
Data-centric Transformations for Locality
Enhancement

Induprakas Kodukula
Keshav Pingali

September 26, 2002

Abstract
On modern computers, the performance of programs is often limited by

memory latency rather than by processor cycle time. To reduce the impact
of memory latency, the restructuring compiler community has developed
locality-enhancing program transformations such as loop permutation and
tiling. These transformations work well for perfectly nested loops (loops in
which all assignment statements are contained in the innermost loop), but
their performance on codes such as matrix factorizations that contain imper-
fectly nested loops leaves much to be desired. In this paper, we propose an
alternative approach called data-centric transformation. Instead of reason-
ing directly about the control structure of the program, a compiler using the
data-centric approach chooses an order for the arrival of data elements in the
cache, determines what computations should be performed when that data
arrives, and generates the appropriate code. At runtime, program execution
will automatically pull data into the cache in an order that corresponds ap-
proximately to the order chosen by the compiler; since statements that touch
a data structure element are scheduled close together, locality is improved.

The idea of data-centric transformation is very general, and in this pa-
per, we discuss a particular transformation called data-shackling. We have
implemented shackling in the SGI MIPSPro compiler which already has a
sophisticated implementation of control-centric transformations for locality
enhancement. We present experimental results on the SGI Octane compar-
ing the performance of the two approaches, and show that for dense numeri-
cal linear algebra codes, data-shackling does better by factors of two to five.

Keywords: Locality enhancement, restructuring compilers, caches, pro-
gram transformation

1

1

1 Introduction

The memory system of modern computers is hierarchical in organization. Since
the latency of data accesses may increase by an order of magnitude or more from
one level of the hierarchy to the next, programs run well on such machines only
if most of their accesses are satisfied by the faster levels of the memory hierarchy.
For this to happen, a program must exhibit locality of reference. If accesses to
a memory location are clustered together in time, the program is said to exhibit
temporal locality, which is beneficial since it is likely that all these accesses other
than the first one will be satisfied by the faster levels of the memory hierarchy. If
the addresses of memory locations accessed successively by a program are close
to each other, the program is said to exhibit spatial locality, which is beneficial
because the unit of transfer between different levels of the memory hierarchy is a
line or block, so successive memory accesses to addresses that are close to each
other are likely to be satisfied mostly by the faster levels of the memory hierarchy.

For many applications, straight-forward coding of standard algorithms results
in programs that exhibit poor locality of reference. Unfortunately, taking locality
into consideration when writing programs complicates the task of programming
enormously. One solution is to write optimized, machine-specific routines only for
certain core operations, and code all other applications in a high-level language,
invoking these routines when appropriate. This achieves high performance with-
out sacrificing portability of the application code. The numerical analysis commu-
nity has followed this approach by hand coding machine-specific programs for the
Basic Linear Algebra Subroutines (BLAS),(15) and layering all other dense numer-
ical linear algebra software on top of these routines. However, most applications
have to be recoded at a fundamental level to use such libraries. To exploit the
BLAS for example, the numerical analysis community has had to invest consider-
able effort in designing block algorithms and implementing them in the LAPACK
library,(2) as described in Section 3. Furthermore, these libraries are not useful
in writing other applications such as PDE solvers that use explicit methods since
these codes cannot be restructured to expose BLAS operations.

1This work was supported by NSF grants EIA-9726388, ACI-9870687, EIA-9972853, and
ACI-0085969.
Corresponding author: Keshav Pingali, Department of Computer Science, Cornell University,
Ithaca, NY 14853; email:pingali@cs.cornell.edu, tel: (607)-255-7203, fax: (607)-255-4428.

2

The compiler community has explored a more general-purpose approach in
which locality is enhanced by automatic program transformation. To explain this
technology, it is necessary to introduce the following definitions.

Definition 1.0.1 A perfectly nested loop nest is a loop nest in which all assign-
ment statements are contained in the innermost loop of the loop nest. The matrix
multiplication code shown in Figure 1(e) is an example.

An imperfectly nested loop nest is a loop nest in which one or more assignment
statements in contained in some but not all of the loops of the loop nest. The
triangular solve code in Figure 1(d) is an example.

An instance of a statement is an execution of that statement for particular
index values of its surrounding loops.

For perfectly nested loops, there is an elegant matrix-based theory for synthe-
sizing linear loop transformations for locality enhancement.(4, 6, 8, 10, 14, 16, 20, 26, 28, 32)

These transformations, followed by loop tiling,(34) are performed routinely by
many production compilers such as the SGI MIPSPro. The theory of loop trans-
formations is much less developed for imperfectly nested loops. Some compilers
use transformations like jamming, distribution and statement sinking(33, 34) to con-
vert imperfectly nested loops into perfectly nested loops, and enhance locality
by suitably transforming the resulting perfectly nested loops. However, there is
no systematic theory for determining the order in which these imperfectly nested
loop transformations must be applied, and the quality of the final tiled code may
depend critically on this order, as we explain in Section 4.

The approach described in the previous paragraph can be called control-centric
program transformation because it reasons about the control structure (loop struc-
ture) of the program and modifies this control structure to enhance locality. In
this paper, we describe a different approach to locality enhancement called data-
centric program transformation which addresses some of the limitations of control-
centric approaches. Instead of reasoning directly about the control structure of the
program, a data-centric approach fixes an order of traversal through data structure
elements, and determines which computations should be performed when a data
structure element is touched. Intuitively, the compiler chooses an order for the
arrival of data elements in the cache, determines what computations should be
performed when that data arrives, and generates the appropriate code. At runtime,
program execution will automatically pull data into the cache in an order that cor-
responds approximately to the order chosen by the compiler; since statements that
touch a data structure element are scheduled close together, locality is improved.

3

The idea of data-centric transformation is very general, but in this paper, we
focus on a particular data-centric transformation called data-shackling which was
designed for locality enhancement of dense numerical linear algebra codes. The
traversals allowed are along the co-ordinate axes of the array (that is, left-to-right
and top-to-bottom, and reversals of these), and code scheduling is done by choos-
ing a data-centric reference for each statement, which determines when its in-
stances are executed. The array itself is not physically copied to make the storage
order of elements the same as the traversal order chosen by the data-shackle, al-
though this can be done if the overhead of copying the array is small compared to
the resulting performance enhancement.

The rest of this paper is organized as follows. In Section 2, we describe
the dense numerical linear algebra codes that constitute the work-load for our
research. These codes are divided into the Basic Linear Algebra Subroutines
(BLAS) such as matrix multiplication and triangular solves, and matrix factor-
izations such as Cholesky and LU factorization. The advantage of this work-load
is that hand coded versions of these programs are available publicly for most plat-
forms, so it is possible to compare the performance of compiler-generated code
with that of good hand-tuned code. This is not possible with other work-loads
such as the SPEC and Perfect benchmarks. In Section 3, we describe blocking
which is the approach taken by the numerical analysis community to improve the
performance of these codes on memory hierarchies. In Section 4, we describe
control-centric approaches to locality enhancement by program transformation.
In Sections 5 through 7, we describe the data-centric approach.

Data-shackling has been implemented in SGI’s MIPSPro compilers for the
Octane work-station line by one of the authors (Kodukula). This implementation
incorporated a number of heuristics for choosing various parameters required for
data-shackling. These heuristics are described in Section 8; since compile time
is an issue for production compilers, the heuristics are relatively simple. Exper-
imental results based on this implementation are described in Section 9. Finally,
Section 10 describes ongoing work in data-centric compilation.

2 Work Load and Experimental Platform

We now describe the dense numerical linear algebra codes that constitute our
workload. Following the numerical analysis literature, we divide these codes into
the Basic Linear Algebra Subroutines (BLAS) and matrix factorizations.(15) The
BLAS contain simple codes like inner-product of vectors, matrix vector product,

4

Table I: Behavior of some BLAS

Operation Data Touched Computation Algorithmic reuse Level
z � � � x� y O�n� O�n� x� y� z: O��� 1
A � x O�n�� O�n�� x: O�n�, A: O��� 2
C � C � A �B O�n�� O�n�� A�B�C: O�n� 3

triangular solve, and matrix matrix multiplication. The important matrix factor-
izations are Cholesky, LU and QR factorizations. We also describe the hardware
on which all experiments were performed.

2.1 Basic Linear Algebra Subroutines

The following five operations occur frequently in applications.(15)

� Dot product: Given two column vectors x and y, computes the inner product
xTy.

� Saxpy: Given a scalar � and column vectors x and y, computes the column
vector z equal to � � x� y.

� Matrix Vector Product: Given an m � n matrix A and a column vector x,
computes y � A � x.

� Triangular solve: Given a square lower triangular matrix L with non-zero
diagonal elements and a column vector b, solve the system Lx � b.

� Matrix Multiplication: Given an m� p matrix A, an p� n matrix B and an
m� n matrix C, computes C � C � A �B.

Figure 1 shows pseudo-code for each of these core routines.
Three important properties of each of these core routines are (i) amount of

data touched, (ii) the number of floating point operations, and (iii) the average
amount of data reuse (which is the ratio of the two previous quantities). Table I
summarizes this information for each of the core operations.

The information in Table I provides a guide to the potential performance of
BLAS on a machine with a memory hierarchy. Dot product, called a Level-1
BLAS, performs � � n floating-point operations on � � n data elements. On the

5

sum = 0
do i = 1, n
sum += x(i) * y(i)

do i = 1, n
z(i) += � * x(i) + y(i)

(a) Inner (dot) Product (b) Scalar * x + y (Saxpy)

do i = 1, m
do j = 1, n

y(i) += A(i,j) * x(j)

do i = 1, n
x(i) = b(i)
do j = 1, i-1
x(i) = x(i) - L(i,j)*x(j)

x(i) = x(i)/L(i,i)

(c) Matrix Vector Product (d) Triangular solve

do i = 1, m
do j = 1, n
do k = 1, p
C(i,j) += A(i,k) * B(k,j)

(e) Matrix Multiplication

Figure 1: Basic Linear Algebra Subroutines

6

average, one data item must be touched for each floating-point operation that is
performed, so there is little reuse of data even in the algorithm. The characteristics
of saxpy are similar. Matrix vector product performs ��n� operations on n����n
data, so the amount of data touched per floating-point operation is half of that
in the case of Level-1 BLAS. There is no reuse of matrix elements but each of
the vectors exhibits O�n� amount of reuse. Matrix vector product and triangular
solve are called Level-2 BLAS. Finally, matrix multiplication performs O�n��
operations on O�n�� data and is called a Level-3 BLAS operation. Clearly, there
is significant algorithmic reuse of data in matrix multiplication, and exploiting this
reuse is the key to good performance on a machine with a memory hierarchy.

2.2 Matrix factorizations

We will consider the following matrix factorization codes: (i) Cholesky factoriza-
tion, (ii) LU factorization, and (iii) QR factorization.

2.2.1 Cholesky factorization

Cholesky factorization is used to solve the system of equations Ax = b, where
A is a symmetric positive-definite matrix, by factorizing A into the product LLT,
where L is lower-triangular, and solving the two resulting triangular systems. To
save space, the lower triangular part of A is overwritten with the factor L.

Cholesky factorization, like matrix multiplication, has three nested loops al-
though these loops are imperfectly nested. All six permutations of these loops
are legal, and distributing the loops in one of these versions gives a total of seven
versions of Cholesky factorization that we discuss in this paper. Pseudocode for
one of these versions is shown in Figure 2; pseudocode for the other versions are
shown in Figure 18 through 24.

The most commonly described version is the so-called kij version (also
known as the right-looking version), and it is shown in Figure 2. This version
processes the columns of the matrix in left to right order as follows: the square
root of the diagonal element of the current column is computed, the portion of
this column below the diagonal is scaled with this value and the outer-product of
this portion of the column with its transpose is used to update the lower triangular
portion of the matrix to the right of the current column. These are known as the
square root, scale and update steps respectively. For obvious reasons, this version
of Cholesky factorization is also known as right-looking column Cholesky factor-
ization. Distributing the i loop over the scale step and the update loop produces

7

do k = 1, n
S1: A(k,k) = sqrt (A(k,k)) //square root step
do i = k+1, n

S2: A(i,k) = A(i,k) / A(k,k) //scale step
do j = k+1, i
S3: A(i,j) -= A(i,k) * A(j,k) //update step

Figure 2: kij-fused version of Cholesky factorization

another kij version of Cholesky factorization, shown in Figure 18. Permuting
the two update loops in the code of Figure 18 gives the kji version shown in
Figure 20.

Right-looking Cholesky factorization performs updates eagerly in the sense
that the columns to the right of the current column are updated as soon as that
column is computed. An alternative is to perform the updates lazily, which means
that a column is updated only when it becomes current. This leads to the left-
looking column Cholesky factorization code (also called the jki version) shown
in Figure 22 which applies updates from all columns to the left of the current
column before performing the square root and scaling steps. Permuting the i and
k loops gives the jik version shown in Figure 21.

Finally, there are two versions of Cholesky factorization called the ijk and
ikj versions that process the matrix by row rather than by column. These are
shown in Figures 23 and 24. The ijk version performs inner-products, so it is
also known as dot Cholesky while the ikj version in contrast is rich in saxpy
operations.

2.2.2 LU factorization

LU factorization is used to solve linear systems when the matrix is not guaran-
teed to be symmetric positive definite. To improve the stability of this process, an
operation called partial pivoting is performed during the factorization. LU fac-
torization, like Cholesky factorization and matrix multiplication, has three nested
loops that may be permuted to produce a number of versions. One version of LU
factorization is shown in Figure 3. The k loop, which is outermost, walks over
the columns of the matrix. In each iteration of this loop, the entries in column k
below the diagonal of the matrix are examined, and the row that contains the ele-
ment of largest magnitude is determined (call it row m). If m and k are distinct, the

8

portion of row of k to the right of the diagonal is swapped with the corresponding
portion of row m (this is called partial pivoting). Scale and update steps are then
performed as in Cholesky factorization, but the update is applied to the sub-matrix
below and to the right of the diagonal element A(k,k). Note that the i and j
loops in the update step can be interchanged, giving rise to two different versions
of LU factorization with pivoting.

This version of LU factorization is called right-looking LU factorization. As
in the case of Cholesky factorization, there are two left-looking versions in which
updates to a column are delayed until that column becomes current. Interactions
between updates and pivoting are sufficiently complex that there is no direct ana-
log of row Cholesky factorization for LU factorization with pivoting. It is possible
to perform LU factorization row by row, but this code must do column pivoting,
and is therefore a different algorithm than the left- and right-looking column ver-
sions. We do not consider this version in this paper.

2.2.3 QR factorization

QR factorization, shown in Figure 4 is used in eigenvalue computations, and it
factorizes A into a product Q*R where Q is an orthonormal matrix and R is upper
triangular. The Householder variant of QR factorization proceeds through the ma-
trix A column by column. For each column, a Householder vector is determined
such that when the corresponding Householder reflection is applied, the portion
of the current column strictly below the diagonal contains only zeros. For a vector
x, if e� represents the unit vector with a � in the first entry, and zeros in all other
entries, v � �x�kxk��e���k�x�kxk��e��k represents a unit-length Householder
vector such that on applying a Householder reflection to x, all entries except the
first are zeroed out. Once a Householder vector v has been determined for the
current column, a Householder reflection can be applied to the rest of the matrix.
Conceptually, a Householder reflection can be thought of as multiplying the rest
of the matrix by �I��vvT �, which would take O�n�� operations for v of length n.
However, this reflection can actually be accomplished in O�n�� operations by us-
ing a two-step process. The key observation is that for a matrix B, �I� �vvT ��B
= B� �v � vT �B = B� �v �w, where w � vT �B. Thus the first step computes
w using a matrix vector computation and the second step updates the rest of the
matrix using an outer product update computation.

9

do k = 1, n
temp = 0.0d0
m = k
//find pivot row
do i = k, n
d = A(i,k)
if (ABS (d) .gt. temp)
temp = abs(d)
m = i

if (m .ne. k)
ipvt(k) = m
//row permutation
do j = k, n
temp = A(k,j)
A(k,j) = A(ipvt(k),j)
A(ipvt(k),j) = temp

//scale loop
do i = k+1, n
A(i,k) = A(i,k) / A(k,k)

//update loops
do i = k+1, n
do j = k+1, n
A(i,j) -= A(i,k) * A(k,j)

Figure 3: kij version of LU with pivoting

10

do k = 1, n
norm = 0
do i = k, n

norm = norm + A(i,k) * A(i,k)
norm2 = dsqrt (norm)
asqr = A(k,k) * A(k,k)
A(k,k) =

dsqrt(norm-asqr+((A(k,k)-norm2)�))
//Householder vector computation
do i = k+1, n
A(i,k) = A(i,k) / A(k,k)

//Reflection - (matrix vector product)
do i = k+1, n
w(i) = 0
do j = i, n
w(i) += A(j,i) * A(j,k)

//Reflection - (outer product update)
do j = k+1, n
do i = k+1, n
A(i,j) = A(i,j) - 2 * A(i,k) * w(j)

Figure 4: QR factorization

11

2.3 Hardware Platform

The experimental results reported in this paper were obtained on an unloaded Oc-
tane workstation with an R10000 processor running at 195 MHz. The R10K can
perform one load/store operation and two floating point operations per cycle, giv-
ing it a theoretical peak performance of 390 MFlops. The processor has 32 logical
registers and 64 physical registers. The workstation was equipped with separate
first-level (L1) instruction and data caches of size 32Kb each, and a second-level
(L2) unified cache of size 1MB. The L1 cache is non-blocking with a miss penalty
of 10 cycles, and it is organized as a 2-way set associative cache with a line size
of 32 bytes. The L2 cache is also non-blocking with a miss penalty of 70 cycles,
and it is organized as a 2-way set associative cache with a line size of 128 bytes.
Therefore, the four highest levels of memory hierarchy are the registers, the L1
and L2 caches and main memory.

3 Library Approaches

In this section, we discuss the approach taken by the numerical linear algebra
community to produce high-performance codes for the work-load described in
Section 2, and argue that it is difficult for a restructuring compiler to mimic this
approach directly.

The numerical linear algebra community has taken a layered approach to the
problem of implementing portable, high-performance code for matrix applica-
tions.

1. Machine-specific code is written for each of the BLAS. These codes are not
portable since the performance optimizations in these codes are machine-
specific.

2. Matrix factorizations are expressed as block algorithms rather than as point
algorithms. The restructuring of point algorithms to block algorithms ex-
poses BLAS-3 like matrix multiplication and triangular solve with multiple
righthand sides which are executed by invoking machine-specific BLAS.
This is the approach followed in the LAPACK library.(2)

The upshot of this strategy is that only the BLAS are not portable; the matrix
factorization codes are layered on top of the BLAS, and are machine-independent.

12

do t1 = 1 .. d� n����e
do t2 = 1 .. d� n����e
do t3 = 1 .. d� n����e
do It = (t1-1)*25 +1 ..

min(t1*25,n)
do Jt = (t2-1)*25 +1 ..

min(t2*25,n)
do Kt = (t3-1)*25 +1 ..

min(t3*25,n)
C(It,Jt) = C(It,Jt) + A(It,Kt) * B(Kt,Jt)

C

B

A

Figure 5: Blocked Code for matrix matrix multiplication

3.1 BLAS routines

We use matrix multiplication to discuss how the BLAS are implemented. The
naive version in Figure 1(e) does not exploit data reuse effectively; for example,
for every iteration of the outermost loop, the matrix B is read in its entirety. If
the matrices are much larger than the cache, none of the reuse of B is exploited.
The solution is to use a block algorithm that performs a sequence of small matrix
multiplications, each of which multiplies a submatrix of A with a submatrix of
B, accumulating the result in a submatrix of C, as shown in Figure 5. If these
submatrices are small enough to fit into the cache, the number of capacity misses
decreases substantially.

How big the submatrices should be clearly depends on the size of the cache
and is therefore machine-specific, but it can conveyed as a parameter to the block
code. The need for machine-specific code arises because a good code for matrix
multiplication must pay careful attention to register allocation of array elements.
If the k loop is innermost in the submatrix multiplication code, C(i,j) can be
held in a register, reducing the number of loads and stores in each inner loop it-
eration by 2. This can improve performance for two reasons: (i) register accesses
are faster than cache accesses, and (ii) most microprocessors have a small num-
ber of pipes to memory, so having many loads and stores in an inner loop can
throttle the performance of the processor pipeline. On the other hand, it is also
advantageous to have the i and j loops innermost since B(k,j) and A(i,k)
respectively become invariant in the innermost loop, and can be read once and
stored in a register. The solution to these conflicting demands is to register tile the
submatrix multiplication itself, and choose the size of the tiles so that array values

13

300.0 400.0 500.0 600.0 700.0
Problem Size

0.0

100.0

200.0

300.0

400.0

M
eg

af
lo

ps

Performance of handwritten BLAS library
SGI Octane Workstation

Matrix Matrix multiplication (Level–3)
Matrix Vector Product (Level–2)
Saxpy (Level–1)

Figure 6: Performance of computations from Levels 1, 2 & 3

can be read and written in registers in the innermost loop. In addition to register
tiling, the innermost loop must be software pipelined to reduce the effect of load
latencies. These considerations mandate the use of very machine-specific code in
writing high-performance BLAS.

Detailed information regarding the implementation of BLAS on a modern
high-performance computer can be found in.(1) Figure 6 shows the performance
of handcoded BLAS on the SGI Octane. These routines were implemented by
Mimi Celes at SGI.

3.2 Block matrix factorizations

From Figure 6, it is easy to see that the point versions of matrix factorization codes
will perform poorly on a machine with a memory hierarchy. For example, in the
kij version of Cholesky factorization shown in Figure 2, the innermost loop per-
forms a saxpy operation (notice that A(i,k) is invariant in this loop, and its value
is used to scale a portion of the kth column of A which is then added to a portion
of the ith row of A). Since BLAS-1 operations perform poorly on a memory hi-
erarchy, we would expect that this point version of Cholesky factorization would
perform poorly as well. This is in fact the case, as we show in Section 9. Fortu-
nately, it is possible to restructure the computation to expose BLAS-3 operations.
To illustrate this, we show that the block algorithm in the LAPACK library can be
derived from the point version by program restructuring.

14

do k = 1, n
do i = k, n
do j = k, i
if (i == k && j == k) A(k,k) = sqrt (A(k,k));
if (i > k && j == k) A(i,k) = A(i,k) / A(k,k);
if (i > k && j > k) A(i,j) -= A(i,k) * A(j,k);

Figure 7: A fully permutable loop nest for Cholesky factorization

do js = 0, n/B //this counts the block columns
do i = B*js +1, n
do k = 1, min(i,B*js+B)
do j = max(B*js +1,k), min(i,B*js+B)

if (i == k && j == k) A(k,k) = sqrt (A(k,k));
if (i > k && j == k) A(i,k) = A(i,k) / A(k,k);
if (i > k && j > k) A(i,j) -= A(i,k) * A(j,k);

Figure 8: Stripmine-and-interchange of code in Figure 7

It can be shown that the perfectly nested loop shown in Figure 7 performs
Cholesky factorization, and that the three loops are fully permutable. This per-
fectly nested version of Cholesky factorization can be generated from the kij-fused
version shown in Figure 2 by repeated application of code-sinking.(35)

The first step in generating the block-j version of Cholesky used in the LA-
PACK library is to stripmine the j loop in blocks of size B, and interchange loops
to produce the code shown in Figure 8.

Next, we simplify the loop bounds to get rid of min’s and max’s by index-set
splitting the i and k loops. The index-set of the i loop is split into two ranges
B*js+1 to B*js+B, and B*js+B+1 to n. The index set of the k loop is split
into the two ranges 1 to B*js, and B*js+1 to i. Simplifying the predicates
then gives us the code shown in Figure 9. A pictorial representation of this code
is shown in Figure 10.

To get good performance, the matrix multiplications and triangular solve must
be performed by calling the appropriate BLAS.

Similar block algorithms can be derived for LU with pivoting and QR factor-
ization. For LU with pivoting, the block algorithm in LAPACK exploits the fact
that row permutations commute with updates, while the block QR factorization

15

do js = 0, n/B

//Computation 1: matrix multiplication
do i= B*js +1, B*js+B
do k = 1,B*js
do j = B*js +1,i
A(i,j) -= A(i,k) * A(j,k);

//Computation 2: small Cholesky factorization
do i = B*js +1,B*js+B
do k = B*js+1,i
do j = k,i
if (i == k && j == k) A(k,k) = sqrt (A(k,k));
if (i > k && j == k) A(i,k) = A(i,k) / A(k,k);
if (i > k && j > k) A(i,j) -= A(i,k) * A(j,k);

//Computation 3: matrix multiplication
do i = B*js+B+1,n
do k = 1,B*js
do j = B*js+1,B*js+B
A(i,j) -= A(i,k) * A(j,k);

//Computation 4: triangular solve with multiple RHS
do i = B*js+B+1,n
do k = B*js+1,B*js+B
do j = k,B*js+B

if (j == k) A(i,k) = A(i,k) / A(k,k);
if (j > k) A(i,j) -= A(i,k) * A(j,k);

Figure 9: Index-set splitting of code in Figure 8

16

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���

���
���
���
���

�����
�����
�����

�����
�����
�����

���
���
���
���
���

���
���
���
���
��� 2

4

1

3

block

Computation 1: MMM
Computation 2: unblocked Cholesky
Computation 3: MMM
Computation 4: Triangular solve

column

j

k

i

A

Figure 10: Pictorial view of code in Figure 9

350.0 550.0 750.0 950.0
Problem Size (nxn matrix)

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

M
F

lo
ps

Cholesky Factorization
QR Factorization (Block Householder Reflection)
LU Factorization with Pivoting

Figure 11: Performance of Cholesky, QR & LU Factorization codes from LA-
PACK

exploits associativity of matrix products.
The performance of LAPACK factorization codes on the SGI Octane is shown

in Figure 11. Cholesky factorization runs at roughly 250 MFlops while QR and
LU with pivoting run at roughly 200 MFlops.

17

3.3 Discussion

It is seems unlikely that a compiler can mimic the steps outlined above for de-
riving block Cholesky code from point Cholesky. Transforming the kij-fused
version of Cholesky factorization into the fully permutable loop nest of Figure 7
by code sinking is reasonably straight-forward, but it should be noted that there
are many ways to apply code sinking to the program in Figure 2, and each of
these produces different perfectly nested loops. For example, in Figure 7, the
square root and scale steps can be done when (j == k+1) without changing
the semantics of the program. Moreover, generating the perfectly nested version
from other versions of Cholesky factorization is non-trivial. In the kji version
for example, the j and i loops must be interchanged, then the two i loops must
be fused, after which code sinking can be applied to generate the fully permutable
version. It is not clear what would drive a compiler to make these choices.

Once the perfectly nested loop is generated, another sequence of transfor-
mations is required to extract the BLAS-3 sub-computations from the fully per-
mutable loop nest. As before, it is not clear how one might automate this sequence
of transformations.

The approach of restructuring code to expose BLAS-3 operations and exe-
cuting these operations using machine-tuned BLAS has been used successfully
to produce high-performance library code, but we believe that it is difficult for a
compiler to imitate this strategy directly.

4 Existing Compiler Approaches

The compiler community has developed many techniques for enhancing locality
by restructuring perfectly nested loops. In contrast, much less is known about
locality enhancement in imperfectly nested loops.

4.1 Perfectly nested loops

The most effective transformation is loop tiling, preceded if necessary by linear
loop transformations like permutation and skewing.(5, 19, 21, 35) For example, con-
sider a nested loop that adds the elements of a two-dimensional array stored in
column-major order. If the code is written so that the array is accessed by row,
spatial locality is enhanced by permuting the loops so that the innermost loop
walks over the array with unit stride. This example demonstrates the use of lin-

18

ear loop transformations for locality enhancement, but it does not require tiling.
In codes like matrix multiplication, locality can improved by moving any one of
several loops into the innermost position, as discussed in Section 3.1. Tiling is
beneficial for such codes since it gives the effect of interleaving the iterations of
these loops, thereby providing most of the benefits of having all these loops in
the innermost position. Matrix multiplication therefore demonstrates the need for
tiling. Tiling is not always legal, so the most general strategy is to apply linear
loop transformations to convert a loop nest into a fully permutable loop nest which
can be tiled. A critical parameter in tiling a loop nest is tile size which must be
chosen so that cache misses are as small as possible during the execution of the
tile. Many heuristics for choosing good tile sizes have been developed.(6, 13, 14)

A very sophisticated implementation of these techniques can be found in the
SGI MIPSPro compiler for the Octane workstation.(33) This compiler converts
singly nested loop nests into perfectly nested loop nests using code sinking, and
then tiles the resulting perfectly nested loop nest.

Definition 4.1.1 A singly nested loop (SNL) is an imperfectly nested loop in which
there is at most one loop nested immediately inside every loop.

The triangular solve code in Figure 1 and the kij-fused version of Cholesky
factorization in Figure 2 are SNL’s while the kij version of the Cholesky factor-
ization code in Figure 18 is an example of an imperfectly nested loop that is not
an SNL. All the BLAS codes are SNL’s, so the SGI MIPSPro compiler achieves
good performance on these code, as can be seen in Figure 12. The performance of
the compiled code is roughly equal to that of handwritten code for BLAS-1 and
BLAS-2; for BLAS-3, the handwritten version is moderately better. The structure
of the compiled code for BLAS-3 is identical to that of the handwritten code, but
the handwritten version does a better job of choosing block sizes.

4.2 Imperfectly nested loops

Matrix factorization codes are imperfectly nested and only the kij-fused ver-
sion of Cholesky factorization is an SNL.

The MIPSPro compiler attempts to perform loop transformations like fusion
and distribution to transform these codes into perfectly nested loops that can
be tiled, but it is successful in doing this only for the kij-fused version of
Cholesky factorization. Therefore, the performance of compiled code for matrix
factorizations is quite poor, as we discuss in detail in Section 9.

19

300.0 400.0 500.0 600.0 700.0
Problem Size

0.0

100.0

200.0

300.0

400.0

500.0

M
eg

af
lo

ps

DGEMM in BLAS-3
Compiler-transformed matrix-matrix multiply
Compiler-transformed matrix-Vector multiply
DGEMV in BLAS-2
DAXPY in BLAS-1
Compiler-transformed a*x + y

Figure 12: Performance of handwritten and compiled BLAS

A number of approaches for enhancing locality in imperfectly nested loops
have been proposed in the research literature. Carr and Kennedy analyzed block
factorizations such as Cholesky and LU, and showed that sequences of loop trans-
formations such as index-set splitting, loop distribution and stripmine-and-interchange
can produce blocked codes from unblocked ones.(7) This is like the approach we
took in Section 3, but it does not require conversion to a fully permutable, perfectly
nested loop nest as an intermediate step since imperfectly nested loop transforma-
tions such as index-set splitting are applied directly. However, it is not clear what
would drive a compiler to synthesize such sequences of transformations. In addi-
tion, their work considered only the kij version of Cholesky factorization; other
versions of Cholesky factorization require different sequences of transformations.
To block LU factorization with pivoting, they propose to introduce pattern match-
ing into the compiler to permit it to recognize that row permutation commutes
with updates. This work was extended by Carr and Lehoucq(9) to QR factoriza-
tion, although the blocked version they developed is different from the one in
LAPACK.

Ramanujam and Schreiber(29) used a combination of code sinking and loop
fusion to convert some of the imperfectly nested variants of Cholesky to the fully
permutable, perfectly nested intermediate form of Figure 7. Their strategy works
well for the kij and kij-fused versions of Cholesky factorization, but it can-
not be applied to other versions because loop fusion is not legal in these codes.

McKinley et al(23) present a cost model for memory accesses and use it to

20

determine the best version of Cholesky factorization, but they do not consider
tiling.

More recently, Song and Li developed a technique for tiling imperfectly nested
loops that arise in relaxation codes.(30) However, this technique is very specific to
relaxation codes, and cannot be used to improve locality in matrix factorization
codes for example.

5 Data-centric Transformation

We now describe data-shackling, a locality enhancement technique designed to
be applicable to imperfectly nested loops. In data-shackling, the compiler picks
an order in which data structure elements should be brought into the cache at
runtime, and it restructures code so that statement instances that access a given
element are scheduled close together in time. When the transformed program is
executed, data structure elements will be brought into the cache in approximately
the order chosen by the compiler. In this way, the locality enhancement problem
is converted to a scheduling problem in which the schedule of statement execution
is matched to the schedule of data movement chosen by the compiler.

5.1 Data-shackling

The key concept in data-shackling is the idea of a data-shackle.

Definition 5.1.1 A data-shackle is a specification in three parts.

1. One of the arrays in the program is divided into blocks using sets of parallel,
equally spaced cutting planes. Each set of cutting planes is specified by an
orientation and a pitch.

2. An order for visiting the blocks of data is specified.

3. One reference to that array is selected for each statement in the program.
This reference is called the data-centric reference for that statement.

Intuitively, the data-shackle specifies an order in which blocks of the array
are touched, and the data-centric reference is used to determine which iterations
of each statement get performed when that block of the array is touched — code
is generated to perform all iterations of that statement for which the data-centric
reference touches data within the current block.

21

N

N

0 1 2 3

0

2

<1,1> <1,2> <1,3> <1,4>

<2,1> <2,2> <2,3> <2,4>

<3,1> <3,2> <3,3> <3,4>

3

1

<4,1> <4,2> <4,3> <4,4>

do b1 = 1 .. d�N����e
do b2 = 1 .. d�N����e
do i = 1 .. N
do j = 1 .. N
do k = 1 .. N
if ((b1-1)*25 < i <= b1*25) &&

((b2-1)*25 < j <= b2*25)
C(i,j) = C(i,j) + A(i,k) * B(k,j)

(a) Blocking of C matrix (b) Naive code produced by shackling C

do t1 = 1 .. d�N����e
do t2 = 1 .. d�N����e
do i = (t1-1)*25 +1 ..

min(t1*25,N)
do j = (t2-1)*25 +1 ..

min(t2*25,N)
do k = 1 .. N
C(i,j) = C(i,j) + A(i,k) * B(k,j)

A

B

C
K

K

(c) Simplified code produced by IP tool (d) Data touched by code

Figure 13: Code produced by shackling C in matrix-multiply

We illustrate this with matrix multiplication. One data-shackle is obtained by
dividing C into 2-dimensional 25x25 blocks using horizontal and vertical sets of
cutting planes, as shown in Figure 13(a). These blocks can be visited in left-
to-right, top-to-bottom order. C(i,j) is the only reference to this array in the
assignment statement, and it is chosen to be the data-centric reference for that
statement.

Figure 13(b) shows naive code generated by using this data-shackle. There are
two outermost loops which enumerate over the blocks of C. For each block, the
entire initial loop nest is executed, and two conditionals are inserted at the inner-
most level to ensure that the data touched by the data-centric reference lies within
the current block. This code generation strategy is reminiscent of the runtime
resolution code generation strategy which is used in compiling shared-memory
programs for distributed-memory machines.(27) This code is shown only to illus-

22

trate the high-level idea of a data-shackle. In the implementation, standard integer
linear programming tools are used to fold the bounds of the data blocks into the
inner loop bounds, producing the optimized code shown in Figure 13(c). Notice
that within the context of a single block, iterations are done in the same order as
in the original code (these are called intra-block iterations), but in the program as
a whole, the order in which iterations are performed is different from their order
in the source program. Therefore, shackling is not always legal. In Section 6, we
show that the determination of whether a data-shackle is legal can be reduced to
the standard problem of determining the emptiness of the union of certain polyhe-
dra, a problem for which many algorithms exist.

This shackle does not produce the standard block matrix multiplication code
discussed in Section 2.1. For a given block of C, the data-shackle specified above
constrains the i and j loop indices, but does not constrain the k index in any way,
as can be seen in Figure 13(d). This results in poor locality for the A(i,k) and
B(k,j) references. This problem can be addressed by composing shackles, as
explained in Section 7.

A more complicated example is data-shackling of the kij-fused version
of Cholesky factorization. The array A can be blocked into 64x64 blocks in a
manner similar to Figure 13(a). When a block is scheduled, all statements that
write to that block can be executed in program order. In other words, the reference
chosen from each statement of the loop nest is the left hand side reference in that
statement. The code obtained after simplification with polyhedral algebra tools
is shown in Figure 14. The reader who wants some insight into the structure
of this code should study Figure 15. data-shackling regroups the iteration space
into four sections. Initially, all updates to the diagonal block from the left are
performed (Figure 15(i)). This is followed by a small Cholesky factorization(15)

of the diagonal block (Figure 15(ii)). For each off-diagonal block, updates from
the left (Figure 15(iii)) are followed by interleaved scaling of the columns of the
block by the diagonal block, and local updates(Figure 15(iv)).

As in the case of matrix multiplication, this code is only partially blocked,
compared to the block factorization code in the LAPACK library. Although all
the writes are performed into a block when that block is visited, reads are not
localized to blocks but are distributed over the entire left portion of the matrix. As
with matrix multiplication, this problem is solved by composing shackles.

23

Source code:
do k = 1, n
S1: A(k,k) = dsqrt (A(k,k))
do i = k+1, n
S2: A(i,k) = A(i,k) / A(k,k)

do i = k+1, n
do j = k+1, i
S3: A(i,j) -= A(i,k) * A(j,k)

Shackled code:
do t1 = 1, (n+63)/64
/* Apply updates from left to diagonal block */
do t3 = 1, 64*t1-64
do t6 = 64*t1-63, min(n,64*t1)
do t7 = t6, min(n,64*t1)
A(t7,t6) = A(t7,t6) - A(t7,t3) * A(t6,t3)

/* Cholesky factor diagonal block */
do t3 = 64*t1-63, min(64*t1,n)
A(t3,t3) = sqrt(A(t3, t3))
do t5 = t3+1, min(64*t1,n)
A(t5,t3) = A(t5,t3)/ A(t3,t3)

do t6 = t3+1, min(n,64*t1)
do t7 = t6, min(n,64*t1)
A(t7,t6) = A(t7,t6) - A(t7,t3) * A(t6,t3)

/* Apply updates from left to
off-diagonal block */

do t2 = t1+1, (n+63)/64
do t3 = 1, 64*t1-64
do t6 = 64*t1-63, 64*t1
do t7 = 64*t2-63, min(n,64*t2)
A(t7,t6) = A(t7,t6) - A(t7,t3) * A(t6,t3)

/* Apply internal scale/updates to
off-diagonal block */

do t3 = 64*t1-63, 64*t1
do t5 = 64*t2-63, min(64*t2,n)
A(t5,t3) = A(t5,t3)/ A(t3,t3)

do t6 = t3+1, 64*t1
do t7 = 64*t2-63, min(n,64*t2)
A(t7,t6) = A(t7,t6) - A(t7,t3) * A(t6,t3)

Figure 14: Data-shackling applied to right-looking Cholesky factorization

24

(iv) Internal scale+update (iii) Update off-diagonal block from left

(ii) Cholesky factor diagonal block(i) Update diagonal block from left

t3 t6

t7

t3

t5

t3 t6

t7

t3

t5

t6

Figure 15: Pictorial View of Code in Figure 14

5.2 Discussion

By shackling a data reference R in a source program statement S, we ensure that
the memory access made from that data reference at any point in program execu-
tion will be constrained to the “current” data block. Turning this around, we see
that when a block becomes current, we perform all instances of statement S for
which the reference R accesses data in that block. Therefore, this reference enjoys
perfect self-temporal locality.(32) Considering all shackled references together, we
see that we also have perfect group-temporal locality for this set of references; of
course, references outside this set may not necessarily enjoy group-temporal local-
ity with respect to this set. As mentioned earlier, we do not mandate any particular
order in which the data points within a block are visited. However, if all dimen-
sions of the array are blocked and the block fits in cache (or whatever level of the
memory hierarchy is under consideration), we obviously exploit spatial locality,
regardless of whether the array is stored in column-major or row-major order. An
interesting observation is that if stride-1 accesses are mandated for a particular
reference, we can simply use cutting planes with unit separation which enumerate
the elements of the array in storage order. Enforcing stride-1 accesses within the
blocks of a particular blocking can be accomplished by composing shackles as
described in Section 7.

The code shown in Figure 14 can certainly be obtained by a (long) sequence of

25

traditional iteration space transformations like sinking, tiling, index-set splitting,
distribution etc. As we discussed in the introduction, it is not clear for imperfectly
nested loops in general how a compiler determines which transformations to carry
out and in what sequence these transformations should be performed.

6 Legality of Data Shackling

Since data-shackling reorders statement instances, we must ensure that it does
not violate dependences. An instance of a statement S can be identified by a
vector i which specifies the values of the index variables of the loops surrounding
S. The tuple (S,i) represents instance i of statement S. Suppose there is a
dependence from (S1,i1) to (S2,i2) and suppose that these two instances
are executed when blocks b� and b� are touched respectively. For the data-shackle
to be legal, either b� must be touched before b�, or b� and b� must be identical
(note that if b� and b� are identical, the code generation strategy in Section 5
ensures that the statement instances are executed in original program order). In
this case, we say that the data-shackle respects that dependence. A data-shackle
is legal if it respects all dependences in the program. Since our techniques apply
to imperfectly nested loops like Cholesky factorization, it is not possible to use
dependence abstractions like distance and direction to verify legality. Instead, we
solve integer linear programming problems, as we discuss in this section.

6.1 An example of testing legality

To understand the general algorithm, it is useful to consider first a simple example
distilled from the Cholesky factorization code of Figure 14. In the source code,
there is a flow dependence from the assignment of A(k,k) in S1 to the use of
A(k,k) in S2. We must ensure that this dependence is respected in the shackled
code shown in Figure 14.

We first write down a set of integer inequalities that represents the existence
of a flow dependence between an instance of S1 and an instance of S2. Let S1
write to an array location in iteration kw of the k loop, and let S2 read from that
location in iteration �kr� ir� of the k and i loops. A flow dependence exists if the
following linear inequalities have an integer solution:(35)

26

��������
�������

kr � kw (same location)

n � kw � � (loop bounds)

n � kr � � (loop bounds)

n � ir � kr � � (loop bounds)

kr � kw (read after write)

(1)

Next, we assume that the instance of S1 is performed when a block �b��� b���
is scheduled, and the instance of S2 is done when block �b��� b��� is scheduled.
Finally, we add a condition that represents the condition that the dependence is
violated in the transformed code. In other words, we formulate the condition that
block �b��� b��� is touched strictly before block �b��� b���. These conditions are
represented as: ���������������

��������������

Writing iteration done in (b��� b��)

b�� � ��� �� � kw � b�� � ��

b�� � ��� �� � kw � b�� � ��

Reading iteration done in (b��� b��)

b�� � ��� �� � kr � b�� � ��

b�� � ��� �� � ir � b�� � ��

Blocks visited in bad order

�b�� � b��� � ��b�� � b��� � �b�� � b����

(2)

If the conjunction of the two sets of conditions (1) and (2) has an integer
solution, it means that there is a dependence, and that dependent instances are
performed in the wrong order. If so, the data-shackle violates the dependence and
is not legal. This problem can be viewed geometrically as asking whether the
union of certain polyhedra contains an integer point. This problem can be solved
using standard polyhedral algebra tools.

Such a test can be performed for each dependence in the program. If no de-
pendences are violated, the data-shackle is legal.

6.2 General View of Legal Data-Shackles

The formulation of the general problem of testing for legality of a data-shackle be-
comes simpler if we first generalize the notion of blocking data. A data blocking

27

x
x xx

x x
x
x

x
x xx

x x
x
x

(S2,I2)

(S1,I1)

Generation
Code

Original Program Transformed Program

Data with new co-ordinatesOriginal Data

C

A

T

V

Figure 16: Testing for Legality

such as the one shown in Figure 13(a) can be viewed simply as a map that assigns
co-ordinates in some new space to every data element in the array. For example, if
the block size in this figure is 25 x 25, array element �a�� a�� is mapped to the co-
ordinate ���a� � �� div ��� � �� ��a� � �� div ��� � �� in a new two-dimensional
space. Note that this map is not one-to-one. The bottom part of Figure 16 shows
such a map pictorially. The new space is totally ordered under lexicographic or-
dering. The data shackle can be viewed as traversing the remapped data in lexico-
graphic order in the new co-ordinates; when it visits a point in the new space, all
statement instances mapped to that point are performed.

Therefore, a data-shackle can be viewed as a function M that maps statement
instances to a totally ordered set (V, �). For the blocking shown in Figure 16,
C:(S,I) 	 A maps statement instances to elements of array A through data-
centric references, and T:A 	 V maps array elements to block co-ordinates.
Concisely, M = T
C.

Given a function M:(S,I)	(V,�), the transformed code is obtained by
traversing V in increasing order, and for each element v � V, executing the state-
ment instances M��(v) in program order in the original program.

Theorem 6.2.1 A map M:(S,I) 	(V,�) generates legal code if the follow-
ing condition is satisfied for every pair of dependent statements S1 and S2.

� Introduce vectors of unknowns i1 and i2 that represent instances of de-

28

pendent statements S1 and S2 respectively.

� Formulate the inequalities that must be satisfied for a dependence to exist
from instance i1 of statement S1 to instance i2 of statement S2. This is
standard.(35)

� Formulate the predicate M(S2,i2)�M(S1,i1).

� The conjunction of these conditions does not have an integer solution.

Proof: Obvious, hence omitted. �

6.3 Discussion

Viewing blocking as a remapping of data co-ordinates simplifies the development
of the legality test. This remapping is merely an abstract mathematical device to
enforce a desired order of traversal through the array, and the physical array itself
is not necessarily reshaped. For example, in the blocked matrix multiplication
code in Figure 13, array C need not be laid out in block order to obtain the benefits
of blocking this array. This is similar to the situation in BLAS/LAPACK where
it is assumed that the FORTRAN column-major order is used to store arrays. Of
course, nothing prevents us from reshaping the physical data array if the cost of
converting back and forth from a standard representation is tolerable. Automatic
data reshaping has been explored by other researchers.(3, 11)

7 Products of shackles

We now show that there is a natural notion of taking the Cartesian product of a set
of shackles, and that this notion is the data-centric equivalent of loop nesting.

The motivation for this operation comes from the matrix multiplication code
of Figure 13(c), in which an entire block row of A is multiplied with a block of
column of B to produce a block of C. The order in which the iterations of this
computation are done is left unspecified by the data-shackle (the default code
generation scheme of Section 5 will execute these iterations in original program
order). Note that the shackle on reference C(I,J) constrains both I and J,
but leaves K unconstrained; therefore, the references A(I,K) and B(K,J) can
touch an unbounded amount of data in arbitrary ways during the execution of the
iterations shackled to a block of C(I,J)). Instead of C, we can block A or B,

29

but this still results in unconstrained references to the other two arrays. To get
BLAS-style blocked matrix multiplication, we need to block all three arrays. We
show that this effect can be achieved by taking Cartesian products.

Informally, the notion of taking the Cartesian product of two shackles can
be viewed as follows. The first shackle partitions the statement instances of the
original program, and imposes an order on these partitions. However, it does not
mandate an order in which the statement instances in a given partition should
be performed. The second shackle refines each of these partitions separately into
smaller, ordered partitions, without reordering statement instances in different par-
titions obtained from the first shackle. In other words, if two statement instances
are ordered by the first shackle, they are not reordered by the second shackle. The
notion of a binary Cartesian product can be extended the usual way to an n-ary
Cartesian product; each extra factor in the Cartesian product gives us finer control
over the granularity of data accesses.

A formal definition of the Cartesian product of data-shackles is the following.
Recall from the discussion in Section 6 that a data-shackle for a program P can be
viewed as a map M:(S,I)	 V, whose domain is the set of statement instances
and whose range is a totally ordered set.

Definition 7.0.1 For any program P, let�
M� � �S� I�	 V�

M� � �S� I�	 V�

be two data-shackles. The Cartesian productM� �M� of these shackles is de-
fined as the map whose domain is the set of statement instances, whose range is
the Cartesian product V� � V� and whose values are defined as follows: for any
statement instance (S,i), �M� �M���S� i� � �M��S� i��M��S� i� �

The product domain V��V� of two totally ordered sets is itself a totally ordered
set under standard lexicographic order. Therefore, the code generation strategy
and associated legality condition are identical to those in Section 6. It is easy to
see that for each point v� � v� in the product domain V� � V�, we perform the
statement instances in the set �M� �M��

���v�� v�� �M�
���v�� �M�

���v��.
In the implementation, each term in an n-ary Cartesian product contributes a

guard around each statement. The conjunction of these guards determines which
statement instances are performed at each step of execution. Therefore, these
guards still consist of conjuncts of affine constraints. As with single data-shackles,
the guards can be simplified using any polyhedral algebra tool.

30

Note that the product of two shackles is always legal if the two shackles are le-
gal by themselves. However, a productM��M� can be legal even ifM� by itself
is illegal. This is analogous to the situation in loop nests where a loop nest may be
legal even if there is an inner loop that cannot be moved to the outermost position;
the outer loop in the loop nest “carries” the dependence that causes difficulty for
the inner loop.

7.1 Examples

In matrix multiplication, it is easy to see that shackling any of the three refer-
ences (C(I,J),A(I,K),B(K,J)) to the appropriate blocked array is legal.
Therefore, all Cartesian products of these shackles are also legal. The Carte-
sian product MC �MA of the C and A shackles produces the code in Figure
5. It is interesting to note that further shackling with the B shackle (that is the
product MC �MA �MB) does not change the code that is produced. This is
because shackling C(I,J) to the blocks of C and shackling A(I,K) to blocks
of A imposes constraints on the reference B(K,J) as well. A similar effect can
be achieved by shackling the references C(I,J) and B(K,J), or A(I,K) and
B(K,J).

A more interesting example is the Cholesky code. In Figure 2, it is easy to ver-
ify that there are six ways to shackle references in the source program to blocks of
the matrix (choosing A(K,K) from statement S1, either A(I,K) or A(K,K)
from statement S2 and either A(I,J), A(I,K) or A(J,K) from statement
S3). Of these, only two are legal: choosing A(K,K) from S1, A(I,K) from
S2 and A(I,J) from S3, or choosing A(K,K) from S1, A(K,K) from S2 and
A(I,K) from S3. The first shackle chooses references that write to the block,
while the second shackle chooses references that read from the block. Since both
these shackles are legal, their Cartesian product (in either order) is legal. It can
be shown that one order gives a fully-blocked left-looking Cholesky, similar to
the blocked Cholesky algorithm in LAPACK, while the other order gives a fully-
blocked right-looking Cholesky. The left-looking code produced by shackling is
shown in Figure 27.

7.2 Discussion

Taking the Cartesian product of data-shackles gives us finer control over data ac-
cesses in the blocked code. As discussed earlier, shackling just one reference
in matrix multiplication (say C(I,J)) does not constrain all the data accesses.

31

On the other hand, shackling all three references in this code is over-kill since
shackling any two references constraints the third automatically. Taking a larger
Cartesian product than is necessary does not affect the correctness of the code, but
it introduces unnecessary loops into the resulting code which must be optimized
away by the code generation process to get good code. In Section 8, we explain
how our implementation of data-shackling determines when to stop composing
data-shackles.

8 Heuristics used in Implementation

Sections 5, 6 and 7 described the mechanisms that underlie data shackling. An
implementation of data-shackling must make certain policy decisions as well. One
of the authors (Kodukula) has implemented data-shackling in the SGI MIPSPro
compiler. In this section, we describe the policies implemented in this compiler. In
a production compiler, the time taken to compile programs must be kept small, so
these policies are based on heuristic choices that are simple to implement. Their
effectiveness for our workload is discussed in Section 9. We believe that our
heuristics are reasonable, although it is certainly easy to invent other plausible
ones.

8.1 Policy decisions

An implementation of shackling must address the following questions.

1. What is the program unit to which data-shackling is applied?

2. How are the parameters for a single data-shackle chosen?

(a) Which array is shackled?

(b) What is the orientation of the cutting planes?

(c) What is the order of traversal of blocks?

(d) What is the separation of cutting planes (block sizes)?

(e) How are data-centric references chosen?

3. How many shackles are composed?

32

One approach to answering many of these questions is to treat them as classi-
cal optimization problems, and try to find optimal solutions in the context of an
accurate model. However, this approach is impractical in a production compiler,
so we developed heuristics instead.

8.2 Program unit for shackling

Shackling is applied to one imperfectly nested loop at a time. Shackling is es-
sentially statement scheduling, so it can be applied in principle to multiple im-
perfectly nested loops or even to entire programs, but we do not have enough
experience at this point to do this effectively.

8.3 Determining the parameters of a single shackle

We now describe the decisions that must be made to determine a single data-
shackle.

Picking an array for the shackle: Arrays are ordered by the following criteria.

� What is the largest row rank of a data access matrix2 of an unconstrained
reference to the array?

� How many unconstrained references of this rank are there?

� Has the array already been used in a shackle?

If two or more arrays are tied according to one criterion, we attempt to break
the tie using succeeding criteria. If there are multiple choices at the end of this
process, the tie is broken arbitrarily. The rationale for this heuristic is that an array
to which there are multiple unconstrained references of large rank is likely to be a
major participant in cache traffic.

For example, in Figure 17, array A is given highest priority for shackling be-
cause there are two unconstrained references of row-rank two to this array. Note
that array B has only one reference of rank two, while array s has three references,
all of rank one.

2If all array access functions are linear functions of loop variables (if the functions are affine,
the constant terms can be dropped), an array access function can be written as F � I where F is
the data access matrix(20) and I is the vector of iteration space variables of loops surrounding this
data reference.

33

do i = 1, n
do j = 1, m
S1: s(i) = A(i,2*j+1)
S2: r = 9.1 + j
S3: A(i,2*j) += s(i)*s(i) + r
S4: A(i,2*j) += r + B(i,j)

Figure 17: Choosing an array for shackling

Orientation of cutting planes: Cutting plane orientations are always chosen to
be parallel to the data co-ordinate axes. Dongarra and Schreiber have explored the
use of skewed blocks for locality enhancement,(14) but skewed blocks are likely
to produce variable trip-count inner loops which are detrimental to subsequent
phases in the compiler such as software pipelining (the MIPSPro compiler does
not use loop skewing for the same reason).

Order of traversal of blocks: An n-dimensional array is blocked by choosing n
sets of cutting planes; for example, a two-dimensional array is blocked along both
rows and columns. The order of traversal of blocks is chosen to be a lexicographic
order on block co-ordinates. For a two-dimensional array, the blocks are visited
from left to right, and within a given block column, from top to bottom. If this
order is not legal, the compiler tries a right to left order, and also a bottom to top
order. If none of these four orders of traversal is legal, the compiler tries to block
only rows or only columns. If that fails as well, the imperfectly nested loop is not
shackled.

Choice of data-centric references: Picking a data-centric reference for each
statement is a two step process. In the first step, all candidate data-centric ref-
erences for a statement are determined. The second step is simply an exhaustive
enumeration of all candidate data-centric references for each statement, searching
for a legal shackle. We focus on the first step in the following discussion.

After an array has been picked for a shackle, data-centric references to this
array must be selected for each statement. At the one extreme, candidate refer-
ences for a statement could be limited to references to the array that actually occur
in that statement. This causes difficulties in programs like the one in Figure 17
because statement S2 does not contain a reference to array A which is the array
chosen for shackling. At the other extreme, all references to the shackled array in
the entire imperfectly nested loop can be candidate references for every statement,

34

but this may result in a combinatorial explosion in the number of possibilities that
must be considered.

Our implementation chooses an intermediate position which is easy to under-
stand by considering the program in Figure 17. There is a flow dependence from
statement S2 to S3 because S2writes to the scalar variable rwhile S3 reads from
it. This dependence may not be respected if the data-centric references chosen for
the two statements are different (for example, if the data-centric reference for S2
is A(i,2j+1) and the data-centric reference for S3 is A(i,2j)). Therefore,
candidate data-centric references for S2 should be candidates for S4 and vice
versa.

Our implementation therefore divides statements into equivalence classes such
that two statements are in the same equivalence class if and only if there is a
dependence between them that is induced by a scalar or an array that will not be
shackled. For example, if there are dependences from S1 to S2 and from S1 to
S3, all three statements are placed in the same equivalence class even if there is
no dependence from S2 to S3. The candidate references for a statement are all
references to the shackled array that occur in the statements in its equivalence
class. For the program in Figure 17 for example, all statements will be placed in
the same equivalence class, so all array references in the loop will be candidate
references for all statements.

Our implementation then tries each candidate reference for each statement,
and checks if the resulting program is legal. If legality is violated because of
a dependence due to a scalar, our implementation performs scalar expansion to
eliminate the problem. Array expansion of low-dimensional array that cause this
problem is possible in principle, but we have not implemented this.

Finally, we mention that all assignment statements within a conditional state-
ment are placed in the same equivalence class because they are all control depen-
dent on the predicate.

Block Size Determination: To determine block sizes, we used a simplified
version of the algorithm used in the MIPSPro compiler for determining tile sizes
when it tiles perfectly nested loops. This algorithm estimates the amount of data
touched in computing a tile (this is called the footprint of the tile), and chooses
a tile size such that this footprint is a certain fraction of the cache size called the
effective cache size (between 5 and 10%). It might appear that cache misses are
minimized when the effective cache size is equal to the cache size, but experience
has shown that the use of a smaller effective cache size reduces conflict misses
without much impact on capacity misses.

35

We adapted this model to shackling by computing the block size at which
the footprint of the intra-block iterations of the shackled code was equal to the
effective cache size. The computation of this footprint was done as follows.

In the first step, a set of references with large contributions to the footprint
are identified in each statement. For statements that are not most deeply nested
in the imperfectly nested loop, this set is defined to be empty. For statements
that are most deeply nested, this set is defined to be all the references from that
statement with the highest (row)-ranked access matrices. For example, in matrix
multiplication, A(i,k), B(k,j) and C(i,j) all correspond to access matrices
of row-rank 2, and are all chosen in this step. In Cholesky factorization, the
update statement is most deeply nested, and the three references chosen from it
are A(i,j), A(i,k) and A(j,k).

The second step performs the following computations for each statement. The
references chosen in the previous step are partitioned into groups — two refer-
ences to the same array fall into the same group if their access matrices have
the same linear part, but possibly different affine parts. References belonging
to two different arrays always fall into different groups. For example, in ma-
trix multiplication, A(i,k), B(k,j) and C(i,j) all fall into different groups.
Similarly, in Cholesky factorization, A(i,j), A(i,k) and A(j,k) fall into
different groups. On the other hand, two references of the form A(i,j) and
A(i+1,j) will be assigned to the same group. The assumption is that all refer-
ences assigned to the same group enjoy perfect reuse, while references assigned to
different groups enjoy no reuse. Finally, two groups from two different statements
referring to the same array are merged if the references in the two groups have the
same linear part, and the two statements under consideration have identical data-
centric references. The assumption is that if the data-centric references for the two
statements are identical, instances of the two statements that touch the same data
will be scheduled close enough together that they will enjoy perfect reuse. If E
represents the effective size of the cache and g represents the number of groups,
then each group is allowed to have a footprint as large as E�g.

The last step involves computing the footprint of every group for a single in-
stance of a composite shackle. Two simplifications are applied to this computation
— (i) the footprint of a group is approximated by the footprint of a single refer-
ence picked at random from the group, and (ii) it is assumed that the footprint of
the group is identical for all instances of the data loops introduced by the shackle.
The first simplification is justified by the assumption that all references in a group
enjoy perfect reuse, and the second simplification is justified since boundary ef-
fects are not significant when array sizes and loop bounds are large. The reference

36

picked for each group is called the representative reference.
Evaluating the footprint of a single reference for the intrablock iterations of

shackled code is straightforward, and variations of this problem have been ad-
dressed in the literature.(24) A single instance of the composite shackle is com-
pletely specified by a specific set of values for the block coordinates for each level
of a composite shackle - for the sake of simplicity, each of the block coordinates
can be assumed to be 	. In addition, we only consider square blocks, so for every
array a, a single unknown parameter Ba denotes the block size for that array. A
system of linear integer equations expressing the localization constraints corre-
sponding to the composite shackle is assembled for the statement containing the
representative reference. The number of distinct elements touched by the rep-
resentative reference under this system of equations is multiplied by the size of
each element to yield a polynomial in a single parameter for the footprint for this
reference. Determining the number of distinct elements touched by the represen-
tative reference is thus reduced to the problem of counting the number of integers
inside a convex polyhedron. In our current implementation, this is estimated by
counting the number of integer solutions inside the bounding box of the convex
polyhedron. More sophisticated approaches such as Ehrhart Polynomials(12) can
potentially be used to obtain better solutions in practice, but it is not clear whether
this improvement in accuracy leads to better overall performance.

We implemented shackling only to improve performance of the L2 cache; the
miss latency for the L1 cache is small enough that we decided not to shackle for
the L1 cache. Therefore, block sizes were determined using the size of the L2
cache.

8.4 How many shackles are composed?

Composing data-shackles provides finer control over data accesses in the blocked
code. As discussed earlier, shackling just one reference in matrix multiplication
(say C(i,j)) does not constrain all the data accesses. On the other hand, shack-
ling all three references in this code is over-kill since shackling any two references
constraints the third automatically. Applying too many levels of composition does
not affect the correctness of the code, but it introduces unnecessary loops into the
resulting code which must be optimized away by the code generation process to
get good code. The following obvious result is useful to determine how far to
carry the process of taking Cartesian products.

37

Theorem 8.4.1 For a given statement S, let F�� � � � � Fn be the access matrices
for the shackled data references in this statement. Let Fn�� be the access matrix
for an unshackled reference in S. Assume that the data accessed by the shackled
references are bounded by block size parameters. Then the data accessed by Fn��
is bounded by block size parameters iff every row of Fn�� is spanned by the rows
of F�� � � � � Fn.

Stronger versions of this result can be proved, but it sufficed for purposes of
the implementation. For example, the access matrix for the reference C(i,j)

is

�
� 	 	
	 � 	

�
. Shackling this reference does not bound the data accessed by

row
�
	 	 �

�
of the access matrix

�
	 	 �
	 � 	

�
of reference B(k,j). How-

ever, taking the Cartesian product of this shackle with the shackle obtained from
A(i,k) constrains the data accessed by B(k,j), because all rows of the corre-
sponding access matrix are spanned by the set of rows from the access matrices
of C(i,j) and A(i,k). Composition is applied if even a single assignment
statement from the loop nest under consideration stands to benefit as a result.

8.5 Discussion

Once all shackles have been determined, localization constraints must be folded
into loop bounds (for example, we must generate the code shown in Figure 13(c)
rather than the code in Figure 13(b)). This code generation step has been imple-
mented in polyhedral algebra tools like PIP and Omega. Our implementation uses
a simple version of these techniques to generate the shackled code quickly. The
interested reader is referred to Kodukula’s thesis.(17)

9 Experiments

We present experimental results showing the performance of different versions
of Cholesky, LU and QR factorizations. The performance of compiler-generated
BLAS codes was shown in Figure 12.

9.1 Cholesky factorization

Like matrix multiplication, Cholesky factorization has three nested loops, but
these loops are imperfectly nested. All six permutations of these three loops are

38

do k = 1, n
A(k,k) = dsqrt (A(k,k))
do i = k+1, n
A(i,k) = A(i,k) / A(k,k)

do i = k+1, n
do j = k+1, i
A(i,j) -= A(i,k) * A(j,k) 500 600 700 800 900 1000 1100

Problem Size

0.0

100.0

200.0

300.0

C
um

ul
at

iv
e

M
eg

af
lo

ps

Cache/Register optimizations turned off
Benefit from Shackling/Tiling for L2
Additional benefit from Register Tiling

(a) Source code (b) Performance of tiled and shackled codes

400.0 600.0 800.0 1000.0 1200.0 1400.0
Problem Size

0.0

50.0

100.0

150.0

200.0

250.0

300.0

M
F

lo
ps

10
30
50
60
70
80
90
110

0

0.5

1

1.5

2

2.5

3

3.5

4

500 600 700 800 900 1000 1100

C
ac

he
 M

is
s

R
at

io
 (

%
)

Problem Size

Tiling
Shackling

(c) Effect of varying block size (d) L2 miss ratios for tiled and shackled codes

Figure 18: Performance of Cholesky Factorization: kij version

legal and one of these permutations comes into two versions, giving a total of
seven versions of the Cholesky program. Figures 18— 24 show pseudo-code for
these versions. Ideally, a restructuring compiler would be able to generate the
best code for Cholesky factorization from any of these versions of Cholesky fac-
torization, just as many state-of-the-art restructuring compilers do not care which
one of the six permutations of matrix multiplication is given as input. As we
show below, the performance of code generated by the control-centric approach
implemented in the MIPSPro compiler depends quite critically on which version
of Cholesky is given as input. In principle, the data-centric approach does not care
which version of Cholesky is given to it. However, since our implementation of
the data-centric approach performs intra-block computations in the same order as
in the input program, the performance of the shackled code does depend on which
version is given as input although as we show below, the variation is less than it is
for control-centric transformations.

As discussed in Section 2, the LAPACK version of Cholesky factorization runs
at 260 MFlops for matrix sizes between 400 to 1200.

39

do k = 1, n
A(k,k) = dsqrt (A(k,k))
do i = k+1, n
A(i,k) = A(i,k) / A(k,k)
do j = k+1, i
A(i,j) -= A(i,k) * A(j,k)

500 600 700 800 900 1000 1100
Problem Size

0.0

100.0

200.0

300.0

C
um

ul
at

iv
e

M
eg

af
lo

ps

Cache/Register optimizations turned off
Benefit from Shackling/Tiling for L2
Additional benefit from Register Tiling

(a) Source code (b) Performance of tiled and shackled codes

400.0 600.0 800.0 1000.0 1200.0 1400.0
Problem Size

0.0

50.0

100.0

150.0

200.0

250.0

300.0

M
F

lo
ps

10
30
50
60
70
80
90
110

0

0.05

0.1

0.15

0.2

0.25

0.3

500 600 700 800 900 1000 1100

C
ac

he
 M

is
s

R
at

io
 (

%
)

Problem Size

Tiling
Shackling

(c) Effect of varying block size (d) L2 miss ratios for tiled and shackled codes

Figure 19: Performance of Cholesky factorization: kij-fused version

We implemented shackling only to improve performance of the L2 cache; the
miss latency for the L1 cache is small enough that we decided not to shackle for
the L1 cache. The shackled code produced by the compiler was generated by
composing two shackles. In both shackles, the array was divided into rectangular
blocks (the compiler heuristic chose 70x70 blocks), and these blocks were vis-
ited in left-to-right, top-to-bottom order. In the outer shackle, the compiler chose
the left-hand side reference from each assignment statement for shackling, while
in the inner shackle, the compiler selected a reference from the right-hand side
of each statement: A(k,k) for the square root statement, and A(i,k) for the
scale and update statements. The same shackle was used for all other versions of
Cholesky factorization as well.

The shackled code performs better than the tiled code in both versions of kij
Cholesky, as shown in Figures 18 and 19. Figure 18(d) shows that the miss ratio
for the tiled code increases rapidly with array size, showing that tiling in the SGI
compiler is not effective; in contrast, the miss ratio of the shackled code is almost
independent of array size. The kij-fused version in Figure 19 is an SNL, so

40

do k = 1, n
A(k,k) = dsqrt (A(k,k))
do i = k+1, n
A(i,k) = A(i,k) / A(k,k)

do j = k+1, n
do i = j, n
A(i,j) -= A(i,k) * A(j,k) 500 600 700 800 900 1000 1100

Problem Size

0.0

100.0

200.0

300.0

C
um

ul
at

iv
e

M
eg

af
lo

ps

Cache/Register optimizations turned off
Benefit from Shackling/Tiling for L2
Additional benefit from Register Tiling

(a) Source code (b) Performance of tiled and shackled codes

400.0 600.0 800.0 1000.0 1200.0 1400.0
Problem Size

0.0

50.0

100.0

150.0

200.0

250.0

300.0

M
F

lo
ps

10
30
50
60
70
80
90
110

0

0.5

1

1.5

2

2.5

3

500 600 700 800 900 1000 1100

C
ac

he
 M

is
s

R
at

io
 (

%
)

Problem Size

Tiling
Shackling

(c) Effect of varying block size (d) L2 miss ratios for tiled and shackled codes

Figure 20: Performance of Cholesky Factorization: kji version

41

do j = 1, n
do i = j, n
do k = 1, j-1
A(i,j) -= A(i,k) * A(j,k)

A(j,j) = dsqrt (A(j,j))
do i = j+1, n
A(i,j) = A(i,j) / A(j,j) 500 600 700 800 900 1000 1100

Problem Size

0.0

100.0

200.0

300.0

C
um

ul
at

iv
e

M
eg

af
lo

ps

No L2 Shackling and no Register Tiling
Benefit from Shackling for L2
Additional benefit from Register Tiling

(a) Source code (b) Performance of tiled and shackled codes

400.0 600.0 800.0 1000.0 1200.0 1400.0
Problem Size

0.0

50.0

100.0

150.0

200.0

250.0

300.0

M
F

lo
ps

10
30
50
60
70
80
90
110

0

1

2

3

4

5

500 600 700 800 900 1000 1100

C
ac

he
 M

is
s

R
at

io
 (

%
)

Problem Size

Tiling
Shackling

(c) Effect of varying block size (d) L2 miss ratios for tiled and shackled codes

Figure 21: Performance of Cholesky Factorization: jik version

the SGI compiler is more successful in enhancing locality in this version. These
figures also show the relative contributions of shackling (for the L2 cache) and of
register tiling to overall performance. With neither of these locality optimizations,
the performance of the baseline code drops to about 10-20 MFlops! Register tiling
eliminates many loads and stores of array locations and boosts the performance of
the shackled code from 110 MFlops to 175 MFlops. This is consistent with other
reports in the literature about the importance of register tiling.(8)

Figures 18(c) and 19(c) show the effect of varying the block size in the shack-
led code. It can be seen the optimal block size is 30 x 30 rather than the 70 x
70 chosen by the compiler. With this block size, the performance of the shack-
led code is boosted to 240 Mflops which is very close to LAPACK performance.
These figures suggest that the heuristic for choosing block sizes needs to be im-
proved.

Permuting the two update loops in the kij version gives the kji version
shown in Figure 20. This version is not an SNL, so tiling is not effective. Fusing
the scale loop with the outer update loop is illegal. The only way to get an SNL is

42

do j = 1, n
do k = 1, j-1
do i = j, n
A(i,j) -= A(i,k) * A(j,k)

A(j,j) = dsqrt (A(j,j))
do i = j+1, n
A(i,j) = A(i,j) / A(j,j) 500 600 700 800 900 1000 1100

Problem Size

0.0

100.0

200.0

300.0

C
um

ul
at

iv
e

M
eg

af
lo

ps

Cache/Register optimizations turned off
Benefit from Shackling/Tiling for L2
Additional benefit from Register Tiling

(a) Source code (b) Performance of tiled and shackled codes

400.0 600.0 800.0 1000.0 1200.0 1400.0
Problem Size

0.0

50.0

100.0

150.0

200.0

250.0

300.0

M
F

lo
ps

10
30
50
60
70
80
90
110

0

1

2

3

4

5

6

500 600 700 800 900 1000 1100

C
ac

he
 M

is
s

R
at

io
 (

%
)

Problem Size

Tiling
Shackling

(c) Effect of varying block size (d) L2 miss ratios for tiled and shackled codes

Figure 22: Performance of Cholesky Factorization: jki version

43

do i = 1, n
do j = 1, i-1
do k = 1, j-1
A(i,j) -= A(i,k) * A(j,k)

A(i,j) = A(i,j)/A(j,j)
do k = 1, i-1

A(i,i) -= A(i,k) * A(i,k)
A(i,i) = dsqrt (A(i,i))

500 600 700 800 900 1000 1100
Problem Size

0.0

100.0

200.0

300.0

C
um

ul
at

iv
e

M
eg

af
lo

ps

Cache/Register optimizations turned off
Benefit from Shackling/Tiling for L2
Additional benefit from Register Tiling

(a) Source code (b) Performance of tiled and shackled codes

400.0 600.0 800.0 1000.0 1200.0 1400.0
Problem Size

0.0

50.0

100.0

150.0

200.0

250.0

300.0

M
F

lo
ps

10
30
50
60
70
80
90
110

0

1

2

3

4

5

6

7

500 600 700 800 900 1000 1100

C
ac

he
 M

is
s

R
at

io
 (

%
)

Problem Size

Tiling
Shackling

(c) Effect of varying block size (d) L2 miss ratios for tiled and shackled codes

Figure 23: Performance of Cholesky Factorization: ijk version

44

do i = 1, n
do k = 1, i-1
A(i,k) = A(i,k) / A(k,k)
do j = k+1, i
A(i,j) -= A(i,k) * A(j,k)

A(i,i) = dsqrt (A(i,i))
500 600 700 800 900 1000 1100

Problem Size

0.0

100.0

200.0

300.0

C
um

ul
at

iv
e

M
eg

af
lo

ps

Cache/Register optimizations turned off
Benefit from Shackling/Tiling for L2
Additional benefit from Register Tiling

(a) Source code (b) Performance of tiled and shackled codes

400.0 600.0 800.0 1000.0 1200.0 1400.0
Problem Size

0.0

50.0

100.0

150.0

200.0

250.0

300.0

M
F

lo
ps

10
30
50
60
70
80
90
110

0

1

2

3

4

5

500 600 700 800 900 1000 1100

C
ac

he
 M

is
s

R
at

io
 (

%
)

Problem Size

Tiling
Shackling

(c) Effect of varying block size (d) L2 miss ratios for tiled and shackled codes

Figure 24: Cholesky Factorization: ikj version

to interchange the two update loops and then fuse the new outer update loop with
the scale loop, generating the code of Figure 19, but this is too complicated for the
MIPSPro compiler’s imperfectly nested loop transformation heuristics to reason
about. Therefore, cache tiling has little benefit as is evident in Figure 20(b). The
performance of the baseline code (no cache or register tiling) is modestly better
than that of the baseline kij versions because of better spatial locality in the
update loops. This also explains why the shackled code performs a little better
than the shackled code from the kij version.

Figure 21 shows the performance of a left-looking version of Cholesky factor-
ization. The loop nest is not an SNL, but the computational work in the update
loops is essentially a matrix-vector product which is performed by the MIPSPro
compiler by accumulating the updates to A(i,j) in a register. The shackled ver-
sion exploits reuse at all loop levels and outperforms the tiled code substantially
except when the array size is around 950. This sudden drop in performance is
caused by conflict misses. Figure 21(c) shows that choosing the block size adap-
tively to reduce conflict misses is one solution. However, the current implemen-

45

tation of shackling does not choose block sizes adaptively. In the jik version,
all the updates to an element of the current column are performed before succeed-
ing elements are updated. Permuting the i and k loops gives the jki version.
The MIPSPro compiler interchanges the update loops in the jki back to the jik
version, so the performance of the baseline and tiled versions is identical to the
performance of the jik versions. There is no difference in the performance of
the shackled code either.

Finally, Figures 23 and 24 show the performance of row-Cholesky versions.
The ijk version performs inner-products, so it is also known as ddot Cholesky
while the ikj version is rich in saxpy operations. Figure 23(b) shows that while
the shackled code outperforms the tiled code, it performs poorly compared to
LAPACK code. To understand why, note that Figure 23(d) shows that the L2 cache
miss ratios are similar to those of Figure 18, but Figure 24(b) shows that register
tiling is not effective in this code. The shackled code for the ikj version performs
better, but it too appears exploits register tiling to a limited extent. Improving the
performance of the ikj and ijk versions requires closer integration of shackling
with register tiling.

9.2 LU factorization

Figure 25 compares the performance of shackling and tiling for LU factorization
with pivoting. As mentioned before, the entire loop nest is not an SNL, and there-
fore cannot be tiled. However, the update loop nest can be tiled, and this has a
small benefit because it permits spatial locality to be exploited.

Using simple data-flow analysis, it can be determined that for the LU factor-
ization code in Figure 25, the scalar m needs to be expanded. The data shackle
chosen by the compiler divides array A into block columns with block sizes rang-
ing from 10 to 25 depending on the size of the problem. For the scale and up-
date statements, the shackling references are chosen to be A(i,k) and A(j,l)
respectively. For the three statements implementing the row permutations, the
shackling references are A(k,j), A(k,j) and A(ipvt(k),j) respectively,
and for all the other statements, the shackling reference is A(i,k). We finally
note that in this particular example, the expansion of m can be completely free,
since ipvt(k) represents precisely a scalar expanded m; however this analysis
is not currently implemented.

While the performance of the shackled code beats the performance of the tiled
code, it is still slower than the LAPACK version by a factor of 2. This is because
the LAPACK code uses information about the commutativity of permutations and

46

250.0 450.0 650.0 850.0
Size of matrix (NxN)

0.0

100.0

200.0

M
F

lo
ps

Shackled version
Tiled version
Untiled version

Figure 25: LU Factorization with Partial Pivoting

row-updates; this permits it in essence to use two-dimensional blocking rather
than block columns, which results in better code. Restructuring based on depen-
dence analysis does not change the order of writes to a given memory location, so
we believe that it is unlikely that a compiler that uses dependence analysis alone
can deduce this commutativity condition automatically. We have recently shown
that fractal symbolic analysis can solve this problem.(22)

9.3 QR factorization

QR factorization performs orthogonal factorization of a matrix A into the product
QR where Q is an orthonormal matrix and R is upper triangular. It is a key kernel
in eigenvalue calculations. Figure 26 compares the performance of shackling and
tiling on QR factorization using Householder reflections.(15) As in the case of LU
factorization with partial pivoting, the array A is partitioned into block columns
because a two-dimensional blocking is not legal. QR is similar to LU factorization
except that in this case, array expansion of the vector x is required for legality.
The necessary array expansion has not yet been implemented, so we modified the
standard code for QR factorization to perform array expansion. Figure 26 shows
this program. The need to expand x raises an important profitability question -
scalar expansion is usually quite cheap, however expanding x creates an array as
large as A in this case. Although shackling once again outperforms tiling, the
performance of the shackled code is a factor of 2 worse than that of the LAPACK

47

200.0 400.0 600.0
Size of matrix (NxN)

0.0

100.0

200.0

M
F

lo
ps

Shackled version
Tiled version
Untiled version

Figure 26: QR Factorization using Householder reflections

code which obtains roughly 225 MFlops on this code. The LAPACK code uses
a number of deep properties of matrices, such as associativity of matrix product,
to generate efficient code. It is conceivable that a compiler could exploit some of
this information if the input program were written in a language like MATLAB or
FORTRAN-90 in which array operations are primitives.

10 Conclusions and Future Work

In this paper, we introduced the data-centric approach to optimizing scientific
programs to improve cache performance, described an implementation of this ap-
proach within the SGI MIPSPro compiler, and compared the performance of data-
centric code with that of code generated by more conventional control-centric
techniques.

The key insight behind the data-centric approach is that it is often easier for
a compiler to perform locality-enhancing transformations if it reasons about data
structure traversals rather than control structure transformations. Intuitively, the
compiler determines a schedule for the arrival of data structure elements in the
cache, determines what computations should be performed when that data arrives,
and generates the appropriate code. At runtime, program execution will automati-
cally pull data into the cache in roughly that order, and the hit ratio should improve
because statements that touch the same data are scheduled together.

48

We discussed a particular implementation of the data-centric approach called
data-shackling which was designed for locality enhancement of dense numerical
linear algebra codes. The traversals allowed are along the co-ordinate axes of
the array (that is, left-to-right and top-to-bottom, and reversals of these); for each
statement, a data-centric reference is chosen heuristically which determines the
instances of that statement that are executed when a given data structure element
is brought into the cache. The array itself is not physically copied to make the stor-
age order of elements the same as the traversal order chosen by the data-shackle,
although this can be done if it is deemed to be profitable.

This work can be extended in many ways.
As the experimental results in Section 9 show, data-shackling does not gen-

erate code competitive with LAPACK library code for LU factorization with piv-
oting and QR factorization. The blocked code in the LAPACK library for LU
factorization with pivoting exploits the fact that row permutations commute with
updates (see the code in Figure 3). A compiler that uses dependence analysis pre-
serves the order of reads and writes to a given memory location in the original
program, so better analysis techniques must be developed. We have recently in-
vented a technique called fractal symbolic analysis that addresses this problem(22)

but its use in automatic locality enhancement remains to be explored. Blocking
QR factorization requires the exploitation of domain-specific information like the
associativity of matrix multiplication, and it is not clear how a compiler could be
given such information or how it would use such information.

Our current implementation does not change the storage order of blocks of
the array to make it the same as the traversal order chosen by the data-shackle,
but nothing prevents us from reshaping the physical data array if the cost of con-
verting back and forth from a standard representation is tolerable. Automatic data
reshaping has been explored by other researchers,(3, 11) and it would be interesting
to see what benefits this would have in our context.

Data-centric transformations other than data-shackling need to be explored.
For example, Pugh and Rosser have proposed a data-centric transformation called
iteration space slicing(25) which can be viewed as a more systematic way of us-
ing dependences than the heuristics described in Section 8 for finding data-centric
references. A backward slice for a variable at a given point in the program is
the portion of the program that affects the value of that variable at that program
point.(31) Given an order in which array elements are to be computed, iteration
space slicing produces a program that is effectively the sequence of incremen-
tal slices of successive elements of the array. However, computing incremental
slices is computationally expensive, and the performance advantage over simple

49

heuristics is unclear.
Finally, large computational science problems usually involve sparse matrices

produced by the applications of methods like the finite-element method. Sparse
matrix programs cannot be restructured or optimized by compilers because array
accesses in these programs involve indirect subscripts that are difficult for a com-
piler to reason about. We have shown that this problem can be circumvented by
using the data-centric approach to synthesize sparse matrix programs from dense
matrix programs and specifications of sparse formats.(18) The sparse format is
specified in part by describing efficient traversal orders for enumerating the ele-
ments of the matrix, and the restructuring compiler attempts to use one of these
data element traversal orders to perform the specified computation.

50

Acknowledgements: Nawaaz Ahmed participated in some of the early work
on data-shackling. Dror Maydan and Robert Cox helped with the SGI implemen-
tation of data shackling. Rob Schreiber and Charlie van Loan explained many of
the LAPACK algorithms to us. Finally, Nikolai Mateev, Vijay Menon and Paul
Stodghill gave us valuable feedback on this paper.

References

[1] Ramesh C. Agarwal and Fred G. Gustavson. Algorithm and Architecture
Aspects of Producing ESSL BLAS on POWER2.

[2] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du
Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and
D. Sorensen, editors. LAPACK Users’ Guide. Second Edition. SIAM,
Philadelphia, 1995.

[3] Jennifer Anderson, Saman Amarsinghe, and Monica Lam. Data and com-
putation transformations for multiprocessors. In ACM Symposium on Prin-
ciples and Practice of Parallel Programming, Jun 1995.

[4] U. Banerjee. Unimodular transformations of double loops. In Proceedings
of the Workshop on Advances in Languages and Compilers for Parallel Pro-
cessing, pages 192–219, August 1990.

[5] Uptal Banerjee. Unimodular transformations of double loops. In Languages
and compilers for parallel computing, pages 192–219, 1990.

[6] Pierre Boulet, Alain Darte, Tanguy Risset, and Yves Robert. (Pen)-ultimate
tiling? In INTEGRATION, the VLSI Journal, volume 17, pages 33–51. 1994.

[7] Steve Carr and K. Kennedy. Compiler blockability of numerical algorithms.
In Supercomputing, 1992.

[8] Steve Carr and R. B. Lehoucq. Compiler blockability of dense matrix fac-
torizations. Technical report, Argonne National Laboratory, Oct 1996.

[9] Steven Carr and R. B. Lehoucq. A compiler-blockable algorithm for QR
decomposition, 1994.

51

[10] L. Carter, J. Ferrante, and S. Flynn Hummel. Hierarchical tiling for improved
superscalar performance. In International Parallel Processing Symposium,
April 1995.

[11] Michael Cierniak and Wei Li. Unifying data and control transformations
for distributed shared memory machines. In SIGPLAN 1995 conference on
Programming Languages Design and Implementation, Jun 1995.

[12] Philippe Clauss. Counting solutions to linear and nonlinear constraints
through ehrhart polynomials: Applications to analyze and transform scien-
tific programs. In ACM Int. Conf. on Supercomputing. ACM, May 1996.

[13] Stephanie Coleman and Kathryn S. McKinley. Tile size selection using
cache organization and data layout. In ACM SIGPLAN ’95 Conference on
Programming Language Design and Implementation (PLDI). ACM Press,
June 1995.

[14] Jack Dongarra and Robert Schreiber. Automatic blocking of nested loops.
Technical Report UT-CS-90-108, Department of Computer Science, Univer-
sity of Tennessee, May 1990.

[15] Gene Golub and Charles Van Loan. Matrix Computations. The Johns Hop-
kins University Press, 1996.

[16] F. Irigoin and R. Triolet. Supernode partitioning. In ACM Symposium on
Principles of Programming Languages, pages 319–329, January 1988.

[17] I. Kodukula. Data-centric Compilation. PhD thesis, Cornell University,
1998.

[18] V. Kotlyar, K. Pingali, and P. Stodghill. A relational approach to the compi-
lation of sparse matrix programs. In EUROPAR, 1997.

[19] Monica S. Lam, Edward E. Rothberg, and Michael E. Wolf. The cache
performance and optimizations of blocked algorithms. In Proceedings of
the Fourth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 63–74, Santa Clara, Califor-
nia, April 8–11, 1991. ACM SIGARCH, SIGPLAN, SIGOPS, and the IEEE
Computer Society.

52

[20] W. Li and K. Pingali. Access Normalization: Loop restructuring for NUMA
compilers. ACM Transactions on Computer Systems, 1993.

[21] Wei Li and Keshav Pingali. A singular loop transformation based on non-
singular matrices. International Journal of Parallel Programming, 22(2),
April 1994.

[22] N. Mateev, V. Menon, and K. Pingali. Fractal symbolic analysis for program
transformations. to appear as a Cornell CS Technical Report.

[23] Kathryn S. McKinley, Steve Carr, and Chau-Wen Tseng. Improving data lo-
cality with loop transformations. ACM Transactions on Programming Lan-
guages and Systems, 18(4):424–453, July 1996.

[24] William Pugh. Counting solutions to presburger formulas: How and why.
Technical report, University of Maryland, 1993.

[25] William Pugh and Evan Rosser. Iteration space slicing for locality. In Proc.
of 12th International Workshop on Languages and Compilers for Parallel
Computing, (LCPC99), August 1999.

[26] J. Ramanujam and P. Sadayappan. Tiling multidimensional iteration spaces
for multicomputers. Journal of Parallel and Distributed Computing,
16(2):108–120, October 1992.

[27] A. Rogers and K. Pingali. Process decomposition through locality of refer-
ence. In SIGPLAN89 conference on Programming Languages, Design and
Implementation, Jun 1989.

[28] Vivek Sarkar. Automatic selection of high order transformations in the IBM
ASTI optimizer. Technical Report ADTI-96-004, Application Development
Technology Institute, IBM Software Solutions Division, July 1996. Submit-
ted to special issue of IBM Journal of Research and Development.

[29] R. Schreiber and J. Ramanujam. Personal communication, Sep 1997.

[30] Yonghong Song and Zhiyuan Li. New tiling techniques to improve cache
locality. In SIGPLAN99 conference on Programming Languages, Design
and Implementation, Jun 1999.

[31] M. Weiser. Program slicing. IEEE Transactions on Software Engineering,
10(4):352–357, 1984.

53

[32] M.E. Wolf and M.S. Lam. A data locality optimizing algorithm. In SIGPLAN
1991 conference on Programming Languages Design and Implementation,
Jun 1991.

[33] Michael E. Wolf, Dror E. Maydan, and Ding-Kai Chen. Combining loop
transformations considering caches and scheduling. In MICRO 29, pages
274–286, Silicon Graphics, Mountain View, CA, 1996.

[34] M. Wolfe. Iteration space tiling for memory hierarchies. In Third SIAM Con-
ference on Parallel Processing for Scientific Computing, December 1987.

[35] M. Wolfe. High Performance Compilers for Parallel Computing. Addison-
Wesley Publishing Company, 1995.

54

Appendix

Figure 27 shows the code produced by the product of shackles discussed in
Section 7.

55

subroutine chol(A, n)
integer n, t1, t2, t3, t4, t5, t6, t7, t8, t9
double precision A(n,n)
do t1 = 1, (n-1)/64

do t3 = 1, t1-1
do t5 = 64*t3-63, 64*t3

do t8 = 64*t1-63, 64*t1
do t9 = t8, 64*t1

s3(t5,t9,t8)
enddo

enddo
enddo

enddo
do t5 = 64*t1-63, 64*t1

s1(t5)
do t7 = t5+1, 64*t1

s2(t5,t7)
enddo
do t8 = t5+1, 64*t1

do t9 = t8, 64*t1
s3(t5,t9,t8)

enddo
enddo

enddo
do t2 = t1+1, (n-1)/64

do t3 = 1, t1-1
do t5 = 64*t3-63, 64*t3

do t8 = 64*t1-63, 64*t1
do t9 = 64*t2-63, 64*t2

s3(t5,t9,t8)
enddo

enddo
enddo

enddo
do t5 = 64*t1-63, 64*t1

do t7 = 64*t2-63, 64*t2
s2(t5,t7)

enddo

do t8 = t5+1, 64*t1
do t9 = 64*t2-63, 64*t2

s3(t5,t9,t8)
enddo

enddo
enddo

enddo
do t2 = (n+63)/64, (n+63)/64

do t3 = 1, t1-1
do t5 = 64*t3-63, 64*t3

do t8 = 64*t1-63, 64*t1
do t9 = 64*t2-63, n

s3(t5,t9,t8)
enddo

enddo
enddo

enddo
do t5 = 64*t1-63, 64*t1

do t7 = 64*t2-63, n
s2(t5,t7)

enddo
do t8 = t5+1, 64*t1

do t9 = 64*t2-63, n
s3(t5,t9,t8)

enddo
enddo

enddo
enddo

enddo
if (n .GE. 1) then

do t1 = (n+63)/64, (n+63)/64
do t3 = 1, t1-1

do t5 = 64*t3-63, 64*t3
do t8 = 64*t1-63, n

do t9 = t8, n
s3(t5,t9,t8)

enddo
enddo

enddo
enddo
do t5 = 64*t1-63, n

s1(t5)
do t7 = t5+1, n

s2(t5,t7)
enddo
do t8 = t5+1, n

do t9 = t8, n
s3(t5,t9,t8)

enddo
enddo

enddo
enddo

endif
return
end

56

