

DC MOTOR / GEAR MOTOR EVALUATION

CUSTOMER MOTOR EVALUATION

Document Number:	ISL 031522
Customer:	Company XYZ 123 Street Name Syosset, NY 11791 Contact Name: Jane Doe Phone: xxx-xxx Email: janedoe@email.com
Test Information:	Test Date: 01/01/2022 Testing For: No-Load : speed, current On-Load : speed, current, power, torque, efficency Application: Unknown Location: Melville, NY Test Engineer: <i>Name</i>

*The data contained in this evaluation report is confidental and shall be only used by the people authorized for the purpose in which it has been supplied. This report shall not be disclosed to any party without the written consent of ISL Products International Ltd.

Motor Sample Description

Diameter:	Ø 42 mm
Length (w/o Shaft):	
Customer PN:	
Voltage:	24VDC
Motor Type:	Brushed w/ Encoder
Gearhead Type:	Planetary

Ref. Image

Quantity – No-Load:	100 pcs
Quantity – On-Load:	10 pcs

Tests Performed:

- **1. No-Load:** The test was run in free air, with no-load on the motor shaft. *Parameters Monitored:*
 - Voltage
 - Speed
 - Current
- **2. On-Load:** The test was run on our brake dynomometer, with a gradual load applied to the motor shaft.

Parameters Monitored:

- Voltage
- Speed
- Current
- Power
- Torque
- Effieciency

No Load Test Results

Quantity Tested: 14

Reference Specs:	Speed (rpm)	Current (mA)	<u>Noise</u>
	500	< 500	ОК

Motor Number:

1	482	410	ОК	
2	484	410	ОК	
3	486	400	ОК	
4	488	390	ОК	
5	491	410	ОК	
6	491	410	ОК	
7	491	410	ОК	
8	495	400	ОК	
9	499	400	ОК	
10	488	400	ОК	
11	481	395	ОК	
12	425	510	NOT GOOD	
13	420	600	NOT GOOD	
14	481	395	ОК	
		D	rov	
Legend:	Acceptable	Concerning	Issue	
* Legend: Nominal per	formance tolerance	es are between 10% -	15% for most gear moto	rs. Current draw less than nominal is

Legend:	Acceptable	Concerning	Issue
8			

* Legend: Nominal performance tolerances are between 10% - 15% for most gear motors. Current draw less than nominal is typically not an issue.

* Noise Test: Subjective observation based on nominal operating sounds. Looking for abnormal noise levels and sounds.

Refrence Specs:

1.4

1.6

On Load Test Results

Expected / Nominal Performance

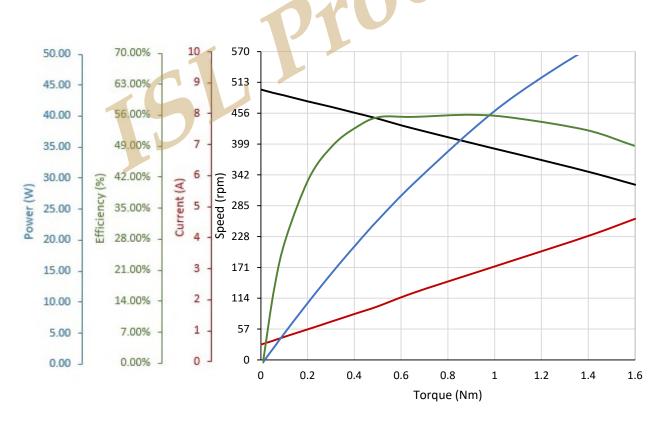
53%

49%

Quantity Tested:

2

Torque (Nm) Torque (kg.cm) Speed (rpm) Current (A) Power (W) Efficiency 0 0 500 0.5 0.00 0.00% 0.05 0.51 494 0.62 2.59 17% 0.75 0.1 1.02 489 5.12 28% 2.04 0.99 10.01 42% 0.2 478 14.70 49% 0.3 3.06 468 1.24 0.4 4.08 457 1.49 19.14 54% 5.10 0.5 446 1.74 23.35 56% 428 2.17 0.65 6.63 29.13 56% 0.9 9.18 401 2.79 37.79 56% 1.1 11.22 380 3.28 43.77 56%

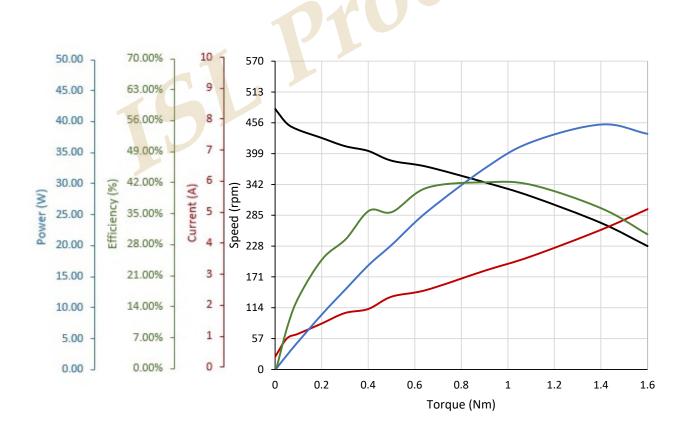

348

324

14.28

16.32

4.02

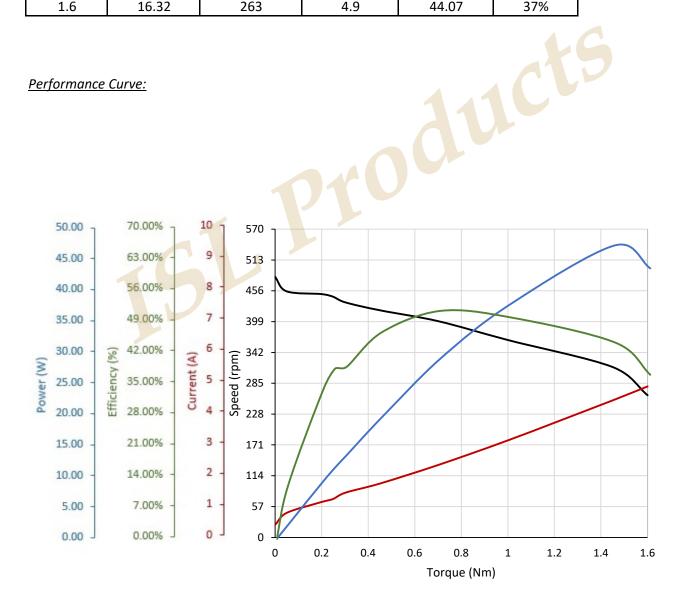

4.58

51.02

54.29

On Load Test Results

<u>Performance</u>	Poculto				Motor ID:	1
	Torque (kg.cm)	Speed (rpm)	<u>Current (A)</u>	Power (W)	Efficiency	
0	0.00	482	0.41	0.00	0%	
0.05	0.51	455	1	2.38	10%	
0.1	1.02	443	1.16	4.64	17%	
0.2	2.04	428	1.49	8.96	25%	
0.3	3.06	413	1.83	12.97	30%	
0.4	4.08	404	1.96	16.92	36%	
0.5	5.10	386	2.36	20.21	36%	
0.65	6.63	375	2.58	25.53	41%	
0.9	9.18	346	3.2	32.61	42%	
1.1	11.22	320	3.67	36.86	42%	
1.4	14.28	271	4.53	39.73	37%	
1.6	16.32	228	5.2	38.20	31%	G
<u>Performance</u>	<u>Curve:</u>) * C	11	C	0


2

Motor ID:

On Load Test Results

Performance Results:					
Torque (Nm)	Torque (kg.cm)	Speed (rpm)	<u>Current (A)</u>	Power (W)	Efficiency
0	0.00	482	0.41	0.00	0%
0.05	0.51	455	0.8	2.38	12%
0.2	2.04	450	1.15	9.42	34%
0.25	2.55	445	1.25	11.65	39%
0.3	3.06	435	1.45	13.67	39%
0.45	4.59	420	1.75	19.79	47%
0.7	7.14	400	2.35	29.32	52%
1	10.20	365	3.15	38.22	51%
1.45	14.79	315	4.45	47.83	45%
1.6	16.32	263	4.9	44.07	37%

Performance Curve:

Disclaimer: ISL Products is not an accredited agency for motor testing. Our dyno testing service is intended to provide our customers with performance data based on our in-house test equipment. Please keep in mind when evaluating any electric motor, the equipment being used is a large variable. The way load is applied to the motors, the sensors being used and other equipment can vary data from our results to any outside results. Typically when a performance curve is generated, there are a few specific points that are measured and the rest of the curve is then projected based on those initial calculations. This also leads to some outliers and variation from test to test. The main focus when evaluating multiple motors is to see how different motors perform on the same dyno setup focusing on overall consistency. If you insisnt that we test the actual physical stall conditions of a particular motor, please understand that this is essentially a distructive test as the motor may not perform adequatly after this sort of test.