.1007/978-3-540-75596-8_17
http://dx.doi.org/10.1007/978-3-540-75596-8_17
http://dx.doi.org/10.1007/978-3-540-75596-8_17
http://dx.doi.org/10.1504/IJCCBS.2014.059594
http://dx.doi.org/10.1504/IJCCBS.2014.059594

SPECIFICATIONS MEET SYSTEMS 47

4.4 EXPERIMENTAL EVALUATION

Tools. In our experiments, we use four LTL-to-BA translators presented in
Table 4.1. Two of the translators, namely LTL3BA and Spot, are used with two
settings: the default ones and the settings with the suffix “-det” that aim to pro-
duce more deterministic automata. All translators are restricted by 20-minute
timeout. For formula refinement, automaton refinement, and automaton sim-
plifications we use the tools 1t1filt and autfilt from Spot 1.99.1; see ex-
amples of the corresponding commands below where ¢ = F(Gav (GFb +——
GFc)), A is always stored in input.hoa, and « is the constraint for the mu-
tually exclusive set {a, b, c}. If there are several mutually exclusive sets, one
can use - -exclusive-ap multiple times.

% Ltlfilt -f 'F(Ga | (GFb <-> GFc))' --exclusive-ap='a,b,c'
F(Ga | (GFb <-> GFc)) & G(!(a & b) & !(a & c) & (b & c))
% autfilt --exclusive-ap='a,b,c' input.aut

% autfilt --high --small input.hoa

The emptiness checks of Spin was run with the maximum search depth of
100 000 000, memory limit 20 GiB, the option -DNOSTUTTER; and partial-
order reduction enabled for tasks with next-free formulae. The emptiness
check is always restricted by 30-minute timeout.

You can find the exact commands, the measured data and detailed in-
formation about this benchmark at http://fi. muni.cz/~xstrejc/publications/
spin2015/

Benchmark. Our benchmark is made of 3316 verification tasks where some
propositions are referring to distinct locations of a single process. We started
with 789 verification tasks'? from Beem!! and we removed 8 duplicate tasks.
Unfortunately, Beem contains only about 25 different types of specification
formulae!? and most of them have a very simple structure. To get more var-
ied formulae, we added verification tasks using the same Beem systems and
randomly generated formulae.

We generated these additional tasks as follows. For each instance of a Beem

13

system, ~ we generated 10 000 random formulae using the tool randlt1 from

Spot. More precisely, we ran
% randltl -nl0000 -tree-size=30..50 <list of propositions>

where the atomic propositions were gathered from all original Beem formu-
lae for the corresponding instance. For each such verification task, we ran
Spot 1.2.5 to translate the formula into a Biichi automaton and then we ran
Spin with the settings as described above. We selected verification tasks where

translator version command

Spin [21; 26] 6.3.2 spin

LTL2BA [31] 1.1 1t12ba
LTL3BA [33] 1.1.2 1t13ba
LTL3BA-det 1t13ba -MO
Spot [34] 1.99b ltl2tgba -s

Spot-det 1tl2tgba -s --deterministic

Command to build (@) from ¢ and its
output in grey.

Command to build 1(A) from A.

Command to simplify A.

% See Section 4.6.3 for the explanation.

19 A verification task is a pair of a Promela
code of a system and an LTL formula de-
scribing erroneous behaviours.
! Pelanek (2007), “BEEM: Benchmarks for
Explicit Model Checkers”, [30].

12 the others differ only in atomic proposi-
tions or their combinations

1323 parametric systems, altogether 133 in-
stances

Table 4.1: Considered LTL-to-BA transla-
tors, for reference. The reference of Spin is
valid also for the model checker.

https://spot.lrde.epita.fr/
http://fi.muni.cz/~xstrejc/publications/spin2015/
http://fi.muni.cz/~xstrejc/publications/spin2015/
http://dx.doi.org/10.1007/978-3-540-73370-6_17
http://dx.doi.org/10.1007/978-3-540-73370-6_17

48 AUTOMATAFORFORMALMETHODS: LITTLESTEPS TOWARDS PERFECTION

« Spot translates the formula within 20 minutes,

o Spin’s verifier finished in more than 5 seconds and less than 30 minutes,
and

o Spin neither reached maximum search depth nor ran out of memory.

We got 6069 generated verification tasks with random formulae. For each ver-
ification task (original or generated), we constructed exclusive sets based on
atomic propositions referring to process locations. The constraints we used
for specification refinement are therefore based only on the fact that one pro-
cess cannot be in two locations at the same time. We removed all verification
tasks for which we did not detect such constraints.

In the end, we have 3316 verification tasks of reasonable complexity and
with constraints. These tasks employ 101 instances of 16 parametrized sys-
tems from Beem. Of all the tasks, 50 are from Beem, the rest use generated
formulae.

Hardware. All computations were performed on the same machine as the
experiments from the previous chapter. The machine was shared with other
users and its variable workload has again led to high dispersion of measured
run times. Hence, instead of run times, we use the number of transitions
visited by Spin, which is stable across multiple executions and should be pro-
portional to the run time.

4.4.1 Impact of Formula Refinement

For each verification task (S, ¢) and each translator of Table 4.1, we translate
@ toan automaton .A, and run Spin on S and A, (original task). Then we re-
fine the formula to (@) and repeat the process (refined task). Table 4.2 shows
the numbers of translation timeouts, Spin fails}* and successfully solved ver-
ification problems. The data indicate that formula refinement has a mostly
positive effect on the model checking process: for all but one translator,®
the refinement increases the number of successfully solved tasks. Neverthe-
less, the number of tasks solved both with and without formula refinement
is always smaller than the number of original tasks successfully solved. This
means that the effect of the formula refinement is negative in some cases.

original tasks (S, ¢) refined tasks (S, (@)

translation Spin tasks translation Spin tasks both tasks

translator timeouts fails solved timeouts fails solved solved
Spin 801 232 2283 926 201 2189 2183
LTL2BA 5 341 2970 2 302 3012 2929
LTL3BA 0 80 3236 0 55 3261 3227
LTL3BA-det 0 34 3282 0 27 3289 3279
Spot 2 27 3287 0 19 3297 3286
Spot-det 2 26 3288 0 19 3297 3287

All 810 740 18346 928 623 18345 18191

The two timeouts of Spot in Table 4.2 can be
explained either by the fact that we used an
older version (1.2.5 vs 1.99b) to generate the
formulae from the tasks or by a time that is
very close to the 20 minutes threshold.

The CSV file with the measured data from
the URL also contains the measured time. It
could be used to draw the same conclusions
as we did using the visited transitions.

' This number covers the cases when Spin
timeouts, runs out of memory, or reaches the
maximum search depth

!5 We discuss the case of the translator Spin
in more details in Section 4.6.2.

Table 4.2: Statistics of fails and successfully
solved verification tasks with and without
formula refinement.

SPECIFICATIONS MEET SYSTEMS 49

Table 4.3 shows that the property automaton for a refined formula fre-
quently has fewer states than the automaton for the original formula. How-
ever, we cannot easily tell whether states are removed simply because they are
inaccessible after refinement (i.e., the constraint k removed all the transitions
leading to a state) or if the refinement enabled additional simplifications as
in Figure 4.3. In the former case, the refinement would have a little impact
on the size of the product: it is only saving useless attempts to synchronize
transitions that can never be synchronized while building this product.

effect Spin LTL2BA LTL3BA LTL3BA-det Spot Spot-det
+states 514 41 15 148 13 17
—states 168 1482 1679 1723 1722 1720
=states,+edges 37 17 0 0 9 10
=states,—edges 43 337 293 326 345 344
=states,=edges,+trans. 153 211 283 173 280 280
=states,=edges,—trans. 1226 785 899 848 849 848
no size change 42 56 58 61 68 68
All 2183 2929 3227 3279 3286 3287

Finally, we turn our attention to the actual effect of formula refinement
on the performance of the emptiness check implemented in Spin. For each
translator and each verification task, let t; be the number of transitions vis-
ited by Spin for the original task and t; be the same number for the refined
task. Scatter plots in Figure 4.4 on the page 50 show each pair (t1,t;) as a
dot at this coordinate. The color of each dot says whether the property au-
tomaton for the refined formula has more or fewer states than the automaton
for the original formula. The data is shown separately for each translator. We
also distinguish the tasks with some erroneous behaviour from those without
error. As many dots in the scatter plots are overlapping, we present the data
also via improvement ratios t [t1. Values of t2/t; smaller than 1 correspond
to cases where formula refinement actually helped Spin, while values larger
than 1 correspond to cases where the refinement caused Spin to work more.

Figure 4.5 gives an idea of the distribution of these improvement ratios
in our benchmark. In this figure, all improvement ratios for a given tool are
sorted from lowest to highest, and then they are plotted using their rank as x
coordinate and using a logarithmic scale for the ratio. One can immediately
see on these curves that there is a large plateau around y = 1 correspond-
ing to the cases where there is no substantial change. Among the tasks with-
out error, there are usually many cases with the ratio below 0.95 (a definite
improvement), and very few cases above 1.05 (cases where refinement hurts
more than it helps). A special class of cases that are improved are those that
are found equivalent to false after refinement: those usually have a very high
improvement ratio, as the exploration of the product is now limited to a sin-
gle transition!® The refined formula cannot be equivalent to false in tasks with
an error. Relatively high numbers of these “false” cases imply that the formula
refinement technique is an effective sanity check detecting specifications un-
satisfiable under given constraints. Table 4.4 gives counts of improvement
ratios in these classes.

Table 4.3: Effect of formula refinement on
property automata. For each translator and
each verification task, we compare the size
of A with the size of A, () and report on
the number of cases where the refinement re-
sulted in additional states (+states) or fewer
states (—states). In case of equality, we look at
the number of edges or transitions. For each
translator we consider only the tasks from
the last column of Table 4.2, which are tasks
solved both with and without formula refine-
ment.

'6 Spin immediately realizes that the empty
automaton cannot be satisfied

The high number of “false” cases is due to the
use of random formulae. In real tasks, such
a false case would likely indicate a bug in the
specification.

50 AUTOMATA FORFORMALMETHODS:

LITTLESTEPS TOWARDSPERFECTION

without error with error without error with error
1.6-10° 10% 1
® e
104 -
L] ° .
{92 1- { J {92
109 - ke kel
0.8-10 @ = g
{ 1074
. { 10-8 -
- L4 108
1.6-10° . .
104 -
= =
= i) |
0.8:10° 5 ! 5
s} fes)
> 10~ >
0 1078 -
1.6-10° - e 10° 1
© ° °
o
"cg) o‘ o® 104]
<) o = - =
S“ 9 _| L4 () L4 ° g g 1+ ?‘
~0.810 p 00 ® @ 3 &
- (] T4 & e} @
ry ° oo o> = >
& 8e P 4 8107+
5 $ N
pe L %o B
Z ey 7, e g £ 1078+
= 0- L]] @] 9
= +~
16109 - Z 10°
) <
.L; ° ° B 104 -
g ° = ks 5
3 . . £ S . =
= 0.8.10° - & =] b @
_g 0.8-10 .® = S =
(=9 _ (=5
[] []
= *
. k. 1078]
0- @ o o
1.6-10° 10% 1
d 10* 4
[]
0.8-10° £l 17 ' £l
: S S
o
o o .' ° 104
° ! (1Y
0 i— 1071
— 0 ©
1.6:10° 10% 1
. 10*
. 2 2
0.8-10° - s 19 =
@ o .' ° 104 -
° ! N
| i
— 000 0
I I I I I I I I I
0 0.8-10° 1.6-10° 0 0.8-10° 1.6-10° 500 1000 1500 0 500 1000
original formulas - transitions in product rank
® tstates © =states ® —states —false — <095 —[0.95,1.05] — >1.05

Figure 4.4: Comparison of the numbers of product transitions vis- Figure 4.5: Distribution of the improvement ratios (t,/t7). Cases
ited by Spin on the original tasks (t1) and their formula-refined that have been reduced to false are highlighted in bold. Note log
versions (t3). scale.

SPECIFICATIONS MEET SYSTEMS 51

Figures 4.4 and 4.5 and Table 4.4 show that for tasks without error, formula
refinement has a negative effect'” only very rarely and such effect is relatively
small. The positive effect is more frequent and substantial in many cases. The
table implies that LTL3BA and Spot can profit more from the refinement as
they identify radically more false cases and they have significantly less cases
with negative effect than the other translators. This observation can be ex-
plained by advanced simplification techniques implemented in LTL3BA and
Spot.

'7 Some of the negative effects are discussed
in Section 4.6.

You can find more detailed data that relate
the effect on automata and on model check-
ing in Tables 4.12 and 4.13 on the pages 58
and 59.

without error

with error

false <095 [0.95,1.05] >1.05 All <0.95

[0.95,1.05] >1.05 All

Spin 0 30 1257 50 1337 27
LTL2BA 61 462 1179 48 1750 288
LTL3BA 374 401 1101 7 1883 194
detLTL3BA 382 264 1255 12 1913 186
Spot 384 300 1213 20 1917 244
detSpot 385 297 1218 18 1918 248
All 1586 1754 7223 155 10718 1187

708 111 846
602 289 1179
942 208 1344
993 187 1366
202 223 1369
903 218 1369
5050 1236 7473

In the tasks with erroneous behaviours, we observe that the number of im-
proved cases is almost balanced by the number of degraded cases (except for
Spin). This can be explained by the fact that refining an LTL formula may
alter the shape of the output automaton, and thus change its transition order.
Therefore the model checker may have more or less luck in finding an erro-
neous run. When such a run is found, Spin ends the computation without
exploring the rest of the product.

Table 4.5 shows that measuring the number of transitions explored by Spin
instead of time has no effect on conclusions. There are only 93 (out of 18 191)
tasks where refinement improved the number of explored transitions but Spin
needed more time. However, this is caused mainly by the unreliable measure-
ments of the run times, which is obvious in the cases where the formula was
reduced to false and Spin still needed more time to evaluate the task after re-

finement.

time ratio

without error with error

trans ratio <0.95 [0.95,1.05] >1.05 <0.95 [0.95,1.05] >1.05

false 1552 14 20 0 0 0
<0.95 1552 159 43 1006 131 50
[0.95,1.05] 492 2358 4373 617 2263 2170
>1.05 1 4 150 79 221 936

Table 4.4: Distribution of the improvement
ratios for formula refinement. The counts
of false cases are not included in the <0.95
classes.

Table 4.5: Relation of change in the number
of transitions to the change in the measured
run time (unreliable) of Spin.

52 AUTOMATA FORFORMALMETHODS: LITTLESTEPS TOWARDS PERFECTION

4.4.2 Impact of Automaton Refinement

As mentioned before, automaton refinement itself only cuts off some parts of
the automaton that are not used in the product. It has a bigger effect only
when additional simplification algorithms are executed after the refinement.
In our experiments, we combined the automaton refinement with automaton
simplifications implemented in Spot.

To measure the effect of automaton refinement, we prepared the bench-
mark as follows. We took the 3316 verification tasks used before. For every
task, we translated the formula with all considered translators and simplified
the produced automata using Spot — that is the automaton A. The simplifi-
cation is here applied to make the comparison of model checking with and
without automaton refinement fair: without this step, we could not really
distinguish the effect of automaton refinement (followed by simplifications)
from the effect of simplifications themselves. If the automaton translation and
simplification successfully finishes, we get a pair of a system and a simplified
automaton (original task). After removing duplicates, we have 9352 original
tasks.

For each task, we run Spin with the original automaton. Then we refine and
simplify the automaton and run Spin again. While the automaton refinement
is very cheap, the successive simplification can be quite expensive. So we apply
a 20-minute timeout to simplifications. Table 4.6 provides numbers of Spin
fails on original tasks, timeouts of refined automata simplifications, and Spin
failures on refined tasks. In the following, we work only with tasks solved both
with and without automaton refinement.

original tasks (S, .A) refined tasks (S, as(1«(A)))

Spin tasks simplification of Spin tasks both tasks
fails solved (A timeouts fails solved solved
291 9061 12 99 9241 92038

Table 4.6: Statistics of fails and successfully
solved verification tasks with and without
automata refinement.

without error with error without error with error

0.8-10%

1075 - /

refined automata - trans. in prod.
ratio of transitions in product
L

O -
| | | | | | | | | | | | | | |
0 0.8-10° (U) 0.8-10° 0 100020003000400050000 1000 2000 3000 4000
original automata - transitions in product rank
=states —states — false <0.95 [0.95,1.05]) — >1.05
Figure 4.6: Comparison of the numbers of product transitions visited Figure 4.7: Distribution of the improvement ratios (t2/t1). Cases
by Spin on the original tasks (t1) and their automata-refined versions that have been reduced to false are highlighted in bold. Note log scale.

(t2).

SPECIFICATIONS MEET SYSTEMS 53

As in the previous section, Table 4.7 presents the effect of automaton re-
finement and simplification on the sizes of property automata. The refined
and simplified automata are smaller in the vast majority of cases and never
bigger.

The effect of automaton refinement and simplification on the performance
of the emptiness check in Spin is presented in Figures 4.6 and 4.7, and Table 4.8
in the same way as previously. On tasks without error, the effect is similar to
formula refinement: it is often positive and almost never negative. On tasks
with error, the positive effect is more frequent than the negative one.

4.4.3 Comparison of Formula and Automaton Refinement

Here we compare the formula refinement and automaton refinement using
Spot for the formula translation. For each of the 3316 considered tasks, we
refine the formula, translate it by Spot, and run Spin. Then we take the task
again, translate the original formula by Spot, refine and simplify the automa-
ton, and run Spin. Table 4.9 provides statistics about automata construction
timeouts,® Spin timeouts, and solved tasks. Both approaches detected 380
identical cases where the refined specification reduces to false. In the follow-
ing, we present the data from the 3256 — 380 = 2876 tasks solved by both
approaches and not trivially equivalent to false.

tasks with formula refinement tasks with automaton refinement

automaton automaton both

construction Spin tasks construction Spin tasks tasks
timeouts fails solved timeouts fails solved solved

0 19 3297 35 25 3256 3256

Tables 4.10 and 4.11 and Figures 4.8 and 4.9 are analogous to the tables and
figures in the previous sections (the position of original tasks in the previous
sections is taken by tasks with formula refinement). Table 4.10 says that au-
tomaton refinement often produces property automata with more states than
formula refinement. However, Figure 4.8 and Table 4.11 show that the overall
effect of automata and formula refinement on the performance of Spin is fully
comparable, slightly in favour of formula refinement.

4.5 LABEL SIMPLIFICATION

As mentioned in Section 4.1, a side-effect of specification refinement is that
edges get more complex labels. This is visible when comparing the automa-
ton of Figure 4.3(b) to the one of Figure 4.3(a). For example, the self-loop on
state 3 is labelled by ac v bc instead of the original . In our experiment, the
overall average length of an edge label (counted as the number of occurrences
of atomic propositions in the label) in the automata A, () for refined formu-
lae is 6.58, while the average label length in the corresponding automata A,
for unrefined formulae is only 4.20. Spin compiles the labels during the con-
struction of the product into C code that matches the system transitions. For
example, Figure 4.10 depicts the C code corresponding to the labels ac v bc

effect

+states 0
—states 4955
=states,+edges 0
=states,—edges 1013
=states,=edges,+trans. 0
=states,=edges,—trans. 2400
no size change 670

Table 4.7: Effect of automaton refinement

on property automata.

without error with error
false 906 0
<0.95 853 735
[0.95,1.05] 3251 2743
>1.05 5 545
All 5015 4023

Table 4.8: Distribution of the improvement
ratios for automaton refinement.

'8 This number comprises Spot timeouts and
also simplification of refined automata time-
outs in the case of automaton refinement

Table 4.9: Statistics of fails and successfully
solved verification tasks with formula refine-
ment and automaton refinement.

effect

+states 315
—states 82
=states,+edges 52
=states,—edges 51
=states,=edges,+trans. 26
=states,=edges,—trans. 428
no size change 1922

Table 4.10: Comparison of automata pro-
duced by formula refinement and automa-
ton refinement (+states counts tasks where
as(1«(Ag)) has more states than A, () and

so on).
without error with error
<0.95 44 133
[0.95,1.05] 1399 970
>1.05 71 259
All 1514 1362

Table 4.11: Distribution of the improvement
ratios for automaton refinement over for-

mula refinement.

54 AUTOMATAFORFORMALMETHODS: LITTLESTEPS TOWARDS PERFECTION

]

e without error with error without error with error

e, o 108
=2 1107 = |

. ”8
195) /J
g = |
ES o 104 - {
2 i=

1 ° 8 |
E ° o J

£0.5-10° - ° ° =1+ g

= z

g =
i o 4 4 £

= o Syt

o R g ° 5107
3 T8 Al © S

< »)

g 0 . o

Q 1 1 1 1 1 1 1 1 U 1 1
= 0 0.5-10° 1-10° 0 0.5-10° 1-10° 0 500 1000 15000 500 1000

® formula refinement - transitions in product rank

® +tstates =states —states < 0.95 [0.95,1.05] — >1.05

Figure 4.8: Comparison of the numbers of product transitions vis- Figure 4.9: Distribution of the improvement ratios (t2/t1). Cases
ited by Spin in formula-refined tasks (t;) and their automata-refined that have been reduced to false are highlighted in bold. Note the log
versions (t3). scale.

and c. Clearly, longer labels can slow down the verification process without
influencing any Spin statistics like visited transitions and stored states. How-
ever, the expected slowdown should be only small as checking the labels is
much cheaper than computing the successors of states of the system or stor-
ing the states.

if (HLOCCHCC((dint) ((PL *)Pptr(f_pid(1)))->_p) == 27))&
PO(((dint) ((P1 *)Pptr(f_pid(1)))->_p) == 5))) ||
(1((((int) ((P1 *)Pptr(f_pid(1)))->_p) == 27))&
PO(((int) ((P1 *)Pptr(f_pid(1)))->_p) == 9)))))) .

if (10 PC0C(Ent) ((P1 *)Pptr(f_pid(1)))->_p) == 27)))) ...

We eliminate this slowdown by a step that resembles a converse of refine-
ment. Refinement uses the given constraint k to make edge labels more pre-
cise (restrictive). Label simplification uses to make the edge labels less pre-
cise and shorter, but equivalent to the original labels under the constraint k.
For instance, bc can be shortened to b if we know that b and ¢ never hold
together in the system. The edge label is in fact a Boolean function and we
can simplify these based on so-called don’t care!® information. Concretely,
we have implemented the simplification in Spot using the Minato-Morreale
algorithm?? The algorithm takes two Boolean functions | f| and [f] and pro-
duces a minimal label that covers at least all the assignments satisfying | f],
and that is not satisfiable by at least all the assignments not satisfying [f]. To
simplify a label £ using a constraint k, we call this algorithm with |f] = Ak
and [f] = { vV —k.

% autfilt --exclusive-ap='a,b,c' \
--simplify-exclusive-ap input.hoa

Figure 4.3(d) shows the result of label simplification (denoted as function ls)
applied to Figure 4.3(b).

We applied the label simplification to all automata obtained by formula
refinement and the average label length dropped to 3.19, which is even lower

Figure 4.10: Parts of two pan.m files that
Spin generates when it checks a system
against two automata of Figure 4.3. The up-
per part encodes an edge of A, (,) labelled
by ac v bc and the last line represents an
analogous edge of A with label ¢.

1 We do not care if the simplified label ad-
ditionally covers some variable assignments
that can never happen in the system.

20 Minato (1993), “Fast Generation of Prime-
Irredundant Covers from Binary Decision
Diagrams”, [45].

Command that simplifies labels of A.

https://eprints2008.lib.hokudai.ac.jp/dspace/bitstream/2115/47468/3/59_IEICE76_967.pdf
https://eprints2008.lib.hokudai.ac.jp/dspace/bitstream/2115/47468/3/59_IEICE76_967.pdf
https://eprints2008.lib.hokudai.ac.jp/dspace/bitstream/2115/47468/3/59_IEICE76_967.pdf

SPECIFICATIONS MEET SYSTEMS 55

than 4.20 which is the value for automata without refinement. We selected
several cases with high reduction of label length and run Spin several times
with automata before and after label simplification on a weaker, but isolated
machine to get reliable run times. In these tests, Spin runs up to 3.5% faster
after label simplification.

4.6 WHEN REFINEMENT HARMS AND FOUND BUGS

In few cases, specification refinement decreased the performance of Spin. We
have identified three origins of these situations.

4.6.1 'The Case of Strongly Connected Components

Figure 4.11 shows one of the few tasks without error where the refined formula
translated by Spot degrades the performance of Spin. Spin performs better
with the automaton A, (Figure 4.11(a)) than with the smaller automaton
A, (o) (Figure 4.11(b)).

The reason why Spin works better with the larger of these two automata
was already discussed in the previous chapter. It is related to the sensitivity of
Nested DFS algorithm to the location of accepting states. In the automaton of
Figure 4.11(b) the state 12 is accepting. Whenever the blue DFS backtracks
a state of the product that is synchronized with state 12, it has to start a red
DFS that will explore again the states synchronized with 12 and 13 previously
explored by the blue DFS.

The re-exploration of states synchronized with 13 is something that

1. did not happen in the original automaton because there is no accepting
state preceding the corresponding state 3, and

2. is useless because there is no way to get back to state 12 after moving to
state 13.

The NDFS algorithm could be patched to avoid this problem by simply
constraining the red DFS to explore only the states of the product whose pro-
jection on the property automaton belongs to the same strongly connected
component as its starting accepting state. This optimization was already sug-
gested by Edelkamp et al. with one additional trick:if we know that the current
SCC is weak?! then running a red DFS is not needed at all as the blue DFS is
guaranteed to find any accepting cycle by itself?? In the scenarios described

bcevaevde d fvg T

(a) useful part of A,

The automaton presented in Figure 4.11(a) is
a pruned version of the real automaton. We
have removed all transitions that do not ap-
pear in the product with the system. For in-
stance, in this pruned automaton it is obvi-
ous that the state 7 can be merged with the
state 8, but the presence of other edges in the
original automaton prevented this simplifi-
cation.

States synchronized with 14 are ignored as
they have been already seen by a previous red
DES.

21 All states of a weak SCC are accepting or
all are non-accepting.

2 Edelkamp, Lluch-Lafuente, and Leue
(2001), “Directed Explicit Model Checking
with HSF-SPIN”, [46]; Edelkamp, Leue, and
Lluch-Lafuente (2004), “Directed Explicit-
State Model Checking in the Validation of
Communication Protocols”, [47].

Figure 4.11: An uncommon case where
Ay (¢) is much smaller than Ay, and yet
Spin performs better with A .

http://dx.doi.org/10.1007/3-540-45139-0_5
http://dx.doi.org/10.1007/3-540-45139-0_5
http://dx.doi.org/10.1007/s10009-002-0104-3
http://dx.doi.org/10.1007/s10009-002-0104-3
http://dx.doi.org/10.1007/s10009-002-0104-3

56 AUTOMATAFORFORMALMETHODS: LITTLESTEPS TOWARDS PERFECTION

by Figures 4.11(a) and 4.11(b), all the SCCs have a single state, so the product
automaton will be weak and the red DES should not be needed. Computing
the strongly connected components of the property automaton can be done
in time that is linear to the size of that automaton (typically a small value)
before the actual emptiness check starts, so this is a cheap way to improve the
model checking time.

4.6.2 Problems with LTL simplifications

A special class of interesting cases consists of formulae where formula refine-
ment leads to bigger automata. Such cases are surprisingly often connected
with issues in the earliest phases of LTL to automata translation, namely in
formula parsing or simplification. For example, LTL3BA implements several
specific formula reduction rules applied after all standard formula reductions.
If such a rule is applied, the reduced formula is checked again for possible ap-
plication of some reduction rule, but in LTL3BA version 1.1.2 it was checked
only on the top level of the formula. Hence, some reductions were not applied
when the input formula was refined with a constraint. This was a bug and was
fixed in version 1.1.3.

LTL2BA has even more problems with formula simplifications as it is sen-
sitive to superfluous parentheses. For instance, the command 1t12ba -f
'<>([]<>X p)' generates an automaton with 2 states, while the equivalent
1tl2ba -f '<>[]<>X p' produces an automaton with 4 states. This is due
to the fact that LTL2BA runs another simplification pass in the presence of
parentheses.

Table 4.3 indicates that Spin’s translator benefits less than the other trans-
lators from the addition of constraints. Part of the problem, it seems, is due
to a change that was introduced in Spin 6 to allow LTL formulae embedding
atomic propositions with arbitrary Promela conditions. As a consequence of
this change, many parenthetical blocks are now considered as atomic propo-
sitions by Spin’s translator, and simplifications are therefore missed. For in-
stance, the formula (a Rb) A G(=(a A b)) is translated as if ~(a A b) was an
independent atomic proposition. While Spin 5 translates this formula into an
automaton with one state and one edge, Spin 6 outputs an automaton with two
states and three edges, where the edge connecting the states has unsatisfiable
label =(aAb) Aanb.

4.6.3 Problem with Spin

During our experiments, we discovered a handful of cases where equivalent
automata would cause Spin to produce different results: e.g., a counterexam-
ple for automata built by some tools, and no counterexamples for (equivalent)
automata built by other tools. Sometimes the automata would differ only by
the order in which the transitions are listed. In turned out that this bug®® was
due to a rare combination of events in the red DFS in the presence of a dead-
lock in the system. All the presented results are computed by compiling the
Spin 6.3.2 verifier with -DNOSTUTTER, which effectively means that we ignore
deadlock scenarios, and we are safe from this bug.

The operator <> represents F and [] repre-
sents G in LTL2BA.

2 http://spinroot.com/fluxbb/viewtopic.
php?pid=3316, fixed by Spin 6.4.4

http://spinroot.com/fluxbb/viewtopic.php?pid=3316
http://spinroot.com/fluxbb/viewtopic.php?pid=3316

SPECIFICATIONS MEET SYSTEMS

4.7 FINAL REMARKS

We only considered incompatibilities between atomic propositions that de-
note a process being in different locations in our evaluation. More sources of
incompatibilities could be considered, such as atomic propositions that refer
to different variable values. We could also extend the principle to more than
just incompatible propositions: for instance from the system we could extract
information about the validity of atomic propositions in the initial state, the
order of locations in a process, or learn the fact that some variable will al-
ways be updated in a monotonous way (e.g., can only be increased). All these
information can be used to produce stricter property automata that ignore
these impossible behaviours, and we think these automata should offer more
opportunity for simplifications, and should also contribute to better sanity
checks.

We demonstrated the usefulness of refinement in model checking. We be-
lieve it should also be useful in other contexts like probabilistic model check-
ing or controller synthesis.

57

58 AUTOMATAFORFORMALMETHODS: LITTLESTEPS TOWARDS PERFECTION

effect on automata ratio Spin LTL2BA LTL3BA LTL3BA-det Spot Spot-det All
without error +states false 0 0 0 0 0 0 0
<0.95 8 4 0 2 0 0 14
[0.95,1.05] 254 6 3 109 2 2 376
>1.05 41 14 0 7 0 0 62
-states false 0 54 367 375 377 378 1551
<0.95 21 415 396 258 292 289 1671
[0.95,1.05] 86 548 372 528 475 482 2491
>1.05 0 20 3 5 16 14 58
=states,+edges false 0 0 0 0 0 0 0
<0.95 0 2 0 0 0 0 2
[0.95,1.05] 16 8 0 0 3 3 30
>1.05 5 2 0 0 0 0 7
=states,-edges false 0 0 0 0 0 0 0
<0.95 1 17 5 4 5 5 37
[0.95,1.05] 16 179 153 156 187 185 876
>1.05 0 0 0 0 0 0 0
=states,=edges,+trans false 0 0 0 0 0 0 0
<0.95 0 7 0 0 0 0 7
[0.95,1.05] 95 114 167 75 163 163 777
>1.05 4 4 4 0 4 4 20
=states,=edges,-trans false 0 0 0 0 0 0 0
<0.95 0 17 0 0 3 3 23
[0.95,1.05] 754 284 363 343 333 333 2410
>1.05 0 8 0 0 0 0 8
no size change false 0 7 7 7 7 7 35
<0.95 0 0 0 0 0 0 0
[0.95,1.05] 36 40 43 44 50 50 263
>1.05 0 0 0 0 0 0 0
with error +states false 0 0 0 0 0 0 0
<0.95 9 8 2 21 0 2 42
[0.95,1.05] 150 5 5 7 9 10 186
>1.05 52 4 5 2 2 3 68
-states false 0 0 0 0 0 0 0
<0.95 15 174 167 135 190 189 870
[0.95,1.05] 43 179 258 321 269 270 1340
>1.05 3 92 116 101 103 98 513
=states,+edges false 0 0 0 0 0 0 0
<0.95 1 3 0 0 0 4 8
[0.951.05] 12 2 0 0 3 1 18
>1.05 3 0 0 0 3 2 8
=states,-edges false 0 0 0 0 0 0 0
<0.95 0 18 10 24 22 21 95
[0.95,1.05] 15 82 95 116 96 98 502
>1.05 11 41 30 26 35 35 178
=states,=edges,+trans false 0 0 0 0 0 0 0
<0.95 1 13 3 0 4 4 25
[0.95,1.05] 50 59 104 90 100 100 503
>1.05 3 14 5 8 9 9 48
=states,=edges,-trans false 0 0 0 0 0 0 0
<0.95 1 71 12 6 28 28 146
[0.95,1.05] 432 268 472 449 414 413 2448
>1.05 39 137 52 50 71 71 420
no size change false 0 0 0 0 0 0 0
<0.95 0 1 0 0 0 0 1
[0.95,1.05] 6 7 8 10 11 11 53
>1.05 0 1 0 0 0 0 1

Table 4.12: More precise data about formula refinement impact on automata and on model checking. For each combination of effect on automata
(+states means increase number of states) and each category of ratio of visited transitions (with refinement/without refinement) we show number of
corresponding cases for each LTL-to-BA translator. As usual, we keep the cases with error (counterexample) and without error (the whole product
explored) apart.

SPECIFICATIONS MEET SYSTEMS 59

ratio effect on automata Spin LTL2BA LTL3BA LTL3BA-det Spot Spot-det All
without error false +states 0 0 0 0 0 0 0
-states 0 54 367 375 377 378 1551
=states,+edges 0 0 0 0 0 0 0
=states,-edges 0 0 0 0 0 0 0
=states,=edges,+trans 0 0 0 0 0 0 0
=states,=edges,-trans 0 0 0 0 0 0 0
no size change 0 7 7 7 7 7 35
<0.95 +states 8 4 0 2 0 0 14
-states 21 415 396 258 292 289 1671
=states,+edges 0 2 0 0 0 0 2
=states,-edges 1 17 5 4 5 5 37
=states,=edges,+trans 0 7 0 0 0 0 7
=states,=edges,-trans 0 17 0 0 3 3 23
no size change 0 0 0 0 0 0 0
[0.95,1.05] +states 254 6 3 109 2 2 376
-states 86 548 372 528 475 482 2491
=states,+edges 16 8 0 0 3 3 30
=states,-edges 16 179 153 156 187 185 876
=states,=edges,+trans 95 114 167 75 163 163 777
=states,=edges,-trans 754 284 363 343 333 333 2410
no size change 36 40 43 44 50 50 263
>1.05 +states 41 14 0 7 0 0 62
-states 0 20 3 5 16 14 58
=states,+edges 5 2 0 0 0 0 7
=states,-edges 0 0 0 0 0 0 0
=states,=edges,+trans 4 4 4 0 4 4 20
=states,=edges,-trans 0 8 0 0 0 0 8
no size change 0 0 0 0 0 0 0
with error false +states 0 0 0 0 0 0 0
-states 0 0 0 0 0 0 0
=states,+edges 0 0 0 0 0 0 0
=states,-edges 0 0 0 0 0 0 0
=states,=edges,+trans 0 0 0 0 0 0 0
=states,=edges,-trans 0 0 0 0 0 0 0
no size change 0 0 0 0 0 0 0
<0.95 +states 9 8 2 21 0 2 42
-states 15 174 167 135 190 189 870
=states,+edges 1 3 0 0 0 4 8
=states,-edges 0 18 10 24 22 21 95
=states,=edges,+trans 1 13 3 0 4 4 25
:states,:edges,-trans 1 71 12 6 28 28 146

no size change 0 1 0 0 0 0 1
[0.95,1.05] +states 150 5 5 7 9 10 186
-states 43 179 258 321 269 270 1340
=states,+edges 12 2 0 0 3 1 18
=states,-edges 15 82 95 116 %6 98 502
:states,:edges,+trans 50 59 104 90 100 100 503
=states,=edges,-trans 432 268 472 449 414 413 2448
no size change 6 7 8 10 11 1 53
>1.05 +states 52 4 5 2 2 3 68
-states 3 92 116 101 103 98 513
=states,+edges 3 0 0 0 3 2 8
:states,-edges 11 41 30 26 35 35 178
=states,=edges,+trans 3 14 5 8 9 9 48
=states,=edges,-trans 39 137 52 50 71 71 420

no size change 0 1 0 0 0 0 1

Table 4.13: More precise data about formula refinement impact on automata and on model checking, in comparison to Table 4.12 the columns effect
on automata and ratio are swapped.

Part II

LTL TO DETERMINISTIC AUTOMATA

Translation of LTL Fragments into
Generalized Rabin Automata

This chapter presents a translation of an LTL fragment into deterministic au-
tomata. The translation is influenced by the successful LTL to NBA transla-
tion algorithm of LTL2BAL, however, it avoids the notoriously difficult de-
terminization of Biichi automata. The inspiration is reflected in our two-step
approach.

1. A given LTL formula ¢ is translated into a linear alternating automaton
(LAA)? A as in LTL2BA. For the considered fragment, the LAA satis-
fies an additional structural condition; we call such automata may/must
alternating automata (MMAA).

2. The MMAA A is translated into a deterministic generalized Rabin automa-
ton G with marks on transitions.

We also show that with just a little tweak, the construction is correct even for
a slightly larger fragment.

Chatterjee et al. showed that it mostly pays off to use the generalized form
of Rabin automata® However, for the sake of completeness, we offer a pro-
cedure that translates our DTGRA into the commonly used Rabin automata
with marks on states in Section 5.6.

LTL Fragments. In this chapter, we consider two LTL fragments. We start
with the fragment LTL(Fs, Gs) whose formulae are built with temporal opera-
tors s, Gs, F, and G only (F ¢ and G¢ can be seen as abbreviations for ¢ v Fs¢
and @ A Gs, respectively). Later we show that our translation is correct also
for the fragment LTL\G(U, X). The name of the fragment comes from the
fact that there is no U and X in the scope of any G and the fragment is defined
as

=V |ove | ore | Xe | U,

where { ranges over LTL(Fs,Gs). This fragment is strictly more expressive
than LTL(Fs,Gs).

Remark on related work. We discuss other fragments and other related
translations of LTL (or its fragments) into deterministic automata in the next
chapter.

5.1 ALTERNATING AUTOMATA AND THEIR SUBCLASSES

Alternating automata. An alternating automaton A = (S, X, A, I, M, u, @)
is a tuple where S, £, M, p and @ have the same meaning as in w-automata,
I ¢ 2% is a non-empty set of initial configurations, and A € S x L x 25 is an

! Gastin and Oddoux (2001), “Fast LTL to
Biichi Automata Translation”, [31].

2 Also known as very weak, 1-weak, or self-
loop alternating automata.

? Chatterjee, Gaiser, and Kietinsky (2013),
“Automata with Generalized Rabin Pairs for
Probabilistic Model Checking and LTL Syn-
thesis”, [48].

The meaning of p is the same in the sense
that it places marks on states and transitions.
However, while in w-automata the type of pu
is 1: M — 2598 hereitis u: M — 2594,

http://dx.doi.org/10.1007/3-540-44585-4_6
http://dx.doi.org/10.1007/3-540-44585-4_6
http://dx.doi.org/10.1007/978-3-642-39799-8_37
http://dx.doi.org/10.1007/978-3-642-39799-8_37
http://dx.doi.org/10.1007/978-3-642-39799-8_37

64 AUTOMATAFORFORMALMETHODS: LITTLESTEPS TOWARDS PERFECTION

alternating transition relation. In general, subsets C C S are called configura-
tions. We use analogous terminology for transitions as in w-automata. More-
over, for a transition t = (s, «, C) we call s the source state and C the target
configuration of t. The transition is looping (or simply a loop) if s € C and t is
a self-loop if C = {s}. A semitransition of t is every triple (s, &, s") such that
s’ eC.

Linear alternating automata. The alternating automaton A is linear (LAA)
if there exists a partial order relation on the set of states such that for every
transition (s, «, C) € A it holds that all states in C are lower or equal to s. In
other words, there are no simple cycles with more than one transition.

Visualization. Figure 5.1 shows a linear alternating automaton that accepts
the language of the LTL formula ¢ = G(Fsa A Fsb) v Gb. Transitions are de-
picted by branching edges, each branch of such edge corresponds to a semi-
transition. If a target configuration is empty, the corresponding edge leads to
an empty space. Transitions that differ only in labels are grouped in the same
way as in w-automata. Each initial configuration is represented by a possibly
branching unlabelled edge leading from an empty space to the states of the
configuration.

Multitransitions. A multitransition T under « is a set of transitions under «
such that the source states of the transitions are pairwise different. The source
configuration source(T) of T is the set of source states of transitions in T, the
target configuration target(T) of T is the union of the target configurations of
the transitions, and A(T) = « is the label of T. The set of all multitransitions
is denoted by ', and ' stands for all multitransitions of A under x. We
write I' and ', when A is clear from the context. Further, we use Cq = A Co
to denote that there is a multitransition T € I'2* such that C1 = source(T) and
C, = target(T). Again, we leave out the A if A is clear from the context.

Runs. A run of A over a word u = upuq ... € X% is an infinite sequence
T = ToTy... € T of multitransitions such that source(Ty) € I and for
all i > 0 we have A(T;) = u; and target(T;) = source(Ti+1). A branch
b of 7 is a maximal (finite or infinite) sequence of consecutive semitran-
sitions b = (sp,u0,s1)(s1,U1,52)... where siy7 € C; for the transition
(si,uq,Cyi) € Tj starting in s;. The semitransitions have the marks of their
parent transitions, and analogously to a run of w-automata, the set marks(b)
is the set of recurrent marks of b. A branch b satisfies Inf® if ® € marks(b)
and it satisfies Finll if @ ¢ marks(b). The run is accepting iff all its infinite
branches satisfy ®. The language of A is the set L(\A) of all words u € £%
such that .4 has an accepting run over u.

Runs visualization. Runs of alternating automata can be visualized as a di-
rected acyclic graphs (DAG). Figure 5.2 shows a run of A, over the word
({a}z{b}{a,b})®. The dotted lines divide the DAG into segments corre-
sponding to multitransitions. Each transition of a multitransition is repre-
sented by edges leading across the corresponding segment from the source
state to states of the target configuration. Branches in the DAG correspond to

A simple cycle does not visit any state except
the first one twice.

(Ae) | |

b

s

[G(Fsa AFsb) v Gb]

Figure 5.1: An LAA (and also MMAA) A,
for L(¢@); @ = G(Fsa AFsb) v Gb.

A multitransition T has exactly one transi-
tion for each s € source(T).

A branch of a run of an alternating au-
tomaton is reminiscent of a run of an w-
automaton.

TRANSLATION OF LTL FRAGMENTSINTO GENERALIZED RABINAUTOMATA 65

branches of the run. State of an LAA can be ordered in a way that all edges in
the DAG go only to the same or a lower row.

{a} @ {b} {a,b} Figure 5.2: A run of the LAA A, from Fig-
s 0 g VT AT

a,b
3{ }4 ure 5.1 over ({a}@z{b}{a,b})®.

—> @

May/must alternating automata. An LAA is a may/must alternating au-
tomaton (MMAA) if each state fits into one of the following three categories:

1. May-states — states with a self-loop for each « € I and at least one non- A run that enters such a state may wait in the

looping transition state for an arbitrary number of steps.

2. Must-states — states with at least one transition and with looping transitions A run that enters such a state can never leave
only it. In other words, the run must stay there.

3. Loopless states — states that have no looping transitions and no predeces-
sors. They can appear only in initial configurations (or they are unreach-

able).
Figure 5.3: Illustration of state types of
M t YP
May HSt') LOOp less MMAA. The specific properties of the types
selfloop each transition initial, are highlighted by distinct colors.
under tt looping no predecessors
tt

The automaton of Figure 5.1 is an MMAA with may-states Fa and Fb,
must-states G\ and Gb, and no loopless states.

In this thesis we consider only MMAA with marks on states and with co-
Biichi acceptance; that is automata with a unique mark B and the acceptance
formula Finll. Moreover, we always set 11(H) to the set of all may-states of the
automaton. This is justified by the following observations:

« There are no looping transitions of loopless states. Hence, removing all Each branch of a run can visit at most one
loopless states from (M) has no effect on the acceptance of any run. loopless state.

« All transitions leading from must-states are looping. Hence, if a run con-
tains a must-state that is in (M), then the run is non-accepting. Remov-
ing all must-states in p(M) together with their adjacent transitions from an
MMAA has no effect on its accepting runs.

66 AUTOMATAFORFORMALMETHODS: LITTLESTEPS TOWARDS PERFECTION

« Every may-state has self-loops for all « € . If such a state is not in w(H),
we can always apply these self-loops without violating acceptance of any
run. We can also remove these states from all the target configurations of
all transitions of an MMAA without affecting its language.

The class of MMAA with co-Biichi acceptance and with marks on states is
expressively equivalent to the LTL fragment LTL(Fs,Gs).

5.2 TRANSLATION OF LTL(Fs,Gg) TO MMAA

Our translation follows the standard translation of LTL to LAA implemented
in the tool LTL2BA# Here we present a restriction of their translation to the
fragment LTL(Fs, Gs) only. In this section, we treat the transition relation
A< SxZx25ofan LAA asa function A: Sx I — ZZS,where CeA(s,x)
means (s, «, C) € A. Further, we consider G{» and Fi to be subformulae of
Gs1 and K, respectively.

Let ¢ be an LTL(Fs, Gs) formula in positive normal form. An equivalent
LAA is constructed as A, = (S, X, A, L, {l}, p, FinM), where

« S is the set of subformulae of @,

o X =2AP(0),
o A deserves more space and explanation and is thus defined below,

o 1= where 1 represents a disjunctive normal form of \ in a set notation
that we compute for 1 as

P = {{W}}if P is a temporal formula
V1 vpy = Py u,
V1 APy = {C] uCy | Ci ey and Cy e@},and

o pmaps M to the set of all subformulae of the form F in S.

Transition function. Configurations in A(\{, «) stand for conjunctions of
subformulae that, for 1 to be satisfied, have to hold in the next step if « holds
now. Each configuration A(1, o) is one possible way to satisfy .
A(T, &) = {2}
A(ﬂT, OC) =g
{g} ifaeca

Ala, x) :{

%) otherwise

{g} ifata
alna, o) = {@ otherwise
Al Vb2, o) = A(r, o) UA(Y2,)
A(P1 A2,) = {CTUC2 | Cy e A(P1, o) and Co € A(WP, x)}
A(Gs, o) = {{G}}
A(Fsp, o) = {{F}}
A(Gh,a) = {CU{G} | CeA(p,)}
A(FY,) = {{Fb}uA(Y, o)

Figure 5.4 shows this translation applied to formula ¢ G(Fsa A Fsb) v Gb.

4 Gastin and Oddoux (2001), [31].

Gs = XGp and R = XFp

All branches that follow the transition into
@ (which happens when the branches are in
sand @ € A(s,u;) for the next w;) ter-
minate and become finite. A run where all
branches are finite is accepting.

A sequence of multitransitions that hits a
state s with empty A(s, uy) for the next u;
blocks and does not form a run.

States for conjunctions and disjunction are
never reachable.

States for Fs1p and Gs as well as states for
T, a, and their negations are reachable if and
only if they are in I.

G = P AXGY
F = v XF

TRANSLATION OF LTL FRAGMENTSINTO GENERALIZED RABINAUTOMATA 67

Using the partial order “is a subformula of” on states, one can easily prove
that A, is an LAA. Moreover, all the states of the form G1 are must-states
and all the states of the form F1) are may-states. States of other formulae are
loopless, and they are unreachable unless they appear in I. Hence, the con-
structed automaton is also an MMAA. Figure 5.1 shows an MMAA produced
by the translation of formula G(Fsa A Fsb) v Gb.

Theorem 5.1. For each formula ¢ € LTL(Fs, Gs), we can construct an MMAA
Ay with at most || states such that L(¢) = L(Ag).

We have shown that the translation yields an MMAA. The correctness of
the construction was proved by Oddoux in his PhD thesis?

5.3 TRANSLATION OF MMAA TO LTL(F,Gg)

In this section, we show the reverse translation to the one of the previous
section - from MMAA to LTL(Fs, Gs). We assume that may-states have no
looping transitions except self-loops. The assumption is valid as any applica-
tion of a looping transition that is not a self-loop can always be replaced by an
application of a self-loop with the same label; this change cannot transform
an accepting run into a non-accepting one and thus the looping transitions
of may-states that are not self-loops can be removed without altering the lan-
guage of the automaton.

Let A = (S, ZAP,, A, 1, {l}, u, Finl) be an MMAA with a propositional
alphabet. For each « € 2AP" we define 1 to be a formula satisfied exactly by
all the words starting with o

Now we inductively define a formula ¢ for each state s € S. The formula @
is satisfied by any word for which there is an accepting run of A starting in
the configuration {s}. The inductive definition is admissible because A is an
LAA and thus there is a partial order on S such that transitions of a state s can
lead only to s or states that are lower than s.

FV(s,a,0)ea (ﬂ)ocA/\qgc X(pq) if s is a may-state
Cx{s}

Qs = G\/(s%c)eA(waA/\ch\{s}X(pq) if s is a must-state

V(s a,0)ea (Wa A Agec Xoq) if s is a loopless state

Figure 5.4: An MMAA A, for the formula
@ = G v Gb forp = Fsa A Fsb before
removing the unreachable (dotted) states.

|| denotes the length of ¢.

> Oddoux (2003), “Utilisation des Automates
Alternants pour un Model-Checking Effi-
cace des Logiques Temporelles Linéaires”,
[49].

The conjunction of an empty set of conjuncts
is T while the disjunction of an empty set of
disjuncts is = T.

http://www.lsv.fr/~gastin/ltl2ba/Oddoux-these.pdf
http://www.lsv.fr/~gastin/ltl2ba/Oddoux-these.pdf
http://www.lsv.fr/~gastin/ltl2ba/Oddoux-these.pdf

68 AUTOMATAFORFORMALMETHODS: LITTLESTEPS TOWARDS PERFECTION

Finally, we define the formula ¢ 4 equivalent to the whole automaton A as

ea=V N os

Cel seC

Each temporal operator X in the definition of @ is in front of F or G. If we
replace all occurrences of XF by Fs and all occurrences of XG by Gs in ¢ for
all states s we always get that ¢ 4 is an LTL(Fs, Gs) formula. Hence, we have
shown that the following theorem holds.

Theorem 5.2. For each MMAA A with a propositional alphabet, we can con-
struct an LTL(Fs, Gs) formula ¢ 4 such that L(A) = L(@4)-

5.4 TRANSLATIONOFMMAATODETERMINISTICAUTOMATA

Let A = (S,Z,A, L, {H}, u, Finll) be an MMAA. First, we build a determin-
istic semiautomaton 7 that follows all possible runs of .A. Subsequently, we
equip 7 with an acceptance condition and build a deterministic generalized
Rabin automaton D such that L(D) = L(A).

5.4.1 Semiautomaton T

The idea behind the construction of the deterministic semiautomaton is based
on a double powerset construction: the run o of the semiautomaton 7 over
a word u tracks all runs of A over u. More precisely, the state of 7 reached
after reading a finite input consists of all possible configurations in which A
can be after reading the same input. Hence, states of the semiautomaton are
sets of configurations of A and we call them macrostates.

Weuses, s1,s2, ... to denote states of A; C, Cy, Cy, ... to denote configu-
rations of A; and m, m7, my, ... to denote macrostates of 7. Further, we use
t,t1,t2 ... to denote the transitions of A; T, Ty, T; ... to denote multitran-
sitions of A; and r,r1,75... to denote the transitions of 7. Finally, we use
o(u) to denote the unique run of 7 over wu.

Formally, we define the deterministic semiautomaton 7 = (Q, X, 5, mp)
for A as follows:

S
« Q €27 isthe set macrostates, restricted to those reachable from the initial

macrostate mp by 8,
o (my,,mp)€diffmy= {Cz | Ciemy,Cq = Ca}
o my = lis the initial macrostate.

Figure 5.5 depicts the semiautomaton 7 for the MMAA of Figure 5.1. Each

line in a macrostate represents one configuration.

5.4.2 Generalized Rabin Automaton D

Now we are heading towards a deterministic generalized Rabin automaton
D =(Q,%,8,m,M, ', ®). On top of the semiautomaton 7 we add a set
of marks, place the marks on transitions, and define the acceptance formula.
Finally, we will prove the equivalence of D to A.

We need some more notation here. For a run 7t of A, by Rec, (71) we denote
the set of states that appear recurrently in the run. For any configuration Z €

One powerset construction is for dealterna-
tion, and the other is for determinization of
the MMAA.

For each m; € Q and « € Z, there is a sin-
gle transition to a macrostate m that con-
sists of target configurations of multitransi-
tions labelled by o with source configura-
tions in m.y. We say that (m, oc, m2) cov-
ers these multitransitions.

TRANSLATION OF LTL FRAGMENTSINTO GENERALIZED RABINAUTOMATA 69

{GWV,Fa,Fb} T

S8 by must(Z) we denote the set of must-states in Z. Finally, we say that the
run 7t is bounded by Z iff Recg (1) € Z and must(Recg (7)) = must(Z). For
example, the run of Figure 5.2 is bounded by Z = {G{, Fa, Fb}.

For every configuration Z ¢ we define a set ACz ¢ 25 of allowed configu-
rations as follows:

ACz ={Cc Z|must(C) =must(Z)}

Further, aset ATz < 6 is a set of allowed transitions that contains transitions
of T such that they cover some multitransition to ACz. It is defined as follows:

ATz = {(m1,oc,mz) €d ‘ 4C1 € ACz,Cy € (mzﬂACZ) and C; 2 Cz}

Lemma 5.3. If A has a run over u bounded by Z, then the run o(u) of T over
u contains a suffix made of transitions from ATz.

Proof. Let 7t be a run of A over u bounded by Z. Then it has a suffix with
configurations from ACz only. As o(u) tracks all runs of A over w, it also
tracks 7t and hence has a suffix where for each transition (ms, ui, mi,1) there
exist configurations C; € (minACz) and C; € (mi+1 NnACyz) such that
C; = C,. That implies that o(u) has a suffix containing only transitions
from ATy. O

In fact, the other direction can be proved as well: if o(1t) contains a suffix
of transitions from ATz then A has a run over u bounded by Z.

s-escaping multitransitions. Lets € S (M) be a marked state of 4. We
say that a multitransition T is s-escaping if it contains a non-looping tran-
sition of s. The importance of escaping multitransitions is expressed by the
following lemma.

Lemma5.4. Therunm=ToT; ...of A over a word wis accepting if and only if
foralls € Sn (M) N Recs (7) it holds that 7t contains infinitely many s-escaping
multitransitions.

Proof. Assume for contradiction that 7t is accepting and that there is a state
s € Sn (M) N Recg () such that 7t contains only finitely many s-escaping
multitransitions. Let T;Ti;1 be a suffix of 7t without s-escaping multitran-
sitions such that s € source(T;). As we only removed a finite prefix, s still
appears infinitely often in the suffix. Then there is a branch b = (s, ui,s)® in
the suffix which does not satisfy Fin (M) and thus 7t cannot be accepting.

Figure 5.5: The semiautomaton 7 (right)
for the MMAA A, of Figure 5.1. The struc-
ture of A, is drawn again in grey on the left.

© We use Z as a name for the configurations
here to distinguish them from those we used
for the construction of 7.

For a run to be bounded by Z it is allowed
to visit only configurations from ACz from
some point on.

A definition of ATz with Cy € (m; nACz)
might seem more intuitive. It would be cor-
rect; however, it is also less effective in prac-
tice.

o(u) is the unique run of 7 over u.

70 AUTOMATA FORFORMALMETHODS: LITTLESTEPS TOWARDS PERFECTION

Conversely, all branches that are currently in the state s leave s at every
s-escaping multitransition. As A is an LAA, the branches can never reach the
state s again. As 7 contains infinitely many s-escaping multitransitions for all
s € u(M) n Recg(7), no branch can stay in a state marked by M and thus 7t is
accepting. O

Clearly, we need to detect runs of .4 with bounding configuration Z that
contain infinitely many s-escaping multitransitions for each s € Z n p(M).
However, the multitransitions should not leave Z. For each Z ¢ S and each
s € Zn (M) we define the set ETS of s-escaping transitions of T as follows.

ETS = {(m1,a,m3) €8] 3(s,x,C) € Asuch thats ¢ Cand Cc Z}

Now we are ready to build the set of marks Mz, place the marks on tran-
sitions of 7 and describe the acceptance formula @7 for each configuration
Z c S in a way that @z will be satisfied by o(u) if and only if there exists an
accepting run of A over u bounded by Z.

Mz = (B} u{@, |se Znu(m)} W(B) =5 AT,
Dz =FinB A A Inf@, W (@) = AT, NETS
seZnp(l)

Subsequently, o(1t) should be accepting if there exists some Z < S such that
there is an accepting run of A over u bounded by Z.

M= Mz o=\ 0z
ZcS ZcS

Fin ((InfO A Inf®) v FinH)

(G(FsanFsb) v Gb) (G(FsanFsb) v Gb)

Lemma 5.5. If there is an accepting run 7 of A over u then the run o(u) of D
satisfies @z for Z = Recg (7).

Proof. From Lemma 5.3 immediately follows that o(u) has a suffix riri41 ...
of transitions from ATz and thus due to the placement of B marks o(u) sat-
isfies FinHE.

The run 7w = ToTy ... is accepting, thus by Lemma 5.4, it follows that 7t has
infinitely many s-escaping multitransitions for each s € Zn p(M). Let s be
such state and let Tj for j > i be an s-escaping multitransition of 7t. Sincej > 1,

The set ET contains transitions such that
there exists a non-looping transition of s in
A not leaving Z. Note that all transitions of
T with the same label belong to the set or
none of them does.

Satisfying FinE ensures that o (1t) has a suf-
fix of transitions allowed for Z and Inf@;
ensures that o(u) has infinitely many s-
escaping transitions for Z.

Figure 5.6: A deterministic automaton D
(right) equivalent to A, (left, in grey). Only
the two sets P = {G{,Fa,Fb} and R =
{Gb} bound some runs of A.

The mark © represents @ g, the mark @
represents @y, and finally, B is .

The index i comes from the first transition
T; of the suffix from above.

TRANSLATION OFLTLFRAGMENTSINTO GENERALIZED RABINAUTOMATA 71

it is clear that the corresponding transition rj is in ET7 and also in ATz, and
thus 7; has the mark @;. As there are infinitely many such indices j, we have
that o(u) satisfies Inf@. O

Lemma 5.6. Ifarun o(u) of D satisfies @z then A has an accepting run over
u bounded by Z.

Proof. If o(u) = o7y ... is a run of D satisfying @z, then it has a suffix of
transitions of ATz and the suffix contains infinitely many transitions of ET5
for each s € Znpu(M). Let ry = (mi,ui, miq) be the first transition of
the suffix. From the definition of ATy it follows that there is a configuration
Ci+1 € (mip1 N ACz). The construction of T guarantees that there exists a
sequence of multitransitions of A leading to Ci41. More precisely, for some
initial configuration C¢ € Iit holds Cq BN Cy o, e Cy =, Cit1,
and we denote the corresponding sequence of multitransitions by To Ty ... Tj.
This sequence is a prefix of an accepting run of A over u bounded by Z.

We inductively define a multitransition sequence Ti41Ti4+2 ... completing
this run. The definition relies on the suffix riy17i42 ... of o(u). Let us as-
sume that j > i and that target(Tj_1) is a configuration of ACz. We de-
fine Tj to contain one transition of s for each s € target(Tj_7). Thus we get
source(T;) = target(Tj_1) and the full sequence forms a run. Asrj € ATz,
there exists a reference multitransition T’ labelled by u; such that both source
and target configurations of T” are in ACz. We copy from T’ to Tj the transi-
tions for all must-states, and for each may-state s € target(Tj_1), we have two
cases. If rj € ET7, then Tj contains a non-looping transition leading from s
to some states in Z. The existence of such a transition follows from the defi-
nition of ET. For the remaining may-states, T; uses the self-loops under u;.
Formally, T = {t; | s € target(Tj_1)}, where

(s,u4,Cs) contained in T’ if s e must(Z)
) =1 (s,u,{s}) ifsep(M)Ar; ¢ ETS
(s,uj,Cs) where Cs € Z,s ¢ C; if se u(M) A cETS

One can easily check that target(Tj) € ACz, and we continue by building
Tj+1. The run constructed in this way is bounded by Z. Moreover, Tj is s-
escaping whenever rj € ETZ which holds infinitely often for each s € p(l) n
Z. The constructed run of A over u is thus accepting. O

The previous two lemmata prove that the automaton D accepts the same
language as A and the following Theorem 5.7. In conjunction with Theo-
rem 5.2 we have also proved Theorem 5.8.

Theorem 5.7. For each MMAA A with n states, we can construct a determin-
istic automaton D with at most 22 states and L(D) = L(A).

Theorem 5.8. For each formula ¢ € LTL(Fg, Gs), we can construct a deter-

ministic automaton D, with at most 22! states such that L(¢) =L(Dy).

This upper bound is better than the bounds of all versions of Rabinizer:
versions 1 and 2 use automata with marks on states which costs an additional
blow-up exponential in the number of atomic propositions; versions 3 and 4
have triple exponential upper bounds for generalized Rabin automata.

72 AUTOMATA FORFORMALMETHODS: LITTLESTEPS TOWARDS PERFECTION

5.5 MMAA IN THE LIMIT AND LTL\G(U,X)

We have just shown a determinization algorithm for MMAA. In fact, our
construction works correctly for a larger class of linear alternating automata
called may/must in the limit automata (imMMAA). An LAA A is a limM-
MAA if A contains only must-states, states without looping transitions, and
states marked by Ml (not exclusively may-states), and each state reachable from
some must-state is either a must- or a may-state. Each accepting run of a lim-
MMAA has a suffix that contains either only empty configurations, or config-
urations consisting of must-states and may-states reachable from some must-
states. Hence, the determinization construction produces correct results also
for imMMA A under an additional condition: marks and @ 7 are constructed
only for bounding configurations Z that contain only must-states and may-
states reachable from them.

If we translate formulae of the fragment LTL\G(U, X) by the translation
of LTL2BA, we obtain imMMAA. The translation of LTL\G(U, X) into lim-
MMAA places B marks on all states for subformulae of the form 17 U1,.
The rules for 5 for U and X that are needed for the translation and were not
given in Section 5.2 follows.

S(X,) = {{w}}
5(01 Uz,) = 8(2,) u{CuU {1 Uz} | Ced(r,x)}

5.6 DEGENERALIZATION FOR RABIN AUTOMATA

Some algorithms that require deterministic automata cannot handle the gen-
eralized Rabin acceptance condition and require Rabin automata, often even
with marks on states. Generalized Rabin automata have acceptance formula
of the form Vycx (Fin A Njery Inf®) In order to get a Rabin automaton, we
need to reduce the number of circle marks for each k to one. Our construc-
tion is based on a standard degeneralization method for generalized Biichi
automata.

We first illustrate the idea on a generalized Rabin automaton G with K that
is a singleton and with h circle marks, that is with acceptance formula Finll A
Ai1<j<n Inf @, and we create a Rabin automaton R with the two marks (placed
on states), Mand @, only.

The automaton R consists of h + 2 copies of G. The copies are called levels.
We start at the level 1. Intuitively, being at a level j for 1 < j < h means that
we are waiting for a transition marked by ® in G. Whenever a transition
marked by M appears, we reset and move to the level 0. A transition r without
the square mark gets us from level j to the maximal level 1 > j such that r €
p(‘j’) for each j < j’ < 1. The levels 0 and h + 1 have the same transitions
(including target levels) as the level 1. A run of G is accepting if and only if
the corresponding run of R visits the level O only finitely often and it visits
the level h + 1 infinitely often. Hence all states of level 0 are marked by M and
all states of level h + 1 are marked by ®.

A state s is reachable in A from a state s iff
{so} = C1 —>... > Csuchthatse C.

Y1 Uz =P v (P AX(P1 Uy))

If v ¢ (@) then there has to be no j’ be-
tween 1 and j and therefore, 1 = j.

TRANSLATIONOFLTLFRAGMENTSINTO GENERALIZED RABINAUTOMATA 73

In the general case, we track the levels for all k € K simultaneously. Given
aDTGRA G = (57 2,8, 51, Ukek M, 1y Viek q)k) where

My = {B}U{® |1<j<hg}and Oy =FinBA A Inf@l,

1<5<hy
we construct an equivalent DRA as R = (Q, 2, 0r,q1, M, uR, (D), where
e Q=Sx{0,1,...,hy+1} x -+ x {0,1,...,h|K|+1},

. ((3711,...,lm),oc,(s’,l{,...,l(K')) € dr iff r = (s,a,s’) € & and for
each 1 <k <|K| it holds

0 if e (M)
. = level(r,k, 1) ifr¢ w(M@)and 1 <1y < hy
level(r,%,1) ifr¢ u(M@) and ly € {0, hy+1}

The intersection of zero sets contains all

where level(r,k,1) = max {l [L<hg+Tandre (| u(®)}, transitions of G and thus 1, . . . i are always
i<j<l arguments of the maximum and therefore, if

Té },L(@i) then level (T, k, 1) = i.
e (1= (m1a17"'7]))

« M={l@|keK},
o HR():{(Sylh---alﬂq)EQ|lk:0},
o pr(®) ={(s,l1,..., 1)) € Q| Lk = hy+1},and

« O = VkeK(Fin/\ |nf@)

Complexity. We have to multiply the state space of G by (hy + 2) for each
k € Kin the worst case. Thus [Q| < [S|- (h1 +2)-...- (hyx) +2). If we start
with an LTLNG(U, X) formula ¢ of length n, we can create an equivalent lim-
MMAA A, with n states and generalized Rabin automaton D, with at most
22" states. To obtain the deterministic Rabin automaton R o> we multiply the
state space of D, by at most |Z| + 2 for each configuration Z ¢ S of A, where
the number of states in Z is bounded by n. Altogether, we can derive an upper
bound on the number of states |Q| of the Rabin automaton as follows.

QI<2?" (n+2)*" =
22n 3 22“-log2 (11+2) —

2211) 22n+10g2 logy (n+2) c 20(2n+10g10gn) .

74 AUTOMATA FORFORMALMETHODS: LITTLESTEPS TOWARDS PERFECTION

5.7 IMPLEMENTATION AND TRANSLATION IMPROVEMENTS

We have implemented our translation in a tool called LTL3DRA. The tool is
built on top of the LTL to Biichi automata translator LTL3BA” and is available
at https://github.com/xblahoud/It]3dra. The two tools share the code for for-
mulae parsing, simplification of LTL formulae, and translation to LAA. The
performance of LTL3DRA is evaluated and compared to the performance of
other tools in the next chapter. For LTL3DRA to produce a reasonably small
automaton we have implemented several optimizations to the core transla-

tion, namely we:
o simplify the input formula,
o reduce the state-spaces of automata,

- remove unreachable states in each step,

- merge equivalent states in each step,

- remove redundant transitions of the LAA,

- reduce macrostates that contain the configuration &, and

- remove the initial macrostate if found superfluous, and
« simplify the acceptance condition

- before we compute the placement of the marks (based on the LAA) and

- after the deterministic automaton is built (based on marks’ placement).

Before we describe the optimizations in details, we fix names for the input
formula and for the automata and their parts used on the way. The input
formula is ¢. The corresponding linear alternating automaton is called .4 and
weset A= (S,Z,A, I, {l}, u, Finl). The equivalent deterministic automaton
is D = (Q,Z,5,my,Mz,u,®z) where Z ¢ 2% is some set of bounding
configurations, Mz = Uzcz Mz, and @ z = \V/zcz @ 7. Finally, the name for
the Rabin automaton is R.

Formula simplifications. On top of the reduction rules of LTL3BA, we add
one more — we rewrite subformulae GF{ and FG to equivalent formulae
GFsy and FGg, respectively. The deterministic automata for formulae with
strict temporal operators are often smaller than those without this reduction®

Unreachable states. In each step (A, D, R), we always keep and compute
only states that are reachable from some initial configuration or from the ini-
tial state.

Equivalent states. In each step we iteratively merge equivalent states. Two
states of linear automata are equivalent if they have the same transitions and
the same marks. Two states of the deterministic automata are equivalent if
they have the same marks and for each « € X their transitions under « lead to
the same state and have the same marks.

7 Babiak et al. (2012), “LTL to Biichi Auto-
mata Translation: Fast and More Determin-
istic”y [33].

8In fact, the resulting automata are usually
of the same size due to the subsequent state-
space reductions. However, the rewriting
rule saves the tool from computing many
equivalent states only to merge them later.
This rewriting rule can be deactivated by the
- X option.

http://dx.doi.org/10.1007/978-3-642-28756-5_8
http://dx.doi.org/10.1007/978-3-642-28756-5_8
http://dx.doi.org/10.1007/978-3-642-28756-5_8
https://github.com/xblahoud/ltl3dra

TRANSLATION OF LTLFRAGMENTSINTO GENERALIZED RABINAUTOMATA 75

Redundant transitions. A transition t, = (s,,C2) € A is redundant if
there is another transition t; = (s,,C7) € A of s such that C; ¢ Cy. If
we alter an accepting run of A that uses t to use t; instead, it will remain
accepting (the change would only remove some branches).

Macrostates with @. If a macrostate m of D contains the configuration &,
we remove all other configurations from m. This modification is clearly cor-
rect — if a run 7 of A reaches the configuration & then all subsequent multi-
transitions of the run are empty and thus 7t is accepting.9

Superfluous initial macrostate. If the initial macrostate m of D does not
have any self-loop, we check its equivalence to other states not taking accep-
tance marks into account. Marks on transitions that are taken at most once

by any run are irrelevant.

Bounding configurations. We reduce the number of bounding configura-
tions that we take into account in two ways. First, we consider only config-
urations that bound some run that we call modest. Intuitively, modest runs
minimize their sets of recurrent states (Recg (7r)). Formally, a run is modest
if it uses for each may-state s € S only the self-loop of s and exclusively one of
its non-looping transitions. For each word u € L(.A) there exists an accepting
run that is modest.

Let 7t be a modest run of A and let s € Recs(7r) be some state visited in-
finitely often by 7. If s is a may-state 7t can choose the non-looping transition
repeatedly. For s being a must-state, however, 7 does not always have the
choice as must-states do not have the self-loop. Therefore, 7t can be forced by
u to use all of its transitions repeatedly. With this in mind, we define a func-
tion mod-rec:25 — 22° that recursively computes, for a given configuration
Z, the set of configurations that can bound some modest run 7 that visits the
states of Z infinitely often, which is when Z ¢ Recg (7). Before the formal
definition of mod-rec we define an auxiliary operation ® that when applied
to two sets of configurations W1, W, ¢ 25 creates a set of combinations of
their configurations, formally

Wi oW, = U {Z] UZz}
Z1eW,
ZreW>

S
and an auxiliary function onestep: S — 22" that for a given state s computes
the set of configurations that arise by removing s from configurations reach-
able from s in one step; formally

onestep(s) = {C e 25N} | (5,0, CU{s}) b4, cx € Z}.

Finally, the formal definition of mod-rec follows.

° In this case, there is no infinite branch in
7t and therefore all infinite branches satisfy
whatever acceptance formula.

76 AUTOMATAFORFORMALMETHODS: LITTLESTEPS TOWARDS PERFECTION

1] ifZ=0w

{{s}}® | mod-rec(C) if Z={s} and s ¢ must(S)
(S7“7C)€A,

s¢C
mod-rec(Z) =

{{s}}® |J mod-rec(|JC) ifZ={s}ands e must(S)
WCconestep(s) CeW

&) mod-rec({s}) otherwise

seC

Further, we can eliminate from Z all configurations that contain a state
that is not reachable from some must-state. Indeed, for every accepting run 7t
the set Recg (71) contains only states reachable from must-states. Indeed, the
other states are left by all branches sooner or later.

In order to find bounding configurations with this property, we define the
function mod-one: 25 — 22° that recursively computes, for a given config-
uration Z, the set of configurations that can bound some modest run that
ever visits states of Z. As all states reachable from must-states can be visited
infinitely often by accepting runs, mod-one(Z) = mod-rec(Z) for Z that con-
tains such states only.

%] ifZ=0

| mod-one(C) ifZ={s}ands ¢ must(S)
(s,,C)ed 4
mod-one(Z) = { $¥¢

mod-rec(Z) if Z={s} and s € must(S)

&) mod-one({s}) otherwise
seZ

Finally, the set Z of bounding configurations consists of mod-one for all
initial configurations of A; that is Z = (Uz¢; mod-one(Z).

Acceptance simplifications. After we place the acceptance marks, we revise
the marks and the acceptance formula again. In particular, we perform the
following three simplifications.

1. We remove Mz and @7z = FinB A A\, Inf@ from M and @ if no run
can satisfy ® z, which is when p/(B) = 5 or if some u'(@’) = @.

2. We remove the mark @' (and the corresponding conjunct in @) if there
is some @2 such that u/(@2) c u/(@").

3. If the fact that a run 7 satisfies @z, implies that 7t also satisfies @z, we
remove @z, and the corresponding Mz, .

A run TopTy ... visits states of Z if for each
s € Z there is some T; such that s €
source(T;).

LTL to Deterministic Automata Translators:
Experimental Evaluation

This chapter evaluates state-of-the-art translators of LTL into deterministic
automata in the means of exhaustive experiments. The chapter is inspired by
our previous work,! but it has been written entirely from scratch. We consider
the following three translation approaches (listed in the order of historical
appearance).

1. determinization of nondeterministic automata
2. direct translations

3. determinization of cut-deterministic automata

Determinization of Biichi automata. Safra developed the first optimal? de-
terminization procedure for Biichi automata in his seminal paper from 19883
His construction takes a Biichi automaton with n states and produces a deter-

20(nlogn) gtates and at most 2n Ra-

ministic Rabin automaton with at most
bin pairs (which needs 4n acceptance marks). Researchers proposed several
optimizations since 1988, some of them can take generalized Biichi automata
on input, and some of them can even produce parity automata. Parity auto-
mata are more desirable for synthesis as solving parity games is more efficient
than solving Rabin games.

From the implementation point of view, we have two choices nowadays.
For more than ten years, the tool Itl2dstar> was a synonym for Safra’s con-
struction - it is an efficient implementation that includes several optimiza-
tions. In 2016, the authors of Spot implemented a determinization based
on Redziejowski’s construction® that takes a Biichi automaton with marks on
transitions on input and creates an equivalent deterministic parity automaton
on output. The determinization in Spot also implements optimizations based

on SCC and on simulation’

Direct translations. The recent boom of direct translations of LTL into de-
terministic automata was started by Kretinsky and Esparza and their con-
struction implemented in Rabinizer® for the fragment LTL(F,G) in 20127 We
have presented the translation of the previous chapter that works for a slightly
larger fragment LTL\G(U, X) in the following year!? Our translation is im-
plemented in the tool LTL3DRA and it was the first translation that produced
generalized Rabin automata with marks on transitions. At the same time, Ra-
binizer 2!! extended the fragment even more to LTL\G(U). Finally, in 2014
Esparza and Kretinsky finished their effort by providing a translation of the
full LTL!? that was implemented in Rabinizer 3'> and improved in Rabinizer
4! All the translations have in common that the output automata have a gen-
eralized Rabin acceptance; LTL3DRA, Rabinizer 3 and Rabinizer 4 use marks

! Blahoudek, Kfetinsky, and Strejéek (2013),
“Comparison of LTL to Deterministic Rabin
Automata Translators”, [14].

% singly exponential

Safra (1988), “On the Complexity of
Omega-Automata”, [50].

4 Schewe (2009), [4]; Piterman (2007), [51];
Redziejowski (2012), [52].

> Klein (2005), “Linear Time Logic and De-
terministic w-Automata”, [53]; Klein and
Baier (2006), “Experiments with Determin-
istic Omega-Automata for Formulas of Lin-
ear Temporal Logic”, [54].

¢ Redziejowski (2012), “An Improved
Construction of Deterministic Omega-
Automaton Using Derivatives”, [52].

" Duret-Lutz et al. (2016), “Spot 2.0 - A
Framework for LTL and w-Automata Ma-
nipulation”, [55].

8 [57] Gaiser, Kfetinsky, and Esparza (2012).
? Ktetinsky and Esparza (2012), “Determin-
istic Automata for the (E G)-Fragment of
LTL, [56].

10 Babiak et al. (2013), “Effective Translation
of LTL to Deterministic Rabin Automata:
Beyond the (F, G)-Fragment”, [13].

" Kietinsky and Ledesma-Garza (2013),
“Rabinizer 2: Small Deterministic Automata
for LTL\GU”, [58].

'2 Esparza and Kretinsky (2014), “From LTL
to Deterministic Automata: A Safraless
Compositional Approach”, [59].

13 Komarkova and Kfetinsky (2014), [60].

'* Rabinizer 4 was not yet published by the
date of submitting the thesis. See Table 6.1
for a reference.

http://dx.doi.org/10.1007/978-3-642-45221-5_12
http://dx.doi.org/10.1007/978-3-642-45221-5_12
http://dx.doi.org/10.1109/SFCS.1988.21948
http://dx.doi.org/10.1109/SFCS.1988.21948
http://dx.doi.org/10.1016/j.tcs.2006.07.022
http://dx.doi.org/10.1016/j.tcs.2006.07.022
http://dx.doi.org/10.1016/j.tcs.2006.07.022
http://dx.doi.org/10.3233/FI-2012-744
http://dx.doi.org/10.3233/FI-2012-744
http://dx.doi.org/10.3233/FI-2012-744
http://dx.doi.org/10.1007/978-3-319-46520-3_8
http://dx.doi.org/10.1007/978-3-319-46520-3_8
http://dx.doi.org/10.1007/978-3-319-46520-3_8
http://dx.doi.org/10.1007/978-3-642-31424-7_7
http://dx.doi.org/10.1007/978-3-642-31424-7_7
http://dx.doi.org/10.1007/978-3-642-31424-7_7
http://dx.doi.org/10.1007/978-3-319-02444-8_4
http://dx.doi.org/10.1007/978-3-319-02444-8_4
http://dx.doi.org/10.1007/978-3-319-02444-8_4
http://dx.doi.org/10.1007/978-3-319-02444-8_32
http://dx.doi.org/10.1007/978-3-319-02444-8_32
http://dx.doi.org/10.1007/978-3-319-08867-9_13
http://dx.doi.org/10.1007/978-3-319-08867-9_13
http://dx.doi.org/10.1007/978-3-319-08867-9_13

78 AUTOMATA FORFORMALMETHODS: LITTLESTEPS TOWARDS PERFECTION

on transitions. The aforementioned translations that work for some fragment
only share a double exponential complexity while the translation of Rabinizer
3 and 4 has a triple exponential upper bound.

Determinization of cut-deterministic Biichi automata. In 2017, Esparza
etal. presented a construction that takes a cut-deterministic Biichi automaton
and converts it into a deterministic parity automaton with a single exponen-
tial blow-up. The construction is based on coloring of runs!®> The construc-
tion can be improved if it is chained together with a translation of LTL into
cut-deterministic automata by the same authors!® The result of these two con-
structions chained together is a double exponential translation from full LTL
into DPA. This approach was implemented in the tool lt{2dpa. Ltl2dpa has
initially been a part of the owl library;” and now it is also distributed as a part
of the yet unpublished Rabinizer 4.

To reproduce the evaluation (or to run it with new versions of the tools)
visit https://github.com/xblahoud/LTL2DA-comparison. You can find on this
page a collection of scripts, files with the used LTL formulae!® and Jupyter
notebooks that can repeat all computations performed for this chapter. The
notebooks also generate all tables and figures used here and they also include
some additional data. In the interactive Jupyter notebooks you can explore
the data and look for information of your interest if you miss it here.

> Esparza et al. (2017), “From LTL and
Limit-Deterministic Biichi Automata to De-
terministic Parity Automata”, [61].

16 Sickert et al. (2016), “Limit-Deterministic
Biichi Automata for Linear Temporal Logic”,
[62].

7 available at https://www7.in.tum.de/
~sickert/projects/owl/

'8 including the scripts used to generate them

http://dx.doi.org/10.1007/978-3-662-54577-5_25
http://dx.doi.org/10.1007/978-3-662-54577-5_25
http://dx.doi.org/10.1007/978-3-662-54577-5_25
http://dx.doi.org/10.1007/978-3-319-41540-6_17
http://dx.doi.org/10.1007/978-3-319-41540-6_17
https://www7.in.tum.de/~sickert/projects/owl/
https://www7.in.tum.de/~sickert/projects/owl/
https://github.com/xblahoud/LTL2DA-comparison

LTLTO DETERMINISTICAUTOMATA TRANSLATORS: EXPERIMENTAL EVALUATION 79

6.1 EVALUATED TOOLS

Altogether, we evaluate 22 tool chains that convert LTL formulae into deter-
ministic automata. In particular, we have 14 tool chains that rely on Safra-like
determinization, 6 variants of tools for direct translations, and finally 2 trans-
lations performed by Itl2dpa. Figure 6.1 gives an overview of most of the used
tool chains. Homepages and versions of all tools used for this evaluation are
listed in Table 6.1.

LTL3DRA

Rabinizer 3.1, Rabinizer 4

___ 2xld2dstar

l2dpa e

 LTL3TELA 7””8130&””

LTL\G(U, X)

» DTGRA

via cut-deterministic

LTL3DRA

- - - Safra-like — direct

Naming. We reference each tool chain by a triple (main, intermediate, acc).
We use main for the tool that outputs the final deterministic automaton, in-
termediate indicates which LTL to nondeterministic automata translator was
used in case of the Safra’s approach or which mode of Itl2dpa was used, and
finally acc provides details about acceptance conditions of the resulting auto-
mata. For the Safra-based tool chains, acc consists of two parts divided by a
dot: the first part is the acceptance of the intermediate nondeterministic au-
tomaton (SB, TGB, TEL) and the second part is the acceptance condition of
the output automaton (SR, TP, TEL)!®

We use the tool ltlcross from the Spot library to run all the tool chains
and gather the information of interest about the resulting automata. You can
find the exact ltlcross command and the reference name for each tool chain in
Table 6.2. In the following text, we comment on the choice of tool chains, pro-
vide more details about some, and comment explicitly on the two tool chains
(Spot, —, TP) and (Itl2dpa, Rabinizer, TP) that cannot be found in Figure 6.1.

Direct translations. We have chosen three tools that translate LTL formulae
directly into deterministic automata: LTL3DRA, Rabinizer 3.1, and, with the
kind permission of its authors, Rabinizer 4. We have excluded Rabinizer and
Rabinizer 2 for the following reasons; the tools work for fragments only, they
do not support HOA format, they are no longer maintained, they contain
many bugs, and they give larger automata than their successor Rabinizer 3.1 in
most cases. We have run two variants of each of these tools: one that outputs
DTGRA and one that outputs DSRA (not shown in Figure 6.1) which we have
included mainly to provide some output comparable to the output of 1tl2dstar.

Figure 6.1: Evaluated tool chains for trans-
lation of LTL to deterministic automata. The
blue boxes are LTL fragments, the white
boxes represent types of intermediate auto-
mata, the green boxes represent the type of
output automata (two types indicate that the
tool chain produces one type for some for-
mulae and the other for the rest, the para-
graph on Safra-based translations on the
next page explains these cases), and finally,
the type of line denotes the type of transla-
tion.

' We denote the cases where the resulting
automaton can be either a DTPA or a DT-
GBA by TP as the parity acceptance is in
some sense more complex than generalized
Biichi. TGBA cannot be converted into TPA
without changing the structure of the au-
tomaton; however, neither emptiness check
nor game solving is harder for TGBA than
for TPA.

80 AUTOMATAFORFORMALMETHODS: LITTLESTEPS TOWARDS PERFECTION

Safra-based translations. We evaluate both Itl2dstar and Spot for deter-
minization of nondeterministic automata. The tool ltl2dstar offers two in-
put interfaces: Itl2dstar (NBA) reads a Biichi automaton directly, and lt12dstar
(LTL) reads an LTL formula together with instructions how to call some LTL
to NBA translator. The knowledge of the original LTL formula can enable
some optimizations (for example for stutter-invariant properties)?°

While Itl2dstar determinizes Biichi automata with marks on states, autfilt—
the determinization tool of Spot — can also process automata with marks on
transitions. Moreover, Spot can convert arbitrary automaton into a TBA in-
ternally and thus it can input TGBA (all considered LTL-to-BA translators can
output TGBA) or even TELA directly. If the input automaton is determinis-
tic, autfilt only simplifies it and we get a DTGBA or a DTELA on output, in
other cases, Spot converts the automata into DTPA. You can see the workflow
of Spot in Figure 6.2. Besides autfilt (denoted as Spot (autfilt)), Spot offers
another way to get a deterministic automaton that starts with an LTL formula
directly. This approach (referenced as (Spot, —, TP)) uses the same algorithms
as (Spot (autfilt), Spot, TGB.TP), however, it may produce different automata

in some cases?!

M
\5@@'& " &
B S
S po
LTL "Pot TBA DTPA
T) L;TL‘?BA Y\'Vé
. %.

— determinization LTL to nondet. automata - - - internal transformations

LTL to nondeterministic automata. Our previous evaluation? suggests
using only Spot and LTL3BA for translation of LTL into BA for Itl2dstar. We
again run LTL3BA in 2 configurations: one prefers to output automata as
small as possible (LTL3BA) while the other has a preference to create po-
tentially bigger but more deterministic automata (LTL3BAd). Spot offers a
similar choice between smaller and more deterministic automata, however,
the previous evaluation revealed that this choice makes only a negligible dif-
ference in the size of the deterministic automata. As autfilt can take arbitrary
automaton on input, we also consider the tool chain?? that employs the tool
LTL3TELA which translates LTL into TELA.

Other (Itl2dpa). We use the version of Itl2dpa from the Rabinizer 4 tool set.
It offers two modes of conversion of LTL formulae into deterministic parity
automata. The modes differ in the core translation used in the first step. The
default option (It12dpa, it12ldba TP) uses an LTL to cDGBA translation of the
tool I121dba** 1f the cut-deterministic automaton (TGBA) is already deter-
ministic, [tl2dpa outputs it directly; otherwise it uses a construction based on
runs’ coloring to produce a DTPA. The second option (Itl2dpa, Rabinizer, TP)
relies on the LTL to Rabin automata translation of Rabinizer 4 to build an in-
termediate Rabin automaton with marks on transitions that is converted into
a parity automaton by a construction based on improved index appearance
record?’

? Klein and Baier (2007), “On-the-Fly Stut-
tering in the Construction of Deterministic
Omega-Automata”, [63].

2! (i) The knowledge of the input formula al-
lows Spot to treat obligation properties more
efficiently and (ii) the acceptance marks that
are outside of SCC of the intermediate TGBA
are not removed (which is the default for
nondeterministic automata in Spot) in this
case as they are often beneficial to the de-
terminization algorithm of Spot; however,
sometimes they cause that the resulting au-
tomaton is larger.

Figure 6.2: Workflow of Spot for deter-
minization of automata that do not have
Biichi acceptance condition with marks on
states.

22 Blahoudek, Kietinsky, and Strejeek (2013),
“Comparison of LTL to Deterministic Rabin
Automata Translators”, [14].

2 (Spot (autfilt), LTL3TELA, TEL.TEL)

2 Sickert et al. (2016), “Limit-Deterministic
Biichi Automata for Linear Temporal Logic”,
[62].

Kfetinsky et al. (2017), “Index Appearance
Record for Transforming Rabin Automata
into Parity Automata”, [64].

http://dx.doi.org/10.1007/978-3-540-76336-9_7
http://dx.doi.org/10.1007/978-3-540-76336-9_7
http://dx.doi.org/10.1007/978-3-540-76336-9_7
http://dx.doi.org/10.1007/978-3-642-45221-5_12
http://dx.doi.org/10.1007/978-3-642-45221-5_12
http://dx.doi.org/10.1007/978-3-319-41540-6_17
http://dx.doi.org/10.1007/978-3-319-41540-6_17
http://dx.doi.org/10.1007/978-3-662-54577-5_26
http://dx.doi.org/10.1007/978-3-662-54577-5_26
http://dx.doi.org/10.1007/978-3-662-54577-5_26

LTLTODETERMINISTICAUTOMATA TRANSLATORS: EXPERIMENTAL EVALUATION 81

tool version webpage

LTL3BA 1.1.3 https://sourceforge.net/p/ltl3ba/

LTL3TELA 1.I1.1 https://github.com/jurajmajor/ltl3tela
Spot(ltl2tgba) 2.5 https://spot.Irde.epita.fr/

Itl2dstar 0.5.4 http://1tl2dstar.de/

Spot(autfilt) 2.5 https://spot.Irde.epita.fr/

LTL3DRA 0.2.6 https://github.com/xblahoud/Itl3dra

Rabinizer 3 3.1 https://www7.in.tum.de/~kretinsk/rabinizer3.html

Rabinizer 4 15. 2. 2018 https://www?7.in.tum.de/~kretinsk/rabinizer4.html

1tl2dpa 15. 2. 2018 https://www7.in.tum.de/~kretinsk/rabinizer4.html

Table 6.1: References for tools used in the experimental evaluation of LTL to deterministic automata translators. The first part contains tools that
convert LTL formulae into nondeterministic automata, the second part lists tools that can determinize these nondeterministic automata, the third
part shows tools for direct translations, and finally, the last part gives a reference for lt12dpa. For Rabinizer 4 and Itl2dpa we give the date of download
as they do not use any minor version numbers. Note that we also use Itl2tgba to convert LTL to deterministic automata.

type name interm. acc ltlcross command
LTL3DRA — TGR 1tl3dra -f %s > %0
LTL3DRA — SR 1tl3dra -H3 -f %s > %0
Rabinizer 3 — TGR java -jar Rab3/rabinizer3.1l.jar -silent \
direct -format=hoa -out=std %[eiRWM]f > %0
Rabinizer 3 — SR java -jar Rab3/rabinizer3.1l.jar -silent \
-format=hoa -out=std -auto=sr %[eiRWM]f > %0
Rabinizer 4 — TGR Rab4/bin/ltl2dgra %f > %0
Rabinizer 4 — SR Rab4/bin/ltl2dra %f | autfilt --sbacc > %0
Itl2dstar (LTL) LTL3BA SB.SR ltl2dstar -H -t "ltl3ba -MO -H3 -f %%s > %%H" %L %0
Itl2dstar (LTL) LTL3BAd SB.SR 1ltl2dstar -H -t "1t13ba -M1 -H3 -f %%s > %%H" %L %0
Itl2dstar (LTL) Spot SB.SR 1ltl2dstar -H -t "1tl2tgba -B -f %%s > %%H" %L %0
ltl2dstar (NBA) LTL3BA SB.SR 1tl3ba -MO -H3 -f %s | ltl2dstar -B -H - - > %0
Itl2dstar (NBA) LTL3BAd SB.SR 1tl3ba -M1 -H3 -f %s | ltl2dstar -B -H - - > %0
Itl2dstar (NBA) Spot SB.SR 1ltl2tgba -B -f %f | ltl2dstar -B -H - - > %0
Safra Spot (autfilt) LTL3BA TGB.TP 1t13ba -MO -H2 -f %s | autfilt -DG > %0
Spot (autfilt) LTL3BA SB.TP 1t13ba -MO -H3 -f %s | autfilt -DG > %0
Spot (autfilt) LTL3BAd TGB.TP 1t13ba -M1 -H2 -f %s | autfilt -DG > %0
Spot (autfilt) LTL3BAd SB.TP 1t13ba -M1 -H3 -f %s | autfilt -DG > %0
Spot (autfilt) LTL3TELATEL.TEL 1t13tela -f %f | autfilt -DG > %0
Spot (autfilt) Spot TGB. TP 1tl2tgba -f %f | autfilt -DG > %0
Spot (autfilt) Spot SB.TP 1ltl2tgba -B -f %f | autfilt -DG > %0
Spot — TP 1tl2tgba -DG -f %f > %0
other 1t12dpa 1t121dba TP Rab4/bin/ltl2dpa --mode=ldba %f > %0
1t12dpa Rabinizer TP Rab4/bin/ltl2dpa --mode=rabinizer %f > %0

Table 6.2: All considered tool chains with the corresponding commands passed to Itlcross. The tool chains are divided into three parts regarding the
type of translation they rely on.

https://sourceforge.net/p/ltl3ba/
https://github.com/jurajmajor/ltl3tela
https://spot.lrde.epita.fr/
http://ltl2dstar.de/
https://spot.lrde.epita.fr/
https://github.com/xblahoud/ltl3dra
https://www7.in.tum.de/~kretinsk/rabinizer3.html
https://www7.in.tum.de/~kretinsk/rabinizer4.html
ht