
A U T O M A T A for F O R M A L METHODS:
L I T T L E STEPS TOWARDS P E R F E C T I O N

František Blahoudek

PHD THESIS

Faculty of Informatics
Masaryk University

Brno

March 2018

Acknowledgements

I w i l l always remember my postgraduate years as an intensive period of my

life, full of both amazing and tough experiences. It was a period of joy and

constant personal growth. I could never finish my thesis without inspiration

and support of many people around me. In the following paragraphs, I would

like to express my gratitude to at least some of them.

First of all, I would like to thank my supervisor Jan Strejček. He is the one

who showed me the beauty of automata more than ten years ago and who gave

me the opportunity to spread the beauty among my students as a teacher. I

especially value his trust and patience, and I am more than grateful for his

method of supervising through careful, inspiring, and close collaboration. I

like the way he writes, and I hope I learnt at least some bits from him. I en­

joyed sharing my passions for chocolate, good drinks, running, and colorful

automata with this great teacher and mentor. A n d what I appreciate the most

is that I can call Jan my friend with w h o m I can discuss science, life, love, and

jokes. I w i l l never forget that we were able to experience good laughs even

at 4 i n the morning before deadlines. A n d I also have to mention the unfor­

gettable travel experiences from our business trips; it was a pure pleasure to

watch Jan falling to the river Okawango after he attempted to drive a Mokoro

boat.

I was also honoured to have Mojmír Křet ínský as a supervisor for a year. I

am thankful to h i m for his attitude to me, his willingness to help, and for his

support and care i n difficult days.

Alexandre Duret­Lutz is our exceptional collaborator. He disclosed me

how much can scientists profit from mutual collaboration and he also en­

couraged me to learn and explore new technologies and to develop own use­

ful tools. M y research would be much harder and less enjoyable without h i m

and his work on Spot. The integration of Spot with Jupyter had an enormous

impact on my performance and saved me a lot of precious time.

As an attendee of the M O V E P summer school, I had the unique opportu­

nity to share a good time with Sven Schewe. I enjoyed our talks about auto­

mata and life, and I appreciate his notorious good mood and the willingness

to share ideas.

I have shared my office with three inspiring colleagues and friends. Petr

N o v o t n ý starting his P h D two years before me, was always a good source

of inspiration and good advice; he taught me to appreciate good r u m and to

enjoy preparing my presentations properly. Luboš Korenčiak is an infinite

source of jokes and good mood and a great companion to travels; he taught

me to procrastinate and to be open to people. Mar t in Jonáš never hesitates

to share his opinion and good taste; he taught me to drink up to four cups of

coffee a day and to be concerned with typography.

Our office is a part of the Formela lab, a place where I have been meeting

many wonderful colleagues and friends. I especially enjoyed meeting Tomáš

Babiak, Tom Brázdil, Marek Chalupa, Jakub Gajarský Mirek Klimoš, Jéňa

4

Krčál, Honza Křetínský, Kaj a Malá, Mikuláš Klokočka, Honza Obdržálek,

Vojta Rujbr, Vojta Řehák, M i m a Sasaráková, Marek Trtík, D o m i n i k Velan,

Mart ina Vitovská, and Táňa Zbončáková. I wish to meet them on many oc­

casions i n the future. I also hope to meet the friends from the ParaDiSe lab,

who contributed to the positive environment i n the school.

Teaching has been an enjoyable part of my studies and it often served as a

source of energy for me. I am thankful to my students that brought fun and

good mood into my lessons. I am also grateful to all people that helped me to

bring TeachingLab into life. I especially enjoyed the cooperation with O n d r á š

Přibyla, who brought many new insights and views into my life. A great deal

of my gratitude goes to Mar t in Ukrop who continues i n my effort to improve

the quality of the student s teaching at our university.

It would be hardly possible to survive the P h D studies without the sup­

port of friends. I would especially like to thank Dědek, Vojta Duba, Roman

Klein , Micha l Klivický Tom K o c m i , Honza Kudr, Saša Kuckir, Lukáš Straka,

and Micha l Zeman for their help and the wonderful time we spent together.

I would also like to thank Věrka Slezáková, who supported me i n my diffi­

cult times and who taught me much about life. I feel exceptional gratitude

to my friends from Ins t ruk toř i Brno for many memorable experiences,1 per­

sonal growth, and fun they have brought into my life. But most of all I value

the close friendships I found there, notably with Ďáblice, Entiro, Finn, Glum,

Jitka, Lenka, Mýca, and Rissie.

I feel the deepest gratitude to my parents, Marie and František. They have

always offered me a warm place to return to, unconditional support, empathy,

and love. They have encouraged me to pursue my goals and they have always

been curious about my various adventures not only from business trips. Be­

yond all of this, I thank them for teaching me not to forget about fun i n my

life. I have the great luck to have a broad, supportive family whose members

have k i n d words for me when needed and they also never miss an opportunity

to make fun of me. I would like to especially mention my brother Petr and my

aunts Anča and Petra and thank them for being close to me. I have always en­

joyed the company and smiles of other members of my family, namely Anduj,

Eva, Fanda, Honza, Marie, Miluška, Petra, Táňa, Vašek, and Zuzka.

1 They made my group carry a boat for more
than five km through a forest at night, for ex­

ample.

Fanda Blahoudek

Brno

March 2018

5

Abstract

As cu-automata are a convenient representation of languages of infinite words,

they are widespread i n the area of formal methods; many algorithms that an­

alyze systems with infinite behaviours rely on cu-automata. The efficient algo­

rithms for the intersection, union, and emptiness checking for various classes

of to-automata made them appealing for model checking of properties ex­

pressed as cu-regular languages or as formulae i n (not only) Linear Temporal

Logic (LTL).

O n the contrary, determinization and complementation of tu -automata are

notoriously difficult problems. This fact complicates usage of the automata-

based methods that need deterministic automata 2 or inherently employ lan­

guage difference or complementation of cu-automata.3

This dissertation approaches cu-automata and formal methods from var­

ious directions and presents several contributions towards perfect automa­

ta for formal methods. The presentation of the contributions is divided into

three parts.

• The first part is tightly connected to the model checker Spin and nondeter-

ministic Buchi automata. We investigate how different automata for one

language can influence the performance of Spin and we bring several i n ­

teresting observations and recommendations for L T L translators. More­

over, we introduce a method that enables the creation of automata that are

suited for a particular verification task. The automata convey knowledge

about the system to be verified; this knowledge sometimes helps to make

the automata significantly smaller and to speed up the model checking.

• The second part of the thesis is dedicated to the translation of L T L into de­

terministic automata. We present an efficient translation of a fragment of

L T L into automata with generalized Rabin acceptance condition. We also

discuss other approaches to the translation and offer an extensive experi­

mental comparison of available tools.

• The last part discusses semi-deterministic automata, which are automata

that are deterministic i n the limit. We develop an algorithm (and a tool)

for semi-determinization of Buchi automata, and an efficient algorithm for

complementation of these automata.

2 like model checking of probabilistic systems
or synthesis of reactive systems
' l ike termination analysis in the tool Ulti­
mate Automizer

Contents

List of Figures 10

List of Tables 12

1 Introduction 15
1.1 O U T L I N E A N D C O N T R I B U T I O N O F T H E T H E S I S 18

1.2 A U T H O R ' S P U B L I C A T I O N S A N D H I S C O N T R I B U T I O N 19

2 Preliminaries 23
2.1 CU - A U T O M A T A 2 3

2 . 2 L I N E A R T E M P O R A L L O G I C (L T L) 2 6

I HOW BUCHI AUTOMATA INFLUENCE MODEL CHECKING 2 7

3 Is There a Best Buchi Automaton for Spin? 29
3.1 M O T I V A T I O N B Y E M P I R I C A L D A T A : H O W M U C H C A N A U T O M A T A I N F L U E N C E S P I N 3 2

3 . 2 S T A N D A R D A P P R O A C H T O O P T I M I Z A T I O N : H E L P I N G T H E P R O D U C T 3 4

3 .3 A N O T H E R V I E W T O O P T I M I Z A T I O N : H E L P I N G T H E E M P T I N E S S C H E C K 3 6

3 . 4 S U M M A R Y O F T H E C H A P T E R 4 0

4 Specifications meet systems 43
4.1 S P E C I F I C A T I O N R E F I N E M E N T A N D C O N S T R A I N T S 4 4

4 . 2 F O R M U L A R E F I N E M E N T 4 5

4 . 3 A U T O M A T O N R E F I N E M E N T 4 6

4 . 4 E X P E R I M E N T A L E V A L U A T I O N 4 7

4 . 5 L A B E L S I M P L I F I C A T I O N 5 3

4 . 6 W H E N R E F I N E M E N T H A R M S A N D F O U N D B U G S 5 5

4 . 7 F I N A L R E M A R K S 5 7

II LTL TO DETERMINISTIC AUTOMATA 61

5 Translation of LTL Fragments into Generalized Rabin Automata 63
5.1 A L T E R N A T I N G A U T O M A T A A N D T H E I R S U B C L A S S E S 6 3

5 . 2 T R A N S L A T I O N O F L T L (F S , G S) T O M M A A 6 6

5 .3 T R A N S L A T I O N O F M M A A T O L T L (F S , G S) 6 7

10

5.4 T R A N S L A T I O N O F M M A A T O D E T E R M I N I S T I C A U T O M A T A 68

5.5 M M A A I N T H E L I M I T A N D L T L \ G (u , x) 72
5.6 D E G E N E R A L I Z A T I O N F O R R A B I N A U T O M A T A 72

5.7 I M P L E M E N T A T I O N A N D T R A N S L A T I O N I M P R O V E M E N T S 74

6 LTL to Deterministic Automata Translators: Experimental Evaluation 77
6.1 E V A L U A T E D T O O L S 79

6.2 B E N C H M A R K F O R M U L A E 83

6.3 H A R D W A R E , B E N C H M A R K S E T T I N G S , A N D E R R O R S 85

6.4 R E S U L T S : N O N - P A R A M E T R I C B E N C H M A R K S 86

6.5 R E S U L T S : T H E P A R A M E T R I C B E N C H M A R K S 98

6.6 F I N A L W O R D S 101

III SEMI-DETERMINISTIC AUTOMATA 103

7 Semi-Determinization ofTGBA 105
7.1 S E M I - D E T E R M I N I S M A N D C U T - D E T E R M I N I S M 105

7.2 C U T - D E T E R M I N I S M C H E C K & S T A T E S P A C E P A R T I T I O N 106

7.3 S U B S E T C O N S T R U C T I O N 107

7.4 S E M I - D E T E R M I N I Z A T I O N O F B U C H I A U T O M A T A 107

7.5 C U T - D E T E R M I N I Z A T I O N O F B U C H I A U T O M A T A 112

7.6 S E M I - D E T E R M I N I Z A T I O N O F G E N E R A L I Z E D B U C H I A U T O M A T A 113

7.7 C U T - D E T E R M I N I Z A T I O N O F T G B A 116

7.8 I M P L E M E N T A T I O N 116

7.9 E X P E R I M E N T A L E V A L U A T I O N 118

8 Complementation of Semi-Deterministic Buchi Automata 125
8.1 C O M P L E M E N T A T I O N O F N B A 125

8.2 C O M P L A M E N T A T I O N O F S D B A 126

8.3 R A N K S A N D C O R R E C T N E S S 129

8.4 O N - T H E - F L Y A P P R O A C H 133

8.5 I M P L E M E N T A T I O N 133

8.6 E X P E R I M E N T A L E V A L U A T I O N 134

Bibliography 137

List of Figures

Fij ;ure 1.1 Buchi automaton for G(request = > F p r i n t) . 16

Fij ;ure 1.2 Powerset construction. 16

Fij ;ure 1.3 Various automata for G F Q A G F b . 18

Fij $ure 2.1 N S B A , N T G B A , and a D T G R A for F G a v (GFb A G F - . b) . 24

Fij $ure 3.1 Automata-theoretic approach to model checking. 29

Fij $ure 3.2 Impact of the Buchi automata on model checking. 33

Fij $ure 3.3 Two B A for G F a and a state space. 34

Fij $ure 3.4 Two B A for a A G (a = > X (a A X (a A X a))) . 36

Fij $ure 3.5 Various automata for G F Q A G F b . 36

Fij $ure 3.6 Two T G B A for G F a A G F b . 37

Fij $ure 3.7 Automata f o r - . (G F Q = > G F b) . 39

Fij $ure 4.1 Promela code of a process from bakery protocol. 43

Fij $ure 4.2 Incompatible propositions i n action. 43

Fij ;ure 4.3 Specification refinement applied on an automaton. 45

Fij $ure 4.4 Performance of formula refinement. 50

Fij ;ure 4.5 Distribution of the improvement ratios of formula refinment. 50

Fij $ure 4.6 Performance of automata refinement. 52

Fij $ure 4.7 Distribution of the improvement ratios of automata refinement. 52

Fij ;ure 4.8 Formula vs. automaton refinement. 54

Fij ;ure 4.9 Formula vs. automata refinement - distributions. 54

Fij ;ure 4.10 C code generated by Spin for a transition. 54

Fij ;ure 4.11 -4rK(cp) much smaller than A v . 55

Fij $ure 5.1 A n example linear alternating automaton A. 64

Fij $ure 5.2 A run of the L A A A. 65

Fij $ure 5.3 State styles of May/must A A . 65

Fij $ure 5.4 The M M A A A v for cp = G (F S Q A F s b) v Gb. 67

Fij $ure 5.5 The semiautomaton for A v . 69

Fij $ure 5.6 The D T G R A for A v . 70

Fij $ure 6.1 L T L to deterministic automata: evaluated tool chains. 79

Fij $ure 6.2 L T L to deterministic automata: workflow of Spot. 80

Fij $ure 6.3 L T L formulae from literature and their classification. 82

Fij $ure 6.4 M i n i m a l automata by approaches. 88

Fij $ure 6.5 Unique min imal automata by approaches. 88

Fij $ure 6.6 M i n i m a l automata by tools (literature). 89

Fij $ure 6.7 M i n i m a l automata by tools (random). 90

Fij $ure 6.8 Quantile plot for selected tool chains with Spot. 93

Fij $ure 6.9 Scatter plots comparing ltl2dstar and Spot. 96

Fij ;ure 6.10 Scatter plots comparing Rabinizer 4 and Spot. 97

Fij ;ure 6.11 Scatter plot comparing Rabinizer 4 against Spot combined with L T L 3 T E L A . 98

12

Figure 7.1 Structure of semi-deterministic automata. 105

Figure 7.2 Marks pushed to transitions. 107

Figure 7.3 Semi-determinization. 108

Figure 7.4 SCC-aware semi-determinization. I l l

Figure 7.5 Cut-determinization. 112

Figure 7.6 Degeneralization of G B A . 113

Figure 7.7 Two-step semi-determinization of G B A . 113

Figure 7.8 One-step semi-determinization of G B A . 115

Figure 7.9 Formulae from literature and their classification. 119

Figure 7.10 Comparison of Seminator and ltl2ldba. 122

Figure 7.11 Comparison of Seminator and nba2ldba. 122

Figure 7.12 Comparison of Seminator and Seminator 2-step. 123

Figure 8.1 N C S B construction: an example. 128

Figure 8.2 Comparison of the N C S B construction and other complementations. 136

List of Tables

Table 3.1 L T L - t o - B A translators. 32

Table 3.2 Benchmark based on automata and product sizes. 35

Table 3.3 Benchmark based on automata sizes and Spins runs (bake r y . 7 . pm). 37

Table 3.4 Benchmark based on automata sizes and Spins runs (pete rson. 4. pm). 39

Table 4.1 L T L - t o - B A translators. 47

Table 4.2 Solved verification tasks (formula refinement). 48

Table 4.3 Effect on property automata (formula refinement). 49

Table 4.4 Improvement ratios distributions (formula refinement). 51

Table 4.5 H o w transitions affect run time of Spin. 51

Table 4.6 Solved verification tasks (automaton refinement). 52

Table 4.7 Effect on property automata (automaton refinement). 53

Table 4.8 Improvement ratios distributions (automaton refinement). 53

Table 4.9 Solved verification tasks (automaton vs.formula refinement). 53

Table 4.10 Effect on property automata (formula vs.automaton refinement). 53

Table 4.11 Improvement ratios distributions (formula vs.automaton refinement). 53

Table 4.12 More data on refinement impact (formula refinement). 58

Table 4.13 More data on refinement impact (formula refinement) II. 59

Table 6.1 Tool references. 81

Table 6.2 Tool chains and their ltlcross commands. 81

Table 6.3 Concrete formulae benchmarks. 83

Table 6.4 Errors summary (literature). 85

Table 6.5 Errors summary (random). 85

Table 6.6 The cumulative numbers for the literature benchmarks. 91

Table 6.7 The cumulative numbers for the random benchmarks. 91

Table 6.8 Cross-comparison (direct translations). 92

Table 6.9 Cross-comparison (ltl2dstar) 94

Table 6.10 Cross-comparison (Spot) 95

Table 6.11 Cross-comparison (Rabinizer 4, Spot, and ltl2dpa). 97

Table 6.12 Parametric formulae benchmark {gh I). 99

Table 6.13 Parametric formulae benchmark {gh II). 99

Table 6.14 Parametric formulae benchmark (ms and go). 100

Table 6.15 Parametric formulae benchmark (kr and other). 100

Table 7.1 Tool references. 118

Table 7.2 Tool configurations (semi-deterministic). 119

Table 7.3 Tool configurations (cut-deterministic). 119

Table 7.4 Evaluation of tools producing semi-deterministic automata. 120

Table 7.5 Evaluation of tools producing semi-deterministic automata. 120

Table 8.1 Complementation constructions and their G O A L commands. 135

Table 8.2 Complementation benchmark without simplifications. 135

Table 8.3 Complementation benchmark without and with simplifications. 136

Introduction

Automata play an essential role i n the history of computer science. In the

1960s and 1970s automata over finite words were seen as abstract machines

that process inputs and accept or reject them. This k i n d of view was mainly

driven by their application at that time - automata were used to bu i ld lex­

icographic analysers, parsers and compilers. Their primary purpose was to

check syntax. W i t h the development i n formal methods, automata became a

popular formalism used to describe behaviours and specification1 of software

and hardware systems; they became a data structure for representing sets of

behaviours. Their popularity stems from the fact that automata allow efficient

implementation of operations like union, intersection, and complement. A n ­

other appealing aspect of automata over words is their intuitive graphical rep­

resentation.

Automata over infinite words (cu-words), also known as cu-automata, were

introduced by Buchi i n 1962 as a tool to prove the decidability of the monadic

second-order logic wi th Presburger arithmetic. 2 A n infinite word cannot be

read to its end by an automaton and thus Buchi had to innovate the acceptance

mechanism of automata. His solution was the following: an w-automaton A

accepts an w-wordw if A can visit some accepting state infinitely often while

reading w. Automata with this k i n d of acceptance condition are nowadays

named after Buchi and they are the most widely used type of cu-automata to

these days. However, as we w i l l discuss later, their acceptance mechanism is

not powerful enough for some applications, and thus more acceptance con­

ditions like Muller, Rabin, Streett, parity, and others were introduced.

Vardi and Wolper started amazing scientific progress i n the area of cu-

automata i n 1986 3 when they realized that cu-automata are a natural choice as

a data structure for methods that analyze systems with infinite behaviour. 4 cu-

automata lie at the heart of many solutions of interesting problems from the

area of formal methods ranging from system monitoring through system anal­

ysis and verification to system synthesis. Solutions to these problems are typi­

cally computationally hard and the computation time and memory consump­

tion often hugely depend on automata used on the way. Whi le cu-automata

inherit the decidability properties of automata over finite words, some op­

erations like determinization, complementation, etc. are substantially harder

for cu-automata. The needs of efficient construction of practical cu-automata

and efficient manipulation of cu-automata has driven the scientific progress

to these days. This thesis confirms the previous statement and presents part

of my contribution to the fascinating wor ld of automata-theory, mostly moti­

vated by practical needs of verification methods. In the next few paragraphs,

we wi l l discuss areas of automata theory touched by this thesis.

1
1 specification in the form of a set of intended
or erroneous behaviours

2 Buchi (1962), "On a Decision Method in
Restricted Second Order Arithmetic", [1],

3 Vardi and Wolper (1986), "An Automata-
Theoretic Approach to Automatic Program
Verification (Preliminary Report)" [2].
4 A print server or a controller of a power
plant, for example.

A notable example of an tu-automata-based
verification method is the automata-
theoretic approach to model checking
discussed in Chapter 3.

16 A U T O M A T A F O R F O R M A L M E T H O D S : L I T T L E S T E P S T O W A R D S P E R F E C T I O N

LTL translations. The inputs of a verification task are typically a system to

be verified and its formal specification. The specification is often given as a

formula of some modal logic. Linear Temporal Logic (LTL) is often the logic

of choice as it allows to reason about the evolution of the system i n time and

thus can express many useful properties. For example, the natural expecta­

tion from a print server that every print request is eventually processed can be

written as an L T L formula cp = G(request = > F p r i n t) . A standard step

in verification is a translation of this formula into an cu-automaton that rep­

resents all behaviours that satisfy cp; see Figure 1.1 for a Buchi automaton for

cp. As many chapters of the thesis are somehow related to the construction of

cu-automata for L T L formulae, we w i l l discuss L T L translations i n more detail.

Every L T L formula cp can be translated to a nondeterministic Buchi au­

tomaton (NBA) Av with the number of states exponentially dependent on

the size of cp. The translation of L T L into N B A is a well-studied problem.

Scientists have already suggested many approaches to the translation. Eval­

uations show that no approach is superior to the others on its own, without

further optimizations. Therefore, rewriting of the input formulae and reduc­

tions of the automata at different stages of the translation became the most

powerful weapons i n the battle for the best L T L - t o - B A translator. The rapid

development brought to the community translators like Spot and L T L 3 B A

that are very efficient i n practice, and they often avoid the exponential blow­

up. Many experts, including authors of the mentioned tools, believe that there

is not much hope for smaller N B A here. However, this is not the end of the

story of L T L translations as we show i n the next three paragraphs.

Some applications cannot be solved using N B A directly. For example, con­

troller synthesis for reactive systems5 is addressed by reduction to the prob­

lem of finding a winning strategy i n a two-player game. The game is usually

constructed from an cu-automaton for the specification, and we need a de­

terministic cu-automaton for this task.6 Further, problems from the family of

model checking of probabilistic systems are typically solved using deterministic

cu-automata. H o w can we efficiently construct them? A natural choice is to

take efficient translators of L T L to N B A and determinize the N B A we get for

our formula. Let us discuss this option i n more detail.

Determinization of cu-automata is substantially harder than the one of au­

tomata over finite words. For finite words, we have an efficient procedure

known as the powerset construction that takes a nondeterministic automaton

with n states and constructs an equivalent deterministic automaton with at

most 2 n states.7 This method is known to be tight and is well understood. In

the wor ld of Buchi automata, the powerset construction is not correct any­

more; see Figure 1.2. The increase i n complexity of a correct determinization

is two-fold. First, deterministic Buchi automata are less expressive than their

nondeterministic counterparts and thus we have to use some more complex

acceptance condition. Second, for a Buchi automaton with n states we can

build, using the tight upper bound on determinization, 8 a Rabin automaton

with at most (1 . 6 5 n) n states and 2 n + 1 accepting sets. If we aim for parity

-.request v p r i n t -.print

p r i n t

(G(request = > F p r i n t))

Figure 1.1: Buchi automaton A.v for cp.

5 The problem of controller synthesis for re­
active systems takes as input a specification
cp, set of available actions of an environment,
and set of available actions of a controller.
While the actions of the environment are out
of our control, we can control the actions
of the controller. A solution to this prob­
lem is to automatically generate a controller
that will react to the actions of the environ­
ment in a way that guarantees satisfaction of
cp no matter what actions the environment
performs.
6 Alternatively, so-called good-jor-games Ra­
bin or parity automata do not need to be fully
deterministic and still can be reduced effec­
tively to a two-player game.

7 Rabin and Scott (1959), "Finite Automata
and Their Decision Problems", [3].

8Schewe (2009), "Tighter Bounds for the
Determinisation of Buchi Automata", [4];
Colcombet and Zdanowski (2009), " A Tight
Lower Bound for Determinization of Transi­
tion Labeled Buchi Automata", [5],

Figure 1.2: The automata A. and V demon­
strate that the powerset construction is not
correct for tu -automata. The automaton V
is the result of the powerset construction ap­
plied on A.. While A. accepts all tu-words
with only a finite number of as, V accepts all
cu-words that have infinitely many bs (and
possibly also infinitely many as).

Q

I N T R O D U C T I O N 17

acceptance which is more suitable for solving games (and thus controller syn­

thesis), we can have automata with at most 0 (n ! 2) states and 2 n priorities.

I would like to mention two approaches that researchers pursue to over­

come the high complexity of cu-automata determinization. The first approach

is a direct translation of L T L into various deterministic cu-automata. The sec­

ond approach investigates new methods of solving model checking of proba­

bilistic systems using cu -automata that are not fully deterministic, for example

unambiguous or semi-deterministic 9 cu-automata. These methods brought

us a new challenge of efficient translation of L T L into semi-deterministic cu-

automata, either directly or via nondeterministic automata with subsequent

efficient semi-determinization.

9 A n unambiguous automaton has at most
one accepting run for each word. In a
semi-deterministic automaton, each accept­
ing run avoids nondeterministic states from
some point on. Semi-deterministic automa­
ta are also known as limit-deterministic or
deterministic-in-the-limit.

Complementation. Complementation is another operation that is substan­

tially harder for cu-automata than for automata over finite words. It took

over half a century of research to find matching upper 1 0 and lower 1 1 bounds

8 ((0 . 7 6 n) r l) for complementing Buchi automata. Despite the high com­

plexity, complementation of Buchi automata is a valuable tool for verifica­

tion, language inclusion, or language subtraction. W i t h the growing under­

standing of the worst-case complexity, the practical cost of complementing

Buchi automata has become a second line of research as the worst case can

often be avoided. Our motivation to tackle complementation of Buchi auto­

mata comes from the program termination analysis of U L T I M A T E B U C H I A U -

T O M I Z E R . 1 2 The aim of a program termination analysis is to decide whether

a given program terminates on all inputs. In other words, it tries to estab­

lish or disprove that all infinite execution paths i n the program flowgraph are

infeasible. The U L T I M A T E B U C H I A U T O M I Z E R uses Buchi automata to rep­

resent infinite paths that are already known to be infeasible and it subtracts

these paths (using complement and product) from the program flowgraph to

identify the set of infinite execution paths whose infeasibility still needs to be

proven.

1 0 Schewe (2009), "Buchi Complementation
Made Tight", [6].
1 1 Yan (2008), "Lower Bounds for Comple­
mentation of Omega-Automata Via the Full
Automata Technique", [7],

1 2 Heizmann, Hoenicke, and Podelski
(2014), "Termination Analysis by Learning
Terminating Programs", [8].

Suitability of automata for model checking. The set of languages that can

be recognized by automata over finite words are exactly the regular languages

and the w-regular languages for (most types of) cu-automata. Whi le there is a

unique min imal deterministic automaton for each regular language, the situ­

ation is more complicated for cu-automata - there is no equivalent to the m i n ­

imization algorithm that we know for automata over finite words. Moreover,

size is not the only relevant property of cu-automata that influences the pro­

cess of model checking. Small size, the degree of determinism, and the sim­

plicity of the acceptance condition can positively influence the performance

of verification tools but they are often contradictory requirements from the

perspective of L T L translators at the same time. 1 3 Furthermore, other aspects

of particular cu-automata may influence model checking even more dramati­

cally, for example, the location of accepting or initial states. W i t h the variety of

available tools for L T L to cu-automata translation, we have many cu-automata

to consider to use for verification. Figure 1.3 shows six automata for the for­

mula G F a A GFb. Which one is the most suitable for a given verification task?

We cannot answer this question entirely, but we offer at least some deeper

insight for tasks solved by the model checker Spin.

1 3 For example, we can have a one-state de­
terministic Rabin automaton for the formula
cp = FG a while no deterministic Buchi can
express cp. Moreover, no Buchi automaton
with less then two states exists for cp.

18 A U T O M A T A F O R F O R M A L M E T H O D S : L I T T L E S T E P S T O W A R D S P E R F E C T I O N

T T T T d b Q b b Q b Q

(CO (C2) (C 3) (C 4) (C 5) (C 6)
Spin L T L 2 B A & L T L 3 B A M o D e L L a L T L 3 B A (det) Spot & Spot (det) Spot (no jump)

1.1 O U T L I N E A N D C O N T R I B U T I O N O F T H E T H E S I S Figure 1.3: Automata for GFa A GFb gen­
erated by different tools and options.

Chapter 2 provides preliminaries and most definitions used throughout the

thesis. In particular it introduces cu-automata and L T L . The rest of the thesis

is divided into three parts; each part is devoted to cu-automata with varying

degrees of determinism. The first part focuses on nondeterministic automata.

It is followed by a part that deals wi th deterministic automata. Finally, the last

part of the thesis discusses algorithms for semi-deterministic automata. The

thesis contributes to the automata theory i n the following areas.

Nondeterministic Biichi automata for explicit model checking. We study

the connection of Bi ich i automata and concrete verification tasks performed

by a successful explicit model checker called Spin. In particular we focus on

two aspects.

• In Chapter 3 we search for properties of Bi ich i automata that really influ­

ence the performance of the central algorithm of Spin - Nested Depth First

Search. We do so by manual analysis of several automata and by experi­

ments with common L T L - t o - B A translators and realistic verification tasks.

As a result of these experiences, we gain a better insight into the character­

istics of automata that work well with Spin.

• In Chapter 4 we provide methods that take a particular system to be ver­

ified, analyze the meaning of atomic propositions that are present i n the

system, and use this analysis to improve Bi ich i automata built from L T L

specifications. As a result, we get smaller automata with shorter edge la­

bels that are easier to understand. Thanks to these cu-automata we can

improve the run time of Spin.

Translation of LTL into deterministic cu-automata.

• In Chapter 5 we define May/Must alternating automata (MMAA), show

(constructively) their expressive equivalence to L T L (F S , G s) , and provide a

procedure that converts M M A A into deterministic transition-based gen­

eralized Rabin automata. These steps connect into an efficient translation

of L T L (F S , G s) into deterministic cu-automata. We have implemented this

method i n the tool L T L 3 D R A that is publicly available.

• Chapter 6 offers an exhaustive experimental evaluation and comparison of

various methods that transform formulae of L T L (and its fragments) into

deterministic cu-automata.

LTL(FS, G s) is a fragment of LTL which uses
the temporal operators strict eventually and
strict always only.

I N T R O D U C T I O N 1 9

Semi-deterministic Biichi automata construction and complementation.

• In Chpater 7 we first describe a transition­based adoption of the stan­

dard semi­determinization procedure for Biich i automata by Courcoubetis

and Yannakakis 1 4 and we extend the algorithm with an SCC­aware 1 5 op­

timization. We also show how to tweak the construction to produce cut­

deterministic automata (a stronger form of semi­determinism). We fur­

ther present an algorithm for semi­determinization of generalized Biich i

automata that is similar to the one presented by Hahn et al. i n 2 0 1 5 . 1 6 A l l

procedures were implemented i n an open source tool called Seminator. We

also evaluate and compare Seminator to other relevant tools.

• In Chapter 8 we present a specialized algorithm for complementation of

semi­deterministic Búchi automata. For a semi­deterministic Búchi au­

tomaton with n states our algorithm creates an unambiguous Buchi au­

tomaton with at most 4 n states that recognizes complement of the language

of the input automaton. Besides the theoretical result, this algorithm was

successfully used to speed­up termination analysis i n the U L T I M A T E B Ů C H I

A U T O M I Z E R .

1 . 2 A U T H O R ' S P U B L I C A T I O N S A N D H I S C O N T R I B U T I O N

1.2.1 Core of the Thesis

Each of Chapters 3 ­ 8 is based on a conference publication co­authored by me.

I list the publications and discuss my contribution, respecting the order of the

chapters.

SPIN 2014 František Blahoudek, Alexandre Duret­Lutz, Mojmír Křet ínský

and Jan Strejček.

"Is there a Best Buchi Automaton for Explicit M o d e l Checking?" [11] ,

M y contribution: Participated in discussions, performed all experiments,

participated in writing of the main body. 3 0 %

SPIN 2015 František Blahoudek, Alexandre Duret­Lutz, Vojtěch Rujbr, and

Jan Strejček.

" O n Refinement of Buchi Automata for Explicit M o d e l Checking" [1 2] .

M y contribution: Participated in discussions, on experiments, and on writ­

ing of the main body. 2 5 %

ATVA 2013 Tomáš Babiak, František Blahoudek, Mojmír Křet ínský and Jan

Strejček.

"Effective Translation of L T L to Deterministic Rabin Automata: Beyond

the (F, G)­Fragment" [13] .

M y contribution: Participated in discussions, formulated the main algo­

rithms and devised and written most of the proofs. Marginally collaborated

on implementation and performed all experiments. Participated in writing

of the main body. 5 0 %

LPAR 2013 František Blahoudek, Mojmír Křet ínský and Jan Strejček.

"Comparison of L T L to Deterministic Rabin Automata Translators" [1 4] ,

M y contribution: Participated in discussions, performed all experiments,

participated in writing of the main body. 5 5 %

1 4 Courcoubetis and Yannakakis (1988),
"Verifying Temporal Properties of Finite­

State Probabilistic Programs", [9].
1 5 based on knowledge about strongly con­

nected components
1 6 Hahn et al. (2015), "Lazy Probabilistic
Model Checking without Determinisation",
[10].

20 A U T O M A T A F O R F O R M A L M E T H O D S : L I T T L E S T E P S T O W A R D S P E R F E C T I O N

LPAR 2017 František Blahoudek, Alexandre Duret­Lutz, Mikuláš Klokočka,

Mojmír Křet ínský and Jan Strejček.

"Seminator: A Tool for Semi­Determinization of Omega­Automata" [15].

M y contribution: Participated in discussions and in formulation of algo­

rithms, participated in writing the paper. Marginally participated in imple­

mentation and performed all experiments. 30%

TACAS 2016 František Blahoudek, Matthias Heizmann, Sven Schewe, Jan

Strejček, and Ming­Hs ien Tsai.

"Complementing Semi­deterministic Büchi Automata" [16].

M y contribution: Participated in discussions and together with Sven Schewe

formulated the algorithm. Substantially participated in writing the paper,

performed the data analysis and prepare the final version of the experimen­

tal evaluation. 25%

The thesis is based on these conference papers. However, some of the ma­

terial was completely rewritten and some parts were substantially extended.

In particular,

• the thesis uses a definition of o>­automata that rely on acceptance marks

and Emerson­Lei acceptance condition i n formal constructions,

• i n comparison to ATVA2013 [13], the proofs i n Chapter 5 have been refor­

mulated using new terminology and concept of escaping multitransitions.

The degeneralization of Rabin automata was completely rewritten.

• The comparison of tools from LPAR 2013 [14] has been fully rewritten and

revised. New tools have been included (determinization methods of Spot,

Rabinizer 3, Rabinizer 4, L T L 3 T E L A) and those that d id not well i n LPAR

2013 [14] have been omitted.

• The presentation of material from LPAR 2017 [15] has been completely

rewritten, enhanced with formal descriptions of more algorithms, with i l ­

lustrations and with proofs. Moreover, SCC­aware optimization has been

described and implemented. New versions of Seminator and of other tools

have been used i n experimental evaluation.

Tools. The research done for this thesis has impact on several tools from

the community. L T L 3 D R A 1 7 is an implementation of the translation of L T L

to deterministic tu­automata presented i n ATVA2014 [13]. Seminator 1 8 i m ­

plements all algorithms described i n Chapter 7 and it was presented i n LPAR

2017 [15]. The methods developed for SPIN 2015 [12] were added to Spot. 1 9

The complementation algorithm described i n TACAS 2016 [16] is imple­

mented i n G O A L 2 0 and U L T I M A T E B Ü C H I A U T O M I Z E R . 2 1

1.2.2 Other Publications and Projects

Hanoi Omega-Automata (HOA) Format. H O A format 2 2 is a flexible tex­

tual exchange format for cu­automata. It enables one to express determinis­

tic, nondeterministic, or alternating automata i n a uniform, human­readable,

and succinct way. H O A format supports various structural variants such as

1 7 https://github.com/xblahoud/ltl3dra
1 8 https://github.com/mklokocka/
seminator/

1 9 https://spot.lrde.epita.fr/
2 0 http://goal.im.ntu.edu.tw/

2 1 http://ultimate.informatik.uni­freiburg.
de/

2 2 Full specification of the format including
some examples can be found at https://adl.
gifhub.io/hoaf/

https://github.com/xblahoud/ltl3dra
https://github.com/mklokocka/
https://spot.lrde.epita.fr/
http://goal.im.ntu.edu.tw/
http://ultimate.informatik.uni-freiburg
https://adl

I N T R O D U C T I O N

labels on states or transitions, state­based or transition­based acceptance. Ev­

ery tu­automaton is equipped with an Emerson­Lei acceptance condition (a

Boolean formula over the acceptance primitives infinitely often and finitely of­

ten) which can express all acceptance conditions mentioned so far and more.

The format was presented at the conference C A V 2015:

CAV2015 Tomáš Babiak, František Blahoudek, Alexandre Duret­Lutz, Joa­

chim Klein , Jan Křetínský, David Müller, David Parker, and Jan Strejček.

"The Hanoi Omega­Automata Format" [17].

Translation of LTL into Transition-based Emerson-Lei Automata (TELA).

We have created LTL3TELA?3 which is a translator of L T L to (possibly nonde­ 2 3 https://github.com/jurajmajor/ltl3tela

terministic) T E L A . Similarly to L T L 3 B A and L T L 3 D R A , the translation uses

alternating automata as an intermediate step. This experimental approach

to L T L translation addresses the trade­off between complexity of acceptance

condition and size of cu­automata ­ i n comparison to Spot or L T L 3 B A it

can produce smaller cu­automata with acceptance conditions that are usually

harder to check.

https://github.com/jurajmajor/ltl3tela

Preliminaries

This chapter introduces w-automata and Linear Temporal Logic (LTL).

Alphabets. A n alphabet is a finite set of letters. We use two types of alpha­

bets. In classical alphabets, letters are symbols, like i n I = {a , b, c}. Letters

in propositional alphabets are subsets of a finite set of atomic propositions; i f

A P = {a , b} is a set of atomic propositions, I = 2 A P = { 0 , {a} , {b} , {a , b}}

is a propositional alphabet over A P . We usually use the symbol a to reference

the letters of an alphabet.

Infinite words. A n infinite word (or simply a word) over L is an infinite

sequence of letters u = U Q U I U 2 . . . e Lw. By U i we denote the i th suffix

Uj_ = UjUi+i . . . of u .

2.1 C U - A U T O M A T A

cu- automata are finite automata over infinite words. The thesis does not cover

automata over finite words and thus we also use the term automata to refer­

ence tu-automata. A n cu-automaton is always equipped with some acceptance

condition, typically Buchi , Rabin, Streett, or parity. Even though acceptance

conditions of all automata used through the thesis could be classified as more

or less standard, for clarity reasons, our definition follows the approach of

the Hanoi Omega-Automata (HOA) format 1 and uses acceptance marks and

acceptance formulae to describe the acceptance mechanism of automata. To

clearly distinguish between the automata structure and its acceptance mech­

anism, we start with definition of a semiautomaton.

1 Babiak et al. (2015), "The Hanoi Omega-
Automata Format", [17], see also
https://adl.github.io/hoaf/.

Semiautomata. A semiautomaton is a tuple T = (S, 1,5, ST) , where S is

a finite set of states, L is an alphabet, 6 £ S x I x S is a transition relation,

and s i e S is the initial state. A triple t = (s, a , s ') € 5 is a transition of

s leading to s ' under a and we also say that a is the label of t. A state s '

is reachable from s i n T , denoted by s ^j- s', iff there exists a sequence of

transitions (so, ao, s i) . . . (s k - i , a k - i , S k) such that so = s and Sk = s'. We

use s **7- s ' to denote the fact that s and s' are mutually reachable.

We write s ~» s ' and s ** s ' instead of
s ~»7- s ' and s s ' when T is clear
from context.

SCC. A strongly connected component (SCC) C £ S is a set of states that are

all mutually reachable. A n S C C C is maximal i f no state outside C is mutually

reachable with states from C. For each automaton there is a unique decom­

position of the states into maximal strongly connected components.

Determinism. A state s 6 S is deterministic i n 6 i f it has at most one tran­

sition under a i n 6 for each a e I . A n S C C is deterministic i f it consists of

https://adl.github.io/hoaf/

24 A U T O M A T A F O R F O R M A L M E T H O D S : L I T T L E S T E P S T O W A R D S P E R F E C T I O N

deterministic states only and finally a semiautomaton T and the transition

relation 5 are deterministic i f all states from S are deterministic i n 6.

Runs. A run of a semiautomaton T over a word u = u o u i . . . 6 Lw is an

infinite sequence a = (so, Uo, s i) (s i , u i , S2) . . . e S ^ o f transitions such that

so = s i . A deterministic semiautomaton has at most one run for each word

U€LW.

cu-automata. A n w-automaton is a tuple A = (S, 1,6, s i , M , u, <P) where

(S, L, 5, s i) is a semiautomaton, M is a finite set of marks, u: M -»• 2 S u 6 is a

function that places marks on states and transitions, and finally <£> is an accep­

tance formula. We say that a transition or a state has a mark • 6 M i f it is a

member of [!(•). The acceptance formula is a positive Boolean combination

of terms Inf • and F i n * where • ranges over the set of marks M .

Semantics. The semiautomaton defines the runs of A and the acceptance

marks and formula give semantics to these runs. Let a be a run of A. Rec(a)

is the set of states and transitions that appear infinitely often (recurrently) in

the run. The marks of cr is the set of marks that are placed on states and tran­

sitions from Rec(a) , more precisely marks(a) = { • | u (*) n Rec(a) + 0 } .

The run cr satisfies lnf# i f • 6 marks(cr) and it satisfies F i n H i f • £ marks(cr). 2

The run is accepting i f it satisfies <P. The language of A is the set L („ 4) of all

words u e Lw such that A has an accepting run over u .

A n a)-automaton is a semiautomaton with
marks on states or transitions and with an ac­
ceptance formula. The marks with the accep­
tance formula say which runs of the semiau­
tomaton are accepting.

The intuitive meaning of Inf is to visit in­
finitely often and the one of Fin is to visit
only finitely often. For example, a generalized
Biichi condition with two marks is expressed
as InfO A Inf©.

2 In this thesis we use a unique mark for each
term of O and by convention we use cir­
cles for marks that appear in Inf-terms and
squares for those in Fin-terms.

Visualisation. We draw automata as i n Figure 2.1. States are represented by

nodes; the init ial state has an incoming edge from an empty space, the accep­

tance formula is i n the yellow box below the automaton itself, transitions are

depicted as edges. If the automaton has a propositional alphabet, transitions

between two states that have identical marks but different labels are merged

into one edge. The edge is labelled by a boolean formula over atomic proposi­

tions i n a condensed notation; the label is satisfied by exactly all labels of the

merged transitions. For example, the label ab i n the right automaton with

I = 2 < Q M stands for - .a A b and represents the unique transition under {b},

and any edge of the left automaton with label b represents transitions under

{a} and 0 . Sometimes a green box provides a corresponding L T L formula

as i n the case of the right automaton. Names of automata are typeset using a

calligraphic alphabet and are enclosed i n parenthesis i n figures.

The condensed notation omits conjunctions
and uses a for -.a.

Tools that manipulate or generate automa­
ta usually also merge transitions into edges
(both internally and for input/output). A n
edge is then a triple (s, I, s ') where I is the
edge-label.

T < V U ® ^ a

„ T b

(B)
 b N?)

a

(F G a v (G F b A GF- .b)]

(InfO A InfO) [FinlB v (InfO A InfO) 1

Figure 2.1: Three automata for the LTL for­
mula FGa v (GFb A GF-.b). From left to
right: Biichi with marks on states, general­
ized Biichi with marks on transitions, and
deterministic generalized Rabin with marks
on transitions.

P R E L I M I N A R I E S 25

Standard acceptance conditions. We can express all standard acceptance

conditions i n our setting, you can see some examples above i n Figure 2.1. We

do not distinguish explicitly between state-based and transition-based accep­

tance 3 (we even allow to mix them). For Buchi and co-Buchi automata we

need only one mark and the corresponding acceptance formulae are I nf • and

F inH, respectively, for generalized Buchi wi th k acceptance sets we need k

marks and the formula is A £ r 0 I nf O. For a Rabin automaton with h Rabin

pairs we need 2 h marks and the formula is V k I o (F i n B A InfO). A R a b i n p a i r

is a conjunction of a co-Buchi and a Buchi condition, i n a generalized Rabin

pair the Buchi part is replaced by generalized Buchi and thus the acceptance

formula for generalized Rabin automata is VkeK (F i n D A A j e j k InfO).

Abbreviations. We often need to refer to automata that have certain prop­

erties. As their description can be rather long, we use abbreviations for au­

tomata types. A type of an automaton is influenced by the following three

properties.

determinism: Deterministic [D], Nondeterministic [N], semi-deterministic

[sD], cut-deterministic [cD]

the placement of marks: transitions [T], states [S]

acceptance condition: Buchi [B], generalized Buchi [GB], Rabin [R], gener­

alized Rabin [GR]

In abbreviations, we use the same order as i n the list and add an A which

stands for automaton (or automata, regarding the context). We leave out these

properties that are not of our interest. For example, the abbreviation BA de­

notes Buchi automata and DTGRA denotes deterministic generalized Rabin

automata with marks on transitions.

Expressibility remark. The definition of an automaton used i n this thesis

allows for each label a € I at most one transition between two states. In the

H O A format you can also describe automata that have more such transitions

that differ i n the marks they carry. Such automata are not expressible by our

definition. That is on purpose as it simplifies the presentation of most of the

material and we also do not lose anything. Indeed, more transitions between

two states are only useful for automata with some Fin -terms i n the acceptance

formula and marks on transitions. We use such automata only i n Part II where

all these automata are deterministic. Finally, no choice between transitions is

permitted anyway i n deterministic automata.

3 State-based automata have marks only on
states while transition-based automata have
marks on transitions.

26 A U T O M A T A F O R F O R M A L M E T H O D S : L I T T L E S T E P S T O W A R D S P E R F E C T I O N

2.2 L I N E A R T E M P O R A L L O G I C (L T L)

The syntax of L T L is defined by

We also use standard Boolean connectives
cp ::= T | CI | -cp | cpVcp | cpAcp | Xcp | cp l j cp , (i i k e a n d) i n their usual mean­

ing as shorthands.

where T stands for true, a ranges over a countable set A P of atomic proposi­

tions, X and U are temporal operators called next and until, respectively. L T L

formulae are interpreted over infinite words over the propositional alphabet

I = 2 A P , where A P ' is a finite subset of A P .

We inductively define when a word u satisfies a formula cp, written u 1= cp,

as follows.

U N T

u N a iff a € uo

u N -i<p iff u cp

u N c p i vcp2 iff u N c p i o r u N c p 2

u N cpi A cp 2 iff u N cpi a n d u N cp2

u N Xcp iff u i N cp

u N cpi U <p2 iff 3 i > 0 . (ut . . N cp2 and V 0 < j < i . Uj . . N cpi)

Given an alphabet I , a formula cp defines the language L 1 (cp) = { u € Lw

j A P (cp)

u N cp }. We write L (cp) instead of L (cp), where A P (cp) denotes the set

of atomic propositions occurring i n the formula cp.

We define the derived unary temporal operators eventually (F), always (G),

strict eventually (F s), strict always (G s) , and releases (R) by the following equiv­

alences:

Fcp = T U cp GcpE-.F-.cp

Fscp = XFcp G scp = XGcp

cpi R c p 2 = -.(-.cpi U- .cp 2)

A n L T L formula is i n positive normal form i f no operator occurs i n the

scope of any negation. Each L T L formula can be transformed to this form

using De Morgans laws for A and v and the following equivalences:

- F i p = G - i p - G i p = F-*|>

^F s \p = G s - i p ^ G s t p = Fs^ip

-.(cp! R c p 2) = -.cpi U-.cp2 -.(cpi U c p 2) = -.cpi R-.cp2

-Xcp = X-cp

We say that a formula is temporal i f its topmost operator is neither con­

junction nor disjunction; note that a and - .a are also temporal formulae.

http://GcpE-.F-.cp

Parti

HOW BÜCHI AUTOMATA INFLUENCE
EXPLICIT MODEL CHECKING

7s There a Best Büchi Automaton for Spin?

Model Checking

In the traditional view, the model checking1 problem decides whether a given

system is a model of a given formula, that is whether all behaviours of the

system satisfy the formula. We see the model checking as a tool that decides

whether or not the system has an erroneous behaviour; we start with a formula

cp that describes the erroneous behaviour 2 and we consider the system correct

i f no behaviour of the system satisfies cp. M o d e l checking of L T L expects that

cp is an L T L formula.

The automata-theoretic approach 3 to model checking relies on automata to

internally represent both the specification and the system; it usually proceeds

in the following four steps as illustrated by Figure 3.1.

3
1 Baier and Katoen (2008), "Principles of
Model Checking", [18].

2 We can simply negate the input formula to
switch between the two views.

3 Vardi (1995), "An Automata-Theoretic Ap­
proach to Linear Temporal Logic", [19].

1. Bu i ld the state space S; the state space represents all possible executions of

the system to be verified,

2 . translate the L T L formula cp into a Buchi automaton 4 A v that accepts all

faulty behaviours,

4 also called property automaton

3. bui ld the synchronous product S <S> A,p of the system and the automaton;

the product represents all behaviours of S that conform to A and cp and

thus are erroneous, and finally

4 . check this product for emptiness.

implicit description of

the considered system

state space S

model checker

S x Av

L(SxAv) =

specification of

erroneous behaviours

I
LTL formula cp

automaton Av

Figure 3.1: Automata-theoretic approach to
model checking.

Although we anticipate here a specification
as an LTL formula, we may generalize many
results of this part to applications where the
erroneous behaviours are given directly as
Buchi automata or in another formalism that
can be converted into automata.

YES

verified

N O
+

counterexample

30 A U T O M A T A F O R F O R M A L M E T H O D S : L I T T L E S T E P S T O W A R D S P E R F E C T I O N

The automata approach effectively reduces the problem of model checking

to the problem of language emptiness for Buchi automata. If L(S <8> Av) is

empty then we can consider S to be safe with respect to <p. O n the other hand,

i f the product S <8> Av accepts a word w then we have a concrete example of

the erroneous behaviour of S.

Spin 5 is a successful explicit model checker that relies on the automata ap­

proach. The word explicit emphasises the fact that it explicitly enumeratesall

the states of S and of the product S <g> Av and stores them i n the memory. The

explicit approach often suffers from the so-called state space explosion prob­

lem — the product is simply too large to be stored i n memory or takes too

long to analyze. Many model checkers (including Spin) perform the steps 3

and 4 simultaneously — they bui ld the product on-the-fly according to the

needs of the emptiness check. In this way, the model checkers bui ld and store

only the relevant part of the product. To fight the state space explosion prob­

lem, developers of model checkers implemented many other methods how to

handle the given product more effectively?

When you want to make the product smaller, you have to focus on the

property automaton Av; the system is given. This is where the L T L - t o - B A

translators came into the play. There are many algorithms and tools for trans­

lating L T L formulae into Buchi automata and they produce various language

equivalent automata. For instance, Figure 3.5 on the page 36 shows several

Buchi automata for the L T L formula G F Q A GFb. 7 This chapter address the

following question. Should one be preferred over the others?

To pick the best automaton for a given formula is more than difficult — it is

even impossible i f we do know how S looks like. The intuition that a smaller

Aq> produces a smaller synchronous product S <8> Av is not always correct.8

We discuss various approaches to product reductions considered previously

by authors of L T L - t o - B A translators or of automata reductions i n Section 3.2.

The property automaton influences not only the number of states or transi­

tions i n the product. The automaton can heavily influence also the emptiness

check (step 4). Before we discuss how the emptiness check depends on the

property automaton, we have to understand how the emptiness check of Spin

works. From the variety of possible emptiness check algorithms, Spin chooses

Nested Depth-First Search (NDFS)?

Indeed, the main work of a model checker
consists of building the product and check its
language for emptiness.

In the traditional view of model checking, w
is known as a counterexample.

5 Holzmann (1997), "The Model Checker
SPIN", [20]; Holzmann (2003), "The SPIN
Model Checker: Primer and Reference Man­
ual" [21].

6 See Pelänek (2008), "Fighting State Space
Explosion: Review and Evaluation", [22],for

a nice review.

7 This and the following chapter deal mainly
with Buchi automata with marks on states.
Therefore, we use the classic convention for
their visualization: the accepting states are
marked with a double circle and we omit the
acceptance formula.

8 See Figure 3.3 on page 34 for an example.

9 Holzmann, Peled, and Yannakakis (1996),
"On Nested Depth First Search", [23].

I S T H E R E A B E S T B U C H I A U T O M A T O N F O R S P I N ? 31

Nested Depth-First Search (NDFS)

To check the language emptiness of the product S ® A^, Spin has to search

for a cycle that is reachable from the init ial state and that contains at least

one accepting state. B y default, Spin uses an algorithm that is based on two

nested depth-first searches: blue and red. The blue DFS plays the leading role.

It explores the product and every time it would backtrack from an accepting

state s 1 0 it starts a red DFS from s. If the red D F S reaches any state on the

blue DFS search stack then a reachable and accepting cycle is f o u n d 1 1 and the

algorithm reports it as a counterexample. Otherwise, the red DFS terminates

and the blue DFS can continue. The two DFS always ignore states that have

been completely explored by an instance of the red DFS, so a state is never

visited more than twice.

Spin utilizes an extra optimization, i f the blue DFS hits its own search stack

by following a transition that is either going to or coming from an accepting

state, Spin reports an accepting cycle without even starting any red D F S . 1 2

N o w we are ready to see that the number of states or transitions i n not

always relevant: ultimately, only the part of the product that is explored by

the emptiness check does matter. Some authors of automata optimizations

or L T L - t o - B A translation improvements provide also run times of a selected

emptiness check executed on the product of obtained automata and either

random state spaces or few realistic systems. 1 3 Etessami and Holzmann even

complained that the relation between the size of A^ and the run time of the

model checking procedure was difficult to predict, especially i n the presence

of a counterexample.

When a counterexample exists i n the product, the emptiness check may

report it more or less rapidly depending on the order i n which the N D F S ex­

plores the transitions of the product. W i t h any luck, the first transition se­

lected at each step of the DFS w i l l lead to an accepting cycle. Conversely, the

first transitions followed might lead to a huge component of the product that

just turns out to be a dead-end, and from which the emptiness check has to

backtrack before finding the counterexample.

The selected transition order i n S <g> Av depends on the order of the transi­

tions i n the property automaton A v . Previous attempts to explore reordering

of the transitions of A to help the emptiness check have been inconclusive. 1 4

Furthermore, the swarming techniques 1 5 used nowadays makes this topic

even less attractive: i n these approaches, several threads compete to find a

counterexample i n S <g> Av using a different, random transition order for A v .

Therefore, we do not address the question of the transition order.

Like the previous two paragraphs and Figure 3.3 document, methods that

aim mainly to decrease the size and determinism of the automata cannot be

universal and we cannot hope for the best automaton for all verification tasks

with the same specification. Therefore we focus on other aspects that are help­

ful for Nested Depth First Search (NDFS) - the emptiness check of Spin. To

gain a better insight into the characteristics of automata that work well with

Spin, we look at concrete examples of how formulae are translated into auto­

mata differently by existing tools and how these automata influence N D F S .

1 0 We backtrack from s after all successors of
s have been explored by the blue DFS.
1 1 Since s is reachable from all states on the
blue DFS search stack.

1 2 Gastin, Moro, and Zeitoun (2004), "Mini ­
mization of Counterexamples in SPIN", [24];
Schwoon and Esparza (2005), " A Note on
On-fhe-Fly Verification Algorithms", [25].

1 3 Etessami and Holzmann (2000), "Opti­
mizing Buchi Automata", [26]; Dax,
Eisinger, and Klaedtke (2007), "Mechaniz­
ing the Powerset Construction for Restricted
Classes of tu-Automata", [27], for example.

1 4 Geldenhuys and Valmari (2005), "More
Efficient On-the-Fly LTL Verification with
Tarjans Algorithm", [28].
1 5 Holzmann, Joshi, and Groce (2011),
"Swarm Verification Techniques", [29].

32 A U T O M A T A F O R F O R M A L M E T H O D S : L I T T L E S T E P S T O W A R D S P E R F E C T I O N

3 . 1 M O T I V A T I O N B Y E M P I R I C A L D A T A : H O W M U C H C A N A U ­

T O M A T A I N F L U E N C E S P I N

First of all, we present experimental results showing how important the i m ­

pact of Buchi automata on Spins performance can be. We use the following

benchmark, software, and hardware.

Benchmark. We base our benchmark on the set of 769 realistic model

checking tasks B E E M . 1 6 A verification task consists of a system i n P rome la 1 7

and an L T L formula that describes a desired property of the system. 1 8 We have

enriched the benchmark set by a few tasks. To each system describing some

mutual exclusion a lgo r i thm 1 9 we added three specification formulae:

1. G F (P 0 @ C S) = > G F (P 0 @ N C S) meaning that i f a process P 0 spends

infinitely many steps i n a critical section, then it also spends infinitely many

steps i n a non-critical section,

2. G F (P 0 @ N C S) = > G F (P 0 @ C S) meaning that i f a process P 0 spends

infinitely many steps i n a non-critical section, then it also spends infinitely

many steps i n a critical section,

3. F G - ((P 0 @ C S A Pi @CS) v (P 0 @ C S A P 2 @ C S) v (P , @CS A P 2 @ C S))

meaning that after finitely many steps, it never happens that two of the

processes Po, P i , and P 2 are i n a critical section at the same time.

To sum up, we consider 769 + 3-23 = 838 verification tasks. A l l the bench­

marks and measurements presented i n this section are available at http://fi.

muni.cz/~xstrejc/publications/spin2014.tar.gz.

Software. We use the five L T L - t o - B A translators presented i n Table 3.1:

Spin and L T L 2 B A are well established and popular translators, M o D e L L a was

the first translator focusing on determinism of the produced automata, and

L T L 3 B A and Spot represent contemporary translators. The last two transla­

tors are used i n several settings: the settings denoted by LTL3BA (det) and Spot

(det) aim to produce more deterministic automata, while the setting called

Spot (no jump) is explained i n Section 3.3.

1 6 Pelanek (2007), " B E E M : Benchmarks for
Explicit Model Checkers", [30].
1 7 PROcess MEta LAnguage is a modelling
language used by SPIN for both systems and
property automata.
1 8 We negate the formula so that it describes
erroneous behaviours.
1 9 altogether 23 instances of parametric
models called anderson, peterson, and
bakery

tool version command

Spin [21] 6.2.5 s p i n - f

L T L 2 B A [31] 1.1 l t l 2 b a - f

M o D e L L a [32] 1.5.9 mod2spin • • f

L T L 3 B A [33] 1.0.2 l t ! 3 b a -S - f

L T L 3 B A (det) l t ! 3 b a -S -M - f

Spot [34] 1.2.4 l t l 2 t g b a • •s

Spot (det) l t l 2 t g b a • •s -D

Spot (no jump) l t l 2 t g b a • •s -x degen-lskip= 0

Table 3.1: Considered LTL-to-BA transla­
tors, for reference.

Spin version 6.2.5 is also used as the model checker i n our evaluation. We

limited its maximal search depth to 100 000 000 and we kept the default set­

tings otherwise. In particular, the partial-order reduction, which severely

limits the exploration of the state-space, is enabled. 2 0 To obtain some of the

statistics, we used the Itlcross tool from the Spot library.

2 0 See the script s t a t . p i in the archive for
the exact parameters we used with Spin.

http://fi
http://muni.cz/~xstrejc/publications/spin2014.tar.gz

I S T H E R E A B E S T B U C H I A U T O M A T O N F O R S P I N ? 33

Hardware and settings. A l l computations were performed on a machine

with eight physical processors and 448 G i B R A M . 2 1 Each execution of Spin

has been restricted by 30 minutes timeout and a memory l imit of 20GiB. The

memory limit was always reached first.

Workflow. For each of the 838 considered verification tasks, we negate the

specification formula, 2 2 we translate the negated formula by all the mentioned

translators and we run Spin on the system with each of the obtained automa­

ta. Translation of the negated formula to an automaton is instantaneous 2 3 in

nearly all cases: there is only one formula for which the translator built i n Spin

needs a couple of seconds to finish.

Originally, we have measured the impact of Buchi automata on Spin by its

run time. Unfortunately, our computation server is shared with other users

and its variable workload has led to enormous dispersion of measured run

times. We have observed a run time difference of over 300% on the same

input. Hence, instead of on run times, we focus on the count of visited tran­

sitions, which is a stable statistic produced directly by Spin. The number of

visited transitions accumulates the numbers of product transitions explored

in depth-first searches executed during a run of the N D F S algorithm. Hence,

the number of visited transitions should be proportional to the run time on a

dedicated machine. Spin also provides statistics for stored states, which is the

total count of constructed and stored product states and should be propor­

tional to the memory consumed by Spin.

Evaluation. Spin successfully finishes the computation wi th in the given

limits for at least two automata obtained by different translation tools for ex­

actly 823 tasks. For each such verification task, we find the maximal and the

minimal numbers of visited transitions and we compute their ratio. Intu­

itively, the ratio represents how many times slower Spin can be i f we choose

the worst of the produced automata compared to the best of those. Out of the

823 tasks, the ratio is exactly 1 i n only 35 cases. In other words, i n more than

95% of the considered verification tasks, the choice of an L T L - t o - B A transla­

tor has an influence on the run time of Spin.

2 1 In more detail: the machine is an HP
DL980 G7 server with 8 eight-core 64-bit
2.26GHz processors Intel Xeon X7560 and
with 448 GiB DDR3 R A M . We ran at most
8 instances of Spin in parallel.

2 2 to have a formula for erroneous behaviour

3 It takes less than 0.1s.

C3

10 s

10 6

5 10

10 2

10 c

731 tasks 92 tasks

with counterexample without counterexample

,4 -

5.66 4.9

8

1 . 3 9 ^ 3 1.37i

Figure 3.2: Impact of the Buchi automata
on model checking. For each verification
task, we compute ratios between the maxi­
mum and minimum number of transitions
(or unique states) visited by Spin using all
available Buchi automata. In each column, a
box spans between the first and third quar-
tiles of the ratio, and is split by the me­
dian (whose value is given). The whiskers
show the range of ratios below the first and
above the third quartile that are not further
away from the quartiles than 1.5 times the in­
terquartile range. Other values are shown as
outliers using circles.

transitions states transitions states

34 A U T O M A T A F O R F O R M A L M E T H O D S : L I T T L E S T E P S T O W A R D S P E R F E C T I O N

As expected, the ratios significantly differ for verification tasks where the

model satisfies a given formula and for those with a counterexample. Out of

the 823 tasks, 731 tasks contain counterexamples while 92 tasks do not. The

ratios for these two sets are presented by box-plots i n Figure 3.2. One can

clearly see that the selection of a Buchi automaton has a bigger impact on

the verification tasks with counterexamples (median ratio is over 5.6) than on

the tasks without counterexamples (median ratio is 1.4). Both sets contain

extreme cases where the ratios exceed 10 6 .

If we compute the ratios of maximal and min imal numbers of stored states,

we get the ratio 1 i n only 68 out of the 823 tasks. The situation is analogous

to the ratios of visited transitions, but the ratios of stored states are slightly

lower.

To sum up, the choice of the Buchi automaton can have a dramatic impact

on speed and memory consumption of Spin.

3 . 2 S T A N D A R D A P P R O A C H T O O P T I M I Z A T I O N :

H E L P I N G T H E P R O D U C T

Most of the work on optimizing the translation of L T L formulae to Bi ich i au­

tomata has focused on building Bi ich i automata with the smallest possible

number of states.24 This is motivated by the observation that the synchronous

product of a Buchi automaton A with a state space S can have the same num­

ber of states as their Cartesian product i n the worst case: |<S ® .4| < |<S| x \A\.

Therefore, decreasing \A\ lowers the upper bound on \S ® A\.

However, it is possible to bu i ld contrived examples where a smaller \A\

yields a larger product. For instance, removing one state i n the automaton

„4i of Figure 3.3 doubles the size of its product with the state space S of the

same figure from 3 to 6 states. O f course, i f S was a similar cycle of 2 states,

the smaller automaton Az would give a smaller product. Hence, one cannot

hope to bu i ld an optimal property automaton A without a pr ior i knowledge

of the system S.

W i t h the introduction of L B T T 2 5 a tool that checks the output of differ­

ent L T L - t o - B A translators by doing many cross-comparisons, including some

products with random state spaces, tool designers started to evaluate not only

the size of the produced automata but also the size of their products with

random state spaces? 6 A recent clone of L B T T called I t l c r o s s 2 7 computes

multiple products with random state spaces to lessen the luck factor. Sebas­

tiani and Tonetta used this "product with a random state space" measurement

to benchmark their translator M o D e L L a against other available translators to

support the claim that producing "more deterministic" Buchi automata might

be more important than producing small B i i ch i automata. 2 8

2 4 e.g. GastinandOddoux(2001), [31]; Cou-
vreur (1999), [35]; Somenzi and Bloem
(2000), [36]; Giannakopoulou and Lerda
(2002), [37];Thirioux(2002), [38].

2 5 Tauriainen and Heljanko (2002), "Testing
LTL Formula Translation into Biichi Auto­
mata", [39].

2 6 e.g. Sebastiani and Tonetta (2003), [32];
Duret-Lutz and Poitrenaud (2004), [40].
2 7Duret-Lutz (2013), "Manipulating LTL
Formulas Using Spot 1.0" [41].

2 8 Sebastiani and Tonetta (2003), "More De­
terministic vs. Smaller Biichi Automata for
Efficient LTL Model Checking", [32].

Figure 3.3: Two BA for GFa and a state
space. cS ® _Ai has 3 states whereas S <g> Ai
has 6.

I S T H E R E A B E S T B U C H I A U T O M A T O N F O R S P I N ? 35

automata products cases with product trans bigger than...

n states ndst edges trans states trans (1) (2) (3) (4) (5) (6) (7) (8)

(l) S p i n 161 1739 1474 9318 46252 260934 8892105 0 102 143 107 150 150 150 146

(2) L T L 2 B A 178 1003 802 3360 30159 191668 5556159 5 0 137 49 161 157 156 142

(3) M o D e L L a 178 1297 647 4311 23874 216938 4193567 15 33 0 41 110 116 114 91

(4) L T L 3 B A 178 795 595 2209 21240 151373 4273646 0 23 126 0 149 153 152 140

(5) L T L 3 B A (det) 178 830 326 2405 14414 155716 2901474 0 0 10 5 0 76 75 63

(6) Spot 178 657 94 1615 10304 127792 2326271 1 6 15 5 30 0 1 1

(7) Spot (det) 178 662 88 1639 10414 128178 2328422 1 7 17 6 33 4 0 0

(8) Spot (no jump) 178 785 104 1874 12273 152592 2719360 12 28 40 27 70 61 57 0

Table 3.2: Benchmark based on automata and product sizes. Column n indicates how many translations are successful within the allocated time.
The automata columns show accumulated values of standard automata characteristics for all successful translations. Column ndst gives the number
of non-deterministic states in the automata. A l l produced automata are synchronized with the same 100 random systems, and the median number
of states and transitions of these products is kept. The products columns represent the medians accumulated over all successful translations. The
right-most part of the table counts the number of formulae for which the translator on the row produces an automaton with higher median number
of transitions in the products that the translator of the column.

You can find a typical example of a benchmark based on product sizes in

Table 3.2. The table shows numbers for 178 formulae from the literature 2 9

translated by 8 different L T L - t o - B A translators. The timeout for one transla­

tion was set to 60 seconds.

The table shows that M o D e L L a generates automata that are slightly big­

ger than L T L 2 B A (its competitor i n 2003), but when looking at the product,

M o D e L L a causes fewer transitions to be built. If the number of transitions

is proportional to the run time of a model checker and the number of states

is proportional to its memory consumption, M o D e L L a has effectively traded

memory for speed.

MoDeLLa's results do not appear to hold today: more recent translators

such as L T L 3 B A or the translator of Spot can produce automata that are sig­

nificantly smaller and yield smaller products with random state spaces. These

translators also have options to produce more deterministic automata, but the

resulting products are not always better.

The right part of Table 3.2 compares the translators by the sizes of products

of produced automata with a fixed set of random systems. For instance, one

can observe that even though Spot (6) produces the lowest accumulated num­

ber of product transitions i n this benchmark, there are 30 formulae where the

generated products have more transitions than those obtained by L T L 3 B A

(det) (5). Conversely, automata from L T L 3 B A (det) produce products with

more transitions than those of Spot for 76 formulae.

As Spin constructs the product on-the-fly, i f we optimize A to minimize

\S <8> A\, we may not necessarily optimize A for the model checking procedure.

The emptiness check may explore only a part of the product, or, conversely,

it may explore the whole product twice. Ultimately, any change to A should

be measured particularly by its effect on the model checker. For instance,

Dax et al. performed such an evaluation. 3 0 In addition to explaining how to

bui ld min imal weak deterministic Buchi automata (W D B A) for a subclass

of L T L , they showed that their min imal W D B A are smaller than the non-

deterministic B A produced by other translators and they also show that they

improved the run times of Spin on a few verification tasks. 3 1

2 9Etessami and Holzmann (2000), [26];
Somenzi and Bloem (2000), [36]; Dwyer,
Avrunin, and Corbett (1998), [42].

" D a x , Eisinger, and Klaedtke (2007),
"Mechanizing the Powerset Construction
for Restricted Classes of tu-Automata",
[27].

3 1 We had omitted their tool from our bench­
mark because (1) it only supports a subset
of LTL, and (2) their optimization is imple­
mented in Spot and both tools would, there­
fore, return the same automata. Besides, the
subset of LTL does not include the formulae
studied in Sections 3.3.2 and 3.3.4.

36 A U T O M A T A F O R F O R M A L M E T H O D S : L I T T L E S T E P S T O W A R D S P E R F E C T I O N

3 . 3 A N O T H E R V I E W T O O P T I M I Z A T I O N :

H E L P I N G T H E E M P T I N E S S C H E C K

3.3.1 Weak Automata

Remember that the blue DFS can detect an accepting cycle without running

a red DFS? It happens when the blue DFS hits its own stack on (or from)

an accepting state. W i t h this optimization i n mind , we suggest that of the

two automata of Figure 3.4, B2 should be preferred. Indeed, when the blue

DFS reaches a state of its search stack i n the product S <S> B2, it is guaranteed

to come from (and go to) an accepting state, detecting the accepting cycle

without starting any red DFS. In the product S <8> B-\ we might be less lucky

if we close the cycle with the transition at the bottom of B\: i n that case the

product has to be explored a second time by the red DFS.

We actually illustrate the distinction between weak automata and inher­

ently weak automata by this example. A n inherently weak automaton is an

automaton i n which strongly connected components (SCCs) cannot mix ac­

cepting cycles with non-accepting cycles. A weak automaton is an inherently

weak automaton i n which the states of each S C C are either all accepting or

all non-accepting. A n y inherently weak automaton can be easily transformed

into an equivalent weak automaton. 3 2

Having more accepting states is not necessarily good from the point of

view of the N D F S since a red DFS is started every time the blue DFS back­

tracks from an accepting state. However, i f an entire S C C is non-accepting,

the first red DFS wi l l cover it fully, and each successive red D F S w i l l immedi­

ately return because it attempts to process a state that has already been seen

by a previous red DFS.

(Bi)

(B 2) a

Figure 3.4: Two automata for the LTL for-
m u l a a A G (a = > X(fi A X(fi A X a))) .
£>1 is inherently weak and Bz is weak.

3 2 We can safely mark all states in accept­
ing strongly connected components as ac­
cepting, see: Boigelot, Jodogne, and Wolper
(2001), "On the Use of Weak Automata for
Deciding Linear Arithmetic with Integer and
Real Variables", [43].

3.3.2 Automata for GFa A GFb

Figure 3.5 shows six different Buchi automata for the formula G F a A G Fb pro­

duced by the considered tools. Note that i f you ignore the exchange of a and

b , 3 3 automata C4 and C5 differ only i n the init ial state and thus cannot be dis­

tinguished by any determinism-based or size-based metrics.

Table 3.3 captures data about Spins runs on the bakery mutual exclusion

protocol taken from B E E M and the property automata of Figure 3.5. The

propositions a and b describe situations that (different) pairs of processes are

in the critical section at the same time. The protocol prevents such situation,

so neither a nor b is ever true i n the model. We observe that i n case of prod­

ucts with automata C 5 and Cs (both produced by Spot), Spin explores the

3 3 The atomic propositions a and b have a
symmetric purpose in the original formula.

Figure 3.5: Automata for G F a A G F b gen­
erated by different tools and options.

T T d b Q b b Q b Q

(Cl) (C 3) (C 4) (C 5) (C 6)

L T L 2 B A & L T L 3 B A M o D e L L a L T L 3 B A (det) Spot & Spot (det) Spot (no jump)

I S T H E R E A B E S T B U C H I A U T O M A T O N F O R S P I N ? 37

automaton size statistics from Spins execution

states ndst edges trans stored states visited trans time

C i Spin 3 2 6 17 27531713 95071k 88s

C 2 L T L 2 B A & L T L 3 B A 3 3 8 20 27531713 95071k 99s

C 3 M o D e L L a 4 0 6 16 27531714 95071k 109s

C 4 L T L 3 B A (det) 3 0 8 12 27531713 95071k 101s

C5 Spot & Spot (det) 3 0 8 12 27531714 190143k 211s

Cs Spot (no jump) 3 0 5 12 27531714 190143k 191s

products twice because Spin triggers the red DFS from the init ial state of the

product. This is not the case for the other automata. This yields the following

hypothesis: When we suppose that there is no accepting cycle in the product,

the automaton should keep its accepting states as hard to reach from the initial

state as possible. The further the accepting states are from the init ial state, the

more chance we have that the blue DFS wi l l never reach any accepting state

and therefore no red DFS w i l l be triggered.

For instance, i f we ignore the renaming of atomic propositions, the au­

tomaton C3 could be obtained from Cs by unrolling the accepting cycle by

one step, so that the cycle is entered on a non-accepting state, and the accept­

ing state is actually the last one visited on the cycle. 3 4 This superfluous initial

state only makes a negligible difference on the product, and does not incur

any noticeable difference for Spin compared to C i , Cz, or C4.

Similarly, i f we do not expect an accepting cycle i n the product, the i n ­

herently weak automaton B\ of Figure 3.4 could be changed by letting the

right-most state be accepting instead of the middle one.

Table 3.3: Statistics about generated auto­
mata and Spins run on system bake ry. 7. pm
and formula GFa A GFb where neither a
nor b ever occurs in the system. The corre­
sponding automata are shown in Fig. 3.5.

3 4 This is not actually the reason why Mo­
DeLLa produces C3. Internally, MoDeLLa
translates the formula into a Buchi automa­
ton with labels on states and has to deal with
possibly multiple initial states. When it out­
puts an automaton, it always adds an extra
initial state with copies of the outgoing tran­
sitions of all the original initial states, even
if the original automaton had only one ini­
tial state. See also ©3 of Figure 3.7 where so
and S2 were the original initial states.

3.3.3 Translation Differences

Most L T L - t o - B A translators follow a multi-step procedure where they first

translate a given L T L formula into a generalized Buchi automaton, often with

marks on transitions, such as those of Figure 3.6. Translators then degen-

eralize these automata to obtain a B A . Other simplification procedures may

be applied to these automata, but it turns out that the last three automata of

Figure 3.5 were all obtained by degeneralizing Q-\ i n Figure 3.6, and their dif­

ferences are due to choices made i n the degeneralization procedure.

When degeneralizing a T G B A Q with acceptance marks • ° , . . . , # H (the

O and O on the Figure 3.6), the structure of Q is cloned h + 2 times. Let us

call each of these clones a level. For each state of level I < H, all transitions

originally marked with # l have their destination redirected to the next level,

the destination of all transitions i n level H+ 1 are redirected to level 0. Final ly

all the states of the level H +1 are made accepting. The init ial state can be put

on any level.

This procedure ensures that words accepted by the degeneralized automa­

ton correspond to words recognized by runs of Q that visit all acceptance

marks infinitely often. Accepting cycles i n products involving these degen­

eralized automata w i l l always involve at least h + 2 states.

The degeneralization applied to Q-\ wi th the init ial state on the last level

and the acceptance marks ordered as ©, then O, produces the automaton Cs

(G\) (InfOAlnf){Qi)

Figure 3.6: Two TGBA for GFa A GFb.

38 A U T O M A T A F O R F O R M A L M E T H O D S : L I T T L E S T E P S T O W A R D S P E R F E C T I O N

of Figure 3.5. Changing the degeneralization order to ©, then O, and putting

the init ial states on the first level would give automaton C4.

A n optimization introduced with L T L 2 B A 3 5 consists i n jumping levels. If

a transition of a level I < h. is marked by all marks # l . . . , its destination

can be redirected directly to the level j + 1. Similarly, i f a transition from the

level h + 1 is marked by • ° it can be redirected to the level j + 1. Im­

plementing this optimization gives automaton C5.

Often (but not i n this example), jumping levels is a way to avoid creating

useless copies of some states. Another side effect of this optimization is that

some accepting cycles may be shorter than H + 2: the change effectively keeps

the automaton as close to the accepting level as possible. If we are looking for

counterexamples, C5 appear better than Cs because its accepting cycles are

shorter on average.

We recall that the init ial state of a degeneralized automaton can be put on

any level. For example, Giannakopoulou and Lerda noticed that by changing

the init ial level, they could sometimes save some states, so they try to use both

the first and the last level and keep the smallest automaton. 3 6 In our example,

C4 and Cs differ only by the choice of the init ial level, 3 7 there is no size differ­

ence, and yet it makes a huge difference i n the run time of Spin, as discussed

in the previous section.

Another translation difference evidently comes from the difference be­

tween the generalized automata obtained from the L T L formula. In our case

C 4 , Cs, and Cs were obtained from Q-\ while C i and Cz were obtained from

(?2-38 The difference between Q-\ and Qz is caused by choices made during the

translation to favour deterministic states i n the case of (?i. In our example of

Table 3.3, this improved determinism makes no difference since a and b are

never true i n the system.

3 5 Gastin and Oddoux (2001), "Fast LTL to
Buchi Automata Translation", [31].

3 6 Giannakopoulou and Lerda (2002), "From
States to Transitions: Improving Translation
of LTL Formulae to Buchi Automata", [37].
3 7 In fact, C4 and C5 differ also in degeneral­
ization order but this is negligible as a and
b are symmetric in our problem.

3 8 The difference between C\ and Cz is that
Spin (Ci) performs no level jumping from
the accepting state.

3.3.4 Automata for - i(GFa ==• GFb)

We now focus on another concrete case: - . (G F a = > GFb) on mutex pro­

tocols. The formula without negation describes that i f some process visits

infinitely often the critical section, it infinitely often leaves it. This property

holds i n model p e t e r s o n . 4. pm and therefore Spin has to bu i ld the whole

product to find out that it contains no accepting cycle. Table 3.4 presents re­

sults of Spin runs on the model pete rson. 4. pm and different Buchi automata

for this formula.

In this case, each tool produces a different automaton, as shown i n the first

part of Figure 3.7. Note again that automata V2 and V4 cannot be distin­

guished only by determinism and size metrics (see Table 3.4). They differ only

in the target of the outgoing edge of so, yet we observe a significant difference

in Spins behaviours.

We actually use 12 different automata for this formula. The first seven of

the table are generated by the considered tools. The others are handwritten

by modifying the previous automata to explore which aspects of the automata

make a significant difference i n Spins behaviour as described further.

T>s is adapted from T>s by changing the degeneralization level on which

we enter the S C C . D 9 keeps the strong init ial guard of T>s but then uses the

accepting S C C of T>2. 2?io is a mix of T>s and V2 to observe the influence

I S T H E R E A B E S T B U C H I A U T O M A T O N F O R S P I N ? 39

(Z>!)Spin (2 ? 2) L T L 2 B A (£> 3) M o D e L L a (V4) L T L 3 B A (V5) L T L 3 B A (det) (V6) Spot

& Spot (det)

Figure 3.7: Automata for the LTL formula -. (G F a = > G Fb).

automaton size statistics from Spins execution

states ndst edges trans stored states visited trans time

2?i Spin 3 2 6 12 1577846 7680k 6.04s

£> 2 L T L 2 B A 3 3 6 12 1577440 7684k 5.95s

X>3 M o D e L L a 5 2 8 18 1580893 7670k 6.13s

£> 4 L T L 3 B A 3 3 6 12 2299250 15583k 12.10s

£> 5 L T L 3 B A (det) 4 1 7 14 2297625 15561k 12.00s

2?6 Spot 3 1 6 9 848641 2853k 2.26s

2?7 Spot (no jump) 3 1 5 9 852094 2863k 2.34s

v& 3 1 6 9 848641 2853k 2.43s

v9 3 3 6 11 852094 2878k 2.43s

3 1 7 10 1575844 7658k 7.38s

Z>11 3 1 6 10 1577440 7657k 7.07s

3 1 6 10 2297625 15561k 12.30s

Table 3.4: Statistics about generated automata and Spins run on the empty product model peterson. 4. pm and automata for -.(GFa = > GFb).
The automata are shown in Fig. 3.7.

40 A U T O M A T A F O R F O R M A L M E T H O D S : L I T T L E S T E P S T O W A R D S P E R F E C T I O N

of the guards ab compared to b. is a version of T>2 i n which the S C C is

made deterministic as i n Finally, T>-\2 fixes T>s by removing the spurious

initial state s\..

Based on Table 3.4 we can group these automata into three categories, listed

from the best to the worst wi th respect to Spins performance. Before we dis­

cuss these categories, it is important to notice that i n a model where a means

the process is in the critical section and b means the process leaves the critical

section, we can expect most of the state space to be labelled by ab.

T>£, T>j, T>8, T><? Automata with the smallest number of transitions. Note

that the no jump version (Dj) and the one with a non-deterministic S C C

(D9) both yields a few more states and transitions i n the product, but the

difference is not significant. The key property of these automata is that

they can leave the state so only by reading ab, whereas other automata are

more permissive.

T>-\, T>2 ,T>3,T>io,T>ii A l l these automata exhibit more non-determinism on

state so and wi l l enter the accepting S C C even after reading <ib. However,

when this happens, they do not reach the accepting state before ab is read,

so this limits the number of red DFS.

2?4,2?5, V-\ 2 These automata go from so to the accepting state s i each time

they read ab. This both makes the product unnecessarily large and forces

many calls to the red D F S . 3 9 The non-determinism i n accepting S C C of 2?4

causes it to visits only slightly more states than the other two automata.

A comparison of automata and 2?i i and their impact on Spins perfor­

mance show that the hypothesis of Section 3.3.2 cannot be used alone to select

the best automaton. Indeed, outperforms 2?i i even i f the distance from

the init ial to the accepting state is shorter i n Vs. Here the more restrictive

label of transition from so to s i i n V& plays an important role as well. These

automata demonstrate that we should both try to "improve the product" (Sec­

tion 3.2) by using more restrictive labels for A , and keep accepting states as

hard to reach as possible (compare 2?i i to "D-[•£).

To sum up, i f we suppose that there is no accepting cycle i n the product,

the automaton should

1. keep accepting states as far as possible from the init ial state (compare 2?i i

to X>u) and

2. use more restrictive labels (compare to V\2)

in order to make the accepting states as hard to reach as possible. Moreover,

making use of more restrictive labels can also help to reduce the product.

3 . 4 S U M M A R Y O F T H E C H A P T E R

There is no such thing as a best Buchi automaton for explicit model checking.

Although building a small product generally helps the emptiness check we

have provided evidence that the size of Av and even the size of S <8> Av does

not always correlate to the performance of the N D F S on the product. For

instance, the locations of accepting states of Av can have a dramatic impact

3 9 A state of the product has two compo­
nents: a systems state and an automatons
state. Every time the blue DFS backtracks
from a product s state with s i in the com­
ponent for the property automaton.

I S T H E R E A B E S T B U C H I A U T O M A T O N F O R S P I N ? 4 1

on the run time of Spin. Unfortunately, there is no single general rule we could

give here. The right choice vastly depends on the particular verification task

we aim to solve.

We show how can we tailor automata for particular system of the given

verification task i n Chapter 4 where we exploit some knowledge about the

system. Without any such knowledge, we may at least predict the expected

result of the model checking and based on this prediction we can at least place

accepting states accordingly.

If S <g> A v contains no accepting cycle, the best automaton for Spin to ver­

ify it should have accepting states that are hard to reach from the init ial state,

as it w i l l lessen the chance that a red DFS is started. We observed that such

a choice can be made during the degeneralization procedure, or by unroll ing

some accepting cycles.

If, on the contrary, S <8> A v contains an accepting cycle, Spin can find it

faster i f the accepting states of A^ are easy to reach from the init ial state and

the accepting cycles are short. Moreover, N D F S can benefit greatly from weak

automata.

Specifications meet systems

In the previous chapter, we learnt that we can place accepting states of auto­

mata i n a way that is helpful for Spin — under the assumption that we guess

the expected result of the emptiness check correctly. If we were able to guess

the result, we would not need to run the model checker, thus the assumption

is unrealistic i n practice.

In this chapter, we continue further with our campaign for ideal automata

that are tailored for a particular verification task.1 Our approach differs from

the one of the previous chapter i n three directions: we aim to bui ld a smaller

product rather than to make Nested DFS more effective, we bui ld upon infor­

mation about the system itself rather than on knowledge about the product,

and we rely on information that we can acquire with only little effort for each

system.

Spin verifies systems given i n a modelling language called Promela. The

Promela code is an implicit and compact representation of the system. A sys­

tem i n Promela consists of several interacting processes. The Figure 4.1 shows

a skeleton of a process PO i n the Promela language. The labels NCS, w a i t i n g ,

and CS are labels of process's locations, the process can move between loca­

tions by goto commands. For every process P and each location l o c , Spin

recognizes atomic propositions of the form P@loc which holds i f the last lo­

cation reached by P is l o c .

A process cannot be i n two different locations at the same time. Thus we

say that the atomic propositions P0@NCS, PO@waiting, and P0@CS are mu­

tually incompatible - no two of them can hold at the same time. W h y do

we care about incompatible propositions? Consider the L T L formula cp =

G PO@waiting v FG-.P0@CS and the two automata of Figure 4.2? The two au­

tomata differ i n the languages they accept. The left one accepts L(cp) while

the language of the right automaton accepts a smaller language: it accepts a

subset of L(cp). For example, the left automaton accepts the word {a , b}w =

{PO@waiting, P0@CS} a ' while the right one does not.3 However, we can use

them interchangeably for model checking of a system that contains PO with­

out changing the result. Indeed, the languages of the two automata differ only

in words that make no sense for systems that contain PO — the words are cer­

tainly not behaviours of the systems. Therefore such words are never present

in the language of the product, and thus the language does not change.

Moreover, the automaton from the right would apparently lead to a smaller

product. W h e n we know that a and b are never valid at the same time, then

G Q implies G->b and thus also FG->b. The right-hand side automaton makes

use of this fact and checks only for F G -.b. Not only w i l l the product be smaller,

also the number of the red DFS runs w i l l be lower with this automaton.

In the rest of this chapter we shall discuss formally how to use the infor­

mation about incompatible propositions to refine the specification when it

is given either by an L T L formula or by a Bi ich i automaton. We talk about

4
1 A verification task is a pair of a system and
an LTL formula.

active proctype P0() {
NCS: i f

. . .; goto w a i t i n g ;
f i ;
w a i t i n g : i f

...; goto CS;
f i ;

CS: i f

f i ;
}

goto NCS;

Figure 4.1: Skeleton of a code for a process
PO that is used in the bakery mutual exclu­
sion protocol description in the Promela lan­
guage. Locations and the process name are
in blue. The actual function code is left out
for brevity.

a V b

(G a v FG-.b)
A

(G - (Q A b)) [G a v F G ^ b

Figure 4.2: Biichi Automata for G a V FG-.b
produced by Spot without (left) and with
(right) information about the incompatibil­
ity of propositions a and b.

2 Where a stands for POgwaiting and b
stands for P0@CS.

3 To be more precise, runs of the right au­
tomaton even blocks when reading { a , b}
for the first time.

In fact, we can apply the results also to spec­
ifications given as PSL formulae or as other
types of tu-automata.

4 4 A U T O M A T A F O R F O R M A L M E T H O D S : L I T T L E S T E P S T O W A R D S P E R F E C T I O N

formula refinement or automaton refinement, respectively. Both these opera­

tions were implemented by Alexandre Duret-Lutz i n Spot 1 .99 .1 , available at

https://spot.lrde.epita.fr/.

Using refinement, we get a property automaton that may have fewer edges

or even fewer states than the init ial property automaton. A l l these changes

often have a positive effect on the rest of the model checking process, as doc­

umented by experimental evaluation.

As a side effect of the specification refinement, we typically obtain auto­

mata with long edge labels. Besides the fact that such automata are harder to

read by humans, Spin needs more time when building the product to evaluate

these long edge labels. However, the labels explicitly contain the information

about the incompatible propositions. As the information is already implicit ly

in the verified systems, we can employ the incompatibility of propositions to

make these labels short again (and even shorter than they were originally).

The chapter is concluded by interesting cases discovered during our inten­

sive experiments.

4 . 1 S P E C I F I C A T I O N R E F I N E M E N T A N D C O N S T R A I N T S

The Promela code of the system implici t ly describes an underlying automa­

t o n 4 for the system and the code already provides us with some relevant infor­

mation about the automaton. In particular, we can detect that some combina­

tions of propositions i n A P (cp) and their negations are never val id at the same

time. We can express this information by a constraint K , which is a Boolean

formula over AP(cp) satisfied by all combinations of atomic propositions ex­

cept the invalid combinations.

For instance, x>10, y<5, and x<y cannot hold together. This informa­

tion follows directly from the meaning of the atomic propositions and the re­

lated constraint is -.((x>10) A (y<5) A (x<y)). As already discussed, atomic

propositions saying that a process P is i n various locations 5 are always incom­

patible. Moreover, they are even mutually exclusive. If E is a set of mutually

exclusive atomic propositions, the corresponding constraint is:

A > A b)
a,beE

While such constraints may seem obvious to the reader, tools that translate

L T L formulae into Bi ich i automata do not analyze the semantics of atomic

propositions, and thus they do not know that x>10 and x< 4 are incompatible.

It is the job of the refinement algorithms for formulae and for automata to

make the constraint K explicit for the tools and thus gain smaller automata.

The aforementioned examples of incompatible propositions can be easily

detected: by an S M T solver or even better by a regular expression. A more

complicated static analysis of the system can identify more impossible com­

binations. For instance, the analysis can find out that i f a process P is i n a lo­

cation l o c , then local variable P: x has value 0, and thus atomic propositions

P@loc and P : x>0 never hold together, expressed as - . ((P @ l o c) A (P : X>0)).

We do not focus on finding incompatible propositions; we show how this i n ­

formation can be used to improve model checking.

4 It is, in fact, a Kripke structure. A Kripke
structure can be seen as an automaton with
labels on states instead of edges and with all
states accepting.

' For example P@locl, P@loc2, and P@loc3

https://spot.lrde.epita.fr/

S P E C I F I C A T I O N S M E E T S Y S T E M S 45

4 . 2 F O R M U L A R E F I N E M E N T

The refinement of an L T L formula cp with respect to a constraint K is a formula

rK(cp); it explicitly encodes K into the formula and is defined by

rK(<p) = C P A G K .

This extra information allows tools that translate L T L formulae into automata

to produce smaller automata. For instance the Bi ich i automaton A v i n Fig­

ure 4.3(a) was generated by Spot from the formula cp = F (G a v (G F b

G F c)) . For the refined formula rK(cp) using the constraint for the mutual ex­

clusivity of {a , b, c}, Spot produced the automaton i n Figure 4.3(b). This au­

tomaton is smaller: the edge between states 3 and 5 labelled by be is known

to be never satisfiable, and the state 0 is found to be superfluous.6

a T be ab v be v ac be

(c) rK(Av) (d) ls(A-K(<p)) = ls(as(TK(^,p)))

6 Indeed, the incoming edges of state 0
would be labelled by a b c, so that part of the
automaton is covered by the state 2 already.

Figure 4.3: Automata without and with
specification refinement for the LTL formula
cp = F (G a V (G F b <=> G F c)) and
the constraint K = -.(a A b) A -.(a A c) A
- , (b A c) .

46 A U T O M A T A F O R F O R M A L M E T H O D S : L I T T L E S T E P S T O W A R D S P E R F E C T I O N

4 . 3 A U T O M A T O N R E F I N E M E N T

Alternatively, the refinement can be performed directly on the property au­

tomaton which allows us to benefit from some known constraints even i f we

want to specify erroneous behaviours directly as an automaton. In order to

refine a given automaton A by a constraint K, we add K i n conjunction to all

edge labels of A and remove the edge whenever the new label reduces to false.

We denote the refined automaton by rK(A).

Figure 4.3(c) shows a refined automaton for the automaton of Figure 4.3(a).

In this case, state 0 is not removed. However, we can get r id of this state i f

we run some simplification algorithms, such as simulation-based reductions, 7

which are often employed i n L T L to automata translators. The result of this

simplification pass is then again i n Figure 4.3(b). If as(„4<p) is the result of

the same simplifications which are used by the translator that translated cp to

A v , one would expect that the A r ^ = as(rK(„4<p)) always holds as i n the

example of Figure 4.3(b). This is not true i n practice for two reasons:

• Some translators have L T L rewriting rules that may react strangely to the

refined formula, sometimes to the point of producing larger automata.

• Some translators include automata simplification algorithms that can only

be applied when the formula is known, so they cannot be run on arbitrary

automata. For instance, Spot employs WDBA-min imiza t i on . 8

It is equivalent to replacing every edge of A
in the form (T J , £ , T 2) by (T J , I A K , T 2) .

7 Babiak et al. (2013), "Compositional Ap­
proach to Suspension and Other Improve­
ments to LTL Translation", [44].

8 Dax, Eisinger, and Klaedtke (2007), "Mech­
anizing the Powerset Construction for Re­
stricted Classes of tu-Automata" [27];
Duret-Lutz (2014), "LTL Translation Im­
provements in Spot 1.0", [34].

Nonetheless, both formula refinement and automaton refinement have three

noticeable effects on the model checking process:

• First, the automaton constructed wi th formula or automaton refinement

is often smaller than the original automaton (for example, removing some

transitions can make two states equivalent and such states can be merged).

This can have a very positive effect on the model checking process.

• Second, i f the unsatisfiable transitions are removed, Spin does not need

to repeatedly evaluate the labels of these transitions during the product

construction, only to finally ignore them.

• Last, the longer labels produced by this refinement may take longer to eval­

uate depending on how the model checker is implemented. This is the only

negative effect, and we fix it i n Section 4.5.

S P E C I F I C A T I O N S M E E T S Y S T E M S 47

4 . 4 E X P E R I M E N T A L E V A L U A T I O N

Tools. In our experiments, we use four L T L - t o - B A translators presented in

Table 4.1. Two of the translators, namely L T L 3 B A and Spot, are used with two

settings: the default ones and the settings with the suffix "-det" that aim to pro­

duce more deterministic automata. A l l translators are restricted by 20-minute

timeout. For formula refinement, automaton refinement, and automaton sim­

plifications we use the tools I t l f i l t and a u t f i l t from Spot 1.99.1; see ex­

amples of the corresponding commands below where cp = F (G a v (G F b

G F c)) , A is always stored i n i n p u t . hoa, and K is the constraint for the mu­

tually exclusive set {a , b, c}. If there are several mutually exclusive sets, one

can use - - e x c l u s i v e - a p multiple times.

% I t l f i l t - f 'F(Ga | (GFb <-> GFc))' --exclusive-ap='a,b,c 1

F(Ga | (GFb <-> GFc)) & G(!(a & b) & !(a & c) & !(b & c))

% a u t f i l t - -exclusive-ap='a,b, c ' i n p u t . a u t

% a u t f i l t --high - - s m a l l input.hoa

The emptiness checks of Spin was run with the maximum search depth of

100000 000, memory limit 20 G i B , the option - DNOSTUTTER,9 and partial-

order reduction enabled for tasks with next-free formulae. The emptiness

check is always restricted by 30-minute timeout.

You can find the exact commands, the measured data and detailed i n ­

formation about this benchmark at http://fi.muni.cz/~xstrejc/publications/

spin2015/

Benchmark. Our benchmark is made of 3316 verification tasks where some

propositions are referring to distinct locations of a single process. We started

with 789 verification tasks 1 0 from B e e m 1 1 and we removed 8 duplicate tasks.

Unfortunately, Beem contains only about 25 different types of specification

formulae 1 2 and most of them have a very simple structure. To get more var­

ied formulae, we added verification tasks using the same Beem systems and

randomly generated formulae.

We generated these additional tasks as follows. For each instance of a Beem

system 1 3 we generated 10 000 random formulae using the tool r a n d l t l from

Spot. More precisely, we ran

% r a n d l t l -nlOOOO - t r e e - s i z e = 3 0 . . 5 0 < l i s t of p r o p o s i t i o n s >

where the atomic propositions were gathered from all original Beem formu­

lae for the corresponding instance. For each such verification task, we ran

Spot 1.2.5 to translate the formula into a Buchi automaton and then we ran

Spin with the settings as described above. We selected verification tasks where

translator version command

Spin [21; 26] 6.3.2 s p i n

Command to build rK(cp) from cp and its
output in grey.

Command to build Tk(.4) from A.

Command to simplify A.

9 See Section 4.6.3 for the explanation.

1 0 A verification task is a pair of a Promela
code of a system and an LTL formula de­
scribing erroneous behaviours.
1 1 Pelanek (2007), " B E E M : Benchmarks for
Explicit Model Checkers", [30].

1 2 the others differ only in atomic proposi­
tions or their combinations

1 3 23 parametric systems, altogether 133 in­
stances

Table 4.1: Considered LTL-to-BA transla­
tors, for reference. The reference of Spin is
valid also for the model checker.

L T L 2 B A [31]

L T L 3 B A [33]

LTL3BA-det

Spot [34]

1.1.2

1.1

1.99b

l t l 2 b a

l t l 3 b a

l t l 3 b a -M0

l t l 2 t g b a -s

l t l 2 t g b a -s - - d e t e r m i n i s t i c Spot-det

http://fi.muni.cz/~xstrejc/publications/

48 A U T O M A T A F O R F O R M A L M E T H O D S : L I T T L E S T E P S T O W A R D S P E R F E C T I O N

• Spot translates the formula within 20 minutes,

• Spins verifier finished i n more than 5 seconds and less than 30 minutes,

and

• Spin neither reached maximum search depth nor ran out of memory.

We got 6069 generated verification tasks with random formulae. For each ver­

ification task (original or generated), we constructed exclusive sets based on

atomic propositions referring to process locations. The constraints we used

for specification refinement are therefore based only on the fact that one pro­

cess cannot be i n two locations at the same time. We removed all verification

tasks for which we d id not detect such constraints.

In the end, we have 3316 verification tasks of reasonable complexity and

with constraints. These tasks employ 101 instances of 16 parametrized sys­

tems from Beem. O f all the tasks, 50 are from Beem, the rest use generated

formulae.

Hardware. A l l computations were performed on the same machine as the

experiments from the previous chapter. The machine was shared with other

users and its variable workload has again led to high dispersion of measured

run times. Hence, instead of run times, we use the number of transitions

visited by Spin, which is stable across multiple executions and should be pro­

portional to the run time.

The two timeouts of Spot in Table 4.2 can be
explained either by the fact that we used an
older version (1.2.5 vs 1.99b) to generate the
formulae from the tasks or by a time that is
very close to the 20 minutes threshold.

The CSV file with the measured data from
the URL also contains the measured time. It
could be used to draw the same conclusions
as we did using the visited transitions.

4.4.1 Impact of Formula Refinement

For each verification task (S, cp) and each translator of Table 4.1, we translate

cp to an automaton A v and run Spin on S and A v (original task). Then we re­

fine the formula to rK(cp) and repeat the process (refined task). Table 4.2 shows

the numbers of translation timeouts, Spin fails, 1 4 and successfully solved ver­

ification problems. The data indicate that formula refinement has a mostly

positive effect on the model checking process: for all but one translator, 1 5

the refinement increases the number of successfully solved tasks. Neverthe­

less, the number of tasks solved both with and without formula refinement

is always smaller than the number of original tasks successfully solved. This

means that the effect of the formula refinement is negative i n some cases.

1 4 This number covers the cases when Spin
timeouts, runs out of memory, or reaches the
maximum search depth
1 5 We discuss the case of the translator Spin
in more details in Section 4.6.2.

translator

original tasks (S, cp) refined tasks (S, rK(cp))

translation Spin tasks translation Spin tasks both tasks

timeouts fails solved timeouts fails solved solved

Spin 801 232 2283 926 201 2189 2183

L T L 2 B A 5 341 2970 2 302 3012 2929

L T L 3 B A 0 80 3236 0 55 3261 3227

LTL3BA-det 0 34 3282 0 27 3289 3279

Spot 2 27 3287 0 19 3297 3286

Spot-det 2 26 3288 0 19 3297 3287

A l l 810 740 18346 928 623 18345 18191

Table 4.2: Statistics of fails and successfully
solved verification tasks with and without
formula refinement.

S P E C I F I C A T I O N S M E E T S Y S T E M S 49

Table 4.3 shows that the property automaton for a refined formula fre­

quently has fewer states than the automaton for the original formula. How­

ever, we cannot easily tell whether states are removed simply because they are

inaccessible after refinement (i.e., the constraint K removed all the transitions

leading to a state) or i f the refinement enabled additional simplifications as

in Figure 4.3. In the former case, the refinement would have a little impact

on the size of the product: it is only saving useless attempts to synchronize

transitions that can never be synchronized while building this product.

effect Spin L T L 2 B A L T L 3 B A LTL3BA-det Spot Spot-det

+states 514 41 15 148 13 17

-states 168 1482 1679 1723 1722 1720

=states,+edges 37 17 0 0 9 10

=states,-edges 43 337 293 326 345 344

=states,=edges,+trans. 153 211 283 173 280 280

=states,=edges,-trans. 1226 785 899 848 849 848

no size change 42 56 58 61 68 68

A l l 2183 2929 3227 3279 3286 3287

Finally, we turn our attention to the actual effect of formula refinement

on the performance of the emptiness check implemented i n Spin. For each

translator and each verification task, let t i be the number of transitions vis­

ited by Spin for the original task and t 2 be the same number for the refined

task. Scatter plots i n Figure 4.4 on the page 50 show each pair (t i ,tz) as a

dot at this coordinate. The color of each dot says whether the property au­

tomaton for the refined formula has more or fewer states than the automaton

for the original formula. The data is shown separately for each translator. We

also distinguish the tasks with some erroneous behaviour from those without

error. As many dots i n the scatter plots are overlapping, we present the data

also via improvement ratios t 2 / t i . Values of t 2 / t i smaller than 1 correspond

to cases where formula refinement actually helped Spin, while values larger

than 1 correspond to cases where the refinement caused Spin to work more.

Figure 4.5 gives an idea of the distribution of these improvement ratios

in our benchmark. In this figure, all improvement ratios for a given tool are

sorted from lowest to highest, and then they are plotted using their rank as x

coordinate and using a logarithmic scale for the ratio. One can immediately

see on these curves that there is a large plateau around y = 1 correspond­

ing to the cases where there is no substantial change. A m o n g the tasks with­

out error, there are usually many cases with the ratio below 0.95 (a definite

improvement), and very few cases above 1.05 (cases where refinement hurts

more than it helps). A special class of cases that are improved are those that

are found equivalent to false after refinement: those usually have a very high

improvement ratio, as the exploration of the product is now limited to a sin­

gle transition. 1 6 The refined formula cannot be equivalent to false i n tasks with

an error. Relatively high numbers of these "false" cases imply that the formula

refinement technique is an effective sanity check detecting specifications un-

satisfiable under given constraints. Table 4.4 gives counts of improvement

ratios i n these classes.

Table 4.3: Effect of formula refinement on
property automata. For each translator and
each verification task, we compare the size
of Av with the size of -A T | <(cp) and report on
the number of cases where the refinement re­
sulted in additional states (+states) or fewer
states (-states). In case of equality, we look at
the number of edges or transitions. For each
translator we consider only the tasks from
the last column of Table 4.2, which are tasks
solved both with and without formula refine­
ment.

1 6 Spin immediately realizes that the empty
automaton cannot be satisfied

The high number of "false" cases is due to the
use of random formulae. In real tasks, such
a false case would likely indicate a bug in the
specification.

50 A U T O M A T A F O R F O R M A L M E T H O D S : L I T T L E S T E P S T O W A R D S P E R F E C T I O N

Figure 4.4: Comparison of the numbers of product transitions vis­
ited by Spin on the original tasks (t i) and their formula-refined
versions (t.2).

Figure 4.5: Distribution of the improvement ratios (t 2 / t 1). Cases
that have been reduced to false are highlighted in bold. Note log
scale.

S P E C I F I C A T I O N S M E E T S Y S T E M S 51

Figures 4.4 and 4.5 and Table 4.4 show that for tasks without error, formula

refinement has a negative effect 1 7 only very rarely and such effect is relatively

small. The positive effect is more frequent and substantial i n many cases. The

table implies that L T L 3 B A and Spot can profit more from the refinement as

they identify radically more false cases and they have significantly less cases

with negative effect than the other translators. This observation can be ex­

plained by advanced simplification techniques implemented i n L T L 3 B A and

Spot.

1 7 Some of the negative effects are discussed
in Section 4.6.

You can find more detailed data that relate
the effect on automata and on model check­
ing in Tables 4.12 and 4.13 on the pages 58
and 59.

without error with error

false <0.95 [0.95,1.05] >1.05 A l l <0.95 [0.95,1.05] >1.05 A l l

Spin 0 30 1257 50 1337 27 708 111 846

L T L 2 B A 61 462 1179 48 1750 288 602 289 1179

L T L 3 B A 374 401 1101 7 1883 194 942 208 1344

detLTL3BA 382 264 1255 12 1913 186 993 187 1366

Spot 384 300 1213 20 1917 244 902 223 1369

detSpot 385 297 1218 18 1918 248 903 218 1369

A l l 1586 1754 7223 155 10718 1187 5050 1236 7473

In the tasks wi th erroneous behaviours, we observe that the number of i m ­

proved cases is almost balanced by the number of degraded cases (except for

Spin). This can be explained by the fact that refining an L T L formula may

alter the shape of the output automaton, and thus change its transition order.

Therefore the model checker may have more or less luck i n finding an erro­

neous run. When such a run is found, Spin ends the computation without

exploring the rest of the product.

Table 4.5 shows that measuring the number of transitions explored by Spin

instead of time has no effect on conclusions. There are only 93 (out of 18 191)

tasks where refinement improved the number of explored transitions but Spin

needed more time. However, this is caused mainly by the unreliable measure­

ments of the run times, which is obvious i n the cases where the formula was

reduced to false and Spin still needed more time to evaluate the task after re­

finement.

Table 4.4: Distribution of the improvement
ratios for formula refinement. The counts
of false cases are not included in the <0.95
classes.

time ratio Table 4.5: Relation of change in the number
of transitions to the change in the measured

without error with error r u n t i m e (unreliable) of Spin.

trans ratio <0.95 [0.95,1.05] >1.05 <0.95 [0.95,1.05] >1.05

false 1552 14 20 0 0 0

<0.95 1552 159 43 1006 131 50

[0.95,1.05] 492 2358 4373 617 2263 2170

>1.05 1 4 150 79 221 936

52 A U T O M A T A F O R F O R M A L M E T H O D S : L I T T L E S T E P S T O W A R D S P E R F E C T I O N

4.4.2 Impact of Automaton Refinement

As mentioned before, automaton refinement itself only cuts off some parts of

the automaton that are not used i n the product. It has a bigger effect only

when additional simplification algorithms are executed after the refinement.

In our experiments, we combined the automaton refinement with automaton

simplifications implemented i n Spot.

To measure the effect of automaton refinement, we prepared the bench­

mark as follows. We took the 3316 verification tasks used before. For every

task, we translated the formula with all considered translators and simplified

the produced automata using Spot - that is the automaton A. The simplifi­

cation is here applied to make the comparison of model checking with and

without automaton refinement fair: without this step, we could not really

distinguish the effect of automaton refinement (followed by simplifications)

from the effect of simplifications themselves. If the automaton translation and

simplification successfully finishes, we get a pair of a system and a simplified

automaton (original task). After removing duplicates, we have 9352 original

tasks.

For each task, we run Spin with the original automaton. Then we refine and

simplify the automaton and run Spin again. Whi le the automaton refinement

is very cheap, the successive simplification can be quite expensive. So we apply

a 20-minute timeout to simplifications. Table 4.6 provides numbers of Spin

fails on original tasks, timeouts of refined automata simplifications, and Spin

failures on refined tasks. In the following, we work only with tasks solved both

with and without automaton refinement.

original tasks (S,A) refined tasks (S, as(rK(A))) T f e

]

4 - 6 : f t i s t i c s o f , f a i l s a " d ^ f ^ Y
_ solved verification tasks with and without

Spin tasks simplification of Spin tasks both tasks automata refinement.

fails solved rK(„4) timeouts fails solved solved

291 9061 12 99 9241 9038

-a o
&
ö

without error

iO.8-10 9-

cd

-a

without error

0 0.8-10a 0 0.8-109

original automata - transitions in product

o
&
Ö

o

10s

10 1

io -

o
.2 to- 8

with error

0 1000 200030004000 5000 0
rank

1000 2000 3000 4000

=states »] - s t — false — < 0.95 [0.95,1.05] - > 1.05

Figure 4.6: Comparison of the numbers of product transitions visited
by Spin on the original tasks (t i) and their automata-refined versions
(t 2) .

Figure 4.7: Distribution of the improvement ratios (t2/ t]) . Cases
that have been reduced to false are highlighted in bold. Note log scale.

S P E C I F I C A T I O N S M E E T S Y S T E M S 53

As i n the previous section, Table 4.7 presents the effect of automaton re­

finement and simplification on the sizes of property automata. The refined

and simplified automata are smaller i n the vast majority of cases and never

bigger.

The effect of automaton refinement and simplification on the performance

of the emptiness check i n Spin is presented i n Figures 4.6 and 4.7, and Table 4.8

in the same way as previously. O n tasks without error, the effect is similar to

formula refinement: it is often positive and almost never negative. O n tasks

with error, the positive effect is more frequent than the negative one.

4.4.3 Comparison of Formula and Automaton Refinement

Here we compare the formula refinement and automaton refinement using

Spot for the formula translation. For each of the 3316 considered tasks, we

refine the formula, translate it by Spot, and run Spin. Then we take the task

again, translate the original formula by Spot, refine and simplify the automa­

ton, and run Spin. Table 4.9 provides statistics about automata construction

timeouts, 1 8 Spin timeouts, and solved tasks. Both approaches detected 380

identical cases where the refined specification reduces to false. In the follow­

ing, we present the data from the 3256 - 380 = 2876 tasks solved by both

approaches and not trivially equivalent to false.

effect

+states 0
-states 4955
=states,+edges 0
=states,-edges 1013
=states,=edges,+trans. 0
=states,=edges,-trans. 2400
no size change 670

Table 4.7: Effect of automaton refinement
on property automata.

without error with error

false 906 0
< 0.95 853 735
[0.95,1.05] 3251 2743
> 1.05 5 545
A l l 5015 4023

Table 4.8: Distribution of the improvement
ratios for automaton refinement.
1 8 This number comprises Spot timeouts and
also simplification of refined automata time­
outs in the case of automaton refinement

tasks with formula refinement tasks with automaton refinement

automaton automaton both

construction Spin tasks construction Spin tasks tasks

timeouts fails solved timeouts fails solved solved

0 19 3297 35 25 3256 3256

Table 4.9: Statistics of fails and successfully
solved verification tasks with formula refine­
ment and automaton refinement.

Tables 4.10 and 4.11 and Figures 4.8 and 4.9 are analogous to the tables and

figures i n the previous sections (the position of original tasks i n the previous

sections is taken by tasks with formula refinement). Table 4.10 says that au­

tomaton refinement often produces property automata with more states than

formula refinement. However, Figure 4.8 and Table 4.11 show that the overall

effect of automata and formula refinement on the performance of Spin is fully

comparable, slightly i n favour of formula refinement.

4 . 5 L A B E L S I M P L I F I C A T I O N

As mentioned i n Section 4.1, a side-effect of specification refinement is that

edges get more complex labels. This is visible when comparing the automa­

ton of Figure 4.3(b) to the one of Figure 4.3(a). For example, the self-loop on

state 3 is labelled by ac v be instead of the original c. In our experiment, the

overall average length of an edge label (counted as the number of occurrences

of atomic propositions i n the label) i n the automata ATk^ for refined formu­

lae is 6.58, while the average label length i n the corresponding automata Av

for unrefined formulae is only 4.20. Spin compiles the labels during the con­

struction of the product into C code that matches the system transitions. For

example, Figure 4.10 depicts the C code corresponding to the labels dc v be

effect

+states 31 5
-states 82
=states,+edges 52
=states,-edges 51
=states,=edges,+trans. 26
=states,=edges,-trans. 428
no size change 1922

Table 4.10: Comparison of automata pro­
duced by formula refinement and automa­
ton refinement (+states counts tasks where
&s(rK(A(p)) has more states than A,
so on).

K(<P) and

without error with error

< 0.95 44 133
[0.95,1.05] 1399 970
> 1.05 71 259
A l l 1514 1362

Table 4.11: Distribution of the improvement
ratios for automaton refinement over for­
mula refinement.

54 A U T O M A T A F O R F O R M A L M E T H O D S : L I T T L E S T E P S T O W A R D S P E R F E C T I O N

-a o
&

M O 9

ö

SO.5-10 9 -

o
cS
B o-o
cS

without error with error

•

•
•

• • • •
•

•
• •

I i i
0 0.5-109 M O 9 0 0.5-109 M O 9

formula refinement - transitions in product

o
a
Ö

K) 1

10"

without error

500
— I n \ —

1000 1500 0
rank

with error

500 1000

• +states =states states - < 0.95 [0.95,1.05] - > 1.05

Figure 4.8: Comparison of the numbers of product transitions vis­
ited by Spin in formula-refined tasks (t]) and their automata-refined
versions (t.2).

Figure 4.9: Distribution of the improvement ratios (t 2 / t i) . Cases
that have been reduced to false are highlighted in bold. Note the log
scale.

and c. Clearly, longer labels can slow down the verification process without

influencing any Spin statistics like visited transitions and stored states. How­

ever, the expected slowdown should be only small as checking the labels is

much cheaper than computing the successors of states of the system or stor­

ing the states.

i f (!(((!((((int)((Pl *) P p t r (f _ p i d (l))) - > _ p) == 27))&&
! ((((i n t) ((P l *) P p t r (f _ p i d (l))) - > _ p) == 5))) | |
(!((((int)((Pl *) P p t r (f _ p i d (l))) - > _ p) == 27))S&
! ((((i n t) ((P l *) P p t r (f _ p i d (l))) - > _ p) == 9)))))) ...

i f (!(! ((((i n t) ((P l *) P p t r (f _ p i d (l))) - > _ p) == 27)))) ...

We eliminate this slowdown by a step that resembles a converse of refine­

ment. Refinement uses the given constraint K to make edge labels more pre­

cise (restrictive). Label simplification uses K to make the edge labels less pre­

cise and shorter, but equivalent to the original labels under the constraint K.

For instance, be can be shortened to b i f we know that b and c never hold

together i n the system. The edge label is i n fact a Boolean function and we

can simplify these based on so-called don't care19 information. Concretely,

we have implemented the simplification i n Spot using the Minato-Morreale

algorithm. 2 0 The algorithm takes two Boolean functions [f J and [f] and pro­

duces a min imal label that covers at least all the assignments satisfying [fj,

and that is not satisfiable by at least all the assignments not satisfying [f]. To

simplify a label £ using a constraint K, we call this algorithm with [f J = t A K

and |f] = i v —iK,

% a u t f i l t - - e x c l u s i v e - a p = ' a , b , c ' \

- - s i m p l i f y - e x c l u s i v e - a p i n p ut.hoa

Figure 4.3(d) shows the result of label simplification (denoted as function Is)

applied to Figure 4.3(b).

We applied the label simplification to all automata obtained by formula

refinement and the average label length dropped to 3.19, which is even lower

Figure 4.10: Parts of two pan. m files that
Spin generates when it checks a system
against two automata of Figure 4.3. The up­
per part encodes an edge of -4.TK(cp) labelled
by fie V be and the last line represents an
analogous edge of A. with label c.

1 9 We do not care if the simplified label ad­
ditionally covers some variable assignments
that can never happen in the system.

2 0 Minato (1993), "Fast Generation of Prime-
Irredundant Covers from Binary Decision
Diagrams", [45].

Command that simplifies labels of A.

S P E C I F I C A T I O N S M E E T S Y S T E M S 55

than 4.20 which is the value for automata without refinement. We selected

several cases with high reduction of label length and run Spin several times

with automata before and after label simplification on a weaker, but isolated

machine to get reliable run times. In these tests, Spin runs up to 3.5% faster

after label simplification.

4 . 6 W H E N R E F I N E M E N T H A R M S A N D F O U N D B U G S

In few cases, specification refinement decreased the performance of Spin. We

have identified three origins of these situations.

4.6.1 The Case of Strongly Connected Components

Figure 4.11 shows one of the few tasks without error where the refined formula

translated by Spot degrades the performance of Spin. Spin performs better

with the automaton A v (Figure 4.11(a)) than with the smaller automaton

ArÁ(p) (Figure 4.11(b)).

The reason why Spin works better with the larger of these two automata

was already discussed i n the previous chapter. It is related to the sensitivity of

Nested DFS algorithm to the location of accepting states. In the automaton of

Figure 4.11(b) the state 12 is accepting. Whenever the blue DFS backtracks

a state of the product that is synchronized with state 12, it has to start a red

DFS that w i l l explore again the states synchronized with 12 and 13 previously

explored by the blue DFS.

The re­exploration of states synchronized with 13 is something that

1. d id not happen i n the original automaton because there is no accepting

state preceding the corresponding state 3, and

2. is useless because there is no way to get back to state 12 after moving to

state 13.

The N D F S algorithm could be patched to avoid this problem by simply

constraining the red DFS to explore only the states of the product whose pro­

jection on the property automaton belongs to the same strongly connected

component as its starting accepting state. This optimization was already sug­

gested by Edelkamp et al. with one additional trickdf we know that the current

S C C is weak, 2 1 then running a red DFS is not needed at all as the blue DFS is

guaranteed to find any accepting cycle by itself? 2 In the scenarios described

b c e v a e v d e d f v g

ae <r
a b d ě v b c ě

VÍO a ě f v g dě
a ě \ J

The automaton presented in Figure 4.11 (a) is
a pruned version of the real automaton. We
have removed all transitions that do not ap­

pear in the product with the system. For in­

stance, in this pruned automaton it is obvi­

ous that the state 7 can be merged with the
state 8, but the presence of other edges in the
original automaton prevented this simplifi­

cation.

States synchronized with 14 are ignored as
they have been already seen by a previous red
DFS.

2 1 A l l states of a weak SCC are accepting or
all are non­accepting.

2 2 Edelkamp, Lluch­Lafuente, and Leue
(2001), "Directed Explicit Model Checking
with HSF­SPIN", [46]; Edelkamp, Leue, and
Lluch­Lafuente (2004), "Directed Explicit­

State Model Checking in the Validation of
Communication Protocols", [47].

(b) -4r
K
(<p)

Figure 4.11: A n uncommon case where
•4

TK
(,p) is much smaller than A.v, and yet

Spin performs better with A v .

56 A U T O M A T A F O R F O R M A L M E T H O D S : L I T T L E S T E P S T O W A R D S P E R F E C T I O N

by Figures 4.11(a) and 4.11(b), all the SCCs have a single state, so the product

automaton w i l l be weak and the red DFS should not be needed. Computing

the strongly connected components of the property automaton can be done

in time that is linear to the size of that automaton (typically a small value)

before the actual emptiness check starts, so this is a cheap way to improve the

model checking time.

4.6.2 Problems with LTL simplifications

A special class of interesting cases consists of formulae where formula refine­

ment leads to bigger automata. Such cases are surprisingly often connected

with issues i n the earliest phases of L T L to automata translation, namely in

formula parsing or simplification. For example, L T L 3 B A implements several

specific formula reduction rules applied after all standard formula reductions.

If such a rule is applied, the reduced formula is checked again for possible ap­

plication of some reduction rule, but i n L T L 3 B A version 1.1.2 it was checked

only on the top level of the formula. Hence, some reductions were not applied

when the input formula was refined with a constraint. This was a bug and was

fixed i n version 1.1.3.

L T L 2 B A has even more problems with formula simplifications as it is sen­

sitive to superfluous parentheses. For instance, the command l t l 2 b a - f

' <> ([] <>X p) ' generates an automaton with 2 states, while the equivalent The operator <> represents F and [] repre-

l t l 2 b a - f '<>[]<>X p ' produces an automaton with 4 states. This is due sents G inLTL2BA.

to the fact that L T L 2 B A runs another simplification pass i n the presence of

parentheses.

Table 4.3 indicates that Spin's translator benefits less than the other trans­

lators from the addition of constraints. Part of the problem, it seems, is due

to a change that was introduced i n Spin 6 to allow L T L formulae embedding

atomic propositions with arbitrary Promela conditions. As a consequence of

this change, many parenthetical blocks are now considered as atomic propo­

sitions by Spins translator, and simplifications are therefore missed. For i n ­

stance, the formula (a R b) A G (- . (a A b)) i s translated as i f - . (a A b) was an

independent atomic proposition. Whi le Spin 5 translates this formula into an

automaton with one state and one edge, Spin 6 outputs an automaton with two

states and three edges, where the edge connecting the states has unsatisfiable

label - . (a A b) A Q A b .

4.6.3 Problem with Spin

Dur ing our experiments, we discovered a handful of cases where equivalent

automata would cause Spin to produce different results: e.g., a counterexam­

ple for automata built by some tools, and no counterexamples for (equivalent)

automata built by other tools. Sometimes the automata would differ only by

the order i n which the transitions are listed. In turned out that this b u g 2 3 was 2 3 http://spinroot.com/fluxbb/viewtopic.

due to a rare combination of events i n the red DFS i n the presence of a dead- ph P ? P id=33i6, fixed by Spin 6.4.4

lock i n the system. A l l the presented results are computed by compiling the

Spin 6.3.2 verifier with - DNOSTUTTER, which effectively means that we ignore

deadlock scenarios, and we are safe from this bug.

http://spinroot.com/fluxbb/viewtopic

S P E C I F I C A T I O N S M E E T S Y S T E M S 57

4 . 7 F I N A L R E M A R K S

We only considered incompatibilities between atomic propositions that de­

note a process being i n different locations i n our evaluation. More sources of

incompatibilities could be considered, such as atomic propositions that refer

to different variable values. We could also extend the principle to more than

just incompatible propositions: for instance from the system we could extract

information about the validity of atomic propositions i n the init ial state, the

order of locations i n a process, or learn the fact that some variable w i l l al­

ways be updated i n a monotonous way (e.g., can only be increased). A l l these

information can be used to produce stricter property automata that ignore

these impossible behaviours, and we think these automata should offer more

opportunity for simplifications, and should also contribute to better sanity

checks.

We demonstrated the usefulness of refinement i n model checking. We be­

lieve it should also be useful i n other contexts like probabilistic model check­

ing or controller synthesis.

58 A U T O M A T A F O R F O R M A L M E T H O D S : L I T T L E S T E P S T O W A R D S P E R F E C T I O N

effect on automata ratio Spin LTL2BA LTL3BA LTL3BA-det Spot Spot-det A l l

without error +states false 0 0 0 0 0 0 0
<0.95 8 4 0 2 0 0 14
[0.95,1.05] 254 6 3 109 2 2 376
>1.05 41 14 0 7 0 0 62

-states false 0 54 367 375 377 378 1551
<0.95 21 415 396 258 292 289 1671
[0.95,1.05] 86 548 372 528 475 482 2491
>1.05 0 20 3 5 16 14 58

=states,+edges false 0 0 0 0 0 0 0
<0.95 0 2 0 0 0 0 2
[0.95,1.05] 16 8 0 0 3 3 30
>1.05 5 2 0 0 0 0 7

=states,-edges false 0 0 0 0 0 0 0
<0.95 1 17 5 4 5 5 37
[0.95,1.05] 16 179 153 156 187 185 876
>1.05 0 0 0 0 0 0 0

=states,=edges,+trans false 0 0 0 0 0 0 0
<0.95 0 7 0 0 0 0 7
[0.95,1.05] 95 114 167 75 163 163 777
>1.05 4 4 4 0 4 4 20

=states,=edges,-trans false 0 0 0 0 0 0 0
<0.95 0 17 0 0 3 3 23
[0.95,1.05] 754 284 363 343 333 333 2410
>1.05 0 8 0 0 0 0 8

no size change false 0 7 7 7 7 7 35
<0.95 0 0 0 0 0 0 0
[0.95,1.05] 36 40 43 44 50 50 263
>1.05 0 0 0 0 0 0 0

with error +states false 0 0 0 0 0 0 0
<0.95 9 8 2 21 0 2 42
[0.95,1.05] 150 5 5 7 9 10 186
>1.05 52 4 5 2 2 3 68

-states false 0 0 0 0 0 0 0
<0.95 15 174 167 135 190 189 870
[0.95,1.05] 43 179 258 321 269 270 1340
>1.05 3 92 116 101 103 98 513

=states,+edges false 0 0 0 0 0 0 0
<0.95 1 3 0 0 0 4 8
[0.95,1.05] 12 2 0 0 3 1 18
>1.05 3 0 0 0 3 2 8

=states,-edges false 0 0 0 0 0 0 0
<0.95 0 18 10 24 22 21 95
[0.95,1.05] 15 82 95 116 96 98 502
>1.05 11 41 30 26 35 35 178

=states,=edges,+trans false 0 0 0 0 0 0 0
<0.95 1 13 3 0 4 4 25
[0.95,1.05] 50 59 104 90 100 100 503
>1.05 3 14 5 8 9 9 48

=states,=edges,-trans false 0 0 0 0 0 0 0
<0.95 1 71 12 6 28 28 146
[0.95,1.05] 432 268 472 449 414 413 2448
>1.05 39 137 52 50 71 71 420

no size change false 0 0 0 0 0 0 0
<0.95 0 1 0 0 0 0 1
[0.95,1.05] 6 7 8 10 11 11 53
>1.05 0 1 0 0 0 0 1

Table 4.12: More precise data about formula refinement impact on automata and on model checking. For each combination of effect on automata
(+states means increase number of states) and each category of ratio of visited transitions (with refinement/without refinement) we show number of
corresponding cases for each LTL-to-BA translator. As usual, we keep the cases with error (counterexample) and without error (the whole product
explored) apart.

S P E C I F I C A T I O N S M E E T S Y S T E M S 5 9

ratio effect on automata Spin LTL2BA LTL3BA LTL3BA-det Spot Spot-det A l l

without error false +states 0 0 0 0 0 0 0
-states 0 54 367 375 377 378 1551
=states,+edges 0 0 0 0 0 0 0
=states,-edges 0 0 0 0 0 0 0
=states,=edges,+trans 0 0 0 0 0 0 0
=states,=edges,-trans 0 0 0 0 0 0 0
no size change 0 7 7 7 7 7 35

<0.95 +states 8 4 0 2 0 0 14
-states 21 415 396 258 292 289 1671
=states,+edges 0 2 0 0 0 0 2
=states,-edges 1 17 5 4 5 5 37
=states,=edges,+trans 0 7 0 0 0 0 7
=states,=edges,-trans 0 17 0 0 3 3 23
no size change 0 0 0 0 0 0 0

[0.95,1.05] +states 254 6 3 109 2 2 376
-states 86 548 372 528 475 482 2491
=states,+edges 16 8 0 0 3 3 30
=states,-edges 16 179 153 156 187 185 876
=states,=edges,+trans 95 114 167 75 163 163 777
=states,=edges,-trans 754 284 363 343 333 333 2410
no size change 36 40 43 44 50 50 263

>1.05 +states 41 14 0 7 0 0 62
-states 0 20 3 5 16 14 58
=states,+edges 5 2 0 0 0 0 7
=states,-edges 0 0 0 0 0 0 0
=states,=edges,+trans 4 4 4 0 4 4 20
=states,=edges,-trans 0 8 0 0 0 0 8
no size change 0 0 0 0 0 0 0

with error false +states 0 0 0 0 0 0 0
-states 0 0 0 0 0 0 0
=states,+edges 0 0 0 0 0 0 0
=states,-edges 0 0 0 0 0 0 0
=states,=edges,+trans 0 0 0 0 0 0 0
=states,=edges,-trans 0 0 0 0 0 0 0
no size change 0 0 0 0 0 0 0

<0.95 +states 9 8 2 21 0 2 42
-states 15 174 167 135 190 189 870
=states,+edges 1 3 0 0 0 4 8
=states,-edges 0 18 10 24 22 21 95
=states,=edges,+trans 1 13 3 0 4 4 25
=states,=edges,-trans 1 71 12 6 28 28 146
no size change 0 1 0 0 0 0 1

[0.95,1.05] +states 150 5 5 7 9 10 186
-states 43 179 258 321 269 270 1340
=states,+edges 12 2 0 0 3 1 18
=states,-edges 15 82 95 116 96 98 502
=states,=edges,+trans 50 59 104 90 100 100 503
=states,=edges,-trans 432 268 472 449 414 413 2448
no size change 6 7 8 10 11 11 53

>1.05 +states 52 4 5 2 2 3 68
-states 3 92 116 101 103 98 513
=states,+edges 3 0 0 0 3 2 8
=states,-edges 11 41 30 26 35 35 178
=states,=edges,+trans 3 14 5 8 9 9 48
=states,=edges,-trans 39 137 52 50 71 71 420
no size change 0 1 0 0 0 0 1

Table 4.13: More precise data about formula refinement impact on automata and on model checking, in comparison to Table 4.12 the columns effect
on automata and ratio are swapped.

Part II

LTL TO DETERMINISTIC AUTOMATA

Translation ofLTL Fragments into
Generalized Rabin Automata

This chapter presents a translation of an L T L fragment into deterministic au­

tomata. The translation is influenced by the successful L T L to N B A transla­

tion algorithm of L T L 2 B A , 1 , however, it avoids the notoriously difficult de-

terminization of Buchi automata. The inspiration is reflected i n our two-step

approach.

1 Gastin and Oddoux (2001) , "Fast LTL to
Buchi Automata Translation", [31].

1. A given L T L formula cp is translated into a linear alternating automaton

(LAA)2 Aq> as i n L T L 2 B A . For the considered fragment, the L A A satis- 2 Also known as very weak, 1 -weak, or self-
loop alternating automata. fies an additional structural condition; we call such automata may/must toop alternating automata.

alternating automata (MMAA).

2. The M M A A A is translated into a deterministic generalized Rabin automa­

ton Q with marks on transitions.

We also show that with just a little tweak, the construction is correct even for

a slightly larger fragment.

Chatterjee et al. showed that it mostly pays off to use the generalized form

of Rabin automata.3 However, for the sake of completeness, we offer a pro- 3 Chatterjee, Gaiser, and Kfetmsky (2013),

LTL Fragments. In this chapter, we consider two L T L fragments. We start

with the fragment L T L (F S , G s) whose formulae are built with temporal opera­

tors F s , G s , F, and G only (Fcp and Gcp can be seen as abbreviations for cp v Fscp

and cp A G scp, respectively). Later we show that our translation is correct also

for the fragment L T L \ G (U , X) . The name of the fragment comes from the

fact that there is no U and X i n the scope of any G and the fragment is defined

as

where ip ranges over L T L (F S , G S) . This fragment is strictly more expressive

than L T L (F S , G S) .

Remark on related work. We discuss other fragments and other related

translations of L T L (or its fragments) into deterministic automata i n the next

chapter.

5 .1 A L T E R N A T I N G A U T O M A T A A N D T H E I R S U B C L A S S E S

Alternating automata. A n alternating automaton A = (S, I , A , I, M , u, cp) The meaning of n. is the same in the sense

cedure that translates our D T G R A into the commonly used Rabin automata

with marks on states i n Section 5.6.

"Automata with Generalized Rabin Pairs for
Probabilistic Model Checking and LTL Syn­
thesis", [48].

cp ::=ip j cpvcp j cpAcp | Xcp | cp U cp,

is a tuple where S, I , M , u and <P have the same meaning as i n cu-automata,

I £ 2 s is a non-empty set of initial configurations, and A £ S x I x 2 s is an

that it places marks on states and transitions.
However, while in tu-automata the type of \i
is \x.: M -> 2 S u 6 , here it is \x: M -> 2 S u A .

64 A U T O M A T A F O R F O R M A L M E T H O D S : L I T T L E S T E P S T O W A R D S P E R F E C T I O N

alternating transition relation. In general, subsets C £ S are called configura­

tions. We use analogous terminology for transitions as i n cu-automata. More­

over, for a transition t = (s, a , C) we call s the source state and C the target

configuration of t. The transition is looping (or simply a loop) i f s 6 C and t is

a self-loop i f C = {s}. A semitransition of t is every triple (s, a , s ') such that

S' 6 C .

Linear alternating automata. The alternating automaton A is linear (LAA)

i f there exists a partial order relation on the set of states such that for every

transition (s, a , C) e A it holds that all states i n C are lower or equal to s. In

other words, there are no simple cycles with more than one transition.

A simple cycle does not visit any state except
the first one twice.

Visualization. Figure 5.1 shows a linear alternating automaton that accepts

the language of the L T L formula cp = G (F s a A F s b) v Gb. Transitions are de­

picted by branching edges, each branch of such edge corresponds to a semi-

transition. If a target configuration is empty, the corresponding edge leads to

an empty space. Transitions that differ only i n labels are grouped i n the same

way as i n cu-automata. Each initial configuration is represented by a possibly

branching unlabelled edge leading from an empty space to the states of the

configuration.

Multitransitions. A multitransition T under a is a set of transitions under a

such that the source states of the transitions are pairwise different. The source

configuration source(T) of T is the set of source states of transitions i n T, the

target configuration target(T) of T is the union of the target configurations of

the transitions, and A(T) = a is the label of T. The set of all multitransitions

is denoted by P- 4 , and r£ stands for all multitransitions of A under a. We

write T and T a when A is clear from the context. Further, we use C i Qi

to denote that there is a multitransition T e r£ such that C i = source(T) and

C2 = target(T). Again, we leave out the A i f A is clear from the context.

(FJS)

[G (F s q A F s b) v Gb]

Figure 5.1: A n L A A (and also M M A A) Av

for L(cp); cp = G (F s a A F s b) V Gb .

Runs. A run of A over a word u = u o u i . . . 6 LW is an infinite sequence

71 = ToTi . . . 6 of multitransitions such that source(To) € I and for

a l i i > 0 we have A(Ti) = U i and target(Ti) = s o u r c e (T i + i) . A branch

b of 7t is a maximal (finite or infinite) sequence of consecutive semitran-

sitions b = (so ,Uo, s i) (s i , u i , S 2) . . . where st+i e C i for the transition

(s i , U i , C i) 6 Ti starting i n S i . The semitransitions have the marks of their

parent transitions, and analogously to a run of tu-automata, the set marks(b)

is the set of recurrent marks of b. A branch b satisfies Inf • i f • 6 marks(b)

and it satisfies F inB i f • $ marks(b) . The run is accepting iff all its infinite

branches satisfy <£>. The language of A is the set L(_4) of all words u e LW

such that A has an accepting run over u .

A multitransition T has exactly one transi­
tion for each s e source (T) .

A branch of a run of an alternating au­
tomaton is reminiscent of a run of an o>-
automaton.

Runs visualization. Runs of alternating automata can be visualized as a d i ­

rected acyclic graphs (D A G) . Figure 5.2 shows a run of AV over the word

({ a } 0 { b } { a , b})w. The dotted lines divide the D A G into segments corre­

sponding to multitransitions. Each transition of a multitransition is repre­

sented by edges leading across the corresponding segment from the source

state to states of the target configuration. Branches i n the D A G correspond to

T R A N S L A T I O N O F L T L F R A G M E N T S I N T O G E N E R A L I Z E D R A B I N A U T O M A T A 65

branches of the run. State of an L A A can be ordered i n a way that all edges in

the D A G go only to the same or a lower row.

May/must alternating automata. A n L A A is a may/must alternating au­

tomaton (MMAA) i f each state fits into one of the following three categories:

1. May-states - states with a self-loop for each a e I and at least one non-

looping transition.

2. Must-states - states with at least one transition and with looping transitions

only.

3. Loopless states - states that have no looping transitions and no predeces­

sors. They can appear only i n init ial configurations (or they are unreach­

able).

A run that enters such a state may wait in the
state for an arbitrary number of steps.

A run that enters such a state can never leave
it. In other words, the run must stay there.

May

selfloop

under t t

Must

each transition

looping

Loopless

initial,

no predecessors

I

Figure 5.3: Illustration of state types of
M M A A . The specific properties of the types
are highlighted by distinct colors.

The automaton of Figure 5.1 is an M M A A with may-states F a and Fb,

must-states Gip and Gb, and no loopless states.

In this thesis we consider only M M A A with marks on states and with co-

Buchi acceptance; that is automata with a unique mark • and the acceptance

formula F inB. Moreover, we always set u (B) to the set of all may-states of the

automaton. This is justified by the following observations:

• There are no looping transitions of loopless states. Hence, removing all

loopless states from u (B) has no effect on the acceptance of any run.

• A l l transitions leading from must-states are looping. Hence, i f a run con­

tains a must-state that is i n u (B) , then the run is non-accepting. Remov­

ing all must-states i n u (B) together with their adjacent transitions from an

M M A A has no effect on its accepting runs.

Each branch of a run can visit at most one
loopless state.

66 A U T O M A T A F O R F O R M A L M E T H O D S : L I T T L E S T E P S T O W A R D S P E R F E C T I O N

• Every may-state has self-loops for all cx e I . If such a state is not i n u (B) ,

we can always apply these self-loops without violating acceptance of any

run. We can also remove these states from all the target configurations of

all transitions of an M M A A without affecting its language.

The class of M M A A with co-Buchi acceptance and with marks on states is

expressively equivalent to the L T L fragment L T L (F S , G S) .

5 .2 T R A N S L A T I O N O F L T L (F S , G S) T O M M A A

Our translation follows the standard translation of L T L to L A A implemented

in the tool L T L 2 B A . 4 Here we present a restriction of their translation to the 4 Gastin and Oddoux (2001) , [31].

fragment L T L (F S , G S) only. In this section, we treat the transition relation

A £ S x I x 2 s of an L A A as a function A : S x I ->• 2 2 , where C € A (s , cx)

means (s, cx, C) e A . Further, we consider Gip and Ftp to be subformulae of gs\\> = XG\\> and Fsti> = XF \ p

G s ip and F s ip, respectively.

Let cp be an L T L (F S , G s) formula i n positive normal form. A n equivalent

L A A is constructed as A v = (S, I , A , I, {•} , u, F inH) , where

• S is the set of subformulae of cp,

. £ = 2 A P (c p)]

• A deserves more space and explanation and is thus defined below,

• I = cp where ip represents a disjunctive normal form of ip i n a set notation

that we compute for ip as

ip = {{ip}} i f ip is a temporal formula

lp! V1p 2 = Ipl U l p 2

ip i Aip2 = { C i U C 2 I C i 6 ip i a n d C 2 e ip2} , and

• u. maps I to the set of all subformulae of the form Fip i n S.

Transition function. Configurations i n A (i p , a) stand for conjunctions of

subformulae that, for ip to be satisfied, have to hold i n the next step i f cx holds

now. Each configuration A(ip , a) is one possible way to satisfy ip.

A (T , a) = {0}

A (- . T , a) = 0

A l l branches that follow the transition into
0 (which happens when the branches are in
s and 0 e A (s , U i) for the next Ui) ter­
minate and become finite. A run where all
branches are finite is accepting.

A sequence of multitransitions that hits a
state s with empty A (s, vti) for the next Ui
blocks and does not form a run.

A (I P T v i p 2 , a) = A (t l) , , a) u A (i l) 2 , a)
States for conjunctions and disjunction are
never reachable. A (i p i A i p 2 , a) = { C i u C2 I C i € A (i p i , a) and C2 e A (i p 2 , a)}

A (G s ^ , a) = { { G ^ } }

A (F s ^ , a) = { { F ^ } }

A (G i p , a) = { C u { G i p } I C e A (i p , a) }

A(Fip,cx) = { { F i p } } u A (i p , a)

States for Fs\l> and Gs~4> as well as states for
T, a, and their negations are reachable if and
only if they are in I.

Gty = t\> A XG \ | J

F\]> = v XF \ p

Figure 5.4 shows this translation applied to formula c p G (F s a A F s b) v Gb.

T R A N S L A T I O N O F L T L F R A G M E N T S I N T O G E N E R A L I Z E D R A B I N A U T O M A T A 67

Figure 5.4: A n M M A A Av for the formula
cp = G\b v Gb for \b = F s a A F s b before
removing the unreachable (dotted) states.

(G (F s q A F s b) v Gb] (F S Q A F s b)

Using the partial order "is a subformula of" on states, one can easily prove

that A v is an L A A . Moreover, all the states of the form Gip are must-states

and all the states of the form Ftp are may-states. States of other formulae are

loopless, and they are unreachable unless they appear i n I. Hence, the con­

structed automaton is also an M M A A . Figure 5.1 shows an M M A A produced

by the translation of formula G (F S Q A F s b) v Gb.

Theorem5.1. For each formula cp 6 L T L (F S , G S) , we can construct an MMAA

A v with utmost |cp| states such thatL(<p) = L(AV).

We have shown that the translation yields an M M A A . The correctness of

the construction was proved by Oddoux i n his P h D thesis.5

5 . 3 T R A N S L A T I O N O F M M A A T O L T L (F S) G S)

In this section, we show the reverse translation to the one of the previous

section - from M M A A to L T L (F S , G s) . We assume that may-states have no

looping transitions except self-loops. The assumption is valid as any applica­

tion of a looping transition that is not a self-loop can always be replaced by an

application of a self-loop with the same label; this change cannot transform

an accepting run into a non-accepting one and thus the looping transitions

of may-states that are not self-loops can be removed without altering the lan­

guage of the automaton.

Let A = (S, 2 A P ' , A , I, {•} , u , F i n !) be an M M A A with a prepositional

alphabet. For each a € 2 A P we define i p a to be a formula satisfied exactly by

all the words starting with a:

\aea / VaeAP'xa /

N o w we inductively define a formula cps for each state s € S. The formula cps

is satisfied by any word for which there is an accepting run of A starting in

the configuration {s}. The inductive definition is admissible because A is an

L A A and thus there is a partial order on S such that transitions of a state s can

lead only to s or states that are lower than s.

CPs

F V (s , a , C) € A (^Pa A A q e C X c p q)
C*{s}

G V (s , a , C) e A (^<x A A q e C N { s } X c P q)

-V(s , a ,C)€A ('CPa A AqeC X c p q)

i f s is a may-state

if s is a must-state

if s is a loopless state

|cp| denotes the length of cp.

5 Oddoux (2003), "Utilisation des Automates
Alternants pour un Model-Checking Effi-
cace des Logiques Temporelles Lineaires",
[49].

The conjunction of an empty set of conjuncts
is T while the disjunction of an empty set of
disjuncts is -iT.

6 8 A U T O M A T A F O R F O R M A L M E T H O D S : L I T T L E S T E P S T O W A R D S P E R F E C T I O N

Finally, we define the formula cp.4 equivalent to the whole automaton A as

<PA = V A <Ps-
C e l seC

Each temporal operator X i n the definition of cps is i n front of F or G. If we

replace all occurrences of X F by F s and all occurrences of X G by G s i n cp s for

all states s we always get that cp.4 is an L T L (F S , G s) formula. Hence, we have

shown that the following theorem holds.

Theorem 5.2. For each MMAA A with a propositional alphabet, we can con­

struct an LTL(FS, G s) formula cp_4 such that L(_4) = L(cp_4).

5 . 4 T R A N S L A T I O N O F M M A A T O D E T E R M I N I S T I C A U T O M A T A

Let A = (S, I , A , I, {•} , u, FinH) be an M M A A . First, we bui ld a determin­

istic semiautomaton T that follows all possible runs of A. Subsequently, we

equip T with an acceptance condition and bui ld a deterministic generalized

Rabin automaton V such that L(D) = 1(A).

5.4.1 Semiautomaton T

The idea behind the construction of the deterministic semiautomaton is based

on a double powerset construction: the run a of the semiautomaton T over

a word u tracks all runs of A over u . More precisely, the state of T reached

after reading a finite input consists of all possible configurations i n which A

can be after reading the same input. Hence, states of the semiautomaton are

sets of configurations of A and we call them macrostates.

We uses, s i , S2 , . . . to denote states of „4; C , C i , C 2 , . . . to denote configu­

rations of A; and m , m i , m .2 , . . . to denote macrostates of T . Further, we use

t, t i , t2 . . . to denote the transitions of A; T, To, Ti . . . to denote multitran-

sitions of A; and r , r i ,T2 . . . to denote the transitions of T . Finally, we use

CJ(U) to denote the unique run of T over u .

Formally, we define the deterministic semiautomaton T = (Q , I , 6 , m i)

for A as follows:

• Q £ 2 is the set macrostates, restricted to those reachable from the initial

macrostate m i by 5,

• (m i , a , m.2) € 5 iff m.2 = { C 2 | C i e m i , C i C2 }

• m i = I is the initial macrostate.

Figure 5.5 depicts the semiautomaton T for the M M A A of Figure 5.1. Each

line i n a macrostate represents one configuration.

One powerset construction is for dealterna-
tion, and the other is for determinization of
the M M A A .

For each m i e Q and a. e £ , there is a sin­
gle transition to a macrostate m.2 that con­
sists of target configurations of multitransi-
tions labelled by ct with source configura­
tions in m 1. We say that (m 1, a , m .2) cov­
ers these multitransitions.

5.4.2 Generalized Rabin Automaton T>

N o w we are heading towards a deterministic generalized Rabin automaton

V = (Q , 1,6, m i , M , fi. ' , cD). O n top of the semiautomaton T we add a set

of marks, place the marks on transitions, and define the acceptance formula.

Finally, we w i l l prove the equivalence of V to A.

We need some more notation here. For a run n of A, by Rec s (n) we denote

the set of states that appear recurrently i n the run. For any configuration Z £

T R A N S L A T I O N O F L T L F R A G M E N T S I N T O G E N E R A L I Z E D R A B I N A U T O M A T A 69

Figure 5.5: The semiautomaton T (right)
for the M M A A A v of Figure 5.1. The struc­
ture of A.v is drawn again in grey on the left.

S,6 by must (Z) we denote the set of must-states i n Z . Finally, we say that the

run 7t is bounded by Z iff Rec s (7 t) £ Z and mus t (Rec s (7 t)) = must (Z) . For

example, the run of Figure 5.2 is bounded by Z = {Gi|>, F a , Fb}.

For every configuration Z £ we define a set A C z £ 2 s of allowed configu­

rations as follows:

A C Z = {C £ Z | must (C) = must (Z)}

Further, a set A T z £ 5 is a set of allowed transitions that contains transitions

of T such that they cover some multitransition to A C z- It is defined as follows:

A T z = { (r a i , a, m.2) e 5 | 3 C i e A C z , C2 e (rn.2 n A C z) and C i ^* C2}

Lemma 5.3. If A has a run overu bounded by Z, then the run a (u) ofT over

u contains a suffix made of transitions from A T z .

Proof. Let n be a run of A over u bounded by Z . Then it has a suffix with

configurations from A C z only. As cr(u) tracks all runs of A over u , it also

tracks n and hence has a suffix where for each transition (rat, U i , m . i + 1) there

exist configurations C i e (m i n A C z) and C2 e (rai+i n A C z) such that

C i C2- That implies that a (u) has a suffix containing only transitions

from A T Z . •

In fact, the other direction can be proved as well: i f cr(u) contains a suffix

of transitions from A T z then A has a run over u bounded by Z .

6 We use Z as a name for the configurations
here to distinguish them from those we used
for the construction of T .

For a run to be bounded by Z it is allowed
to visit only configurations from A C z from
some point on.

A definition of A T z with C i e (m-i n A C z)
might seem more intuitive. It would be cor­
rect; however, it is also less effective in prac­
tice.

cr(u) is the unique run of T over u .

s-escaping multitransitions. Let s e S n u.(B) be a marked state of A. We

say that a multitransition T is s-escaping i f it contains a non-looping tran­

sition of s. The importance of escaping multitransitions is expressed by the

following lemma.

Lemma 5.4. The run n = T 0 T 1 ...of A over a word u is accepting if and only if

for alls € S n u.(B) n Rec s (7 t) it holds that n contains infinitely many s-escaping

multitransitions.

Proof. Assume for contradiction that n is accepting and that there is a state

s 6 S n f i(B) n Rec s (7 t) such that n contains only finitely many s-escaping

multitransitions. Let T j T i + i be a suffix of n without s-escaping multitran­

sitions such that s e source(Ti) . As we only removed a finite prefix, s still

appears infinitely often i n the suffix. Then there is a branch b = (s , U i , s) a ' in

the suffix which does not satisfy Fin (•) and thus n cannot be accepting.

70 A U T O M A T A F O R F O R M A L M E T H O D S : L I T T L E S T E P S T O W A R D S P E R F E C T I O N

Conversely, all branches that are currently i n the state s leave s at every

s-escaping multitransition. As A is an L A A , the branches can never reach the

state s again. As n contains infinitely many s-escaping multitransitions for all

s € u (B) n Rec s (n), no branch can stay i n a state marked by • and thus n is

accepting. •

Clearly, we need to detect runs of A with bounding configuration Z that

contain infinitely many s-escaping multitransitions for each s € Z n u (B) .

However, the multitransitions should not leave Z . For each Z £ s and each

s e Z n u (B) we define the set E T Z of s-escaping transitions of T as follows.

E H = { (m i , a, m.2) e 6 | 3(s, a , C) 6 A such that s i C and C £ Z}

N o w we are ready to bui ld the set of marks M z , place the marks on tran­

sitions of T and describe the acceptance formula O z for each configuration

Z £ S i n a way that <£>z w i l l be satisfied by cr(u) i f and only i f there exists an

accepting run of A over u bounded by Z .

M z = { B } u { © s | s e Z n u (B) }

0>z = F i n B A / \ l n f© s

seZnLi(H)

u ' (B) = 6 \ A T Z

u ' (© s) = A T z n E T z

Subsequently, a (u) should be accepting i f there exists some Z £ S such that

there is an accepting run of A over u bounded by Z .

M U M z
ZsS

V «>z
ZsS

there exists a non-looping transition of s in
A not leaving Z . Note that all transitions of
T with the same label belong to the set or
none of them does.

Satisfying Fi n ensures that cr(u) has a suf­
fix of transitions allowed for Z and I nf © s

ensures that cr(u) has infinitely many s-
escaping transitions for Z .

Fb

(G (F s q A F s b) v Gb)

Figure 5.6: A deterministic automaton T>
(right) equivalent to Av (left, in grey). Only

Sb the two sets P = {G\|>, F a , Fb} and R =
{Gb} bound some runs of A.

The mark © represents © F q , the mark O
represents ©Fb. a n a finally, Q is D

a b ^ J o ^ , F a , F b } ^ » a b

ab ab

[(I n f O A l n f O) v F i n H)

(G (F s a A F s b) v Gb)

Lemma 5.5. If there is an accepting run nofA over u then the run a (u) of V

satisfies Ozfor Z = Rec s (7 t) .

Proof. From Lemma 5.3 immediately follows that cr(u) has a suffix riTi+-[...

of transitions from A T Z and thus due to the placement of B marks cr(u) sat­

isfies F i n B .

The run n = T3T1 . . . is accepting, thus by Lemma 5.4, it follows that n has

infinitely many s-escaping multitransitions for each s € Z n [i (B). Let s be

such state and let Tj for j > i be an s-escaping multitransition of n. Since j > i ,
The index i comes from the first transition

of the suffix from above.

T R A N S L A T I O N O F L T L F R A G M E N T S I N T O G E N E R A L I Z E D R A B I N A U T O M A T A

it is clear that the corresponding transition rj is i n E T Z and also i n A T z , and

thus rj has the mark © s . As there are infinitely many such indices j , we have

that cr(u) satisfies l n f © s . •

L e m m a 5.6. If a run cr(u) ofV satisfies <£>z then A has an accepting run over

u bounded by Z .

Proof. If cr(u) = r o r i . . . is a run of V satisfying <£>z, then it has a suffix of

transitions of A T z and the suffix contains infinitely many transitions of E T Z

for each s e Z n u (B) . Let = (r n . i , U i , r n . i + i) be the first transition of

the suffix. From the definition of A T z it follows that there is a configuration

C i + i e (m . i + i n A C z) - The construction of T guarantees that there exists a

sequence of multitransitions of A leading to C i + i • More precisely, for some

initial configuration Co e I it holds Co —^* C i —-* . . . 1 - 1 > Q —1-+ C j . + i ,

and we denote the corresponding sequence of multitransitions by T)Ti . . . Tj..

This sequence is a prefix of an accepting run of A over u bounded by Z .

We inductively define a multitransition sequence Tj . + i T.+2 . . . completing

this run. The definition relies on the suffix r i + i r i + 2 . . . of cr(u). Let us as­

sume that j > i and that target(Tj_i) is a configuration of A C z - We de­

fine Tj to contain one transition of s for each s e target (T j _ i) . Thus we get

source(Tj) = target(Tj_i) and the full sequence forms a run. As rj e A T z ,

there exists a reference multitransition T ' labelled by Uj such that both source

and target configurations of T ' are i n A C z - We copy from T ' to Tj the transi­

tions for all must-states, and for each may-state s e target(Tj_i) , we have two

cases. If Tj 6 E T Z , then Tj contains a non-looping transition leading from s

to some states i n Z . The existence of such a transition follows from the defi­

nit ion of E T | . For the remaining may-states, Tj uses the self-loops under U j .

Formally, Tj = {t? | s 6 target(Tj_i)}, where

J

(s , U j , C s) contained i n T ' i f s 6 must(Z)

(s , U j , { s }) i f S 6 u(H) A Tj i E T |

(S , U J , C s) where C s £ Z , s £ C s i f s e u(l) A T J e E T |

One can easily check that target(Tj) € A C z , and we continue by building

T j + i . The run constructed i n this way is bounded by Z . Moreover, Tj is s-

escaping whenever Tj e E T Z which holds infinitely often for each s 6 u (B) n

Z . The constructed run of A over u is thus accepting. •

The previous two lemmata prove that the automaton V accepts the same

language as A and the following Theorem 5.7. In conjunction with Theo­

rem 5.2 we have also proved Theorem 5.8.

Theorem 5.7. For each MMAA A with n states, we can construct a determin­

istic automaton V with at most 2 2 states and L(2?) = L(_4).

Theorem 5.8. For each formula cp € L T L (F S , G s) , we can construct a deter­

ministic automaton T>v with at most 2 l M states such that L(cp) = L(2?(p).

This upper bound is better than the bounds of all versions of Rabinizer:

versions 1 and 2 use automata with marks on states which costs an additional

blow-up exponential i n the number of atomic propositions; versions 3 and 4

have triple exponential upper bounds for generalized Rabin automata.

72 A U T O M A T A F O R F O R M A L M E T H O D S : L I T T L E S T E P S T O W A R D S P E R F E C T I O N

5 .5 M M A A I N T H E L I M I T A N D L T L \ G (U , X)

We have just shown a determinization algorithm for M M A A . In fact, our

construction works correctly for a larger class of linear alternating automata

called may/must in the limit automata (l i m M M A A) . A n L A A A is a l i m M -

M A A i f A contains only must-states, states without looping transitions, and

states marked by • (not exclusively may-states), and each state reachable from

some must-state is either a must- or a may-state. Each accepting run of a l i m ­

M M A A has a suffix that contains either only empty configurations, or config­

urations consisting of must-states and may-states reachable from some must-

states. Hence, the determinization construction produces correct results also

for l i m M M A A under an additional condition: marks and <£>z are constructed

only for bounding configurations Z that contain only must-states and may-

states reachable from them.

If we translate formulae of the fragment L T L \ G (U , X) by the translation

of L T L 2 B A , we obtain l i m M M A A . The translation of L T L \ G (U , X) into l i m ­

M M A A places • marks on all states for subformulae of the form i|>i U i|>2-

The rules for 5 for U and X that are needed for the translation and were not

given i n Section 5.2 follows.

A state s is reachable in A. from a state s 0 iff
{so} ->• C i C such that s s C ,

5(X^,<x) = { { ^ } }

5(oh U * 2 , a) 4 (4 2 , a) u { C u { ^ i UiL>2} | C e 6 (a h , a) } U i p 2 = ^ 2 V (l)> , A X (l |) , U ^ 2))

5 . 6 D E G E N E R A L I Z A T I O N F O R R A B I N A U T O M A T A

Some algorithms that require deterministic automata cannot handle the gen­

eralized Rabin acceptance condition and require Rabin automata, often even

with marks on states. Generalized Rabin automata have acceptance formula

oftheform V k e K (F inHA A j e j k I n f© 1) . In order to get a Rabin automaton, we

need to reduce the number of circle marks for each k to one. Our construc­

tion is based on a standard degeneralization method for generalized Buchi

automata.

We first illustrate the idea on a generalized Rabin automaton Q with K that

is a singleton and with h circle marks, that is with acceptance formula F inB A

A 1 <j < H I n f * ' > a n d we create a Rabin automaton 1Z with the two marks (placed

on states), • and • , only.

The automaton 1Z consists of h + 2 copies of Q. The copies are called levels.

We start at the level I. Intuitively, being at a level j for I < j < h. means that

we are waiting for a transition marked by i n Q. Whenever a transition

marked by I appears, we reset and move to the level 0. A transition r without

the square mark gets us from level j to the maximal level I > j such that r €

[!(•') for each j < j ' < I. The levels 0 and h + I have the same transitions

(including target levels) as the level I. A run of Q is accepting i f and only i f

the corresponding run of 7Z visits the level 0 only finitely often and it visits

the level h + I infinitely often. Hence all states of level 0 are marked by • and

all states of level h + I are marked by • .

If T i) then there has to be no j ' be­

tween I and j and therefore, I = j .

T R A N S L A T I O N O F L T L F R A G M E N T S I N T O G E N E R A L I Z E D R A B I N A U T O M A T A 73

In the general case, we track the levels for all k € K simultaneously. Given

a D T G R A Q = (S, I , 6, s i , U k e K M k , u, V k e K <Bk) where

M k = {•} u {©' | 1 < j < h k } and <Pk = F inB A / \ lnf©>,
1<j<hk

we construct an equivalent D R A as1Z = (Q , X , 6-R., q i , M , u-^, d>), where

. Q = S x {0,1 , . . . , h i+1} x - x {0,1 , . . . ,h| K|+1})

• ((s , l i , . . . , l | K |) , a , (s . . . , l ' K |)) e 6-^ iff r = (s , a , s ') € 5 and for

each 1 < k < |K | it holds

0 i f r e u(D)

l e v e l (r , k , l k) i f r £ u(H) and 1 < l k < h k

[level (r, k, 1) i f r £ u(H) and l k e {0, h k + l }

where level(r, k, i) = max { l | l < H k + 1 a n d r e f l ^ © ') } ,
i<j<l

q i = (r a i , l , . . . , l) ,

M = { H , © | k € K } ,

u 7 i (B) = { (s , l 1 , . . . , l | K |) e Q | l k = 0 } >

M ®) = { (s , l i , . . . , l | K |) e Q I l k = h k + l } , a n d

O = V k e K (F i n B A Inf©).

The intersection of zero sets contains all
transitions of Q and thus 1 , . . . i are always
arguments of the maximum and therefore, if
r i (J^© 1) then level (T, k, i) = i .

Complexity. We have to multiply the state space of Q by (h k + 2) for each

k € K i n the worst case. Thus |Q | < |S| • (Hi + 2) • . . . • (h | K | +2) . If we start

with an L T L \ G (U , X) formula cp of length n , we can create an equivalent l i m -

M M A A A<$ with n states and generalized Rabin automaton Vv with at most
-jTL

2 states. To obtain the deterministic Rabin automaton TZ^, we multiply the

state space of Vv by at most |Z | + 2 for each configuration Z £ S of A, where

the number of states i n Z is bounded by n . Altogether, we can derive an upper

bound on the number of states |Q | of the Rabin automaton as follows.

| Q | < 2 2 - (n + 2) 2 =

2 2 n . 2 2 n - l o g 2 (n+2) =

2 - 2 e 2e>(2 n + l o g l o g n

74 A U T O M A T A F O R F O R M A L M E T H O D S : L I T T L E S T E P S T O W A R D S P E R F E C T I O N

5 . 7 I M P L E M E N T A T I O N A N D T R A N S L A T I O N I M P R O V E M E N T S

We have implemented our translation i n a tool called L T L 3 D R A . The tool is

built on top of the L T L to Bi ich i automata translator L T L 3 B A 7 and is available

at https://github.com/xblahoud/ltl3dra. The two tools share the code for for-

7 Babiak et al. (2012), "LTL to Biichi Auto­
mata Translation: Fast and More Determin­
istic", [33].

mulae parsing, simplification of L T L formulae, and translation to L A A . The

performance of L T L 3 D R A is evaluated and compared to the performance of

other tools i n the next chapter. For L T L 3 D R A to produce a reasonably small

automaton we have implemented several optimizations to the core transla­

tion, namely we:

• simplify the input formula,

• reduce the state-spaces of automata,

- remove unreachable states i n each step,

- merge equivalent states i n each step,

- remove redundant transitions of the L A A ,

- reduce macrostates that contain the configuration 0 , and

- remove the init ial macrostate i f found superfluous, and

• simplify the acceptance condition

- before we compute the placement of the marks (based on the L A A) and

- after the deterministic automaton is built (based on marks' placement).

Before we describe the optimizations i n details, we fix names for the input

formula and for the automata and their parts used on the way. The input

formula is cp. The corresponding linear alternating automaton is called A and

we set A = (S , I , A , I, {•}, u, FinB). The equivalent deterministic automaton

is V = (Q , 1,5, m i , Mz, u ' , ®z) where Z £ 2 s is some set of bounding

configurations, Mz = [JzeZ M-z> and <&z = VzeZ ® z - Finally, the name for

the Rabin automaton is 1Z.

Formula simplifications. O n top of the reduction rules of L T L 3 B A , we add 8 In fact, the resulting automata are usually

Unreachable states. In each step (A, T>, 11), we always keep and compute

only states that are reachable from some init ial configuration or from the i n i ­

tial state.

Equivalent states. In each step we iteratively merge equivalent states. Two

states of linear automata are equivalent i f they have the same transitions and

the same marks. Two states of the deterministic automata are equivalent i f

they have the same marks and for each a € I their transitions under a lead to

the same state and have the same marks.

one more - we rewrite subformulae GFip and FGip to equivalent formulae

GF s ip and FG si|>, respectively. The deterministic automata for formulae with

strict temporal operators are often smaller than those without this reduction. 8

of the same size due to the subsequent state-
space reductions. However, the rewriting
rule saves the tool from computing many
equivalent states only to merge them later.
This rewriting rule can be deactivated by the
- X option.

https://github.com/xblahoud/ltl3dra

T R A N S L A T I O N O F L T L F R A G M E N T S I N T O G E N E R A L I Z E D R A B I N A U T O M A T A 75

Redundant transitions. A transition t2 = (s, a, C2) e A is redundant i f

there is another transition t i = (s, a, C i) € A of s such that C i c Q2. If

we alter an accepting run of A that uses t2 to use t i instead, it w i l l remain

accepting (the change would only remove some branches).

Macrostates with 0 . If a macrostate m of V contains the configuration 0 ,

we remove all other configurations from ra. This modification is clearly cor­

rect - i f a run n of A reaches the configuration 0 then all subsequent mult i-

transitions of the run are empty and thus n is accepting.9

Superfluous initial macrostate. If the init ial macrostate m i of V does not

have any self-loop, we check its equivalence to other states not taking accep­

tance marks into account. Marks on transitions that are taken at most once

by any run are irrelevant.

Bounding configurations. We reduce the number of bounding configura­

tions that we take into account i n two ways. First, we consider only config­

urations that bound some run that we call modest. Intuitively, modest runs

minimize their sets of recurrent states (Rec s (7 t)) . Formally, a run is modest

i f it uses for each may-state s e S only the self-loop of s and exclusively one of

its non-looping transitions. For each word u € L(_4) there exists an accepting

run that is modest.

Let 7t be a modest run of A and let s e Rec s (n) be some state visited i n ­

finitely often by n. If s is a may-state n can choose the non-looping transition

repeatedly. For s being a must-state, however, n does not always have the

choice as must-states do not have the self-loop. Therefore, n can be forced by

u to use all of its transitions repeatedly. W i t h this i n mind, we define a func­

tion mod-rec: 2 s -»• 2 2 that recursively computes, for a given configuration

Z , the set of configurations that can bound some modest run n that visits the

states of Z infinitely often, which is when Z £ R e c s (7 t) . Before the formal

definition of mod-rec we define an auxiliary operation 0 that when applied

to two sets of configurations W i , W 2 £ 2 s creates a set of combinations of

their configurations, formally

W 1 0 W 2 = | J { Z i u Z 2 }
Z,eW,
Z 2eW 2

and an auxiliary function onestep: S -»• 2 that for a given state s computes

the set of configurations that arise by removing s from configurations reach­

able from s i n one step; formally

onestep(s) = J C e 2 S n { s } | (S , cx, C U { S }) e S ^ a c l J .

Finally, the formal definition of mod-rec follows.

9 In this case, there is no infinite branch in
7t and therefore all infinite branches satisfy
whatever acceptance formula.

76 A U T O M A T A F O R F O R M A L M E T H O D S : L I T T L E S T E P S T O W A R D S P E R F E C T I O N

mod-rec(Z)

0

{ { s } } ® U mod-rec (C)
(s,<x,C)eA,

i f Z = 0

i f Z = {s} and s i must(S)

{{s}} <S> | J mod-rec(| J C) i f Z = {s} and s € must(S)
Wgonestep(s) C e W

(g) mod-rec({s})
S€C

otherwise

Further, we can eliminate from Z all configurations that contain a state

that is not reachable from some must-state. Indeed, for every accepting run n

the set Rec s (7t) contains only states reachable from must-states. Indeed, the

other states are left by all branches sooner or later.

In order to find bounding configurations with this property, we define the

function mod-one: 2 s -»• 2 2 that recursively computes, for a given config­

uration Z , the set of configurations that can bound some modest run that

ever visits states of Z . As all states reachable from must-states can be visited

infinitely often by accepting runs, mod-one(Z) = mod-rec(Z) for Z that con­

tains such states only.

A run To T] . . . visits states of Z if for each
s e Z there is some Ti such that s e
source(Ti).

mod-one(Z)

0 i f Z = 0

U mod-one (C) i f Z = {s} and s i must(S)
(s,a,C)e6.4
s^C

mod-rec (Z) i f Z = {s} and s e must(S)

(g) mod-one({s}) otherwise
seZ

Finally, the set Z of bounding configurations consists of mod-one for all

initial configurations of A; that is Z = U z e l mod-one (Z) .

Acceptance simplifications. After we place the acceptance marks, we revise

the marks and the acceptance formula again. In particular, we perform the

following three simplifications.

1. We remove M z and d>z = F i nH A AJ<J Z Inf© 1 from M and <P i f no run

can satisfy <£>z, which is when u ' (B) = 6 or i f some u ' (© ') = 0 .

2. We remove the mark © ' 1 (and the corresponding conjunct i n ® z) i f there

is s o m e © ' 2 such that u ' (© ' 2) £ u ' (© ' ') .

3. If the fact that a run n satisfies <Pz, implies that n also satisfies <Pz2

 w e

remove <Pz, and the corresponding M z , •

LTL to Deterministic Automata Translators:
Experimental Evaluation 6
This chapter evaluates state­of­the­art translators of L T L into deterministic

automata i n the means of exhaustive experiments. The chapter is inspired by

our previous work, 1 but it has been written entirely from scratch. We consider

the following three translation approaches (listed i n the order of historical

appearance).

1. determinization of nondeterministic automata

2. direct translations

3. determinization of cut­deterministic automata

1 Blahoudek, Kfetinsky, and Strejcek (2013),
"Comparison of LTL to Deterministic Rabin
Automata Translators", [14],

Determinization of Biichi automata. Safra developed the first opt imal 2 de­

terminization procedure for Bi ich i automata i n his seminal paper from 1988?

His construction takes a Biich i automaton with n states and produces a deter­

ministic Rabin automaton with at most 2°(n l o g n) states and at most 2 n Ra­

bin pairs (which needs 4 n acceptance marks). Researchers proposed several

optimizations since 1988,4 some of them can take generalized Bi ich i automata

on input, and some of them can even produce parity automata. Parity auto­

mata are more desirable for synthesis as solving parity games is more efficient

than solving Rabin games.

From the implementation point of view, we have two choices nowadays.

For more than ten years, the tool ltl2dstar5 was a synonym for Safras con­

struction ­ it is an efficient implementation that includes several optimiza­

tions. In 2016, the authors of Spot implemented a determinization based

on Redziejowski's construction 6 that takes a Bi ich i automaton with marks on

transitions on input and creates an equivalent deterministic parity automaton

on output. The determinization i n Spot also implements optimizations based

on S C C and on simulation. 7

Direct translations. The recent boom of direct translations of L T L into de­

terministic automata was started by Kfetinsky and Esparza and their con­

struction implemented i n Rabinizer8 for the fragment LTL(F ,G) i n 2012? We

have presented the translation of the previous chapter that works for a slightly

larger fragment L T L \ G (U , X) i n the following year. 1 0 Our translation is i m ­

plemented i n the tool LTL3DRA and it was the first translation that produced

generalized Rabin automata with marks on transitions. At the same time, Ra­

binizer 2 n extended the fragment even more to L T L \ G (U) . Finally, i n 2014

Esparza and Kfetinsky finished their effort by providing a translation of the

full L T L 1 2 that was implemented i n Rabinizer 3 1 3 and improved i n Rabinizer

4. 1 4 A l l the translations have i n common that the output automata have a gen­

eralized Rabin acceptance; L T L 3 D R A , Rabinizer 3 and Rabinizer 4 use marks

2 singly exponential

'Safra (1988), "On the Complexity of
Omega­Automata" [50].

4 Schewe (2009), [4]; Piterman (2007), [51];
Redziejowski (2012), [52].

5 Klein (2005), "Linear Time Logic and De­

terministic tu­Automata", [53]; Klein and
Baier (2006), "Experiments with Determin­

istic Omega­Automata for Formulas of Lin­

ear Temporal Logic", [54].
6 Redziejowski (2012), "An Improved
Construction of Deterministic Omega­

Automaton Using Derivatives", [52].
7Duret­Lutz et al. (2016), "Spot 2.0 ­ A
Framework for LTL and tu­Automata Ma­

nipulation", [55].

8 [57] Gaiser, Křetínský, and Esparza (2012).
9 Křetínský and Esparza (2012), "Determin­

istic Automata for the (F, G)­Fragment of
LTL", [56].
1 0 Babiak et al. (2013), "Effective Translation
of LTL to Deterministic Rabin Automata:
Beyond the (F, G)­Fragment", [13].
1 1 Křetínský and Ledesma­Garza (2013),
"Rabinizer 2: Small Deterministic Automata
for L T L \ G U " , [58].
1 2 Esparza and Křetínský (2014), "From LTL
to Deterministic Automata: A Safraless
Compositional Approach", [59].
1 3 Komárkova and Křetínský (2014), [60].
1 4 Rabinizer 4 was not yet published by the
date of submitting the thesis. See Table 6.1
for a reference.

78 A U T O M A T A F O R F O R M A L M E T H O D S : L I T T L E S T E P S T O W A R D S P E R F E C T I O N

on transitions. The aforementioned translations that work for some fragment

only share a double exponential complexity while the translation of Rabinizer

3 and 4 has a triple exponential upper bound.

Determinization of cut-deterministic Biichi automata. In 2017, Esparza

et al. presented a construction that takes a cut-deterministic Bi ich i automaton

and converts it into a deterministic parity automaton with a single exponen­

tial blow-up. The construction is based on coloring of runs. 1 5 The construc­

tion can be improved i f it is chained together with a translation of L T L into

cut-deterministic automata by the same authors. 1 6 The result of these two con­

structions chained together is a double exponential translation from full L T L

into D P A . This approach was implemented i n the tool ltl2dpa. Ltl2dpa has

initially been a part of the owl l ib ra ry 1 7 and now it is also distributed as a part

of the yet unpublished Rabinizer 4.

To reproduce the evaluation (or to run it with new versions of the tools)

visit ht tps: / /gi thub.com/xblahoud/LTL2DA- comparison. You can find on this

page a collection of scripts, files with the used L T L formulae, 1 8 and Jupyter

notebooks that can repeat all computations performed for this chapter. The

notebooks also generate all tables and figures used here and they also include

some additional data. In the interactive Jupyter notebooks you can explore

the data and look for information of your interest i f you miss it here.

1 5 Esparza et al. (2017), "From LTL and
Limit-Deterministic Biichi Automata to De­
terministic Parity Automata", [61].

1 6 Sickert et al. (2016), "Limit-Deterministic
Biichi Automata for Linear Temporal Logic",
[62].

1 7 available at https://www7.in.tum.de/
~sickert/projects/owl/

* including the scripts used to generate them

https://github.com/xblahoud/LTL2DA-
https://www7.in.tum.de/

L T L T O D E T E R M I N I S T I C A U T O M A T A T R A N S L A T O R S : E X P E R I M E N T A L E V A L U A T I O N 79

6.1 E V A L U A T E D T O O L S

Altogether, we evaluate 22 tool chains that convert L T L formulae into deter­

ministic automata. In particular, we have 14 tool chains that rely on Safra-like

determinization, 6 variants of tools for direct translations, and finally 2 trans­

lations performed by ltl2dpa. Figure 6.1 gives an overview of most of the used

tool chains. Homepages and versions of all tools used for this evaluation are

listed i n Table 6.1.

LTL3DRA

Rabinizer 3.1, Rabinizer 4

2xltl2dstar
* (D S R A)

~"- - - Spot
* (D S R A)

Spot ~ ~ * D T P A

T D T G B A

> (D T E L A)

Figure 6.1: Evaluated tool chains for trans­
lation of LTL to deterministic automata. The
blue boxes are LTL fragments, the white
boxes represent types of intermediate auto­
mata, the green boxes represent the type of
output automata (two types indicate that the
tool chain produces one type for some for­
mulae and the other for the rest, the para­
graph on Safra-based translations on the
next page explains these cases), and finally,
the type of line denotes the type of transla­
tion.

Safra-like via cut-deterministic

Naming. We reference each tool chain by a triple (main, intermediate, acc).

We use main for the tool that outputs the final deterministic automaton, in­

termediate indicates which L T L to nondeterministic automata translator was

used i n case of the Safras approach or which mode of ltl2dpa was used, and

finally acc provides details about acceptance conditions of the resulting auto­

mata. For the Safra-based tool chains, acc consists of two parts divided by a

dot: the first part is the acceptance of the intermediate nondeterministic au­

tomaton (SB, T G B , T E L) and the second part is the acceptance condition of

the output automaton (SR, TP, T E L) . 1 9

We use the tool ltlcross from the Spot library to run all the tool chains

and gather the information of interest about the resulting automata. You can

find the exact ltlcross command and the reference name for each tool chain in

Table 6.2. In the following text, we comment on the choice of tool chains, pro­

vide more details about some, and comment explicitly on the two tool chains

(Spot, —, TP) and (ltl2dpa, Rabinizer, TP) that cannot be found i n Figure 6.1.

1 9 We denote the cases where the resulting
automaton can be either a DTPA or a DT­
GBA by TP as the parity acceptance is in
some sense more complex than generalized
Biichi. TGBA cannot be converted into TPA
without changing the structure of the au­
tomaton; however, neither emptiness check
nor game solving is harder for TGBA than
for TPA.

Direct translations. We have chosen three tools that translate L T L formulae

directly into deterministic automata: LTL3DRA, Rabinizer 3.1, and, with the

k ind permission of its authors, Rabinizer 4. We have excluded Rabinizer and

Rabinizer 2 for the following reasons; the tools work for fragments only, they

do not support H O A format, they are no longer maintained, they contain

many bugs, and they give larger automata than their successor Rabinizer 3.1 in

most cases. We have run two variants of each of these tools: one that outputs

D T G R A and one that outputs D S R A (not shown i n Figure 6.1) which we have

included mainly to provide some output comparable to the output of ltl2dstar.

80 A U T O M A T A F O R F O R M A L M E T H O D S : L I T T L E S T E P S T O W A R D S P E R F E C T I O N

Safra-based translations. We evaluate both ltl2dstar and Spot for deter­

minization of nondeterministic automata. The tool ltl2dstar offers two i n ­

put interfaces: ltl2dstar (NBA) reads a Buchi automaton directly, and ltl2dstar

(LTL) reads an L T L formula together with instructions how to call some L T L

to N B A translator. The knowledge of the original L T L formula can enable

some optimizations (for example for stutter­invariant properties). 2 0

While ltl2dstar determinizes Buchi automata with marks on states, autfilt­

the determinization tool of Spot ­ can also process automata with marks on

transitions. Moreover, Spot can convert arbitrary automaton into a T B A i n ­

ternally and thus it can input T G B A (all considered L T L ­ t o ­ B A translators can

output T G B A) or even T E L A directly. If the input automaton is determinis­

tic, autfilt only simplifies it and we get a D T G B A or a D T E L A on output, in

other cases, Spot converts the automata into D T P A . You can see the workflow

of Spot i n Figure 6.2. Besides autfilt (denoted as Spot (autfilt)), Spot offers

another way to get a deterministic automaton that starts with an L T L formula

directly. This approach (referenced as (Spot, —, TP)) uses the same algorithms

as (Spot (autfilt), Spot, TGB.TP), however, it may produce different automata

2 0 Klein and Baier (2007), "On­the­Fly Stut­

tering in the Construction of Deterministic
Omega­Automata", [63].

in some cases 21

2 1 (i) The knowledge of the input formula al­

lows Spot to treat obligation properties more
efficiently and (ii) the acceptance marks that
are outside of SCC of the intermediate TGBA
are not removed (which is the default for
nondeterministic automata in Spot) in this
case as they are often beneficial to the de­

terminization algorithm of Spot; however,
sometimes they cause that the resulting au­

tomaton is larger.

<I1LA} ­ y j " " - .4 del" "K D T E L A)

(L I T) ;
M
'•o.

'Pot
334

A

(T B A)
Spot

* (D T P A)

(T G B A) -
Adet.

Spot *(D T G B A)

determinization LTL to nondet. automata internal transformations

LTL to nondeterministic automata. Our previous evaluat ion 2 2 suggests

using only Spot and L T L 3 B A for translation of L T L into B A for ltl2dstar. We

again run L T L 3 B A i n 2 configurations: one prefers to output automata as

small as possible (LTL3BA) while the other has a preference to create po­

tentially bigger but more deterministic automata (LTL3BAd). Spot offers a

similar choice between smaller and more deterministic automata, however,

the previous evaluation revealed that this choice makes only a negligible dif­

ference i n the size of the deterministic automata. As autfilt can take arbitrary

automaton on input, we also consider the tool c h a i n 2 3 that employs the tool

L T L 3 T E L A which translates L T L into T E L A .

Figure 6.2: Workflow of Spot for deter­

minization of automata that do not have
Buchi acceptance condition with marks on
states.

2 2 Blahoudek, Křetínský, and Strejček (2013),
"Comparison of LTL to Deterministic Rabin
Automata Translators", [14].

3 (Spot (autfilt), LTL3TELA, TEL.TEL)

Other (ltl2dpa). We use the version of ltl2dpa from the Rabinizer 4 tool set.

It offers two modes of conversion of L T L formulae into deterministic parity

automata. The modes differ i n the core translation used i n the first step. The

default option (ItUdpa, ItUldba TP) uses an L T L to c D G B A translation of the

tool ltl2ldba?4 If the cut­deterministic automaton (T G B A) is already deter­

ministic, ltl2dpa outputs it directly; otherwise it uses a construction based on

runs' coloring to produce a D T P A . The second option (ltl2dpa, Rabinizer, TP)

relies on the L T L to Rabin automata translation of Rabinizer 4 to bui ld an i n ­

termediate Rabin automaton with marks on transitions that is converted into

a parity automaton by a construction based on improved index appearance

record. 2 5

2 4 Sickert et al. (2016), "Limit­Deterministic
Buchi Automata for Linear Temporal Logic",
[62].

2 5 Kf etinsky et al. (2017), "Index Appearance
Record for Transforming Rabin Automata
into Parity Automata", [64].

L T L T O D E T E R M I N I S T I C A U T O M A T A T R A N S L A T O R S : E X P E R I M E N T A L E V A L U A T I O N 81

tool version webpage

L T L 3 B A

L T L 3 T E L A

Spot(ltl2tgba)

1.1.3

1.1.1

2.5

https://sourceforge.net/p/ltl3ba/

https://github.com/jurajmajor/ltl3tela

https://spot.lrde.epita.fr/

ltl2dstar

Spot(autfilt)

0.5.4

2.5

http://ltl2dstar.de/

https://spot.lrde.epita.fr/

L T L 3 D R A

Rabinizer 3

Rabinizer 4

0.2.6

3.1

15. 2. 2018

https://github.com/xblahoud/ltl3dra

https://www7.in.tum.de/~kretinsk/rabinizer3.html

https://www7.in.tum.de/~kretinsk/rabinizer4.html

ltl2dpa 15. 2. 2018 https://www7.in.tum.de/~kretinsk/rabinizer4.html

Table 6.1: References for tools used in the experimental evaluation of LTL to deterministic automata translators. The first part contains tools that
convert LTL formulae into nondeterministic automata, the second part lists tools that can determinize these nondeterministic automata, the third
part shows tools for direct translations, and finally, the last part gives a reference for M2dpa. For Rabinizer 4 and ltl2dpa we give the date of download
as they do not use any minor version numbers. Note that we also use M2tgba to convert LTL to deterministic automata.

type name interm. acc ltlcross command

L T L 3 D R A — T G R l t l 3 d r a - f %s > %0

L T L 3 D R A — SR l t l 3 d r a -H3 - f %s > %0

Rabinizer 3 — T G R Java - j a r R a b 3 / r a b i n i z e r 3 . 1 . j a r - s i l e n t \

direct
Rabinizer 3 — SR

-format=hoa -out=std %[eiRWM]f > %0

Java - j a r R a b 3 / r a b i n i z e r 3 . 1 . j a r - s i l e n t \

-format=hoa -out=std -auto=sr %[eiRWM]f > %0

Rabinizer 4 — T G R R a b 4 / b i n / l t l 2 d g r a % f > %0

Rabinizer 4 — SR R a b 4 / b i n / l t l 2 d r a % f | a u t f i l t --sbacc > %0

ltl2dstar (LTL) L T L 3 B A SB.SR l t l 2 d s t a r -H - t " l t l 3 b a -MO -H3 - f %%s > %%H" %L %0

ltl2dstar (LTL) L T L 3 B A d SB.SR l t l 2 d s t a r -H - t " l t l 3 b a -Ml -H3 - f %%s > %%H" %L %0

ltl2dstar (LTL) Spot SB.SR l t l 2 d s t a r -H - t " l t l 2 t g b a -B - f %%s > %%H" %L %0

ltl2dstar (NBA) L T L 3 B A SB.SR l t l 3 b a -MO -H3 - f %s | l t l 2 d s t a r -B -H - - > %0

ltl2dstar (N B A) L T L 3 B A d SB.SR l t l 3 b a -Ml -H3 - f %s | l t l 2 d s t a r -B -H - - > %0

ltl2dstar (NBA) Spot SB.SR l t l 2 t g b a -B - f % f | l t l 2 d s t a r -B -H - - > %0

Safra
Spot (autfilt) L T L 3 B A T G B . T P l t l 3 b a -MO -H2 - f %s | a u t f i l t -DG > %0

Safra
Spot (autfilt) L T L 3 B A SB.TP l t l 3 b a -MO -H3 - f %s | a u t f i l t -DG > %0

Spot (autfilt) L T L 3 B A d T G B . T P l t l 3 b a -Ml -H2 - f %s | a u t f i l t -DG > %0

Spot (autfilt) L T L 3 B A d SB.TP l t l 3 b a -Ml -H3 - f %s | a u t f i l t -DG > %0

Spot (autfilt) L T L 3 T E L A T E L . T E L l t l 3 t e l a - f %f | a u t f i l t -DG > %0

Spot (autfilt) Spot T G B . T P l t l 2 t g b a - f %f | a u t f i l t -DG > %0

Spot (autfilt) Spot SB.TP l t l 2 t g b a -B - f %f | a u t f i l t -DG > %0

Spot — TP l t l 2 t g b a -DG - f % f > %0

other
ltl2dpa Itl2ldba T P R a b 4 / b i n / l t l 2 d p a --mode=ldba %f > %0

other
ltl2dpa Rabinizer TP R a b 4 / b i n / l t l 2 d p a --mode=rabinizer %f > %0

Table 6.2: A l l considered tool chains with the corresponding commands passed to ltlcross. The tool chains are divided into three parts regarding the
type of translation they rely on.

https://sourceforge.net/p/ltl3ba/
https://github.com/jurajmajor/ltl3tela
https://spot.lrde.epita.fr/
http://ltl2dstar.de/
https://spot.lrde.epita.fr/
https://github.com/xblahoud/ltl3dra
https://www7.in.tum.de/~kretinsk/rabinizer3.html
https://www7.in.tum.de/~kretinsk/rabinizer4.html
https://www7.in.tum.de/~kretinsk/rabinizer4.html

82 A U T O M A T A F O R F O R M A L M E T H O D S : L I T T L E S T E P S T O W A R D S P E R F E C T I O N

Discovered bugs. Dur ing preparation of this chapter, I have found several

confirmed bugs i n some of the considered tools. Namely, 5 bugs i n (the pre­

l iminary versions) of Rabinizer 4 and ltl2dpa, 5 bugs i n the Spot library, 3

bugs i n Rabinizer 3.1, one segmentation fault bug i n L T L 3 T E L A , and one bug

in ltl2dstar. Authors of the touched tools (except Rabinizer 3.1) have already

fixed most of the bugs and released new versions of the tools. I am grateful

for their prompt response (even during the Christmas holidays).

Figure 6.3: Preparation of the formulae from the literature, and classification according to fragments of LTL.

L T L T O D E T E R M I N I S T I C A U T O M A T A T R A N S L A T O R S : E X P E R I M E N T A L E V A L U A T I O N 83

6.2 B E N C H M A R K F O R M U L A E

We use benchmark formulae from two sources ­ formulae from literature and

randomly generated formulae. We consider both concrete and parametric for­

mulae that were already used for benchmarking L T L translators i n the liter­

ature. We further divide the formulae based on L T L fragments. We use the

word benchmark to denote each of the considered sets of L T L formulae.

Concrete formulae from literature. We have collected many formulae that

were already used i n the literature 2 6 to evaluate the performance of L T L trans­

lators. For each formula from the listed sources, we added its negation into

our set, simplified all the formulae by ltlfilt , 2 7 removed duplicates and formu­

lae equivalent to true or false. The resulting collection contains 221 formulae.

As L T L 3 D R A works correctly for a fragment of L T L only, we have further

separated the set of formulae based on their presence to L T L \ G (U , X) . The

Figure 6.3 shows that there are 92 formulae from the fragment L T L \ G (U , X)

and 129 formulae outside L T L \ G (U , X) (referenced as/u//LTL). There are 42

formulae that are both i n L T L \ G (U , X) andLTL(F ,G) . We have not separated

the benchmark of L T L \ G (U , X) into two due to its small size.

2 6Etessami and Holzmann (2000), [26];
Pelánek (2007), [30]; Somenzi and Bloem
(2000), [36]; Dwyer, Avrunin, and Corbett
(1998), [42]; Holeček etal. (2004), [65].
2 7Duret­Lutz (2013), "Manipulating LTL
Formulas Using Spot 1.0", [41].

Random formulae. We have used the tool randltl from the Spot library to

generate 500 formulae from each relevant fragment of L T L randomly. We

consider three fragments: full LTL, L T L \ G (U , X) , and LTL(F ,G) . The frag­

ment LTL(F ,G) was included because the direct translations can deal with

the operators F and G much easier than with other temporal operators. The

sets for the full L T L and for L T L \ G (U , X) are disjoint, while L T L \ G (U , X)

shares 50 formulae with L T L (F , G) . Further, 7 formulae from the full L T L and

14 formulae from L T L \ G (U , X) are both i n the random and i n the literature

benchmark.

Table 6.3 gives the total number of formulae i n each benchmark. The mixed

source shows the number of distinct formulae after the corresponding litera­

ture and random benchmarks were merged together. The second column of

the table shows the number of formulae for which all tool chains were able

to produce a correct deterministic automaton within given constraints. See

the next section for the constraints and for the reasons that prevented the tool

chains from creating the desired automata.

source fragment total count all finished

literature
full L T L 129 122

L T L \ G (U , X) 92 89

full L T L 500 479

random L T L \ G (U , X) 500 494

LTL(F ,G) 500 500

mixed
full L T L 622 594

L T L \ G (U , X) 578 569

Table 6.3: Concrete formulae benchmarks.

84 A U T O M A T A F O R F O R M A L M E T H O D S : L I T T L E S T E P S T O W A R D S P E R F E C T I O N

Parametric formulae from literature. Besides concrete formulae, we eval­

uate the tool chains on parametric formulae. We have used formulae that

were already used to benchmark L T L to automata translators by Gastin and

Oddoux, 2 8 Geldenhuys and Hansen, 2 9 Mi i l l e r and Sickert, 3 0 formulae that wit­

ness the double exponential blow-up of the L T L to deterministic automata

translation described by Kupferman and Rosenberg, 3 1 and finally two formu­

lae from LTL(F .G) .

We have used the tool genltl from the Spot library to generate all instances

of the parametric formulae, and we adopt the naming of the formulae used by

this tool. For the formulae used already i n the literature, the first part of the

name is a lowercase acronym of the authors' names (for example go for Gastin

and Oddoux). The two additional formulae from LTL(F ,G) are called and-fg

and or-fg. For the witness formulae of the double exponential blow-up (kr-n

and kr-nlogn), please consult the original paper. The list of the other formulae

follows.

2 8 Gastin and Oddoux (2001), "Fast LTL to
Biichi Automata Translation", [31].
2 9 Geldenhuys and Hansen (2006), "Larger
Automata and Less Work for LTL Model
Checking", [66].
3 0 Miiller and Sickert (2017), "LTL to Deter­
ministic Emerson-Lei Automata", [67].
3 1 Kupferman and Rosenberg (2010), "The
Blowup in Translating LTL to Deterministic
Automata", [68].

gh-e(n) = A Feu
i=l

gh-q(n) n
= A (F a i v G a i + i)

gh-s(n) = \ / G a i gh-r(n)
n

= / \ (G F a t v F G a i + 1)

g h - c l (n) = V GFcu gh-u(n) = (...((Q! U a 2) U a 3) U . . .) U a n

gh-c2(n) = A G F a t
gh-u2(n) = a i U (a 2 U (. . . (a n _ 1 U p n) . . .))

and-fg(n) = A F G a t
ms-phi-h(n) = \ / (F G (- . i a v X 1 b))

i=0

or-fg(n) = V F G a t
go-fheta(n) = - ^ A G F a i j - G (b - F c) j

ms-phi-r(O) = FGao A GFbo ms-phi - r (i+ 1) = F G a i + i A G F b i + i vms-ph i - s (i)

ms-phi-s(O) = FGao v GFbo ms-phi-s(i+ 1) = FGai+i v G F b i + i A m s - p h i - r (i)

L T L T O D E T E R M I N I S T I C A U T O M A T A T R A N S L A T O R S : E X P E R I M E N T A L E V A L U A T I O N

6 . 3 H A R D W A R E , B E N C H M A R K S E T T I N G S , A N D E R R O R S

A l l experiments ran on a workstation with the Intel i7-3770 3.40GHz C P U

and with 8GB D D R 3 1333MHz R A M . We set up a time limit of 120 seconds

for non-parametric and 300 seconds for parametric benchmarks. We d id not

set any explicit memory limit. We rely on ltlcross from the Spot library to

run the translations. Spot can only process automata that use up to 32 differ­

ent acceptance marks and thus we had to remove all automata violating the

l imit of 32 marks from our results. This limitation affected mostly automata

produced by Rabinizer 3.

Tables 6.4 and 6.5 give the summary of automata that we were not able to

analyze or were flawed and thus we removed them from the final results. The

unique case where some tool crashed was again due to the Spot's limitation on

the number of marks - as L T L 3 T E L A relies internally on Spot, i n case it needs

more than 32 marks it exits and produces no automaton. The total numbers

of formulae for which some tool failed to produce a correct automaton are 7

and 3 for the literature benchmarks and 21 and 6 for the random benchmarks,

respecting the order of fragments from the tables; the LTL(F ,G) benchmark

of random formulae contains no error (see Table 6.3).

Table 6.4: Errors summary for formulae from literature.

full L T L L T L \ G (U , X)

main interm. acc >32 marks timeout >32 marks timeout

L T L 3 D R A — T G R — — 1 —

Rabinizer 3 - SR 6 — 1 1

Rabinizer 3 — T G R — — — 1

Spot (autfilt) L T L 3 T E L A T E L . T E L — 1 — 1

Table 6.5: Errors summary for random formulae.

full L T L L T L \ G (U , X)

main interm. acc >32 marks crash incorrect >32 marks

Rabinizer 3 - SR 21 — 1 5

Rabinizer 3 — T G R 6 — 1 1

Spot (autfilt) L T L 3 T E L A T E L . T E L — 1 — —

The only tool whose bugs remained unfixed unt i l submission of the thesis

is Rabinizer 3. The tool sometimes outputs an automaton with an empty ac­

ceptance condition (equivalent to false). This causes the two 1 i n the column

for incorrect automata. The incorrect automata were removed from further

analysis.

86 A U T O M A T A F O R F O R M A L M E T H O D S : L I T T L E S T E P S T O W A R D S P E R F E C T I O N

6 . 4 R E S U L T S : N O N - P A R A M E T R I C B E N C H M A R K S

We first describe how we present the measured data and then we offer some

observations based on the data. We use mainly the following three types of

data visualization. Additionally, we use scatter and quantile plots to investi­

gate some phenomena more deeply.

Numbers of minimal automata. Figure 6.4 show for each benchmark and

each approach (direct, So/ra-like, and ItUdpa) the number of formulae from

the benchmark for which some tool chain of the given approach can produce

automaton with the min ima l number of states from all considered tool chains.

Figures 6.6 (literature benchmarks) and 6.7 (random benchmarks) refine the

information from Figure 6.4 to the level of tool chains. There are two plots

on each of these figures. The right-hand side presents the numbers after all

automata were converted to use marks on states exclusively (using autfilt).

Cumulative numbers. Tables 6.6 (literature) and 6.7 (random) present cu­

mulative results of the evaluated tool chains on the non-parametric bench­

marks. For each benchmark and each tool chain, the tables show the cumula­

tive number of states and acceptance marks 3 2 of the produced automata. The

third column sums the time needed to compute all automata from the bench­

mark by the corresponding tool chain. The green color highlights the best

(minimal) values for each column. The thick lines divide translation types. 3 3

We include only formulae where all tools finished their computation without

any error i n this comparison? 4 the number i n brackets following a fragment

name shows the number of such formulae for the benchmark. Note that these

tables mix automata with different acceptance conditions.

Cross-comparison. Cross-comparison tables compare tool chains within

some logical groups i n more detail. More precisely, we compare the tool

chains against each other on individual formulae and count the number of

victories on formulae from each benchmark. Let us consider two automata

A-\ and A2 produced for a formula cp by the tool chains t i and t2 , respec­

tively. We say that t i wins against t2 on cp i f

1. t.2 violates some of the given limits (time, >32 acceptance marks, incorrect

automaton) and t i succeeds to bu i ld a correct A-\, or

2. A-\ has less states than A2, or

3. i f the numbers of states of Ai and A2 agree and Ai uses fewer acceptance

marks than Ai.

The tables show the number of victories for all pairs of tool chains from

the corresponding groups. We assign a number to each tool chain i n the first

column (#), this number is used to reference the tool chain i n the columns

header. A cell on the row r i n column c contains the number of victories of

the tool chain r over c. Finally, the last column of the tables sums the num­

ber of victories for the tool chain i n each row. We use brown boxes around

fragments name to distinguish the random benchmarks (box) from the lit­

erature benchmarks (no box).We present the cross-comparison for tools that

perform direct translation (Table 6.8), tool chains of ltl2dstar (Table 6.9), tool

chains of Spot (Table 6.10), and finally for ltl2dpa together with the tools Spot

and Rabinizer 4 selected based on the previous results (Table 6.11).

3 2 Here we consider the number of distinct
marks (the size of the set M) , not the count
of marks placed on individual states and
transitions.
3 3 direct, Safra-like, and ltl2dpa

3 4 See Tables 6.4 and 6.5 for reasons for for­
mula exclusions.

L T L T O D E T E R M I N I S T I C A U T O M A T A T R A N S L A T O R S : E X P E R I M E N T A L E V A L U A T I O N 87

Observations based on the numbers of minimal automata. The numbers

of min imal automata by approaches indicate that the determinization-based

approach (denoted as Safra) is best suited for formulae outside L T L \ G (U , X)

(full LTL) while the direct translations excel on the LTL(F,G) fragment. How­

ever, Figure 6.5 shows that none of the approaches is truly dominant to the

others. 3 5

3 5 It is often the case that at least two ap­
proaches achieve the same result.

If we look at the level of tools, the first observation is no longer val id for

random formulae outside L T L \ G (U , X) , where Rabinizer 4 wins with its d i ­

rect approach. However, for the formulae from literature, Rabinizer 4 cannot

compete with Spot. Overall, Rabinizer 4 seems to be the most successful tool

that performs a direct translation and (Spot, —, TP) is the best Safra-based

tool chain.

It is particularly interesting to look at the numbers of min imal automata

with marks on states for the fragment LTL(F ,G) i n Figure 6.7. (i) It is the only

benchmark where ltl2dstar seems to be the better option as the determiniza­

tion tool than Spot (please keep i n m i n d that it is no longer the case i f you

do not request marks on states), (ii) It is the only benchmark where (ltl2dpa,

ltl2ldba TP) is the tool chain that hits the m i n i m u m size most often, and the

lead is outstanding (96 cases).

Pushing marks from transitions to states was very harmful to all tools us­

ing the generalized Rabin cond i t i on 3 6 and for Spot with L T L 3 T E L A while it 3 6 LTL3DRA, Rabinizer 3, and Rabinizer 4

helped ltl2dpa at the same time. The algorithm that moves the marks creates,

for each state s and each combination of marks that can be found on transi­

tions leading to s, a unique state. Parity automata have at most one mark on

each edge while the T G R A usually place marks on edges i n numerous com­

binations - each such the combination leads to a unique state after marks are

pushed to states.

O n the random benchmarks with restricted fragments Spot is most suc­

cessful with L T L 3 T E L A . We suspect that many of these cases are when the

T E L A produced by L T L 3 T E L A is already deterministic. However, i f we con­

sult Table 6.7 we cannot confirm the dominance of this tool chain over other

tool chains that use Spot for determinization i n cumulative sizes of automata.

Observations based on the cumulative numbers. The cumulative num­

bers reveal that Rabinizer 4 produces (on average) the smallest automata for

the restricted fragments. O n the fragment LTL(F ,G) , we can observe that the

determinization-based tools are a bad choice. O n the other hand, the num­

bers are i n favour of Spot for the formulae outside L T L \ G (U , X) .

Please note that the high numbers of states for ltl2dstar can be influenced

by the fact that it produces automata with marks of states while the other tool

chains usually place marks on transitions. We discuss ltl2dstar i n more details

later on and we address this issue when we compare ltl2dstar and autfilt.

Spot is the right choice for situations where a simple acceptance condition

is desirable - all tool chains that involve some other tool than Spot need far

more acceptance marks than Spot alone for each of the five benchmarks.

Finally, Rabinizer 3, Rabinizer 4, ltl2dpa, and partially L T L 3 T E L A do ex­

hibit long computation times. However, the computation time of the automa­

ton is usually the minor problem i n comparison to the analysis of the product

with some system that follows i n many cases.

88 A U T O M A T A F O R F O R M A L M E T H O D S : L I T T L E S T E P S T O W A R D S P E R F E C T I O N

direct Safra M2dpa

full L T L

[129]

L T L N G (U , X)

[92]

76
115

90

76
67

20 40 60 80 100

of automata with minimal size

120

full LTL

[500]

L T L \ G (U , X)

[500]

L T L(F.G)

[500]

355
384

330

464
414

440

483
262

361

0 50 100 150 200 250 300 350 400 450 500

of automata with minimal size

Figure 6.4: Numbers of minimal automa­
ta by approaches for the literature (top) and
the random (bottom) benchmarks. For each
benchmark and each approach we show in
how many cases some tool that uses the con­
sidered approach produced an automaton
with the minimal number of states that was
achieved for a given formula. The numbers
in brackets below the fragment names show
the total number of formulae in the bench­
mark.

• direct • Safra • M2dpa • nonunique

full LTL

[129]

L T L \ G (U , X)

[92]

36 1

12 3 77

full LTL

[500]

L T L \ G (U , X)

[500]

LTL(F.G)

[500]

47

110 334

22 2

22 454

100

12 3S6

20 40 60 80 100 120 140

of automata with minimal size

Figure 6.5: Numbers of unique minimal au­
tomata by approaches for the literature (top)
and the random (bottom) benchmarks. We
consider only cases where no other approach
reached the same size of automata; the num­
ber of cases where at least two approaches
managed to produce some minimal automa­
ton is shown by the nonunique (grey) bar.

0 50 100 150 200 250 300 350 400 450 500 550

of automata with minimal size

L T L T O D E T E R M I N I S T I C A U T O M A T A T R A N S L A T O R S : E X P E R I M E N T A L E V A L U A T I O N 89

mixed marks marks on states

LTL3DRA

LTL3DRA

Rabinizer 3

Rabinizer 3

Rabinizer 4

Rabinizer 4

TGR

SR

TGR

SR

TGR

SR

• 5

• 59

• 32

• 26
• 54

28

• 74
86

• 48
• 57

• 25

• 46

10
• 42

36

• 60
• 74

• 60
• 68

ltl2dstar (LTL) LTL3BA SB. SR

ltl2dstar (LTL) LTL3BAd SB.SR

ltl2dstar (LTL) Spot SB.SR

ltl2dstar (NBA) LTL3BA SB.SR

ltl2dstar (NBA) LTL3BAd SB.SR

ltl2dstar (NBA) Spot SB.SR

Spot (autfilt) LTL3BA TGB.TP

Spot (autfilt) LTL3BA SB.TP

Spot (autfilt) LTL3BAd TGB.TP

Spot (autfilt) LTL3BAd SB.TP

Spot (autfilt) LTL3TELA TEL.TEL

Spot (autfilt) Spot TGB.TP

Spot (autfilt) Spot SB.TP

Spot — TP

• 26
• 35

• 29
40

ZD 28
44

14
• 26

19
• 34

27
44

• 46
• 70

45
• 63

• 49
• 74

• 51
• 66

• 56
• 75

1 109
• 61

63
• 83

• 73
] 111

• 61
• 90

ltl2dpa ltl2ldba TP

ltl2dpa Rabinizer TP

• 66
• 73

=1 69
• 66

0 20 40 60 80 100 120 0 20 40 60 80

of automata with min imal size # of automata with min imal size

full L T L [129] • L T L \ G (U , X) [92]

Figure 6.6: The numbers of minimal automata for literature benchmarks.

90 A U T O M A T A F O R F O R M A L M E T H O D S : L I T T L E S T E P S T O W A R D S P E R F E C T I O N

mixed marks marks on states

LTL3DRA

LTL3DRA

Rabinizer 3

Rabinizer 3

Rabinizer 4

Rabinizer 4

TGR

SR

TGR H

SR

TGR

SR

• 19

: 12

177
282

72

• 115
• 191

265

53
1 12

341
• 446

• 478
• 154

51
• 298

143
1 147

• 120
=1 144

50
• 133
=1 143

• 69
• 70

• 310

• 306
• 279

• 295

• 420

• 415

M2dstar (LTL) LTL3BA SB.SR

M2dstar (LTL) LTL3BAd SB.SR -

M2dstar (LTL) Spot SB.SR

M2dstar(NBA) LTL3BA SB.SR

M2dstar (NBA) LTL3BAd SB.SR

M2dstar (NBA) Spot SB.SR

Spot (autfilt) LTL3BA TGB.TP -

Spot (autfilt) LTL3BA SB.TP

Spot (autfilt) LTL3BAd TGB.TP

Spot (autfilt) LTL3BAd SB.TP

Spot (autfilt) LTL3TELA TEL.TEL

Spot (autfilt) Spot TGB.TP

Spot (autfilt) Spot SB.TP

Spot — TP

] 8

• 24
] 9

25
d 19

• 30
5_

:TT
] 6
: 12
• 19

1 73

I 78

96

43
• 105
= 1 146

47
• 113

• 158
• 55

• 129
= 1 164

51

56

14

: 11
• If

53

• 65
30

30
96

51
• 129
= 1 160

• 114

• 303
= 1 353

• 268

• 94
• 315

• 223

44
• 331

• 235

79
• 317

• 119

• 306
= 1 350

97

• 267
1 314

231

43
329

255

• 98
• 318

• 311

218
• 401

• 278

159
• 361

• 315

• 152
• 367

• 119

• 287
= 1 331

• 244

58
• 343

• 276

• 116
332

• 332

153
369

• 120

• 303
= 1 333

M2dpa

M2dpa

M2ldba

Rabinizer

TP -

TP

283
=1 417
• 402

• 266

• 363
• 423

0 100 200 300 400 500 0 100 200 300 400

of automata with min ima l size # of automata with min ima l size

full L T L [500] • L T L \ G (U , X) [500] S LTL(F ,G) [500]

Figure 6.7: The numbers of minimal automata for random benchmarks.

L T L T O D E T E R M I N I S T I C A U T O M A T A T R A N S L A T O R S : E X P E R I M E N T A L E V A L U A T I O N

Table 6.6: The cumulative numbers for the literature benchmarks.

full LTL [122] L T L \ G (U , X) [89]
main tool intermediate acc states acc time states acc time

LTL3DRA —
TGR

SR
— — — 315

451
172
276

2
3

Rabinizer 3 —
TGR

SR
869

1707
426
980

304
424

870
1623

191
548

138
156

Rabinizer 4
TGR 841 375 104 268 196 51

Rabinizer 4
SR 1350 402 106 386 218 51

ltl2dstar
LTL

LTL3BA SB.SR 1992 398 4 59559 276 24
ltl2dstar

LTL
LTL3BAd

Spot
SB.SR
SB.SR

1189
1032

376
338

3
3

59515
59712

274
264

25
24

ltl2dstar
NBA

LTL3BA SB.SR 2170 396 2 78671 264 27
ltl2dstar

NBA
LTL3BAd SB.SR 1254 374 1 78644 264 28

ltl2dstar
NBA

Spot SB.SR 1034 334 2 59714 242 22

LTL3BA
TGB.TP

SB.TP
987

1211
250
283

2
2

452
495

152
148 1

Spot
autfilt

LTL3BAd
TGB.TP

SB.TP
706
738

255
254

1
1

437
482

148
141 ; Spot

autfilt
LTL3TELA TEL.TEL 753 250 122 428 159 122

Spot
TGB.TP 684 211 1 420 134 1

Spot
SB.TP 688 213 2 448 127 1

Spot — TP 680 207 1 420 134 2

ltl2dpa
M2ldba

Rabinizer
TP
TP

754
901

327
349

95
108

294
414

201
202

50
55

Table 6.7: The cumulative numbers for the random benchmarks.

full LTL [479] L T L \ G (U , X) [494] LTL(F,G) [500]
main tool intermediate acc states acc time states acc time states acc time

LTL3DRA
TGR — — — 3359 1040 4 1359 1571 4

LTL3DRA
SR — — — 3962 1826 6 2918 2022 5

Rabinizer 3 —
TGR

SR
4269

^0609

2839
6072

145
276

2766

4298
1546
3892

82
97

1488
4165

1710
4012

77
87

Rabinizer 4
TGR 3753 1544 371 2465 1089 329 1045 1468 312

Rabinizer 4
SR 5704 1582 376 2833 1182 337 2452 1630 317

ltl2dstar
LTL

LTL3BA SB.SR 39058 2008 14 4117 1638 11 6912 2056 10
ltl2dstar

LTL
LTL3BAd

Spot
SB.SR
SB.SR

9238
8111

1830
1716

12
15

4099
4074

1576
1504

12
12

7697

8563
2038
1980

11
11

ltl2dstar
NBA

LTL3BA SB.SR 49841 1956 9 4952 1556 5 15223 2016 5
ltl2dstar

NBA
LTL3BAd SB.SR 11700 1772 4 4945 1508 4 15522 1984 4

ltl2dstar
NBA

Spot SB.SR 8247 1658 6 4116 1428 5 8867 2008 5

LTL3BA
TGB.TP 3853 1026 7 2646 817 5 2021 1312 4

LTL3BA
SB.TP 4979 1146 6 2833 833 5 3183 1388 4

Spot
autfilt

LTL3BAd
TGB.TP 3809 1052 5 2658 833 4 2054 1302 4

Spot
autfilt

LTL3BAd
SB.TP 4279 1049 5 2850 817 5 2863 1330 5

Spot
autfilt

LTL3TELA TEL.TEL 4346 1071 10 2666 819 6 2270 1329 5

Spot
TGB.TP 3695 984 6 2611 767 7 1934 1251 7

Spot
SB.TP 4022 986 6 2717 769 5 2428 1263 5

Spot — TP 3625 925 5 2606 743 6 1931 1250 6

ltl2dpa
M2ldba TP 6388 1299 359 2536 1115 320 1199 1468 308

ltl2dpa
Rabinizer TP 4391 1323 390 2505 1119 348 1244 1492 327

92 A U T O M A T A F O R F O R M A L M E T H O D S : L I T T L E S T E P S T O W A R D S P E R F E C T I O N

Cross-comparison (direct). Table 6.8 shows that Rabinizer 4 overall beats

the other tools for direct translations. However, there are still many cases

where either L T L 3 D R A or Rabinizer 3 produces a better 3 7 automaton (see

the column 5 which lists the number of losses of Rabinizer 4).

The results of Rabinizer 3 that produces D S R A are particularly bad. They

are partially caused by the fact that Rabinizer 3 usually uses a lot of unnec­

essary acceptance marks; it also suggests that the degeneralization procedure

can be improved.

3 7 Note that in case of equally sized automata
we also compare the numbers of acceptance
marks.

Table 6.8: Cross-comparison of the tools that perform a direct translation.

main tool intermediate acc # V

L] ON

L T L 3 D R A

Rabinizer 3

Rabinizer 4

T G R

SR

T G R 3 — — — 129 21 60 210

SR 4 — — 0 — 6 10 16

T G R

SR

101 123 —

56 119 3

74 298

- 178

U ON
/ '—'

L T L 3 D R A

Rabinizer 3

Rabinizer 4

T G R

SR 1

91 31 89 30

- 8 84 2

58 299

10 105

T G R 3 9 80 — 91 28 55 263

SR 4 2 5 — 1 4 12

T G R 5 37 65 46 91 — 42 281

SR 6 30 43 34 88 0 - 195

S o M o
—I LO

L T L 3 D R A

Rabinizer 3

Rabinizer 4

T G R

SR

T G R

SR

- 494 50

0 - 2

210 754

10 12

T G R

SR

426 498 —

280 489 17

295 1219

- 786

rn O
, HI

L T L 3 D R A

Rabinizer 3

Rabinizer 4

T G R

SR

500

0

219 474 81

26 434 9

189 1463

26 495

T G R

SR

93 468

26 64 0

203 1331

8 103

T G R

SR

340 444

264 401

406 495 —

290 492 2

204 1889

— 1449

5

L T L 3 D R A

Rabinizer 3

Rabinizer 4

T G R

SR

— 499

0 -

208 493 70

22 416 1

397 1667

50 489

T G R

SR

114 466

6 81

- 500 48

0 - 0

374 1502

28 115

T G R

SR

309 490

65 319

363 500 -

87 472 0

457 2119

— 943

L T L T O D E T E R M I N I S T I C A U T O M A T A T R A N S L A T O R S : E X P E R I M E N T A L E V A L U A T I O N 93

ltl2dstar. The following three paragraphs combine observations from the

cumulative numbers and the cross-comparison i n Table 6.9 that was created

for the ltl2dstar tool chains. We first address the question: Which LTL-to-BA

translator should we use with ltl2dstar?

From the cross-comparison it seems that the N B A interface combined with

Spot is the best choice. The cumulative numbers confirm this for the number

of acceptance marks, but slightly favour the L T L interface for the number of

states. The tool chain of L T L interface combined with L T L 3 B A d offers a very

good alternative to the tool chains with Spot; it produces the min imal number

of states on the LTL(F,G) benchmark and on the L T L \ G (U , X) formulae from

literature.

The difference between the L T L and N B A interface combined with Spot is

negligible, while it is significant with L T L 3 B A at the same time. The reason for

this is that Spot sets the stutter-invariance property i n its H O A representation

of the produced nondeterministic automata while L T L 3 B A does not. This

property is read by ltl2dstar which can then employ optimizations for stutter-

invariant properties.

Spot. The message of the comparison of the tool chains that use Spot for

determinization is clear: use (Spot, —, TP) . However, there are still some cases

where Spot works better with L T L 3 B A (see the column 8 i n Table 6.10); even

more, on the fragment LTL (F ,G) , (Spot (autfilt), L T L 3 T E L A , T E L . T E L) wins

the battle i n the cross-comparison (but not i n the cumulative numbers).

This is expected as L T L 3 T E L A works best on LTL (F ,G) formulae and of­

ten produces a deterministic automaton. O n the other hand, i n cases where

the intermediate T E L A is not deterministic, the tool chain has to employ an

expensive transformation into a T B A and produces large automata. These i n ­

consistent results of the tool chain with L T L 3 T E L A can be observed on the

quantile plot i n Figure 6.8. The figure shows automata sizes of three selected

tool chains based on Spots determinization. For each of these tool chains

we have sorted the automata sizes independently and plotted the results. The

green line shows the min ima l automata achieved by some Spot s tool chain. 3 8

We can see that (Spot (autfilt), L T L 3 T E L A , T E L . T E L) produced both most of

the smallest and also the largest automata from the selected tool chains.

S 10'

10 c

• min(Spot)
• (Spot (autfilt), L T L 3 T E L A , T E L . T E L)
• (Spot (autfilt), L T L 3 B A , T G B . T P)
(Spot, - , TP)

3 8 minimal from all tool chains based on
Spot, not only from the selected ones

Figure 6.8: Quantile plot of automata sizes
of selected tool chains that use Spot for de­
terminization on the LTL(F.G) benchmark.
Note log scale.

50 100 150 200 250 300 350 400 450 500

n- th smallest automaton

A U T O M A T A F O R F O R M A L M E T H O D S : L I T T L E S T E P S T O W A R D S P E R F E C T I O N

Table 6.9: Cross-comparison of tool chains that use M2dstar for determinization of nondeterministic automata.

main tool intermediate acc # 1 2 3 4 5 6 V

LT
L

0-
<N

ltl2dstar

L T L

L T L 3 B A

L T L 3 B A d

Spot

SB.SR

SB.SR

SB.SR

1

2

3

55

66

7

27

6

4

25

70

79

25

19

41

7

5

1

70

153

214

1
0-
<N

ltl2dstar

N B A

L T L 3 B A

L T L 3 B A d

SB.SR

SB.SR

4

5

0

51

7

0

5

3 57

8 5

3

25

114
ltl2dstar

N B A
Spot SB.SR 6 67 28 1 79 41 — 216

><

ltl2dstar

L T L

L T L 3 B A

L T L 3 B A d

SB.SR

SB.SR

1

2 17

3 2

3

38

49

32

31

3

3

78

103

<N

ltl2dstar

L T L
Spot SB.SR 3 23 10 — 51 33 1 118

L
T

L
\G

ON

ltl2dstar

N B A

L T L 3 B A

L T L 3 B A d

SB.SR

SB.SR

4

5

3

16

2

4

2

5 18

4 1

3

12

46
ltl2dstar

N B A
Spot SB.SR 6 33 20 10 51 33 — 147

ltl2dstar

L T L

L T L 3 B A

L T L 3 B A d

SB.SR

SB.SR

1

2 189

34 44

54

142

269

121

129

53

80

394

721

cT

ltl2dstar

L T L
Spot SB.SR 3 229 105 — 303 206 33 876

LO

ltl2dstar

N B A

L T L 3 B A

L T L 3 B A d

SB.SR

SB.SR

4

5

22

165

29

16

29

41 204

30 25

36

135

462
ltl2dstar

N B A
Spot SB.SR f. 225 112 19 292 185 833 Spot SB.SR 225 112 19 292 185 833

X
ltl2dstar

L T L

L T L 3 B A

L T L 3 B A d

SB.SR

SB.SR

1

2 72

24 27

21

152

191

141

132

37

33

381

449

=T cT

ltl2dstar

L T L
Spot SB.SR 3 117 61 — 214 163 15 570

L
T

L
\G

LO

ltl2dstar

N B A

L T L 3 B A

L T L 3 B A d

SB.SR

SB.SR

4

5

24

79

36

24

38

37 86

30 22

15

150

241
ltl2dstar

N B A
Spot SB.SR f. 140 94 36 208 158 636 Spot SB.SR 140 94 36 208 158 636

ltl2dstar

L T L

L T L 3 B A SB.SR 1 — 57 81 455 399 120 1112

3
LL?

ltl2dstar

L T L
L T L 3 B A d SB.SR 2 101 — 81 462 411 126 1181

3
LL? cT

ltl2dstar

L T L
Spot SB.SR 3 130 83 — 451 402 52 1118

h-l LO

ltl2dstar

N B A

L T L 3 B A

L T L 3 B A d

SB.SR

SB.SR

4

5

5

42

8

10

19

22 154

87 20

22

139

250
ltl2dstar

N B A
Spot SB.SR f. 123 84 3 449 400 1059 Spot SB.SR 123 84 3 449 400 1059

L T L T O D E T E R M I N I S T I C A U T O M A T A T R A N S L A T O R S : E X P E R I M E N T A L E V A L U A T I O N 95

Table 6.10: Cross-comparison of tool chains that use Spot for determinization of nondeterministic automata.

main tool intermediate acc # 1 2 3 4 5 6 7 8 V

fu
ll

LT
L

[1
29

]

T G B . T P 1
L T L 3 B A

SB.TP 2 16

38 18

4

31

2

28

12

22

0

25

2

22

0

184

36

fu
ll

LT
L

[1
29

]

T G B . T P 3
Spot L T L 3 B A d

SB.TP 4
autfilt

23

26

33

29 6

22 22

18

6

3

13

3

6

3

125

88

fu
ll

LT
L

[1
29

]

L T L 3 T E L A T E L . T E L 5 20 27 8 23 — 2 12 2 94 fu
ll

LT
L

[1
29

]

T G B . T P 6
Spot

SB.TP 7

45

44

45

43

27

26

36

30

36

35 2

12 0

2

201

182

fu
ll

LT
L

[1
29

]

Spot — T P 8 49 49 31 40 42 6 16 — 233

><
=f „

' (N
/ 1—1

h-)
Ö

T G B . T P 1
L T L 3 B A

SB.TP 2 2

18 3

0

16

3

12

2

4

1

14

3

4

1

71

12

><
=f „

' (N
/ 1—1

h-)
Ö

T G B . T P 3
Spot L T L 3 B A d

SB.TP 4
autfilt

4

4

17

11 0

16 11

2

2

1

13

2

2

1

65

21
><
=f „

' (N
/ 1—1

h-)
Ö

L T L 3 T E L A T E L . T E L 5 15 24 12 24 — 5 16 5 101

><
=f „

' (N
/ 1—1

h-)
Ö T G B . T P 6

Spot
SB.TP 7

22

18

28

26

19

15

28

18

16

8 1

15 0

1

128

87

><
=f „

' (N
/ 1—1

h-)
Ö

Spot — T P 8 22 28 19 28 16 0 15 — 128

fu
ll

LT
L

[5
00

]

T G B . T P 1
L T L 3 B A

SB.TP 2 35

223 48

32

204

20

150

62

79

31

199

36

64

26

967

242

fu
ll

LT
L

[5
00

]

T G B . T P 3
Spot L T L 3 B A d

SB.TP 4
autfilt

26

50

210

105 37

183 129

74

48

28

177

35

31

23

804

352

fu
ll

LT
L

[5
00

]

L T L 3 T E L A T E L . T E L 5 65 193 57 159 — 43 149 41 707 fu
ll

LT
L

[5
00

]

T G B . T P 6
Spot

SB.TP 7

117

116

251

183

104

103

223

128

165

133 26

163 2

23

1025

712

fu
ll

LT
L

[5
00

]

Spot — T P 8 178 314 165 291 233 75 231 — 1487

L
T

L
\G

(U
,X

)

[5
00

]

T G B . T P 1
L T L 3 B A

SB.TP 2 12

110 41

20

113

17

66

15

41

8

99

19

39

6

509

97

L
T

L
\G

(U
,X

)

[5
00

]

T G B . T P 3
Spot L T L 3 B A d

SB.TP 4
autfilt

15

20

91

31 11

82 48

23

10

4

71

10

10

3

327

102

L
T

L
\G

(U
,X

)

[5
00

]

L T L 3 T E L A T E L . T E L 5 74 107 80 112 — 52 87 51 563

L
T

L
\G

(U
,X

)

[5
00

]

T G B . T P 6
Spot

SB.TP 7

93

76

145

107

84

70

137

88

88

67 2

76 0

2

623

412

L
T

L
\G

(U
,X

)

[5
00

]

Spot — T P 8 115 170 107 162 113 26 101 — 794

L
T

L
(F

,G
)

[5
00

]

T G B . T P 1
L T L 3 B A

SB.TP 2 16

321 35

26

313

55

124

36

61

16

245

41

60

15

1159

205

L
T

L
(F

,G
)

[5
00

]

T G B . T P 3
Spot L T L 3 B A d

SB.TP 4
autfilt

14

18

312

109 19

305 123

38

44

17

238

39

43

16

1079

256

L
T

L
(F

,G
)

[5
00

]

L T L 3 T E L A T E L . T E L 5 182 354 186 345 — 158 295 156 1676

L
T

L
(F

,G
)

[5
00

]

T G B . T P 6
Spot

SB.TP 7

148

71

334

224

155

78

333

182

149

83 14

287 0

14

1406

666

L
T

L
(F

,G
)

[5
00

]

Spot — T P 8 149 336 156 334 150 2 289 1416

96 A U T O M A T A F O R F O R M A L M E T H O D S : L I T T L E S T E P S T O W A R D S P E R F E C T I O N

Determinization tool chains with marks on states. We have already men­

tioned that the large automata produced by ltl2dstar i n comparison to other

tool chains are at least partially due to the placement of marks to states. There­

fore, we offer a fair comparison of ltl2dstar and Spot i n Figure 6.9. The scat­

ter plots compare the tool chain t x = (Spot, —, TP) with the tool chain

t y = (ltl2dstar (LTL) , Spot, SB.SR) after all marks were pushed to states. A

dot on coordinates (x , y) represents the fact that there exists a formula cp in

the benchmark such that t x created an automaton with x states for cp and ty

produced an automaton with y states for the same formula. The color of the

dot indicates the number of such formulae. We have merged the literature

and random benchmarks to reduce the number of figures.

marks on states marks on states
full LTL [622] L T L \ G (U , X) [578]

Spot Spot

We can observe that without any doubts Spot is better even after the marks

were pushed on states on the full L T L and L T L \ G (U , X) benchmarks and

avoids really large automata on LTL (F ,G) . However, on LTL (F ,G) Spot is no

longer so dominant (note the red dots below the green line), though, it is still

preferable.

Rabinizer 4, Spot, and ltl2dpa. N o w we compare the best direct tool and

the best determinization tool chain with the two tool chains of ltl2dpa. You

can find the cross-comparison i n Table 6.11. Spot wins on all benchmarks

except the LTL (F ,G) benchmark. O n the LTL (F ,G) benchmark not only Ra­

binizer 4 clearly wins, but also ltl2dpa beats Spot.

The cross-comparison uses the number of acceptance marks into account

for automata of equal size. The scatter plots i n Figure 6.10 show how Spot

competes with Rabinizer 4 on states only. We have, again, merged the random

and literature benchmarks. For the full L T L and L T L \ G (U , X) benchmarks,

we zoom (below) into the dense parts of the plots indicated by the red boxes.

The dominance of Spot is no longer present here; on the contrary, Rabinizer

4 seems to be slightly preferable.

marks on states
LTL(F,G) [500]

Figure 6.9: Scatter plots comparing ltl2dstar
and Spot on automata with marks on states.
Note log scale.

L T L T O D E T E R M I N I S T I C A U T O M A T A T R A N S L A T O R S : E X P E R I M E N T A L E V A L U A T I O N

Table 6.11: Cross-comparison of Rabinizer 4, Spot, and ltl2dpa.

main tool intermediate acc # 1 2 3 4 V

Rabinizer 4 — TGR 1 — 15 46 63 124

full LTL Spot — TP 2 100 — 105 104 309
[129]

ltl2dpa
W2ldba TP 3 45 12 — 43 100

ltl2dpa
Rabinizer TP 4 20 12 28 — 60

Rabinizer 4 — TGR 1 — 24 41 41 106

L T L \ G (U , X) Spot — TP 2 59 — 66 67 192
[92]

ltl2dpa
M2ldba TP 3 2 17 — 7 26

ltl2dpa
Rabinizer TP 4 1 15 3 — 19

Rabinizer 4 — TGR 1 — 145 244 209 598

full LTL Spot — TP 2 310 — 369 358 1037
[500]

ltl2dpa
W2ldba TP 3 119 118 — 103 340

ltl2dpa
Rabinizer TP 4 109 122 121 — 352

Rabinizer 4 — TGR 1 — 139 137 136 412

L T L \ G (U , X) Spot — TP 2 311 — 348 336 995
[500]

ltl2dpa
M2ldba TP 3 52 118 — 28 198

ltl2dpa
Rabinizer TP 4 40 126 27 — 193

Rabinizer 4 — TGR 1 — 354 341 349 1044

LTL(F,G) Spot — TP 2 I l l — 135 137 383
[500]

ltl2dpa
W2ldba TP 3 73 347 — 33 453

ltl2dpa
Rabinizer TP 4 67 339 7 — 413

zoom zoom

0 10 20 0 5 10 15 20

Rabinizer 4 Rabinizer 4

Figure 6.10: Scatter plots comparing Rabinizer 4 and Spot with zooms into dense parts of the plots.

98 A U T O M A T A F O R F O R M A L M E T H O D S : L I T T L E S T E P S T O W A R D S P E R F E C T I O N

In the cross-comparison of Table 6.10, the tool chain (Spot, —, TP) is only

beaten by (Spot (autfilt), L T L 3 T E L A , T E L . T E L) on the LTL(F ,G) benchmark.

The scatter plots i n Figure 6.11 confirms the victory of Rabinizer 4 over Spot

even against the tool chain with L T L 3 T E L A .

<
w
H
en

+
4-* o
On CO

100

50

0 5 10 15

Rabinizer 4

0 2 4

Rabinizer 4

Figure 6.11: Scatter plot comparing
Rabinizer 4 against Spot combined with
LTL3TELA.

6 . 5 R E S U L T S : T H E P A R A M E T R I C B E N C H M A R K S

We present the results achieved by the considered tool chains on the paramet­

ric formulae i n Tables 6.12, 6.13,6.14, and 6.15. For each parametric formula

cp(i) and each tool chain t, we show two or three numbers. The column max

shows the maximal parameter i for which t was able to compute an automaton

for cp (i) . The heading n = j for some formula cp means that all tools were able

to compute automata for cp(j) and that some timeout occurred for cp(j + 1).

If the timeout was preceded by some error (violating the l imit of 32 marks),

we use two columns named n e and n t instead of n , where the value for n e

is the maximum parameter without error and n t is the maximum parameter

without any timeout. The value for t i n the column for n shows the number

of states of the automaton produced by t for cp(n), and analogously for n e

and n t . The best values (minimal for n , n e , or n t and maximal for max) for

each formula are highlighted i n green. Note that all errors encountered here

were related to the l imit on acceptance marks.

The tables confirm that Rabinizer 4 often produce small automata, but also

that it often requires a lot of time. The D T G R A setting reached the maximal

n for a given formula only i n one case (the D S R A i n one more), and it was

never the unique t o o l 3 9 that achieved the maximal parameter; the same holds

for the tool chains that combine ltl2dstar and Spot and the tool chains that

use ltl2dpa are only slightly better i n this aspect. Surprisingly, L T L 3 D R A suc­

ceeded to reach the maximal parameter i n 3 cases as the only tool and ltl2dstar

combined with L T L 3 B A even i n 4 cases as the only tool chain. (L T L 3 D R A ,

—, SR) was three times able to reach higher parameter than (L T L 3 D R A , —,

T G R) . The reason for this unexpected behaviour is the limitation of ltlcross to

automata with at most 32 acceptance marks, as (L T L 3 D R A , —, T G R) violated

the l imit for lower parameters than (L T L 3 D R A , —, SR). In all these cases, the

T G R A setting of L T L 3 D R A achieved shorter run times. 4 0

3 9 In this situation, more tool chains that
use the same combination of tools, possi­
bly in different configurations, are consid­
ered unique.

4 0 Rabinizer 4, on the contrary, does not ex­
hibit the same difference. The run times of
the T G R A setting are higher than the ones
of the SRA setting.

L T L T O D E T E R M I N I S T I C A U T O M A T A T R A N S L A T O R S : E X P E R I M E N T A L E V A L U A T I O N

Table 6.12: Parametric formulae benchmark (gh I).

gh -e gh-cl gh-c2 gh-q
main tool intermediate acc n = 9 max n = 8 max n = 11 max n e = 3 nt = 6 max

LTL3DRA
TGR 512 9 1 22 1 13 30 910 6

LTL3DRA
SR 512 9 2 22 12 13 30 — 5

Rabinizer 3
TGR 512 12 1 14 1 16 18 — 4

Rabinizer 3
SR 512 10 256 8 12 12 43 — 3

Rabinizer 4
TGR 512 12 1 11 1 12 18 240 10

Rabinizer 4
SR 512 12 256 11 22 12 18 240 10

ltl2dstar
LTL

LTL3BA SB. SR 512 10 2 18 32 19 24 386 7
ltl2dstar

LTL
LTL3BAd SB. SR 512 10 2 19 21 15 24 386 8

ltl2dstar
LTL

Spot SB. SR 512 12 2 11 21 14 18 240 7

ltl2dstar
NBA

LTL3BA SB. SR 512 11 4 25 23 20 28 491 7
ltl2dstar

NBA
LTL3BAd SB. SR 512 10 2 25 12 15 27 542 8

ltl2dstar
NBA

Spot SB. SR 512 12 2 11 21 14 18 240 7

LTL3BA
TGB.TP 512 11 1 23 1 16 18 240 6

LTL3BA
SB.TP 512 11 2 22 21 11 18 240 7

Spot
autfilt

LTL3BAd
TGB.TP 512 13 1 24 1 15 18 240 7

Spot
autfilt

LTL3BAd
SB.TP 512 10 2 23 12 15 18 240 7

Spot
autfilt

LTL3TELA TEL.TEL 512 10 1 22 1 11 18 240 6

Spot
TGB.TP 512 13 1 11 1 14 18 240 7

Spot
SB.TP 512 13 2 11 12 13 18 240 7

Spot — TP 512 14 1 11 1 13 18 240 9

ltl2dpa
M2ldba TP 512 11 1 13 11 13 18 240 9

ltl2dpa
Rabinizer TP 512 12 1 11 11 12 18 240 10

Table 6.13: Parametric formulae benchmark (gh II).

gh -r gh-s gh-•u gh-u2
main tool intermediate acc n = 2 max Tie = 3 n t = 10 max n = 8 max n = 8 max

LTL3DRA
TGR 1 4 8 1024 12 719 8 9 13

LTL3DRA
SR 10 5 8 1024 12 719 8 9 13

Rabinizer 3
TGR 1 4 8 — 3 129 11 9 17

Rabinizer 3
SR 12 4 35 — 3 129 10 9 12

Rabinizer 4
TGR 1 4 7 — 8 128 12 8 14

Rabinizer 4
SR 13 5 7 — 8 128 12 8 14

ltl2dstar
LTL

LTL3BA SB. SR 756 3 8 1024 12 129 9 9 13
ltl2dstar

LTL
LTL3BAd SB. SR 66 4 8 1024 12 129 9 9 13

ltl2dstar
LTL

Spot SB. SR 286 3 8 1024 12 129 12 9 14

ltl2dstar
NBA

LTL3BA SB. SR 1304 2 9 1025 13 129 9 9 14
ltl2dstar

NBA
LTL3BAd SB. SR 152 3 9 1025 13 129 9 9 13

ltl2dstar
NBA

Spot SB. SR 286 3 9 1025 12 129 12 9 14

LTL3BA
TGB.TP 9 5 8 1024 13 128 9 8 13

LTL3BA
SB.TP 66 4 8 1024 13 128 9 8 13

Spot
autfilt

LTL3BAd
TGB.TP

SB.TP
9

13
5
5

8 1024
8 1024

13
13

128
128

12
9

8
8

14
14

Spot
autfilt

LTL3TELA TEL.TEL 16 4 8 1024 10 128 10 8 8

Spot
TGB.TP 16 4 8 1024 13 128 12 8 14

Spot
SB.TP 18 4 8 1024 13 128 12 8 14

Spot — TP 16 4 7 1023 13 128 13 8 14

ltl2dpa
Itl2ldba TP 4 4 7 1023 11 128 11 8 14

ltl2dpa
Rabinizer TP 4 4 7 — 8 128 12 8 14

1 0 0 A U T O M A T A F O R F O R M A L M E T H O D S : L I T T L E S T E P S T O W A R D S P E R F E C T I O N

Table 6.14: Parametric formulae benchmark (ms and go).

ms-phi-r ms-phi-s go-theta ms-phi-h
main tool intermediate acc n = 2 max n = 1 max n = 5 max = 2 n t = 3 max

LTL3DRA
TGR 1 4 1 3 2 12 — — —

LTL3DRA
SR 24 5 8 5 7 12 — — —

Rabinizer 3
TGR 1 4 1 3 2 15 5 11 3

Rabinizer 3
SR 27 3 9 3 11 9 20 — 2

Rabinizer 4
TGR 1 4 1 3 2 10 5 19 7

Rabinizer 4
SR 33 4 11 4 11 10 13 41 7

ltl2dstar
LTL

LTL3BA SB.SR 147 2 49 1 15 17 18 194 4
ltl2dstar

LTL
LTL3BAd SB.SR 99 2 33 1 5444 5 18 194 4

ltl2dstar
LTL

Spot SB.SR 264 2 88 1 5444 5 18 194 4

ltl2dstar
NBA

LTL3BA SB.SR 10541 2 87 1 13 18 285 29635 3
ltl2dstar

NBA
LTL3BAd SB.SR 12012 2 94 1 8934 5 285 29452 3

ltl2dstar
NBA

Spot SB.SR 5418 2 82 1 5444 5 285 29452 3

LTL3BA
TGB.TP

SB.TP
24

152
3
3

7
28

3
2

230
523

7
7

25
21

199
171

5
5

Spot
autfilt

LTL3BAd
TGB.TP

SB.TP
24
88

3
3

7
18

3
3

230
490

7
6

25
21

199
171

5
5

Spot
autfilt

LTL3TELA TEL.TEL 31 3 7 3 167 7 22 175 5

Spot
TGB.TP 29 3 8 3 230 7 21 170 5

Spot
SB.TP 76 3 16 3 436 6 21 170 5

Spot — TP 29 3 8 3 230 7 21 170 5

ltl2dpa
M2ldba TP 6 3 4 3 6 10 7 15 11

ltl2dpa
Rabinizer TP 6 4 2 3 6 10 27 244 5

Table 6.15: Parametric formulae benchmark (kr and other)

and-fg or-fg kr-n kr-nlogn
main tool intermediate acc n = 11 max n = 5 max n e = 1 r i t = = 2 max n = 1 max

LTL3DRA
TGR 1 22 1 20 — — — — —

LTL3DRA
SR 2 22 32 13 — — — — —

Rabinizer 3
TGR 1 17 1 14 28 152 2 34 2

Rabinizer 3
SR 3 12 32 8 29 153 2 35 2

Rabinizer 4
TGR 1 12 1 12 23 196 2 37 1

Rabinizer 4
SR 2 12 32 12 23 196 2 37 1

M2dstar
LTL

LTL3BA SB.SR 2 24 32 13 13 83 3 20 3
M2dstar

LTL
LTL3BAd SB.SR 2 24 32 13 13 83 3 20 3

M2dstar
LTL

Spot SB.SR 2 11 32 12 13 83 3 20 2

M2dstar
NBA

LTL3BA SB.SR 3 24 77775 5 13 83 3 20 3
M2dstar

NBA
LTL3BAd SB.SR 3 24 77775 5 13 83 3 20 3

M2dstar
NBA

Spot SB.SR 2 11 58852 5 13 83 3 20 2

LTL3BA
TGB.TP

SB.TP
2
2

21
21

121
121

7
7

12
12

82
82

3
3

19
19

3
3

Spot
autfilt

LTL3BAd
TGB.TP

SB.TP
2
2

21
21

121
121

7
7

12
12

82
82

3
3

19
19

3
3

Spot
autfilt

LTL3TELA TEL.TEL 1 23 121 7 12 — 1 19 1

Spot
TGB.TP 2 11 121 7 12 82 3 19 2

Spot
SB.TP 2 11 121 7 12 82 3 19 2

Spot — TP 2 11 121 7 12 82 3 19 2

ltl2dpa
M2ldba TP 1 14 5 12 13 96 2 20 1

ltl2dpa
Rabinizer TP 1 12 120 7 23 196 2 37 1

L T L T O D E T E R M I N I S T I C A U T O M A T A T R A N S L A T O R S : E X P E R I M E N T A L E V A L U A T I O N 101

6.6 F I N A L W O R D S

The situation with L T L to deterministic automata translation changed sub­

stantially since 2013. The former leading tool chains of L T L 3 D R A or ltl2dstar

combined with Spot are now surpassed by Rabinizer 4 and Spot. However,

there is still space for improvement for both Rabinizer 4 and Spot as neither

of the tools dominated entirely.

General recommendations. We recommend using either (Spot, —, TP) or

(Rabinizer 4, —, T G R) for translation of L T L into deterministic automata.

Rabinizer 4 is preferable i f the small size of automata is i n the main focus.

O n the contrary, Spot is preferable for situations, where the complexity of the

acceptance condition or computation time are an issue. Spot is also the right

choice for L T L translation to automata that are further converted to games 4 1 , 4 1 synthesis of reactive systems, for example

as Spot produces automata with the parity acceptance condition.

Portfolio approach. As no tool dominates the others i n all cases, the port­

folio approach, where you run more translators and choose the best result,

is also an appealing option. The portfolio of the following nine tool chains

produces a min imal automaton for all considered cases except 4 randomly

generated formulae outside L T L \ G (U , X) .

. (Rabinizer 4, —, T G R)

. (Rabinizer 3, —, T G R)

. (L T L 3 D R A , —, T G R)

. (S p o t , - , T P)

. (Spot (autfilt), L T L 3 T E L A , T E L . T E L)

. (Spot (autfilt), L T L 3 B A , T G B . T P)

. (Spot (autfilt), Spot, SB.TP)

. (l t l2dpa,M2ldbaTP)

. (Itl2dstar (LTL), L T L 3 B A d , SB.SR)

Suggestions for tool developers. Spot showed the biggest weakness on the

LTL(F ,G) fragment. This observation can be a good starting point for the

further development of determinization procedures i n Spot. The developers

of Rabinizer 4 could find some inspiration i n its predecessor, Rabinizer 3.1,

as we have identified more than 200 formulae where Rabinizer 3.1 produces

better D T G R A than Rabinizer 4.

Part III

SEMI-DETERMINISTIC AUTOMATA

Semi-Determinization and Cut-Determinization
of Generalized Buchi Automata

In this chapter, we introduce semi-deterministic and cut-deterministic auto­

mata and discuss several algorithms related to them. Our focus here is on

methods that convert a given nondeterministic (generalized) Buchi automa­

ton into an equivalent semi-deterministic or cut-deterministic automaton.

Semi-deterministic automata have so far only been considered with Buchi or

generalized Buchi acceptance. For this reason, we omit the acceptance for­

mula from the figures as it is always a conjunction of Inf terms for all marks

present i n the automaton. For the sake of clarity, we use classical alphabet

throughout this and the following chapter. A l l results naturally apply also on

automata with propositional alphabets.

7 . 1 S E M I - D E T E R M I N I S M A N D C U T - D E T E R M I N I S M

A generalized Buchi automaton (S, 1,6, ST, M , U , d>) is semi-deterministic i f

S = S i \ | U S D i s a union of two disjoint sets S N and S D and the transition

relations = 5 N u 6 c U S Q consists ofthree disjoint transition relations, namely

5 N : S N X I X S N , 5 C : S N x I x S D , and 5 D : S D X I X S D ,

where there is no transition from S Q to S N 1 and 6 Q is deterministic. 2 More- ' 6 n (S D x £ x s N) = 0

over, marks are placed only on elements of S D and 6 D . The elements of 5 c

 2 F o r e a c h s t a t e s e s D and each letter a e

are called cut transitions. Figure 7.1 illustrates these conditions visually.
£ , there is at most one state s ' such that
(s, a, s ') e 5 D .

Figure 7.1: Structure of a semi-
deterministic automaton. The green
cloud is deterministic and contains all
accepting transitions and states that are
reachable from them. In a cut-deterministic
automaton, the blue cloud is deterministic
too.

A G B A is cut-deterministic i f it is semi-deterministic and its 6 N is also

deterministic. Intuitively, nondeterminism i n a cut-deterministic automa­

ton can be induced only by the cut transitions from S N to S D - The term

cut-determinism is inspired by the graph-theoretic notion of cut (6 C) and its

purpose is to disambiguate the overloaded term semi-determinism? 3 Vardi and Wolper (1986), [2]; Hahn et al.
(2015), [10];Blahoudeketal. (2016), [16]. Clearly, every deterministic automaton is also cut-deterministic and every

cut-deterministic automaton is also semi-deterministic. The opposite rela­

tions do not hold.

106 A U T O M A T A F O R F O R M A L M E T H O D S : L I T T L E S T E P S T O W A R D S P E R F E C T I O N

7 . 2 C U T - D E T E R M I N I S M C H E C K & S T A T E S P A C E P A R T I T I O N

To check cut- or semi-determinism of a given G B A A - (S, Z , 6, S i , M , LL, CD)

we have to (i) compute a suitable partition of S and 5 into S N , S D , § N > Sc. and

5 D , and (ii) check determinism of 6 D and 5 N . We address the two tasks i n one

algorithm simultaneously. The algorithm computes two partitions of states:

one such that S D is min ima l and one such that S o is maximal permissible;

based on these partitions it decides whether A is semi- and cut-deterministic.

The knowledge of some partition of S into S N and S Q is also needed for

cut-determinization of semi-deterministic automata studied i n Section 7.7

and is beneficial for complementation of semi-deterministic automata studied

in the next chapter. The small size of S D is favourable for complementation,

while the converse holds for cut-determinization as cut-determinization ex­

ponentially increases the size of S N = S \ S D -

Topological order on SCCs. Let T - (S, X , 6, ST) be a semi-automaton and

C the set of its maximal strongly connected components. The SCC graph of T

is the directed acyclic graph (C, E) where

E = { (S i , S2) I S i , S2 e C and (s i , a, S2) e 5 where s i 6 S i , S2 e S2, a 6 I } .

A topological order on SCCs is a total order < onC such that for each edge

(S i , S 2) € E it holds that S i < S 2 .

We assume that acceptance marks are placed only at transitions that are

inside some S C C . This is a val id assumption because all the other marks can

be removed without altering the language of A. We further assume that we

have some topological order < on SCCs of A and we order the SCCs of .4

based o n < a s S o ^ S i < . . . < S n . . Traversal i n the topological order < starts

with So and traversal i n the reverse topological order starts wi th S n .

The algorithm consists of two traversals of the S C C graph of A and two de­

terminism checks. Dur ing each traversal, it can move all states of the current

S C C between the sets S N and S D • W i t h each movement, we also update 5 N ,

5 C , and S D accordingly. The first traversal starts with all states i n S N , which

gives S N = S and S D = 0 . In each phase, we reference the current S C C by S\

and by E we reference the edges of the S C C graph of .4.

1. Partition with minimal S D [topological order]. SCCs that are accepting

or reachable from some accepting S C C must be i n S D by definition.

• i f S i is accepting, move it to S D

• i f S i £ S D move all Sj such that (S i , Sj) e E to S D -

• Semi-determinism check. A is semi-deterministic iff S D is determin­

istic. If A is not semi-deterministic, we stop the algorithm.

2. Partition with maximal S D [reverse topological order]. Deterministic

SCCs from which only deterministic SCCs are reachable can belong to S D •

• i f S i is deterministic and i f all Sj such that (St, Sj) e E are i n S D , move

S i to S D -

• Cut-determinism check. A is cut-deterministic iff 5 N is deterministic.

We only add SCCs to S D in this traversal;
therefore, we skip all SCCs that are already
in S D .

S E M I - D E T E R M I N I Z A T I O N O F T G B A 107

7 . 3 S U B S E T C O N S T R U C T I O N

A l l semi-determinization procedures to be presented here rely i n their heart

on the subset construction known from the determinization of finite automa­

ta over finite words. Let T = (S, 1,5, s i) be a semiautomaton. The function

r$:2s x I 2 s computes one step of the subset construction for T . Intu­

itively, T 5 (P, a) gives us the set of states to which we have i n T a transition

under a from some state i n P . Formally, T 5 is defined for a set P £ S and a

letter a € I as follows.

T 6 (P , Q) = {s € S I p e P, (p, a ,s) e 6}

We write x instead of T 5 when 5 is clear from context. Finally, the subset

construction on T creates a semiautomaton (2 s , 1 , 6 ' , { s i}) with transitions

defined by T , that is (P , a, x (P , a)) 6 6' for all a € I and all P £ S. We usually

consider only the sets and transitions reachable by 5 ' from { s i } .

For an automaton A - (S, Z , 6, s i , M , p, cp) with marks on transitions and

and for some of its marks • 6 M we define a function * 5 : 2 S x I ->• 2 s that

restricts T 5 to transitions marked by • only.

T 6 (P , a) = { s e S | p € P, (p, a, s) e 6 n u (») }

7 . 4 S E M I - D E T E R M I N I Z A T I O N O F B U C H I A U T O M A T A

The first semi-determinization procedure for Buchi automata was published

by Courcoubetis and Yannakakis i n 1988.4 We start wi th a more general ver­

sion of their algorithm - we expect automata with marks on transitions while

the original version used accepting states. In the transition-based view, all

marks that are placed on states are moved to outgoing transitions; see an ex­

ample i n Figure 7.2.

Let .4 = (S, 1,6, s i , { •} , u , In f •) be a Buchi automaton with marks on

transitions. In the following we present a basic construction of an equivalent

semi-deterministic automaton SV = (Q , 1,65©, q i , { •} , vst>, Inf*) where

Q = Q N U Q d and 8sx> = § N u S c u So- The nondeterministic (blue) part N

of SV is the semiautomaton of A and states of the deterministic (green) part

D are formed by pairs (R, B) of subsets of S, where B c R.

Q N = S q i = s i S N = S Q D £ (2 s x 2 s)

For each marked transition of the form (s i , a, S2) of A we have a cut transi­

tion (s i , a , ({s2},0)) from N to D .

6 C = { (S l , a , ({ s 2 } , 0)) I s 2 € ? ({ S l } , a) }

In a state (R , B) of Q D R stands for reachable and tracks runs of A using the

subset construction. The name B stands for breakpoint and tracks the runs

that used some marked transition since the last accepting transition of SV

was taken. This behaviour is captured by 5i.

5i = { ((R i , B i) , a, (R2, B2)) I a e I , B i c R , £ S,

R 2 = T (RT , a) * 0, and

B 2 = T (B 1 , Q) U T (R 1 , Q) }

4 Courcoubetis and Yannakakis (1988),
"Verifying Temporal Properties of Finite-
State Probabilistic Programs", [9].

Figure 7.2: Two equivalent Buchi automata:
marks on states (left) and marks on transi­
tions (right).

108 A U T O M A T A F O R F O R M A L M E T H O D S : L I T T L E S T E P S T O W A R D S P E R F E C T I O N

Q D

Ä b A

(-4) »e(T)-^({2}^) (|rK0)>^-(Jo,2},{2})
T T tr

b
XT

(52?) ({2}, {2} {0},{0}

Figure 7.3: A Biichi automaton A. (left) and the corresponding semi-deterministic Biichi automaton ST> (right). The transitions from 6i s 6D and
the tuples that would become reachable by those transitions are dotted and are not in fact parts of ST>.

In some transitions of 5i we have R2 = B2 which means that all states i n R2

can be reached by a run of A that used a marked transition since B was empty.

We mark such transitions by • and reset B2 to 0 .

6 2 = { ((R i , B i) , a , (R 2 , 0)) I ((R i , B 1) , a , (R 2 , B 2)) 6 6 1 a n d R 2 = B 2]

5 D = { ((R i , B 1) , a , (R 2 , B 2)) 6 6 1 | R 2 + B 2 } u 6 2

The tuple (R2, B 2) is not colored by green
on purpose as it violates B2 c R2 and is not
in fact a state from Q D •

You can see the construction applied to an example automaton i n Fig­

ure 7.3. For a better understanding of the reader, the figure also contains

transitions from 5i that are not part of SV. The automaton SV has 8 states.

Complexity. Let s 6 S be a state of A. Then it is present i n Q N itself, and

for a state q = (R , B) € Q o i t holds that either s is only i n R, s is i n both R

and B , or s is not present i n q at all. Therefore, the size of Q is bounded by

IQ I< | s | + 3l sL

7.4.1 Correctness

Before we prove the correctness of our construction, we need to introduce a

handful of notation, including the notions of finite words and run graphs. We

wi l l also prove an important property of run graphs i n Lemma 7.1.

Finite words. A finite word over an alphabet I is a finite sequence of letters

w = W0W1 . . . e I * . The empty word is denoted by e. Let u e Lw be an

infinite word. B y U i . j for some i < j we denote the finite word U i U i + i . . . U j

and we use u..j as a shorthand for uo..j to denote the prefix of u of length j .

Extended subset function 0. The function 6$:2S x I * 2s extends T 5 to

finite words. It is recursively defined for a set of states P £ S , a letter a € I ,

and a finite word w t l * using T 5 as follows.

e 5 (P , e) = P

e 6 (P , a w) = e 6 (T 5 (P , a) , w)

S E M I - D E T E R M I N I Z A T T O N O F T G B A 109

Rungraphs. LetA= (S, L, 6, S i , M , u., cp) be an automaton with marks on

transitions and let u = u o u i . . . 6 Lw be a word. A run graph of A over u

is an edge-labelled directed acyclic graph G^f = (V , E,TI) where V £ s x cu

is a set of vertices, E £ V x V is a set of edges and p : M . -»• 2 E is a labelling

function. V , E, and II are defined as follows.

V = { (s i , 0) } u { (s , i + 1) | i > 0 a n d s e e 6 ({ s i } , u . . O }

E = { ((s i , i) , (s 2 , i + 1)) € V x V | i > 0 a n d (s 1 , u i , s 2) e 5}

]!(•) = { ((s i , i) , (s 2 , i + 1)) 6 E | (s i , U i , s 2) e u («) } for e a c h * 6 M

Each infinite path i n G^f that starts i n (s i , 0) represents a run of A over u

and conversely, each run of A over u is represented by a unique infinite path

i n G ^ .

Lemma 7.1. Let a = t o t i . . . e &w where t i = (s i , U i , S i+i) be a run of A

over some word u. Then there is an index k such that for all I > k there exists

an indexrci > I such that 0({si },u.] . . m) = 0 ({ s k } , U k . . m) .

Proof. Obviously, 0({si },u.] . . m) £ © ({ s i c l ^ i c m) holds as t k . . . t i _ i wit­

ness that st 6 0 ({ s k } , u k . . i _ i) . We prove the converse by contradiction. Sup­

pose that for all k there is an index I > k such that for all m > I it holds

that 0 ({ s t } , u t . . m) c 6 ({ s i c } , u i c . . m) . Then we have a strictly increasing

sequence of indices ko, k i , . . . k|Qj such that for each 0 < i < |Q | and all

m > k | Q | we have 0 ({ s k i +] } , u k i +] . . m) c 0 ({ s K J , u k i . . m) . In that case

9({si<IQI }> u k | Q | . .m) = 0 which contradicts the existence of a. •

The idea of the construction of SV is that a run a ' of SV follows some

run a of A i n N and nondeterministically guesses, when a reaches the index

k from the previous lemma. At this point, a ' jumps to the D with the first

transition of a marked by • . If the guess was correct, a ' checks i n D whether

or not a is accepting. The proof of the following lemma shows that SV can

verily that a is accepting.

Lemma 7.2. Let u e L(„4) be a word accepted by A. Then u is also accepted

by the automaton SV built for A.

Proof. Let a = t o t i ... € 8W where t i = (s i , U i , st+i) be an accepting run

of A over u . Let k be the min imal index such that it satisfies Lemma 7.1 for

o" and (s k , u k , Sk+i) e 1L(#). We bui ld the run a ' = t 0 t { . . . of SV over u

as follows. For 0 < j < k a ' stays i n N , follows a and we have tj = t j ; for

k the run takes the cut transition (s k , u . k , ({ s k + i } , 0)) t o D and the rest is

deterministic.

The vertices on the i th level represent states
reachable in A. under the prefix of u of
length i . Edges correspond to transitions
and also the placement of marks is pre­
served.

I _ .1 .1 .1.1
O - t 0 . . . t k _ i t k t k + 1

' (S j , U j , S j + l)

where

if j < k

if j = k

)) i f j > k

t- = I (s k , U j , ({ s k + i } , 0))

. ((R j , B j) , U j , (R j + i , B

From the existence of a we know that Rj is never empty. To show that a ' is

accepting we have to prove that we have infinitely many indices i > k such

that ((R i , B i) , u t , (R i + i , 0)) e 62. Suppose that this is not the case and thus

110 A U T O M A T A F O R F O R M A L M E T H O D S : L I T T L E S T E P S T O W A R D S P E R F E C T I O N

there exist an index f > k such that for all i > f we have i n cr' only tran­

sitions from 5 i , which means that R i • B i . Let n > f be an index such

that (s n , u n , Sn+i) is a transition from a with • and thus S ^ - M 6 B n + i .

It follows from Lemma 7.1 that there is an index m > n such that R m + i =

) = e 5 ({ s n + i }) £ B m + 1 and thus R m + 1 =

B m + i which contradicts the assumption that R i D B i for all i > f. •

Lemma 7.3. Let u e L(SV) be a word accepted by SV. Then u is also accepted

by A.

Proof. Let cr be an accepting run of SV over u . Then cr has the form o~ =

to . . . tk_ i t^tk+i . . . where k > 0 and tj = (SJ , U j , Sj+i) e 5 N for 0 < j < k,

tic = (s k , u k , ({ s k + i } , 0)) e 6 C and t j = ((Rj , B j) , U j , (R j + 1 , B j + 1)) 6 5 D

for j > k and so = s\. Moreover, for j > k we use B j + 1 to denote the set such

that ((Rj , B j) , i i j , (R j + i , B | + 1)) e 6i for the cases where tj € 5 2 -

We now prove that the run graph G^f = (V , E, fx) contains an infinite path

that starts i n (s i , 0) and that contains infinitely many edges from] ! (•) ; such

path represents an accepting run of A over u .

From definitions of § N and 6 C it follows that there is a path from (ST, 0)

to (sk+i , k + 1) i n G^- N o w let St = {s | (s, i) e V } denote the set of states

on level i of G^- By construction of G^ we have that R i £ S i for i > k. As R i

is never empty and R i = 0({Sk+i }, u-k+i . . i - i) , there is an infinite path that

starts i n the vertex (sk+i , k + 1), thus we have an infinite path from (s i , 0).

It remains to show that some infinite path contains infinitely many edges

from] ! (•) . Let l o , l i , . . . be an infinite increasing sequence of indices, called

breakpoints, such that t r t _ i 6 usx>(*) = 52- For each breakpoint U it holds

that B{. = R i t and B ^ = 0 . In the following we use I to denote some U and l '

to denote the corresponding . By definition of Si and G^, there is a path

with a • to each vertex (s ' , I ') with s ' e Ri > from some vertex (s, I) such that

s € R l ; otherwise s ' i B [, and thus I ' could not be a breakpoint. Overall, we

have a path i n G^f that represents an accepting run of A over u . •

Theorem 7.4. For each Buchi automaton A with n states and with marks on

transitions we can construct a semi-deterministic Buchi automaton SV with at

mostn + 3 n states such that L(SV) = 1(A).

The tuple (R j + i , B ' ,) = (R l t , R l t) is not
colored by green as it is not in fact a state
from Q D •

For each state s ' e R t< we have a state s " e
R m for some I < m < I ' such that s ' e
8 (P , u m + i . . i ' - i) a n d P = f ({ s " } , u m) .

Proof. The theorem follows from Lemmata 7.2 and 7.3. •

S E M I - D E T E R M I N I Z A T I O N O F T G B A 1 1 1

7.4.2 SCC-aware optimization

Let a be an accepting run of A. A l l recurrently visited transitions of a are

between states from one strongly connected component C £ S. Therefore, we

can simplify the construction of D . Namely, we can constrain Q D to states

(R, B) such that B £ R £ C where C is some S C C of A. The construction of

5i has to be corrected accordingly:

5T = { ((R i , B i) , a, (R 2 , B 2)) | a e I , B i c R, £ C, C is a S C C of A,

R 2 = x (R i , a) n C , R 2 * 0 , and

B 2 = (T (B 1 , a) u ? (R 1 , a)) n C }

You can see the effect of the optimization i n Figure 7.4. The optimization

saved 2 out of 5 states of the deterministic component of SV and thus the

final automaton has 6 instead of 8 states. We left the now unreachable states

in the figure for the reader to better see the effect of the optimization.

The definitions of 62 and 5 • depend on 61,
so it is enough to change 61 only.

Q b

" C t 0 (A) Q e (T y ^ ({ 2 } ^) (m ^ H b (\o.i}. m"

IT t) (SV)

Figure 7.4: The same Biichi automaton A. as in Figure 7.3 (left) and the corresponding semi-deterministic ST> built using the SCC-aware optimization
(right). In comparison to Figure 7.3, the dashed transition was replaced by the thick one due to the SCC-aware optimization. The dotted states and
transitions became unreachable.

Correctness. W i t h this modification, the proof of Lemma 7.3 remains un­

changed. For the proof of Lemma 7.2 we only need to adjust the definition of

k: Let C be the SCC such that the recurrent transitions of a are between states

ofC Then let k be the minimal index such that it satisfies Lemma 7.1 for a,

(skjU-kjSk+i) e [!(•), and Sk+i e C. The rest of the proof remains the same.

112 A U T O M A T A F O R F O R M A L M E T H O D S : L I T T L E S T E P S T O W A R D S P E R F E C T I O N

7 . 5 C U T - D E T E R M I N I Z A T I O N O F B U C H I A U T O M A T A

We can easily modify the above construction to bui ld an automaton that is

cut-deterministic and equivalent to A. We define the automaton as CV =

(Q ' , I , bCv, qf, { •} , VST>, l n f ») with Q ' = Q N u Q D andS C 2 > = 6

5 D where Q D , 5D> and \IST> have the same meaning as before. O n top of

semi-determinization, we determinize the first part (N) of SV using the sub­

set construction.

Q N £ 2 S

 q i ' = {s i} 6 ^ = { (P , a , T 5 (P , a)) | P 6 Q ^ }

For each marked transition of the form (p, a, s) of A and for each P such that

p e P we have a cut transition (P, a, ({s}, 0)) .

6{ = { (P , a , ({ s } , 0)) | S 6 ? (P , a) }

Figure 7.5 shows the cut-determinization of our example automaton A. The

determinization of the first component d id not increase the number of states

in our example, but i n general, this is not always the case. Also, CV can have

more cut transitions then the equivalent SV.

Figure 7.5: A cut-deterministic automaton
CD equivalent to A. from Figures 7.3 and 7.4.
It is basically SV with a subset construction
applied on the first (blue) part.

Complexity and correctness. The size o f Q ' i s bounded by | Q ' | < 2 l s l + 3l sL
For the proof of L(„4) £ L(CV) we can reuse the proof of Lemma 7.2 (with

SCC-aware optimization). We need to change Sj by Pj i n the definition of t j

for j < k and argue that Sk e Pk» which follows from definition of T 5 . We can

similarly adjust the proof of Lemma 7.3 to show that L(CV) £ L(A). This is

summarised i n the following theorem.

Theorem 7.5. For each Buchi automaton A with n states and with marks on

transitions we can construct a cut-deterministic Buchi automaton CV with at

most 2n + 3 n states such that L(CV) = 1(A).

S E M I - D E T E R M I N I Z A T T O N O F T G B A 1 1 3

7 . 6 S E M I - D E T E R M I N I Z A T T O N O F G E N E R A L I Z E D B U C H I A U ­

T O M A T A

The simplest approach to semi-determinization and cut-determinization of

nondeterministic generalized Bi ich i automata proceeds i n two steps. A given

N G B A A with n states and marks • H is first converted to a nonde­

terministic Bi ich i automaton B with at most n • (H +1) states and one mark;

we call this step degeneralization. As the second step, the N B A B is semi- or

cut-determinized by the above construction.

Degeneralization. The degeneralization of A is straightforward. The au­

tomaton B is formed by h + 1 copies of the semiautomaton of A, called levels

0 , . . . , h . O n level I, B waits for transitions marked by 9l i n A, these tran­

sitions go i n B to level I + 1 for I < h and to level 0 for I = h . The level I

thus records that marks W 0 , . . . have been seen since the last visit of

level 0. The transitions from level h to 0 are marked by • . Figure 7.6 shows

de-generalization of a small G B A .

Figure 7.6: A GBA A and an equivalent BA
B that was built using the standard degener­
alization procedure.

Figure 7.7 shows that the two-step approach may not be the best. Consider

the state (R, B) = ({ s ^ p ^ s 1 } , { s ° , p 0 }) and relate it all the way back to A.

The state s of A is present i n two variants i n R — on level 0 and on level 1.

Moreover, as both s ° and p ° are present i n B , we know that both s and p are

reachable by runs that crossed a • since the last accepting transition of SV.

But R + B because we also follow the runs that stayed behind on level 1.

a b

Q b

Figure 7.7: Two-step semi-determinization of B from Figure 7.6.

114 A U T O M A T A F O R F O R M A L M E T H O D S : L I T T L E S T E P S T O W A R D S P E R F E C T I O N

One-step semi-determinization of GBA. A direct semi-determinization of

G B A was first presented by Hahn et al. i n 2015 5 It combines the level approach

of degeneralization with semi-determinization and it always keeps at most

one copy of a state s of the T G B A i n R.

Let A = (S, 1,6, s i , M , p, <£>) be a G B A with marks on transitions where

M = {9°,... for some h. > 0 and cp = Ao<i<h In f* 1 . In the follow­

ing, we present a SCC-aware one-step construction of an equivalent semi-

deterministic automaton QSV = (Q , I , &gsT>, Pgsi?? In f *) where

Q = Q N u Q D and hgsT> = § N u 5 C u S D - In addition to the basic semi-

determinization, we augment the states of Q D by levels, one for each accept­

ing mark.

Q N = S q i = s i S N = S Q D £ (2 s x 2 s x { 0 , . . . , h })

We add the cut transitions only for transitions marked by • H i n A and they

lead to level 0.

5 C = { (s 1 , a , ({ s 2 } , 0 , O)) | s 2 € ? h ({ S l } , a) }

In Q D we move runs to B only after the mark for the current level was seen.

5T = { ((R 1 , B 1 , l) , a , (R 2 , B 2 , l)) | a e X , 0 < l < H ,

B , c R , c c , C is a S C C of A,

R 2 = T (R I , a) n C, R 2 * 0 , and

B 2 = (T (B 1 , a) u T (R 1 , a)) n C }

For transitions of Si where R 2 = B 2 we move to the next level l ' = (I +

1) m o d (h + 1), reset B 2 and immediately start tracking • there, and finally

mark the transition by • .

5 2 = { ((R 1 , B 1 , l) , a , (R 2 , B z , l ')) | ((R i , B i , I) , a , (R 2 , B 2 , l)) e 6, ,

R 2 = B 2 ,

B2 = T (R 1 ; a) n R 2 , and

I ' = (1+1) m o d (f i+1)}

5 D = { ((R i , B 1 , l) , a , (R 2 , B 2 , l)) 6 6 1 | R 2 # B 2 } u 5 2

pgsx>(*) = 5 2

5 Hahn et al. (2015), "Lazy Probabilistic
Model Checking without Determinisation",
[10].

The n R2 in definition of B'2 ensures that H'2

contains only states from the same SCC as
are in R2.

You can find the result of this construction applied on A from Figure 7.6 in

Figure 7.8. The resulting automaton QSV has 2 + 5 states i n comparison to

4 + 9 states of SV from Figure 7.7.

Cut-determinization. We naturally modify the above construction to bui ld

an automaton that is cut-deterministic and equivalent to A. We define the

automaton as QCV = (Q ' , I , &gcv,(]i, { •} , Pesx>, l n f «) with Q ' = Q ^ u

Q D and hgcr> = 5^ u 6{ u 5 D where Q D , §D> and \igsr> have the same

meaning as above. O n top of semi-determinization, we determinize the first

part (N) of QSV using the subset construction.

Q ^ £ 2 S qi' = {s i} 6 ^ = { (P , a , T 6 (P , a)) | P 6 Q ^ }

S E M I - D E T E R M I N I Z A T T O N O F T G B A 1 1 5

(r a

{GSV)

b

({s ,p } ,0 , o)«

b

^ (j s , p } , 0 , l) ^) a ({ s , p } , { s , p } , 0)

- ({ s , p } , { p } , l) V { s , p } , { s , p} , l")

Figure 7.8: A semi-deterministic Biichi automaton QST> equivalent to the GBA A from Figure 7.6. The transitions from 6i s 6D and the tuples
that would become reachable by those transitions are dotted and are not in fact parts of QST>.

For each transition of the form (p, a, s) marked by • H i n A and for each P

such that p e P we have a cut transition (P, a, ({s}, 0 , 0)) to level 0.

6 c = { (P , a , ({ s } , 0 , O)) | s 6 T > , a) }

Complexi ty. In the two-step approach, the degeneralization step first cre­

ates a Bi ich i automaton B with | M | • |S| states. Then the size of Q is bounded by

|Q | < | M | | S | + 3 l M H s l for semi-determinization and by |Q | < 2 l M H s l + 3 l M H s l

for cut-determinization. The one-step approach to semi-determinization of

T G B A augments the states from Q o of the semi-determinization of B A by

| M | levels; therefore, the bounds are | Q ' | < |S| + | M | - 3 ' s ' for semi-determini­

zation and | Q ' | < 2 ' s l + | M | • 3 ' s l for cut-determinization.

| M | is the number of marks of A.

Correctness. The proof of Lemma 7.2 naturally extends to the one-step con­

struction for T G B A . In the definition of cr' we now have levels i n states of

GSV, that is t- = (s j c U j , ({sfc+i } , 0 , O)) for j = k and for j > k we use

t- = ((R j , B j , l j) , U j , (R j + i , B j
+
i)) . Further, we slightly modify the

condition for the index n i n the proof: Let n > f be the minimal index such

that(sn,un,sn+-[) is a transition from a marked by'•lf. The rest of the proof Note that i ; = l f for all f < j < n.

remains unchanged.

The modification of the proof of Lemma 7.3 is even more straightforward.

For k we demand that (sk, u ^ , Sk+i) is marked by * H instead of • . Further,

we have to consider the levels. They change only at breakpoints and i n a se­

quence of h + 2 consecutive breakpoints we can see levels for all marks of A.

O n level I we follow • l , thus we have an infinite path i n with infinitely

many edges from] I (© 1) for each 0 < I < h . This path represents an accept­

ing run of A over u . N o w we can conclude this section with the following

theorem.

Theorem 7.6. For each generalized Biichi automaton A with n states and h

marks we can construct a semi-deterministic Biichi automaton QSV with at

most n + h • 3 n states and a cut-deterministic Biichi automaton QCV with at

mostln + h - 3 n states such that L(GSV) = L(GCV) = L(A).

1 1 6 A U T O M A T A F O R F O R M A L M E T H O D S : L I T T L E S T E P S T O W A R D S P E R F E C T I O N

7 . 7 C U T - D E T E R M I N I Z A T I O N O F S E M I - D E T E R M I N I S T I C

G E N E R A L I Z E D B U C H I A U T O M A T A

Blindly converting a semi-deterministic G B A A = (S, L, 6, s i , M , u., O) into

cut-deterministic B A using the full algorithm of the previous section is wasted

effort. Indeed, we can create an equivalent cut-deterministic G B A CT> =

(Q , I , 6 c © , q i , M , u, CD) with Q = Q N u Q D and 5CT> = 5 N u S{ u 5[> in

four steps as follows.

(i) We apply the algorithm described i n Section 7.2 to partition S and 5

into S N , S D , 6 N , 6 c , and 6 D i n a way that S D is maximal such that the par­

tition witnesses the semi-determinism of A. (ii) The deterministic part of A

remains unchanged.

Q D = S D Sfj = 5 D

(iii) We determinize S N and 5 N using the subset construction.

Q N £ 2 S n q i = {s i} 6^ = { (P , a , P ') | P e Q N a n d P ' = T 5 N (P , a) }

Finally, (iv) we revise 6 C accordingly.

5^ = { (P , a , s) | S 6 T S c (P , a)}

Note that we use the generalized Buchi acceptance condition of A also for CV

here, while the cut-determinization of general (not semi-deterministic) G B A

presented i n Section 7.6 always produces a Buchi automaton QCV.

Complex i ty and correctness. The size of Q is bounded by |Q | < 2 s™ -1- | S D |

while using the algorithm of Section 7.6 yields |Q | < 2 ' s l + | M | • 3 ' S L The cor­

rectness of the algorithm follows from the facts that the marks are placed only

on elements of S D which remained unchanged and that the subset construc­

tion exactly follows the runs of the original automaton.

7 . 8 I M P L E M E N T A T I O N

A l l algorithms described i n this chapter were implemented i n our tool called

Seminator. Since version 1.2.0, Seminator uses the SCC-aware algorithms.

The tool is implemented i n C++ using the Spot l ibrary 6 and is distributed

under the GNU GPL v3 license. The source code, basic installation and usage

instructions, and an evaluation of the tool can be found on the Seminator s

web page, see Table 7.1. For reading and writ ing automata Seminator uses

the Hanoi Omega-Automata (HOA) format.7

The tool takes a T G B A A as input and prints a semi-deterministic (default)

or cut-deterministic automaton B such that L(.4) = L(B) as output. Semina­

tor does not modify A i f it already complies with the requested type. In such

cases, only the simplifications offered by Spot are applied. For cut-determi­

nization of semi-deterministic automata Seminator uses the algorithm from

Section 7.7. Moreover, before testing the input automaton for semi- or cut-

determinism, we apply the following language-preserving modification of A:

We remove all marks from transitions that are not inside any accepting SCC.

This modification itself can transform an automaton which is not semi-deter­

ministic into a semi-deterministic one (the same holds for cut-determinism)

6Duret-Lutz et al. (2016), "Spot 2.0 - A
Framework for LTL and tu-Automata Ma­
nipulation", [55].

7Babiak et al. (2015), "The Hanoi Omega-
Automata Format", [17].

A n SCC C is accepting if each mark of A
marks a transition inside C .

S E M I - D E T E R M I N I Z A T I O N O F T G B A 117

and even i f it is not the case, it can reduce the size of resulting automaton as

smaller part of the original automaton has to be determinized.

The size of B can often be further improved by the automata reduction

techniques that are implemented i n Spot. They all preserve semi-determinism

of T G B A s . However, the reverse simulation technique 8 does not preserve cut-

determinism and thus it is not applied i f a cut-deterministic automaton is

requested.

By default, Seminator outputs G B A , however, B A can be requested. Note

that semi-determinization and cut-determinization of automata that are not

semi-deterministic always produce a B A . Seminator can produce a G B A with

two or more accepting sets only when A is already at least semi-deterministic.

8 Babiak et al. (2013), "Compositional Ap­
proach to Suspension and Other Improve­
ments to LTL Translation", [44].

Degeneralizat ion modes. In contrast to our expectations, for some G B A

the two-step semi-determinization outperforms the one-step semi-determi­

nization. In the two-step semi-determinization, A is first degeneralized into

a B A and then the standard semi-determinization for B A is applied. The one-

step approach performs degeneralization simultaneously with the semi-deter­

minization. See Sections 7.4 and 7.6. The two-step approach benefits from a

highly optimized degeneralization of Spot; none of the available optimizations

is performed i n the one-step approach. Therefore, by default Seminator tries

the following three modes for dealing with degeneralization, compares the

resulting automata sizes, and returns the smallest automaton out of the three?

1. Convert the input G B A A directly.

2. Transform A into an equivalent B A with marks on transitions and then

perform the conversion.

9 Users can force to use one of the three
modes.

3. Transform A into an equivalent B A with marks on states and then perform

the conversion.

118 A U T O M A T A F O R F O R M A L M E T H O D S : L I T T L E S T E P S T O W A R D S P E R F E C T I O N

7 . 9 E X P E R I M E N T A L E V A L U A T I O N

In this section, we compare the number of states of automata produced by

Seminator to the sizes of automata produced by other tools that are able to

produce semi-deterministic or cut-deterministic automata.

Tools and hardware. To our best knowledge, there are only three other rel­

evant tools: nba2ldba, ltl2ldba, and B i i c h i f i e r . The tool nba2ldba converts

B A into semi-deterministic B A 1 0 and ltl2ldba translates L T L formulae directly

to semi-deterministic or cut-deterministic T G B A . 1 1 Both tools are distributed

as parts of the O w l library. B i i c h i f i e r translates a fragment of L T L into semi-

deterministic automata with a single-exponential blow-up. 1 2 However, we do

not include it i n our experiments for three reasons: (i) it works only for a

fragment of L T L , (ii) it does not exhibit promising results i n the authors' eval­

uation, and (iii) it is available only for Windows.

We use two basic configurations of Seminator i n our evaluation: one is

Seminator i n the default setting and the other performs the two-step semi-

determinization of T G B A (referenced as 2-step, uses option - - v i a - t b a) .

Seminator simplifies the resulting automata by calling the reduction tech­

niques of Spot. These reductions can have a strong effect on the size of the

automata and thus camouflage potential weaknesses of the approach. As we

aim to evaluate different approaches rather than comparing different tools, we

evaluate each tool wi th (yes) and without (no) these reductions; we use Spot's

a u t f i l t - - s m a l l command to apply the reduction on products of the tools

from the O w l library and we use the option - sO to disable the reductions in

Seminator.

Because ltl2ldba needs an L T L formula as input, our evaluation starts with

L T L formulae. For Seminator and nba2ldba, we translate the e formulae to

automata of the expected type using Spot's l t l 2 t g b a - D command. The op­

tion - D expresses a preference towards more deterministic output.

The homepages and versions of all tools that were used for this evaluation

are listed i n Table 7.1. Overall, we have eight configurations of tools that pro­

duce semi-deterministic automata, see Table 7.2 for the precise commands,

and six configurations that produce cut-deterministic automata, see Table 7.3.

The evaluation ran on a laptop with Intel Core i7-2620M (2.70 G H z) proces­

sor and 8GB R A M . A l l toolchains finished the computation for al l formula

within one minute.

Benchmark formulae. We use two benchmark sets of L T L formulae. The

first set of formulae collected from the literature was already used i n Chap­

ter 6. Figure 7.9 shows that it is very often the case that l t l 2 t g b a -D pro­

duces a deterministic T G B A (•), or a non-deterministic T G B A that is already

1 0 It basically performs the two-step semi-
determinization without the SCC-aware op­
timization and with marks on states.
1 1 Sickert et al. (2016), "Limit-Deterministic
Buchi Automata for Linear Temporal Logic",
[62].
1 2 K i n i and Viswanathan (2017), "Optimal
Translation of LTL to Limit Deterministic
Automata", [69].

Table 7.1: Tools used in the experimental evaluation.

tools version webpage

Seminator 1.2.0

M2ldba, nba2ldba 1.1.0

ltl2tgba, autfilt, ltlfilt 2.4.2

https://github.com/mklokocka/seminator/

https://www7.in.tum.de/~sickert/projects/owl/

https://spot.lrde.epita.fr/

https://github.com/mklokocka/seminator/
https://www7.in.tum.de/~sickert/projects/owl/
https://spot.lrde.epita.fr/

S E M I - D E T E R M I N I Z A T I O N O F T G B A 1 1 9

sources cleanup type of automata produced by l t l 2 t g b a -D

Figure 7.9: Preparation of the formulae from the literature, and classification according to the four types of automata produced by l t l 2 t g b a - D.

Table 7.2: Tool configurations for generating a semi-deterministic automaton from formula cp.

approach reductions command line

Seminator no l t l 2 t g b a -D fJ seminator -sO

yes l t l 2 t g b a -D V seminator

Seminator 2-step no l t l 2 t g b a -D seminator - - v i a -tba -sO

yes l t l 2 t g b a -D seminator - - v i a -tba

ltl2ldba no l t ! 2 l d b a -n

yes l t ! 2 l d b a -n a u t f i l t - - s m a l l --tgba

nba2ldba no l t l 2 t g b a -D --ba | nba2ldba

yes l t l 2 t g b a -D --ba | nba2ldba a u t f i l t

Table 7.3: Tool configurations for generating cut-deterministic automata. (The a u t f i l t invocation has extra options to disable reverse-simulation
based reductions, since those do not preserve cut-determinism.)

approach reductions command line

Seminator no l t l 2 t g b a -D <P seminator --cd -sG

yes l t l 2 t g b a -D <P seminator --cd

Seminator 2-step no l t l 2 t g b a -D CP seminator --cd - - v i a - t b a -sG

yes l t l 2 t g b a -D CP seminator --cd - - v i a - t b a

ltl2ldba no l t l 2 l d b a -n V
yes l t l 2 l d b a -n <P a u t f i l t -- s m a l l -x simul= l , b a - s i m u l = l --tgba

120 A U T O M A T A F O R F O R M A L M E T H O D S : L I T T L E S T E P S T O W A R D S P E R F E C T I O N

cut-deterministic (). Depending on its configuration, Seminator only has to

perform some work on automata that are not cut-deterministic (• and •) or

on automata that are not semi-deterministic (•).

As Seminator actually has to do some work only on a few formulae from

the previous set, we also use a set of formulae generated randomly For each of

the four types of l t l 2 t g b a - D output (•, • , • , •) we generated exactly 100

formulae. The command used to generate all formulae used i n this evaluation

can be found i n the Gi tHub repository of Seminator.

7.9.1 Results and Observations

Table 7.4 compares the sizes (number of states) of the semi-deterministic au­

tomata produced by Seminator, ltl2ldba, and nba2ldba i n the configurations

given i n Table 7.2. Similarly, Table 7.5 compares the sizes of the cut-deter­

ministic automata produced by Seminator and ltl2ldba.

Table 7.4: Evaluation of the tools producing semi-deterministic automata, on random LTL formulae and LTL formulae from literature classified
according the type of automata produced by 1 t l 2tgba -D. Each cell presents the cummulative size (number of states) of semi-deterministic automata
produced by the corresponding tool without ('no') or with ('yes) reductions for the corresponding set of T L formulae.

formulae Seminator Seminator 2-step ltl2ldba nba2ldba

origin type n no yes no yes no yes no yes

random det 100 415 415 416 416 639 445 428 428

A c d 100 463 463 463 463 733 539 863 634

• sd 100 704 704 705 705 1228 784 850 774

• nd 100 1233 937 1276 987 1314 804 3657 1876

literature det 149 556 556 585 585 1277 855 600 600

A c d 46 194 194 198 198 838 341 377 240

• sd 3 13 13 13 13 41 17 17 13

• nd 23 472 369 514 404 666 376 869 573

Table 7.5: Evaluation of the tools producing cut-deterministic automata, on random LTL formulae and LTL formulae from literature classified
according the type of automata produced by LtL2tgba -D. Each cell presents the cummulative size (number of states) of cut-deterministic automata
produced by the corresponding tool without ('no') or with ('yes') reductions for the corresponding set of T L formulae.

formulae Seminator Seminator 2-step ltl2ldba

origin type n no yes no yes no yes

random det 100 415 415 416 416 570 497

A c d 100 463 463 463 463 732 649

• sd 100 734 712 735 713 1495 1275

• nd 100 2028 1141 2106 1184 1387 1038

literature det 149 556 556 585 585 1039 809

A c d 46 194 194 198 198 612 488

• sd 3 13 13 13 13 53 40

• nd 23 656 414 698 450 470 410

S E M I - D E T E R M I N I Z A T I O N O F T G B A 121

Further, Figure 7.10 provides a comparison of Seminator and ltl2ldba on

the level of individual semi-deterministic or cut-deterministic automata pro­

duced for the considered formulae. Both tools run without reductions to ex­

pose the difference i n the core algorithms of the tools. Finally, Figure 7.11

compares the semi-deterministic automata produced by Seminator to those

produced by nba2ldba. Again, both tools run without reductions. The last

figure, Figure 7.12 compares Seminator with Seminator 2-step i n a similar

manner.

The presented results immediately lead to several observations.

1. Seminator produces nearly always the smallest semi-deterministic or cut-

deterministic automaton i f it gets as input a T G B A that is already semi-

deterministic (which includes deterministic and cut-deterministic auto­

mata as well). Note that Seminator does not change such automata at

all unless a cut-deterministic automaton is required and it gets a semi-

deterministic automaton that is not cut-deterministic. In this case, Semi­

nator just applies the subset construction on the nondeterministic part of

the automaton. Hence, all these results reflect the efficiency of Spot's L T L to

T G B A translation and not the efficiency of the Seminator's core algorithm.

2. When Seminator gets a T G B A that is not semi-deterministic, it produces

a bigger cut-deterministic automaton than the one produced by ltl2ldba

directly from the formula i n many cases. W h e n semi-deterministic auto­

mata are produced, the situation is different and it is difficult to predict

which tool would produce a smaller automaton. Note that Seminator al­

ways produces a T B A i n these cases, while ltl2ldba produces a T G B A .

3. The advantage of Seminator over Seminator 2-step is not very dramatic.

The reasons were already touched on i n the previous section.

4. Seminator clearly outperforms nba2ldba on all sets of benchmarks.

5. The numbers i n Tables 7.4 and 7.5 show that reductions can save many

states i n the semi-deterministic and cut-deterministic automata produced

by Seminator, ltl2ldba, or nba2ldba.

6. The semi-deterministic automata produced by ltl2ldba can be larger than

the cut-deterministic automata produced by the same tool. This is unex­

pected and it indicates a potential for further improvement of the tool.

The experimental evaluation brought two main outputs. First, i f someone

needs to translate an L T L formula to a small semi-deterministic automaton,

it pays to try to translate it by Spot. If Spot produces a semi-deterministic au­

tomaton, it is very probably smaller than what ltl2ldba would produce. The

same holds when a cut-deterministic automaton is needed, but it maybe nec­

essary to run Seminator to cut-determinize the semi-deterministic automaton

produced by Spot. Second, i f someone needs a semi-deterministic automa­

ton from a nondeterministic automaton rather than from an L T L formula,

Seminator should be used instead of nba2ldba.

1 2 2 A U T O M A T A F O R F O R M A L M E T H O D S : L I T T L E S T E P S T O W A R D S P E R F E C T I O N

literature formulae random formulae

A • /*
/ *

• A • /

/ •
•

•

• / cut-d

• :» J**
• • - 1

•

eterm
inistic

<

• I

t I • •

:»

1
t a n • » •

•

output

< K
1

% jk i • • • • •

•

type

•
•

• mi

* n A * •
•

•
• 4»

•
•

•

i j
(• • • •

•

* •
•

•
• 4»

(• • • •
•

Figure 7.10: Comparison of the size of cut-deterministic automata produced by Seminator and M21dba (both without reductions) on random for­
mulae and on formulae from literature, and the analogous comparison of produced semi-deterministic automata. Scatter plots are colored according
to the output type of l t ! 2 t g b a - D. Note log scale.

literature formulae random formulae

•

< i
A *y •

•

. i t J
• /

*v
' */

A
A

: t

\ 1 0

Figure 7.11: Comparison of the size of semi-deterministic automata produced by Seminator and nba21dba (both without reductions) on random
formulae and on formulae from literature. Scatter plots are colored according to the output type of l t l 2 t g b a - D. Note log scale.

S E M I - D E T E R M I N I Z A T I O N O F T G B A 1 2 3

100

10

10

literature formulae random formulae

**/ cut-c

•

leterm
inistic

« r
A

A j g

output

< * A l |

> Jm
• M

type

• det

cd
/

type

• det

cd

/
•
•

sa

nd sem
i-determ

inisti(
sem

i-determ
inisti(

• >
A

; output

4
(

A Jfl • &

i 1 0 100 1 1 0 100
seminator

Figure 7.12: Comparison of the size of cut-deterministic automata produced by Seminator and Seminator 2-step (both without reductions) on
random formulae and on formulae from literature, and the analogous comparison of produced semi-deterministic automata. Scatter plots are colored
according to the output type of l t l 2 t g b a -D. Note log scale.

Complementation of Semi-Deterministic Buchi Auto­
mata 8
In this chapter, we discuss a complementation procedure tailored for semi-

deterministic Buchi automata. We start wi th a short discussion of comple­

mentation procedures for nondeterministic Buchi automata, then we discuss

key observations about runs of semi-deterministic automata and use these ob­

servations to explain our construction and describe it formally. Then we reuse

the notion of ranks1 to prove the correctness of our algorithm, and finally, we

describe our implementations, compare the performance of the construction

to other algorithms that complement (nondeterministic) Buchi automata and

discuss the impact of our construction on termination analysis.

Throughout this chapter, we work only with Buchi automata with marks

on states (SBA). This allows us to omit acceptance labels i n figures and use

a condensed notation for runs i n the form of an infinite sequence of states

instead of transitions. As our main practical motivation for this research -

termination analysis i n U L T I M A T E B U C H I A U T O M I Z E R 2 - allows automata to

have multiple init ial states, i n this chapter we consider a definition of automata

where the init ial state ST is replaced by a set of init ial states I.

1 Kupferman and Vardi (2001), "Weak Alter­
nating Automata are not that Weak", [70].

2 Heizmann, Hoenicke, and Podelski (2014),
"Termination Analysis by Learning Termi­
nating Programs", [8].

Run of A. now has to start in some initial
state from I.

8.1 C O M P L E M E N T A T I O N O F N B A

Complementation of a given N B A A over an alphabet I is a problem to create

a Buchi automaton C over the same alphabet that recognizes the complement

language of A, which is Lw \ L (. 4) . It is a classic problem that has been exten­

sively studied for more than half a century? The known constructions for the

complementation of N B A can be classified into the following four categories.

Ramsey-based. Historically the first complementation for N B A introduced

by B u c h i 4 and later improved by Sistla et al? i n which a Ramsey-based

combinatorial argument is involved.

Determinization-based. A construction proposed by Safra 6 and enhanced

by Pi terman 7 i n which a state of a complement is represented by a Safra

tree.

Rank-based. A construction introduced by Kupferman and V a r d i 8 based on

ranks of run graphs for which several optimizations 9 have been proposed.

Slice-based. A construction proposed by Kahler and W i l k e 1 0 based on re­

duced split trees.

The best known upper bounds on the size of the complement for these

categories are i n order n ° (n) , 0(n2n), O((0.76n)n), a n d O ((3 n) n) where

n represents the number of states of the input N B A .

3 See Vardi (2007), "The Buchi Complemen­
tation Saga" [71], for a survey.
4 Buchi (1962), "On a Decision Method in
Restricted Second Order Arithmetic", [1],
5 Sistla, Vardi, and Wolper (1987), "The
Complementation Problem for Buchi Auto­
mata with Appplications to Temporal Logic"
[72].

6 Safra (1988), "On the Complexity of
Omega-Automata" [50].
7 Piterman (2007), "From Nondeterministic
Buchi and Streett Automata to Deterministic
Parity Automata" [51].

8 Kupferman and Vardi (2001), "Weak Alter­
nating Automata are not that Weak" [70].
'Schewe (2009), [6]; Gurumurfhy et al.
(2003), [73]; Friedgut, Kupferman, and
Vardi (2006), [74].

1 0 Kahler and Wilke (2008), "Complementa­
tion, Disambiguation, and Determinization
of Buchi Automata Unified", [75].

126 A U T O M A T A F O R F O R M A L M E T H O D S : L I T T L E S T E P S T O W A R D S P E R F E C T I O N

The upper bound for the rank-based complementation matches the lower

bound for complementation of N B A proved by Y a n 1 1 . Similarly as i n the

world of finite words, the complementation of deterministic Buchi automa­

ta is noticeably easier, it can be done with only linear blow-up. More pre­

cisely, for a D B A with n states from which a are accepting, we can bui ld a

complement D B A with 2 n - a states.12 Finally, complementation of semi-

deterministic Buchi automata is somewhere i n between - it is i n 0(2n) as

we wi l l show i n the following.

1 1 Yan (2008), "Lower Bounds for Comple­
mentation of Omega-Automata Via the Full
Automata Technique", [7],

1 2 Kurshan (1994), "The Complexity of Veri­
fication" [76].

8.2 C O M P L A M E N T A T I O N O F S D B A

Here we present NCSB complementation ofsDBA which exploits the special

structure of s D B A to achieve smaller complement automata. More precisely,

i f the deterministic part of the input s D B A A contains d states, including a ac­

cepting states and the nondeterministic part contains n states, the N C S B com­

plementation produces a complement automaton C with at most 2 n 3 a 4 d ~ a

states. Moreover, i f A is deterministic (n = 0) C has 2d - a states, which meets

the Kurshans construction for the complementation of D B A . 1 3

Besides the smaller theoretical size, the automaton C typically has a low

degree of non-determinism when compared to results of other complemen­

tation algorithms, and is always unambiguous 1 4 . Moreover, the automata

produced by our construction have a simple structure: they are merely an

extended breakpoint construct ion 1 5 and thus are suitable for symbolic repre­

sentation.

W i t h all of these favourable properties i n mind, it would be easy to think

that the complementation mechanism we develop forms a class of its own. But

this is not the case: the algorithm could be reformulated as an optimized ver­

sion of the rank-based a lgor i thm 1 6 tailored specially (and also correct only)

for s D B A . However, we believe that the intuition is more clear i f we focus on

runs' properties rather than ranks.

1 3 Kurshan (1994), "The Complexity of Veri­
fication", [76].

1 4 For each u e L (C) there exists only one
accepting run over u

1 5 Miyano and Hayashi (1984), "Alternating
Finite Automata on Omega-Words", [77].

1 6KupfermanandVardi(2001), [70].

Blocking. Our construction again relies on subset construction to follow

all possible runs of the input automata. When handling automata that are

not complete, the subset construction follows more than all runs - the set of

states reached by the subset construction after reading a finite prefix of a word

u may contain states that have no successors i n the next step. Sequences of

transitions ending i n such states cannot be prolonged into infinite runs over

u and we say that the corresponding runs block. The usage of the term run

conflicts the fact that runs are infinite but we believe this notation simplifies

the presentation.

Relation of runs to the complement. Let A = (Q , 1,5,1, { •} , p, lnf#) be

an s D B A , Q N , S N , Q D , S D , S C be the notation introduced i n Section 7.1, and

u = u o u i . . . 6 Lw be an infinite word. Each run a of A over u has one of the

following properties:

1. a stays forever i n Q N ,

2. a enters Q D and stops visiting • at some point, or

3. a is an accepting run.

C O M P L E M E N T A T I O N O F S E M I - D E T E R M I N I S T I C B U C H I A U T O M A T A 1 2 7

Clearly, u i L(_4) i f and only i f every run of A over u has one of the first two

properties. In the second case, we say that a is safe after visiting • for the last

time (or since the moment it enters Q D i f it does not visit any accepting state

at all).

In order to check whether u € L(_4) or not, one has to track all possible

runs of A. After reading a finite prefix of u , the states reached by the subset

construction can be divided into three sets.

1. The set N £ Q N represents the runs that kept out of the deterministic part

so far.

2 . The set C £ Q D represents the runs that have entered the deterministic

part and that are not safe yet. One has to check i f some of them w i l l be

prolonged into accepting runs i n the future, or i f all of the runs eventually

block or become safe.

3. The set S £ (Q D \ M-(*)) represents the safe runs.

Clearly, every accepting run of A stays i n after leaving N . O n the other

hand, i f w i ^-(A), every infinite run either stays i n N or eventually leaves

to S and thus does not stay i n forever.

N stands for nondetertninistic

C stands for check

S stands for safe

N C S B complementat ion of s D B A . Let A = (Q , 1,5,1, { •} , u, l n f «) be

an s D B A with marks on states. The NCSB complementation construction cre­

ates an unambiguous Buchi automaton C = (P , I , § e , 1^, { •} , u ^ , Inf •) that

recognizes the language Lw \ L(_4). The construction tracks runs of A us­

ing the powerset construction and guesses the right classification of runs into

sets N , C , and S. Moreover, i n order to check that no run stays forever i n C, it

uses one more set B £ C. Therefore, states of C are quadruples (N , C, S, B) of

subsets of Q — hence the name N C S B complementation construction.

P £ { (N , C , S , B) | N £ Q N , B £ C £ Q D , S £ Q D N U («) , a n d S n C = 0 }

After reading only a finite prefix of the input word u , the automaton cannot

know whether or not some run is already safe, as this depends on the suffix

of u . The automaton C uses the guess-and-check strategy. Whenever a run a

in C may freshly become safe (it is leaving a marked state or it is entering Q D

via a cut transition t e 5 C) , then the automaton C makes a nondeterministic

decision to move a to S or to leave it i n C. The construction punishes every

wrong decision:

• i n order to preserve correctness, a run of C is blocked i f a is moved to S

too early (runs i n S are not allowed to visit marked states anymore), and

• i n order to maintain unambiguity, a is allowed to move from to S only

when leaving a marked state. Hence, i f a misses the moment when it leaves

a marked state for the last time, it w i l l stay i n forever and this particular

run of C w i l l not be accepting.

The set B mimics the behaviour of with one exception: it does not adopt the

runs freshly coming to C via 5 C . The size of never increases unt i l it becomes

empty; then we say that a breakpoint is reached. After each breakpoint, B is

set to track exactly the runs currently i n C.

See the state ({0},{3},{},{3}) ofFigure 8.1
and the letter b for an example.

See the state ({0},{2},{},{2}) ofFigure 8.1
and the word a'" for an example.

128 A U T O M A T A F O R F O R M A L M E T H O D S : L I T T L E S T E P S T O W A R D S P E R F E C T I O N

tracing the reachable states correctly

a run in Q • is either safe or not

safe runs must stay safe

only runs leaving a marked state can be
moved to S, the rest stays in C

punish the wrong guess - the corresponding
run should have been in S already

breakpoint construction to check that no run
stays in forever

cr is freshly entering Q D

cr is leaving a marked state

W i t h the provided intuition i n mind, we define the transitions of C. We

h a v e ((N , C , S , B) , a , (N ' , C ' , S ' , B ')) 6 6 c iff

1. N ' = T 6 N (N , a) a n d C ' u S ' = T 8 c (N , a) u T 6 D (C u S , a) ,

2. C ' n S ' = 0 ,

3. S ' 2 T 6 D (S , a) ,

4. C ' 2 T 6 D (C \ u («) , a) ,

5. for all q e \ we have T 5 D ({q} , a) + 0 , and

6. i f B = 0 then B ' = C and otherwise B ' = T 6 d (B , a) n C ' .

Note that the only source of nondeterminism of 6^ is when C has to guess

correctly whether or not a run cr of A is safe. Such situations arise i n two

cases, namely when the current state q of the run cr satisfies

• q e T 5 c (N , a) \ (T S d (S, a) u u (*)) , and when

. q e T 6 d (C n a) \ (T 6 d (S, a) u

A l l other situations are determined, including runs that are currently i n a

marked state (which belong to C) or i n S D (S, a) (which belong to S).

N o run stays i n i f and only i f B becomes empty over and over again. Thus

the acceptance marks are placed on states with breakpoints.

u c («) = { (N , C , S , B) e P | B = 0 }

Finally, the correct classification of runs from their start has to be reflected in

the set of init ial states. As some runs may start i n the deterministic part of A,

we use the guess-and-check strategy again.

Ic = {(QN n I, C , S , C) I S u C = I n QD, S n C = 0 }

We offer an example of the N C S B construction i n Figure 8.1 where the

automaton C with 7 states was built as a complement for the automaton A with

4 states. The numbers of states of complement automata built by the Ramsey-

based, determinization-based, rank-based, and slice-based constructions are

54,13,13, and 10, respectively. a

/ Q

£ { 0 } . { } . { 3 } , { }) « — ^ ({ 0 } , { } , { 2 } , { }) ({ 0 } , { 3 } , { } , { 3 })

a , d (

>£{o} .m} .{}) ;

£ { Q } . { i } . { } . { })

Figure 8.1: A Biichi automaton A. (left) and its complement Biichi automaton C (right) built by the NCSB construction.

C O M P L E M E N T A T I O N O F S E M I - D E T E R M I N I S T I C B U C H I A U T O M A T A 129

Complexi ty. Let p = (N , C , S , B) 6 P of C. Then

• for a state q i e Q N of A, q i is either present or absent i n N ; 2 IQ .N I

• for q2 e [i (*) , one of the following three options holds: q2 is only in

q2 is both i n C and B, or q2 is not present i n p at all; and

3 W #) I

• for q3 6 Q D \ [!(•), one of the following four options holds: q3 is only in 4 | Q D s n (») |

S, q 3 is only i n C, q 3 is both i n C and B, or q 3 is not present i n p at all.

The size of P is thus bounded by |P| < 2 ^ 1 . 3 ^ (*) l . 4 I Q D S ^ *) I .

As already mentioned before, for deterministic automata (here we assume

A is complete and Q N is empty), the N C S B construction leads to an automa­

ton similar to an automaton with 2 | Q | - | u(#) | states produced by Kurshans

construction. 1 7 To see the size of the automaton produced by our construction 1 7 Kurshan (1994), "The Complexity of Veri-

for a D B A , recall that a state (N , C, S, B) of the complement automaton en- fication", [76].

codes that exactly the states i n N u C u S are reachable. For a D B A , N u C u S

thus contains exactly one state q of Q. Moreover, N is empty and thus B co­

incides with C since B becomes empty together with C. If q 6 [!(•), then it

is i n both B and . If q 6 Q D \ [!(•), then it is either only i n S, or i n both

and C, leading to a size |P| < 2 | Q D | - | u («) | .

8 . 3 R A N K S A N D C O R R E C T N E S S

We open this section by recalling run graphs and introducing ranks. We then

look at the N C S B construction through the ranking lense and use the insights

this provides for proving correctness and unambiguity of the construction.

Run graphs. We have introduced run graphs i n the previous section for au­

tomata with marks on transitions and with a unique init ial state. Here we

redefine it for automata with marks on states and with multiple initial states.

Let A = (Q , 1,6,1, { •} , u, l n f «) be an N S B A with multiple init ial states

and let u = u i U2 . . . be a word. A run graph of A over u is a vertex-labelled

directed acyclic graph = (V , E, pi) where V £ Q x to is a set of vertices,

E £ V x V is a set of edges and p: {•} -»• 2 V is a vertex-labelling function.

V , E, and | I are defined as follows.

infinite path i n Gu that starts i n (q, 0) where q is some init ial state represents

a run of A over u and conversely, each run of A over u is represented by an

unique infinite path i n Gu.

The run graph Gu is rejecting i f no path i n Gu satisfies the Buchi condition.

That is, Gu is rejecting iff A has no accepting run over u and thus iff u is not

in the language of A.

p (») = { (q i , i) e V | q i e p («) }

The vertices on the ifh level represent states
reachable in A. under the prefix of u of
length i . Edges correspond to transitions
and also the placement of marks is pre­
served.

As we wi l l only use run graphs of A we wi l l only write Gu instead of G^- Each

http://2IQ.nI

130 A U T O M A T A F O R F O R M A L M E T H O D S : L I T T L E S T E P S T O W A R D S P E R F E C T I O N

Ranks. The property that a run graph Gu is rejecting can be expressed in

terms of ranks}8 We call a vertex v € V of a graph G u = (V , E, fx) safe, i f no

vertex v ' reachable from v is accepting (v ' is accepting i f v ' e p(*))> mdfinite,

i f the set of vertices reachable from v is finite. Based on these definitions, ranks

can be assigned to the vertices of a rejecting run graph. We set G ° = G u , and

repeat the following procedure unti l a fixed point is reached, starting with

i = 1:

5 Kupferman and Vardi (2001), [70].

1. Assign all safe vertices of 1 the rank i , and set G ^ to G ^ 1 minus the

vertices with rank i .

Remove safe vertices for G j

2. Assign all finite vertices of G ^ the rank i + 1, and set G J ^ 1 to G ^ minus

the vertices with rank i + 1.

Remove finite vertices for G]

3. Increase i by 2.

A fixed point is reached i n | Q | + 2 steps,1 9 and the ranks can be used to

characterise the complement language of a nondeterministic Buchi automa­

ton:

Proposition 1. A nondeterministic Buchi automaton A with n states rejects a

word w iffG^+z is empty20 •

1 9 It is common to use 0 as the minimal rank
and start with the finite vertices, but the cor­
rectness of the complementation does not
rely on this. The proof in [70] refers to this
case, and requires | Q | + 1 steps. For our pur­
pose, the minimal rank needs to be odd, i.e.
we need to start with safe vertices.

1 Kupferman and Vardi (2001), [70].

Ranks and complementation of sDBA. Let us now consider the situation

when A is an sDBA. Then we only need to consider three ranks: 1, 2, and

3. Moreover, the vertices Q D X CL> reachable from accepting vertices can only

have rank 1 or rank 2 i n a rejecting run graph.

Proposition 2. A semi-deterministic Buchi automaton A rejects a word w iff

G 3 is empty. This is the case iffG^ contains no vertex in Q D X CL>.

Proof. Let u be a word rejected by A. By construction, G ^ contains no safe

vertices as removing safe vertices does not introduce new safe vertices.

Let us assume for contradiction that G \ contains a vertex (q i , i) € Q D x t u

that is not finite. As (q t , i) is not finite, there is a run CT = q o q i . . . q i q i + i . . .

of A over u such that (qj , j) is a vertex i n G ^ for all j > i . This is because

q i 6 Q D > the deterministic part of A, and { (q j , j) | j > i} is therefore (1)

determined by u and (q i , i) , and (2) fully i n G ^ because otherwise (q i , i)

would be finite.

But i f all vertices i n { (q j , j) | j > i} are i n G ^ , then none of them is safe

in Gu. Using again that the tail q iq i+ i q i + 2 . . . is unique and well defined

(as q i e Q D , the deterministic part of A), it follows that, for all j > i , there

is an index k > j such that q^ is marked by • . Consequently, a is accepting

(contradiction).

We have thus shown that i f A rejects a word u , then G 2 contains no state

in Q D x o>. This also implies that G 2 contains no accepting vertices. Conse­

quently, all vertices i n G 2 are safe and thus G 3 is empty. •

G ^ is built from G ^ by removing safe ver­
tices.

G ^ is built from G ^ by removing finite ver­
tices.

G ^ is built from G ^ by removing safe ver­
tices.

C O M P L E M E N T A T I O N O F S E M I - D E T E R M I N I S T I C B U C H I A U T O M A T A 131

Rational runs. We now consider the N C S B construction from the perspec­

tive of ranks. We start with an intuition for rational runs of the complement

automaton. Let a = (N o , Q>,So, B 0) (N i , C i , S i , B i) (N 2 , C 2 , S 2 , B 2) . . .

be a run of C over a word u such that u i L(_4) and let Gu = (V , E, ! ! (•)) be

the run graph of A over u . The run cr is rational i f it is the unique accepting

run of C over u which guesses the ranks precisely, that is:

. N i = { q | (q , i) 6 V , q 6 Q N } ,

• C i = {q I (q , i) e V , q 6 Q D and the rank of (q , i) is 2},

• S i = {q I (q , i) e V , q 6 Q D and the rank of (q , i) is 1},

. B i C Q .

We need to check that these vertices are finite
in G\.

These vertices are safe in CJ-LL.

A l l runs of C that differ on some i from the rational run wi l l either block

or w i l l keep the wrongly guessed vertices with rank 1 i n C and B and thus wi l l

not be accepting.

Correctness. We now establish that the automaton C is an unambiguous

automaton that recognises the complement language of A by showing

1. C does not accept a word that is accepted by A, u <= L(A) u i i_(C)

2. for a word that is not accepted by A, we have a unique rational run of C

and this run is accepting, and u i L(A) u <= I_(C)

3. for a word u that is not accepted by A, the rational run is the only accepting unambiguity of C

run of C over u .

Lemma 8.1. Let A be an sDBA, C be constructed by the NCSB complementa­

tion of A, andu e L(_4) be a word in the language of A. Then C does not accept

u.

Proof. Let cr = q 0 q i . . . be an accepting run of A over u , and let i e tu be an

index such that q i e u (*) . Let us assume for contradiction that we have an

accepting run cr' = (N o , Co, So, B o) (N i , C i , S i , B i) . . . of C over u . As qt

is marked it holds that qt e C\ and thus qj e Cj u Sj for all j > i . We look at

the following case distinction.

1. For all j > i , q, 6 C j . As a ' is accepting, there is a breakpoint (B j = 0) for

some I > i . For such an index we have that q t + i € B^+i and, moreover,

that q k 6 B k for all k > I + 1. Thus, + 0 for all k > I + 1 and a' visits

only finitely many marks (contradiction).

2. There is a j > i such that qj 6 S j . But then q k 6 S k holds for all k > j

by construction. However, as a is accepting, there is an I > j such that

qt € u(#), which contradicts qt 6 St (contradiction).

•
Lemma 8.2. Let A be an sDBA, C be the automaton constructed by the NCSB

complementation of A,ui L(^4), and (V , E ,] ! (•)) = Gu be the run graph of

A over u. Then there is exactly one rational run a ofC over u and it has the

form a = (N o , Co, So, B o) (N i , C i , S i , B i) The run a is accepting.

132 A U T O M A T A F O R F O R M A L M E T H O D S : L I T T L E S T E P S T O W A R D S P E R F E C T I O N

Proof. It is easy to check that the rational run is unique: the updates of the

N , C, and S components follow the rules for transitions from the definition

of C and the ranks of vertices from Gu, and the update of the B component is

fully determined by the update of C and the previous value of B.

What remains is to show that the run cr is accepting. Let us assume for

contradiction that there are only finitely many breakpoints reached, i.e. there

is an index i 6 tu, for which there is no j > i , such that Bj = 0 .

N o w we have that 0 + B i £ C[where

= {q I (q , i) e V s . t . q 6 Q D and the rank of (q , i) is 2}

The construction provides that, i f there is no breakpoint on or after position i ,

then B j is the set of states that correspond to vertices from Q x {j} reachable

in from the vertices B ; x {i} for all j > i . As there is no future breakpoint,

there are infinitely many such vertices, and König s lemma implies that there

is an infinite path i n G ^ from at least one of the vertices i n B i x { i} . This

provides a contradiction to the assumption that the rank of these vertices is 2,

i.e. that they are finite i n G ^ . •

L e m m a 8.3. Let A be an sDBA, C be the automaton constructed by the NCSB

complementation of A,ui L(^4), and (V , E ,] ! (•)) = Gu be the run graph of

A over u. Letu= (N o , C o , S o , B 0) (N o , C i , S i , B i) . . . be a non-rational run

ofC over u,- that is, a does not satisfy

. N i = { q | (q , t) e V 5 . f c q e Q N } ,

• C i = {q I (q , i) e V s.t. q e QDand the rank of (q , i) is 2},

• S i = {q I (q , i) e V s.t. q e Q D and the rank of (q , i) is 1},

for some i. Then a is rejecting.

Proof. As the N component always tracks the reachable states i n Q N correctly

by construction, and the C u S part always tracks the reachable states i n Q D

correctly by construction, we have one of the following two cases according

to Proposition 2.

1. There is a safe vertex (q , i) € V such that q € C i . By construction, a Safe vertices have rank l .

unique maximal path (qt , i) (q i + i , i + 1) (q i . + 2 , i + 2) . . . for q i = q exists

in G u and this path does not contain any state marked by • . By an induc­

tive argument, for all vertices (q j , j) on this path, qj e . I f the path is

finite, cr blocks at the end (due to the definition of the transition function

of C), which contradicts the assumption that a is a run (which is infinite

by definition). Similarly, i f the path is infinite we have qk e Bk for some

k > i . Then qj 6 Bj for all j > k with (qj , j) on this path. Therefore, cr

cannot be accepting.

2. There is a non-safe vertex i n (q , i) 6 V such that q 6 S i , which implies

that q is not marked by • . By construction, we get a unique maximal path

(q t , i) (q t+ i , i + 1) (q i + 2 , i + 2) . . . i n G ^ such that q i = q and this path

contains a marked state q k • By an inductive argument, all vertices (q j , j)

on this path are i n Sj . But this includes the marked state qk is also i n Sk

which is not permitted by the construction of C (contradiction). r j

C O M P L E M E N T A T I O N O F S E M I - D E T E R M I N I S T I C B U C H I A U T O M A T A 1 3 3

The first two lemmata provide the correctness of our complementation al­

gorithm and the third lemma establishes that C is unambiguous. A l l together

they prove the following theorem.

Theorem 8.4. Let A be an sDBA and C be the automaton constructed by the

NCSB complementation of A. Then C is an unambiguous Buchi automaton that

recognises the complement of the language of A.

8 . 4 O N - T H E - F L Y A P P R O A C H

Some algorithms do not need to construct the whole complement automa­

ton. For example, i n order to verify that u i L(_4) one only needs to bui ld

the accepting lasso i n C for u . O r when building a product with some other

automaton (or Markov chain), it is unnecessary to bui ld the part of C which

is not used i n the product. Further, some tools work with implicit ly encoded

automata and/or query an S M T solver to check the presence of a transition in

the automaton, which is expensive. U L T I M A T E B U C H I A U T O M I Z E R has both

properties: it stores automata i n an implicit form and builds a product of the

complement with a program flow-graph. Such tools can greatly benefit from

an on-the-fly complementation that does not rely on the knowledge of the

whole input automaton.

The N C S B complementation can be easily adapted for an on-the-fly imple­

mentation. Because we have no knowledge about Q N , Q D , and 6 C) the runs

are held i n N unti l they reach a state with a mark (which has to be i n Q D) >

only then they are moved to C.

Technically, the " N ' = T 5 N (N , a) " from the definition of 6c would be

replaced by " N ' = T 5 (N , a) \ u(#)" and for C ' now holds:

C ' £ T 6 (C , a) u (T 6 (N , a) n («))

As non-marked states of Q D can also appear i n N the complexity of the

on-the-fly variant increases slightly.

|p| < 2 I Q N | . 3 H ») | . 5 I Q D ^ («) |

Note that the on-the-fly construction does not add any further nondeter-

minism to the construction. Furthermore, there is an injection of runs from

the original N C S B construction to this on-the-fly variant. Therefore, the cor­

rectness argument and the uniqueness argument for the accepting run which

are given i n Section 8.3 require only minor adjustments.

8 . 5 I M P L E M E N T A T I O N

We implemented the N C S B complementation i n two tools. One implementa­

tion is available i n the G O A L tool . 2 1 G O A L is an interactive graphical tool for

cu-automata, temporal logics, and games. It provides several Buchi comple­

mentation algorithms and has been used i n an extensive evaluation of these

algorithms. 2 2 In the command-line version, the parameters that run N C S B

construction are complement -m sdbw - a. The partition of the set Q into

Q N and Q D is not a parameter, instead the implementation uses the set of all

states that are reachable from some accepting state as Q D -

2 1 Tsai, Tsay, and Hwang (2013), "GOAL
for Games, Omega-Automata, and Logics",
[78], available at http://goal.im.ntu.edu.tw/.

2 2 Tsai et al. (2014), "State of Buchi Comple­
mentation", [79].

http://goal.im.ntu.edu.tw/

134 A U T O M A T A F O R F O R M A L M E T H O D S : L I T T L E S T E P S T O W A R D S P E R F E C T I O N

Our second implementation is available i n the U L T I M A T E A U T O M A T A L I ­

B R A R Y . This library is used by the termination analyser U L T I M A T E B U C H I A U -

T O M I Z E R and other tools of the U L T I M A T E program analysis framework. 2 3 This 2 3 http://ultimate.informatik.uni-freiburg.

implementation uses the on-the-fly variant of the construction. The library d e /

provides a language that allows users to define automata and a sequence of

commands that should be executed by the library. This language is called

automata script and an interpreter for this language is available via a web i n ­

terface on the tools website. The operation that implements the N C S B con­

struction has the name buchiComplementNCSB.

8.6 E X P E R I M E N T A L E V A L U A T I O N

This section evaluates how the N C S B complementation performs i n practice

in comparison to other methods for complementation of nondeterministic

Buchi automata. A l l automata, tools, scripts, and commands used i n the eval­

uation with some further comparisons can be found at https://github.com/

xblahoud/NCSB - Complementation.

Termination analysis. Program termination analysis is a model checking

problem, where the aim is to prove that a given program terminates on all

inputs. In other words, it tries to establish (or disprove) that all infinite exe­

cution paths i n the program flowgraph are infeasible. U L T I M A T E B U C H I A U -

T O M I Z E R uses an s D B A to represent infinite paths that are already known to

be infeasible. It needs to complement the s D B A and make the product with

the program flowgraph to identify the set of infinite execution paths whose

infeasibility still needs to be proven.

Benchmark automata. For the evaluation, we took automata whose com­

plementation was needed while the tool U L T I M A T E B U C H I A U T O M I Z E R was

analysing the programs from the Termination category of the software verifi­

cation competition S V - C O M P 2015. 2 4 We wrote each Buchi automaton that

was semi-deterministic but not deterministic to a file i n the H O A format. 2 5

We obtained 106 semi-deterministic Buchi automata. A m o n g these automa­

ta, we have identified 97 automata that were pairwise non-isomorphic.

By construction, all these automata behave deterministically only after the

first visit of an accepting state. Hence the partition of the states Q into Q N

and Q D is unique and the results of the original construction and the results

of the on-the-fly modification presented i n Section 8.4 coincide.

2 4 Beyer (2015), "Software Verification and
Verifiable Witnesses - (Report on SV-COMP
2015)", [80].
2 5 Babiak et al. (2015), "The Hanoi Omega-
Automata Format" [17].

Other complementation constructions. For each category of methods for

complementing N B A described i n Section 8.1, G O A L provides implementa­

tions that can be adjusted by various parameters. We included one construc­

tion from each category. For the latter three categories, we took the arguments

that were most successful i n the extensive evaluation mentioned earlier? 6 For

the Ramsey-based category we used additionally an optimization that m i n i ­

mizes the finite automata used during the complementation. 2 7 The commands

that we used are listed i n Table 8.1.

2 6 Tsai et al. (2014), [79].

2 7 Breuers, Löding, and Olschewski (2012),
"Improved Ramsey-Based Büchi Comple­
mentation" [81].

http://ultimate.informatik.uni-freiburg
https://github.com/

C O M P L E M E N T A T I O N O F S E M I - D E T E R M I N I S T I C B Ü C H I A U T O M A T A 135

Construction G O A L command Table 8.1: Complementation
and their G O A L commands.

Ramsey-based complement -m ramsey -mace -min

Determinization -b ased complement -m piterman -mace -sim -eq

Rank-based complement -m rank -mace - t r -ro -cp

Slice-based complement -m s l i c e -mace -eg -mad] -ro

N C S B complement -m sdbw -a

Hardware. A l l complementations were run on a laptop with an Intel Core

i5 2.70GHz C P U . We restricted the maximal heap space of the J V M to 8GB

(all complementations are implemented i n Java) and used a timeout of 300s.

8.6.1 Results and observations

A l l algorithms of Table 8.1 were applied to the 97 pairwise non-isomorphic

sDBA. We present the results i n Table 8.2 and i n Figure 8.2. For 91 out of the

97 s D B A , all implementations were able to compute a result. We refer to these

91 s D B A as easy s D B A , while the remaining six are referenced as difficult in

the Table 8.2. For each complementation, we provide the cumulative num­

bers of states and transitions of all 91 easy complements. For each of the easy

s D B A , N C S B construction produces the complement with the smallest num­

ber of states. In Figure 8.2, a size of the complement produced by the N C S B

construction is compared to the size of the smallest complement produced by

the other constructions for each of the easy sDBA.

For the difficult s D B A , at least one construction was not able to provide

the result wi thin the given time and memory limits. We provide the number

of states of the computed complements for each of them. Whi le there are two

cases where the determinization-based construction produced an automaton

with fewer states than the N C S B construction, the number of transition was

always smaller for the N C S B construction.

Simplifications. A common approach to mitigate the problem of large re­

sults of complementation is to apply generic size reduction algorithms. Does

our N C S B construction also outperform the other constructions i f we apply

size reduction techniques afterwards? In order to address this question, we

applied the simplification routines of the Spot library (in version 1.99.4a) to

the complements. We ran the command a u t f i l t - - s m a l l --high -B -

H with a timeout of 300s and obtained the results that are presented i n Ta-

construction
91 easy s D B A e > difficult s D B A

construction
states transitions 1 2 3 4 5 6

Ramsey-based 16909 848969 - - - - - -
Rank-based 2703 21095 - - 1022 7460 8245 -
Det.-based 1841 24964 - - 172 346 385 3527

Slice-based 1392 14783 66368 - 184 421 475 9596

N C S B 950 8003 20711 84567 108 343 401 5449

Table 8.2: Performance of complementation algorithms without posteriori simplifications. For every algorithm we first show the cummulative
numbers of states and edges summed for the 91 easy sDBA. The last 6 columns give the number of states for the difficult sDBA.

136 A U T O M A T A F O R F O R M A L M E T H O D S : L I T T L E S T E P S T O W A R D S P E R F E C T I O N

Figure 8.2: Comparison of the NCSB construction and other complementations.

ble 8.3. For 75 s D B A , all complements could be simplified within the time­

out. For these, we again provide the cumulative numbers of states and tran­

sitions before and after the simplifications. The column min shows how often

each construction followed by simplification produced a complement with

the min imal number of states. The column/az'Zure shows how often a timeout

prevented successful complementation or simplification. It is interesting to

see that the simplifications were not able to reduce the number of transitions

much for the N C S B construction, while they were able to reduce it by more

than 20% i n case of the other complementations.

From the presented results we see that N C S B construction brings signifi­

cant improvement to complementation of s D B A both i n theory and practice.

The results indicate that additional simplifications applied to the complement

automata do not help the other tools to outperform the N C S B construction

on sDBA. Further, the construction was successfully used i n the termination

analysis of the tool U L T I M A T E B Ü C H I A U T O M I Z E R .

construction
no simplifications with simplifications failure

construction
states transitions states transitions m i n compl. simp.

Ramsey-based 6386 172351 5223 90548 0 6 22

Rank-based 1437 11677 899 7657 4 3 14

Det.-based 1300 15491 1083 9589 0 2 11

Slice-based 892 8921 785 6789 4 1 13

N C S B 598 4922 514 4460 73 0 10

Table 8.3: Performance of complementation algorithms without and with posteriori simplifications. For every algorithm we show the cumulative
number of states and transitions before and after simplifications summed for the 74 cases when all algorithms succeeded in given timeout, and the
number of cases where the result of the algorithm was simplified to the smallest automaton for the same input. The last two columns show how often
complementations and simplifications ran out of time or memory.

C O M P L E M E N T A T I O N O F S E M I - D E T E R M I N I S T I C B U C H I A U T O M A T A 1 3 7

Bibliography

[1] J. Richard Büchi (1962).

O n a Decision Method i n Restricted Second Order Arithmetic. In 1960 International Congress for Logic, Method­

ology and Philosophy of Science. (Cited on pages 15,125).

[2] Moshe Y. Vardi and Pierre Wolper (1986).

A n Automata­Theoretic Approach to Automatic Program Verification (Preliminary Report). In Proceedings of

the 1st IEEE Symposium on Logic in Computer Science (LICS'86). IEEE Computer Society, pages 332­344. (Cited

on pages 15,105).

[3] Michael O. Rabin and Dana S. Scott (1959).

Finite Automata and Their Decision Problems. IBM Journal of Research and Development 3, pages 114­125. D o i :

10.1147/rd.32.0114. (Cited on page 16).

[4] Sven Schewe (2009).

Tighter Bounds for the Determinisation of Büchi Automata. In Proceedings of the 12th International Conference

on Foundations of Software Science and Computational Structures (FOSSACS'09). Lecture Notes i n Computer

Science (vol. 5504). Springer, pages 167­181. D O I : 10.1007/978­3­642­00596­l_13. (Cited on pages 16, 77).

[5] Thomas Colcombet and Konrad Zdanowski (2009).

A Tight Lower Bound for Determinization of Transition Labeled Büchi Automata. In Proceedings of the 36th

Internatilonal Colloquium on Automata, Languages and Programming, (ICALP'09). Lecture Notes i n Computer

Science (vol. 5556), part II. Springer, pages 151­162. D O I : 10.1007/978­3­642­02930­l_13. (Cited on page 16).

[6] Sven Schewe (2009).

Büchi Complementation Made Tight. In Proceedings of the 26th International Symposium on Theoretical Aspects

of Computer Science (STACS'09). LIPIcs (vol. 3). Schloss Dagstuhl ­ Leibniz­Zentrum fuer Informatik, pages 661­

672. D O I : 10.4230/LIPICS.STACS.2009.1854. (Cited on pages 17,125).

[7] Q i q i Yan (2008).

Lower Bounds for Complementation of Omega­Automata V i a the Ful l Automata Technique. Logical Methods

in Computer Science 4. D O I : 10.2168/LMCS­4(1:5)2008. (Cited on pages 17,126).

[8] Matthias Heizmann, Jochen Hoenicke, and Andreas Podelski (2014).

Termination Analysis by Learning Terminating Programs. In Proceedings of the 26th International Conference on

Computer Aided Verification (CAV'14). Lecture Notes i n Computer Science (vol. 8559). Springer, pages 797­813.

D O I : 10.1007/978­3­319­08867­9_53. (Cited on pages 17,125).

[9] Costas Courcoubetis and Mihal is Yannakakis (1988).

Verifying Temporal Properties of Finite­State Probabilistic Programs. In Proceedings of the 29th Annual Sym­

posium on Foundations of Computer Science (FOCS'88). IEEE Computer Society, pages 338­345. D O I : 10.1109/

SFCS.1988.21950. (Cited on pages 19,107).

[10] Ernst Mori tz Hahn, Guangyuan L i , Sven Schewe, Andrea Turrini , and Lijun Zhang (2015).

Lazy Probabilistic M o d e l Checking without Determinisation. In Proceedings of the 26th International Conference

on Concurrency Theory (CONCUR'15). LIPIcs (vol. 42). Schloss Dagstuhl ­ Leibniz­Zentrum für Informatik,

pages 354­367. D O I : 10.4230/LIPIcs.CONCUR.2015.354. (Ci tedon pages 19, 105,114).

[11] František Blahoudek, Alexandre Duret­Lutz, Mojmír Křetínský, and Jan Strejček (2014).

Is there a Best Büchi Automaton for Explicit Mode l Checking? In Proceedings of 21st International SPIN Sympo­

sium on Model Checking of Software (SPIN'14). A C M , pages 68­76. D O I : 10.1145/2632362.2632377. (Cited on

page 19).

140 A U T O M A T A F O R F O R M A L M E T H O D S : L I T T L E S T E P S T O W A R D S P E R F E C T I O N

[12] František Blahoudek, Alexandre Duret­Lutz, Vojtěch Rujbr, and Jan Strejček (2015).

O n Refinement of Búchi Automata for Explicit M o d e l Checking. In Proceedings of 22nd International SPIN

Symposium on Model Checking of Software (SPIN'15). Lecture Notes i n Computer Science (vol. 9232). Springer,

pages 66­83. D O I : 10.1007/978­3­319­23404­5_6. (Cited on pages 19, 20).

[13] Tomáš Babiak, František Blahoudek, Mojmír Křetínský, and Jan Strejček (2013).

Effective Translation of L T L to Deterministic Rabin Automata: Beyond the (F, G)­Fragment. In Proceedings of

the 11th International Symposium on Automated Technology for Verification and Analysis (ATVA'13). Lecture

Notes i n Computer Science (vol. 8172). Springer, pages 24­39. D O I : 10.1007/978­3­319­02444­8_4. (Cited on

pages 19, 20, 77).

[14] František Blahoudek, Mojmír Křet ínský and Jan Strejček (2013).

Comparison of L T L to Deterministic Rabin Automata Translators. In Proceedings of the 19th International Con­

ference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR­19). Lecture Notes i n Computer

Science (vol. 8312). Springer, pages 164­172. D O I : 10.1007/978­3­642­45221­5_12. (Cited on pages 19, 20, 77,

80).

[15] František Blahoudek, Alexandre Duret­Lutz, Mikuláš Klokočka, Mojmír Křet ínský and Jan Strejček (2017).

Seminator: A Tool for Semi­Determinization of Omega­Automata. In Proceedings of the 21st International Con­

ference on Logic for Programming, Artificial Intelligence and Reasoning (LPAR­21). E P i C Series i n Computing

(vol. 46). EasyChair, pages 356­367. (Cited on page 20).

[16] František Blahoudek, Matthias Heizmann, Sven Schewe, Jan Strejček, and Ming­Hs ien Tsai (2016).

Complementing Semi­deterministic Buchi Automata. In Proceedings of the 22nd International Conference on

Tools and Algorithms for the Construction and Analysis of Systems (TACAS'16). Lecture Notes i n Computer Sci­

ence (vol. 9636). Springer, pages 770­787. D O I : 10.1007/978­3­662­49674­9_49. (Cited on pages 20,105).

[17] Tomáš Babiak, František Blahoudek, Alexandre Duret­Lutz, Joachim Klein , Jan Křet ínský David Miil ler , David

Parker, and Jan Strejček (2015).

The Hanoi Omega­Automata Format. In Proceedings of the 27th International Conference on Computer Aided

Verification (CAV'15). Lecture Notes i n Computer Science (vol. 9206), part I. Springer, pages 479­486. D O I :

10.1007/978­3­319­21690­4_31. (Cited on pages 21, 23,116,134).

[18] Christel Baier and Joost­Pieter Katoen (2008).

Principles of M o d e l Checking. M I T Press. (Cited on page 29).

[19] MosheY. Vardi (1995).

A n Automata­Theoretic Approach to Linear Temporal Logic. In 8th Banff Higher Order Workshop (Banff'95).

Lecture Notes i n Computer Science (vol. 1043). Springer, pages 238­266. D O I : 10.1007/3­540­60915­6_6. (Cited

on page 29).

[20] Gerard J. Holzmann (1997).

The M o d e l Checker SPIN. IEEE Transaction on Software Engineering 23, pages 279­295. D O I : 10.1109/32.

588521. (Cited on page 30).

[21] Gerard J. Holzmann (2003).

The SPIN M o d e l Checker: Primer and Reference Manual . Addison­Wesley. (Cited on pages 30, 32, 47).

[22] Radek Pelánek (2008).

Fighting State Space Explosion: Review and Evaluation. In Proceedings of the 13th International Workshop on For­

mal Methods for Industrial Critical Systems (FMICS'08). Lecture Notes i n Computer Science (vol. 5596). Springer,

pages 37­52. D O I : 10.1007/978­3­642­03240­0_7. (Cited on page 30).

[23] Gerard J. Holzmann, Doron A . Peled, and Mihal is Yannakakis (1996).

O n Nested Depth First Search. In Proceedings of the 2nd Spin Workshop (SPIN'96). D I M A C S : Series i n Discrete

Mathematics and Theoretical Computer Science (vol. 32). American Mathematical Society, pages 23­32. (Cited

on page 30).

B I B L I O G R A P H Y 141

[24] Paul Gastin, Pierre Moro, and Marc Zeitoun (2004).

Minimiza t ion of Counterexamples i n SPIN. In Proceedings of the 11th International SPIN Workshop on Model

Checking of Software (SPIN'04). Lecture Notes i n Computer Science (vol. 2989). Springer, pages 92­108. D O I :

10.1007/978­3­540­24732­6_7. (Cited on page 31).

[25] Stefan Schwoon and Javier Esparza (2005).

A Note on On­the­Fly Verification Algorithms. In Proceedings of the 11th International Conference on Tools

and Algorithms for the Construction and Analysis of Systems (TACAS'05). Lecture Notes i n Computer Science

(vol. 3440). Springer, pages 174­190. D O I : 10.1007/978­3­540­31980­l_12. (Cited on page 31).

[26] Kousha Etessami and Gerard J. Holzmann (2000).

Optimizing Büchi Automata. In Proceedings of the 11th International Conference on Concurrency Theory (CON­

CUR'00). Lecture Notes i n Computer Science (vol. 1877). Springer, pages 153­167. D O I : 10.1007/3­540­44618­

4_13. (Cited on pages 31, 35, 47, 82, 83,119).

[27] Christian Dax, Jochen Eisinger, and Felix Klaedtke (2007).

Mechanizing the Powerset Construction for Restricted Classes of tu­Automata. In Proceedings of the 5th Interna­

tional Symposium on Automated Technology for Verification and Analysis (ATVÄ07). Lecture Notes i n Computer

Science (vol. 4762). Springer, pages 223­236. D O I : 10.1007/978­3­540­75596­8_17. (Cited on pages 31, 35,46).

[28] Jaco Geldenhuys and Ant t i Valmari (2005).

More Efficient On­the­Fly L T L Verification with Tarjans Algori thm. Theoretical Computer Science 345, pages 60­

82. D O I : 10.1016/j.tcs.2005.07.004. (Cited on page 31).

[29] Gerard J. Holzmann, Rajeev Joshi, and Alex Groce (2011).

Swarm Verification Techniques. IEEE Transaction on Software Engineering 37, pages 845­857. D O I : 10.1109/

TSE.2010.110. (Cited on page 31).

[30] Radek Pelánek (2007).

B E E M : Benchmarks for Explicit Mode l Checkers. In Proceedings of the 14th international SPIN conference on

Model checking software (SPIN'07). Lecture Notes i n Computer Science (vol. 4595). Springer, pages 263­267.

D O I : 10.1007/978­3­540­73370­6_17. (Cited on pages 32, 47, 82, 83,119).

[31] Paul Gastin and Denis Oddoux (2001).

Fast L T L to Büchi Automata Translation. In Proceedings of the 13th International Conference on Computer Aided

Verification (CAV'01). Lecture Notes i n Computer Science (vol. 2102). Springer, pages 53­65. D O I : 10.1007/3­

540­44585­4_6. (Cited on pages 32, 34, 38, 47,63, 66, 84).

[32] Roberto Sebastiani and Stefano Tonetta (2003).

More Deterministic vs. Smaller Büchi Automata for Efficient L T L Mode l Checking. In Proceedings of the 12th

Advanced Research Working Conference on Correct Hardware Design and Verification Methods (CHARME'03).

Lecture Notes i n Computer Science (vol. 2860). Springer, pages 126­140. D O I : 10.1007/978­3­540­39724­3_12.

(Cited on pages 32, 34).

[33] Tomáš Babiak, Mojmír Křetínský, Vojtěch Řehák, and Jan Strejček (2012).

L T L to Büchi Automata Translation: Fast and More Deterministic. In Proceedings of the 18th International Con­

ference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS'12). Lecture Notes i n C o m ­

puter Science (vol. 7214). Springer, pages 95­109. D O I : 10.1007/978­3­642­28756­5_8. (Cited on pages 32, 47,

74).

[34] Alexandre Duret­Lutz (2014).

L T L Translation Improvements i n Spot 1.0. International Journal on Critical Computer­Based Systems 5,

pages 31­54. D O I : 10.1504/IJCCBS.2014.059594. (Ci tedon pages 32, 46, 47).

142 A U T O M A T A F O R F O R M A L M E T H O D S : L I T T L E S T E P S T O W A R D S P E R F E C T I O N

[35] Jean­Michel Couvreur (1999).

On­the­Fly Verification of Linear Temporal Logic. In Proceedings of the World Congress on Formal Methods

in the Development of Computing Systems (FM'99). Lecture Notes i n Computer Science (vol. 1708). Springer,

pages 253­271. D o i : 10.1007/3­540­48119­2_16. (Cited on page 34).

[36] Fabio Somenzi and Roderick Bloem (2000).

Efficient Büchi Automata from L T L Formulae. In Proceedings of the 12th International Conference on Computer

Aided Verification (CAV'00). Lecture Notes i n Computer Science (vol. 1855). Springer, pages 248­263. D O I :

10.1007/10722167_21. (Cited on pages 34, 35, 82, 83,119).

[37] Dimi t ra Giannakopoulou and Flavio Lerda (2002).

From States to Transitions: Improving Translation of L T L Formulae to Büchi Automata. In Proceedings of

the 22nd IFIP WG 6.1 International Conference on Formal Techniques for Networked and Distributed Systems

(FORTE'02). Lecture Notes i n Computer Science (vol. 2529). Springer, pages 308­326. D O I : 10.1007/3­540­

36135­9_20. (Cited on pages 34, 38).

[38] Xavier Thirioux (2002).

Simple and Efficient Translation from L T L Formulas to Büchi Automata. In Proceedings of the 7th International

ERCIM Workshop in Formal Methods for Industrial Critical Systems (FMICS'02). Electronic Notes i n Theoretical

Computer Science (vol. 66). Elsevier, pages 145­159. D O I : 10.1016/S1571­0661(04)80409­2. (Cited on page 34).

[39] H e i k k i Tauriainen and Keijo Heljanko (2002).

Testing L T L Formula Translation into Büchi Automata. International Journal on Software Tools for Technology

Transfer 4, pages 57­70. D O I : 10.1007/S100090200070. (Cited on page 34).

[40] Alexandre Duret­Lutz and Denis Poitrenaud (2004).

SPOT: A n Extensible M o d e l Checking Library Using Transition­Based Generalized Büchi Automata. In Proceed­

ings of the 12th IEEE/ACM International Symposium on Modeling, Analysis, and Simulation of Computer and

Telecommunication Systems (MASCOTS'04). IEEE Computer Society, pages 76­83. D O I : 1 0 . 1 1 0 9 / M A S C O T .

2004.1348184. (Cited on page 34).

[41] Alexandre Duret­Lutz (2013).

Manipulating L T L Formulas Using Spot 1.0. In Proceedings of the 11th International Symposium on Automated

Technology for Verification and Analysis (ATVÄ13). Lecture Notes i n Computer Science (vol. 8172). Springer,

pages 442­445. D O I : 10.1007/978­3­319­02444­8_31. (Cited on pages 34, 83).

[42] Matthew B. Dwyer, George S. Avrunin , and James C. Corbett (1998).

Property Specification Patterns for Finite­State Verification. In Proceedings of the 2nd Workshop on Formal Meth­

ods in Software Practice (FMSP'98). A C M , pages 7­15. D O I : 10.1145/298595.298598. (Cited on pages 35, 82, 83,

119).

[43] Bernard Boigelot, Sébastien Jodogne, and Pierre Wolper (2001).

O n the Use of Weak Automata for Deciding Linear Arithmetic with Integer and Real Variables. In Proceedings of

the First International Joint Conference on Automated Reasoning (IJCAR'01). Lecture Notes i n Computer Science

(vol. 2083). Springer, pages 611­625. D O I : 10.1007/3­540­45744­5_50. (Cited on page 36).

[44] Tomáš Babiak, Thomas Badie, Alexandre Duret­Lutz, Mojmír Křet ínský and Jan Strejček (2013).

Composit ional Approach to Suspension and Other Improvements to L T L Translation. In Proceedings of the 20th

International SPIN Symposium on Model Checking of Software (SPIN'13). Lecture Notes i n Computer Science

(vol. 7976). Springer, pages 81­98. D O I : 10.1007/978­3­642­39176­7_6. (Cited on pages 46,117).

[45] Shin­ichi Minato (1993).

Fast Generation of Prime­Irredundant Covers from Binary Decision Diagrams. IEICE Transactions on Funda­

mentals of Electronics, Communications and Computer Sciences 76, pages 967­973. (Cited on page 54).

B I B L I O G R A P H Y 143

[46] Stefan Edelkamp, Alberto Lluch-Lafuente, and Stefan Leue (2001).

Directed Explicit M o d e l Checking with H S F - S P I N . In Proceedings of the 8th International Spin Workshop on

Model Checking of Software (SPIN'01). Lecture Notes i n Computer Science (vol. 2057). Springer, pages 57-79.

D O I : 10.1007/3-540-45139-0_5. (Cited on page 55).

[47] Stefan Edelkamp, Stefan Leue, and Alberto Lluch-Lafuente (2004).

Directed Explicit-State M o d e l Checking i n the Validation of Communicat ion Protocols. STTT 5, pages 247-267.

D O I : 10.1007/sl0009-002-0104-3. (Cited on page 55).

[48] Krishnendu Chatterjee, Andreas Gaiser, and Jan Kfetinsky (2013).

Automata with Generalized Rabin Pairs for Probabilistic M o d e l Checking and L T L Synthesis. In Proceedings of

the 25th International Conference on Computer Aided Verification (CAV'13). Lecture Notes i n Computer Science

(vol. 8044). Springer, pages 559-575. D O I : 10.1007/978-3-642-39799-8_37. (Cited on page 63).

[49] Denis Oddoux (2003).

Utilisation des Automates Alternants pour un Model-Checking Efficace des Logiques Temporelles Lineaires.

French. P h D thesis. Universite Paris 7 - Denis Diderot U F R d'Informatique, 2003. (Cited on page 67).

[50] ShmuelSafra(1988).

O n the Complexity of Omega-Automata. In Proceedings of the 29th Annual Symposium on Foundations of Com­

puter Science (FOCS'88). IEEE Computer Society, pages 319-327. D O I : 10.1109/SFCS.1988.21948. (Cited on

pages 77,125).

[51] N i r Piterman (2007).

From Nondeterministic Büchi and Streett Automata to Deterministic Parity Automata. Logical Methods in Com­

puter Science 3. D O I : 10.2168/LMCS-3(3:5)2007. (Cited on pages 77,125).

[52] Roman R. Redziejowski (2012).

A n Improved Construction of Deterministic Omega-Automaton Using Derivatives. Fundamenta Informaticae

119, pages 393-406. D O I : 10.3233/FI-2012-744. (Cited on page 77).

[53] Joachim Kle in (2005).

Linear Time Logic and Deterministic tu-Automata. M A thesis. University of Bonn , 2005. (Cited on page 77).

[54] Joachim Kle in and Christel Baier (2006).

Experiments with Deterministic Omega-Automata for Formulas of Linear Temporal Logic. Theoretical Com­

puter Science 363, pages 182-195. D O I : 10.1016/j.tcs.2006.07.022. (Cited on page 77).

[55] Alexandre Duret-Lutz, Alexandre Lewkowicz, Amaury Fauchille, Thibaud Michaud, Etienne Renault, and Lau­

rent X u (2016).

Spot 2.0 - A Framework for L T L and tu-Automata Manipulation. In Proceedings of the 14th International Sym­

posium on Automated Technology for Verification and Analysis (ATVAT6). Lecture Notes i n Computer Science

(vol. 9938), pages 122-129. D O I : 10.1007/978-3-319-46520-3_8. (Cited on pages 77,116).

[56] Jan Kfetinsky and Javier Esparza (2012).

Deterministic Automata for the (F, G)-Fragment of L T L . In Proceedings of the 24th International Conference on

Computer Aided Verification (CAVT2). Lecture Notes i n Computer Science (vol. 7358). Springer, pages 7-22.

D O I : 10.1007/978-3-642-31424-7_7. (Cited on page 77).

[57] Andreas Gaiser, Jan Kfetinsky, and Javier Esparza (2012).

Rabinizer: Small Deterministic Automata for LTL(F, G) . In Proceedings of the 10th International Symposium on

Automated Technology for Verification and Analysis (ATVÄ12). Lecture Notes i n Computer Science (vol. 7561).

Springer, pages 72-76. D O I : 10.1007/978-3-642-33386-6_7. (Cited on page 77).

[58] Jan Kfetinsky and Ruslan Ledesma-Garza (2013).

Rabinizer 2: Small Deterministic Automata for L T L \ G U . In Proceedings of the 11th International Symposium on

Automated Technology for Verification and Analysis (ATVAT3). Lecture Notes i n Computer Science (vol. 8172).

Springer, pages 446-450. D O I : 10.1007/978-3-319-02444-8_32. (Cited on page 77).

144 A U T O M A T A F O R F O R M A L M E T H O D S : L I T T L E S T E P S T O W A R D S P E R F E C T I O N

[59] Javier Esparza and Jan Křetínský (2014).

From L T L to Deterministic Automata: A Safraless Composit ional Approach. In Proceedings of the 26th Inter­

national Conference on Computer Aided Verification (CAV'14). Lecture Notes i n Computer Science (vol. 8559).

Springer, pages 192­208. D O I : 10.1007/978­3­319­08867­9_13. (Cited on page 77).

[60] Zuzana Komárkova and Jan Křetínský (2014).

Rabinizer 3: Safraless Translation of L T L to Small Deterministic Automata. In Proceedings of the 12th Interna­

tional Symposium on Automated Technology for Verification and Analysis (ATVÄ14). Lecture Notes i n Computer

Science (vol. 8837). Springer, pages 235­241. D O I : 10.1007/978­3­319­11936­6_17. (Cited on page 77).

[61] Javier Esparza, Jan Křetínský, Jean­Francois Raskin, and Salomon Sickert (2017).

From L T L and Limit­Determinist ic Büchi Automata to Deterministic Parity Automata. In Proceedings of the

23st International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS'17).

Lecture Notes i n Computer Science (vol. 10205), part I, pages 426­442. D O I : 10.1007/978­3­662­54577­5_25.

(Cited on page 78).

[62] Salomon Sickert, Javier Esparza, Stefan Jaax, and Jan Křetínský (2016).

Limit­Determinist ic Büchi Automata for Linear Temporal Logic. In Proceedings of the 28th International Confer­

ence on Computer Aided Verification (CAV'16). Lecture Notes i n Computer Science (vol. 9780), part II. Springer,

pages 312­332. D O I : 10.1007/978­3­319­41540­6_17. (Cited on pages 78, 80,118).

[63] Joachim Kle in and Christel Baier (2007).

On­the­Fly Stuttering i n the Construction of Deterministic Omega­Automata. In Proceedings of the 12th In­

ternational Conference on Implementation and Application of Automata (CIAA'07). Lecture Notes i n Computer

Science (vol. 4783). Springer, pages 51­61. D o i : 10.1007/978­3­540­76336­9_7. (Cited on page 80).

[64] Jan Křetínský, Tobias Meggendorfer, Clara Waldmann, and Maximi l i an Weininger (2017).

Index Appearance Record for Transforming Rabin Automata into Parity Automata. In Proceedings of the 23st

International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS'17). Lec­

ture Notes i n Computer Science (vol. 10205), part I, pages 443­460. D O I : 10.1007/978­3­662­54577­5_26.

(Cited on page 80).

[65] Jan Holeček, Tomáš Kratochvíla, Vojtěch Řehák, David Šafránek, and Pavel Šimeček. Verification Results in

Liberouter Project. Tech. rep. 03, 32pp. C E S N E T , Sept. 2004 (cited on pages 82, 83,119).

[66] Jaco Geldenhuys and Henr i Hansen (2006).

Larger Automata and Less Work for L T L Mode l Checking. In Proceedings of the 13th International SPIN Sym­

posium on Model Checking of Software (SPIN'06). Lecture Notes i n Computer Science (vol. 3925). Springer,

pages 53­70. D O I : 10.1007/11691617_4. (Ci tedon page 84).

[67] David Müller and Salomon Sickert (2017).

L T L to Deterministic Emerson­Lei Automata. In Proceedings of the 8th International Symposium on Games, Au­

tomata, Logics and Formal Verification (GandALF'l 7). E P T C S (vol. 256), pages 180­194. D O I : 10.4204/EPTCS.

256.13. (Cited on page 84).

[68] Orna Kupferman and A d i n Rosenberg (2010).

The Blowup i n Translating L T L to Deterministic Automata. In Revised Selected and Invited Papers from the 6th

International Workshop on Model Checking and Artificial Intelligence (MoChArt'10). Lecture Notes i n Computer

Science (vol. 6572). Springer, pages 85­94. D O I : 10.1007/978­3­642­20674­0_6. (Cited on page 84).

[69] Dileep K i n i and Mahesh Viswanathan (2017).

Optimal Translation of L T L to Limi t Deterministic Automata. In Proceedings of the 23st International Conference

on Tools and Algorithms for the Construction and Analysis of Systems (TACAS'17). Lecture Notes i n Computer

Science (vol. 10206), part II. Springer, pages 113­129. D O I : 10.1007/978­3­662­54580­5_7. (Ci tedon page 118).

B I B L I O G R A P H Y 145

[70] Orna Kupferman and Moshe Y. Vardi (2001).

Weak Alternating Automata are not that Weak. ACM Trans. Comput. Log. 2, pages 408-429. D O I : 10.1145/

377978.377993. (Cited on pages 125,126,130).

[71] Moshe Y. Vardi (2007).

The Buchi Complementation Saga. In Proceedings of the 24th Annual Symposium on Theoretical Aspects of Com­

puter Science (STACS'07). Lecture Notes i n Computer Science (vol. 4393). Springer, pages 12-22. D O I : 10.1007/

978-3-540-70918-3_2. (Cited on page 125).

[72] A . Prasad Sistla, Moshe Y. Vardi, and Pierre Wolper (1987).

The Complementation Problem for Buchi Automata with Appplications to Temporal Logic. Theoretical Com­

puter Science 49, pages 217-237. D O I : 10.1016/0304-3975(87)90008-9. (Cited on page 125).

[73] Sankar Gurumurthy, Orna Kupferman, Fabio Somenzi, and Moshe Y. Vardi (2003).

O n Complementing Nondeterministic Buchi Automata. In Proceedings of the 12th Advanced Research Working

Conference on Correct Hardware Design and Verification Methods (CHARME'03). Lecture Notes i n Computer

Science (vol. 2860). Springer, pages 96-110. D O I : 10.1007/978-3-540-39724-3_10. (Cited on page 125).

[74] Ehud Friedgut, Orna Kupferman, and Moshe Y. Vardi (2006).

Buchi Complementation Made Tighter. International Journal of Foundations of Computer Science 17, pages 851-

868. D O I : 10.1142/S0129054106004145. (Cited on page 125).

[75] Detlef Kahler and Thomas Wilke (2008).

Complementation, Disambiguation, and Determinization of Buchi Automata Unified. In Proceedings of the 35th

International Colloquium on Automata, Languages and Programming (ICALP'08). Lecture Notes i n Computer

Science (vol. 5125). Springer, pages 724-735. D O I : 10.1007/978-3-540-70575-8_59. (Cited on page 125).

[76] Robert P. Kurshan (1994).

The Complexity of Verification. In Proceedings of the 26th Annual ACM Symposium on Theory of Computing

(STOC'94). A C M , pages 365-371. D O I : 10.1145/195058.195194. (Cited on pages 126,129).

[77] Satoru Miyano and Takeshi Hayashi (1984).

Alternating Finite Automata on Omega-Words. Theoretical Computer Science 32, pages 321-330. D O I : 10.1016/

0304-3975(84)90049-5. (Cited on page 126).

[78] Ming-Hs ien Tsai, Y ih -Kuen Tsay, and Yu-Shiang Hwang (2013).

G O A L for Games, Omega-Automata, and Logics. In Proceedings of the 25th International Conference on Com­

puter Aided Verification (CAV'13). Lecture Notes i n Computer Science (vol. 8044). Springer, pages 883-889. D O I :

10.1007/978-3-642-39799-8_62. (Cited on page 133).

[79] Ming-Hs ien Tsai, Seth Fogarty, Moshe Y. Vardi , and Yih -Kuen Tsay (2014).

State of Buchi Complementation. Logical Methods in Computer Science 10. D O I : 10.2168/LMCS-10(4:13)2014.

(Cited on pages 133,134).

[80] D i r k Beyer (2015).

Software Verification and Verifiable Witnesses - (Report on S V - C O M P 2015). In Proceedings of the 21st Inter­

national Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS'15). Lecture

Notes i n Computer Science (vol. 9035). Springer, pages 401-416. D O I : 10.1007/978-3-662-46681-0_31. (Cited

on page 134).

[81] Stefan Breuers, Christof Loding, and Jorg Olschewski (2012).

Improved Ramsey-Based Buchi Complementation. In Proceedings of the 15th International Conference on Foun­

dations of Software Science and Computational Structures (FOSSACS'12). Lecture Notes i n Computer Science

(vol. 7213). Springer, pages 150-164. D O I : 10.1007/978-3-642-28729-9_10. (Cited on page 134).

