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Abstract 

As cu-automata are a convenient representation of languages of infinite words, 

they are widespread i n the area of formal methods; many algorithms that an

alyze systems with infinite behaviours rely on cu-automata. The efficient algo

rithms for the intersection, union, and emptiness checking for various classes 

of to-automata made them appealing for model checking of properties ex

pressed as cu-regular languages or as formulae i n (not only) Linear Temporal 

Logic (LTL). 

O n the contrary, determinization and complementation of tu -automata are 

notoriously difficult problems. This fact complicates usage of the automata-

based methods that need deterministic automata 2 or inherently employ lan

guage difference or complementation of cu-automata.3 

This dissertation approaches cu-automata and formal methods from var

ious directions and presents several contributions towards perfect automa

ta for formal methods. The presentation of the contributions is divided into 

three parts. 

• The first part is tightly connected to the model checker Spin and nondeter-

ministic Buchi automata. We investigate how different automata for one 

language can influence the performance of Spin and we bring several i n 

teresting observations and recommendations for L T L translators. More

over, we introduce a method that enables the creation of automata that are 

suited for a particular verification task. The automata convey knowledge 

about the system to be verified; this knowledge sometimes helps to make 

the automata significantly smaller and to speed up the model checking. 

• The second part of the thesis is dedicated to the translation of L T L into de

terministic automata. We present an efficient translation of a fragment of 

L T L into automata with generalized Rabin acceptance condition. We also 

discuss other approaches to the translation and offer an extensive experi

mental comparison of available tools. 

• The last part discusses semi-deterministic automata, which are automata 

that are deterministic i n the limit. We develop an algorithm (and a tool) 

for semi-determinization of Buchi automata, and an efficient algorithm for 

complementation of these automata. 

2 like model checking of probabilistic systems 
or synthesis of reactive systems 
' l ike termination analysis in the tool Ulti
mate Automizer 
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Introduction 

Automata play an essential role i n the history of computer science. In the 

1960s and 1970s automata over finite words were seen as abstract machines 

that process inputs and accept or reject them. This k i n d of view was mainly 

driven by their application at that time - automata were used to bu i ld lex

icographic analysers, parsers and compilers. Their primary purpose was to 

check syntax. W i t h the development i n formal methods, automata became a 

popular formalism used to describe behaviours and specification1 of software 

and hardware systems; they became a data structure for representing sets of 

behaviours. Their popularity stems from the fact that automata allow efficient 

implementation of operations like union, intersection, and complement. A n 

other appealing aspect of automata over words is their intuitive graphical rep

resentation. 

Automata over infinite words (cu-words), also known as cu-automata, were 

introduced by Buchi i n 1962 as a tool to prove the decidability of the monadic 

second-order logic wi th Presburger arithmetic. 2 A n infinite word cannot be 

read to its end by an automaton and thus Buchi had to innovate the acceptance 

mechanism of automata. His solution was the following: an w-automaton A 

accepts an w-wordw if A can visit some accepting state infinitely often while 

reading w. Automata with this k i n d of acceptance condition are nowadays 

named after Buchi and they are the most widely used type of cu-automata to 

these days. However, as we w i l l discuss later, their acceptance mechanism is 

not powerful enough for some applications, and thus more acceptance con

ditions like Muller, Rabin, Streett, parity, and others were introduced. 

Vardi and Wolper started amazing scientific progress i n the area of cu-

automata i n 1986 3 when they realized that cu-automata are a natural choice as 

a data structure for methods that analyze systems with infinite behaviour. 4 cu-

automata lie at the heart of many solutions of interesting problems from the 

area of formal methods ranging from system monitoring through system anal

ysis and verification to system synthesis. Solutions to these problems are typi

cally computationally hard and the computation time and memory consump

tion often hugely depend on automata used on the way. Whi le cu-automata 

inherit the decidability properties of automata over finite words, some op

erations like determinization, complementation, etc. are substantially harder 

for cu-automata. The needs of efficient construction of practical cu-automata 

and efficient manipulation of cu-automata has driven the scientific progress 

to these days. This thesis confirms the previous statement and presents part 

of my contribution to the fascinating wor ld of automata-theory, mostly moti

vated by practical needs of verification methods. In the next few paragraphs, 

we wi l l discuss areas of automata theory touched by this thesis. 

1 
1 specification in the form of a set of intended 
or erroneous behaviours 

2 Buchi (1962), "On a Decision Method in 
Restricted Second Order Arithmetic", [1], 

3 Vardi and Wolper (1986), "An Automata-
Theoretic Approach to Automatic Program 
Verification (Preliminary Report)" [2]. 
4 A print server or a controller of a power 
plant, for example. 

A notable example of an tu-automata-based 
verification method is the automata-
theoretic approach to model checking 
discussed in Chapter 3. 
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LTL translations. The inputs of a verification task are typically a system to 

be verified and its formal specification. The specification is often given as a 

formula of some modal logic. Linear Temporal Logic (LTL) is often the logic 

of choice as it allows to reason about the evolution of the system i n time and 

thus can express many useful properties. For example, the natural expecta

tion from a print server that every print request is eventually processed can be 

written as an L T L formula cp = G( request = > F p r i n t ) . A standard step 

in verification is a translation of this formula into an cu-automaton that rep

resents all behaviours that satisfy cp; see Figure 1.1 for a Buchi automaton for 

cp. As many chapters of the thesis are somehow related to the construction of 

cu-automata for L T L formulae, we w i l l discuss L T L translations i n more detail. 

Every L T L formula cp can be translated to a nondeterministic Buchi au

tomaton (NBA) Av with the number of states exponentially dependent on 

the size of cp. The translation of L T L into N B A is a well-studied problem. 

Scientists have already suggested many approaches to the translation. Eval

uations show that no approach is superior to the others on its own, without 

further optimizations. Therefore, rewriting of the input formulae and reduc

tions of the automata at different stages of the translation became the most 

powerful weapons i n the battle for the best L T L - t o - B A translator. The rapid 

development brought to the community translators like Spot and L T L 3 B A 

that are very efficient i n practice, and they often avoid the exponential blow

up. Many experts, including authors of the mentioned tools, believe that there 

is not much hope for smaller N B A here. However, this is not the end of the 

story of L T L translations as we show i n the next three paragraphs. 

Some applications cannot be solved using N B A directly. For example, con

troller synthesis for reactive systems5 is addressed by reduction to the prob

lem of finding a winning strategy i n a two-player game. The game is usually 

constructed from an cu-automaton for the specification, and we need a de

terministic cu-automaton for this task.6 Further, problems from the family of 

model checking of probabilistic systems are typically solved using deterministic 

cu-automata. H o w can we efficiently construct them? A natural choice is to 

take efficient translators of L T L to N B A and determinize the N B A we get for 

our formula. Let us discuss this option i n more detail. 

Determinization of cu-automata is substantially harder than the one of au

tomata over finite words. For finite words, we have an efficient procedure 

known as the powerset construction that takes a nondeterministic automaton 

with n states and constructs an equivalent deterministic automaton with at 

most 2 n states.7 This method is known to be tight and is well understood. In 

the wor ld of Buchi automata, the powerset construction is not correct any

more; see Figure 1.2. The increase i n complexity of a correct determinization 

is two-fold. First, deterministic Buchi automata are less expressive than their 

nondeterministic counterparts and thus we have to use some more complex 

acceptance condition. Second, for a Buchi automaton with n states we can 

build, using the tight upper bound on determinization, 8 a Rabin automaton 

with at most ( 1 . 6 5 n ) n states and 2 n + 1 accepting sets. If we aim for parity 

-.request v p r i n t -.print 

p r i n t 

(G(request = > F p r i n t ) ) 

Figure 1.1: Buchi automaton A.v for cp. 

5 The problem of controller synthesis for re
active systems takes as input a specification 
cp, set of available actions of an environment, 
and set of available actions of a controller. 
While the actions of the environment are out 
of our control, we can control the actions 
of the controller. A solution to this prob
lem is to automatically generate a controller 
that will react to the actions of the environ
ment in a way that guarantees satisfaction of 
cp no matter what actions the environment 
performs. 
6 Alternatively, so-called good-jor-games Ra
bin or parity automata do not need to be fully 
deterministic and still can be reduced effec
tively to a two-player game. 

7 Rabin and Scott (1959), "Finite Automata 
and Their Decision Problems", [3]. 

8Schewe (2009), "Tighter Bounds for the 
Determinisation of Buchi Automata", [4]; 
Colcombet and Zdanowski (2009), " A Tight 
Lower Bound for Determinization of Transi
tion Labeled Buchi Automata", [5], 

Figure 1.2: The automata A. and V demon
strate that the powerset construction is not 
correct for tu -automata. The automaton V 
is the result of the powerset construction ap
plied on A.. While A. accepts all tu-words 
with only a finite number of as, V accepts all 
cu-words that have infinitely many bs (and 
possibly also infinitely many as). 

Q 
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acceptance which is more suitable for solving games (and thus controller syn

thesis), we can have automata with at most 0 ( n ! 2 ) states and 2 n priorities. 

I would like to mention two approaches that researchers pursue to over

come the high complexity of cu-automata determinization. The first approach 

is a direct translation of L T L into various deterministic cu-automata. The sec

ond approach investigates new methods of solving model checking of proba

bilistic systems using cu -automata that are not fully deterministic, for example 

unambiguous or semi-deterministic 9 cu-automata. These methods brought 

us a new challenge of efficient translation of L T L into semi-deterministic cu-

automata, either directly or via nondeterministic automata with subsequent 

efficient semi-determinization. 

9 A n unambiguous automaton has at most 
one accepting run for each word. In a 
semi-deterministic automaton, each accept
ing run avoids nondeterministic states from 
some point on. Semi-deterministic automa
ta are also known as limit-deterministic or 
deterministic-in-the-limit. 

Complementation. Complementation is another operation that is substan

tially harder for cu-automata than for automata over finite words. It took 

over half a century of research to find matching upper 1 0 and lower 1 1 bounds 

8 ( ( 0 . 7 6 n ) r l ) for complementing Buchi automata. Despite the high com

plexity, complementation of Buchi automata is a valuable tool for verifica

tion, language inclusion, or language subtraction. W i t h the growing under

standing of the worst-case complexity, the practical cost of complementing 

Buchi automata has become a second line of research as the worst case can 

often be avoided. Our motivation to tackle complementation of Buchi auto

mata comes from the program termination analysis of U L T I M A T E B U C H I A U -

T O M I Z E R . 1 2 The aim of a program termination analysis is to decide whether 

a given program terminates on all inputs. In other words, it tries to estab

lish or disprove that all infinite execution paths i n the program flowgraph are 

infeasible. The U L T I M A T E B U C H I A U T O M I Z E R uses Buchi automata to rep

resent infinite paths that are already known to be infeasible and it subtracts 

these paths (using complement and product) from the program flowgraph to 

identify the set of infinite execution paths whose infeasibility still needs to be 

proven. 

1 0 Schewe (2009), "Buchi Complementation 
Made Tight", [6]. 
1 1 Yan (2008), "Lower Bounds for Comple
mentation of Omega-Automata Via the Full 
Automata Technique", [7], 

1 2 Heizmann, Hoenicke, and Podelski 
(2014), "Termination Analysis by Learning 
Terminating Programs", [8]. 

Suitability of automata for model checking. The set of languages that can 

be recognized by automata over finite words are exactly the regular languages 

and the w-regular languages for (most types of) cu-automata. Whi le there is a 

unique min imal deterministic automaton for each regular language, the situ

ation is more complicated for cu-automata - there is no equivalent to the m i n 

imization algorithm that we know for automata over finite words. Moreover, 

size is not the only relevant property of cu-automata that influences the pro

cess of model checking. Small size, the degree of determinism, and the sim

plicity of the acceptance condition can positively influence the performance 

of verification tools but they are often contradictory requirements from the 

perspective of L T L translators at the same time. 1 3 Furthermore, other aspects 

of particular cu-automata may influence model checking even more dramati

cally, for example, the location of accepting or initial states. W i t h the variety of 

available tools for L T L to cu-automata translation, we have many cu-automata 

to consider to use for verification. Figure 1.3 shows six automata for the for

mula G F a A GFb. Which one is the most suitable for a given verification task? 

We cannot answer this question entirely, but we offer at least some deeper 

insight for tasks solved by the model checker Spin. 

1 3 For example, we can have a one-state de
terministic Rabin automaton for the formula 
cp = FG a while no deterministic Buchi can 
express cp. Moreover, no Buchi automaton 
with less then two states exists for cp. 
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T T T T d b Q b b Q b Q 

(CO (C2) (C 3 ) (C 4 ) (C 5 ) (C 6 ) 
Spin L T L 2 B A & L T L 3 B A M o D e L L a L T L 3 B A (det) Spot & Spot (det) Spot (no jump) 

1.1 O U T L I N E A N D C O N T R I B U T I O N O F T H E T H E S I S Figure 1.3: Automata for GFa A GFb gen
erated by different tools and options. 

Chapter 2 provides preliminaries and most definitions used throughout the 

thesis. In particular it introduces cu-automata and L T L . The rest of the thesis 

is divided into three parts; each part is devoted to cu-automata with varying 

degrees of determinism. The first part focuses on nondeterministic automata. 

It is followed by a part that deals wi th deterministic automata. Finally, the last 

part of the thesis discusses algorithms for semi-deterministic automata. The 

thesis contributes to the automata theory i n the following areas. 

Nondeterministic Biichi automata for explicit model checking. We study 

the connection of Bi ich i automata and concrete verification tasks performed 

by a successful explicit model checker called Spin. In particular we focus on 

two aspects. 

• In Chapter 3 we search for properties of Bi ich i automata that really influ

ence the performance of the central algorithm of Spin - Nested Depth First 

Search. We do so by manual analysis of several automata and by experi

ments with common L T L - t o - B A translators and realistic verification tasks. 

As a result of these experiences, we gain a better insight into the character

istics of automata that work well with Spin. 

• In Chapter 4 we provide methods that take a particular system to be ver

ified, analyze the meaning of atomic propositions that are present i n the 

system, and use this analysis to improve Bi ich i automata built from L T L 

specifications. As a result, we get smaller automata with shorter edge la

bels that are easier to understand. Thanks to these cu-automata we can 

improve the run time of Spin. 

Translation of LTL into deterministic cu-automata. 

• In Chapter 5 we define May/Must alternating automata (MMAA), show 

(constructively) their expressive equivalence to L T L ( F S , G s ) , and provide a 

procedure that converts M M A A into deterministic transition-based gen

eralized Rabin automata. These steps connect into an efficient translation 

of L T L ( F S , G s ) into deterministic cu-automata. We have implemented this 

method i n the tool L T L 3 D R A that is publicly available. 

• Chapter 6 offers an exhaustive experimental evaluation and comparison of 

various methods that transform formulae of L T L (and its fragments) into 

deterministic cu-automata. 

LTL(FS, G s) is a fragment of LTL which uses 
the temporal operators strict eventually and 
strict always only. 
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Semi-deterministic Biichi automata construction and complementation. 

• In Chpater 7 we first describe a transitionbased adoption of the stan

dard semideterminization procedure for Biich i automata by Courcoubetis 

and Yannakakis 1 4 and we extend the algorithm with an SCCaware 1 5 op

timization. We also show how to tweak the construction to produce cut

deterministic automata (a stronger form of semideterminism). We fur

ther present an algorithm for semideterminization of generalized Biich i 

automata that is similar to the one presented by Hahn et al. i n 2 0 1 5 . 1 6 A l l 

procedures were implemented i n an open source tool called Seminator. We 

also evaluate and compare Seminator to other relevant tools. 

• In Chapter 8 we present a specialized algorithm for complementation of 

semideterministic Búchi automata. For a semideterministic Búchi au

tomaton with n states our algorithm creates an unambiguous Buchi au

tomaton with at most 4 n states that recognizes complement of the language 

of the input automaton. Besides the theoretical result, this algorithm was 

successfully used to speedup termination analysis i n the U L T I M A T E B Ů C H I 

A U T O M I Z E R . 

1 . 2 A U T H O R ' S P U B L I C A T I O N S A N D H I S C O N T R I B U T I O N 

1.2.1 Core of the Thesis 

Each of Chapters 3  8 is based on a conference publication coauthored by me. 

I list the publications and discuss my contribution, respecting the order of the 

chapters. 

SPIN 2014 František Blahoudek, Alexandre DuretLutz, Mojmír Křet ínský 

and Jan Strejček. 

"Is there a Best Buchi Automaton for Explicit M o d e l Checking?" [11 ] , 

M y contribution: Participated in discussions, performed all experiments, 

participated in writing of the main body. 3 0 % 

SPIN 2015 František Blahoudek, Alexandre DuretLutz, Vojtěch Rujbr, and 

Jan Strejček. 

" O n Refinement of Buchi Automata for Explicit M o d e l Checking" [ 1 2 ] . 

M y contribution: Participated in discussions, on experiments, and on writ

ing of the main body. 2 5 % 

ATVA 2013 Tomáš Babiak, František Blahoudek, Mojmír Křet ínský and Jan 

Strejček. 

"Effective Translation of L T L to Deterministic Rabin Automata: Beyond 

the (F, G)Fragment" [13 ] . 

M y contribution: Participated in discussions, formulated the main algo

rithms and devised and written most of the proofs. Marginally collaborated 

on implementation and performed all experiments. Participated in writing 

of the main body. 5 0 % 

LPAR 2013 František Blahoudek, Mojmír Křet ínský and Jan Strejček. 

"Comparison of L T L to Deterministic Rabin Automata Translators" [ 1 4 ] , 

M y contribution: Participated in discussions, performed all experiments, 

participated in writing of the main body. 5 5 % 

1 4 Courcoubetis and Yannakakis (1988), 
"Verifying Temporal Properties of Finite

State Probabilistic Programs", [9]. 
1 5 based on knowledge about strongly con

nected components 
1 6 Hahn et al. (2015), "Lazy Probabilistic 
Model Checking without Determinisation", 
[10]. 
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LPAR 2017 František Blahoudek, Alexandre DuretLutz, Mikuláš Klokočka, 

Mojmír Křet ínský and Jan Strejček. 

"Seminator: A Tool for SemiDeterminization of OmegaAutomata" [15]. 

M y contribution: Participated in discussions and in formulation of algo

rithms, participated in writing the paper. Marginally participated in imple

mentation and performed all experiments. 30% 

TACAS 2016 František Blahoudek, Matthias Heizmann, Sven Schewe, Jan 

Strejček, and MingHs ien Tsai. 

"Complementing Semideterministic Büchi Automata" [16]. 

M y contribution: Participated in discussions and together with Sven Schewe 

formulated the algorithm. Substantially participated in writing the paper, 

performed the data analysis and prepare the final version of the experimen

tal evaluation. 25% 

The thesis is based on these conference papers. However, some of the ma

terial was completely rewritten and some parts were substantially extended. 

In particular, 

• the thesis uses a definition of o>automata that rely on acceptance marks 

and EmersonLei acceptance condition i n formal constructions, 

• i n comparison to ATVA2013 [13], the proofs i n Chapter 5 have been refor

mulated using new terminology and concept of escaping multitransitions. 

The degeneralization of Rabin automata was completely rewritten. 

• The comparison of tools from LPAR 2013 [ 14] has been fully rewritten and 

revised. New tools have been included (determinization methods of Spot, 

Rabinizer 3, Rabinizer 4, L T L 3 T E L A ) and those that d id not well i n LPAR 

2013 [14] have been omitted. 

• The presentation of material from LPAR 2017 [15] has been completely 

rewritten, enhanced with formal descriptions of more algorithms, with i l 

lustrations and with proofs. Moreover, SCCaware optimization has been 

described and implemented. New versions of Seminator and of other tools 

have been used i n experimental evaluation. 

Tools. The research done for this thesis has impact on several tools from 

the community. L T L 3 D R A 1 7 is an implementation of the translation of L T L 

to deterministic tuautomata presented i n ATVA2014 [13]. Seminator 1 8 i m 

plements all algorithms described i n Chapter 7 and it was presented i n LPAR 

2017 [15]. The methods developed for SPIN 2015 [12] were added to Spot. 1 9 

The complementation algorithm described i n TACAS 2016 [16] is imple

mented i n G O A L 2 0 and U L T I M A T E B Ü C H I A U T O M I Z E R . 2 1 

1.2.2 Other Publications and Projects 

Hanoi Omega-Automata (HOA) Format. H O A format 2 2 is a flexible tex

tual exchange format for cuautomata. It enables one to express determinis

tic, nondeterministic, or alternating automata i n a uniform, humanreadable, 

and succinct way. H O A format supports various structural variants such as 

1 7 https://github.com/xblahoud/ltl3dra 
1 8 https://github.com/mklokocka/ 
seminator/ 

1 9 https://spot.lrde.epita.fr/ 
2 0 http://goal.im.ntu.edu.tw/ 

2 1 http://ultimate.informatik.unifreiburg. 
de/ 

2 2 Full specification of the format including 
some examples can be found at https://adl. 
gifhub.io/hoaf/ 

https://github.com/xblahoud/ltl3dra
https://github.com/mklokocka/
https://spot.lrde.epita.fr/
http://goal.im.ntu.edu.tw/
http://ultimate.informatik.uni-freiburg
https://adl
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labels on states or transitions, statebased or transitionbased acceptance. Ev

ery tuautomaton is equipped with an EmersonLei acceptance condition (a 

Boolean formula over the acceptance primitives infinitely often and finitely of

ten) which can express all acceptance conditions mentioned so far and more. 

The format was presented at the conference C A V 2015: 

CAV2015 Tomáš Babiak, František Blahoudek, Alexandre DuretLutz, Joa

chim Klein , Jan Křetínský, David Müller, David Parker, and Jan Strejček. 

"The Hanoi OmegaAutomata Format" [17]. 

Translation of LTL into Transition-based Emerson-Lei Automata (TELA). 

We have created LTL3TELA?3 which is a translator of L T L to (possibly nonde 2 3 https://github.com/jurajmajor/ltl3tela 

terministic) T E L A . Similarly to L T L 3 B A and L T L 3 D R A , the translation uses 

alternating automata as an intermediate step. This experimental approach 

to L T L translation addresses the tradeoff between complexity of acceptance 

condition and size of cuautomata  i n comparison to Spot or L T L 3 B A it 

can produce smaller cuautomata with acceptance conditions that are usually 

harder to check. 

https://github.com/jurajmajor/ltl3tela




Preliminaries 

This chapter introduces w-automata and Linear Temporal Logic (LTL). 

Alphabets. A n alphabet is a finite set of letters. We use two types of alpha

bets. In classical alphabets, letters are symbols, like i n I = {a , b, c}. Letters 

in propositional alphabets are subsets of a finite set of atomic propositions; i f 

A P = {a , b} is a set of atomic propositions, I = 2 A P = { 0 , {a} , {b} , {a , b}} 

is a propositional alphabet over A P . We usually use the symbol a to reference 

the letters of an alphabet. 

Infinite words. A n infinite word (or simply a word) over L is an infinite 

sequence of letters u = U Q U I U 2 . . . e Lw. By U i we denote the i th suffix 

Uj_ = UjUi+i . . . of u . 

2.1 C U - A U T O M A T A 

cu- automata are finite automata over infinite words. The thesis does not cover 

automata over finite words and thus we also use the term automata to refer

ence tu-automata. A n cu-automaton is always equipped with some acceptance 

condition, typically Buchi , Rabin, Streett, or parity. Even though acceptance 

conditions of all automata used through the thesis could be classified as more 

or less standard, for clarity reasons, our definition follows the approach of 

the Hanoi Omega-Automata (HOA) format 1 and uses acceptance marks and 

acceptance formulae to describe the acceptance mechanism of automata. To 

clearly distinguish between the automata structure and its acceptance mech

anism, we start with definition of a semiautomaton. 

1 Babiak et al. (2015), "The Hanoi Omega-
Automata Format", [17], see also 
https://adl.github.io/hoaf/. 

Semiautomata. A semiautomaton is a tuple T = (S, 1,5, ST) , where S is 

a finite set of states, L is an alphabet, 6 £ S x I x S is a transition relation, 

and s i e S is the initial state. A triple t = (s, a , s ') € 5 is a transition of 

s leading to s ' under a and we also say that a is the label of t. A state s ' 

is reachable from s i n T , denoted by s ^j- s', iff there exists a sequence of 

transitions (so, ao, s i ) . . . ( s k - i , a k - i , S k ) such that so = s and Sk = s'. We 

use s **7- s ' to denote the fact that s and s' are mutually reachable. 

We write s ~» s ' and s ** s ' instead of 
s ~»7- s ' and s s ' when T is clear 
from context. 

SCC. A strongly connected component (SCC) C £ S is a set of states that are 

all mutually reachable. A n S C C C is maximal i f no state outside C is mutually 

reachable with states from C. For each automaton there is a unique decom

position of the states into maximal strongly connected components. 

Determinism. A state s 6 S is deterministic i n 6 i f it has at most one tran

sition under a i n 6 for each a e I . A n S C C is deterministic i f it consists of 

https://adl.github.io/hoaf/
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deterministic states only and finally a semiautomaton T and the transition 

relation 5 are deterministic i f all states from S are deterministic i n 6. 

Runs. A run of a semiautomaton T over a word u = u o u i . . . 6 Lw is an 

infinite sequence a = (so, Uo, s i ) ( s i , u i , S2 ) . . . e S ^ o f transitions such that 

so = s i . A deterministic semiautomaton has at most one run for each word 

U€LW. 

cu-automata. A n w-automaton is a tuple A = (S, 1,6, s i , M , u, <P) where 

(S, L, 5, s i ) is a semiautomaton, M is a finite set of marks, u: M -»• 2 S u 6 is a 

function that places marks on states and transitions, and finally <£> is an accep

tance formula. We say that a transition or a state has a mark • 6 M i f it is a 

member of [!(•). The acceptance formula is a positive Boolean combination 

of terms Inf • and F i n * where • ranges over the set of marks M . 

Semantics. The semiautomaton defines the runs of A and the acceptance 

marks and formula give semantics to these runs. Let a be a run of A. Rec(a) 

is the set of states and transitions that appear infinitely often (recurrently) in 

the run. The marks of cr is the set of marks that are placed on states and tran

sitions from Rec(a) , more precisely marks(a) = { • | u ( * ) n Rec(a) + 0 } . 

The run cr satisfies lnf# i f • 6 marks(cr) and it satisfies F i n H i f • £ marks(cr). 2 

The run is accepting i f it satisfies <P. The language of A is the set L ( „ 4 ) of all 

words u e Lw such that A has an accepting run over u . 

A n a)-automaton is a semiautomaton with 
marks on states or transitions and with an ac
ceptance formula. The marks with the accep
tance formula say which runs of the semiau
tomaton are accepting. 

The intuitive meaning of Inf is to visit in
finitely often and the one of Fin is to visit 
only finitely often. For example, a generalized 
Biichi condition with two marks is expressed 
as InfO A Inf©. 

2 In this thesis we use a unique mark for each 
term of O and by convention we use cir
cles for marks that appear in Inf-terms and 
squares for those in Fin-terms. 

Visualisation. We draw automata as i n Figure 2.1. States are represented by 

nodes; the init ial state has an incoming edge from an empty space, the accep

tance formula is i n the yellow box below the automaton itself, transitions are 

depicted as edges. If the automaton has a propositional alphabet, transitions 

between two states that have identical marks but different labels are merged 

into one edge. The edge is labelled by a boolean formula over atomic proposi

tions i n a condensed notation; the label is satisfied by exactly all labels of the 

merged transitions. For example, the label ab i n the right automaton with 

I = 2 < Q M stands for - .a A b and represents the unique transition under {b}, 

and any edge of the left automaton with label b represents transitions under 

{a} and 0 . Sometimes a green box provides a corresponding L T L formula 

as i n the case of the right automaton. Names of automata are typeset using a 

calligraphic alphabet and are enclosed i n parenthesis i n figures. 

The condensed notation omits conjunctions 
and uses a for -.a. 

Tools that manipulate or generate automa
ta usually also merge transitions into edges 
(both internally and for input/output). A n 
edge is then a triple (s, I, s ' ) where I is the 
edge-label. 

T < V U ® ^ a 

„ T b 

(B)
 b N?) 

a 

( F G a v ( G F b A GF- .b) ] 

(InfO A InfO) [ FinlB v (InfO A InfO) 1 

Figure 2.1: Three automata for the LTL for
mula FGa v (GFb A GF-.b). From left to 
right: Biichi with marks on states, general
ized Biichi with marks on transitions, and 
deterministic generalized Rabin with marks 
on transitions. 
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Standard acceptance conditions. We can express all standard acceptance 

conditions i n our setting, you can see some examples above i n Figure 2.1. We 

do not distinguish explicitly between state-based and transition-based accep

tance 3 (we even allow to mix them). For Buchi and co-Buchi automata we 

need only one mark and the corresponding acceptance formulae are I nf • and 

F inH, respectively, for generalized Buchi wi th k acceptance sets we need k 

marks and the formula is A £ r 0 I nf O. For a Rabin automaton with h Rabin 

pairs we need 2 h marks and the formula is V k I o ( F i n B A InfO). A R a b i n p a i r 

is a conjunction of a co-Buchi and a Buchi condition, i n a generalized Rabin 

pair the Buchi part is replaced by generalized Buchi and thus the acceptance 

formula for generalized Rabin automata is VkeK ( F i n D A A j e j k InfO). 

Abbreviations. We often need to refer to automata that have certain prop

erties. As their description can be rather long, we use abbreviations for au

tomata types. A type of an automaton is influenced by the following three 

properties. 

determinism: Deterministic [D], Nondeterministic [N], semi-deterministic 

[sD], cut-deterministic [cD] 

the placement of marks: transitions [T], states [S] 

acceptance condition: Buchi [B], generalized Buchi [GB], Rabin [R], gener

alized Rabin [GR] 

In abbreviations, we use the same order as i n the list and add an A which 

stands for automaton (or automata, regarding the context). We leave out these 

properties that are not of our interest. For example, the abbreviation BA de

notes Buchi automata and DTGRA denotes deterministic generalized Rabin 

automata with marks on transitions. 

Expressibility remark. The definition of an automaton used i n this thesis 

allows for each label a € I at most one transition between two states. In the 

H O A format you can also describe automata that have more such transitions 

that differ i n the marks they carry. Such automata are not expressible by our 

definition. That is on purpose as it simplifies the presentation of most of the 

material and we also do not lose anything. Indeed, more transitions between 

two states are only useful for automata with some Fin -terms i n the acceptance 

formula and marks on transitions. We use such automata only i n Part II where 

all these automata are deterministic. Finally, no choice between transitions is 

permitted anyway i n deterministic automata. 

3 State-based automata have marks only on 
states while transition-based automata have 
marks on transitions. 
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2.2 L I N E A R T E M P O R A L L O G I C ( L T L ) 

The syntax of L T L is defined by 

We also use standard Boolean connectives 
cp ::= T | CI | -cp | cpVcp | cpAcp | Xcp | cp l j cp , ( i i k e a n d ) i n their usual mean

ing as shorthands. 

where T stands for true, a ranges over a countable set A P of atomic proposi

tions, X and U are temporal operators called next and until, respectively. L T L 

formulae are interpreted over infinite words over the propositional alphabet 

I = 2 A P , where A P ' is a finite subset of A P . 

We inductively define when a word u satisfies a formula cp, written u 1= cp, 

as follows. 

U N T 

u N a iff a € uo 

u N -i<p iff u cp 

u N c p i vcp2 iff u N c p i o r u N c p 2 

u N cpi A cp 2 iff u N cpi a n d u N cp2 

u N Xcp iff u i N cp 

u N cpi U <p2 iff 3 i > 0 . (ut . . N cp2 and V 0 < j < i . Uj . . N cpi ) 

Given an alphabet I , a formula cp defines the language L 1 (cp) = { u € Lw 

j A P (cp ) 

u N cp }. We write L (cp) instead of L (cp), where A P (cp) denotes the set 

of atomic propositions occurring i n the formula cp. 

We define the derived unary temporal operators eventually (F), always (G), 

strict eventually (F s), strict always (G s ) , and releases (R) by the following equiv

alences: 

Fcp = T U cp GcpE-.F-.cp 

Fscp = XFcp G scp = XGcp 

cpi R c p 2 = -.(-.cpi U- .cp 2 ) 

A n L T L formula is i n positive normal form i f no operator occurs i n the 

scope of any negation. Each L T L formula can be transformed to this form 

using De Morgans laws for A and v and the following equivalences: 

- F i p = G - i p - G i p = F-*|> 

^F s \p = G s - i p ^ G s t p = Fs^ip 

-.(cp! R c p 2 ) = -.cpi U-.cp2 -.(cpi U c p 2 ) = -.cpi R-.cp2 

-Xcp = X-cp 

We say that a formula is temporal i f its topmost operator is neither con

junction nor disjunction; note that a and - .a are also temporal formulae. 

http://GcpE-.F-.cp
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HOW BÜCHI AUTOMATA INFLUENCE 
EXPLICIT MODEL CHECKING 





7s There a Best Büchi Automaton for Spin? 

Model Checking 

In the traditional view, the model checking1 problem decides whether a given 

system is a model of a given formula, that is whether all behaviours of the 

system satisfy the formula. We see the model checking as a tool that decides 

whether or not the system has an erroneous behaviour; we start with a formula 

cp that describes the erroneous behaviour 2 and we consider the system correct 

i f no behaviour of the system satisfies cp. M o d e l checking of L T L expects that 

cp is an L T L formula. 

The automata-theoretic approach 3 to model checking relies on automata to 

internally represent both the specification and the system; it usually proceeds 

in the following four steps as illustrated by Figure 3.1. 

3 
1 Baier and Katoen (2008), "Principles of 
Model Checking", [18]. 

2 We can simply negate the input formula to 
switch between the two views. 

3 Vardi (1995), "An Automata-Theoretic Ap
proach to Linear Temporal Logic", [19]. 

1. Bu i ld the state space S; the state space represents all possible executions of 

the system to be verified, 

2 . translate the L T L formula cp into a Buchi automaton 4 A v that accepts all 

faulty behaviours, 

4 also called property automaton 

3. bui ld the synchronous product S <S> A,p of the system and the automaton; 

the product represents all behaviours of S that conform to A and cp and 

thus are erroneous, and finally 

4 . check this product for emptiness. 

implicit description of 

the considered system 

state space S 

model checker 

S x Av 

L(SxAv) = 

specification of 

erroneous behaviours 

I 
LTL formula cp 

automaton Av 

Figure 3.1: Automata-theoretic approach to 
model checking. 

Although we anticipate here a specification 
as an LTL formula, we may generalize many 
results of this part to applications where the 
erroneous behaviours are given directly as 
Buchi automata or in another formalism that 
can be converted into automata. 

YES 

verified 

N O 
+ 

counterexample 
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The automata approach effectively reduces the problem of model checking 

to the problem of language emptiness for Buchi automata. If L(S <8> Av) is 

empty then we can consider S to be safe with respect to <p. O n the other hand, 

i f the product S <8> Av accepts a word w then we have a concrete example of 

the erroneous behaviour of S. 

Spin 5 is a successful explicit model checker that relies on the automata ap

proach. The word explicit emphasises the fact that it explicitly enumeratesall 

the states of S and of the product S <g> Av and stores them i n the memory. The 

explicit approach often suffers from the so-called state space explosion prob

lem — the product is simply too large to be stored i n memory or takes too 

long to analyze. Many model checkers (including Spin) perform the steps 3 

and 4 simultaneously — they bui ld the product on-the-fly according to the 

needs of the emptiness check. In this way, the model checkers bui ld and store 

only the relevant part of the product. To fight the state space explosion prob

lem, developers of model checkers implemented many other methods how to 

handle the given product more effectively? 

When you want to make the product smaller, you have to focus on the 

property automaton Av; the system is given. This is where the L T L - t o - B A 

translators came into the play. There are many algorithms and tools for trans

lating L T L formulae into Buchi automata and they produce various language 

equivalent automata. For instance, Figure 3.5 on the page 36 shows several 

Buchi automata for the L T L formula G F Q A GFb. 7 This chapter address the 

following question. Should one be preferred over the others? 

To pick the best automaton for a given formula is more than difficult — it is 

even impossible i f we do know how S looks like. The intuition that a smaller 

Aq> produces a smaller synchronous product S <8> Av is not always correct.8 

We discuss various approaches to product reductions considered previously 

by authors of L T L - t o - B A translators or of automata reductions i n Section 3.2. 

The property automaton influences not only the number of states or transi

tions i n the product. The automaton can heavily influence also the emptiness 

check (step 4). Before we discuss how the emptiness check depends on the 

property automaton, we have to understand how the emptiness check of Spin 

works. From the variety of possible emptiness check algorithms, Spin chooses 

Nested Depth-First Search (NDFS)? 

Indeed, the main work of a model checker 
consists of building the product and check its 
language for emptiness. 

In the traditional view of model checking, w 
is known as a counterexample. 

5 Holzmann (1997), "The Model Checker 
SPIN", [20]; Holzmann (2003), "The SPIN 
Model Checker: Primer and Reference Man
ual" [21]. 

6 See Pelänek (2008), "Fighting State Space 
Explosion: Review and Evaluation", [22],for 

a nice review. 

7 This and the following chapter deal mainly 
with Buchi automata with marks on states. 
Therefore, we use the classic convention for 
their visualization: the accepting states are 
marked with a double circle and we omit the 
acceptance formula. 

8 See Figure 3.3 on page 34 for an example. 

9 Holzmann, Peled, and Yannakakis (1996), 
"On Nested Depth First Search", [23]. 
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Nested Depth-First Search (NDFS) 

To check the language emptiness of the product S ® A^, Spin has to search 

for a cycle that is reachable from the init ial state and that contains at least 

one accepting state. B y default, Spin uses an algorithm that is based on two 

nested depth-first searches: blue and red. The blue DFS plays the leading role. 

It explores the product and every time it would backtrack from an accepting 

state s 1 0 it starts a red DFS from s. If the red D F S reaches any state on the 

blue DFS search stack then a reachable and accepting cycle is f o u n d 1 1 and the 

algorithm reports it as a counterexample. Otherwise, the red DFS terminates 

and the blue DFS can continue. The two DFS always ignore states that have 

been completely explored by an instance of the red DFS, so a state is never 

visited more than twice. 

Spin utilizes an extra optimization, i f the blue DFS hits its own search stack 

by following a transition that is either going to or coming from an accepting 

state, Spin reports an accepting cycle without even starting any red D F S . 1 2 

N o w we are ready to see that the number of states or transitions i n not 

always relevant: ultimately, only the part of the product that is explored by 

the emptiness check does matter. Some authors of automata optimizations 

or L T L - t o - B A translation improvements provide also run times of a selected 

emptiness check executed on the product of obtained automata and either 

random state spaces or few realistic systems. 1 3 Etessami and Holzmann even 

complained that the relation between the size of A^ and the run time of the 

model checking procedure was difficult to predict, especially i n the presence 

of a counterexample. 

When a counterexample exists i n the product, the emptiness check may 

report it more or less rapidly depending on the order i n which the N D F S ex

plores the transitions of the product. W i t h any luck, the first transition se

lected at each step of the DFS w i l l lead to an accepting cycle. Conversely, the 

first transitions followed might lead to a huge component of the product that 

just turns out to be a dead-end, and from which the emptiness check has to 

backtrack before finding the counterexample. 

The selected transition order i n S <g> Av depends on the order of the transi

tions i n the property automaton A v . Previous attempts to explore reordering 

of the transitions of A to help the emptiness check have been inconclusive. 1 4 

Furthermore, the swarming techniques 1 5 used nowadays makes this topic 

even less attractive: i n these approaches, several threads compete to find a 

counterexample i n S <g> Av using a different, random transition order for A v . 

Therefore, we do not address the question of the transition order. 

Like the previous two paragraphs and Figure 3.3 document, methods that 

aim mainly to decrease the size and determinism of the automata cannot be 

universal and we cannot hope for the best automaton for all verification tasks 

with the same specification. Therefore we focus on other aspects that are help

ful for Nested Depth First Search (NDFS) - the emptiness check of Spin. To 

gain a better insight into the characteristics of automata that work well with 

Spin, we look at concrete examples of how formulae are translated into auto

mata differently by existing tools and how these automata influence N D F S . 

1 0 We backtrack from s after all successors of 
s have been explored by the blue DFS. 
1 1 Since s is reachable from all states on the 
blue DFS search stack. 

1 2 Gastin, Moro, and Zeitoun (2004), "Mini 
mization of Counterexamples in SPIN", [24]; 
Schwoon and Esparza (2005), " A Note on 
On-fhe-Fly Verification Algorithms", [25]. 

1 3 Etessami and Holzmann (2000), "Opti
mizing Buchi Automata", [26]; Dax, 
Eisinger, and Klaedtke (2007), "Mechaniz
ing the Powerset Construction for Restricted 
Classes of tu-Automata", [27], for example. 

1 4 Geldenhuys and Valmari (2005), "More 
Efficient On-the-Fly LTL Verification with 
Tarjans Algorithm", [28]. 
1 5 Holzmann, Joshi, and Groce (2011), 
"Swarm Verification Techniques", [29]. 
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3 . 1 M O T I V A T I O N B Y E M P I R I C A L D A T A : H O W M U C H C A N A U 

T O M A T A I N F L U E N C E S P I N 

First of all, we present experimental results showing how important the i m 

pact of Buchi automata on Spins performance can be. We use the following 

benchmark, software, and hardware. 

Benchmark. We base our benchmark on the set of 769 realistic model 

checking tasks B E E M . 1 6 A verification task consists of a system i n P rome la 1 7 

and an L T L formula that describes a desired property of the system. 1 8 We have 

enriched the benchmark set by a few tasks. To each system describing some 

mutual exclusion a lgo r i thm 1 9 we added three specification formulae: 

1. G F ( P 0 @ C S ) = > G F ( P 0 @ N C S ) meaning that i f a process P 0 spends 

infinitely many steps i n a critical section, then it also spends infinitely many 

steps i n a non-critical section, 

2. G F ( P 0 @ N C S ) = > G F ( P 0 @ C S ) meaning that i f a process P 0 spends 

infinitely many steps i n a non-critical section, then it also spends infinitely 

many steps i n a critical section, 

3. F G - ( ( P 0 @ C S A Pi @CS) v ( P 0 @ C S A P 2 @ C S ) v (P , @CS A P 2 @ C S ) ) 

meaning that after finitely many steps, it never happens that two of the 

processes Po, P i , and P 2 are i n a critical section at the same time. 

To sum up, we consider 769 + 3-23 = 838 verification tasks. A l l the bench

marks and measurements presented i n this section are available at http://fi. 

muni.cz/~xstrejc/publications/spin2014.tar.gz. 

Software. We use the five L T L - t o - B A translators presented i n Table 3.1: 

Spin and L T L 2 B A are well established and popular translators, M o D e L L a was 

the first translator focusing on determinism of the produced automata, and 

L T L 3 B A and Spot represent contemporary translators. The last two transla

tors are used i n several settings: the settings denoted by LTL3BA (det) and Spot 

(det) aim to produce more deterministic automata, while the setting called 

Spot (no jump) is explained i n Section 3.3. 

1 6 Pelanek (2007), " B E E M : Benchmarks for 
Explicit Model Checkers", [30]. 
1 7 PROcess MEta LAnguage is a modelling 
language used by SPIN for both systems and 
property automata. 
1 8 We negate the formula so that it describes 
erroneous behaviours. 
1 9 altogether 23 instances of parametric 
models called anderson, peterson, and 
bakery 

tool version command 

Spin [21] 6.2.5 s p i n - f 

L T L 2 B A [31] 1.1 l t l 2 b a - f 

M o D e L L a [32] 1.5.9 mod2spin • • f 

L T L 3 B A [33] 1.0.2 l t ! 3 b a -S - f 

L T L 3 B A (det) l t ! 3 b a -S -M - f 

Spot [34] 1.2.4 l t l 2 t g b a • •s 

Spot (det) l t l 2 t g b a • •s -D 

Spot (no jump) l t l 2 t g b a • •s -x degen-lskip= 0 

Table 3.1: Considered LTL-to-BA transla
tors, for reference. 

Spin version 6.2.5 is also used as the model checker i n our evaluation. We 

limited its maximal search depth to 100 000 000 and we kept the default set

tings otherwise. In particular, the partial-order reduction, which severely 

limits the exploration of the state-space, is enabled. 2 0 To obtain some of the 

statistics, we used the Itlcross tool from the Spot library. 

2 0 See the script s t a t . p i in the archive for 
the exact parameters we used with Spin. 

http://fi
http://muni.cz/~xstrejc/publications/spin2014.tar.gz
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Hardware and settings. A l l computations were performed on a machine 

with eight physical processors and 448 G i B R A M . 2 1 Each execution of Spin 

has been restricted by 30 minutes timeout and a memory l imit of 20GiB. The 

memory limit was always reached first. 

Workflow. For each of the 838 considered verification tasks, we negate the 

specification formula, 2 2 we translate the negated formula by all the mentioned 

translators and we run Spin on the system with each of the obtained automa

ta. Translation of the negated formula to an automaton is instantaneous 2 3 in 

nearly all cases: there is only one formula for which the translator built i n Spin 

needs a couple of seconds to finish. 

Originally, we have measured the impact of Buchi automata on Spin by its 

run time. Unfortunately, our computation server is shared with other users 

and its variable workload has led to enormous dispersion of measured run 

times. We have observed a run time difference of over 300% on the same 

input. Hence, instead of on run times, we focus on the count of visited tran

sitions, which is a stable statistic produced directly by Spin. The number of 

visited transitions accumulates the numbers of product transitions explored 

in depth-first searches executed during a run of the N D F S algorithm. Hence, 

the number of visited transitions should be proportional to the run time on a 

dedicated machine. Spin also provides statistics for stored states, which is the 

total count of constructed and stored product states and should be propor

tional to the memory consumed by Spin. 

Evaluation. Spin successfully finishes the computation wi th in the given 

limits for at least two automata obtained by different translation tools for ex

actly 823 tasks. For each such verification task, we find the maximal and the 

minimal numbers of visited transitions and we compute their ratio. Intu

itively, the ratio represents how many times slower Spin can be i f we choose 

the worst of the produced automata compared to the best of those. Out of the 

823 tasks, the ratio is exactly 1 i n only 35 cases. In other words, i n more than 

95% of the considered verification tasks, the choice of an L T L - t o - B A transla

tor has an influence on the run time of Spin. 

2 1 In more detail: the machine is an HP 
DL980 G7 server with 8 eight-core 64-bit 
2.26GHz processors Intel Xeon X7560 and 
with 448 GiB DDR3 R A M . We ran at most 
8 instances of Spin in parallel. 

2 2 to have a formula for erroneous behaviour 

3 It takes less than 0.1s. 

C3 

10 s 

10 6 

5 10 

10 2 

10 c 

731 tasks 92 tasks 

with counterexample without counterexample 

,4 -

5.66 4.9 

8 

1 . 3 9 ^ 3 1.37i 

Figure 3.2: Impact of the Buchi automata 
on model checking. For each verification 
task, we compute ratios between the maxi
mum and minimum number of transitions 
(or unique states) visited by Spin using all 
available Buchi automata. In each column, a 
box spans between the first and third quar-
tiles of the ratio, and is split by the me
dian (whose value is given). The whiskers 
show the range of ratios below the first and 
above the third quartile that are not further 
away from the quartiles than 1.5 times the in
terquartile range. Other values are shown as 
outliers using circles. 

transitions states transitions states 
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As expected, the ratios significantly differ for verification tasks where the 

model satisfies a given formula and for those with a counterexample. Out of 

the 823 tasks, 731 tasks contain counterexamples while 92 tasks do not. The 

ratios for these two sets are presented by box-plots i n Figure 3.2. One can 

clearly see that the selection of a Buchi automaton has a bigger impact on 

the verification tasks with counterexamples (median ratio is over 5.6) than on 

the tasks without counterexamples (median ratio is 1.4). Both sets contain 

extreme cases where the ratios exceed 10 6 . 

If we compute the ratios of maximal and min imal numbers of stored states, 

we get the ratio 1 i n only 68 out of the 823 tasks. The situation is analogous 

to the ratios of visited transitions, but the ratios of stored states are slightly 

lower. 

To sum up, the choice of the Buchi automaton can have a dramatic impact 

on speed and memory consumption of Spin. 

3 . 2 S T A N D A R D A P P R O A C H T O O P T I M I Z A T I O N : 

H E L P I N G T H E P R O D U C T 

Most of the work on optimizing the translation of L T L formulae to Bi ich i au

tomata has focused on building Bi ich i automata with the smallest possible 

number of states.24 This is motivated by the observation that the synchronous 

product of a Buchi automaton A with a state space S can have the same num

ber of states as their Cartesian product i n the worst case: |<S ® .4| < |<S| x \A\. 

Therefore, decreasing \A\ lowers the upper bound on \S ® A\. 

However, it is possible to bu i ld contrived examples where a smaller \A\ 

yields a larger product. For instance, removing one state i n the automaton 

„4i of Figure 3.3 doubles the size of its product with the state space S of the 

same figure from 3 to 6 states. O f course, i f S was a similar cycle of 2 states, 

the smaller automaton Az would give a smaller product. Hence, one cannot 

hope to bu i ld an optimal property automaton A without a pr ior i knowledge 

of the system S. 

W i t h the introduction of L B T T 2 5 a tool that checks the output of differ

ent L T L - t o - B A translators by doing many cross-comparisons, including some 

products with random state spaces, tool designers started to evaluate not only 

the size of the produced automata but also the size of their products with 

random state spaces? 6 A recent clone of L B T T called I t l c r o s s 2 7 computes 

multiple products with random state spaces to lessen the luck factor. Sebas

tiani and Tonetta used this "product with a random state space" measurement 

to benchmark their translator M o D e L L a against other available translators to 

support the claim that producing "more deterministic" Buchi automata might 

be more important than producing small B i i ch i automata. 2 8 

2 4 e.g. GastinandOddoux(2001), [31]; Cou-
vreur (1999), [35]; Somenzi and Bloem 
(2000), [36]; Giannakopoulou and Lerda 
(2002), [37];Thirioux(2002), [38]. 

2 5 Tauriainen and Heljanko (2002), "Testing 
LTL Formula Translation into Biichi Auto
mata", [39]. 

2 6 e.g. Sebastiani and Tonetta (2003), [32]; 
Duret-Lutz and Poitrenaud (2004), [40]. 
2 7Duret-Lutz (2013), "Manipulating LTL 
Formulas Using Spot 1.0" [41]. 

2 8 Sebastiani and Tonetta (2003), "More De
terministic vs. Smaller Biichi Automata for 
Efficient LTL Model Checking", [32]. 

Figure 3.3: Two BA for GFa and a state 
space. cS ® _Ai has 3 states whereas S <g> Ai 
has 6. 
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automata products cases with product trans bigger than... 

n states ndst edges trans states trans (1) (2) (3) (4) (5) (6) (7) (8) 

( l ) S p i n 161 1739 1474 9318 46252 260934 8892105 0 102 143 107 150 150 150 146 

(2) L T L 2 B A 178 1003 802 3360 30159 191668 5556159 5 0 137 49 161 157 156 142 

(3) M o D e L L a 178 1297 647 4311 23874 216938 4193567 15 33 0 41 110 116 114 91 

(4) L T L 3 B A 178 795 595 2209 21240 151373 4273646 0 23 126 0 149 153 152 140 

(5) L T L 3 B A (det) 178 830 326 2405 14414 155716 2901474 0 0 10 5 0 76 75 63 

(6) Spot 178 657 94 1615 10304 127792 2326271 1 6 15 5 30 0 1 1 

(7) Spot (det) 178 662 88 1639 10414 128178 2328422 1 7 17 6 33 4 0 0 

(8) Spot (no jump) 178 785 104 1874 12273 152592 2719360 12 28 40 27 70 61 57 0 

Table 3.2: Benchmark based on automata and product sizes. Column n indicates how many translations are successful within the allocated time. 
The automata columns show accumulated values of standard automata characteristics for all successful translations. Column ndst gives the number 
of non-deterministic states in the automata. A l l produced automata are synchronized with the same 100 random systems, and the median number 
of states and transitions of these products is kept. The products columns represent the medians accumulated over all successful translations. The 
right-most part of the table counts the number of formulae for which the translator on the row produces an automaton with higher median number 
of transitions in the products that the translator of the column. 

You can find a typical example of a benchmark based on product sizes in 

Table 3.2. The table shows numbers for 178 formulae from the literature 2 9 

translated by 8 different L T L - t o - B A translators. The timeout for one transla

tion was set to 60 seconds. 

The table shows that M o D e L L a generates automata that are slightly big

ger than L T L 2 B A (its competitor i n 2003), but when looking at the product, 

M o D e L L a causes fewer transitions to be built. If the number of transitions 

is proportional to the run time of a model checker and the number of states 

is proportional to its memory consumption, M o D e L L a has effectively traded 

memory for speed. 

MoDeLLa's results do not appear to hold today: more recent translators 

such as L T L 3 B A or the translator of Spot can produce automata that are sig

nificantly smaller and yield smaller products with random state spaces. These 

translators also have options to produce more deterministic automata, but the 

resulting products are not always better. 

The right part of Table 3.2 compares the translators by the sizes of products 

of produced automata with a fixed set of random systems. For instance, one 

can observe that even though Spot (6) produces the lowest accumulated num

ber of product transitions i n this benchmark, there are 30 formulae where the 

generated products have more transitions than those obtained by L T L 3 B A 

(det) (5). Conversely, automata from L T L 3 B A (det) produce products with 

more transitions than those of Spot for 76 formulae. 

As Spin constructs the product on-the-fly, i f we optimize A to minimize 

\S <8> A\, we may not necessarily optimize A for the model checking procedure. 

The emptiness check may explore only a part of the product, or, conversely, 

it may explore the whole product twice. Ultimately, any change to A should 

be measured particularly by its effect on the model checker. For instance, 

Dax et al. performed such an evaluation. 3 0 In addition to explaining how to 

bui ld min imal weak deterministic Buchi automata ( W D B A ) for a subclass 

of L T L , they showed that their min imal W D B A are smaller than the non-

deterministic B A produced by other translators and they also show that they 

improved the run times of Spin on a few verification tasks. 3 1 

2 9Etessami and Holzmann (2000), [26]; 
Somenzi and Bloem (2000), [36]; Dwyer, 
Avrunin, and Corbett (1998), [42]. 

" D a x , Eisinger, and Klaedtke (2007), 
"Mechanizing the Powerset Construction 
for Restricted Classes of tu-Automata", 
[27]. 

3 1 We had omitted their tool from our bench
mark because (1) it only supports a subset 
of LTL, and (2) their optimization is imple
mented in Spot and both tools would, there
fore, return the same automata. Besides, the 
subset of LTL does not include the formulae 
studied in Sections 3.3.2 and 3.3.4. 



36 A U T O M A T A F O R F O R M A L M E T H O D S : L I T T L E S T E P S T O W A R D S P E R F E C T I O N 

3 . 3 A N O T H E R V I E W T O O P T I M I Z A T I O N : 

H E L P I N G T H E E M P T I N E S S C H E C K 

3.3.1 Weak Automata 

Remember that the blue DFS can detect an accepting cycle without running 

a red DFS? It happens when the blue DFS hits its own stack on (or from) 

an accepting state. W i t h this optimization i n mind , we suggest that of the 

two automata of Figure 3.4, B2 should be preferred. Indeed, when the blue 

DFS reaches a state of its search stack i n the product S <S> B2, it is guaranteed 

to come from (and go to) an accepting state, detecting the accepting cycle 

without starting any red DFS. In the product S <8> B-\ we might be less lucky 

if we close the cycle with the transition at the bottom of B\: i n that case the 

product has to be explored a second time by the red DFS. 

We actually illustrate the distinction between weak automata and inher

ently weak automata by this example. A n inherently weak automaton is an 

automaton i n which strongly connected components (SCCs) cannot mix ac

cepting cycles with non-accepting cycles. A weak automaton is an inherently 

weak automaton i n which the states of each S C C are either all accepting or 

all non-accepting. A n y inherently weak automaton can be easily transformed 

into an equivalent weak automaton. 3 2 

Having more accepting states is not necessarily good from the point of 

view of the N D F S since a red DFS is started every time the blue DFS back

tracks from an accepting state. However, i f an entire S C C is non-accepting, 

the first red DFS wi l l cover it fully, and each successive red D F S w i l l immedi

ately return because it attempts to process a state that has already been seen 

by a previous red DFS. 

(Bi) 

(B 2 ) a 

Figure 3.4: Two automata for the LTL for-
m u l a a A G ( a = > X(fi A X(fi A X a ) ) ) . 
£>1 is inherently weak and Bz is weak. 

3 2 We can safely mark all states in accept
ing strongly connected components as ac
cepting, see: Boigelot, Jodogne, and Wolper 
(2001), "On the Use of Weak Automata for 
Deciding Linear Arithmetic with Integer and 
Real Variables", [43]. 

3.3.2 Automata for GFa A GFb 

Figure 3.5 shows six different Buchi automata for the formula G F a A G Fb pro

duced by the considered tools. Note that i f you ignore the exchange of a and 

b , 3 3 automata C4 and C5 differ only i n the init ial state and thus cannot be dis

tinguished by any determinism-based or size-based metrics. 

Table 3.3 captures data about Spins runs on the bakery mutual exclusion 

protocol taken from B E E M and the property automata of Figure 3.5. The 

propositions a and b describe situations that (different) pairs of processes are 

in the critical section at the same time. The protocol prevents such situation, 

so neither a nor b is ever true i n the model. We observe that i n case of prod

ucts with automata C 5 and Cs (both produced by Spot), Spin explores the 

3 3 The atomic propositions a and b have a 
symmetric purpose in the original formula. 

Figure 3.5: Automata for G F a A G F b gen
erated by different tools and options. 

T T d b Q b b Q b Q 

(Cl) ( C 3 ) ( C 4 ) ( C 5 ) ( C 6 ) 

L T L 2 B A & L T L 3 B A M o D e L L a L T L 3 B A (det) Spot & Spot (det) Spot (no jump) 
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automaton size statistics from Spins execution 

states ndst edges trans stored states visited trans time 

C i Spin 3 2 6 17 27531713 95071k 88s 

C 2 L T L 2 B A & L T L 3 B A 3 3 8 20 27531713 95071k 99s 

C 3 M o D e L L a 4 0 6 16 27531714 95071k 109s 

C 4 L T L 3 B A (det) 3 0 8 12 27531713 95071k 101s 

C5 Spot & Spot (det) 3 0 8 12 27531714 190143k 211s 

Cs Spot (no jump) 3 0 5 12 27531714 190143k 191s 

products twice because Spin triggers the red DFS from the init ial state of the 

product. This is not the case for the other automata. This yields the following 

hypothesis: When we suppose that there is no accepting cycle in the product, 

the automaton should keep its accepting states as hard to reach from the initial 

state as possible. The further the accepting states are from the init ial state, the 

more chance we have that the blue DFS wi l l never reach any accepting state 

and therefore no red DFS w i l l be triggered. 

For instance, i f we ignore the renaming of atomic propositions, the au

tomaton C3 could be obtained from Cs by unrolling the accepting cycle by 

one step, so that the cycle is entered on a non-accepting state, and the accept

ing state is actually the last one visited on the cycle. 3 4 This superfluous initial 

state only makes a negligible difference on the product, and does not incur 

any noticeable difference for Spin compared to C i , Cz, or C4. 

Similarly, i f we do not expect an accepting cycle i n the product, the i n 

herently weak automaton B\ of Figure 3.4 could be changed by letting the 

right-most state be accepting instead of the middle one. 

Table 3.3: Statistics about generated auto
mata and Spins run on system bake ry. 7. pm 
and formula GFa A GFb where neither a 
nor b ever occurs in the system. The corre
sponding automata are shown in Fig. 3.5. 

3 4 This is not actually the reason why Mo
DeLLa produces C3. Internally, MoDeLLa 
translates the formula into a Buchi automa
ton with labels on states and has to deal with 
possibly multiple initial states. When it out
puts an automaton, it always adds an extra 
initial state with copies of the outgoing tran
sitions of all the original initial states, even 
if the original automaton had only one ini
tial state. See also ©3 of Figure 3.7 where so 
and S2 were the original initial states. 

3.3.3 Translation Differences 

Most L T L - t o - B A translators follow a multi-step procedure where they first 

translate a given L T L formula into a generalized Buchi automaton, often with 

marks on transitions, such as those of Figure 3.6. Translators then degen-

eralize these automata to obtain a B A . Other simplification procedures may 

be applied to these automata, but it turns out that the last three automata of 

Figure 3.5 were all obtained by degeneralizing Q-\ i n Figure 3.6, and their dif

ferences are due to choices made i n the degeneralization procedure. 

When degeneralizing a T G B A Q with acceptance marks • ° , . . . , # H (the 

O and O on the Figure 3.6), the structure of Q is cloned h + 2 times. Let us 

call each of these clones a level. For each state of level I < H, all transitions 

originally marked with # l have their destination redirected to the next level, 

the destination of all transitions i n level H+ 1 are redirected to level 0. Final ly 

all the states of the level H +1 are made accepting. The init ial state can be put 

on any level. 

This procedure ensures that words accepted by the degeneralized automa

ton correspond to words recognized by runs of Q that visit all acceptance 

marks infinitely often. Accepting cycles i n products involving these degen

eralized automata w i l l always involve at least h + 2 states. 

The degeneralization applied to Q-\ wi th the init ial state on the last level 

and the acceptance marks ordered as ©, then O, produces the automaton Cs 

(G\) (InfOAlnf ){Qi) 

Figure 3.6: Two TGBA for GFa A GFb. 
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of Figure 3.5. Changing the degeneralization order to ©, then O, and putting 

the init ial states on the first level would give automaton C4. 

A n optimization introduced with L T L 2 B A 3 5 consists i n jumping levels. If 

a transition of a level I < h. is marked by all marks # l . . . , its destination 

can be redirected directly to the level j + 1. Similarly, i f a transition from the 

level h + 1 is marked by • ° it can be redirected to the level j + 1. Im

plementing this optimization gives automaton C5. 

Often (but not i n this example), jumping levels is a way to avoid creating 

useless copies of some states. Another side effect of this optimization is that 

some accepting cycles may be shorter than H + 2: the change effectively keeps 

the automaton as close to the accepting level as possible. If we are looking for 

counterexamples, C5 appear better than Cs because its accepting cycles are 

shorter on average. 

We recall that the init ial state of a degeneralized automaton can be put on 

any level. For example, Giannakopoulou and Lerda noticed that by changing 

the init ial level, they could sometimes save some states, so they try to use both 

the first and the last level and keep the smallest automaton. 3 6 In our example, 

C4 and Cs differ only by the choice of the init ial level, 3 7 there is no size differ

ence, and yet it makes a huge difference i n the run time of Spin, as discussed 

in the previous section. 

Another translation difference evidently comes from the difference be

tween the generalized automata obtained from the L T L formula. In our case 

C 4 , Cs, and Cs were obtained from Q-\ while C i and Cz were obtained from 

(?2-38 The difference between Q-\ and Qz is caused by choices made during the 

translation to favour deterministic states i n the case of (?i. In our example of 

Table 3.3, this improved determinism makes no difference since a and b are 

never true i n the system. 

3 5 Gastin and Oddoux (2001), "Fast LTL to 
Buchi Automata Translation", [31]. 

3 6 Giannakopoulou and Lerda (2002), "From 
States to Transitions: Improving Translation 
of LTL Formulae to Buchi Automata", [37]. 
3 7 In fact, C4 and C5 differ also in degeneral
ization order but this is negligible as a and 
b are symmetric in our problem. 

3 8 The difference between C\ and Cz is that 
Spin (Ci) performs no level jumping from 
the accepting state. 

3.3.4 Automata for - i(GFa ==• GFb) 

We now focus on another concrete case: - . ( G F a = > GFb) on mutex pro

tocols. The formula without negation describes that i f some process visits 

infinitely often the critical section, it infinitely often leaves it. This property 

holds i n model p e t e r s o n . 4. pm and therefore Spin has to bu i ld the whole 

product to find out that it contains no accepting cycle. Table 3.4 presents re

sults of Spin runs on the model pete rson. 4. pm and different Buchi automata 

for this formula. 

In this case, each tool produces a different automaton, as shown i n the first 

part of Figure 3.7. Note again that automata V2 and V4 cannot be distin

guished only by determinism and size metrics (see Table 3.4). They differ only 

in the target of the outgoing edge of so, yet we observe a significant difference 

in Spins behaviours. 

We actually use 12 different automata for this formula. The first seven of 

the table are generated by the considered tools. The others are handwritten 

by modifying the previous automata to explore which aspects of the automata 

make a significant difference i n Spins behaviour as described further. 

T>s is adapted from T>s by changing the degeneralization level on which 

we enter the S C C . D 9 keeps the strong init ial guard of T>s but then uses the 

accepting S C C of T>2. 2?io is a mix of T>s and V2 to observe the influence 
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(Z>!)Spin ( 2 ? 2 ) L T L 2 B A (£> 3 ) M o D e L L a (V4) L T L 3 B A (V5) L T L 3 B A (det) (V6) Spot 

& Spot (det) 

Figure 3.7: Automata for the LTL formula -. ( G F a = > G Fb). 

automaton size statistics from Spins execution 

states ndst edges trans stored states visited trans time 

2?i Spin 3 2 6 12 1577846 7680k 6.04s 

£> 2 L T L 2 B A 3 3 6 12 1577440 7684k 5.95s 

X>3 M o D e L L a 5 2 8 18 1580893 7670k 6.13s 

£> 4 L T L 3 B A 3 3 6 12 2299250 15583k 12.10s 

£> 5 L T L 3 B A (det) 4 1 7 14 2297625 15561k 12.00s 

2?6 Spot 3 1 6 9 848641 2853k 2.26s 

2?7 Spot (no jump) 3 1 5 9 852094 2863k 2.34s 

v& 3 1 6 9 848641 2853k 2.43s 

v9 3 3 6 11 852094 2878k 2.43s 

3 1 7 10 1575844 7658k 7.38s 

Z>11 3 1 6 10 1577440 7657k 7.07s 

3 1 6 10 2297625 15561k 12.30s 

Table 3.4: Statistics about generated automata and Spins run on the empty product model peterson. 4. pm and automata for -.(GFa = > GFb). 
The automata are shown in Fig. 3.7. 
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of the guards ab compared to b. is a version of T>2 i n which the S C C is 

made deterministic as i n Finally, T>-\2 fixes T>s by removing the spurious 

initial state s\.. 

Based on Table 3.4 we can group these automata into three categories, listed 

from the best to the worst wi th respect to Spins performance. Before we dis

cuss these categories, it is important to notice that i n a model where a means 

the process is in the critical section and b means the process leaves the critical 

section, we can expect most of the state space to be labelled by ab. 

T>£, T>j, T>8, T><? Automata with the smallest number of transitions. Note 

that the no jump version (Dj) and the one with a non-deterministic S C C 

(D9) both yields a few more states and transitions i n the product, but the 

difference is not significant. The key property of these automata is that 

they can leave the state so only by reading ab, whereas other automata are 

more permissive. 

T>-\, T>2 ,T>3,T>io,T>ii A l l these automata exhibit more non-determinism on 

state so and wi l l enter the accepting S C C even after reading <ib. However, 

when this happens, they do not reach the accepting state before ab is read, 

so this limits the number of red DFS. 

2?4,2?5, V-\ 2 These automata go from so to the accepting state s i each time 

they read ab. This both makes the product unnecessarily large and forces 

many calls to the red D F S . 3 9 The non-determinism i n accepting S C C of 2?4 

causes it to visits only slightly more states than the other two automata. 

A comparison of automata and 2?i i and their impact on Spins perfor

mance show that the hypothesis of Section 3.3.2 cannot be used alone to select 

the best automaton. Indeed, outperforms 2?i i even i f the distance from 

the init ial to the accepting state is shorter i n Vs. Here the more restrictive 

label of transition from so to s i i n V& plays an important role as well. These 

automata demonstrate that we should both try to "improve the product" (Sec

tion 3.2) by using more restrictive labels for A , and keep accepting states as 

hard to reach as possible (compare 2?i i to "D-[•£). 

To sum up, i f we suppose that there is no accepting cycle i n the product, 

the automaton should 

1. keep accepting states as far as possible from the init ial state (compare 2?i i 

to X>u) and 

2. use more restrictive labels (compare to V\2) 

in order to make the accepting states as hard to reach as possible. Moreover, 

making use of more restrictive labels can also help to reduce the product. 

3 . 4 S U M M A R Y O F T H E C H A P T E R 

There is no such thing as a best Buchi automaton for explicit model checking. 

Although building a small product generally helps the emptiness check we 

have provided evidence that the size of Av and even the size of S <8> Av does 

not always correlate to the performance of the N D F S on the product. For 

instance, the locations of accepting states of Av can have a dramatic impact 

3 9 A state of the product has two compo
nents: a systems state and an automatons 
state. Every time the blue DFS backtracks 
from a product s state with s i in the com
ponent for the property automaton. 
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on the run time of Spin. Unfortunately, there is no single general rule we could 

give here. The right choice vastly depends on the particular verification task 

we aim to solve. 

We show how can we tailor automata for particular system of the given 

verification task i n Chapter 4 where we exploit some knowledge about the 

system. Without any such knowledge, we may at least predict the expected 

result of the model checking and based on this prediction we can at least place 

accepting states accordingly. 

If S <g> A v contains no accepting cycle, the best automaton for Spin to ver

ify it should have accepting states that are hard to reach from the init ial state, 

as it w i l l lessen the chance that a red DFS is started. We observed that such 

a choice can be made during the degeneralization procedure, or by unroll ing 

some accepting cycles. 

If, on the contrary, S <8> A v contains an accepting cycle, Spin can find it 

faster i f the accepting states of A^ are easy to reach from the init ial state and 

the accepting cycles are short. Moreover, N D F S can benefit greatly from weak 

automata. 





Specifications meet systems 

In the previous chapter, we learnt that we can place accepting states of auto

mata i n a way that is helpful for Spin — under the assumption that we guess 

the expected result of the emptiness check correctly. If we were able to guess 

the result, we would not need to run the model checker, thus the assumption 

is unrealistic i n practice. 

In this chapter, we continue further with our campaign for ideal automata 

that are tailored for a particular verification task.1 Our approach differs from 

the one of the previous chapter i n three directions: we aim to bui ld a smaller 

product rather than to make Nested DFS more effective, we bui ld upon infor

mation about the system itself rather than on knowledge about the product, 

and we rely on information that we can acquire with only little effort for each 

system. 

Spin verifies systems given i n a modelling language called Promela. The 

Promela code is an implicit and compact representation of the system. A sys

tem i n Promela consists of several interacting processes. The Figure 4.1 shows 

a skeleton of a process PO i n the Promela language. The labels NCS, w a i t i n g , 

and CS are labels of process's locations, the process can move between loca

tions by goto commands. For every process P and each location l o c , Spin 

recognizes atomic propositions of the form P@loc which holds i f the last lo

cation reached by P is l o c . 

A process cannot be i n two different locations at the same time. Thus we 

say that the atomic propositions P0@NCS, PO@waiting, and P0@CS are mu

tually incompatible - no two of them can hold at the same time. W h y do 

we care about incompatible propositions? Consider the L T L formula cp = 

G PO@waiting v FG-.P0@CS and the two automata of Figure 4.2? The two au

tomata differ i n the languages they accept. The left one accepts L(cp) while 

the language of the right automaton accepts a smaller language: it accepts a 

subset of L(cp). For example, the left automaton accepts the word {a , b}w = 

{PO@waiting, P0@CS} a ' while the right one does not.3 However, we can use 

them interchangeably for model checking of a system that contains PO with

out changing the result. Indeed, the languages of the two automata differ only 

in words that make no sense for systems that contain PO — the words are cer

tainly not behaviours of the systems. Therefore such words are never present 

in the language of the product, and thus the language does not change. 

Moreover, the automaton from the right would apparently lead to a smaller 

product. W h e n we know that a and b are never valid at the same time, then 

G Q implies G->b and thus also FG->b. The right-hand side automaton makes 

use of this fact and checks only for F G -.b. Not only w i l l the product be smaller, 

also the number of the red DFS runs w i l l be lower with this automaton. 

In the rest of this chapter we shall discuss formally how to use the infor

mation about incompatible propositions to refine the specification when it 

is given either by an L T L formula or by a Bi ich i automaton. We talk about 

4 
1 A verification task is a pair of a system and 
an LTL formula. 

active proctype P0() { 
NCS: i f 

. . .; goto w a i t i n g ; 
f i ; 
w a i t i n g : i f 

...; goto CS; 
f i ; 

CS: i f 

f i ; 
} 

goto NCS; 

Figure 4.1: Skeleton of a code for a process 
PO that is used in the bakery mutual exclu
sion protocol description in the Promela lan
guage. Locations and the process name are 
in blue. The actual function code is left out 
for brevity. 

a V b 

( G a v FG-.b) 
A 

( G - ( Q A b ) ) [ G a v F G ^ b 

Figure 4.2: Biichi Automata for G a V FG-.b 
produced by Spot without (left) and with 
(right) information about the incompatibil
ity of propositions a and b. 

2 Where a stands for POgwaiting and b 
stands for P0@CS. 

3 To be more precise, runs of the right au
tomaton even blocks when reading { a , b} 
for the first time. 

In fact, we can apply the results also to spec
ifications given as PSL formulae or as other 
types of tu-automata. 
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formula refinement or automaton refinement, respectively. Both these opera

tions were implemented by Alexandre Duret-Lutz i n Spot 1 .99 .1 , available at 

https://spot.lrde.epita.fr/. 

Using refinement, we get a property automaton that may have fewer edges 

or even fewer states than the init ial property automaton. A l l these changes 

often have a positive effect on the rest of the model checking process, as doc

umented by experimental evaluation. 

As a side effect of the specification refinement, we typically obtain auto

mata with long edge labels. Besides the fact that such automata are harder to 

read by humans, Spin needs more time when building the product to evaluate 

these long edge labels. However, the labels explicitly contain the information 

about the incompatible propositions. As the information is already implicit ly 

in the verified systems, we can employ the incompatibility of propositions to 

make these labels short again (and even shorter than they were originally). 

The chapter is concluded by interesting cases discovered during our inten

sive experiments. 

4 . 1 S P E C I F I C A T I O N R E F I N E M E N T A N D C O N S T R A I N T S 

The Promela code of the system implici t ly describes an underlying automa

t o n 4 for the system and the code already provides us with some relevant infor

mation about the automaton. In particular, we can detect that some combina

tions of propositions i n A P ( cp) and their negations are never val id at the same 

time. We can express this information by a constraint K , which is a Boolean 

formula over AP(cp) satisfied by all combinations of atomic propositions ex

cept the invalid combinations. 

For instance, x>10, y<5, and x<y cannot hold together. This informa

tion follows directly from the meaning of the atomic propositions and the re

lated constraint is -.((x>10) A (y<5) A (x<y)). As already discussed, atomic 

propositions saying that a process P is i n various locations 5 are always incom

patible. Moreover, they are even mutually exclusive. If E is a set of mutually 

exclusive atomic propositions, the corresponding constraint is: 

A > A b ) 
a,beE 

While such constraints may seem obvious to the reader, tools that translate 

L T L formulae into Bi ich i automata do not analyze the semantics of atomic 

propositions, and thus they do not know that x>10 and x< 4 are incompatible. 

It is the job of the refinement algorithms for formulae and for automata to 

make the constraint K explicit for the tools and thus gain smaller automata. 

The aforementioned examples of incompatible propositions can be easily 

detected: by an S M T solver or even better by a regular expression. A more 

complicated static analysis of the system can identify more impossible com

binations. For instance, the analysis can find out that i f a process P is i n a lo

cation l o c , then local variable P: x has value 0, and thus atomic propositions 

P@loc and P : x>0 never hold together, expressed as - . ( ( P @ l o c ) A ( P : X>0)). 

We do not focus on finding incompatible propositions; we show how this i n 

formation can be used to improve model checking. 

4 It is, in fact, a Kripke structure. A Kripke 
structure can be seen as an automaton with 
labels on states instead of edges and with all 
states accepting. 

' For example P@locl, P@loc2, and P@loc3 

https://spot.lrde.epita.fr/


S P E C I F I C A T I O N S M E E T S Y S T E M S 45 

4 . 2 F O R M U L A R E F I N E M E N T 

The refinement of an L T L formula cp with respect to a constraint K is a formula 

rK(cp); it explicitly encodes K into the formula and is defined by 

rK(<p) = C P A G K . 

This extra information allows tools that translate L T L formulae into automata 

to produce smaller automata. For instance the Bi ich i automaton A v i n Fig

ure 4.3(a) was generated by Spot from the formula cp = F ( G a v ( G F b 

G F c ) ) . For the refined formula rK(cp) using the constraint for the mutual ex

clusivity of {a , b, c}, Spot produced the automaton i n Figure 4.3(b). This au

tomaton is smaller: the edge between states 3 and 5 labelled by be is known 

to be never satisfiable, and the state 0 is found to be superfluous.6 

a T be ab v be v ac be 

(c) rK(Av) (d) ls(A-K(<p)) = ls(as(TK(^,p))) 

6 Indeed, the incoming edges of state 0 
would be labelled by a b c, so that part of the 
automaton is covered by the state 2 already. 

Figure 4.3: Automata without and with 
specification refinement for the LTL formula 
cp = F ( G a V ( G F b <=> G F c ) ) and 
the constraint K = -.(a A b) A -.(a A c) A 
- , ( b A c ) . 
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4 . 3 A U T O M A T O N R E F I N E M E N T 

Alternatively, the refinement can be performed directly on the property au

tomaton which allows us to benefit from some known constraints even i f we 

want to specify erroneous behaviours directly as an automaton. In order to 

refine a given automaton A by a constraint K, we add K i n conjunction to all 

edge labels of A and remove the edge whenever the new label reduces to false. 

We denote the refined automaton by rK(A). 

Figure 4.3(c) shows a refined automaton for the automaton of Figure 4.3(a). 

In this case, state 0 is not removed. However, we can get r id of this state i f 

we run some simplification algorithms, such as simulation-based reductions, 7 

which are often employed i n L T L to automata translators. The result of this 

simplification pass is then again i n Figure 4.3(b). If as(„4<p) is the result of 

the same simplifications which are used by the translator that translated cp to 

A v , one would expect that the A r ^ = as(rK(„4<p)) always holds as i n the 

example of Figure 4.3(b). This is not true i n practice for two reasons: 

• Some translators have L T L rewriting rules that may react strangely to the 

refined formula, sometimes to the point of producing larger automata. 

• Some translators include automata simplification algorithms that can only 

be applied when the formula is known, so they cannot be run on arbitrary 

automata. For instance, Spot employs WDBA-min imiza t i on . 8 

It is equivalent to replacing every edge of A 
in the form ( T J , £ , T 2 ) by ( T J , I A K , T 2 ) . 

7 Babiak et al. (2013), "Compositional Ap
proach to Suspension and Other Improve
ments to LTL Translation", [44]. 

8 Dax, Eisinger, and Klaedtke (2007), "Mech
anizing the Powerset Construction for Re
stricted Classes of tu-Automata" [27]; 
Duret-Lutz (2014), "LTL Translation Im
provements in Spot 1.0", [34]. 

Nonetheless, both formula refinement and automaton refinement have three 

noticeable effects on the model checking process: 

• First, the automaton constructed wi th formula or automaton refinement 

is often smaller than the original automaton (for example, removing some 

transitions can make two states equivalent and such states can be merged). 

This can have a very positive effect on the model checking process. 

• Second, i f the unsatisfiable transitions are removed, Spin does not need 

to repeatedly evaluate the labels of these transitions during the product 

construction, only to finally ignore them. 

• Last, the longer labels produced by this refinement may take longer to eval

uate depending on how the model checker is implemented. This is the only 

negative effect, and we fix it i n Section 4.5. 
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4 . 4 E X P E R I M E N T A L E V A L U A T I O N 

Tools. In our experiments, we use four L T L - t o - B A translators presented in 

Table 4.1. Two of the translators, namely L T L 3 B A and Spot, are used with two 

settings: the default ones and the settings with the suffix "-det" that aim to pro

duce more deterministic automata. A l l translators are restricted by 20-minute 

timeout. For formula refinement, automaton refinement, and automaton sim

plifications we use the tools I t l f i l t and a u t f i l t from Spot 1.99.1; see ex

amples of the corresponding commands below where cp = F ( G a v ( G F b 

G F c ) ) , A is always stored i n i n p u t . hoa, and K is the constraint for the mu

tually exclusive set {a , b, c}. If there are several mutually exclusive sets, one 

can use - - e x c l u s i v e - a p multiple times. 

% I t l f i l t - f 'F(Ga | (GFb <-> GFc))' --exclusive-ap='a,b,c 1 

F(Ga | (GFb <-> GFc)) & G(!(a & b) & !(a & c) & !(b & c ) ) 

% a u t f i l t - -exclusive-ap='a,b, c ' i n p u t . a u t 

% a u t f i l t --high - - s m a l l input.hoa 

The emptiness checks of Spin was run with the maximum search depth of 

100000 000, memory limit 20 G i B , the option - DNOSTUTTER,9 and partial-

order reduction enabled for tasks with next-free formulae. The emptiness 

check is always restricted by 30-minute timeout. 

You can find the exact commands, the measured data and detailed i n 

formation about this benchmark at http://fi.muni.cz/~xstrejc/publications/ 

spin2015/ 

Benchmark. Our benchmark is made of 3316 verification tasks where some 

propositions are referring to distinct locations of a single process. We started 

with 789 verification tasks 1 0 from B e e m 1 1 and we removed 8 duplicate tasks. 

Unfortunately, Beem contains only about 25 different types of specification 

formulae 1 2 and most of them have a very simple structure. To get more var

ied formulae, we added verification tasks using the same Beem systems and 

randomly generated formulae. 

We generated these additional tasks as follows. For each instance of a Beem 

system 1 3 we generated 10 000 random formulae using the tool r a n d l t l from 

Spot. More precisely, we ran 

% r a n d l t l -nlOOOO - t r e e - s i z e = 3 0 . . 5 0 < l i s t of p r o p o s i t i o n s > 

where the atomic propositions were gathered from all original Beem formu

lae for the corresponding instance. For each such verification task, we ran 

Spot 1.2.5 to translate the formula into a Buchi automaton and then we ran 

Spin with the settings as described above. We selected verification tasks where 

translator version command 

Spin [21; 26] 6.3.2 s p i n 

Command to build rK(cp) from cp and its 
output in grey. 

Command to build Tk(.4) from A. 

Command to simplify A. 

9 See Section 4.6.3 for the explanation. 

1 0 A verification task is a pair of a Promela 
code of a system and an LTL formula de
scribing erroneous behaviours. 
1 1 Pelanek (2007), " B E E M : Benchmarks for 
Explicit Model Checkers", [30]. 

1 2 the others differ only in atomic proposi
tions or their combinations 

1 3 23 parametric systems, altogether 133 in
stances 

Table 4.1: Considered LTL-to-BA transla
tors, for reference. The reference of Spin is 
valid also for the model checker. 

L T L 2 B A [31] 

L T L 3 B A [33] 

LTL3BA-det 

Spot [34] 

1.1.2 

1.1 

1.99b 

l t l 2 b a 

l t l 3 b a 

l t l 3 b a -M0 

l t l 2 t g b a -s 

l t l 2 t g b a -s - - d e t e r m i n i s t i c Spot-det 

http://fi.muni.cz/~xstrejc/publications/
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• Spot translates the formula within 20 minutes, 

• Spins verifier finished i n more than 5 seconds and less than 30 minutes, 

and 

• Spin neither reached maximum search depth nor ran out of memory. 

We got 6069 generated verification tasks with random formulae. For each ver

ification task (original or generated), we constructed exclusive sets based on 

atomic propositions referring to process locations. The constraints we used 

for specification refinement are therefore based only on the fact that one pro

cess cannot be i n two locations at the same time. We removed all verification 

tasks for which we d id not detect such constraints. 

In the end, we have 3316 verification tasks of reasonable complexity and 

with constraints. These tasks employ 101 instances of 16 parametrized sys

tems from Beem. O f all the tasks, 50 are from Beem, the rest use generated 

formulae. 

Hardware. A l l computations were performed on the same machine as the 

experiments from the previous chapter. The machine was shared with other 

users and its variable workload has again led to high dispersion of measured 

run times. Hence, instead of run times, we use the number of transitions 

visited by Spin, which is stable across multiple executions and should be pro

portional to the run time. 

The two timeouts of Spot in Table 4.2 can be 
explained either by the fact that we used an 
older version (1.2.5 vs 1.99b) to generate the 
formulae from the tasks or by a time that is 
very close to the 20 minutes threshold. 

The CSV file with the measured data from 
the URL also contains the measured time. It 
could be used to draw the same conclusions 
as we did using the visited transitions. 

4.4.1 Impact of Formula Refinement 

For each verification task (S, cp) and each translator of Table 4.1, we translate 

cp to an automaton A v and run Spin on S and A v (original task). Then we re

fine the formula to rK(cp) and repeat the process (refined task). Table 4.2 shows 

the numbers of translation timeouts, Spin fails, 1 4 and successfully solved ver

ification problems. The data indicate that formula refinement has a mostly 

positive effect on the model checking process: for all but one translator, 1 5 

the refinement increases the number of successfully solved tasks. Neverthe

less, the number of tasks solved both with and without formula refinement 

is always smaller than the number of original tasks successfully solved. This 

means that the effect of the formula refinement is negative i n some cases. 

1 4 This number covers the cases when Spin 
timeouts, runs out of memory, or reaches the 
maximum search depth 
1 5 We discuss the case of the translator Spin 
in more details in Section 4.6.2. 

translator 

original tasks (S, cp) refined tasks (S, rK(cp)) 

translation Spin tasks translation Spin tasks both tasks 

timeouts fails solved timeouts fails solved solved 

Spin 801 232 2283 926 201 2189 2183 

L T L 2 B A 5 341 2970 2 302 3012 2929 

L T L 3 B A 0 80 3236 0 55 3261 3227 

LTL3BA-det 0 34 3282 0 27 3289 3279 

Spot 2 27 3287 0 19 3297 3286 

Spot-det 2 26 3288 0 19 3297 3287 

A l l 810 740 18346 928 623 18345 18191 

Table 4.2: Statistics of fails and successfully 
solved verification tasks with and without 
formula refinement. 
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Table 4.3 shows that the property automaton for a refined formula fre

quently has fewer states than the automaton for the original formula. How

ever, we cannot easily tell whether states are removed simply because they are 

inaccessible after refinement (i.e., the constraint K removed all the transitions 

leading to a state) or i f the refinement enabled additional simplifications as 

in Figure 4.3. In the former case, the refinement would have a little impact 

on the size of the product: it is only saving useless attempts to synchronize 

transitions that can never be synchronized while building this product. 

effect Spin L T L 2 B A L T L 3 B A LTL3BA-det Spot Spot-det 

+states 514 41 15 148 13 17 

-states 168 1482 1679 1723 1722 1720 

=states,+edges 37 17 0 0 9 10 

=states,-edges 43 337 293 326 345 344 

=states,=edges,+trans. 153 211 283 173 280 280 

=states,=edges,-trans. 1226 785 899 848 849 848 

no size change 42 56 58 61 68 68 

A l l 2183 2929 3227 3279 3286 3287 

Finally, we turn our attention to the actual effect of formula refinement 

on the performance of the emptiness check implemented i n Spin. For each 

translator and each verification task, let t i be the number of transitions vis

ited by Spin for the original task and t 2 be the same number for the refined 

task. Scatter plots i n Figure 4.4 on the page 50 show each pair ( t i ,tz) as a 

dot at this coordinate. The color of each dot says whether the property au

tomaton for the refined formula has more or fewer states than the automaton 

for the original formula. The data is shown separately for each translator. We 

also distinguish the tasks with some erroneous behaviour from those without 

error. As many dots i n the scatter plots are overlapping, we present the data 

also via improvement ratios t 2 / t i . Values of t 2 / t i smaller than 1 correspond 

to cases where formula refinement actually helped Spin, while values larger 

than 1 correspond to cases where the refinement caused Spin to work more. 

Figure 4.5 gives an idea of the distribution of these improvement ratios 

in our benchmark. In this figure, all improvement ratios for a given tool are 

sorted from lowest to highest, and then they are plotted using their rank as x 

coordinate and using a logarithmic scale for the ratio. One can immediately 

see on these curves that there is a large plateau around y = 1 correspond

ing to the cases where there is no substantial change. A m o n g the tasks with

out error, there are usually many cases with the ratio below 0.95 (a definite 

improvement), and very few cases above 1.05 (cases where refinement hurts 

more than it helps). A special class of cases that are improved are those that 

are found equivalent to false after refinement: those usually have a very high 

improvement ratio, as the exploration of the product is now limited to a sin

gle transition. 1 6 The refined formula cannot be equivalent to false i n tasks with 

an error. Relatively high numbers of these "false" cases imply that the formula 

refinement technique is an effective sanity check detecting specifications un-

satisfiable under given constraints. Table 4.4 gives counts of improvement 

ratios i n these classes. 

Table 4.3: Effect of formula refinement on 
property automata. For each translator and 
each verification task, we compare the size 
of Av with the size of -A T | <(cp) and report on 
the number of cases where the refinement re
sulted in additional states (+states) or fewer 
states (-states). In case of equality, we look at 
the number of edges or transitions. For each 
translator we consider only the tasks from 
the last column of Table 4.2, which are tasks 
solved both with and without formula refine
ment. 

1 6 Spin immediately realizes that the empty 
automaton cannot be satisfied 

The high number of "false" cases is due to the 
use of random formulae. In real tasks, such 
a false case would likely indicate a bug in the 
specification. 
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Figure 4.4: Comparison of the numbers of product transitions vis
ited by Spin on the original tasks (t i ) and their formula-refined 
versions (t.2). 

Figure 4.5: Distribution of the improvement ratios ( t 2 / t 1). Cases 
that have been reduced to false are highlighted in bold. Note log 
scale. 
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Figures 4.4 and 4.5 and Table 4.4 show that for tasks without error, formula 

refinement has a negative effect 1 7 only very rarely and such effect is relatively 

small. The positive effect is more frequent and substantial i n many cases. The 

table implies that L T L 3 B A and Spot can profit more from the refinement as 

they identify radically more false cases and they have significantly less cases 

with negative effect than the other translators. This observation can be ex

plained by advanced simplification techniques implemented i n L T L 3 B A and 

Spot. 

1 7 Some of the negative effects are discussed 
in Section 4.6. 

You can find more detailed data that relate 
the effect on automata and on model check
ing in Tables 4.12 and 4.13 on the pages 58 
and 59. 

without error with error 

false <0.95 [0.95,1.05] >1.05 A l l <0.95 [0.95,1.05] >1.05 A l l 

Spin 0 30 1257 50 1337 27 708 111 846 

L T L 2 B A 61 462 1179 48 1750 288 602 289 1179 

L T L 3 B A 374 401 1101 7 1883 194 942 208 1344 

detLTL3BA 382 264 1255 12 1913 186 993 187 1366 

Spot 384 300 1213 20 1917 244 902 223 1369 

detSpot 385 297 1218 18 1918 248 903 218 1369 

A l l 1586 1754 7223 155 10718 1187 5050 1236 7473 

In the tasks wi th erroneous behaviours, we observe that the number of i m 

proved cases is almost balanced by the number of degraded cases (except for 

Spin). This can be explained by the fact that refining an L T L formula may 

alter the shape of the output automaton, and thus change its transition order. 

Therefore the model checker may have more or less luck i n finding an erro

neous run. When such a run is found, Spin ends the computation without 

exploring the rest of the product. 

Table 4.5 shows that measuring the number of transitions explored by Spin 

instead of time has no effect on conclusions. There are only 93 (out of 18 191) 

tasks where refinement improved the number of explored transitions but Spin 

needed more time. However, this is caused mainly by the unreliable measure

ments of the run times, which is obvious i n the cases where the formula was 

reduced to false and Spin still needed more time to evaluate the task after re

finement. 

Table 4.4: Distribution of the improvement 
ratios for formula refinement. The counts 
of false cases are not included in the <0.95 
classes. 

time ratio Table 4.5: Relation of change in the number 
of transitions to the change in the measured 

without error with error r u n t i m e (unreliable) of Spin. 

trans ratio <0.95 [0.95,1.05] >1.05 <0.95 [0.95,1.05] >1.05 

false 1552 14 20 0 0 0 

<0.95 1552 159 43 1006 131 50 

[0.95,1.05] 492 2358 4373 617 2263 2170 

>1.05 1 4 150 79 221 936 
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4.4.2 Impact of Automaton Refinement 

As mentioned before, automaton refinement itself only cuts off some parts of 

the automaton that are not used i n the product. It has a bigger effect only 

when additional simplification algorithms are executed after the refinement. 

In our experiments, we combined the automaton refinement with automaton 

simplifications implemented i n Spot. 

To measure the effect of automaton refinement, we prepared the bench

mark as follows. We took the 3316 verification tasks used before. For every 

task, we translated the formula with all considered translators and simplified 

the produced automata using Spot - that is the automaton A. The simplifi

cation is here applied to make the comparison of model checking with and 

without automaton refinement fair: without this step, we could not really 

distinguish the effect of automaton refinement (followed by simplifications) 

from the effect of simplifications themselves. If the automaton translation and 

simplification successfully finishes, we get a pair of a system and a simplified 

automaton (original task). After removing duplicates, we have 9352 original 

tasks. 

For each task, we run Spin with the original automaton. Then we refine and 

simplify the automaton and run Spin again. Whi le the automaton refinement 

is very cheap, the successive simplification can be quite expensive. So we apply 

a 20-minute timeout to simplifications. Table 4.6 provides numbers of Spin 

fails on original tasks, timeouts of refined automata simplifications, and Spin 

failures on refined tasks. In the following, we work only with tasks solved both 

with and without automaton refinement. 

original tasks (S,A) refined tasks (S, as(rK(A))) T f e

]

4 - 6 : f t i s t i c s o f , f a i l s a " d ^ f ^ Y 
_ solved verification tasks with and without 

Spin tasks simplification of Spin tasks both tasks automata refinement. 

fails solved rK(„4) timeouts fails solved solved 

291 9061 12 99 9241 9038 

-a o 
& 
ö 

without error 

iO.8-10 9-

cd 

-a 

without error 

0 0.8-10a 0 0.8-109 

original automata - transitions in product 

o 
& 
Ö 

o 

10s 

10 1 

io -

o 
.2 to- 8 

with error 

0 1000 200030004000 5000 0 
rank 

1000 2000 3000 4000 

=states » ] - s t — false — < 0.95 [0.95,1.05] - > 1.05 

Figure 4.6: Comparison of the numbers of product transitions visited 
by Spin on the original tasks (t i ) and their automata-refined versions 
( t 2 ) . 

Figure 4.7: Distribution of the improvement ratios ( t2/ t ] ) . Cases 
that have been reduced to false are highlighted in bold. Note log scale. 
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As i n the previous section, Table 4.7 presents the effect of automaton re

finement and simplification on the sizes of property automata. The refined 

and simplified automata are smaller i n the vast majority of cases and never 

bigger. 

The effect of automaton refinement and simplification on the performance 

of the emptiness check i n Spin is presented i n Figures 4.6 and 4.7, and Table 4.8 

in the same way as previously. O n tasks without error, the effect is similar to 

formula refinement: it is often positive and almost never negative. O n tasks 

with error, the positive effect is more frequent than the negative one. 

4.4.3 Comparison of Formula and Automaton Refinement 

Here we compare the formula refinement and automaton refinement using 

Spot for the formula translation. For each of the 3316 considered tasks, we 

refine the formula, translate it by Spot, and run Spin. Then we take the task 

again, translate the original formula by Spot, refine and simplify the automa

ton, and run Spin. Table 4.9 provides statistics about automata construction 

timeouts, 1 8 Spin timeouts, and solved tasks. Both approaches detected 380 

identical cases where the refined specification reduces to false. In the follow

ing, we present the data from the 3256 - 380 = 2876 tasks solved by both 

approaches and not trivially equivalent to false. 

effect 

+states 0 
-states 4955 
=states,+edges 0 
=states,-edges 1013 
=states,=edges,+trans. 0 
=states,=edges,-trans. 2400 
no size change 670 

Table 4.7: Effect of automaton refinement 
on property automata. 

without error with error 

false 906 0 
< 0.95 853 735 
[0.95,1.05] 3251 2743 
> 1.05 5 545 
A l l 5015 4023 

Table 4.8: Distribution of the improvement 
ratios for automaton refinement. 
1 8 This number comprises Spot timeouts and 
also simplification of refined automata time
outs in the case of automaton refinement 

tasks with formula refinement tasks with automaton refinement 

automaton automaton both 

construction Spin tasks construction Spin tasks tasks 

timeouts fails solved timeouts fails solved solved 

0 19 3297 35 25 3256 3256 

Table 4.9: Statistics of fails and successfully 
solved verification tasks with formula refine
ment and automaton refinement. 

Tables 4.10 and 4.11 and Figures 4.8 and 4.9 are analogous to the tables and 

figures i n the previous sections (the position of original tasks i n the previous 

sections is taken by tasks with formula refinement). Table 4.10 says that au

tomaton refinement often produces property automata with more states than 

formula refinement. However, Figure 4.8 and Table 4.11 show that the overall 

effect of automata and formula refinement on the performance of Spin is fully 

comparable, slightly i n favour of formula refinement. 

4 . 5 L A B E L S I M P L I F I C A T I O N 

As mentioned i n Section 4.1, a side-effect of specification refinement is that 

edges get more complex labels. This is visible when comparing the automa

ton of Figure 4.3(b) to the one of Figure 4.3(a). For example, the self-loop on 

state 3 is labelled by ac v be instead of the original c. In our experiment, the 

overall average length of an edge label (counted as the number of occurrences 

of atomic propositions i n the label) i n the automata ATk^ for refined formu

lae is 6.58, while the average label length i n the corresponding automata Av 

for unrefined formulae is only 4.20. Spin compiles the labels during the con

struction of the product into C code that matches the system transitions. For 

example, Figure 4.10 depicts the C code corresponding to the labels dc v be 

effect 

+states 31 5 
-states 82 
=states,+edges 52 
=states,-edges 51 
=states,=edges,+trans. 26 
=states,=edges,-trans. 428 
no size change 1922 

Table 4.10: Comparison of automata pro
duced by formula refinement and automa
ton refinement (+states counts tasks where 
&s(rK(A(p)) has more states than A, 
so on). 

K(<P) and 

without error with error 

< 0.95 44 133 
[0.95,1.05] 1399 970 
> 1.05 71 259 
A l l 1514 1362 

Table 4.11: Distribution of the improvement 
ratios for automaton refinement over for
mula refinement. 
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Figure 4.8: Comparison of the numbers of product transitions vis
ited by Spin in formula-refined tasks (t]) and their automata-refined 
versions (t.2). 

Figure 4.9: Distribution of the improvement ratios ( t 2 / t i ) . Cases 
that have been reduced to false are highlighted in bold. Note the log 
scale. 

and c. Clearly, longer labels can slow down the verification process without 

influencing any Spin statistics like visited transitions and stored states. How

ever, the expected slowdown should be only small as checking the labels is 

much cheaper than computing the successors of states of the system or stor

ing the states. 

i f ( !(((!((((int)((Pl * ) P p t r ( f _ p i d ( l ) ) ) - > _ p ) == 27))&& 
! ( ( ( ( i n t ) ( ( P l * ) P p t r ( f _ p i d ( l ) ) ) - > _ p ) == 5 ) ) ) | | 
(!((((int)((Pl * ) P p t r ( f _ p i d ( l ) ) ) - > _ p ) == 27))S& 
! ( ( ( ( i n t ) ( ( P l * ) P p t r ( f _ p i d ( l ) ) ) - > _ p ) == 9 ) ) ) ) ) ) ... 

i f (!( ! ( ( ( ( i n t ) ( ( P l * ) P p t r ( f _ p i d ( l ) ) ) - > _ p ) == 27)))) ... 

We eliminate this slowdown by a step that resembles a converse of refine

ment. Refinement uses the given constraint K to make edge labels more pre

cise (restrictive). Label simplification uses K to make the edge labels less pre

cise and shorter, but equivalent to the original labels under the constraint K. 

For instance, be can be shortened to b i f we know that b and c never hold 

together i n the system. The edge label is i n fact a Boolean function and we 

can simplify these based on so-called don't care19 information. Concretely, 

we have implemented the simplification i n Spot using the Minato-Morreale 

algorithm. 2 0 The algorithm takes two Boolean functions [f J and [f ] and pro

duces a min imal label that covers at least all the assignments satisfying [fj, 

and that is not satisfiable by at least all the assignments not satisfying [f]. To 

simplify a label £ using a constraint K, we call this algorithm with [f J = t A K 

and |f] = i v —iK, 

% a u t f i l t - - e x c l u s i v e - a p = ' a , b , c ' \ 

- - s i m p l i f y - e x c l u s i v e - a p i n p ut.hoa 

Figure 4.3(d) shows the result of label simplification (denoted as function Is) 

applied to Figure 4.3(b). 

We applied the label simplification to all automata obtained by formula 

refinement and the average label length dropped to 3.19, which is even lower 

Figure 4.10: Parts of two pan. m files that 
Spin generates when it checks a system 
against two automata of Figure 4.3. The up
per part encodes an edge of -4.TK(cp) labelled 
by fie V be and the last line represents an 
analogous edge of A. with label c. 

1 9 We do not care if the simplified label ad
ditionally covers some variable assignments 
that can never happen in the system. 

2 0 Minato (1993), "Fast Generation of Prime-
Irredundant Covers from Binary Decision 
Diagrams", [45]. 

Command that simplifies labels of A. 
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than 4.20 which is the value for automata without refinement. We selected 

several cases with high reduction of label length and run Spin several times 

with automata before and after label simplification on a weaker, but isolated 

machine to get reliable run times. In these tests, Spin runs up to 3.5% faster 

after label simplification. 

4 . 6 W H E N R E F I N E M E N T H A R M S A N D F O U N D B U G S 

In few cases, specification refinement decreased the performance of Spin. We 

have identified three origins of these situations. 

4.6.1 The Case of Strongly Connected Components 

Figure 4.11 shows one of the few tasks without error where the refined formula 

translated by Spot degrades the performance of Spin. Spin performs better 

with the automaton A v (Figure 4.11(a)) than with the smaller automaton 

ArÁ(p) (Figure 4.11(b)). 

The reason why Spin works better with the larger of these two automata 

was already discussed i n the previous chapter. It is related to the sensitivity of 

Nested DFS algorithm to the location of accepting states. In the automaton of 

Figure 4.11(b) the state 12 is accepting. Whenever the blue DFS backtracks 

a state of the product that is synchronized with state 12, it has to start a red 

DFS that w i l l explore again the states synchronized with 12 and 13 previously 

explored by the blue DFS. 

The reexploration of states synchronized with 13 is something that 

1. d id not happen i n the original automaton because there is no accepting 

state preceding the corresponding state 3, and 

2. is useless because there is no way to get back to state 12 after moving to 

state 13. 

The N D F S algorithm could be patched to avoid this problem by simply 

constraining the red DFS to explore only the states of the product whose pro

jection on the property automaton belongs to the same strongly connected 

component as its starting accepting state. This optimization was already sug

gested by Edelkamp et al. with one additional trickdf we know that the current 

S C C is weak, 2 1 then running a red DFS is not needed at all as the blue DFS is 

guaranteed to find any accepting cycle by itself? 2 In the scenarios described 

b c e v a e v d e d f v g 

ae <r 
a b d ě v b c ě 

VÍO a ě f v g dě 
a ě \ J 

The automaton presented in Figure 4.11 (a) is 
a pruned version of the real automaton. We 
have removed all transitions that do not ap

pear in the product with the system. For in

stance, in this pruned automaton it is obvi

ous that the state 7 can be merged with the 
state 8, but the presence of other edges in the 
original automaton prevented this simplifi

cation. 

States synchronized with 14 are ignored as 
they have been already seen by a previous red 
DFS. 

2 1 A l l states of a weak SCC are accepting or 
all are nonaccepting. 

2 2 Edelkamp, LluchLafuente, and Leue 
(2001), "Directed Explicit Model Checking 
with HSFSPIN", [46]; Edelkamp, Leue, and 
LluchLafuente (2004), "Directed Explicit

State Model Checking in the Validation of 
Communication Protocols", [47]. 

(b) -4r
K
(<p) 

Figure 4.11: A n uncommon case where 
•4

TK
(,p) is much smaller than A.v, and yet 

Spin performs better with A v . 
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by Figures 4.11(a) and 4.11(b), all the SCCs have a single state, so the product 

automaton w i l l be weak and the red DFS should not be needed. Computing 

the strongly connected components of the property automaton can be done 

in time that is linear to the size of that automaton (typically a small value) 

before the actual emptiness check starts, so this is a cheap way to improve the 

model checking time. 

4.6.2 Problems with LTL simplifications 

A special class of interesting cases consists of formulae where formula refine

ment leads to bigger automata. Such cases are surprisingly often connected 

with issues i n the earliest phases of L T L to automata translation, namely in 

formula parsing or simplification. For example, L T L 3 B A implements several 

specific formula reduction rules applied after all standard formula reductions. 

If such a rule is applied, the reduced formula is checked again for possible ap

plication of some reduction rule, but i n L T L 3 B A version 1.1.2 it was checked 

only on the top level of the formula. Hence, some reductions were not applied 

when the input formula was refined with a constraint. This was a bug and was 

fixed i n version 1.1.3. 

L T L 2 B A has even more problems with formula simplifications as it is sen

sitive to superfluous parentheses. For instance, the command l t l 2 b a - f 

' <> ([ ] <>X p) ' generates an automaton with 2 states, while the equivalent The operator <> represents F and [ ] repre-

l t l 2 b a - f '<>[]<>X p ' produces an automaton with 4 states. This is due sents G inLTL2BA. 

to the fact that L T L 2 B A runs another simplification pass i n the presence of 

parentheses. 

Table 4.3 indicates that Spin's translator benefits less than the other trans

lators from the addition of constraints. Part of the problem, it seems, is due 

to a change that was introduced i n Spin 6 to allow L T L formulae embedding 

atomic propositions with arbitrary Promela conditions. As a consequence of 

this change, many parenthetical blocks are now considered as atomic propo

sitions by Spins translator, and simplifications are therefore missed. For i n 

stance, the formula ( a R b ) A G ( - . ( a A b ) ) i s translated as i f - . (a A b) was an 

independent atomic proposition. Whi le Spin 5 translates this formula into an 

automaton with one state and one edge, Spin 6 outputs an automaton with two 

states and three edges, where the edge connecting the states has unsatisfiable 

label - . (a A b ) A Q A b . 

4.6.3 Problem with Spin 

Dur ing our experiments, we discovered a handful of cases where equivalent 

automata would cause Spin to produce different results: e.g., a counterexam

ple for automata built by some tools, and no counterexamples for (equivalent) 

automata built by other tools. Sometimes the automata would differ only by 

the order i n which the transitions are listed. In turned out that this b u g 2 3 was 2 3 http://spinroot.com/fluxbb/viewtopic. 

due to a rare combination of events i n the red DFS i n the presence of a dead- ph P ? P id=33i6, fixed by Spin 6.4.4 

lock i n the system. A l l the presented results are computed by compiling the 

Spin 6.3.2 verifier with - DNOSTUTTER, which effectively means that we ignore 

deadlock scenarios, and we are safe from this bug. 

http://spinroot.com/fluxbb/viewtopic
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4 . 7 F I N A L R E M A R K S 

We only considered incompatibilities between atomic propositions that de

note a process being i n different locations i n our evaluation. More sources of 

incompatibilities could be considered, such as atomic propositions that refer 

to different variable values. We could also extend the principle to more than 

just incompatible propositions: for instance from the system we could extract 

information about the validity of atomic propositions i n the init ial state, the 

order of locations i n a process, or learn the fact that some variable w i l l al

ways be updated i n a monotonous way (e.g., can only be increased). A l l these 

information can be used to produce stricter property automata that ignore 

these impossible behaviours, and we think these automata should offer more 

opportunity for simplifications, and should also contribute to better sanity 

checks. 

We demonstrated the usefulness of refinement i n model checking. We be

lieve it should also be useful i n other contexts like probabilistic model check

ing or controller synthesis. 
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effect on automata ratio Spin LTL2BA LTL3BA LTL3BA-det Spot Spot-det A l l 

without error +states false 0 0 0 0 0 0 0 
<0.95 8 4 0 2 0 0 14 
[0.95,1.05] 254 6 3 109 2 2 376 
>1.05 41 14 0 7 0 0 62 

-states false 0 54 367 375 377 378 1551 
<0.95 21 415 396 258 292 289 1671 
[0.95,1.05] 86 548 372 528 475 482 2491 
>1.05 0 20 3 5 16 14 58 

=states,+edges false 0 0 0 0 0 0 0 
<0.95 0 2 0 0 0 0 2 
[0.95,1.05] 16 8 0 0 3 3 30 
>1.05 5 2 0 0 0 0 7 

=states,-edges false 0 0 0 0 0 0 0 
<0.95 1 17 5 4 5 5 37 
[0.95,1.05] 16 179 153 156 187 185 876 
>1.05 0 0 0 0 0 0 0 

=states,=edges,+trans false 0 0 0 0 0 0 0 
<0.95 0 7 0 0 0 0 7 
[0.95,1.05] 95 114 167 75 163 163 777 
>1.05 4 4 4 0 4 4 20 

=states,=edges,-trans false 0 0 0 0 0 0 0 
<0.95 0 17 0 0 3 3 23 
[0.95,1.05] 754 284 363 343 333 333 2410 
>1.05 0 8 0 0 0 0 8 

no size change false 0 7 7 7 7 7 35 
<0.95 0 0 0 0 0 0 0 
[0.95,1.05] 36 40 43 44 50 50 263 
>1.05 0 0 0 0 0 0 0 

with error +states false 0 0 0 0 0 0 0 
<0.95 9 8 2 21 0 2 42 
[0.95,1.05] 150 5 5 7 9 10 186 
>1.05 52 4 5 2 2 3 68 

-states false 0 0 0 0 0 0 0 
<0.95 15 174 167 135 190 189 870 
[0.95,1.05] 43 179 258 321 269 270 1340 
>1.05 3 92 116 101 103 98 513 

=states,+edges false 0 0 0 0 0 0 0 
<0.95 1 3 0 0 0 4 8 
[0.95,1.05] 12 2 0 0 3 1 18 
>1.05 3 0 0 0 3 2 8 

=states,-edges false 0 0 0 0 0 0 0 
<0.95 0 18 10 24 22 21 95 
[0.95,1.05] 15 82 95 116 96 98 502 
>1.05 11 41 30 26 35 35 178 

=states,=edges,+trans false 0 0 0 0 0 0 0 
<0.95 1 13 3 0 4 4 25 
[0.95,1.05] 50 59 104 90 100 100 503 
>1.05 3 14 5 8 9 9 48 

=states,=edges,-trans false 0 0 0 0 0 0 0 
<0.95 1 71 12 6 28 28 146 
[0.95,1.05] 432 268 472 449 414 413 2448 
>1.05 39 137 52 50 71 71 420 

no size change false 0 0 0 0 0 0 0 
<0.95 0 1 0 0 0 0 1 
[0.95,1.05] 6 7 8 10 11 11 53 
>1.05 0 1 0 0 0 0 1 

Table 4.12: More precise data about formula refinement impact on automata and on model checking. For each combination of effect on automata 
(+states means increase number of states) and each category of ratio of visited transitions (with refinement/without refinement) we show number of 
corresponding cases for each LTL-to-BA translator. As usual, we keep the cases with error (counterexample) and without error (the whole product 
explored) apart. 
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ratio effect on automata Spin LTL2BA LTL3BA LTL3BA-det Spot Spot-det A l l 

without error false +states 0 0 0 0 0 0 0 
-states 0 54 367 375 377 378 1551 
=states,+edges 0 0 0 0 0 0 0 
=states,-edges 0 0 0 0 0 0 0 
=states,=edges,+trans 0 0 0 0 0 0 0 
=states,=edges,-trans 0 0 0 0 0 0 0 
no size change 0 7 7 7 7 7 35 

<0.95 +states 8 4 0 2 0 0 14 
-states 21 415 396 258 292 289 1671 
=states,+edges 0 2 0 0 0 0 2 
=states,-edges 1 17 5 4 5 5 37 
=states,=edges,+trans 0 7 0 0 0 0 7 
=states,=edges,-trans 0 17 0 0 3 3 23 
no size change 0 0 0 0 0 0 0 

[0.95,1.05] +states 254 6 3 109 2 2 376 
-states 86 548 372 528 475 482 2491 
=states,+edges 16 8 0 0 3 3 30 
=states,-edges 16 179 153 156 187 185 876 
=states,=edges,+trans 95 114 167 75 163 163 777 
=states,=edges,-trans 754 284 363 343 333 333 2410 
no size change 36 40 43 44 50 50 263 

>1.05 +states 41 14 0 7 0 0 62 
-states 0 20 3 5 16 14 58 
=states,+edges 5 2 0 0 0 0 7 
=states,-edges 0 0 0 0 0 0 0 
=states,=edges,+trans 4 4 4 0 4 4 20 
=states,=edges,-trans 0 8 0 0 0 0 8 
no size change 0 0 0 0 0 0 0 

with error false +states 0 0 0 0 0 0 0 
-states 0 0 0 0 0 0 0 
=states,+edges 0 0 0 0 0 0 0 
=states,-edges 0 0 0 0 0 0 0 
=states,=edges,+trans 0 0 0 0 0 0 0 
=states,=edges,-trans 0 0 0 0 0 0 0 
no size change 0 0 0 0 0 0 0 

<0.95 +states 9 8 2 21 0 2 42 
-states 15 174 167 135 190 189 870 
=states,+edges 1 3 0 0 0 4 8 
=states,-edges 0 18 10 24 22 21 95 
=states,=edges,+trans 1 13 3 0 4 4 25 
=states,=edges,-trans 1 71 12 6 28 28 146 
no size change 0 1 0 0 0 0 1 

[0.95,1.05] +states 150 5 5 7 9 10 186 
-states 43 179 258 321 269 270 1340 
=states,+edges 12 2 0 0 3 1 18 
=states,-edges 15 82 95 116 96 98 502 
=states,=edges,+trans 50 59 104 90 100 100 503 
=states,=edges,-trans 432 268 472 449 414 413 2448 
no size change 6 7 8 10 11 11 53 

>1.05 +states 52 4 5 2 2 3 68 
-states 3 92 116 101 103 98 513 
=states,+edges 3 0 0 0 3 2 8 
=states,-edges 11 41 30 26 35 35 178 
=states,=edges,+trans 3 14 5 8 9 9 48 
=states,=edges,-trans 39 137 52 50 71 71 420 
no size change 0 1 0 0 0 0 1 

Table 4.13: More precise data about formula refinement impact on automata and on model checking, in comparison to Table 4.12 the columns effect 
on automata and ratio are swapped. 





Part II 

LTL TO DETERMINISTIC AUTOMATA 





Translation ofLTL Fragments into 
Generalized Rabin Automata 

This chapter presents a translation of an L T L fragment into deterministic au

tomata. The translation is influenced by the successful L T L to N B A transla

tion algorithm of L T L 2 B A , 1 , however, it avoids the notoriously difficult de-

terminization of Buchi automata. The inspiration is reflected i n our two-step 

approach. 

1 Gastin and Oddoux (2001) , "Fast LTL to 
Buchi Automata Translation", [31]. 

1. A given L T L formula cp is translated into a linear alternating automaton 

(LAA)2 Aq> as i n L T L 2 B A . For the considered fragment, the L A A satis- 2 Also known as very weak, 1 -weak, or self-
loop alternating automata. fies an additional structural condition; we call such automata may/must toop alternating automata. 

alternating automata (MMAA). 

2. The M M A A A is translated into a deterministic generalized Rabin automa

ton Q with marks on transitions. 

We also show that with just a little tweak, the construction is correct even for 

a slightly larger fragment. 

Chatterjee et al. showed that it mostly pays off to use the generalized form 

of Rabin automata.3 However, for the sake of completeness, we offer a pro- 3 Chatterjee, Gaiser, and Kfetmsky (2013), 

LTL Fragments. In this chapter, we consider two L T L fragments. We start 

with the fragment L T L ( F S , G s ) whose formulae are built with temporal opera

tors F s , G s , F, and G only (Fcp and Gcp can be seen as abbreviations for cp v Fscp 

and cp A G scp, respectively). Later we show that our translation is correct also 

for the fragment L T L \ G ( U , X ) . The name of the fragment comes from the 

fact that there is no U and X i n the scope of any G and the fragment is defined 

as 

where ip ranges over L T L ( F S , G S ) . This fragment is strictly more expressive 

than L T L ( F S , G S ) . 

Remark on related work. We discuss other fragments and other related 

translations of L T L (or its fragments) into deterministic automata i n the next 

chapter. 

5 .1 A L T E R N A T I N G A U T O M A T A A N D T H E I R S U B C L A S S E S 

Alternating automata. A n alternating automaton A = (S, I , A , I, M , u, cp) The meaning of n. is the same in the sense 

cedure that translates our D T G R A into the commonly used Rabin automata 

with marks on states i n Section 5.6. 

"Automata with Generalized Rabin Pairs for 
Probabilistic Model Checking and LTL Syn
thesis", [48]. 

cp ::=ip j cpvcp j cpAcp | Xcp | cp U cp, 

is a tuple where S, I , M , u and <P have the same meaning as i n cu-automata, 

I £ 2 s is a non-empty set of initial configurations, and A £ S x I x 2 s is an 

that it places marks on states and transitions. 
However, while in tu-automata the type of \i 
is \x.: M -> 2 S u 6 , here it is \x: M -> 2 S u A . 
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alternating transition relation. In general, subsets C £ S are called configura

tions. We use analogous terminology for transitions as i n cu-automata. More

over, for a transition t = (s, a , C ) we call s the source state and C the target 

configuration of t. The transition is looping (or simply a loop) i f s 6 C and t is 

a self-loop i f C = {s}. A semitransition of t is every triple (s, a , s ') such that 

S' 6 C . 

Linear alternating automata. The alternating automaton A is linear (LAA) 

i f there exists a partial order relation on the set of states such that for every 

transition (s, a , C ) e A it holds that all states i n C are lower or equal to s. In 

other words, there are no simple cycles with more than one transition. 

A simple cycle does not visit any state except 
the first one twice. 

Visualization. Figure 5.1 shows a linear alternating automaton that accepts 

the language of the L T L formula cp = G ( F s a A F s b ) v Gb. Transitions are de

picted by branching edges, each branch of such edge corresponds to a semi-

transition. If a target configuration is empty, the corresponding edge leads to 

an empty space. Transitions that differ only i n labels are grouped i n the same 

way as i n cu-automata. Each initial configuration is represented by a possibly 

branching unlabelled edge leading from an empty space to the states of the 

configuration. 

Multitransitions. A multitransition T under a is a set of transitions under a 

such that the source states of the transitions are pairwise different. The source 

configuration source(T) of T is the set of source states of transitions i n T, the 

target configuration target(T) of T is the union of the target configurations of 

the transitions, and A(T) = a is the label of T. The set of all multitransitions 

is denoted by P- 4 , and r£ stands for all multitransitions of A under a. We 

write T and T a when A is clear from the context. Further, we use C i Qi 

to denote that there is a multitransition T e r£ such that C i = source(T) and 

C2 = target(T). Again, we leave out the A i f A is clear from the context. 

(FJS) 

[ G ( F s q A F s b ) v Gb] 

Figure 5.1: A n L A A (and also M M A A ) Av 

for L(cp); cp = G ( F s a A F s b ) V Gb . 

Runs. A run of A over a word u = u o u i . . . 6 LW is an infinite sequence 

71 = ToTi . . . 6 of multitransitions such that source(To) € I and for 

a l i i > 0 we have A(Ti) = U i and target(Ti) = s o u r c e ( T i + i ) . A branch 

b of 7t is a maximal (finite or infinite) sequence of consecutive semitran-

sitions b = (so ,Uo, s i ) ( s i , u i , S 2 ) . . . where st+i e C i for the transition 

( s i , U i , C i ) 6 Ti starting i n S i . The semitransitions have the marks of their 

parent transitions, and analogously to a run of tu-automata, the set marks(b) 

is the set of recurrent marks of b. A branch b satisfies Inf • i f • 6 marks(b) 

and it satisfies F inB i f • $ marks(b) . The run is accepting iff all its infinite 

branches satisfy <£>. The language of A is the set L(_4) of all words u e LW 

such that A has an accepting run over u . 

A multitransition T has exactly one transi
tion for each s e source (T) . 

A branch of a run of an alternating au
tomaton is reminiscent of a run of an o>-
automaton. 

Runs visualization. Runs of alternating automata can be visualized as a d i 

rected acyclic graphs ( D A G ) . Figure 5.2 shows a run of AV over the word 

( { a } 0 { b } { a , b})w. The dotted lines divide the D A G into segments corre

sponding to multitransitions. Each transition of a multitransition is repre

sented by edges leading across the corresponding segment from the source 

state to states of the target configuration. Branches i n the D A G correspond to 
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branches of the run. State of an L A A can be ordered i n a way that all edges in 

the D A G go only to the same or a lower row. 

May/must alternating automata. A n L A A is a may/must alternating au

tomaton (MMAA) i f each state fits into one of the following three categories: 

1. May-states - states with a self-loop for each a e I and at least one non-

looping transition. 

2. Must-states - states with at least one transition and with looping transitions 

only. 

3. Loopless states - states that have no looping transitions and no predeces

sors. They can appear only i n init ial configurations (or they are unreach

able). 

A run that enters such a state may wait in the 
state for an arbitrary number of steps. 

A run that enters such a state can never leave 
it. In other words, the run must stay there. 

May 

selfloop 

under t t 

Must 

each transition 

looping 

Loopless 

initial, 

no predecessors 

I 

Figure 5.3: Illustration of state types of 
M M A A . The specific properties of the types 
are highlighted by distinct colors. 

The automaton of Figure 5.1 is an M M A A with may-states F a and Fb, 

must-states Gip and Gb, and no loopless states. 

In this thesis we consider only M M A A with marks on states and with co-

Buchi acceptance; that is automata with a unique mark • and the acceptance 

formula F inB. Moreover, we always set u (B) to the set of all may-states of the 

automaton. This is justified by the following observations: 

• There are no looping transitions of loopless states. Hence, removing all 

loopless states from u (B) has no effect on the acceptance of any run. 

• A l l transitions leading from must-states are looping. Hence, i f a run con

tains a must-state that is i n u (B ) , then the run is non-accepting. Remov

ing all must-states i n u (B) together with their adjacent transitions from an 

M M A A has no effect on its accepting runs. 

Each branch of a run can visit at most one 
loopless state. 
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• Every may-state has self-loops for all cx e I . If such a state is not i n u (B ) , 

we can always apply these self-loops without violating acceptance of any 

run. We can also remove these states from all the target configurations of 

all transitions of an M M A A without affecting its language. 

The class of M M A A with co-Buchi acceptance and with marks on states is 

expressively equivalent to the L T L fragment L T L ( F S , G S ) . 

5 .2 T R A N S L A T I O N O F L T L ( F S , G S ) T O M M A A 

Our translation follows the standard translation of L T L to L A A implemented 

in the tool L T L 2 B A . 4 Here we present a restriction of their translation to the 4 Gastin and Oddoux (2001) , [31]. 

fragment L T L ( F S , G S ) only. In this section, we treat the transition relation 

A £ S x I x 2 s of an L A A as a function A : S x I ->• 2 2 , where C € A ( s , cx) 

means (s, cx, C ) e A . Further, we consider Gip and Ftp to be subformulae of gs\\> = XG\\> and Fsti> = XF \ p 

G s ip and F s ip, respectively. 

Let cp be an L T L ( F S , G s ) formula i n positive normal form. A n equivalent 

L A A is constructed as A v = (S, I , A , I, {•} , u, F inH) , where 

• S is the set of subformulae of cp, 

. £ = 2 A P ( c p ) ] 

• A deserves more space and explanation and is thus defined below, 

• I = cp where ip represents a disjunctive normal form of ip i n a set notation 

that we compute for ip as 

ip = {{ip}} i f ip is a temporal formula 

lp! V1p 2 = Ipl U l p 2 

ip i Aip2 = { C i U C 2 I C i 6 ip i a n d C 2 e ip2} , and 

• u. maps I to the set of all subformulae of the form Fip i n S. 

Transition function. Configurations i n A ( i p , a ) stand for conjunctions of 

subformulae that, for ip to be satisfied, have to hold i n the next step i f cx holds 

now. Each configuration A( ip , a ) is one possible way to satisfy ip. 

A ( T , a ) = {0} 

A ( - . T , a ) = 0 

A l l branches that follow the transition into 
0 (which happens when the branches are in 
s and 0 e A ( s , U i ) for the next Ui) ter
minate and become finite. A run where all 
branches are finite is accepting. 

A sequence of multitransitions that hits a 
state s with empty A ( s, vti) for the next Ui 
blocks and does not form a run. 

A ( I P T v i p 2 , a ) = A ( t l ) , , a ) u A ( i l ) 2 , a ) 
States for conjunctions and disjunction are 
never reachable. A ( i p i A i p 2 , a ) = { C i u C2 I C i € A ( i p i , a ) and C2 e A ( i p 2 , a )} 

A ( G s ^ , a ) = { { G ^ } } 

A ( F s ^ , a ) = { { F ^ } } 

A ( G i p , a ) = { C u { G i p } I C e A ( i p , a ) } 

A(Fip,cx) = { { F i p } } u A ( i p , a ) 

States for Fs\l> and Gs~4> as well as states for 
T, a, and their negations are reachable if and 
only if they are in I. 

Gty = t\> A XG \ | J 

F\]> = v XF \ p 

Figure 5.4 shows this translation applied to formula c p G ( F s a A F s b ) v Gb. 
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Figure 5.4: A n M M A A Av for the formula 
cp = G\b v Gb for \b = F s a A F s b before 
removing the unreachable (dotted) states. 

( G ( F s q A F s b ) v Gb] ( F S Q A F s b ) 

Using the partial order "is a subformula of" on states, one can easily prove 

that A v is an L A A . Moreover, all the states of the form Gip are must-states 

and all the states of the form Ftp are may-states. States of other formulae are 

loopless, and they are unreachable unless they appear i n I. Hence, the con

structed automaton is also an M M A A . Figure 5.1 shows an M M A A produced 

by the translation of formula G ( F S Q A F s b) v Gb. 

Theorem5.1. For each formula cp 6 L T L ( F S , G S ) , we can construct an MMAA 

A v with utmost |cp| states such thatL(<p) = L(AV). 

We have shown that the translation yields an M M A A . The correctness of 

the construction was proved by Oddoux i n his P h D thesis.5 

5 . 3 T R A N S L A T I O N O F M M A A T O L T L ( F S ) G S ) 

In this section, we show the reverse translation to the one of the previous 

section - from M M A A to L T L ( F S , G s ) . We assume that may-states have no 

looping transitions except self-loops. The assumption is valid as any applica

tion of a looping transition that is not a self-loop can always be replaced by an 

application of a self-loop with the same label; this change cannot transform 

an accepting run into a non-accepting one and thus the looping transitions 

of may-states that are not self-loops can be removed without altering the lan

guage of the automaton. 

Let A = (S, 2 A P ' , A , I, {•} , u , F i n ! ) be an M M A A with a prepositional 

alphabet. For each a € 2 A P we define i p a to be a formula satisfied exactly by 

all the words starting with a: 

\aea / VaeAP'xa / 

N o w we inductively define a formula cps for each state s € S. The formula cps 

is satisfied by any word for which there is an accepting run of A starting in 

the configuration {s}. The inductive definition is admissible because A is an 

L A A and thus there is a partial order on S such that transitions of a state s can 

lead only to s or states that are lower than s. 

CPs 

F V ( s , a , C ) € A (^Pa A A q e C X c p q ) 
C*{s} 

G V ( s , a , C ) e A (^<x A A q e C N { s } X c P q ) 

-V( s , a ,C)€A ('CPa A AqeC X c p q ) 

i f s is a may-state 

if s is a must-state 

if s is a loopless state 

|cp| denotes the length of cp. 

5 Oddoux (2003), "Utilisation des Automates 
Alternants pour un Model-Checking Effi-
cace des Logiques Temporelles Lineaires", 
[49]. 

The conjunction of an empty set of conjuncts 
is T while the disjunction of an empty set of 
disjuncts is -iT. 



6 8 A U T O M A T A F O R F O R M A L M E T H O D S : L I T T L E S T E P S T O W A R D S P E R F E C T I O N 

Finally, we define the formula cp.4 equivalent to the whole automaton A as 

<PA = V A <Ps-
C e l seC 

Each temporal operator X i n the definition of cps is i n front of F or G. If we 

replace all occurrences of X F by F s and all occurrences of X G by G s i n cp s for 

all states s we always get that cp.4 is an L T L ( F S , G s ) formula. Hence, we have 

shown that the following theorem holds. 

Theorem 5.2. For each MMAA A with a propositional alphabet, we can con

struct an LTL(FS, G s ) formula cp_4 such that L(_4) = L(cp_4). 

5 . 4 T R A N S L A T I O N O F M M A A T O D E T E R M I N I S T I C A U T O M A T A 

Let A = (S, I , A , I, {•} , u, FinH) be an M M A A . First, we bui ld a determin

istic semiautomaton T that follows all possible runs of A. Subsequently, we 

equip T with an acceptance condition and bui ld a deterministic generalized 

Rabin automaton V such that L(D) = 1(A). 

5.4.1 Semiautomaton T 

The idea behind the construction of the deterministic semiautomaton is based 

on a double powerset construction: the run a of the semiautomaton T over 

a word u tracks all runs of A over u . More precisely, the state of T reached 

after reading a finite input consists of all possible configurations i n which A 

can be after reading the same input. Hence, states of the semiautomaton are 

sets of configurations of A and we call them macrostates. 

We uses, s i , S2 , . . . to denote states of „4; C , C i , C 2 , . . . to denote configu

rations of A; and m , m i , m .2 , . . . to denote macrostates of T . Further, we use 

t, t i , t2 . . . to denote the transitions of A; T, To, Ti . . . to denote multitran-

sitions of A; and r , r i ,T2 . . . to denote the transitions of T . Finally, we use 

CJ(U) to denote the unique run of T over u . 

Formally, we define the deterministic semiautomaton T = ( Q , I , 6 , m i ) 

for A as follows: 

• Q £ 2 is the set macrostates, restricted to those reachable from the initial 

macrostate m i by 5, 

• ( m i , a , m.2) € 5 iff m.2 = { C 2 | C i e m i , C i C2 } 

• m i = I is the initial macrostate. 

Figure 5.5 depicts the semiautomaton T for the M M A A of Figure 5.1. Each 

line i n a macrostate represents one configuration. 

One powerset construction is for dealterna-
tion, and the other is for determinization of 
the M M A A . 

For each m i e Q and a. e £ , there is a sin
gle transition to a macrostate m.2 that con
sists of target configurations of multitransi-
tions labelled by ct with source configura
tions in m 1. We say that ( m 1, a , m .2) cov
ers these multitransitions. 

5.4.2 Generalized Rabin Automaton T> 

N o w we are heading towards a deterministic generalized Rabin automaton 

V = ( Q , 1,6, m i , M , fi. ' , cD). O n top of the semiautomaton T we add a set 

of marks, place the marks on transitions, and define the acceptance formula. 

Finally, we w i l l prove the equivalence of V to A. 

We need some more notation here. For a run n of A, by Rec s (n) we denote 

the set of states that appear recurrently i n the run. For any configuration Z £ 
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Figure 5.5: The semiautomaton T (right) 
for the M M A A A v of Figure 5.1. The struc
ture of A.v is drawn again in grey on the left. 

S,6 by must (Z) we denote the set of must-states i n Z . Finally, we say that the 

run 7t is bounded by Z iff Rec s (7 t ) £ Z and mus t (Rec s (7 t ) ) = must (Z) . For 

example, the run of Figure 5.2 is bounded by Z = {Gi|>, F a , Fb}. 

For every configuration Z £ we define a set A C z £ 2 s of allowed configu

rations as follows: 

A C Z = {C £ Z | must (C) = must (Z)} 

Further, a set A T z £ 5 is a set of allowed transitions that contains transitions 

of T such that they cover some multitransition to A C z- It is defined as follows: 

A T z = { ( r a i , a, m.2) e 5 | 3 C i e A C z , C2 e (rn.2 n A C z ) and C i ^* C2} 

Lemma 5.3. If A has a run overu bounded by Z, then the run a ( u ) ofT over 

u contains a suffix made of transitions from A T z . 

Proof. Let n be a run of A over u bounded by Z . Then it has a suffix with 

configurations from A C z only. As cr(u) tracks all runs of A over u , it also 

tracks n and hence has a suffix where for each transition (rat, U i , m . i + 1 ) there 

exist configurations C i e ( m i n A C z ) and C2 e (rai+i n A C z ) such that 

C i C2- That implies that a ( u ) has a suffix containing only transitions 

from A T Z . • 

In fact, the other direction can be proved as well: i f cr(u) contains a suffix 

of transitions from A T z then A has a run over u bounded by Z . 

6 We use Z as a name for the configurations 
here to distinguish them from those we used 
for the construction of T . 

For a run to be bounded by Z it is allowed 
to visit only configurations from A C z from 
some point on. 

A definition of A T z with C i e (m-i n A C z ) 
might seem more intuitive. It would be cor
rect; however, it is also less effective in prac
tice. 

cr(u) is the unique run of T over u . 

s-escaping multitransitions. Let s e S n u.(B) be a marked state of A. We 

say that a multitransition T is s-escaping i f it contains a non-looping tran

sition of s. The importance of escaping multitransitions is expressed by the 

following lemma. 

Lemma 5.4. The run n = T 0 T 1 ...of A over a word u is accepting if and only if 

for alls € S n u.(B) n Rec s (7 t ) it holds that n contains infinitely many s-escaping 

multitransitions. 

Proof. Assume for contradiction that n is accepting and that there is a state 

s 6 S n f i(B) n Rec s (7 t ) such that n contains only finitely many s-escaping 

multitransitions. Let T j T i + i be a suffix of n without s-escaping multitran

sitions such that s e source(Ti) . As we only removed a finite prefix, s still 

appears infinitely often i n the suffix. Then there is a branch b = ( s , U i , s ) a ' in 

the suffix which does not satisfy Fin ( • ) and thus n cannot be accepting. 
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Conversely, all branches that are currently i n the state s leave s at every 

s-escaping multitransition. As A is an L A A , the branches can never reach the 

state s again. As n contains infinitely many s-escaping multitransitions for all 

s € u (B) n Rec s (n), no branch can stay i n a state marked by • and thus n is 

accepting. • 

Clearly, we need to detect runs of A with bounding configuration Z that 

contain infinitely many s-escaping multitransitions for each s € Z n u (B ) . 

However, the multitransitions should not leave Z . For each Z £ s and each 

s e Z n u (B) we define the set E T Z of s-escaping transitions of T as follows. 

E H = { ( m i , a, m.2) e 6 | 3(s, a , C ) 6 A such that s i C and C £ Z} 

N o w we are ready to bui ld the set of marks M z , place the marks on tran

sitions of T and describe the acceptance formula O z for each configuration 

Z £ S i n a way that <£>z w i l l be satisfied by cr(u) i f and only i f there exists an 

accepting run of A over u bounded by Z . 

M z = { B } u { © s | s e Z n u ( B ) } 

0>z = F i n B A / \ l n f© s 

seZnLi(H) 

u ' ( B ) = 6 \ A T Z 

u ' ( © s ) = A T z n E T z 

Subsequently, a ( u ) should be accepting i f there exists some Z £ S such that 

there is an accepting run of A over u bounded by Z . 

M U M z 
ZsS 

V «>z 
ZsS 

there exists a non-looping transition of s in 
A not leaving Z . Note that all transitions of 
T with the same label belong to the set or 
none of them does. 

Satisfying Fi n ensures that cr(u) has a suf
fix of transitions allowed for Z and I nf © s 

ensures that cr(u) has infinitely many s-
escaping transitions for Z . 

Fb 

( G ( F s q A F s b ) v Gb) 

Figure 5.6: A deterministic automaton T> 
(right) equivalent to Av (left, in grey). Only 

Sb the two sets P = {G\|>, F a , Fb} and R = 
{Gb} bound some runs of A. 

The mark © represents © F q , the mark O 
represents ©Fb. a n a finally, Q is D 

a b ^ J o ^ , F a , F b } ^ » a b 

ab ab 

[ ( I n f O A l n f O ) v F i n H ) 

( G ( F s a A F s b ) v Gb) 

Lemma 5.5. If there is an accepting run nofA over u then the run a ( u ) of V 

satisfies Ozfor Z = Rec s (7 t ) . 

Proof. From Lemma 5.3 immediately follows that cr(u) has a suffix riTi+-[ ... 

of transitions from A T Z and thus due to the placement of B marks cr(u) sat

isfies F i n B . 

The run n = T3T1 . . . is accepting, thus by Lemma 5.4, it follows that n has 

infinitely many s-escaping multitransitions for each s € Z n [ i (B). Let s be 

such state and let Tj for j > i be an s-escaping multitransition of n. Since j > i , 
The index i comes from the first transition 

of the suffix from above. 
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it is clear that the corresponding transition rj is i n E T Z and also i n A T z , and 

thus rj has the mark © s . As there are infinitely many such indices j , we have 

that cr(u) satisfies l n f © s . • 

L e m m a 5.6. If a run cr(u) ofV satisfies <£>z then A has an accepting run over 

u bounded by Z . 

Proof. If cr(u) = r o r i . . . is a run of V satisfying <£>z, then it has a suffix of 

transitions of A T z and the suffix contains infinitely many transitions of E T Z 

for each s e Z n u (B ) . Let = ( r n . i , U i , r n . i + i ) be the first transition of 

the suffix. From the definition of A T z it follows that there is a configuration 

C i + i e ( m . i + i n A C z ) - The construction of T guarantees that there exists a 

sequence of multitransitions of A leading to C i + i • More precisely, for some 

initial configuration Co e I it holds Co —^* C i —-* . . . 1 - 1 > Q —1-+ C j . + i , 

and we denote the corresponding sequence of multitransitions by T)Ti . . . Tj.. 

This sequence is a prefix of an accepting run of A over u bounded by Z . 

We inductively define a multitransition sequence Tj . + i T.+2 . . . completing 

this run. The definition relies on the suffix r i + i r i + 2 . . . of cr(u). Let us as

sume that j > i and that target(Tj_i) is a configuration of A C z - We de

fine Tj to contain one transition of s for each s e target ( T j _ i ) . Thus we get 

source(Tj) = target(Tj_i) and the full sequence forms a run. As rj e A T z , 

there exists a reference multitransition T ' labelled by Uj such that both source 

and target configurations of T ' are i n A C z - We copy from T ' to Tj the transi

tions for all must-states, and for each may-state s e target(Tj_i) , we have two 

cases. If Tj 6 E T Z , then Tj contains a non-looping transition leading from s 

to some states i n Z . The existence of such a transition follows from the defi

nit ion of E T | . For the remaining may-states, Tj uses the self-loops under U j . 

Formally, Tj = {t? | s 6 target(Tj_i)}, where 

J 

( s , U j , C s ) contained i n T ' i f s 6 must(Z) 

( s , U j , { s } ) i f S 6 u(H) A Tj i E T | 

( S , U J , C s ) where C s £ Z , s £ C s i f s e u(l) A T J e E T | 

One can easily check that target(Tj) € A C z , and we continue by building 

T j + i . The run constructed i n this way is bounded by Z . Moreover, Tj is s-

escaping whenever Tj e E T Z which holds infinitely often for each s 6 u (B) n 

Z . The constructed run of A over u is thus accepting. • 

The previous two lemmata prove that the automaton V accepts the same 

language as A and the following Theorem 5.7. In conjunction with Theo

rem 5.2 we have also proved Theorem 5.8. 

Theorem 5.7. For each MMAA A with n states, we can construct a determin

istic automaton V with at most 2 2 states and L(2?) = L(_4). 

Theorem 5.8. For each formula cp € L T L ( F S , G s ) , we can construct a deter

ministic automaton T>v with at most 2 l M states such that L(cp) = L(2?(p). 

This upper bound is better than the bounds of all versions of Rabinizer: 

versions 1 and 2 use automata with marks on states which costs an additional 

blow-up exponential i n the number of atomic propositions; versions 3 and 4 

have triple exponential upper bounds for generalized Rabin automata. 
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5 .5 M M A A I N T H E L I M I T A N D L T L \ G ( U , X ) 

We have just shown a determinization algorithm for M M A A . In fact, our 

construction works correctly for a larger class of linear alternating automata 

called may/must in the limit automata ( l i m M M A A ) . A n L A A A is a l i m M -

M A A i f A contains only must-states, states without looping transitions, and 

states marked by • (not exclusively may-states), and each state reachable from 

some must-state is either a must- or a may-state. Each accepting run of a l i m 

M M A A has a suffix that contains either only empty configurations, or config

urations consisting of must-states and may-states reachable from some must-

states. Hence, the determinization construction produces correct results also 

for l i m M M A A under an additional condition: marks and <£>z are constructed 

only for bounding configurations Z that contain only must-states and may-

states reachable from them. 

If we translate formulae of the fragment L T L \ G ( U , X ) by the translation 

of L T L 2 B A , we obtain l i m M M A A . The translation of L T L \ G ( U , X ) into l i m 

M M A A places • marks on all states for subformulae of the form i|>i U i|>2-

The rules for 5 for U and X that are needed for the translation and were not 

given i n Section 5.2 follows. 

A state s is reachable in A. from a state s 0 iff 
{so} ->• C i C such that s s C , 

5(X^,<x) = { { ^ } } 

5(oh U * 2 , a ) 4 ( 4 2 , a ) u { C u { ^ i UiL>2} | C e 6 ( a h , a ) } U i p 2 = ^ 2 V ( l )> , A X ( l | ) , U ^ 2 ) ) 

5 . 6 D E G E N E R A L I Z A T I O N F O R R A B I N A U T O M A T A 

Some algorithms that require deterministic automata cannot handle the gen

eralized Rabin acceptance condition and require Rabin automata, often even 

with marks on states. Generalized Rabin automata have acceptance formula 

oftheform V k e K (F inHA A j e j k I n f© 1 ) . In order to get a Rabin automaton, we 

need to reduce the number of circle marks for each k to one. Our construc

tion is based on a standard degeneralization method for generalized Buchi 

automata. 

We first illustrate the idea on a generalized Rabin automaton Q with K that 

is a singleton and with h circle marks, that is with acceptance formula F inB A 

A 1 <j < H I n f * ' > a n d we create a Rabin automaton 1Z with the two marks (placed 

on states), • and • , only. 

The automaton 1Z consists of h + 2 copies of Q. The copies are called levels. 

We start at the level I. Intuitively, being at a level j for I < j < h. means that 

we are waiting for a transition marked by i n Q. Whenever a transition 

marked by I appears, we reset and move to the level 0. A transition r without 

the square mark gets us from level j to the maximal level I > j such that r € 

[!(•' ) for each j < j ' < I. The levels 0 and h + I have the same transitions 

(including target levels) as the level I. A run of Q is accepting i f and only i f 

the corresponding run of 7Z visits the level 0 only finitely often and it visits 

the level h + I infinitely often. Hence all states of level 0 are marked by • and 

all states of level h + I are marked by • . 

If T i ) then there has to be no j ' be

tween I and j and therefore, I = j . 
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In the general case, we track the levels for all k € K simultaneously. Given 

a D T G R A Q = (S, I , 6, s i , U k e K M k , u, V k e K <Bk) where 

M k = {•} u {©' | 1 < j < h k } and <Pk = F inB A / \ lnf©>, 
1<j<hk 

we construct an equivalent D R A as1Z = ( Q , X , 6-R., q i , M , u-^, d>), where 

. Q = S x {0,1 , . . . , h i+1} x - x {0,1 , . . . ,h| K|+1} ) 

• ( ( s , l i , . . . , l | K | ) , a , (s . . . , l ' K | ) ) e 6-^ iff r = ( s , a , s ' ) € 5 and for 

each 1 < k < |K | it holds 

0 i f r e u(D) 

l e v e l ( r , k , l k ) i f r £ u(H) and 1 < l k < h k 

[level (r, k, 1) i f r £ u(H) and l k e {0, h k + l } 

where level(r, k, i ) = max { l | l < H k + 1 a n d r e f l ^ © ' ) } , 
i<j<l 

q i = ( r a i , l , . . . , l ) , 

M = { H , © | k € K } , 

u 7 i ( B ) = { ( s , l 1 , . . . , l | K | ) e Q | l k = 0 } > 

M ® ) = { ( s , l i , . . . , l | K | ) e Q I l k = h k + l } , a n d 

O = V k e K ( F i n B A Inf©). 

The intersection of zero sets contains all 
transitions of Q and thus 1 , . . . i are always 
arguments of the maximum and therefore, if 
r i ( J^© 1 ) then level (T, k, i ) = i . 

Complexity. We have to multiply the state space of Q by ( h k + 2) for each 

k € K i n the worst case. Thus |Q | < |S| • (Hi + 2) • . . . • ( h | K | +2) . If we start 

with an L T L \ G ( U , X ) formula cp of length n , we can create an equivalent l i m -

M M A A A<$ with n states and generalized Rabin automaton Vv with at most 
-jTL 

2 states. To obtain the deterministic Rabin automaton TZ^, we multiply the 

state space of Vv by at most |Z | + 2 for each configuration Z £ S of A, where 

the number of states i n Z is bounded by n . Altogether, we can derive an upper 

bound on the number of states |Q | of the Rabin automaton as follows. 

| Q | < 2 2 - ( n + 2 ) 2 = 

2 2 n . 2 2 n - l o g 2 (n+2) = 

2 - 2 e 2e>(2 n + l o g l o g n 
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5 . 7 I M P L E M E N T A T I O N A N D T R A N S L A T I O N I M P R O V E M E N T S 

We have implemented our translation i n a tool called L T L 3 D R A . The tool is 

built on top of the L T L to Bi ich i automata translator L T L 3 B A 7 and is available 

at https://github.com/xblahoud/ltl3dra. The two tools share the code for for-

7 Babiak et al. (2012), "LTL to Biichi Auto
mata Translation: Fast and More Determin
istic", [33]. 

mulae parsing, simplification of L T L formulae, and translation to L A A . The 

performance of L T L 3 D R A is evaluated and compared to the performance of 

other tools i n the next chapter. For L T L 3 D R A to produce a reasonably small 

automaton we have implemented several optimizations to the core transla

tion, namely we: 

• simplify the input formula, 

• reduce the state-spaces of automata, 

- remove unreachable states i n each step, 

- merge equivalent states i n each step, 

- remove redundant transitions of the L A A , 

- reduce macrostates that contain the configuration 0 , and 

- remove the init ial macrostate i f found superfluous, and 

• simplify the acceptance condition 

- before we compute the placement of the marks (based on the L A A ) and 

- after the deterministic automaton is built (based on marks' placement). 

Before we describe the optimizations i n details, we fix names for the input 

formula and for the automata and their parts used on the way. The input 

formula is cp. The corresponding linear alternating automaton is called A and 

we set A = ( S , I , A , I, {•}, u, FinB). The equivalent deterministic automaton 

is V = ( Q , 1,5, m i , Mz, u ' , ®z) where Z £ 2 s is some set of bounding 

configurations, Mz = [JzeZ M-z> and <&z = VzeZ ® z - Finally, the name for 

the Rabin automaton is 1Z. 

Formula simplifications. O n top of the reduction rules of L T L 3 B A , we add 8 In fact, the resulting automata are usually 

Unreachable states. In each step (A, T>, 11), we always keep and compute 

only states that are reachable from some init ial configuration or from the i n i 

tial state. 

Equivalent states. In each step we iteratively merge equivalent states. Two 

states of linear automata are equivalent i f they have the same transitions and 

the same marks. Two states of the deterministic automata are equivalent i f 

they have the same marks and for each a € I their transitions under a lead to 

the same state and have the same marks. 

one more - we rewrite subformulae GFip and FGip to equivalent formulae 

GF s ip and FG si|>, respectively. The deterministic automata for formulae with 

strict temporal operators are often smaller than those without this reduction. 8 

of the same size due to the subsequent state-
space reductions. However, the rewriting 
rule saves the tool from computing many 
equivalent states only to merge them later. 
This rewriting rule can be deactivated by the 
- X option. 

https://github.com/xblahoud/ltl3dra
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Redundant transitions. A transition t2 = (s, a, C2) e A is redundant i f 

there is another transition t i = (s, a, C i ) € A of s such that C i c Q2. If 

we alter an accepting run of A that uses t2 to use t i instead, it w i l l remain 

accepting (the change would only remove some branches). 

Macrostates with 0 . If a macrostate m of V contains the configuration 0 , 

we remove all other configurations from ra. This modification is clearly cor

rect - i f a run n of A reaches the configuration 0 then all subsequent mult i-

transitions of the run are empty and thus n is accepting.9 

Superfluous initial macrostate. If the init ial macrostate m i of V does not 

have any self-loop, we check its equivalence to other states not taking accep

tance marks into account. Marks on transitions that are taken at most once 

by any run are irrelevant. 

Bounding configurations. We reduce the number of bounding configura

tions that we take into account i n two ways. First, we consider only config

urations that bound some run that we call modest. Intuitively, modest runs 

minimize their sets of recurrent states (Rec s (7 t ) ) . Formally, a run is modest 

i f it uses for each may-state s e S only the self-loop of s and exclusively one of 

its non-looping transitions. For each word u € L(_4) there exists an accepting 

run that is modest. 

Let 7t be a modest run of A and let s e Rec s (n) be some state visited i n 

finitely often by n. If s is a may-state n can choose the non-looping transition 

repeatedly. For s being a must-state, however, n does not always have the 

choice as must-states do not have the self-loop. Therefore, n can be forced by 

u to use all of its transitions repeatedly. W i t h this i n mind, we define a func

tion mod-rec: 2 s -»• 2 2 that recursively computes, for a given configuration 

Z , the set of configurations that can bound some modest run n that visits the 

states of Z infinitely often, which is when Z £ R e c s ( 7 t ) . Before the formal 

definition of mod-rec we define an auxiliary operation 0 that when applied 

to two sets of configurations W i , W 2 £ 2 s creates a set of combinations of 

their configurations, formally 

W 1 0 W 2 = | J { Z i u Z 2 } 
Z,eW, 
Z 2eW 2 

and an auxiliary function onestep: S -»• 2 that for a given state s computes 

the set of configurations that arise by removing s from configurations reach

able from s i n one step; formally 

onestep(s) = J C e 2 S n { s } | ( S , cx, C U { S } ) e S ^ a c l J . 

Finally, the formal definition of mod-rec follows. 

9 In this case, there is no infinite branch in 
7t and therefore all infinite branches satisfy 
whatever acceptance formula. 



76 A U T O M A T A F O R F O R M A L M E T H O D S : L I T T L E S T E P S T O W A R D S P E R F E C T I O N 

mod-rec(Z) 

0 

{ { s } } ® U mod-rec (C) 
(s,<x,C)eA, 

i f Z = 0 

i f Z = {s} and s i must(S) 

{{s}} <S> | J mod-rec( | J C ) i f Z = {s} and s € must(S) 
Wgonestep(s) C e W 

(g) mod-rec({s}) 
S€C 

otherwise 

Further, we can eliminate from Z all configurations that contain a state 

that is not reachable from some must-state. Indeed, for every accepting run n 

the set Rec s (7t ) contains only states reachable from must-states. Indeed, the 

other states are left by all branches sooner or later. 

In order to find bounding configurations with this property, we define the 

function mod-one: 2 s -»• 2 2 that recursively computes, for a given config

uration Z , the set of configurations that can bound some modest run that 

ever visits states of Z . As all states reachable from must-states can be visited 

infinitely often by accepting runs, mod-one(Z) = mod-rec(Z) for Z that con

tains such states only. 

A run To T] . . . visits states of Z if for each 
s e Z there is some Ti such that s e 
source(Ti). 

mod-one(Z) 

0 i f Z = 0 

U mod-one (C) i f Z = {s} and s i must(S) 
(s,a,C)e6.4 
s^C 

mod-rec (Z) i f Z = {s} and s e must(S) 

(g) mod-one({s}) otherwise 
seZ 

Finally, the set Z of bounding configurations consists of mod-one for all 

initial configurations of A; that is Z = U z e l mod-one (Z) . 

Acceptance simplifications. After we place the acceptance marks, we revise 

the marks and the acceptance formula again. In particular, we perform the 

following three simplifications. 

1. We remove M z and d>z = F i nH A AJ<J Z Inf© 1 from M and <P i f no run 

can satisfy <£>z, which is when u ' ( B ) = 6 or i f some u ' ( © ' ) = 0 . 

2. We remove the mark © ' 1 (and the corresponding conjunct i n ® z ) i f there 

is s o m e © ' 2 such that u ' ( © ' 2 ) £ u ' ( © ' ' ) . 

3. If the fact that a run n satisfies <Pz, implies that n also satisfies <Pz2

 w e 

remove <Pz, and the corresponding M z , • 



LTL to Deterministic Automata Translators: 
Experimental Evaluation 6 
This chapter evaluates stateoftheart translators of L T L into deterministic 

automata i n the means of exhaustive experiments. The chapter is inspired by 

our previous work, 1 but it has been written entirely from scratch. We consider 

the following three translation approaches (listed i n the order of historical 

appearance). 

1. determinization of nondeterministic automata 

2. direct translations 

3. determinization of cutdeterministic automata 

1 Blahoudek, Kfetinsky, and Strejcek (2013), 
"Comparison of LTL to Deterministic Rabin 
Automata Translators", [14], 

Determinization of Biichi automata. Safra developed the first opt imal 2 de

terminization procedure for Bi ich i automata i n his seminal paper from 1988? 

His construction takes a Biich i automaton with n states and produces a deter

ministic Rabin automaton with at most 2°(n l o g n ) states and at most 2 n Ra

bin pairs (which needs 4 n acceptance marks). Researchers proposed several 

optimizations since 1988,4 some of them can take generalized Bi ich i automata 

on input, and some of them can even produce parity automata. Parity auto

mata are more desirable for synthesis as solving parity games is more efficient 

than solving Rabin games. 

From the implementation point of view, we have two choices nowadays. 

For more than ten years, the tool ltl2dstar5 was a synonym for Safras con

struction  it is an efficient implementation that includes several optimiza

tions. In 2016, the authors of Spot implemented a determinization based 

on Redziejowski's construction 6 that takes a Bi ich i automaton with marks on 

transitions on input and creates an equivalent deterministic parity automaton 

on output. The determinization i n Spot also implements optimizations based 

on S C C and on simulation. 7 

Direct translations. The recent boom of direct translations of L T L into de

terministic automata was started by Kfetinsky and Esparza and their con

struction implemented i n Rabinizer8 for the fragment LTL(F ,G) i n 2012? We 

have presented the translation of the previous chapter that works for a slightly 

larger fragment L T L \ G ( U , X ) i n the following year. 1 0 Our translation is i m 

plemented i n the tool LTL3DRA and it was the first translation that produced 

generalized Rabin automata with marks on transitions. At the same time, Ra

binizer 2 n extended the fragment even more to L T L \ G ( U ) . Finally, i n 2014 

Esparza and Kfetinsky finished their effort by providing a translation of the 

full L T L 1 2 that was implemented i n Rabinizer 3 1 3 and improved i n Rabinizer 

4. 1 4 A l l the translations have i n common that the output automata have a gen

eralized Rabin acceptance; L T L 3 D R A , Rabinizer 3 and Rabinizer 4 use marks 

2 singly exponential 

'Safra (1988), "On the Complexity of 
OmegaAutomata" [50]. 

4 Schewe (2009), [4]; Piterman (2007), [51]; 
Redziejowski (2012), [52]. 

5 Klein (2005), "Linear Time Logic and De

terministic tuAutomata", [53]; Klein and 
Baier (2006), "Experiments with Determin

istic OmegaAutomata for Formulas of Lin

ear Temporal Logic", [54]. 
6 Redziejowski (2012), "An Improved 
Construction of Deterministic Omega

Automaton Using Derivatives", [52]. 
7DuretLutz et al. (2016), "Spot 2.0  A 
Framework for LTL and tuAutomata Ma

nipulation", [55]. 

8 [57] Gaiser, Křetínský, and Esparza (2012). 
9 Křetínský and Esparza (2012), "Determin

istic Automata for the (F, G)Fragment of 
LTL", [56]. 
1 0 Babiak et al. (2013), "Effective Translation 
of LTL to Deterministic Rabin Automata: 
Beyond the (F, G)Fragment", [13]. 
1 1 Křetínský and LedesmaGarza (2013), 
"Rabinizer 2: Small Deterministic Automata 
for L T L \ G U " , [58]. 
1 2 Esparza and Křetínský (2014), "From LTL 
to Deterministic Automata: A Safraless 
Compositional Approach", [59]. 
1 3 Komárkova and Křetínský (2014), [60]. 
1 4 Rabinizer 4 was not yet published by the 
date of submitting the thesis. See Table 6.1 
for a reference. 
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on transitions. The aforementioned translations that work for some fragment 

only share a double exponential complexity while the translation of Rabinizer 

3 and 4 has a triple exponential upper bound. 

Determinization of cut-deterministic Biichi automata. In 2017, Esparza 

et al. presented a construction that takes a cut-deterministic Bi ich i automaton 

and converts it into a deterministic parity automaton with a single exponen

tial blow-up. The construction is based on coloring of runs. 1 5 The construc

tion can be improved i f it is chained together with a translation of L T L into 

cut-deterministic automata by the same authors. 1 6 The result of these two con

structions chained together is a double exponential translation from full L T L 

into D P A . This approach was implemented i n the tool ltl2dpa. Ltl2dpa has 

initially been a part of the owl l ib ra ry 1 7 and now it is also distributed as a part 

of the yet unpublished Rabinizer 4. 

To reproduce the evaluation (or to run it with new versions of the tools) 

visit ht tps: / /gi thub.com/xblahoud/LTL2DA- comparison. You can find on this 

page a collection of scripts, files with the used L T L formulae, 1 8 and Jupyter 

notebooks that can repeat all computations performed for this chapter. The 

notebooks also generate all tables and figures used here and they also include 

some additional data. In the interactive Jupyter notebooks you can explore 

the data and look for information of your interest i f you miss it here. 

1 5 Esparza et al. (2017), "From LTL and 
Limit-Deterministic Biichi Automata to De
terministic Parity Automata", [61]. 

1 6 Sickert et al. (2016), "Limit-Deterministic 
Biichi Automata for Linear Temporal Logic", 
[62]. 

1 7 available at https://www7.in.tum.de/ 
~sickert/projects/owl/ 

* including the scripts used to generate them 

https://github.com/xblahoud/LTL2DA-
https://www7.in.tum.de/
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6.1 E V A L U A T E D T O O L S 

Altogether, we evaluate 22 tool chains that convert L T L formulae into deter

ministic automata. In particular, we have 14 tool chains that rely on Safra-like 

determinization, 6 variants of tools for direct translations, and finally 2 trans

lations performed by ltl2dpa. Figure 6.1 gives an overview of most of the used 

tool chains. Homepages and versions of all tools used for this evaluation are 

listed i n Table 6.1. 

LTL3DRA 

Rabinizer 3.1, Rabinizer 4 

2xltl2dstar 
* ( D S R A ) 

~"- - - Spot 
* ( D S R A ) 

Spot ~ ~ * D T P A 

T D T G B A 

> ( D T E L A ) 

Figure 6.1: Evaluated tool chains for trans
lation of LTL to deterministic automata. The 
blue boxes are LTL fragments, the white 
boxes represent types of intermediate auto
mata, the green boxes represent the type of 
output automata (two types indicate that the 
tool chain produces one type for some for
mulae and the other for the rest, the para
graph on Safra-based translations on the 
next page explains these cases), and finally, 
the type of line denotes the type of transla
tion. 

Safra-like via cut-deterministic 

Naming. We reference each tool chain by a triple (main, intermediate, acc). 

We use main for the tool that outputs the final deterministic automaton, in

termediate indicates which L T L to nondeterministic automata translator was 

used i n case of the Safras approach or which mode of ltl2dpa was used, and 

finally acc provides details about acceptance conditions of the resulting auto

mata. For the Safra-based tool chains, acc consists of two parts divided by a 

dot: the first part is the acceptance of the intermediate nondeterministic au

tomaton (SB, T G B , T E L ) and the second part is the acceptance condition of 

the output automaton (SR, TP, T E L ) . 1 9 

We use the tool ltlcross from the Spot library to run all the tool chains 

and gather the information of interest about the resulting automata. You can 

find the exact ltlcross command and the reference name for each tool chain in 

Table 6.2. In the following text, we comment on the choice of tool chains, pro

vide more details about some, and comment explicitly on the two tool chains 

(Spot, —, TP) and (ltl2dpa, Rabinizer, TP) that cannot be found i n Figure 6.1. 

1 9 We denote the cases where the resulting 
automaton can be either a DTPA or a DT
GBA by TP as the parity acceptance is in 
some sense more complex than generalized 
Biichi. TGBA cannot be converted into TPA 
without changing the structure of the au
tomaton; however, neither emptiness check 
nor game solving is harder for TGBA than 
for TPA. 

Direct translations. We have chosen three tools that translate L T L formulae 

directly into deterministic automata: LTL3DRA, Rabinizer 3.1, and, with the 

k ind permission of its authors, Rabinizer 4. We have excluded Rabinizer and 

Rabinizer 2 for the following reasons; the tools work for fragments only, they 

do not support H O A format, they are no longer maintained, they contain 

many bugs, and they give larger automata than their successor Rabinizer 3.1 in 

most cases. We have run two variants of each of these tools: one that outputs 

D T G R A and one that outputs D S R A (not shown i n Figure 6.1) which we have 

included mainly to provide some output comparable to the output of ltl2dstar. 
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Safra-based translations. We evaluate both ltl2dstar and Spot for deter

minization of nondeterministic automata. The tool ltl2dstar offers two i n 

put interfaces: ltl2dstar (NBA) reads a Buchi automaton directly, and ltl2dstar 

(LTL) reads an L T L formula together with instructions how to call some L T L 

to N B A translator. The knowledge of the original L T L formula can enable 

some optimizations (for example for stutterinvariant properties). 2 0 

While ltl2dstar determinizes Buchi automata with marks on states, autfilt

the determinization tool of Spot  can also process automata with marks on 

transitions. Moreover, Spot can convert arbitrary automaton into a T B A i n 

ternally and thus it can input T G B A (all considered L T L  t o  B A translators can 

output T G B A ) or even T E L A directly. If the input automaton is determinis

tic, autfilt only simplifies it and we get a D T G B A or a D T E L A on output, in 

other cases, Spot converts the automata into D T P A . You can see the workflow 

of Spot i n Figure 6.2. Besides autfilt (denoted as Spot (autfilt)), Spot offers 

another way to get a deterministic automaton that starts with an L T L formula 

directly. This approach (referenced as (Spot, —, TP)) uses the same algorithms 

as (Spot (autfilt), Spot, TGB.TP), however, it may produce different automata 

2 0 Klein and Baier (2007), "OntheFly Stut

tering in the Construction of Deterministic 
OmegaAutomata", [63]. 

in some cases 21 

2 1 (i) The knowledge of the input formula al

lows Spot to treat obligation properties more 
efficiently and (ii) the acceptance marks that 
are outside of SCC of the intermediate TGBA 
are not removed (which is the default for 
nondeterministic automata in Spot) in this 
case as they are often beneficial to the de

terminization algorithm of Spot; however, 
sometimes they cause that the resulting au

tomaton is larger. 

<I1LA}  y j " " - .4 del" "K D T E L A ) 

( L I T ) ; 
M 
'•o. 

'Pot 
334 

A 

( T B A ) 
Spot 

* ( D T P A ) 

( T G B A ) -
Adet. 

Spot *( D T G B A ) 

determinization LTL to nondet. automata internal transformations 

LTL to nondeterministic automata. Our previous evaluat ion 2 2 suggests 

using only Spot and L T L 3 B A for translation of L T L into B A for ltl2dstar. We 

again run L T L 3 B A i n 2 configurations: one prefers to output automata as 

small as possible (LTL3BA) while the other has a preference to create po

tentially bigger but more deterministic automata (LTL3BAd). Spot offers a 

similar choice between smaller and more deterministic automata, however, 

the previous evaluation revealed that this choice makes only a negligible dif

ference i n the size of the deterministic automata. As autfilt can take arbitrary 

automaton on input, we also consider the tool c h a i n 2 3 that employs the tool 

L T L 3 T E L A which translates L T L into T E L A . 

Figure 6.2: Workflow of Spot for deter

minization of automata that do not have 
Buchi acceptance condition with marks on 
states. 

2 2 Blahoudek, Křetínský, and Strejček (2013), 
"Comparison of LTL to Deterministic Rabin 
Automata Translators", [14]. 

3 (Spot (autfilt), LTL3TELA, TEL.TEL) 

Other (ltl2dpa). We use the version of ltl2dpa from the Rabinizer 4 tool set. 

It offers two modes of conversion of L T L formulae into deterministic parity 

automata. The modes differ i n the core translation used i n the first step. The 

default option (ItUdpa, ItUldba TP) uses an L T L to c D G B A translation of the 

tool ltl2ldba?4 If the cutdeterministic automaton ( T G B A ) is already deter

ministic, ltl2dpa outputs it directly; otherwise it uses a construction based on 

runs' coloring to produce a D T P A . The second option (ltl2dpa, Rabinizer, TP) 

relies on the L T L to Rabin automata translation of Rabinizer 4 to bui ld an i n 

termediate Rabin automaton with marks on transitions that is converted into 

a parity automaton by a construction based on improved index appearance 

record. 2 5 

2 4 Sickert et al. (2016), "LimitDeterministic 
Buchi Automata for Linear Temporal Logic", 
[62]. 

2 5 Kf etinsky et al. (2017), "Index Appearance 
Record for Transforming Rabin Automata 
into Parity Automata", [64]. 
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tool version webpage 

L T L 3 B A 

L T L 3 T E L A 

Spot(ltl2tgba) 

1.1.3 

1.1.1 

2.5 

https://sourceforge.net/p/ltl3ba/ 

https://github.com/jurajmajor/ltl3tela 

https://spot.lrde.epita.fr/ 

ltl2dstar 

Spot(autfilt) 

0.5.4 

2.5 

http://ltl2dstar.de/  

https://spot.lrde.epita.fr/ 

L T L 3 D R A 

Rabinizer 3 

Rabinizer 4 

0.2.6 

3.1 

15. 2. 2018 

https://github.com/xblahoud/ltl3dra 

https://www7.in.tum.de/~kretinsk/rabinizer3.html 

https://www7.in.tum.de/~kretinsk/rabinizer4.html 

ltl2dpa 15. 2. 2018 https://www7.in.tum.de/~kretinsk/rabinizer4.html 

Table 6.1: References for tools used in the experimental evaluation of LTL to deterministic automata translators. The first part contains tools that 
convert LTL formulae into nondeterministic automata, the second part lists tools that can determinize these nondeterministic automata, the third 
part shows tools for direct translations, and finally, the last part gives a reference for M2dpa. For Rabinizer 4 and ltl2dpa we give the date of download 
as they do not use any minor version numbers. Note that we also use M2tgba to convert LTL to deterministic automata. 

type name interm. acc ltlcross command 

L T L 3 D R A — T G R l t l 3 d r a - f %s > %0 

L T L 3 D R A — SR l t l 3 d r a -H3 - f %s > %0 

Rabinizer 3 — T G R Java - j a r R a b 3 / r a b i n i z e r 3 . 1 . j a r - s i l e n t \ 

direct 
Rabinizer 3 — SR 

-format=hoa -out=std %[eiRWM]f > %0 

Java - j a r R a b 3 / r a b i n i z e r 3 . 1 . j a r - s i l e n t \ 

-format=hoa -out=std -auto=sr %[eiRWM]f > %0 

Rabinizer 4 — T G R R a b 4 / b i n / l t l 2 d g r a % f > %0 

Rabinizer 4 — SR R a b 4 / b i n / l t l 2 d r a % f | a u t f i l t --sbacc > %0 

ltl2dstar (LTL) L T L 3 B A SB.SR l t l 2 d s t a r -H - t " l t l 3 b a -MO -H3 - f %%s > %%H" %L %0 

ltl2dstar (LTL) L T L 3 B A d SB.SR l t l 2 d s t a r -H - t " l t l 3 b a -Ml -H3 - f %%s > %%H" %L %0 

ltl2dstar (LTL) Spot SB.SR l t l 2 d s t a r -H - t " l t l 2 t g b a -B - f %%s > %%H" %L %0 

ltl2dstar (NBA) L T L 3 B A SB.SR l t l 3 b a -MO -H3 - f %s | l t l 2 d s t a r -B -H - - > %0 

ltl2dstar ( N B A ) L T L 3 B A d SB.SR l t l 3 b a -Ml -H3 - f %s | l t l 2 d s t a r -B -H - - > %0 

ltl2dstar (NBA) Spot SB.SR l t l 2 t g b a -B - f % f | l t l 2 d s t a r -B -H - - > %0 

Safra 
Spot (autfilt) L T L 3 B A T G B . T P l t l 3 b a -MO -H2 - f %s | a u t f i l t -DG > %0 

Safra 
Spot (autfilt) L T L 3 B A SB.TP l t l 3 b a -MO -H3 - f %s | a u t f i l t -DG > %0 

Spot (autfilt) L T L 3 B A d T G B . T P l t l 3 b a -Ml -H2 - f %s | a u t f i l t -DG > %0 

Spot (autfilt) L T L 3 B A d SB.TP l t l 3 b a -Ml -H3 - f %s | a u t f i l t -DG > %0 

Spot (autfilt) L T L 3 T E L A T E L . T E L l t l 3 t e l a - f %f | a u t f i l t -DG > %0 

Spot (autfilt) Spot T G B . T P l t l 2 t g b a - f %f | a u t f i l t -DG > %0 

Spot (autfilt) Spot SB.TP l t l 2 t g b a -B - f %f | a u t f i l t -DG > %0 

Spot — TP l t l 2 t g b a -DG - f % f > %0 

other 
ltl2dpa Itl2ldba T P R a b 4 / b i n / l t l 2 d p a --mode=ldba %f > %0 

other 
ltl2dpa Rabinizer TP R a b 4 / b i n / l t l 2 d p a --mode=rabinizer %f > %0 

Table 6.2: A l l considered tool chains with the corresponding commands passed to ltlcross. The tool chains are divided into three parts regarding the 
type of translation they rely on. 

https://sourceforge.net/p/ltl3ba/
https://github.com/jurajmajor/ltl3tela
https://spot.lrde.epita.fr/
http://ltl2dstar.de/
https://spot.lrde.epita.fr/
https://github.com/xblahoud/ltl3dra
https://www7.in.tum.de/~kretinsk/rabinizer3.html
https://www7.in.tum.de/~kretinsk/rabinizer4.html
https://www7.in.tum.de/~kretinsk/rabinizer4.html
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Discovered bugs. Dur ing preparation of this chapter, I have found several 

confirmed bugs i n some of the considered tools. Namely, 5 bugs i n (the pre

l iminary versions) of Rabinizer 4 and ltl2dpa, 5 bugs i n the Spot library, 3 

bugs i n Rabinizer 3.1, one segmentation fault bug i n L T L 3 T E L A , and one bug 

in ltl2dstar. Authors of the touched tools (except Rabinizer 3.1) have already 

fixed most of the bugs and released new versions of the tools. I am grateful 

for their prompt response (even during the Christmas holidays). 

Figure 6.3: Preparation of the formulae from the literature, and classification according to fragments of LTL. 
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6.2 B E N C H M A R K F O R M U L A E 

We use benchmark formulae from two sources  formulae from literature and 

randomly generated formulae. We consider both concrete and parametric for

mulae that were already used for benchmarking L T L translators i n the liter

ature. We further divide the formulae based on L T L fragments. We use the 

word benchmark to denote each of the considered sets of L T L formulae. 

Concrete formulae from literature. We have collected many formulae that 

were already used i n the literature 2 6 to evaluate the performance of L T L trans

lators. For each formula from the listed sources, we added its negation into 

our set, simplified all the formulae by ltlfilt , 2 7 removed duplicates and formu

lae equivalent to true or false. The resulting collection contains 221 formulae. 

As L T L 3 D R A works correctly for a fragment of L T L only, we have further 

separated the set of formulae based on their presence to L T L \ G ( U , X ) . The 

Figure 6.3 shows that there are 92 formulae from the fragment L T L \ G ( U , X ) 

and 129 formulae outside L T L \ G ( U , X ) (referenced as/u//LTL). There are 42 

formulae that are both i n L T L \ G ( U , X ) andLTL(F ,G) . We have not separated 

the benchmark of L T L \ G ( U , X ) into two due to its small size. 

2 6Etessami and Holzmann (2000), [26]; 
Pelánek (2007), [30]; Somenzi and Bloem 
(2000), [36]; Dwyer, Avrunin, and Corbett 
(1998), [42]; Holeček etal. (2004), [65]. 
2 7DuretLutz (2013), "Manipulating LTL 
Formulas Using Spot 1.0", [41]. 

Random formulae. We have used the tool randltl from the Spot library to 

generate 500 formulae from each relevant fragment of L T L randomly. We 

consider three fragments: full LTL, L T L \ G ( U , X ) , and LTL(F ,G) . The frag

ment LTL(F ,G) was included because the direct translations can deal with 

the operators F and G much easier than with other temporal operators. The 

sets for the full L T L and for L T L \ G ( U , X ) are disjoint, while L T L \ G ( U , X ) 

shares 50 formulae with L T L ( F , G ) . Further, 7 formulae from the full L T L and 

14 formulae from L T L \ G ( U , X ) are both i n the random and i n the literature 

benchmark. 

Table 6.3 gives the total number of formulae i n each benchmark. The mixed 

source shows the number of distinct formulae after the corresponding litera

ture and random benchmarks were merged together. The second column of 

the table shows the number of formulae for which all tool chains were able 

to produce a correct deterministic automaton within given constraints. See 

the next section for the constraints and for the reasons that prevented the tool 

chains from creating the desired automata. 

source fragment total count all finished 

literature 
full L T L 129 122 

L T L \ G ( U , X ) 92 89 

full L T L 500 479 

random L T L \ G ( U , X ) 500 494 

LTL(F ,G) 500 500 

mixed 
full L T L 622 594 

L T L \ G ( U , X ) 578 569 

Table 6.3: Concrete formulae benchmarks. 
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Parametric formulae from literature. Besides concrete formulae, we eval

uate the tool chains on parametric formulae. We have used formulae that 

were already used to benchmark L T L to automata translators by Gastin and 

Oddoux, 2 8 Geldenhuys and Hansen, 2 9 Mi i l l e r and Sickert, 3 0 formulae that wit

ness the double exponential blow-up of the L T L to deterministic automata 

translation described by Kupferman and Rosenberg, 3 1 and finally two formu

lae from LTL(F .G) . 

We have used the tool genltl from the Spot library to generate all instances 

of the parametric formulae, and we adopt the naming of the formulae used by 

this tool. For the formulae used already i n the literature, the first part of the 

name is a lowercase acronym of the authors' names (for example go for Gastin 

and Oddoux). The two additional formulae from LTL(F ,G) are called and-fg 

and or-fg. For the witness formulae of the double exponential blow-up (kr-n 

and kr-nlogn), please consult the original paper. The list of the other formulae 

follows. 

2 8 Gastin and Oddoux (2001), "Fast LTL to 
Biichi Automata Translation", [31]. 
2 9 Geldenhuys and Hansen (2006), "Larger 
Automata and Less Work for LTL Model 
Checking", [66]. 
3 0 Miiller and Sickert (2017), "LTL to Deter
ministic Emerson-Lei Automata", [67]. 
3 1 Kupferman and Rosenberg (2010), "The 
Blowup in Translating LTL to Deterministic 
Automata", [68]. 

gh-e(n) = A Feu 
i=l 

gh-q(n) n 
= A ( F a i v G a i + i ) 

gh-s(n) = \ / G a i gh-r(n) 
n 

= / \ ( G F a t v F G a i + 1 ) 

g h - c l ( n ) = V GFcu gh-u(n) = (...((Q! U a 2 ) U a 3 ) U . . . ) U a n 

gh-c2(n) = A G F a t 
gh-u2(n) = a i U ( a 2 U ( . . . ( a n _ 1 U p n ) . . . ) ) 

and-fg(n) = A F G a t 
ms-phi-h(n) = \ / ( F G ( - . i a v X 1 b ) ) 

i=0 

or-fg(n) = V F G a t 
go-fheta(n) = - ^ A G F a i j - G ( b - F c ) j 

ms-phi-r(O) = FGao A GFbo ms-phi - r ( i+ 1) = F G a i + i A G F b i + i vms-ph i - s ( i ) 

ms-phi-s(O) = FGao v GFbo ms-phi-s( i+ 1) = FGai+i v G F b i + i A m s - p h i - r ( i ) 
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6 . 3 H A R D W A R E , B E N C H M A R K S E T T I N G S , A N D E R R O R S 

A l l experiments ran on a workstation with the Intel i7-3770 3.40GHz C P U 

and with 8GB D D R 3 1333MHz R A M . We set up a time limit of 120 seconds 

for non-parametric and 300 seconds for parametric benchmarks. We d id not 

set any explicit memory limit. We rely on ltlcross from the Spot library to 

run the translations. Spot can only process automata that use up to 32 differ

ent acceptance marks and thus we had to remove all automata violating the 

l imit of 32 marks from our results. This limitation affected mostly automata 

produced by Rabinizer 3. 

Tables 6.4 and 6.5 give the summary of automata that we were not able to 

analyze or were flawed and thus we removed them from the final results. The 

unique case where some tool crashed was again due to the Spot's limitation on 

the number of marks - as L T L 3 T E L A relies internally on Spot, i n case it needs 

more than 32 marks it exits and produces no automaton. The total numbers 

of formulae for which some tool failed to produce a correct automaton are 7 

and 3 for the literature benchmarks and 21 and 6 for the random benchmarks, 

respecting the order of fragments from the tables; the LTL(F ,G) benchmark 

of random formulae contains no error (see Table 6.3). 

Table 6.4: Errors summary for formulae from literature. 

full L T L L T L \ G ( U , X ) 

main interm. acc >32 marks timeout >32 marks timeout 

L T L 3 D R A — T G R — — 1 — 

Rabinizer 3 - SR 6 — 1 1 

Rabinizer 3 — T G R — — — 1 

Spot (autfilt) L T L 3 T E L A T E L . T E L — 1 — 1 

Table 6.5: Errors summary for random formulae. 

full L T L L T L \ G ( U , X ) 

main interm. acc >32 marks crash incorrect >32 marks 

Rabinizer 3 - SR 21 — 1 5 

Rabinizer 3 — T G R 6 — 1 1 

Spot (autfilt) L T L 3 T E L A T E L . T E L — 1 — — 

The only tool whose bugs remained unfixed unt i l submission of the thesis 

is Rabinizer 3. The tool sometimes outputs an automaton with an empty ac

ceptance condition (equivalent to false). This causes the two 1 i n the column 

for incorrect automata. The incorrect automata were removed from further 

analysis. 
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6 . 4 R E S U L T S : N O N - P A R A M E T R I C B E N C H M A R K S 

We first describe how we present the measured data and then we offer some 

observations based on the data. We use mainly the following three types of 

data visualization. Additionally, we use scatter and quantile plots to investi

gate some phenomena more deeply. 

Numbers of minimal automata. Figure 6.4 show for each benchmark and 

each approach (direct, So/ra-like, and ItUdpa) the number of formulae from 

the benchmark for which some tool chain of the given approach can produce 

automaton with the min ima l number of states from all considered tool chains. 

Figures 6.6 (literature benchmarks) and 6.7 (random benchmarks) refine the 

information from Figure 6.4 to the level of tool chains. There are two plots 

on each of these figures. The right-hand side presents the numbers after all 

automata were converted to use marks on states exclusively (using autfilt). 

Cumulative numbers. Tables 6.6 (literature) and 6.7 (random) present cu

mulative results of the evaluated tool chains on the non-parametric bench

marks. For each benchmark and each tool chain, the tables show the cumula

tive number of states and acceptance marks 3 2 of the produced automata. The 

third column sums the time needed to compute all automata from the bench

mark by the corresponding tool chain. The green color highlights the best 

(minimal) values for each column. The thick lines divide translation types. 3 3 

We include only formulae where all tools finished their computation without 

any error i n this comparison? 4 the number i n brackets following a fragment 

name shows the number of such formulae for the benchmark. Note that these 

tables mix automata with different acceptance conditions. 

Cross-comparison. Cross-comparison tables compare tool chains within 

some logical groups i n more detail. More precisely, we compare the tool 

chains against each other on individual formulae and count the number of 

victories on formulae from each benchmark. Let us consider two automata 

A-\ and A2 produced for a formula cp by the tool chains t i and t2 , respec

tively. We say that t i wins against t2 on cp i f 

1. t.2 violates some of the given limits (time, >32 acceptance marks, incorrect 

automaton) and t i succeeds to bu i ld a correct A-\, or 

2. A-\ has less states than A2, or 

3. i f the numbers of states of Ai and A2 agree and Ai uses fewer acceptance 

marks than Ai. 

The tables show the number of victories for all pairs of tool chains from 

the corresponding groups. We assign a number to each tool chain i n the first 

column (#), this number is used to reference the tool chain i n the columns 

header. A cell on the row r i n column c contains the number of victories of 

the tool chain r over c. Finally, the last column of the tables sums the num

ber of victories for the tool chain i n each row. We use brown boxes around 

fragments name to distinguish the random benchmarks (box) from the lit

erature benchmarks (no box).We present the cross-comparison for tools that 

perform direct translation (Table 6.8), tool chains of ltl2dstar (Table 6.9), tool 

chains of Spot (Table 6.10), and finally for ltl2dpa together with the tools Spot 

and Rabinizer 4 selected based on the previous results (Table 6.11). 

3 2 Here we consider the number of distinct 
marks (the size of the set M ) , not the count 
of marks placed on individual states and 
transitions. 
3 3 direct, Safra-like, and ltl2dpa 

3 4 See Tables 6.4 and 6.5 for reasons for for
mula exclusions. 
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Observations based on the numbers of minimal automata. The numbers 

of min imal automata by approaches indicate that the determinization-based 

approach (denoted as Safra) is best suited for formulae outside L T L \ G ( U , X ) 

(full LTL) while the direct translations excel on the LTL( F,G) fragment. How

ever, Figure 6.5 shows that none of the approaches is truly dominant to the 

others. 3 5 

3 5 It is often the case that at least two ap
proaches achieve the same result. 

If we look at the level of tools, the first observation is no longer val id for 

random formulae outside L T L \ G ( U , X ) , where Rabinizer 4 wins with its d i 

rect approach. However, for the formulae from literature, Rabinizer 4 cannot 

compete with Spot. Overall, Rabinizer 4 seems to be the most successful tool 

that performs a direct translation and (Spot, —, TP) is the best Safra-based 

tool chain. 

It is particularly interesting to look at the numbers of min imal automata 

with marks on states for the fragment LTL(F ,G) i n Figure 6.7. (i) It is the only 

benchmark where ltl2dstar seems to be the better option as the determiniza

tion tool than Spot (please keep i n m i n d that it is no longer the case i f you 

do not request marks on states), (ii) It is the only benchmark where (ltl2dpa, 

ltl2ldba TP) is the tool chain that hits the m i n i m u m size most often, and the 

lead is outstanding (96 cases). 

Pushing marks from transitions to states was very harmful to all tools us

ing the generalized Rabin cond i t i on 3 6 and for Spot with L T L 3 T E L A while it 3 6 LTL3DRA, Rabinizer 3, and Rabinizer 4 

helped ltl2dpa at the same time. The algorithm that moves the marks creates, 

for each state s and each combination of marks that can be found on transi

tions leading to s, a unique state. Parity automata have at most one mark on 

each edge while the T G R A usually place marks on edges i n numerous com

binations - each such the combination leads to a unique state after marks are 

pushed to states. 

O n the random benchmarks with restricted fragments Spot is most suc

cessful with L T L 3 T E L A . We suspect that many of these cases are when the 

T E L A produced by L T L 3 T E L A is already deterministic. However, i f we con

sult Table 6.7 we cannot confirm the dominance of this tool chain over other 

tool chains that use Spot for determinization i n cumulative sizes of automata. 

Observations based on the cumulative numbers. The cumulative num

bers reveal that Rabinizer 4 produces (on average) the smallest automata for 

the restricted fragments. O n the fragment LTL(F ,G) , we can observe that the 

determinization-based tools are a bad choice. O n the other hand, the num

bers are i n favour of Spot for the formulae outside L T L \ G ( U , X ) . 

Please note that the high numbers of states for ltl2dstar can be influenced 

by the fact that it produces automata with marks of states while the other tool 

chains usually place marks on transitions. We discuss ltl2dstar i n more details 

later on and we address this issue when we compare ltl2dstar and autfilt. 

Spot is the right choice for situations where a simple acceptance condition 

is desirable - all tool chains that involve some other tool than Spot need far 

more acceptance marks than Spot alone for each of the five benchmarks. 

Finally, Rabinizer 3, Rabinizer 4, ltl2dpa, and partially L T L 3 T E L A do ex

hibit long computation times. However, the computation time of the automa

ton is usually the minor problem i n comparison to the analysis of the product 

with some system that follows i n many cases. 
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Figure 6.4: Numbers of minimal automa
ta by approaches for the literature (top) and 
the random (bottom) benchmarks. For each 
benchmark and each approach we show in 
how many cases some tool that uses the con
sidered approach produced an automaton 
with the minimal number of states that was 
achieved for a given formula. The numbers 
in brackets below the fragment names show 
the total number of formulae in the bench
mark. 

• direct • Safra • M2dpa • nonunique 

full LTL 

[129] 

L T L \ G ( U , X ) 

[92] 

36 1 

12 3 77 

full LTL 

[500] 

L T L \ G ( U , X ) 

[500] 

LTL(F.G) 

[500] 

47 

110 334 

22 2 

22 454 

100 

12 3S6 

20 40 60 80 100 120 140 

# of automata with minimal size 

Figure 6.5: Numbers of unique minimal au
tomata by approaches for the literature (top) 
and the random (bottom) benchmarks. We 
consider only cases where no other approach 
reached the same size of automata; the num
ber of cases where at least two approaches 
managed to produce some minimal automa
ton is shown by the nonunique (grey) bar. 

0 50 100 150 200 250 300 350 400 450 500 550 

# of automata with minimal size 



L T L T O D E T E R M I N I S T I C A U T O M A T A T R A N S L A T O R S : E X P E R I M E N T A L E V A L U A T I O N 89 

mixed marks marks on states 

LTL3DRA 

LTL3DRA 

Rabinizer 3 

Rabinizer 3 

Rabinizer 4 

Rabinizer 4 

TGR 

SR 

TGR 

SR 

TGR 

SR 

• 5 

• 59 

• 32 

• 26 
• 54 

28 

• 74 
86 

• 48 
• 57 

• 25 

• 46 

10 
• 42 

36 

• 60 
• 74 

• 60 
• 68 

ltl2dstar (LTL) LTL3BA SB. SR 

ltl2dstar (LTL) LTL3BAd SB.SR 

ltl2dstar (LTL) Spot SB.SR 

ltl2dstar (NBA) LTL3BA SB.SR 

ltl2dstar (NBA) LTL3BAd SB.SR 

ltl2dstar (NBA) Spot SB.SR 

Spot (autfilt) LTL3BA TGB.TP 

Spot (autfilt) LTL3BA SB.TP 

Spot (autfilt) LTL3BAd TGB.TP 

Spot (autfilt) LTL3BAd SB.TP 

Spot (autfilt) LTL3TELA TEL.TEL 

Spot (autfilt) Spot TGB.TP 

Spot (autfilt) Spot SB.TP 

Spot — TP 

• 26 
• 35 

• 29 
40 

ZD 28 
44 

14 
• 26 

19 
• 34 

27 
44 

• 46 
• 70 

45 
• 63 

• 49 
• 74 

• 51 
• 66 

• 56 
• 75 

1 109 
• 61 

63 
• 83 

• 73 
] 111 

• 61 
• 90 

ltl2dpa ltl2ldba TP 

ltl2dpa Rabinizer TP 

• 66 
• 73 

=1 69 
• 66 

0 20 40 60 80 100 120 0 20 40 60 80 

# of automata with min imal size # of automata with min imal size 

full L T L [129] • L T L \ G ( U , X ) [92] 

Figure 6.6: The numbers of minimal automata for literature benchmarks. 
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Figure 6.7: The numbers of minimal automata for random benchmarks. 
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Table 6.6: The cumulative numbers for the literature benchmarks. 

full LTL [122] L T L \ G ( U , X ) [89] 
main tool intermediate acc states acc time states acc time 

LTL3DRA — 
TGR 

SR 
— — — 315 

451 
172 
276 

2 
3 

Rabinizer 3 — 
TGR 

SR 
869 

1707 
426 
980 

304 
424 

870 
1623 

191 
548 

138 
156 

Rabinizer 4 
TGR 841 375 104 268 196 51 

Rabinizer 4 
SR 1350 402 106 386 218 51 

ltl2dstar 
LTL 

LTL3BA SB.SR 1992 398 4 59559 276 24 
ltl2dstar 

LTL 
LTL3BAd 

Spot 
SB.SR 
SB.SR 

1189 
1032 

376 
338 

3 
3 

59515 
59712 

274 
264 

25 
24 

ltl2dstar 
NBA 

LTL3BA SB.SR 2170 396 2 78671 264 27 
ltl2dstar 

NBA 
LTL3BAd SB.SR 1254 374 1 78644 264 28 

ltl2dstar 
NBA 

Spot SB.SR 1034 334 2 59714 242 22 

LTL3BA 
TGB.TP 

SB.TP 
987 

1211 
250 
283 

2 
2 

452 
495 

152 
148 1 

Spot 
autfilt 

LTL3BAd 
TGB.TP 

SB.TP 
706 
738 

255 
254 

1 
1 

437 
482 

148 
141 ; Spot 

autfilt 
LTL3TELA TEL.TEL 753 250 122 428 159 122 

Spot 
TGB.TP 684 211 1 420 134 1 

Spot 
SB.TP 688 213 2 448 127 1 

Spot — TP 680 207 1 420 134 2 

ltl2dpa 
M2ldba 

Rabinizer 
TP 
TP 

754 
901 

327 
349 

95 
108 

294 
414 

201 
202 

50 
55 

Table 6.7: The cumulative numbers for the random benchmarks. 

full LTL [479] L T L \ G ( U , X ) [494] LTL(F,G) [500] 
main tool intermediate acc states acc time states acc time states acc time 

LTL3DRA 
TGR — — — 3359 1040 4 1359 1571 4 

LTL3DRA 
SR — — — 3962 1826 6 2918 2022 5 

Rabinizer 3 — 
TGR 

SR 
4269 

^0609 

2839 
6072 

145 
276 

2766 

4298 
1546 
3892 

82 
97 

1488 
4165 

1710 
4012 

77 
87 

Rabinizer 4 
TGR 3753 1544 371 2465 1089 329 1045 1468 312 

Rabinizer 4 
SR 5704 1582 376 2833 1182 337 2452 1630 317 

ltl2dstar 
LTL 

LTL3BA SB.SR 39058 2008 14 4117 1638 11 6912 2056 10 
ltl2dstar 

LTL 
LTL3BAd 

Spot 
SB.SR 
SB.SR 

9238 
8111 

1830 
1716 

12 
15 

4099 
4074 

1576 
1504 

12 
12 

7697 

8563 
2038 
1980 

11 
11 

ltl2dstar 
NBA 

LTL3BA SB.SR 49841 1956 9 4952 1556 5 15223 2016 5 
ltl2dstar 

NBA 
LTL3BAd SB.SR 11700 1772 4 4945 1508 4 15522 1984 4 

ltl2dstar 
NBA 

Spot SB.SR 8247 1658 6 4116 1428 5 8867 2008 5 

LTL3BA 
TGB.TP 3853 1026 7 2646 817 5 2021 1312 4 

LTL3BA 
SB.TP 4979 1146 6 2833 833 5 3183 1388 4 

Spot 
autfilt 

LTL3BAd 
TGB.TP 3809 1052 5 2658 833 4 2054 1302 4 

Spot 
autfilt 

LTL3BAd 
SB.TP 4279 1049 5 2850 817 5 2863 1330 5 

Spot 
autfilt 

LTL3TELA TEL.TEL 4346 1071 10 2666 819 6 2270 1329 5 

Spot 
TGB.TP 3695 984 6 2611 767 7 1934 1251 7 

Spot 
SB.TP 4022 986 6 2717 769 5 2428 1263 5 

Spot — TP 3625 925 5 2606 743 6 1931 1250 6 

ltl2dpa 
M2ldba TP 6388 1299 359 2536 1115 320 1199 1468 308 

ltl2dpa 
Rabinizer TP 4391 1323 390 2505 1119 348 1244 1492 327 
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Cross-comparison (direct). Table 6.8 shows that Rabinizer 4 overall beats 

the other tools for direct translations. However, there are still many cases 

where either L T L 3 D R A or Rabinizer 3 produces a better 3 7 automaton (see 

the column 5 which lists the number of losses of Rabinizer 4). 

The results of Rabinizer 3 that produces D S R A are particularly bad. They 

are partially caused by the fact that Rabinizer 3 usually uses a lot of unnec

essary acceptance marks; it also suggests that the degeneralization procedure 

can be improved. 

3 7 Note that in case of equally sized automata 
we also compare the numbers of acceptance 
marks. 

Table 6.8: Cross-comparison of the tools that perform a direct translation. 

main tool intermediate acc # V 

L] ON 

L T L 3 D R A 

Rabinizer 3 

Rabinizer 4 

T G R 

SR 

T G R 3 — — — 129 21 60 210 

SR 4 — — 0 — 6 10 16 

T G R 

SR 

101 123 — 

56 119 3 

74 298 

- 178 

U ON 
/ '—' 

L T L 3 D R A 

Rabinizer 3 

Rabinizer 4 

T G R 

SR 1 

91 31 89 30 

- 8 84 2 

58 299 

10 105 

T G R 3 9 80 — 91 28 55 263 

SR 4 2 5 — 1 4 12 

T G R 5 37 65 46 91 — 42 281 

SR 6 30 43 34 88 0 - 195 

S o M o 
—I LO 

L T L 3 D R A 

Rabinizer 3 

Rabinizer 4 

T G R 

SR 

T G R 

SR 

- 494 50 

0 - 2 

210 754 

10 12 

T G R 

SR 

426 498 — 

280 489 17 

295 1219 

- 786 

rn O 
, HI 

L T L 3 D R A 

Rabinizer 3 

Rabinizer 4 

T G R 

SR 

500 

0 

219 474 81 

26 434 9 

189 1463 

26 495 

T G R 

SR 

93 468 

26 64 0 

203 1331 

8 103 

T G R 

SR 

340 444 

264 401 

406 495 — 

290 492 2 

204 1889 

— 1449 

5 

L T L 3 D R A 

Rabinizer 3 

Rabinizer 4 

T G R 

SR 

— 499 

0 -

208 493 70 

22 416 1 

397 1667 

50 489 

T G R 

SR 

114 466 

6 81 

- 500 48 

0 - 0 

374 1502 

28 115 

T G R 

SR 

309 490 

65 319 

363 500 -

87 472 0 

457 2119 

— 943 
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ltl2dstar. The following three paragraphs combine observations from the 

cumulative numbers and the cross-comparison i n Table 6.9 that was created 

for the ltl2dstar tool chains. We first address the question: Which LTL-to-BA 

translator should we use with ltl2dstar? 

From the cross-comparison it seems that the N B A interface combined with 

Spot is the best choice. The cumulative numbers confirm this for the number 

of acceptance marks, but slightly favour the L T L interface for the number of 

states. The tool chain of L T L interface combined with L T L 3 B A d offers a very 

good alternative to the tool chains with Spot; it produces the min imal number 

of states on the LTL( F,G) benchmark and on the L T L \ G (U , X ) formulae from 

literature. 

The difference between the L T L and N B A interface combined with Spot is 

negligible, while it is significant with L T L 3 B A at the same time. The reason for 

this is that Spot sets the stutter-invariance property i n its H O A representation 

of the produced nondeterministic automata while L T L 3 B A does not. This 

property is read by ltl2dstar which can then employ optimizations for stutter-

invariant properties. 

Spot. The message of the comparison of the tool chains that use Spot for 

determinization is clear: use (Spot, —, TP) . However, there are still some cases 

where Spot works better with L T L 3 B A (see the column 8 i n Table 6.10); even 

more, on the fragment LTL (F ,G) , (Spot (autfilt), L T L 3 T E L A , T E L . T E L ) wins 

the battle i n the cross-comparison (but not i n the cumulative numbers). 

This is expected as L T L 3 T E L A works best on LTL (F ,G) formulae and of

ten produces a deterministic automaton. O n the other hand, i n cases where 

the intermediate T E L A is not deterministic, the tool chain has to employ an 

expensive transformation into a T B A and produces large automata. These i n 

consistent results of the tool chain with L T L 3 T E L A can be observed on the 

quantile plot i n Figure 6.8. The figure shows automata sizes of three selected 

tool chains based on Spots determinization. For each of these tool chains 

we have sorted the automata sizes independently and plotted the results. The 

green line shows the min ima l automata achieved by some Spot s tool chain. 3 8 

We can see that (Spot (autfilt), L T L 3 T E L A , T E L . T E L ) produced both most of 

the smallest and also the largest automata from the selected tool chains. 

S 10' 

10 c 

• min(Spot) 
• (Spot (autfilt), L T L 3 T E L A , T E L . T E L ) 
• (Spot (autfilt), L T L 3 B A , T G B . T P ) 
(Spot, - , TP) 

3 8 minimal from all tool chains based on 
Spot, not only from the selected ones 

Figure 6.8: Quantile plot of automata sizes 
of selected tool chains that use Spot for de
terminization on the LTL(F.G) benchmark. 
Note log scale. 

50 100 150 200 250 300 350 400 450 500 

n- th smallest automaton 
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Table 6.9: Cross-comparison of tool chains that use M2dstar for determinization of nondeterministic automata. 

main tool intermediate acc # 1 2 3 4 5 6 V 

LT
L 

0-
<N 

ltl2dstar 

L T L 

L T L 3 B A 

L T L 3 B A d 

Spot 

SB.SR 

SB.SR 

SB.SR 

1 

2 

3 

55 

66 

7 

27 

6 

4 

25 

70 

79 

25 

19 

41 

7 

5 

1 

70 

153 

214 

1 
0-
<N 

ltl2dstar 

N B A 

L T L 3 B A 

L T L 3 B A d 

SB.SR 

SB.SR 

4 

5 

0 

51 

7 

0 

5 

3 57 

8 5 

3 

25 

114 
ltl2dstar 

N B A 
Spot SB.SR 6 67 28 1 79 41 — 216 

>< 

ltl2dstar 

L T L 

L T L 3 B A 

L T L 3 B A d 

SB.SR 

SB.SR 

1 

2 17 

3 2 

3 

38 

49 

32 

31 

3 

3 

78 

103 

<N 

ltl2dstar 

L T L 
Spot SB.SR 3 23 10 — 51 33 1 118 

L
T

L
\G

 

ON 

ltl2dstar 

N B A 

L T L 3 B A 

L T L 3 B A d 

SB.SR 

SB.SR 

4 

5 

3 

16 

2 

4 

2 

5 18 

4 1 

3 

12 

46 
ltl2dstar 

N B A 
Spot SB.SR 6 33 20 10 51 33 — 147 

ltl2dstar 

L T L 

L T L 3 B A 

L T L 3 B A d 

SB.SR 

SB.SR 

1 

2 189 

34 44 

54 

142 

269 

121 

129 

53 

80 

394 

721 

cT 

ltl2dstar 

L T L 
Spot SB.SR 3 229 105 — 303 206 33 876 

LO 

ltl2dstar 

N B A 

L T L 3 B A 

L T L 3 B A d 

SB.SR 

SB.SR 

4 

5 

22 

165 

29 

16 

29 

41 204 

30 25 

36 

135 

462 
ltl2dstar 

N B A 
Spot SB.SR f. 225 112 19 292 185 833 Spot SB.SR 225 112 19 292 185 833 

X 
ltl2dstar 

L T L 

L T L 3 B A 

L T L 3 B A d 

SB.SR 

SB.SR 

1 

2 72 

24 27 

21 

152 

191 

141 

132 

37 

33 

381 

449 

=T cT 

ltl2dstar 

L T L 
Spot SB.SR 3 117 61 — 214 163 15 570 

L
T

L
\G

 

LO 

ltl2dstar 

N B A 

L T L 3 B A 

L T L 3 B A d 

SB.SR 

SB.SR 

4 

5 

24 

79 

36 

24 

38 

37 86 

30 22 

15 

150 

241 
ltl2dstar 

N B A 
Spot SB.SR f. 140 94 36 208 158 636 Spot SB.SR 140 94 36 208 158 636 

ltl2dstar 

L T L 

L T L 3 B A SB.SR 1 — 57 81 455 399 120 1112 

3 
LL? 

ltl2dstar 

L T L 
L T L 3 B A d SB.SR 2 101 — 81 462 411 126 1181 
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Table 6.10: Cross-comparison of tool chains that use Spot for determinization of nondeterministic automata. 

main tool intermediate acc # 1 2 3 4 5 6 7 8 V 
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Determinization tool chains with marks on states. We have already men

tioned that the large automata produced by ltl2dstar i n comparison to other 

tool chains are at least partially due to the placement of marks to states. There

fore, we offer a fair comparison of ltl2dstar and Spot i n Figure 6.9. The scat

ter plots compare the tool chain t x = (Spot, —, TP) with the tool chain 

t y = (ltl2dstar (LTL) , Spot, SB.SR) after all marks were pushed to states. A 

dot on coordinates ( x , y ) represents the fact that there exists a formula cp in 

the benchmark such that t x created an automaton with x states for cp and ty 

produced an automaton with y states for the same formula. The color of the 

dot indicates the number of such formulae. We have merged the literature 

and random benchmarks to reduce the number of figures. 

marks on states marks on states 
full LTL [622] L T L \ G ( U , X ) [578] 

Spot Spot 

We can observe that without any doubts Spot is better even after the marks 

were pushed on states on the full L T L and L T L \ G ( U , X ) benchmarks and 

avoids really large automata on LTL (F ,G) . However, on LTL (F ,G) Spot is no 

longer so dominant (note the red dots below the green line), though, it is still 

preferable. 

Rabinizer 4, Spot, and ltl2dpa. N o w we compare the best direct tool and 

the best determinization tool chain with the two tool chains of ltl2dpa. You 

can find the cross-comparison i n Table 6.11. Spot wins on all benchmarks 

except the LTL (F ,G) benchmark. O n the LTL (F ,G) benchmark not only Ra

binizer 4 clearly wins, but also ltl2dpa beats Spot. 

The cross-comparison uses the number of acceptance marks into account 

for automata of equal size. The scatter plots i n Figure 6.10 show how Spot 

competes with Rabinizer 4 on states only. We have, again, merged the random 

and literature benchmarks. For the full L T L and L T L \ G ( U , X ) benchmarks, 

we zoom (below) into the dense parts of the plots indicated by the red boxes. 

The dominance of Spot is no longer present here; on the contrary, Rabinizer 

4 seems to be slightly preferable. 

marks on states 
LTL(F,G) [500] 

Figure 6.9: Scatter plots comparing ltl2dstar 
and Spot on automata with marks on states. 
Note log scale. 
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Table 6.11: Cross-comparison of Rabinizer 4, Spot, and ltl2dpa. 

main tool intermediate acc # 1 2 3 4 V 

Rabinizer 4 — TGR 1 — 15 46 63 124 

full LTL Spot — TP 2 100 — 105 104 309 
[129] 

ltl2dpa 
W2ldba TP 3 45 12 — 43 100 

ltl2dpa 
Rabinizer TP 4 20 12 28 — 60 

Rabinizer 4 — TGR 1 — 24 41 41 106 

L T L \ G ( U , X ) Spot — TP 2 59 — 66 67 192 
[92] 

ltl2dpa 
M2ldba TP 3 2 17 — 7 26 

ltl2dpa 
Rabinizer TP 4 1 15 3 — 19 

Rabinizer 4 — TGR 1 — 145 244 209 598 

full LTL Spot — TP 2 310 — 369 358 1037 
[500] 

ltl2dpa 
W2ldba TP 3 119 118 — 103 340 

ltl2dpa 
Rabinizer TP 4 109 122 121 — 352 

Rabinizer 4 — TGR 1 — 139 137 136 412 

L T L \ G ( U , X ) Spot — TP 2 311 — 348 336 995 
[500] 

ltl2dpa 
M2ldba TP 3 52 118 — 28 198 

ltl2dpa 
Rabinizer TP 4 40 126 27 — 193 

Rabinizer 4 — TGR 1 — 354 341 349 1044 

LTL(F,G) Spot — TP 2 I l l — 135 137 383 
[500] 

ltl2dpa 
W2ldba TP 3 73 347 — 33 453 

ltl2dpa 
Rabinizer TP 4 67 339 7 — 413 

zoom zoom 

0 10 20 0 5 10 15 20 

Rabinizer 4 Rabinizer 4 

Figure 6.10: Scatter plots comparing Rabinizer 4 and Spot with zooms into dense parts of the plots. 
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In the cross-comparison of Table 6.10, the tool chain (Spot, —, TP) is only 

beaten by (Spot (autfilt), L T L 3 T E L A , T E L . T E L ) on the LTL(F ,G) benchmark. 

The scatter plots i n Figure 6.11 confirms the victory of Rabinizer 4 over Spot 

even against the tool chain with L T L 3 T E L A . 

< 
w 
H 
en 

+ 
4-* o 
On CO 

100 

50 

0 5 10 15 

Rabinizer 4 

0 2 4 

Rabinizer 4 

Figure 6.11: Scatter plot comparing 
Rabinizer 4 against Spot combined with 
LTL3TELA. 

6 . 5 R E S U L T S : T H E P A R A M E T R I C B E N C H M A R K S 

We present the results achieved by the considered tool chains on the paramet

ric formulae i n Tables 6.12, 6.13,6.14, and 6.15. For each parametric formula 

cp(i) and each tool chain t, we show two or three numbers. The column max 

shows the maximal parameter i for which t was able to compute an automaton 

for cp ( i ) . The heading n = j for some formula cp means that all tools were able 

to compute automata for cp(j) and that some timeout occurred for cp(j + 1). 

If the timeout was preceded by some error (violating the l imit of 32 marks), 

we use two columns named n e and n t instead of n , where the value for n e 

is the maximum parameter without error and n t is the maximum parameter 

without any timeout. The value for t i n the column for n shows the number 

of states of the automaton produced by t for cp(n), and analogously for n e 

and n t . The best values (minimal for n , n e , or n t and maximal for max) for 

each formula are highlighted i n green. Note that all errors encountered here 

were related to the l imit on acceptance marks. 

The tables confirm that Rabinizer 4 often produce small automata, but also 

that it often requires a lot of time. The D T G R A setting reached the maximal 

n for a given formula only i n one case (the D S R A i n one more), and it was 

never the unique t o o l 3 9 that achieved the maximal parameter; the same holds 

for the tool chains that combine ltl2dstar and Spot and the tool chains that 

use ltl2dpa are only slightly better i n this aspect. Surprisingly, L T L 3 D R A suc

ceeded to reach the maximal parameter i n 3 cases as the only tool and ltl2dstar 

combined with L T L 3 B A even i n 4 cases as the only tool chain. ( L T L 3 D R A , 

—, SR) was three times able to reach higher parameter than ( L T L 3 D R A , —, 

T G R ) . The reason for this unexpected behaviour is the limitation of ltlcross to 

automata with at most 32 acceptance marks, as ( L T L 3 D R A , —, T G R ) violated 

the l imit for lower parameters than ( L T L 3 D R A , —, SR). In all these cases, the 

T G R A setting of L T L 3 D R A achieved shorter run times. 4 0 

3 9 In this situation, more tool chains that 
use the same combination of tools, possi
bly in different configurations, are consid
ered unique. 

4 0 Rabinizer 4, on the contrary, does not ex
hibit the same difference. The run times of 
the T G R A setting are higher than the ones 
of the SRA setting. 
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Table 6.12: Parametric formulae benchmark (gh I). 

gh -e gh-cl gh-c2 gh-q 
main tool intermediate acc n = 9 max n = 8 max n = 11 max n e = 3 nt = 6 max 

LTL3DRA 
TGR 512 9 1 22 1 13 30 910 6 

LTL3DRA 
SR 512 9 2 22 12 13 30 — 5 

Rabinizer 3 
TGR 512 12 1 14 1 16 18 — 4 

Rabinizer 3 
SR 512 10 256 8 12 12 43 — 3 

Rabinizer 4 
TGR 512 12 1 11 1 12 18 240 10 

Rabinizer 4 
SR 512 12 256 11 22 12 18 240 10 

ltl2dstar 
LTL 

LTL3BA SB. SR 512 10 2 18 32 19 24 386 7 
ltl2dstar 

LTL 
LTL3BAd SB. SR 512 10 2 19 21 15 24 386 8 

ltl2dstar 
LTL 

Spot SB. SR 512 12 2 11 21 14 18 240 7 

ltl2dstar 
NBA 

LTL3BA SB. SR 512 11 4 25 23 20 28 491 7 
ltl2dstar 

NBA 
LTL3BAd SB. SR 512 10 2 25 12 15 27 542 8 

ltl2dstar 
NBA 

Spot SB. SR 512 12 2 11 21 14 18 240 7 

LTL3BA 
TGB.TP 512 11 1 23 1 16 18 240 6 

LTL3BA 
SB.TP 512 11 2 22 21 11 18 240 7 

Spot 
autfilt 

LTL3BAd 
TGB.TP 512 13 1 24 1 15 18 240 7 

Spot 
autfilt 

LTL3BAd 
SB.TP 512 10 2 23 12 15 18 240 7 

Spot 
autfilt 

LTL3TELA TEL.TEL 512 10 1 22 1 11 18 240 6 

Spot 
TGB.TP 512 13 1 11 1 14 18 240 7 

Spot 
SB.TP 512 13 2 11 12 13 18 240 7 

Spot — TP 512 14 1 11 1 13 18 240 9 

ltl2dpa 
M2ldba TP 512 11 1 13 11 13 18 240 9 

ltl2dpa 
Rabinizer TP 512 12 1 11 11 12 18 240 10 

Table 6.13: Parametric formulae benchmark (gh II). 

gh -r gh-s gh-•u gh-u2 
main tool intermediate acc n = 2 max Tie = 3 n t = 10 max n = 8 max n = 8 max 

LTL3DRA 
TGR 1 4 8 1024 12 719 8 9 13 

LTL3DRA 
SR 10 5 8 1024 12 719 8 9 13 

Rabinizer 3 
TGR 1 4 8 — 3 129 11 9 17 

Rabinizer 3 
SR 12 4 35 — 3 129 10 9 12 

Rabinizer 4 
TGR 1 4 7 — 8 128 12 8 14 

Rabinizer 4 
SR 13 5 7 — 8 128 12 8 14 

ltl2dstar 
LTL 

LTL3BA SB. SR 756 3 8 1024 12 129 9 9 13 
ltl2dstar 

LTL 
LTL3BAd SB. SR 66 4 8 1024 12 129 9 9 13 

ltl2dstar 
LTL 

Spot SB. SR 286 3 8 1024 12 129 12 9 14 

ltl2dstar 
NBA 

LTL3BA SB. SR 1304 2 9 1025 13 129 9 9 14 
ltl2dstar 

NBA 
LTL3BAd SB. SR 152 3 9 1025 13 129 9 9 13 

ltl2dstar 
NBA 

Spot SB. SR 286 3 9 1025 12 129 12 9 14 

LTL3BA 
TGB.TP 9 5 8 1024 13 128 9 8 13 

LTL3BA 
SB.TP 66 4 8 1024 13 128 9 8 13 

Spot 
autfilt 

LTL3BAd 
TGB.TP 

SB.TP 
9 

13 
5 
5 

8 1024 
8 1024 

13 
13 

128 
128 

12 
9 

8 
8 

14 
14 

Spot 
autfilt 

LTL3TELA TEL.TEL 16 4 8 1024 10 128 10 8 8 

Spot 
TGB.TP 16 4 8 1024 13 128 12 8 14 

Spot 
SB.TP 18 4 8 1024 13 128 12 8 14 

Spot — TP 16 4 7 1023 13 128 13 8 14 

ltl2dpa 
Itl2ldba TP 4 4 7 1023 11 128 11 8 14 

ltl2dpa 
Rabinizer TP 4 4 7 — 8 128 12 8 14 
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Table 6.14: Parametric formulae benchmark (ms and go). 

ms-phi-r ms-phi-s go-theta ms-phi-h 
main tool intermediate acc n = 2 max n = 1 max n = 5 max = 2 n t = 3 max 

LTL3DRA 
TGR 1 4 1 3 2 12 — — — 

LTL3DRA 
SR 24 5 8 5 7 12 — — — 

Rabinizer 3 
TGR 1 4 1 3 2 15 5 11 3 

Rabinizer 3 
SR 27 3 9 3 11 9 20 — 2 

Rabinizer 4 
TGR 1 4 1 3 2 10 5 19 7 

Rabinizer 4 
SR 33 4 11 4 11 10 13 41 7 

ltl2dstar 
LTL 

LTL3BA SB.SR 147 2 49 1 15 17 18 194 4 
ltl2dstar 

LTL 
LTL3BAd SB.SR 99 2 33 1 5444 5 18 194 4 

ltl2dstar 
LTL 

Spot SB.SR 264 2 88 1 5444 5 18 194 4 

ltl2dstar 
NBA 

LTL3BA SB.SR 10541 2 87 1 13 18 285 29635 3 
ltl2dstar 

NBA 
LTL3BAd SB.SR 12012 2 94 1 8934 5 285 29452 3 

ltl2dstar 
NBA 

Spot SB.SR 5418 2 82 1 5444 5 285 29452 3 

LTL3BA 
TGB.TP 

SB.TP 
24 

152 
3 
3 

7 
28 

3 
2 

230 
523 

7 
7 

25 
21 

199 
171 

5 
5 

Spot 
autfilt 

LTL3BAd 
TGB.TP 

SB.TP 
24 
88 

3 
3 

7 
18 

3 
3 

230 
490 

7 
6 

25 
21 

199 
171 

5 
5 

Spot 
autfilt 

LTL3TELA TEL.TEL 31 3 7 3 167 7 22 175 5 

Spot 
TGB.TP 29 3 8 3 230 7 21 170 5 

Spot 
SB.TP 76 3 16 3 436 6 21 170 5 

Spot — TP 29 3 8 3 230 7 21 170 5 

ltl2dpa 
M2ldba TP 6 3 4 3 6 10 7 15 11 

ltl2dpa 
Rabinizer TP 6 4 2 3 6 10 27 244 5 

Table 6.15: Parametric formulae benchmark (kr and other) 

and-fg or-fg kr-n kr-nlogn 
main tool intermediate acc n = 11 max n = 5 max n e = 1 r i t = = 2 max n = 1 max 

LTL3DRA 
TGR 1 22 1 20 — — — — — 

LTL3DRA 
SR 2 22 32 13 — — — — — 

Rabinizer 3 
TGR 1 17 1 14 28 152 2 34 2 

Rabinizer 3 
SR 3 12 32 8 29 153 2 35 2 

Rabinizer 4 
TGR 1 12 1 12 23 196 2 37 1 

Rabinizer 4 
SR 2 12 32 12 23 196 2 37 1 

M2dstar 
LTL 

LTL3BA SB.SR 2 24 32 13 13 83 3 20 3 
M2dstar 

LTL 
LTL3BAd SB.SR 2 24 32 13 13 83 3 20 3 

M2dstar 
LTL 

Spot SB.SR 2 11 32 12 13 83 3 20 2 

M2dstar 
NBA 

LTL3BA SB.SR 3 24 77775 5 13 83 3 20 3 
M2dstar 

NBA 
LTL3BAd SB.SR 3 24 77775 5 13 83 3 20 3 

M2dstar 
NBA 

Spot SB.SR 2 11 58852 5 13 83 3 20 2 

LTL3BA 
TGB.TP 

SB.TP 
2 
2 

21 
21 

121 
121 

7 
7 

12 
12 

82 
82 

3 
3 

19 
19 

3 
3 

Spot 
autfilt 

LTL3BAd 
TGB.TP 

SB.TP 
2 
2 

21 
21 

121 
121 

7 
7 

12 
12 

82 
82 

3 
3 

19 
19 

3 
3 

Spot 
autfilt 

LTL3TELA TEL.TEL 1 23 121 7 12 — 1 19 1 

Spot 
TGB.TP 2 11 121 7 12 82 3 19 2 

Spot 
SB.TP 2 11 121 7 12 82 3 19 2 

Spot — TP 2 11 121 7 12 82 3 19 2 

ltl2dpa 
M2ldba TP 1 14 5 12 13 96 2 20 1 

ltl2dpa 
Rabinizer TP 1 12 120 7 23 196 2 37 1 
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6.6 F I N A L W O R D S 

The situation with L T L to deterministic automata translation changed sub

stantially since 2013. The former leading tool chains of L T L 3 D R A or ltl2dstar 

combined with Spot are now surpassed by Rabinizer 4 and Spot. However, 

there is still space for improvement for both Rabinizer 4 and Spot as neither 

of the tools dominated entirely. 

General recommendations. We recommend using either (Spot, —, TP) or 

(Rabinizer 4, —, T G R ) for translation of L T L into deterministic automata. 

Rabinizer 4 is preferable i f the small size of automata is i n the main focus. 

O n the contrary, Spot is preferable for situations, where the complexity of the 

acceptance condition or computation time are an issue. Spot is also the right 

choice for L T L translation to automata that are further converted to games 4 1 , 4 1 synthesis of reactive systems, for example 

as Spot produces automata with the parity acceptance condition. 

Portfolio approach. As no tool dominates the others i n all cases, the port

folio approach, where you run more translators and choose the best result, 

is also an appealing option. The portfolio of the following nine tool chains 

produces a min imal automaton for all considered cases except 4 randomly 

generated formulae outside L T L \ G ( U , X ) . 

. (Rabinizer 4, —, T G R ) 

. (Rabinizer 3, —, T G R ) 

. ( L T L 3 D R A , —, T G R ) 

. ( S p o t , - , T P ) 

. (Spot (autfilt), L T L 3 T E L A , T E L . T E L ) 

. (Spot (autfilt), L T L 3 B A , T G B . T P ) 

. (Spot (autfilt), Spot, SB.TP) 

. ( l t l2dpa,M2ldbaTP) 

. (Itl2dstar (LTL), L T L 3 B A d , SB.SR) 

Suggestions for tool developers. Spot showed the biggest weakness on the 

LTL(F ,G) fragment. This observation can be a good starting point for the 

further development of determinization procedures i n Spot. The developers 

of Rabinizer 4 could find some inspiration i n its predecessor, Rabinizer 3.1, 

as we have identified more than 200 formulae where Rabinizer 3.1 produces 

better D T G R A than Rabinizer 4. 





Part III 

SEMI-DETERMINISTIC AUTOMATA 





Semi-Determinization and Cut-Determinization 
of Generalized Buchi Automata 

In this chapter, we introduce semi-deterministic and cut-deterministic auto

mata and discuss several algorithms related to them. Our focus here is on 

methods that convert a given nondeterministic (generalized) Buchi automa

ton into an equivalent semi-deterministic or cut-deterministic automaton. 

Semi-deterministic automata have so far only been considered with Buchi or 

generalized Buchi acceptance. For this reason, we omit the acceptance for

mula from the figures as it is always a conjunction of Inf terms for all marks 

present i n the automaton. For the sake of clarity, we use classical alphabet 

throughout this and the following chapter. A l l results naturally apply also on 

automata with propositional alphabets. 

7 . 1 S E M I - D E T E R M I N I S M A N D C U T - D E T E R M I N I S M 

A generalized Buchi automaton (S, 1,6, ST, M , U , d>) is semi-deterministic i f 

S = S i \ | U S D i s a union of two disjoint sets S N and S D and the transition 

relations = 5 N u 6 c U S Q consists ofthree disjoint transition relations, namely 

5 N : S N X I X S N , 5 C : S N x I x S D , and 5 D : S D X I X S D , 

where there is no transition from S Q to S N 1 and 6 Q is deterministic. 2 More- ' 6 n ( S D x £ x s N ) = 0 

over, marks are placed only on elements of S D and 6 D . The elements of 5 c

 2 F o r e a c h s t a t e s e s D and each letter a e 

are called cut transitions. Figure 7.1 illustrates these conditions visually. 
£ , there is at most one state s ' such that 
(s, a, s ' ) e 5 D . 

Figure 7.1: Structure of a semi-
deterministic automaton. The green 
cloud is deterministic and contains all 
accepting transitions and states that are 
reachable from them. In a cut-deterministic 
automaton, the blue cloud is deterministic 
too. 

A G B A is cut-deterministic i f it is semi-deterministic and its 6 N is also 

deterministic. Intuitively, nondeterminism i n a cut-deterministic automa

ton can be induced only by the cut transitions from S N to S D - The term 

cut-determinism is inspired by the graph-theoretic notion of cut (6 C) and its 

purpose is to disambiguate the overloaded term semi-determinism? 3 Vardi and Wolper (1986), [2]; Hahn et al. 
(2015), [10];Blahoudeketal. (2016), [16]. Clearly, every deterministic automaton is also cut-deterministic and every 

cut-deterministic automaton is also semi-deterministic. The opposite rela

tions do not hold. 
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7 . 2 C U T - D E T E R M I N I S M C H E C K & S T A T E S P A C E P A R T I T I O N 

To check cut- or semi-determinism of a given G B A A - (S, Z , 6, S i , M , LL, CD) 

we have to (i) compute a suitable partition of S and 5 into S N , S D , § N > Sc. and 

5 D , and (ii) check determinism of 6 D and 5 N . We address the two tasks i n one 

algorithm simultaneously. The algorithm computes two partitions of states: 

one such that S D is min ima l and one such that S o is maximal permissible; 

based on these partitions it decides whether A is semi- and cut-deterministic. 

The knowledge of some partition of S into S N and S Q is also needed for 

cut-determinization of semi-deterministic automata studied i n Section 7.7 

and is beneficial for complementation of semi-deterministic automata studied 

in the next chapter. The small size of S D is favourable for complementation, 

while the converse holds for cut-determinization as cut-determinization ex

ponentially increases the size of S N = S \ S D -

Topological order on SCCs. Let T - (S, X , 6, ST ) be a semi-automaton and 

C the set of its maximal strongly connected components. The SCC graph of T 

is the directed acyclic graph (C, E) where 

E = { ( S i , S2) I S i , S2 e C and ( s i , a, S2) e 5 where s i 6 S i , S2 e S2, a 6 I } . 

A topological order on SCCs is a total order < onC such that for each edge 

( S i , S 2 ) € E it holds that S i < S 2 . 

We assume that acceptance marks are placed only at transitions that are 

inside some S C C . This is a val id assumption because all the other marks can 

be removed without altering the language of A. We further assume that we 

have some topological order < on SCCs of A and we order the SCCs of .4 

based o n < a s S o ^ S i < . . . < S n . . Traversal i n the topological order < starts 

with So and traversal i n the reverse topological order starts wi th S n . 

The algorithm consists of two traversals of the S C C graph of A and two de

terminism checks. Dur ing each traversal, it can move all states of the current 

S C C between the sets S N and S D • W i t h each movement, we also update 5 N , 

5 C , and S D accordingly. The first traversal starts with all states i n S N , which 

gives S N = S and S D = 0 . In each phase, we reference the current S C C by S\ 

and by E we reference the edges of the S C C graph of .4. 

1. Partition with minimal S D [topological order]. SCCs that are accepting 

or reachable from some accepting S C C must be i n S D by definition. 

• i f S i is accepting, move it to S D 

• i f S i £ S D move all Sj such that ( S i , Sj) e E to S D -

• Semi-determinism check. A is semi-deterministic iff S D is determin

istic. If A is not semi-deterministic, we stop the algorithm. 

2. Partition with maximal S D [reverse topological order]. Deterministic 

SCCs from which only deterministic SCCs are reachable can belong to S D • 

• i f S i is deterministic and i f all Sj such that (St, Sj) e E are i n S D , move 

S i to S D -

• Cut-determinism check. A is cut-deterministic iff 5 N is deterministic. 

We only add SCCs to S D in this traversal; 
therefore, we skip all SCCs that are already 
in S D . 
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7 . 3 S U B S E T C O N S T R U C T I O N 

A l l semi-determinization procedures to be presented here rely i n their heart 

on the subset construction known from the determinization of finite automa

ta over finite words. Let T = (S, 1,5, s i ) be a semiautomaton. The function 

r$:2s x I 2 s computes one step of the subset construction for T . Intu

itively, T 5 (P, a) gives us the set of states to which we have i n T a transition 

under a from some state i n P . Formally, T 5 is defined for a set P £ S and a 

letter a € I as follows. 

T 6 ( P , Q ) = {s € S I p e P, (p, a ,s) e 6} 

We write x instead of T 5 when 5 is clear from context. Finally, the subset 

construction on T creates a semiautomaton ( 2 s , 1 , 6 ' , { s i} ) with transitions 

defined by T , that is ( P , a, x ( P , a)) 6 6' for all a € I and all P £ S. We usually 

consider only the sets and transitions reachable by 5 ' from { s i } . 

For an automaton A - (S, Z , 6, s i , M , p, cp) with marks on transitions and 

and for some of its marks • 6 M we define a function * 5 : 2 S x I ->• 2 s that 

restricts T 5 to transitions marked by • only. 

T 6 ( P , a ) = { s e S | p € P, (p, a, s) e 6 n u ( » ) } 

7 . 4 S E M I - D E T E R M I N I Z A T I O N O F B U C H I A U T O M A T A 

The first semi-determinization procedure for Buchi automata was published 

by Courcoubetis and Yannakakis i n 1988.4 We start wi th a more general ver

sion of their algorithm - we expect automata with marks on transitions while 

the original version used accepting states. In the transition-based view, all 

marks that are placed on states are moved to outgoing transitions; see an ex

ample i n Figure 7.2. 

Let .4 = (S, 1,6, s i , { •} , u , In f • ) be a Buchi automaton with marks on 

transitions. In the following we present a basic construction of an equivalent 

semi-deterministic automaton SV = ( Q , 1,65©, q i , { •} , vst>, Inf*) where 

Q = Q N U Q d and 8sx> = § N u S c u So- The nondeterministic (blue) part N 

of SV is the semiautomaton of A and states of the deterministic (green) part 

D are formed by pairs (R, B) of subsets of S, where B c R. 

Q N = S q i = s i S N = S Q D £ ( 2 s x 2 s ) 

For each marked transition of the form ( s i , a, S2) of A we have a cut transi

tion ( s i , a , ({s2},0)) from N to D . 

6 C = { ( S l , a , ( { s 2 } , 0 ) ) I s 2 € ? ( { S l } , a ) } 

In a state ( R , B ) of Q D R stands for reachable and tracks runs of A using the 

subset construction. The name B stands for breakpoint and tracks the runs 

that used some marked transition since the last accepting transition of SV 

was taken. This behaviour is captured by 5i. 

5i = { ( ( R i , B i ) , a, (R2, B2)) I a e I , B i c R , £ S, 

R 2 = T (RT , a) * 0, and 

B 2 = T ( B 1 , Q ) U T ( R 1 , Q ) } 

4 Courcoubetis and Yannakakis (1988), 
"Verifying Temporal Properties of Finite-
State Probabilistic Programs", [9]. 

Figure 7.2: Two equivalent Buchi automata: 
marks on states (left) and marks on transi
tions (right). 
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Q D 

Ä b A 

(-4) »e(T)-^({2}^) (|rK0)>^-(Jo,2},{2}) 
T T tr 

b 
XT 

(52?) ({2}, {2} {0},{0} 

Figure 7.3: A Biichi automaton A. (left) and the corresponding semi-deterministic Biichi automaton ST> (right). The transitions from 6i s 6D and 
the tuples that would become reachable by those transitions are dotted and are not in fact parts of ST>. 

In some transitions of 5i we have R2 = B2 which means that all states i n R2 

can be reached by a run of A that used a marked transition since B was empty. 

We mark such transitions by • and reset B2 to 0 . 

6 2 = { ( ( R i , B i ) , a , ( R 2 , 0 ) ) I ( ( R i , B 1 ) , a , ( R 2 , B 2 ) ) 6 6 1 a n d R 2 = B 2 ] 

5 D = { ( ( R i , B 1 ) , a , ( R 2 , B 2 ) ) 6 6 1 | R 2 + B 2 } u 6 2 

The tuple (R2, B 2 ) is not colored by green 
on purpose as it violates B2 c R2 and is not 
in fact a state from Q D • 

You can see the construction applied to an example automaton i n Fig

ure 7.3. For a better understanding of the reader, the figure also contains 

transitions from 5i that are not part of SV. The automaton SV has 8 states. 

Complexity. Let s 6 S be a state of A. Then it is present i n Q N itself, and 

for a state q = ( R , B ) € Q o i t holds that either s is only i n R, s is i n both R 

and B , or s is not present i n q at all. Therefore, the size of Q is bounded by 

IQ I< | s | + 3l sL 

7.4.1 Correctness 

Before we prove the correctness of our construction, we need to introduce a 

handful of notation, including the notions of finite words and run graphs. We 

wi l l also prove an important property of run graphs i n Lemma 7.1. 

Finite words. A finite word over an alphabet I is a finite sequence of letters 

w = W0W1 . . . e I * . The empty word is denoted by e. Let u e Lw be an 

infinite word. B y U i . j for some i < j we denote the finite word U i U i + i . . . U j 

and we use u..j as a shorthand for uo..j to denote the prefix of u of length j . 

Extended subset function 0. The function 6$:2S x I * 2s extends T 5 to 

finite words. It is recursively defined for a set of states P £ S , a letter a € I , 

and a finite word w t l * using T 5 as follows. 

e 5 ( P , e ) = P 

e 6 ( P , a w ) = e 6 ( T 5 ( P , a ) , w ) 
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Rungraphs. LetA= (S, L, 6, S i , M , u., cp) be an automaton with marks on 

transitions and let u = u o u i . . . 6 Lw be a word. A run graph of A over u 

is an edge-labelled directed acyclic graph G^f = ( V , E,TI) where V £ s x cu 

is a set of vertices, E £ V x V is a set of edges and p : M . -»• 2 E is a labelling 

function. V , E, and II are defined as follows. 

V = { ( s i , 0 ) } u { ( s , i + 1) | i > 0 a n d s e e 6 ( { s i } , u . . O } 

E = { ( ( s i , i ) , ( s 2 , i + 1 ) ) € V x V | i > 0 a n d ( s 1 , u i , s 2 ) e 5} 

]!(•) = { ( ( s i , i ) , ( s 2 , i + 1)) 6 E | ( s i , U i , s 2 ) e u ( « ) } for e a c h * 6 M 

Each infinite path i n G^f that starts i n ( s i , 0) represents a run of A over u 

and conversely, each run of A over u is represented by a unique infinite path 

i n G ^ . 

Lemma 7.1. Let a = t o t i . . . e &w where t i = ( s i , U i , S i+i) be a run of A 

over some word u. Then there is an index k such that for all I > k there exists 

an indexrci > I such that 0({si },u.] . . m ) = 0 ( { s k } , U k . . m ) . 

Proof. Obviously, 0({si },u.] . . m ) £ © ( { s i c l ^ i c m ) holds as t k . . . t i _ i wit

ness that st 6 0 ( { s k } , u k . . i _ i ) . We prove the converse by contradiction. Sup

pose that for all k there is an index I > k such that for all m > I it holds 

that 0 ( { s t } , u t . . m ) c 6 ( { s i c } , u i c . . m ) . Then we have a strictly increasing 

sequence of indices ko, k i , . . . k|Qj such that for each 0 < i < |Q | and all 

m > k | Q | we have 0 ( { s k i + ] } , u k i + ] . . m ) c 0 ( { s K J , u k i . . m ) . In that case 

9({si<IQI }> u k | Q | . .m) = 0 which contradicts the existence of a. • 

The idea of the construction of SV is that a run a ' of SV follows some 

run a of A i n N and nondeterministically guesses, when a reaches the index 

k from the previous lemma. At this point, a ' jumps to the D with the first 

transition of a marked by • . If the guess was correct, a ' checks i n D whether 

or not a is accepting. The proof of the following lemma shows that SV can 

verily that a is accepting. 

Lemma 7.2. Let u e L(„4) be a word accepted by A. Then u is also accepted 

by the automaton SV built for A. 

Proof. Let a = t o t i ... € 8W where t i = ( s i , U i , st+i) be an accepting run 

of A over u . Let k be the min imal index such that it satisfies Lemma 7.1 for 

o" and ( s k , u k , Sk+i) e 1L(#). We bui ld the run a ' = t 0 t { . . . of SV over u 

as follows. For 0 < j < k a ' stays i n N , follows a and we have tj = t j ; for 

k the run takes the cut transition ( s k , u . k , ( { s k + i } , 0 ) ) t o D and the rest is 

deterministic. 

The vertices on the i th level represent states 
reachable in A. under the prefix of u of 
length i . Edges correspond to transitions 
and also the placement of marks is pre
served. 

I _ .1 .1 .1.1 
O - t 0 . . . t k _ i t k t k + 1 

' ( S j , U j , S j + l ) 

where 

if j < k 

if j = k 

)) i f j > k 

t- = I ( s k , U j , ( { s k + i } , 0 ) ) 

. ( ( R j , B j ) , U j , ( R j + i , B 

From the existence of a we know that Rj is never empty. To show that a ' is 

accepting we have to prove that we have infinitely many indices i > k such 

that ( ( R i , B i ) , u t , ( R i + i , 0 ) ) e 62. Suppose that this is not the case and thus 
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there exist an index f > k such that for all i > f we have i n cr' only tran

sitions from 5 i , which means that R i • B i . Let n > f be an index such 

that ( s n , u n , Sn+i ) is a transition from a with • and thus S ^ - M 6 B n + i . 

It follows from Lemma 7.1 that there is an index m > n such that R m + i = 

) = e 5 ( { s n + i } ) £ B m + 1 and thus R m + 1 = 

B m + i which contradicts the assumption that R i D B i for all i > f. • 

Lemma 7.3. Let u e L(SV) be a word accepted by SV. Then u is also accepted 

by A. 

Proof. Let cr be an accepting run of SV over u . Then cr has the form o~ = 

to . . . tk_ i t^tk+i . . . where k > 0 and tj = (SJ , U j , Sj+i) e 5 N for 0 < j < k, 

tic = ( s k , u k , ( { s k + i } , 0 ) ) e 6 C and t j = ( (Rj , B j ) , U j , ( R j + 1 , B j + 1 ) ) 6 5 D 

for j > k and so = s\. Moreover, for j > k we use B j + 1 to denote the set such 

that ( (Rj , B j ) , i i j , ( R j + i , B | + 1 ) ) e 6i for the cases where tj € 5 2 -

We now prove that the run graph G^f = ( V , E, fx) contains an infinite path 

that starts i n (s i , 0) and that contains infinitely many edges from ] ! ( • ) ; such 

path represents an accepting run of A over u . 

From definitions of § N and 6 C it follows that there is a path from (ST, 0) 

to (sk+i , k + 1) i n G^- N o w let St = {s | (s, i ) e V } denote the set of states 

on level i of G^- By construction of G^ we have that R i £ S i for i > k. As R i 

is never empty and R i = 0({Sk+i }, u-k+i . . i - i ) , there is an infinite path that 

starts i n the vertex (sk+i , k + 1), thus we have an infinite path from ( s i , 0). 

It remains to show that some infinite path contains infinitely many edges 

from ] ! ( • ) . Let l o , l i , . . . be an infinite increasing sequence of indices, called 

breakpoints, such that t r t _ i 6 usx>(*) = 52- For each breakpoint U it holds 

that B{. = R i t and B ^ = 0 . In the following we use I to denote some U and l ' 

to denote the corresponding . By definition of Si and G^, there is a path 

with a • to each vertex (s ' , I ' ) with s ' e Ri > from some vertex (s, I) such that 

s € R l ; otherwise s ' i B [ , and thus I ' could not be a breakpoint. Overall, we 

have a path i n G^f that represents an accepting run of A over u . • 

Theorem 7.4. For each Buchi automaton A with n states and with marks on 

transitions we can construct a semi-deterministic Buchi automaton SV with at 

mostn + 3 n states such that L(SV) = 1(A). 

The tuple ( R j + i , B ' , ) = ( R l t , R l t ) is not 
colored by green as it is not in fact a state 
from Q D • 

For each state s ' e R t< we have a state s " e 
R m for some I < m < I ' such that s ' e 
8 ( P , u m + i . . i ' - i ) a n d P = f ( { s " } , u m ) . 

Proof. The theorem follows from Lemmata 7.2 and 7.3. • 
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7.4.2 SCC-aware optimization 

Let a be an accepting run of A. A l l recurrently visited transitions of a are 

between states from one strongly connected component C £ S. Therefore, we 

can simplify the construction of D . Namely, we can constrain Q D to states 

(R, B) such that B £ R £ C where C is some S C C of A. The construction of 

5i has to be corrected accordingly: 

5T = { ( ( R i , B i ) , a, ( R 2 , B 2 ) ) | a e I , B i c R, £ C, C is a S C C of A, 

R 2 = x ( R i , a) n C , R 2 * 0 , and 

B 2 = ( T ( B 1 , a ) u ? ( R 1 , a ) ) n C } 

You can see the effect of the optimization i n Figure 7.4. The optimization 

saved 2 out of 5 states of the deterministic component of SV and thus the 

final automaton has 6 instead of 8 states. We left the now unreachable states 

in the figure for the reader to better see the effect of the optimization. 

The definitions of 62 and 5 • depend on 61, 
so it is enough to change 61 only. 

Q b 

" C t 0 (A) Q e ( T y ^ ( { 2 } ^ ) ( m ^ H b (\o.i}. m" 

IT t) (SV) 

Figure 7.4: The same Biichi automaton A. as in Figure 7.3 (left) and the corresponding semi-deterministic ST> built using the SCC-aware optimization 
(right). In comparison to Figure 7.3, the dashed transition was replaced by the thick one due to the SCC-aware optimization. The dotted states and 
transitions became unreachable. 

Correctness. W i t h this modification, the proof of Lemma 7.3 remains un

changed. For the proof of Lemma 7.2 we only need to adjust the definition of 

k: Let C be the SCC such that the recurrent transitions of a are between states 

ofC Then let k be the minimal index such that it satisfies Lemma 7.1 for a, 

(skjU-kjSk+i) e [!(•), and Sk+i e C. The rest of the proof remains the same. 
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7 . 5 C U T - D E T E R M I N I Z A T I O N O F B U C H I A U T O M A T A 

We can easily modify the above construction to bui ld an automaton that is 

cut-deterministic and equivalent to A. We define the automaton as CV = 

( Q ' , I , bCv, qf, { •} , VST>, l n f » ) with Q ' = Q N u Q D andS C 2 > = 6 

5 D where Q D , 5D> and \IST> have the same meaning as before. O n top of 

semi-determinization, we determinize the first part (N) of SV using the sub

set construction. 

Q N £ 2 S

 q i ' = {s i} 6 ^ = { ( P , a , T 5 ( P , a ) ) | P 6 Q ^ } 

For each marked transition of the form (p, a, s) of A and for each P such that 

p e P we have a cut transition (P, a, ({s}, 0 ) ) . 

6{ = { ( P , a , ( { s } , 0 ) ) | S 6 ? ( P , a ) } 

Figure 7.5 shows the cut-determinization of our example automaton A. The 

determinization of the first component d id not increase the number of states 

in our example, but i n general, this is not always the case. Also, CV can have 

more cut transitions then the equivalent SV. 

Figure 7.5: A cut-deterministic automaton 
CD equivalent to A. from Figures 7.3 and 7.4. 
It is basically SV with a subset construction 
applied on the first (blue) part. 

Complexity and correctness. The size o f Q ' i s bounded by | Q ' | < 2 l s l + 3l sL 
For the proof of L(„4) £ L(CV) we can reuse the proof of Lemma 7.2 (with 

SCC-aware optimization). We need to change Sj by Pj i n the definition of t j 

for j < k and argue that Sk e Pk» which follows from definition of T 5 . We can 

similarly adjust the proof of Lemma 7.3 to show that L(CV) £ L(A). This is 

summarised i n the following theorem. 

Theorem 7.5. For each Buchi automaton A with n states and with marks on 

transitions we can construct a cut-deterministic Buchi automaton CV with at 

most 2n + 3 n states such that L(CV) = 1(A). 
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7 . 6 S E M I - D E T E R M I N I Z A T T O N O F G E N E R A L I Z E D B U C H I A U 

T O M A T A 

The simplest approach to semi-determinization and cut-determinization of 

nondeterministic generalized Bi ich i automata proceeds i n two steps. A given 

N G B A A with n states and marks • H is first converted to a nonde

terministic Bi ich i automaton B with at most n • (H +1) states and one mark; 

we call this step degeneralization. As the second step, the N B A B is semi- or 

cut-determinized by the above construction. 

Degeneralization. The degeneralization of A is straightforward. The au

tomaton B is formed by h + 1 copies of the semiautomaton of A, called levels 

0 , . . . , h . O n level I, B waits for transitions marked by 9l i n A, these tran

sitions go i n B to level I + 1 for I < h and to level 0 for I = h . The level I 

thus records that marks W 0 , . . . have been seen since the last visit of 

level 0. The transitions from level h to 0 are marked by • . Figure 7.6 shows 

de-generalization of a small G B A . 

Figure 7.6: A GBA A and an equivalent BA 
B that was built using the standard degener
alization procedure. 

Figure 7.7 shows that the two-step approach may not be the best. Consider 

the state (R, B) = ( { s ^ p ^ s 1 } , { s ° , p 0 } ) and relate it all the way back to A. 

The state s of A is present i n two variants i n R — on level 0 and on level 1. 

Moreover, as both s ° and p ° are present i n B , we know that both s and p are 

reachable by runs that crossed a • since the last accepting transition of SV. 

But R + B because we also follow the runs that stayed behind on level 1. 

a b 

Q b 

Figure 7.7: Two-step semi-determinization of B from Figure 7.6. 
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One-step semi-determinization of GBA. A direct semi-determinization of 

G B A was first presented by Hahn et al. i n 2015 5 It combines the level approach 

of degeneralization with semi-determinization and it always keeps at most 

one copy of a state s of the T G B A i n R. 

Let A = (S, 1,6, s i , M , p, <£>) be a G B A with marks on transitions where 

M = {9°,... for some h. > 0 and cp = Ao<i<h In f* 1 . In the follow

ing, we present a SCC-aware one-step construction of an equivalent semi-

deterministic automaton QSV = ( Q , I , &gsT>, <li> Pgsi?? In f * ) where 

Q = Q N u Q D and hgsT> = § N u 5 C u S D - In addition to the basic semi-

determinization, we augment the states of Q D by levels, one for each accept

ing mark. 

Q N = S q i = s i S N = S Q D £ ( 2 s x 2 s x { 0 , . . . , h } ) 

We add the cut transitions only for transitions marked by • H i n A and they 

lead to level 0. 

5 C = { ( s 1 , a , ( { s 2 } , 0 , O ) ) | s 2 € ? h ( { S l } , a ) } 

In Q D we move runs to B only after the mark for the current level was seen. 

5T = { ( ( R 1 , B 1 , l ) , a , ( R 2 , B 2 , l ) ) | a e X , 0 < l < H , 

B , c R , c c , C is a S C C of A, 

R 2 = T ( R I , a) n C, R 2 * 0 , and 

B 2 = ( T ( B 1 , a ) u T ( R 1 , a ) ) n C } 

For transitions of Si where R 2 = B 2 we move to the next level l ' = (I + 

1) m o d ( h + 1), reset B 2 and immediately start tracking • there, and finally 

mark the transition by • . 

5 2 = { ( ( R 1 , B 1 , l ) , a , ( R 2 , B z , l ' ) ) | ( ( R i , B i , I ) , a , ( R 2 , B 2 , l ) ) e 6, , 

R 2 = B 2 , 

B2 = T ( R 1 ; a ) n R 2 , and 

I ' = (1+1) m o d ( f i+1)} 

5 D = { ( ( R i , B 1 , l ) , a , ( R 2 , B 2 , l ) ) 6 6 1 | R 2 # B 2 } u 5 2 

pgsx>(*) = 5 2 

5 Hahn et al. (2015), "Lazy Probabilistic 
Model Checking without Determinisation", 
[10]. 

The n R2 in definition of B'2 ensures that H'2 

contains only states from the same SCC as 
are in R2. 

You can find the result of this construction applied on A from Figure 7.6 in 

Figure 7.8. The resulting automaton QSV has 2 + 5 states i n comparison to 

4 + 9 states of SV from Figure 7.7. 

Cut-determinization. We naturally modify the above construction to bui ld 

an automaton that is cut-deterministic and equivalent to A. We define the 

automaton as QCV = ( Q ' , I , &gcv,(]i, { •} , Pesx>, l n f « ) with Q ' = Q ^ u 

Q D and hgcr> = 5^ u 6{ u 5 D where Q D , §D> and \igsr> have the same 

meaning as above. O n top of semi-determinization, we determinize the first 

part (N) of QSV using the subset construction. 

Q ^ £ 2 S qi' = {s i} 6 ^ = { ( P , a , T 6 ( P , a ) ) | P 6 Q ^ } 
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( r a 

{GSV) 

b 

({s ,p } ,0 , o )« 

b 

^ ( j s , p } , 0 , l ) ^ ) a ( { s , p } , { s , p } , 0 ) 

- ( { s , p } , { p } , l ) V { s , p } , { s , p} , l") 

Figure 7.8: A semi-deterministic Biichi automaton QST> equivalent to the GBA A from Figure 7.6. The transitions from 6i s 6D and the tuples 
that would become reachable by those transitions are dotted and are not in fact parts of QST>. 

For each transition of the form (p, a, s) marked by • H i n A and for each P 

such that p e P we have a cut transition (P, a, ({s}, 0 , 0 ) ) to level 0. 

6 c = { ( P , a , ( { s } , 0 , O ) ) | s 6 T > , a ) } 

Complexi ty. In the two-step approach, the degeneralization step first cre

ates a Bi ich i automaton B with | M | • |S| states. Then the size of Q is bounded by 

|Q | < | M | | S | + 3 l M H s l for semi-determinization and by |Q | < 2 l M H s l + 3 l M H s l 

for cut-determinization. The one-step approach to semi-determinization of 

T G B A augments the states from Q o of the semi-determinization of B A by 

| M | levels; therefore, the bounds are | Q ' | < |S| + | M | - 3 ' s ' for semi-determini

zation and | Q ' | < 2 ' s l + | M | • 3 ' s l for cut-determinization. 

| M | is the number of marks of A. 

Correctness. The proof of Lemma 7.2 naturally extends to the one-step con

struction for T G B A . In the definition of cr' we now have levels i n states of 

GSV, that is t- = ( s j c U j , ({sfc+i } , 0 , O ) ) for j = k and for j > k we use 

t- = ( ( R j , B j , l j ) , U j , ( R j + i , B j
+
i ) ) . Further, we slightly modify the 

condition for the index n i n the proof: Let n > f be the minimal index such 

that(sn,un,sn+-[) is a transition from a marked by'•lf. The rest of the proof Note that i ; = l f for all f < j < n. 

remains unchanged. 

The modification of the proof of Lemma 7.3 is even more straightforward. 

For k we demand that (sk, u ^ , Sk+i) is marked by * H instead of • . Further, 

we have to consider the levels. They change only at breakpoints and i n a se

quence of h + 2 consecutive breakpoints we can see levels for all marks of A. 

O n level I we follow • l , thus we have an infinite path i n with infinitely 

many edges from ] I ( © 1 ) for each 0 < I < h . This path represents an accept

ing run of A over u . N o w we can conclude this section with the following 

theorem. 

Theorem 7.6. For each generalized Biichi automaton A with n states and h 

marks we can construct a semi-deterministic Biichi automaton QSV with at 

most n + h • 3 n states and a cut-deterministic Biichi automaton QCV with at 

mostln + h - 3 n states such that L(GSV) = L(GCV) = L(A). 
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7 . 7 C U T - D E T E R M I N I Z A T I O N O F S E M I - D E T E R M I N I S T I C 

G E N E R A L I Z E D B U C H I A U T O M A T A 

Blindly converting a semi-deterministic G B A A = (S, L, 6, s i , M , u., O) into 

cut-deterministic B A using the full algorithm of the previous section is wasted 

effort. Indeed, we can create an equivalent cut-deterministic G B A CT> = 

( Q , I , 6 c © , q i , M , u, CD) with Q = Q N u Q D and 5CT> = 5 N u S{ u 5[> in 

four steps as follows. 

(i) We apply the algorithm described i n Section 7.2 to partition S and 5 

into S N , S D , 6 N , 6 c , and 6 D i n a way that S D is maximal such that the par

tition witnesses the semi-determinism of A. (ii) The deterministic part of A 

remains unchanged. 

Q D = S D Sfj = 5 D 

(iii) We determinize S N and 5 N using the subset construction. 

Q N £ 2 S n q i = {s i} 6^ = { ( P , a , P ' ) | P e Q N a n d P ' = T 5 N ( P , a ) } 

Finally, (iv) we revise 6 C accordingly. 

5^ = { ( P , a , s ) | S 6 T S c ( P , a)} 

Note that we use the generalized Buchi acceptance condition of A also for CV 

here, while the cut-determinization of general (not semi-deterministic) G B A 

presented i n Section 7.6 always produces a Buchi automaton QCV. 

Complex i ty and correctness. The size of Q is bounded by |Q | < 2 s™ -1- | S D | 

while using the algorithm of Section 7.6 yields |Q | < 2 ' s l + | M | • 3 ' S L The cor

rectness of the algorithm follows from the facts that the marks are placed only 

on elements of S D which remained unchanged and that the subset construc

tion exactly follows the runs of the original automaton. 

7 . 8 I M P L E M E N T A T I O N 

A l l algorithms described i n this chapter were implemented i n our tool called 

Seminator. Since version 1.2.0, Seminator uses the SCC-aware algorithms. 

The tool is implemented i n C++ using the Spot l ibrary 6 and is distributed 

under the GNU GPL v3 license. The source code, basic installation and usage 

instructions, and an evaluation of the tool can be found on the Seminator s 

web page, see Table 7.1. For reading and writ ing automata Seminator uses 

the Hanoi Omega-Automata (HOA) format.7 

The tool takes a T G B A A as input and prints a semi-deterministic (default) 

or cut-deterministic automaton B such that L( .4) = L(B) as output. Semina

tor does not modify A i f it already complies with the requested type. In such 

cases, only the simplifications offered by Spot are applied. For cut-determi

nization of semi-deterministic automata Seminator uses the algorithm from 

Section 7.7. Moreover, before testing the input automaton for semi- or cut-

determinism, we apply the following language-preserving modification of A: 

We remove all marks from transitions that are not inside any accepting SCC. 

This modification itself can transform an automaton which is not semi-deter

ministic into a semi-deterministic one (the same holds for cut-determinism) 

6Duret-Lutz et al. (2016), "Spot 2.0 - A 
Framework for LTL and tu-Automata Ma
nipulation", [55]. 

7Babiak et al. (2015), "The Hanoi Omega-
Automata Format", [17]. 

A n SCC C is accepting if each mark of A 
marks a transition inside C . 
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and even i f it is not the case, it can reduce the size of resulting automaton as 

smaller part of the original automaton has to be determinized. 

The size of B can often be further improved by the automata reduction 

techniques that are implemented i n Spot. They all preserve semi-determinism 

of T G B A s . However, the reverse simulation technique 8 does not preserve cut-

determinism and thus it is not applied i f a cut-deterministic automaton is 

requested. 

By default, Seminator outputs G B A , however, B A can be requested. Note 

that semi-determinization and cut-determinization of automata that are not 

semi-deterministic always produce a B A . Seminator can produce a G B A with 

two or more accepting sets only when A is already at least semi-deterministic. 

8 Babiak et al. (2013), "Compositional Ap
proach to Suspension and Other Improve
ments to LTL Translation", [44]. 

Degeneralizat ion modes. In contrast to our expectations, for some G B A 

the two-step semi-determinization outperforms the one-step semi-determi

nization. In the two-step semi-determinization, A is first degeneralized into 

a B A and then the standard semi-determinization for B A is applied. The one-

step approach performs degeneralization simultaneously with the semi-deter

minization. See Sections 7.4 and 7.6. The two-step approach benefits from a 

highly optimized degeneralization of Spot; none of the available optimizations 

is performed i n the one-step approach. Therefore, by default Seminator tries 

the following three modes for dealing with degeneralization, compares the 

resulting automata sizes, and returns the smallest automaton out of the three? 

1. Convert the input G B A A directly. 

2. Transform A into an equivalent B A with marks on transitions and then 

perform the conversion. 

9 Users can force to use one of the three 
modes. 

3. Transform A into an equivalent B A with marks on states and then perform 

the conversion. 
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7 . 9 E X P E R I M E N T A L E V A L U A T I O N 

In this section, we compare the number of states of automata produced by 

Seminator to the sizes of automata produced by other tools that are able to 

produce semi-deterministic or cut-deterministic automata. 

Tools and hardware. To our best knowledge, there are only three other rel

evant tools: nba2ldba, ltl2ldba, and B i i c h i f i e r . The tool nba2ldba converts 

B A into semi-deterministic B A 1 0 and ltl2ldba translates L T L formulae directly 

to semi-deterministic or cut-deterministic T G B A . 1 1 Both tools are distributed 

as parts of the O w l library. B i i c h i f i e r translates a fragment of L T L into semi-

deterministic automata with a single-exponential blow-up. 1 2 However, we do 

not include it i n our experiments for three reasons: (i) it works only for a 

fragment of L T L , (ii) it does not exhibit promising results i n the authors' eval

uation, and (iii) it is available only for Windows. 

We use two basic configurations of Seminator i n our evaluation: one is 

Seminator i n the default setting and the other performs the two-step semi-

determinization of T G B A (referenced as 2-step, uses option - - v i a - t b a ) . 

Seminator simplifies the resulting automata by calling the reduction tech

niques of Spot. These reductions can have a strong effect on the size of the 

automata and thus camouflage potential weaknesses of the approach. As we 

aim to evaluate different approaches rather than comparing different tools, we 

evaluate each tool wi th (yes) and without (no) these reductions; we use Spot's 

a u t f i l t - - s m a l l command to apply the reduction on products of the tools 

from the O w l library and we use the option - sO to disable the reductions in 

Seminator. 

Because ltl2ldba needs an L T L formula as input, our evaluation starts with 

L T L formulae. For Seminator and nba2ldba, we translate the e formulae to 

automata of the expected type using Spot's l t l 2 t g b a - D command. The op

tion - D expresses a preference towards more deterministic output. 

The homepages and versions of all tools that were used for this evaluation 

are listed i n Table 7.1. Overall, we have eight configurations of tools that pro

duce semi-deterministic automata, see Table 7.2 for the precise commands, 

and six configurations that produce cut-deterministic automata, see Table 7.3. 

The evaluation ran on a laptop with Intel Core i7-2620M (2.70 G H z ) proces

sor and 8GB R A M . A l l toolchains finished the computation for al l formula 

within one minute. 

Benchmark formulae. We use two benchmark sets of L T L formulae. The 

first set of formulae collected from the literature was already used i n Chap

ter 6. Figure 7.9 shows that it is very often the case that l t l 2 t g b a -D pro

duces a deterministic T G B A (•), or a non-deterministic T G B A that is already 

1 0 It basically performs the two-step semi-
determinization without the SCC-aware op
timization and with marks on states. 
1 1 Sickert et al. (2016), "Limit-Deterministic 
Buchi Automata for Linear Temporal Logic", 
[62]. 
1 2 K i n i and Viswanathan (2017), "Optimal 
Translation of LTL to Limit Deterministic 
Automata", [69]. 

Table 7.1: Tools used in the experimental evaluation. 

tools version webpage 

Seminator 1.2.0 

M2ldba, nba2ldba 1.1.0 

ltl2tgba, autfilt, ltlfilt 2.4.2 

https://github.com/mklokocka/seminator/ 

https://www7.in.tum.de/~sickert/projects/owl/ 

https://spot.lrde.epita.fr/ 

https://github.com/mklokocka/seminator/
https://www7.in.tum.de/~sickert/projects/owl/
https://spot.lrde.epita.fr/
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sources cleanup type of automata produced by l t l 2 t g b a -D 

Figure 7.9: Preparation of the formulae from the literature, and classification according to the four types of automata produced by l t l 2 t g b a - D. 

Table 7.2: Tool configurations for generating a semi-deterministic automaton from formula cp. 

approach reductions command line 

Seminator no l t l 2 t g b a -D fJ seminator -sO 

yes l t l 2 t g b a -D V seminator 

Seminator 2-step no l t l 2 t g b a -D seminator - - v i a -tba -sO 

yes l t l 2 t g b a -D seminator - - v i a -tba 

ltl2ldba no l t ! 2 l d b a -n 

yes l t ! 2 l d b a -n a u t f i l t - - s m a l l --tgba 

nba2ldba no l t l 2 t g b a -D --ba | nba2ldba 

yes l t l 2 t g b a -D --ba | nba2ldba a u t f i l t 

Table 7.3: Tool configurations for generating cut-deterministic automata. (The a u t f i l t invocation has extra options to disable reverse-simulation 
based reductions, since those do not preserve cut-determinism.) 

approach reductions command line 

Seminator no l t l 2 t g b a -D <P seminator --cd -sG 

yes l t l 2 t g b a -D <P seminator --cd 

Seminator 2-step no l t l 2 t g b a -D CP seminator --cd - - v i a - t b a -sG 

yes l t l 2 t g b a -D CP seminator --cd - - v i a - t b a 

ltl2ldba no l t l 2 l d b a -n V 
yes l t l 2 l d b a -n <P a u t f i l t -- s m a l l -x simul= l , b a - s i m u l = l --tgba 
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cut-deterministic ( ). Depending on its configuration, Seminator only has to 

perform some work on automata that are not cut-deterministic ( • and • ) or 

on automata that are not semi-deterministic (•). 

As Seminator actually has to do some work only on a few formulae from 

the previous set, we also use a set of formulae generated randomly For each of 

the four types of l t l 2 t g b a - D output (•, • , • , • ) we generated exactly 100 

formulae. The command used to generate all formulae used i n this evaluation 

can be found i n the Gi tHub repository of Seminator. 

7.9.1 Results and Observations 

Table 7.4 compares the sizes (number of states) of the semi-deterministic au

tomata produced by Seminator, ltl2ldba, and nba2ldba i n the configurations 

given i n Table 7.2. Similarly, Table 7.5 compares the sizes of the cut-deter

ministic automata produced by Seminator and ltl2ldba. 

Table 7.4: Evaluation of the tools producing semi-deterministic automata, on random LTL formulae and LTL formulae from literature classified 
according the type of automata produced by 1 t l 2tgba -D. Each cell presents the cummulative size (number of states) of semi-deterministic automata 
produced by the corresponding tool without ('no') or with ('yes) reductions for the corresponding set of T L formulae. 

formulae Seminator Seminator 2-step ltl2ldba nba2ldba 

origin type n no yes no yes no yes no yes 

random det 100 415 415 416 416 639 445 428 428 

A c d 100 463 463 463 463 733 539 863 634 

• sd 100 704 704 705 705 1228 784 850 774 

• nd 100 1233 937 1276 987 1314 804 3657 1876 

literature det 149 556 556 585 585 1277 855 600 600 

A c d 46 194 194 198 198 838 341 377 240 

• sd 3 13 13 13 13 41 17 17 13 

• nd 23 472 369 514 404 666 376 869 573 

Table 7.5: Evaluation of the tools producing cut-deterministic automata, on random LTL formulae and LTL formulae from literature classified 
according the type of automata produced by LtL2tgba -D. Each cell presents the cummulative size (number of states) of cut-deterministic automata 
produced by the corresponding tool without ('no') or with ('yes') reductions for the corresponding set of T L formulae. 

formulae Seminator Seminator 2-step ltl2ldba 

origin type n no yes no yes no yes 

random det 100 415 415 416 416 570 497 

A c d 100 463 463 463 463 732 649 

• sd 100 734 712 735 713 1495 1275 

• nd 100 2028 1141 2106 1184 1387 1038 

literature det 149 556 556 585 585 1039 809 

A c d 46 194 194 198 198 612 488 

• sd 3 13 13 13 13 53 40 

• nd 23 656 414 698 450 470 410 
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Further, Figure 7.10 provides a comparison of Seminator and ltl2ldba on 

the level of individual semi-deterministic or cut-deterministic automata pro

duced for the considered formulae. Both tools run without reductions to ex

pose the difference i n the core algorithms of the tools. Finally, Figure 7.11 

compares the semi-deterministic automata produced by Seminator to those 

produced by nba2ldba. Again, both tools run without reductions. The last 

figure, Figure 7.12 compares Seminator with Seminator 2-step i n a similar 

manner. 

The presented results immediately lead to several observations. 

1. Seminator produces nearly always the smallest semi-deterministic or cut-

deterministic automaton i f it gets as input a T G B A that is already semi-

deterministic (which includes deterministic and cut-deterministic auto

mata as well). Note that Seminator does not change such automata at 

all unless a cut-deterministic automaton is required and it gets a semi-

deterministic automaton that is not cut-deterministic. In this case, Semi

nator just applies the subset construction on the nondeterministic part of 

the automaton. Hence, all these results reflect the efficiency of Spot's L T L to 

T G B A translation and not the efficiency of the Seminator's core algorithm. 

2. When Seminator gets a T G B A that is not semi-deterministic, it produces 

a bigger cut-deterministic automaton than the one produced by ltl2ldba 

directly from the formula i n many cases. W h e n semi-deterministic auto

mata are produced, the situation is different and it is difficult to predict 

which tool would produce a smaller automaton. Note that Seminator al

ways produces a T B A i n these cases, while ltl2ldba produces a T G B A . 

3. The advantage of Seminator over Seminator 2-step is not very dramatic. 

The reasons were already touched on i n the previous section. 

4. Seminator clearly outperforms nba2ldba on all sets of benchmarks. 

5. The numbers i n Tables 7.4 and 7.5 show that reductions can save many 

states i n the semi-deterministic and cut-deterministic automata produced 

by Seminator, ltl2ldba, or nba2ldba. 

6. The semi-deterministic automata produced by ltl2ldba can be larger than 

the cut-deterministic automata produced by the same tool. This is unex

pected and it indicates a potential for further improvement of the tool. 

The experimental evaluation brought two main outputs. First, i f someone 

needs to translate an L T L formula to a small semi-deterministic automaton, 

it pays to try to translate it by Spot. If Spot produces a semi-deterministic au

tomaton, it is very probably smaller than what ltl2ldba would produce. The 

same holds when a cut-deterministic automaton is needed, but it maybe nec

essary to run Seminator to cut-determinize the semi-deterministic automaton 

produced by Spot. Second, i f someone needs a semi-deterministic automa

ton from a nondeterministic automaton rather than from an L T L formula, 

Seminator should be used instead of nba2ldba. 
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Figure 7.10: Comparison of the size of cut-deterministic automata produced by Seminator and M21dba (both without reductions) on random for
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Complementation of Semi-Deterministic Buchi Auto
mata 8 
In this chapter, we discuss a complementation procedure tailored for semi-

deterministic Buchi automata. We start wi th a short discussion of comple

mentation procedures for nondeterministic Buchi automata, then we discuss 

key observations about runs of semi-deterministic automata and use these ob

servations to explain our construction and describe it formally. Then we reuse 

the notion of ranks1 to prove the correctness of our algorithm, and finally, we 

describe our implementations, compare the performance of the construction 

to other algorithms that complement (nondeterministic) Buchi automata and 

discuss the impact of our construction on termination analysis. 

Throughout this chapter, we work only with Buchi automata with marks 

on states (SBA). This allows us to omit acceptance labels i n figures and use 

a condensed notation for runs i n the form of an infinite sequence of states 

instead of transitions. As our main practical motivation for this research -

termination analysis i n U L T I M A T E B U C H I A U T O M I Z E R 2 - allows automata to 

have multiple init ial states, i n this chapter we consider a definition of automata 

where the init ial state ST is replaced by a set of init ial states I. 

1 Kupferman and Vardi (2001), "Weak Alter
nating Automata are not that Weak", [70]. 

2 Heizmann, Hoenicke, and Podelski (2014), 
"Termination Analysis by Learning Termi
nating Programs", [8]. 

Run of A. now has to start in some initial 
state from I. 

8.1 C O M P L E M E N T A T I O N O F N B A 

Complementation of a given N B A A over an alphabet I is a problem to create 

a Buchi automaton C over the same alphabet that recognizes the complement 

language of A, which is Lw \ L ( . 4 ) . It is a classic problem that has been exten

sively studied for more than half a century? The known constructions for the 

complementation of N B A can be classified into the following four categories. 

Ramsey-based. Historically the first complementation for N B A introduced 

by B u c h i 4 and later improved by Sistla et al? i n which a Ramsey-based 

combinatorial argument is involved. 

Determinization-based. A construction proposed by Safra 6 and enhanced 

by Pi terman 7 i n which a state of a complement is represented by a Safra 

tree. 

Rank-based. A construction introduced by Kupferman and V a r d i 8 based on 

ranks of run graphs for which several optimizations 9 have been proposed. 

Slice-based. A construction proposed by Kahler and W i l k e 1 0 based on re

duced split trees. 

The best known upper bounds on the size of the complement for these 

categories are i n order n ° ( n ) , 0(n2n), O((0.76n)n), a n d O ( ( 3 n ) n ) where 

n represents the number of states of the input N B A . 

3 See Vardi (2007), "The Buchi Complemen
tation Saga" [71], for a survey. 
4 Buchi (1962), "On a Decision Method in 
Restricted Second Order Arithmetic", [1], 
5 Sistla, Vardi, and Wolper (1987), "The 
Complementation Problem for Buchi Auto
mata with Appplications to Temporal Logic" 
[72]. 

6 Safra (1988), "On the Complexity of 
Omega-Automata" [50]. 
7 Piterman (2007), "From Nondeterministic 
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The upper bound for the rank-based complementation matches the lower 

bound for complementation of N B A proved by Y a n 1 1 . Similarly as i n the 

world of finite words, the complementation of deterministic Buchi automa

ta is noticeably easier, it can be done with only linear blow-up. More pre

cisely, for a D B A with n states from which a are accepting, we can bui ld a 

complement D B A with 2 n - a states.12 Finally, complementation of semi-

deterministic Buchi automata is somewhere i n between - it is i n 0(2n) as 

we wi l l show i n the following. 

1 1 Yan (2008), "Lower Bounds for Comple
mentation of Omega-Automata Via the Full 
Automata Technique", [7], 

1 2 Kurshan (1994), "The Complexity of Veri
fication" [76]. 

8.2 C O M P L A M E N T A T I O N O F S D B A 

Here we present NCSB complementation ofsDBA which exploits the special 

structure of s D B A to achieve smaller complement automata. More precisely, 

i f the deterministic part of the input s D B A A contains d states, including a ac

cepting states and the nondeterministic part contains n states, the N C S B com

plementation produces a complement automaton C with at most 2 n 3 a 4 d ~ a 

states. Moreover, i f A is deterministic (n = 0) C has 2d - a states, which meets 

the Kurshans construction for the complementation of D B A . 1 3 

Besides the smaller theoretical size, the automaton C typically has a low 

degree of non-determinism when compared to results of other complemen

tation algorithms, and is always unambiguous 1 4 . Moreover, the automata 

produced by our construction have a simple structure: they are merely an 

extended breakpoint construct ion 1 5 and thus are suitable for symbolic repre

sentation. 

W i t h all of these favourable properties i n mind, it would be easy to think 

that the complementation mechanism we develop forms a class of its own. But 

this is not the case: the algorithm could be reformulated as an optimized ver

sion of the rank-based a lgor i thm 1 6 tailored specially (and also correct only) 

for s D B A . However, we believe that the intuition is more clear i f we focus on 

runs' properties rather than ranks. 

1 3 Kurshan (1994), "The Complexity of Veri
fication", [76]. 

1 4 For each u e L ( C ) there exists only one 
accepting run over u 

1 5 Miyano and Hayashi (1984), "Alternating 
Finite Automata on Omega-Words", [77]. 

1 6KupfermanandVardi(2001), [70]. 

Blocking. Our construction again relies on subset construction to follow 

all possible runs of the input automata. When handling automata that are 

not complete, the subset construction follows more than all runs - the set of 

states reached by the subset construction after reading a finite prefix of a word 

u may contain states that have no successors i n the next step. Sequences of 

transitions ending i n such states cannot be prolonged into infinite runs over 

u and we say that the corresponding runs block. The usage of the term run 

conflicts the fact that runs are infinite but we believe this notation simplifies 

the presentation. 

Relation of runs to the complement. Let A = ( Q , 1,5,1, { •} , p, lnf#) be 

an s D B A , Q N , S N , Q D , S D , S C be the notation introduced i n Section 7.1, and 

u = u o u i . . . 6 Lw be an infinite word. Each run a of A over u has one of the 

following properties: 

1. a stays forever i n Q N , 

2. a enters Q D and stops visiting • at some point, or 

3. a is an accepting run. 
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Clearly, u i L(_4) i f and only i f every run of A over u has one of the first two 

properties. In the second case, we say that a is safe after visiting • for the last 

time (or since the moment it enters Q D i f it does not visit any accepting state 

at all). 

In order to check whether u € L(_4) or not, one has to track all possible 

runs of A. After reading a finite prefix of u , the states reached by the subset 

construction can be divided into three sets. 

1. The set N £ Q N represents the runs that kept out of the deterministic part 

so far. 

2 . The set C £ Q D represents the runs that have entered the deterministic 

part and that are not safe yet. One has to check i f some of them w i l l be 

prolonged into accepting runs i n the future, or i f all of the runs eventually 

block or become safe. 

3. The set S £ ( Q D \ M-(*)) represents the safe runs. 

Clearly, every accepting run of A stays i n after leaving N . O n the other 

hand, i f w i ^-(A), every infinite run either stays i n N or eventually leaves 

to S and thus does not stay i n forever. 

N stands for nondetertninistic 

C stands for check 

S stands for safe 

N C S B complementat ion of s D B A . Let A = ( Q , 1,5,1, { •} , u, l n f « ) be 

an s D B A with marks on states. The NCSB complementation construction cre

ates an unambiguous Buchi automaton C = ( P , I , § e , 1^, { •} , u ^ , Inf • ) that 

recognizes the language Lw \ L(_4). The construction tracks runs of A us

ing the powerset construction and guesses the right classification of runs into 

sets N , C , and S. Moreover, i n order to check that no run stays forever i n C, it 

uses one more set B £ C. Therefore, states of C are quadruples ( N , C, S, B ) of 

subsets of Q — hence the name N C S B complementation construction. 

P £ { ( N , C , S , B ) | N £ Q N , B £ C £ Q D , S £ Q D N U ( « ) , a n d S n C = 0 } 

After reading only a finite prefix of the input word u , the automaton cannot 

know whether or not some run is already safe, as this depends on the suffix 

of u . The automaton C uses the guess-and-check strategy. Whenever a run a 

in C may freshly become safe (it is leaving a marked state or it is entering Q D 

via a cut transition t e 5 C ) , then the automaton C makes a nondeterministic 

decision to move a to S or to leave it i n C. The construction punishes every 

wrong decision: 

• i n order to preserve correctness, a run of C is blocked i f a is moved to S 

too early (runs i n S are not allowed to visit marked states anymore), and 

• i n order to maintain unambiguity, a is allowed to move from to S only 

when leaving a marked state. Hence, i f a misses the moment when it leaves 

a marked state for the last time, it w i l l stay i n forever and this particular 

run of C w i l l not be accepting. 

The set B mimics the behaviour of with one exception: it does not adopt the 

runs freshly coming to C via 5 C . The size of never increases unt i l it becomes 

empty; then we say that a breakpoint is reached. After each breakpoint, B is 

set to track exactly the runs currently i n C. 

See the state ({0},{3},{},{3}) ofFigure 8.1 
and the letter b for an example. 

See the state ({0},{2},{},{2}) ofFigure 8.1 
and the word a'" for an example. 
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tracing the reachable states correctly 

a run in Q • is either safe or not 

safe runs must stay safe 

only runs leaving a marked state can be 
moved to S, the rest stays in C 

punish the wrong guess - the corresponding 
run should have been in S already 

breakpoint construction to check that no run 
stays in forever 

cr is freshly entering Q D 

cr is leaving a marked state 

W i t h the provided intuition i n mind, we define the transitions of C. We 

h a v e ( ( N , C , S , B ) , a , ( N ' , C ' , S ' , B ' ) ) 6 6 c iff 

1. N ' = T 6 N ( N , a ) a n d C ' u S ' = T 8 c ( N , a ) u T 6 D ( C u S , a ) , 

2. C ' n S ' = 0 , 

3. S ' 2 T 6 D ( S , a ) , 

4. C ' 2 T 6 D ( C \ u ( « ) , a ) , 

5. for all q e \ we have T 5 D ({q} , a) + 0 , and 

6. i f B = 0 then B ' = C and otherwise B ' = T 6 d (B , a) n C ' . 

Note that the only source of nondeterminism of 6^ is when C has to guess 

correctly whether or not a run cr of A is safe. Such situations arise i n two 

cases, namely when the current state q of the run cr satisfies 

• q e T 5 c ( N , a) \ ( T S d (S, a) u u ( * ) ) , and when 

. q e T 6 d (C n a) \ ( T 6 d (S, a) u 

A l l other situations are determined, including runs that are currently i n a 

marked state (which belong to C) or i n S D (S, a) (which belong to S). 

N o run stays i n i f and only i f B becomes empty over and over again. Thus 

the acceptance marks are placed on states with breakpoints. 

u c ( « ) = { ( N , C , S , B ) e P | B = 0 } 

Finally, the correct classification of runs from their start has to be reflected in 

the set of init ial states. As some runs may start i n the deterministic part of A, 

we use the guess-and-check strategy again. 

Ic = {(QN n I, C , S , C ) I S u C = I n QD, S n C = 0 } 

We offer an example of the N C S B construction i n Figure 8.1 where the 

automaton C with 7 states was built as a complement for the automaton A with 

4 states. The numbers of states of complement automata built by the Ramsey-

based, determinization-based, rank-based, and slice-based constructions are 

54,13,13, and 10, respectively. a 

/ Q  

£ { 0 } . { } . { 3 } , { } ) « — ^ ( { 0 } , { } , { 2 } , { } ) ( { 0 } , { 3 } , { } , { 3 } ) 

a , d ( 

>£{o} .m} .{} ) ; 

£ { Q } . { i } . { } . { } ) 

Figure 8.1: A Biichi automaton A. (left) and its complement Biichi automaton C (right) built by the NCSB construction. 
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Complexi ty. Let p = ( N , C , S , B ) 6 P of C. Then 

• for a state q i e Q N of A, q i is either present or absent i n N ; 2 IQ .N I 

• for q2 e [ i (* ) , one of the following three options holds: q2 is only in 

q2 is both i n C and B, or q2 is not present i n p at all; and 

3 W # ) I 

• for q3 6 Q D \ [!(•), one of the following four options holds: q3 is only in 4 | Q D s n ( » ) | 

S, q 3 is only i n C, q 3 is both i n C and B, or q 3 is not present i n p at all. 

The size of P is thus bounded by |P| < 2 ^ 1 . 3 ^ ( * ) l . 4 I Q D S ^ * ) I . 

As already mentioned before, for deterministic automata (here we assume 

A is complete and Q N is empty), the N C S B construction leads to an automa

ton similar to an automaton with 2 | Q | - | u(#) | states produced by Kurshans 

construction. 1 7 To see the size of the automaton produced by our construction 1 7 Kurshan (1994), "The Complexity of Veri-

for a D B A , recall that a state ( N , C, S, B) of the complement automaton en- fication", [76]. 

codes that exactly the states i n N u C u S are reachable. For a D B A , N u C u S 

thus contains exactly one state q of Q. Moreover, N is empty and thus B co

incides with C since B becomes empty together with C. If q 6 [!(•), then it 

is i n both B and . If q 6 Q D \ [!(•), then it is either only i n S, or i n both 

and C, leading to a size |P| < 2 | Q D | - | u ( « ) | . 

8 . 3 R A N K S A N D C O R R E C T N E S S 

We open this section by recalling run graphs and introducing ranks. We then 

look at the N C S B construction through the ranking lense and use the insights 

this provides for proving correctness and unambiguity of the construction. 

Run graphs. We have introduced run graphs i n the previous section for au

tomata with marks on transitions and with a unique init ial state. Here we 

redefine it for automata with marks on states and with multiple initial states. 

Let A = ( Q , 1,6,1, { •} , u, l n f « ) be an N S B A with multiple init ial states 

and let u = u i U2 . . . be a word. A run graph of A over u is a vertex-labelled 

directed acyclic graph = ( V , E, pi) where V £ Q x to is a set of vertices, 

E £ V x V is a set of edges and p: {•} -»• 2 V is a vertex-labelling function. 

V , E, and | I are defined as follows. 

infinite path i n Gu that starts i n (q, 0) where q is some init ial state represents 

a run of A over u and conversely, each run of A over u is represented by an 

unique infinite path i n Gu. 

The run graph Gu is rejecting i f no path i n Gu satisfies the Buchi condition. 

That is, Gu is rejecting iff A has no accepting run over u and thus iff u is not 

in the language of A. 

p ( » ) = { ( q i , i ) e V | q i e p ( « ) } 

The vertices on the ifh level represent states 
reachable in A. under the prefix of u of 
length i . Edges correspond to transitions 
and also the placement of marks is pre
served. 

As we wi l l only use run graphs of A we wi l l only write Gu instead of G^- Each 

http://2IQ.nI
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Ranks. The property that a run graph Gu is rejecting can be expressed in 

terms of ranks}8 We call a vertex v € V of a graph G u = ( V , E, fx) safe, i f no 

vertex v ' reachable from v is accepting (v ' is accepting i f v ' e p(*))> mdfinite, 

i f the set of vertices reachable from v is finite. Based on these definitions, ranks 

can be assigned to the vertices of a rejecting run graph. We set G ° = G u , and 

repeat the following procedure unti l a fixed point is reached, starting with 

i = 1: 

5 Kupferman and Vardi (2001), [70]. 

1. Assign all safe vertices of 1 the rank i , and set G ^ to G ^ 1 minus the 

vertices with rank i . 

Remove safe vertices for G j 

2. Assign all finite vertices of G ^ the rank i + 1, and set G J ^ 1 to G ^ minus 

the vertices with rank i + 1. 

Remove finite vertices for G] 

3. Increase i by 2. 

A fixed point is reached i n | Q | + 2 steps,1 9 and the ranks can be used to 

characterise the complement language of a nondeterministic Buchi automa

ton: 

Proposition 1. A nondeterministic Buchi automaton A with n states rejects a 

word w iffG^+z is empty20 • 

1 9 It is common to use 0 as the minimal rank 
and start with the finite vertices, but the cor
rectness of the complementation does not 
rely on this. The proof in [70] refers to this 
case, and requires | Q | + 1 steps. For our pur
pose, the minimal rank needs to be odd, i.e. 
we need to start with safe vertices. 

1 Kupferman and Vardi (2001), [70]. 

Ranks and complementation of sDBA. Let us now consider the situation 

when A is an sDBA. Then we only need to consider three ranks: 1, 2, and 

3. Moreover, the vertices Q D X CL> reachable from accepting vertices can only 

have rank 1 or rank 2 i n a rejecting run graph. 

Proposition 2. A semi-deterministic Buchi automaton A rejects a word w iff 

G 3 is empty. This is the case iffG^ contains no vertex in Q D X CL>. 

Proof. Let u be a word rejected by A. By construction, G ^ contains no safe 

vertices as removing safe vertices does not introduce new safe vertices. 

Let us assume for contradiction that G \ contains a vertex ( q i , i ) € Q D x t u 

that is not finite. As ( q t , i ) is not finite, there is a run CT = q o q i . . . q i q i + i . . . 

of A over u such that (qj , j ) is a vertex i n G ^ for all j > i . This is because 

q i 6 Q D > the deterministic part of A, and { (q j , j ) | j > i} is therefore (1) 

determined by u and ( q i , i ) , and (2) fully i n G ^ because otherwise ( q i , i ) 

would be finite. 

But i f all vertices i n { (q j , j ) | j > i} are i n G ^ , then none of them is safe 

in Gu. Using again that the tail q iq i+ i q i + 2 . . . is unique and well defined 

(as q i e Q D , the deterministic part of A), it follows that, for all j > i , there 

is an index k > j such that q^ is marked by • . Consequently, a is accepting 

(contradiction). 

We have thus shown that i f A rejects a word u , then G 2 contains no state 

in Q D x o>. This also implies that G 2 contains no accepting vertices. Conse

quently, all vertices i n G 2 are safe and thus G 3 is empty. • 

G ^ is built from G ^ by removing safe ver
tices. 

G ^ is built from G ^ by removing finite ver
tices. 

G ^ is built from G ^ by removing safe ver
tices. 
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Rational runs. We now consider the N C S B construction from the perspec

tive of ranks. We start with an intuition for rational runs of the complement 

automaton. Let a = ( N o , Q>,So, B 0 ) ( N i , C i , S i , B i ) ( N 2 , C 2 , S 2 , B 2 ) . . . 

be a run of C over a word u such that u i L(_4) and let Gu = ( V , E, ! ! ( • ) ) be 

the run graph of A over u . The run cr is rational i f it is the unique accepting 

run of C over u which guesses the ranks precisely, that is: 

. N i = { q | ( q , i ) 6 V , q 6 Q N } , 

• C i = {q I ( q , i ) e V , q 6 Q D and the rank of ( q , i ) is 2}, 

• S i = {q I ( q , i ) e V , q 6 Q D and the rank of ( q , i ) is 1}, 

. B i C Q . 

We need to check that these vertices are finite 
in G\. 

These vertices are safe in CJ-LL. 

A l l runs of C that differ on some i from the rational run wi l l either block 

or w i l l keep the wrongly guessed vertices with rank 1 i n C and B and thus wi l l 

not be accepting. 

Correctness. We now establish that the automaton C is an unambiguous 

automaton that recognises the complement language of A by showing 

1. C does not accept a word that is accepted by A, u <= L(A) u i i_(C) 

2. for a word that is not accepted by A, we have a unique rational run of C 

and this run is accepting, and u i L(A) u <= I_(C) 

3. for a word u that is not accepted by A, the rational run is the only accepting unambiguity of C 

run of C over u . 

Lemma 8.1. Let A be an sDBA, C be constructed by the NCSB complementa

tion of A, andu e L(_4) be a word in the language of A. Then C does not accept 

u. 

Proof. Let cr = q 0 q i . . . be an accepting run of A over u , and let i e tu be an 

index such that q i e u ( * ) . Let us assume for contradiction that we have an 

accepting run cr' = ( N o , Co, So, B o ) ( N i , C i , S i , B i ) . . . of C over u . As qt 

is marked it holds that qt e C\ and thus qj e Cj u Sj for all j > i . We look at 

the following case distinction. 

1. For all j > i , q, 6 C j . As a ' is accepting, there is a breakpoint (B j = 0 ) for 

some I > i . For such an index we have that q t + i € B^+i and, moreover, 

that q k 6 B k for all k > I + 1. Thus, + 0 for all k > I + 1 and a' visits 

only finitely many marks (contradiction). 

2. There is a j > i such that qj 6 S j . But then q k 6 S k holds for all k > j 

by construction. However, as a is accepting, there is an I > j such that 

qt € u(#), which contradicts qt 6 St (contradiction). 

• 
Lemma 8.2. Let A be an sDBA, C be the automaton constructed by the NCSB 

complementation of A,ui L(^4), and ( V , E , ] ! ( • ) ) = Gu be the run graph of 

A over u. Then there is exactly one rational run a ofC over u and it has the 

form a = ( N o , Co, So, B o ) ( N i , C i , S i , B i ) . . . . The run a is accepting. 
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Proof. It is easy to check that the rational run is unique: the updates of the 

N , C, and S components follow the rules for transitions from the definition 

of C and the ranks of vertices from Gu, and the update of the B component is 

fully determined by the update of C and the previous value of B. 

What remains is to show that the run cr is accepting. Let us assume for 

contradiction that there are only finitely many breakpoints reached, i.e. there 

is an index i 6 tu, for which there is no j > i , such that Bj = 0 . 

N o w we have that 0 + B i £ C[ where 

= {q I ( q , i ) e V s . t . q 6 Q D and the rank of ( q , i ) is 2} 

The construction provides that, i f there is no breakpoint on or after position i , 

then B j is the set of states that correspond to vertices from Q x {j} reachable 

in from the vertices B ; x {i} for all j > i . As there is no future breakpoint, 

there are infinitely many such vertices, and König s lemma implies that there 

is an infinite path i n G ^ from at least one of the vertices i n B i x { i} . This 

provides a contradiction to the assumption that the rank of these vertices is 2, 

i.e. that they are finite i n G ^ . • 

L e m m a 8.3. Let A be an sDBA, C be the automaton constructed by the NCSB 

complementation of A,ui L(^4), and ( V , E , ] ! ( • ) ) = Gu be the run graph of 

A over u. Letu= ( N o , C o , S o , B 0 ) ( N o , C i , S i , B i ) . . . be a non-rational run 

ofC over u,- that is, a does not satisfy 

. N i = { q | ( q , t ) e V 5 . f c q e Q N } , 

• C i = {q I ( q , i ) e V s.t. q e QDand the rank of ( q , i ) is 2}, 

• S i = {q I ( q , i ) e V s.t. q e Q D and the rank of ( q , i ) is 1}, 

for some i. Then a is rejecting. 

Proof. As the N component always tracks the reachable states i n Q N correctly 

by construction, and the C u S part always tracks the reachable states i n Q D 

correctly by construction, we have one of the following two cases according 

to Proposition 2. 

1. There is a safe vertex ( q , i ) € V such that q € C i . By construction, a Safe vertices have rank l . 

unique maximal path (qt , i ) ( q i + i , i + 1 ) ( q i . + 2 , i + 2 ) . . . for q i = q exists 

in G u and this path does not contain any state marked by • . By an induc

tive argument, for all vertices (q j , j ) on this path, qj e . I f the path is 

finite, cr blocks at the end (due to the definition of the transition function 

of C), which contradicts the assumption that a is a run (which is infinite 

by definition). Similarly, i f the path is infinite we have qk e Bk for some 

k > i . Then qj 6 Bj for all j > k with (qj , j ) on this path. Therefore, cr 

cannot be accepting. 

2. There is a non-safe vertex i n ( q , i ) 6 V such that q 6 S i , which implies 

that q is not marked by • . By construction, we get a unique maximal path 

(q t , i ) (q t+ i , i + 1 ) ( q i + 2 , i + 2 ) . . . i n G ^ such that q i = q and this path 

contains a marked state q k • By an inductive argument, all vertices (q j , j ) 

on this path are i n Sj . But this includes the marked state qk is also i n Sk 

which is not permitted by the construction of C (contradiction). r j 
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The first two lemmata provide the correctness of our complementation al

gorithm and the third lemma establishes that C is unambiguous. A l l together 

they prove the following theorem. 

Theorem 8.4. Let A be an sDBA and C be the automaton constructed by the 

NCSB complementation of A. Then C is an unambiguous Buchi automaton that 

recognises the complement of the language of A. 

8 . 4 O N - T H E - F L Y A P P R O A C H 

Some algorithms do not need to construct the whole complement automa

ton. For example, i n order to verify that u i L(_4) one only needs to bui ld 

the accepting lasso i n C for u . O r when building a product with some other 

automaton (or Markov chain), it is unnecessary to bui ld the part of C which 

is not used i n the product. Further, some tools work with implicit ly encoded 

automata and/or query an S M T solver to check the presence of a transition in 

the automaton, which is expensive. U L T I M A T E B U C H I A U T O M I Z E R has both 

properties: it stores automata i n an implicit form and builds a product of the 

complement with a program flow-graph. Such tools can greatly benefit from 

an on-the-fly complementation that does not rely on the knowledge of the 

whole input automaton. 

The N C S B complementation can be easily adapted for an on-the-fly imple

mentation. Because we have no knowledge about Q N , Q D , and 6 C ) the runs 

are held i n N unti l they reach a state with a mark (which has to be i n Q D ) > 

only then they are moved to C. 

Technically, the " N ' = T 5 N ( N , a ) " from the definition of 6c would be 

replaced by " N ' = T 5 ( N , a) \ u(#)" and for C ' now holds: 

C ' £ T 6 ( C , a ) u ( T 6 ( N , a ) n ( « ) ) 

As non-marked states of Q D can also appear i n N the complexity of the 

on-the-fly variant increases slightly. 

|p| < 2 I Q N | . 3 H » ) | . 5 I Q D ^ ( « ) | 

Note that the on-the-fly construction does not add any further nondeter-

minism to the construction. Furthermore, there is an injection of runs from 

the original N C S B construction to this on-the-fly variant. Therefore, the cor

rectness argument and the uniqueness argument for the accepting run which 

are given i n Section 8.3 require only minor adjustments. 

8 . 5 I M P L E M E N T A T I O N 

We implemented the N C S B complementation i n two tools. One implementa

tion is available i n the G O A L tool . 2 1 G O A L is an interactive graphical tool for 

cu-automata, temporal logics, and games. It provides several Buchi comple

mentation algorithms and has been used i n an extensive evaluation of these 

algorithms. 2 2 In the command-line version, the parameters that run N C S B 

construction are complement -m sdbw - a. The partition of the set Q into 

Q N and Q D is not a parameter, instead the implementation uses the set of all 

states that are reachable from some accepting state as Q D -

2 1 Tsai, Tsay, and Hwang (2013), "GOAL 
for Games, Omega-Automata, and Logics", 
[78], available at http://goal.im.ntu.edu.tw/. 

2 2 Tsai et al. (2014), "State of Buchi Comple
mentation", [79]. 

http://goal.im.ntu.edu.tw/
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Our second implementation is available i n the U L T I M A T E A U T O M A T A L I 

B R A R Y . This library is used by the termination analyser U L T I M A T E B U C H I A U -

T O M I Z E R and other tools of the U L T I M A T E program analysis framework. 2 3 This 2 3 http://ultimate.informatik.uni-freiburg. 

implementation uses the on-the-fly variant of the construction. The library d e / 

provides a language that allows users to define automata and a sequence of 

commands that should be executed by the library. This language is called 

automata script and an interpreter for this language is available via a web i n 

terface on the tools website. The operation that implements the N C S B con

struction has the name buchiComplementNCSB. 

8.6 E X P E R I M E N T A L E V A L U A T I O N 

This section evaluates how the N C S B complementation performs i n practice 

in comparison to other methods for complementation of nondeterministic 

Buchi automata. A l l automata, tools, scripts, and commands used i n the eval

uation with some further comparisons can be found at https://github.com/ 

xblahoud/NCSB - Complementation. 

Termination analysis. Program termination analysis is a model checking 

problem, where the aim is to prove that a given program terminates on all 

inputs. In other words, it tries to establish (or disprove) that all infinite exe

cution paths i n the program flowgraph are infeasible. U L T I M A T E B U C H I A U -

T O M I Z E R uses an s D B A to represent infinite paths that are already known to 

be infeasible. It needs to complement the s D B A and make the product with 

the program flowgraph to identify the set of infinite execution paths whose 

infeasibility still needs to be proven. 

Benchmark automata. For the evaluation, we took automata whose com

plementation was needed while the tool U L T I M A T E B U C H I A U T O M I Z E R was 

analysing the programs from the Termination category of the software verifi

cation competition S V - C O M P 2015. 2 4 We wrote each Buchi automaton that 

was semi-deterministic but not deterministic to a file i n the H O A format. 2 5 

We obtained 106 semi-deterministic Buchi automata. A m o n g these automa

ta, we have identified 97 automata that were pairwise non-isomorphic. 

By construction, all these automata behave deterministically only after the 

first visit of an accepting state. Hence the partition of the states Q into Q N 

and Q D is unique and the results of the original construction and the results 

of the on-the-fly modification presented i n Section 8.4 coincide. 

2 4 Beyer (2015), "Software Verification and 
Verifiable Witnesses - (Report on SV-COMP 
2015)", [80]. 
2 5 Babiak et al. (2015), "The Hanoi Omega-
Automata Format" [17]. 

Other complementation constructions. For each category of methods for 

complementing N B A described i n Section 8.1, G O A L provides implementa

tions that can be adjusted by various parameters. We included one construc

tion from each category. For the latter three categories, we took the arguments 

that were most successful i n the extensive evaluation mentioned earlier? 6 For 

the Ramsey-based category we used additionally an optimization that m i n i 

mizes the finite automata used during the complementation. 2 7 The commands 

that we used are listed i n Table 8.1. 

2 6 Tsai et al. (2014), [79]. 

2 7 Breuers, Löding, and Olschewski (2012), 
"Improved Ramsey-Based Büchi Comple
mentation" [81]. 

http://ultimate.informatik.uni-freiburg
https://github.com/
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Construction G O A L command Table 8.1: Complementation 
and their G O A L commands. 

Ramsey-based complement -m ramsey -mace -min 

Determinization -b ased complement -m piterman -mace -sim -eq 

Rank-based complement -m rank -mace - t r -ro -cp 

Slice-based complement -m s l i c e -mace -eg -mad] -ro 

N C S B complement -m sdbw -a 

Hardware. A l l complementations were run on a laptop with an Intel Core 

i5 2.70GHz C P U . We restricted the maximal heap space of the J V M to 8GB 

(all complementations are implemented i n Java) and used a timeout of 300s. 

8.6.1 Results and observations 

A l l algorithms of Table 8.1 were applied to the 97 pairwise non-isomorphic 

sDBA. We present the results i n Table 8.2 and i n Figure 8.2. For 91 out of the 

97 s D B A , all implementations were able to compute a result. We refer to these 

91 s D B A as easy s D B A , while the remaining six are referenced as difficult in 

the Table 8.2. For each complementation, we provide the cumulative num

bers of states and transitions of all 91 easy complements. For each of the easy 

s D B A , N C S B construction produces the complement with the smallest num

ber of states. In Figure 8.2, a size of the complement produced by the N C S B 

construction is compared to the size of the smallest complement produced by 

the other constructions for each of the easy sDBA. 

For the difficult s D B A , at least one construction was not able to provide 

the result wi thin the given time and memory limits. We provide the number 

of states of the computed complements for each of them. Whi le there are two 

cases where the determinization-based construction produced an automaton 

with fewer states than the N C S B construction, the number of transition was 

always smaller for the N C S B construction. 

Simplifications. A common approach to mitigate the problem of large re

sults of complementation is to apply generic size reduction algorithms. Does 

our N C S B construction also outperform the other constructions i f we apply 

size reduction techniques afterwards? In order to address this question, we 

applied the simplification routines of the Spot library (in version 1.99.4a) to 

the complements. We ran the command a u t f i l t - - s m a l l --high -B -

H with a timeout of 300s and obtained the results that are presented i n Ta-

construction 
91 easy s D B A e > difficult s D B A 

construction 
states transitions 1 2 3 4 5 6 

Ramsey-based 16909 848969 - - - - - -
Rank-based 2703 21095 - - 1022 7460 8245 -
Det.-based 1841 24964 - - 172 346 385 3527 

Slice-based 1392 14783 66368 - 184 421 475 9596 

N C S B 950 8003 20711 84567 108 343 401 5449 

Table 8.2: Performance of complementation algorithms without posteriori simplifications. For every algorithm we first show the cummulative 
numbers of states and edges summed for the 91 easy sDBA. The last 6 columns give the number of states for the difficult sDBA. 
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Figure 8.2: Comparison of the NCSB construction and other complementations. 

ble 8.3. For 75 s D B A , all complements could be simplified within the time

out. For these, we again provide the cumulative numbers of states and tran

sitions before and after the simplifications. The column min shows how often 

each construction followed by simplification produced a complement with 

the min imal number of states. The column/az'Zure shows how often a timeout 

prevented successful complementation or simplification. It is interesting to 

see that the simplifications were not able to reduce the number of transitions 

much for the N C S B construction, while they were able to reduce it by more 

than 20% i n case of the other complementations. 

From the presented results we see that N C S B construction brings signifi

cant improvement to complementation of s D B A both i n theory and practice. 

The results indicate that additional simplifications applied to the complement 

automata do not help the other tools to outperform the N C S B construction 

on sDBA. Further, the construction was successfully used i n the termination 

analysis of the tool U L T I M A T E B Ü C H I A U T O M I Z E R . 

construction 
no simplifications with simplifications failure 

construction 
states transitions states transitions m i n compl. simp. 

Ramsey-based 6386 172351 5223 90548 0 6 22 

Rank-based 1437 11677 899 7657 4 3 14 

Det.-based 1300 15491 1083 9589 0 2 11 

Slice-based 892 8921 785 6789 4 1 13 

N C S B 598 4922 514 4460 73 0 10 

Table 8.3: Performance of complementation algorithms without and with posteriori simplifications. For every algorithm we show the cumulative 
number of states and transitions before and after simplifications summed for the 74 cases when all algorithms succeeded in given timeout, and the 
number of cases where the result of the algorithm was simplified to the smallest automaton for the same input. The last two columns show how often 
complementations and simplifications ran out of time or memory. 
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