
C O M P U T E R 0 0 1 8 - 9 1 6 2 / 1 5 / $ 3 1 . 0 0 © 2 0 1 5 I E E E A U G U S T 2 0 1 5 35

COVER FEATURE IRREGULAR APPLICATIONS

Scaling Runtimes for
Irregular Algorithms
to Large- Scale
NUMA Systems
Andrew Lenharth and Keshav Pingali, University of Texas at Austin

The Galois system can automatically parallelize irregular

algorithms written in a serial programming model and

execute them efficiently on nonuniform memory access

(NUMA) machines. Experimental results for five complex

irregular algorithms show that the system scales up to

420× on large NUMA systems at 512 threads.

Many applications in areas like social net-
work analysis and machine learning use
irregular algorithms in which dependen-
cies between computations are functions of

runtime values. Therefore, these applications cannot be
parallelized using the restructuring compiler technol-
ogy that has found some success in computational sci-
ence.1 One solution is to use domain- specific languages
(DSLs) or domain- specific parallelization techniques.
This approach has been popularized in graph- analytics
packages such as Pregel,2 GraphLab,3 and Ligra.4 How-
ever, these systems support a very restricted class of
operations on graphs—for example, none permits mod-
ification of the graph structure by adding and remov-
ing nodes and edges, so even graph construction must
be done outside these systems. Most complex irregular
applications cannot be programmed in such systems.

The Galois system,5 in contrast, does not require DSLs
or domain- specific parallelization techniques; instead,
it provides application programmers with a carefully

restricted sequential programming model that can be
implemented in any object- oriented language (we use
C++, though prior implementations used Java). All con-
currency control is managed within a library of concur-
rent data structures, such as work lists and graphs, and
within the runtime system.

Galois was originally designed for uniform memory
access (UMA) shared- memory systems, limiting its scal-
ability on modern hardware. Here, we describe an imple-
mentation of the Galois programming model and run-
time system that scales to non- UMA (NUMA) machines
with 512 cores. This is achieved by changes to the con-
current data- structure library and runtime system, the
most important of which are the following:

 › locality information is embedded pervasively
throughout the Galois API, runtime system, and
concurrent data- structure library;

 › algorithms from distributed systems are used in
the Galois runtime system where appropriate;

36 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

IRREGULAR APPLICATIONS

 › memory management for common-
case memory-allocation patterns
is handled by a fast, scalable,
NUMA- aware custom memory-
management system;

 › concurrent data structures are
tailored to use scalable memory-
allocation methods;

 › exception handling in C++ is re-
implemented in a scalable way; and

 › interactions between fast run-
time components that result
in nonscalable behavior are
controlled.

To demonstrate Galois scaling
capabilities, we implemented five com-
plex irregular applications: Delaunay
mesh refinement (DMR), Delaunay
triangulation (DT), betweenness cen-
trality (BC), Barnes−Hut (BH), and tri-
angle finding (TRI). On a 512- core SGI
UV NUMA machine, all applications
scaled to more than 200× and two
scaled to more than 400×. This is the
first time that some of these applica-
tions have scaled to such levels.

GALOIS PROGRAMMING
MODEL AND LOCALITY
EXTENSIONS
Galois implements a data- centric par-
allelism pattern called amorphous
data- parallelism (ADP).5 Here we briefly
describe the programming model and
features for supporting NUMA archi-
tectures; a more complete discussion
can be found elsewhere.5,6

Programming model
A graph algorithm performs compu-
tation on the graph’s active nodes or
edges. This computation is the oper-
ator for the algorithm. The applica-
tion of an operator to an active node
is an activity. The set of data elements
read and written by an activity is

its neighborhood. In a correct par-
allel implementation, the operator
must appear to execute atomically.
Here we consider only unordered
algorithms— those in which activities
can be executed in any order. One way
to parallelize unordered algorithms is
to execute parallel activities with dis-
joint neighborhoods.

Galois is implemented in C++ and
follows standard C++ idioms. Compu-
tations to be executed in parallel are
written as ADP iterators, which are
similar to the standard library’s for-
each loop. The ADP iterators take an
iteration range and a C++- style functor.
The iteration range is the initial set of
active elements, and the functor is the
operator. Galois applies the functor
to each element in the iteration range
but can add new elements to the range,
unlike conventional for- each loops.
The Galois runtime passes a context
object to the functor in addition to the
active element. The context exposes
a small API that allows the activity
to create new activities (dynamically
generate work) and exposes optimized
memory allocators. Galois provides a
DSL for scheduling and synthesizes
efficient and scalable schedulers for
each loop.

Figure 1 shows an example Galois
operator for triangle counting. This
implementation uses sorted edges to
speed up the search and is very close to
a simple serial implementation. Note
the Galois- provided graph, loop con-
struct, and accumulator.

The Galois runtime system exploits
parallelism by applying the functor to
elements in the iteration range in par-
allel. The key goal is to ensure atomic
execution of each of these applica-
tions because the set of data elements
read and written by each functor
application is not statically known.

To this end, Galois provides a set of
concurrent data structures including
graphs, sets, trees, and bags that work
with the runtime system to track the
elements accessed by each activity; if
two activities try to access the same
element, the runtime system rolls
back one of the conflicting activities.
Galois makes this speculative paral-
lelization lightweight by requiring all
functors to be cautious5—that is, they
must read all graph elements in their
neighborhood before modifying any
element.

The combination of smart data
structures and runtime parelliza-
tion removes all concurrency con-
cerns from user code; iterations in the
code are executed with transactional
semantics, with the runtime system
discovering and dealing with data
dependencies. Therefore, application
code can be written as though only one
activity is active at any point.

Locality extensions
For NUMA architectures, we extend
the Galois programming model with
a single directive, local, to expose a
notion of data placement to the pro-
grammer and to the runtime system.
This is sufficient to implicitly express
partitioning and data placement. We
do this, rather than treating partition-
ing and data placement as first- class
entities, to maintain an implicitly
threaded programming model.

All Galois data structures, such
as graphs and sets, have an implicit
notion of locality. All elements are
internally owned by a thread and allo-
cated on memory local to that thread.
The data structures allow the runtime
system to iterate over elements owned
by a particular thread. Conceptually,
the runtime system can convert a loop
iterating over a data structure to a

 A U G U S T 2 0 1 5 37

per- thread loop iterating over thread-
local data. User- specified scheduling
policies might overrule this. Locality
extensions are sufficient to load parti-
tioned graphs into memory, matching
partitions to NUMA nodes.

DESIGN PRINCIPLES
FOR SCALABLE
IRREGULAR RUNTIME
Scaling runtime to numerous threads
requires adhering to designs that
respect the hardware’s inherent costs
and organization. We group design
principles into two classes: those
arising from the programming model
and from the hardware.

Optimizing speculative execution
Implement conflict checking to ensure
isolation between iterations without
imposing an extra cache penalty for com-
munication when there is no contention.
Communication is necessary to dis-
cover conflict, but absent conflict, no
extra communication should occur.

Reduce memory latency by processing
data locally wherever possible. Because
a core in a NUMA system has different
access latencies to different memory
banks, cores should process data on the
closest (lowest- latency) memory bank
when possible. This locality concern is
in addition to the normal multicore con-
siderations of cache locality.

Optimizing for hardware
characteristics
Tailor algorithms to prefer local communi-
cation while minimizing remote communi-
cation. Communication costs are hier-
archical due to cache nesting and the
topology of the interconnect network
between NUMA nodes. Cores sharing
an L3 cache, for example, communi-
cate faster than cores separated by the
NUMA interconnect.

Avoid unnecessary cache invalidation.
Implementations in which multiple
cores write to the same cache line
do not scale. Although data sharing
through writes to memory is easy in a
shared- memory programming model,
the cost is high if the writes are to the
same cache line. Thus, writes to shared
cache lines should be given the same
consideration as sending an explicit
message would in a distributed-
memory design.

Ensure that logically independent opera-
tions on a data structure are independent at
the cache level. Simple implementations of
many data structures on shared memory
create mutable state shared among many
threads. A scalable data structure cannot
do this—for example, adding a node to a
graph should be an entirely thread- local
operation (including allocation).

Implications
Threads sharing a cache can coordi-
nate through shared data structures. As
long as contention is controlled, they
can scale to a few close threads. This
allows the implementation simplicity
of shared data structures for local clus-
ters of threads.

Threads that do not share a cache
should use distributed algorithms for
coordination. Due to the high cost of
cache- coherence traffic across NUMA
machines, the system- wide algo-
rithms used in the runtime system
should be distributed. Communica-
tion is implicit through writes rather
than message sends, but this only
affects the implementation of the run-
time system’s algorithms; the design
must be communication- aware.

The scheduler must know the mem-
ory layout of data structures and topol-
ogy of the memory system to optimally
schedule tasks. The cost of cache
misses can vary widely, depending
on the data being accessed. Sched-
uling tasks on cores near their data
minimizes cache- miss latency.

Reader- writer locks should not be used.
Common implementations of such
locks require updating shared state
even for readers, making the locks non-
scalable even for all- reader workloads.

Lock- free data structures cannot solve
scaling problems in NUMA systems.
Lock- free data structures have writes
to common memory locations, which
does not scale.

GAccumulator <size_t> numTriangles;

struct tricount {
 void operator()(const GNode& n, UserContext <GNode>&) const {
 // Partition neighbors, assumes no self loops
 // [first, ea) [n] [bb, last)
 auto first = graph.edge_begin(n);
 auto last = graph.edge_end(n);
 auto ea = lowerBound(first, last, n);
 auto bb = upperBound(first, last, n);

 for (; bb != last; ++bb) {
 GNode B = graph.getEdgeDst(bb);
 for (auto aa = first; aa != ea; ++aa) {
 GNode A = graph.getEdgeDst(aa);
 if (binarySearch(graph.edge_begin(A), graph.edge_end(A), B))
 numTriangles += 1;
 }
 }
 }
 };
};

for_each_local(graph, tri_count());
std::count <<˝NumTriangles:˝ << numTriangles.reduce() << ˝\n˝;

FIGURE 1. Example Galois operator for triangle counting.

38 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

IRREGULAR APPLICATIONS

GALOIS SOFTWARE STACK
Irregular algorithms use language
and system features in ways that reg-
ular algorithms do not. Initially, a few
key components in the Galois soft-
ware stack greatly limited scalability,
requiring careful re- implementations
of those components to conform with
the design principles discussed above.

Memory allocation
Memory allocation is common in com-
plex irregular algorithms. Even at
low thread counts, the standard allo-
cation subsystems malloc and mmap
are major scalability bottlenecks. For
simple algorithms that do not morph
the underlying graph’s structure and
hence do not allocate or delete stor-
age for nodes and edges, allocation
is needed only in the scheduler for
dynamically generated work and for
temporary allocations in the opera-
tor. More complex algorithms can be
very allocation intensive because they
add and remove nodes from a graph,
expand a tree, or track temporary
 variable- sized state within a task.

Four of the five algorithms we
evaluated require substantial mem-
ory allocation. DMR, for example,
increases the graph by approximately
550 bytes per task—at 512 threads, this
can exceed 50 gibibytes (GiB) per sec-
ond. This is simply the persistent data
and does not include temporary data
structures used by the runtime system.

An additional complication on
NUMA systems is that the physical
location of memory used to satisfy an
allocation is important. Memory used
by a thread should be allocated on the
memory bank local to that thread to
minimize cache- miss latency.

Allocation scalability. While efforts
to create scalable memory allocators7,8

have been considerable, they have not
addressed NUMA concerns directly
or produced an allocator capable of
scaling to large, allocation- intensive
multithreaded workloads.

Currently, the rate of kernel mem-
ory allocation, even with huge pages,
is insufficient to meet the allocation
demands of algorithms like those
we evaluated at high thread counts.
Further, contention in the kernel
causes unpredictable and potentially
unbounded sleep. Thus, we pre- allocate
huge pages from the kernel into a page
pool in our memory system. This has
the added benefit of making it trivial
to track the thread and NUMA affinity
of each page of memory used, allowing
layered allocators to behave correctly.

Exploiting structure in alloca-
tor usage. The Galois programming
model offers considerable structure
in allocator usage. We exploit this
structure by using fast, scalable spe-
cialized allocators where appropriate.
Allocator use falls into three catego-
ries: per- task variable- sized allocation,
data- structure allocation, and general
allocation. We optimize the first two
cases, avoiding the third.

Per- task variable- sized allocation.
Some irregular algorithms use tem-
porary data structures to track state.
DMF, for example, collects a set of trian-
gles to be replaced. The Galois runtime
system provides a per- task region allo-
cator that can be used for these types of
allocations. It supports standard C++
allocator semantics, making it com-
patible with all standard containers,
and allows efficient, node- local, vari-
able- sized allocations in the user code.
The allocator is reused within a thread,
reducing cold misses in the cache.

Data- structure allocation. Data
structures are the most common

source of runtime allocation. We
codesign data structures with a fixed-
size allocator family to efficiently sup-
port these allocations. Internally, the
system creates fixed- sized allocators
that are efficient and NUMA- friendly.
Data structures are written to exclu-
sively use these allocators.

Node- local memory. The memory
system targets two problems. First,
memory allocation must scale to
many threads as well as high alloca-
tion rates. The system meets this goal
with a series of specialized allocators,
careful data- structure design, and a
layered allocation strategy. Second,
memory allocation must be NUMA-
aware—that is, it must return mem-
ory local to the NUMA node on which
it is being allocated. The memory
system achieves this through the use
of per- thread allocators backed by a
NUMA- aware page pool. Per- thread
allocators are more fine- grained than
NUMA nodes and naturally return
node- local memory. The page pool
tracks memory pages by NUMA node
and never returns remote memory in
response to a request. The page pool
ensures that memory allocated from
the OS resides on the node that per-
forms the allocation.

Isolation: locking,
speculation, and retry
The Galois programming model
requires isolation between tasks. We
use speculative execution to imple-
ment isolation, and we exploit com-
mon structure in irregular algorithms
to avoid the costs of generic solu-
tions, such as software transactional
memory. As a task executes, the data-
structure implementation marks ele-
ments used by the task. If a mark can-
not be acquired, the task aborts and
is retried later. Marks are made in an

 A U G U S T 2 0 1 5 39

object header, so marking incurs very
little overhead for subsequent access
of the object. Data structures are
updated in place after all marks for a
task are acquired. The communication
involved in marking an object is nec-
essary to discover independent tasks,
but is minimized by storing the mark
in the object header. Thus, marking

will bring into the cache a part of the
object that the task will later access.

The handling of aborts and retries
has several contradictory goals.
Although rare in most algorithms,
conflicts can occur at large thread
counts. Simple cache invalidation at
scale can be a performance bottleneck.
It is therefore critical to resolve

most conflicts and avoid live- lock
by minimizing communication and
synchronization between threads.

Low- overhead live- lock freedom.
At runtime, a task marks objects it
requires for exclusive access. The
task is speculatively executed, on
the assumption that it will be able

RELATED WORK

Parallel programming models, languages, and
frameworks are manifold.
Implicitly parallel programming1 attempts

to recover parallelism from a sequential pro-
gramming model with compiler analysis. It uses
stylized tasks to simplify this discovery. We
implement stylized loops as entry points to the
parallel runtime system and perform the analysis
at runtime to discover parallelism.

Cilk2 and OpenMP3 provide constrained, ex-
plicit forms of parallelism requiring programmer
annotation. They leave data synchronization and
safety to the programmer. We put the responsi-
bility for safety on the runtime system. Although
it is possible to write NUMA- scalable applica-
tions in these frameworks (except, perhaps, for
scheduling), one would have to implement most
of the data structures and mechanisms demon-
strated here.

Chapel4 and UPC5 provide a partitioned global
address space in which memory is explicitly parti-
tioned between local and remote, though address-
ing is still global. This differs from our approach in
that we make partitioning of the memory space
implicit in the data structures, rather than having
data structures explicitly mapped to partitions.

Global Arrays6 and PETSc7 provide both
NUMA and distributed process- centric program-
ming models with shared data structures and ex-
plicit data movement. We believe that for NUMA
architectures, a successful programming model
should require little change in how the average
programmer thinks about programs.

Several OpenMP implementations2,8 add fea-
tures such as data- layout, memory- migration, and
computation- placement directives; hierarchical

task stealing; topology- and NUMA- aware load
balancing; and various scheduling hints.

Charm++ has a number of NUMA opti-
mizations, most notably NUMA- aware load
balancing.9

References
1. W. Hwu et al., “Implicitly Parallel Programming Models for

Thousand- Core Microprocessors,” Proc. 44th Ann. Design

Automation Conf. (DAC 07), 2007, pp. 754−759.

2. M. Frigo, C.E. Leiserson, and K.H. Randall, “The Implemen-

tation of the Cilk- 5 Multi- threaded Language,” Proc. 1998

ACM SIGPLAN Conf. Programming Language Design and

Implementation (PLDI 98), 1998, pp. 212–223.

3. R. Chandra et al., Parallel Programming in OpenMP, Morgan

Kaufmann, 2001.

4. B.L. Chamberlain, D. Callahan, and H.P. Zima, “Parallel

Programmability and the Chapel Language,” Int’l J. High

Performance Computing Applications, vol. 21, no. 3, 2007,

pp. 291–312.

5. UPC Consortium, UPC Language Specifications, V1.2, tech.

report LBNL- 59208, Lawrence Berkeley Nat’l Lab, 2005.

6. J. Nieplocha, R.J. Harrison, and R.J. Littlefield, “Global

Arrays: A Non- Uniform- Memory Access Programming Model

for High- Performance Computers,” J. Supercomputing,

vol. 10, no. 2, 1996, pp. 169–189.

7. S. Balay et al., “Efficient Management of Parallelism in

Object Oriented Numerical Software Libraries,” Modern

Software Tools in Scientific Computing, E. Arge, A.M. Brua-

set, and H.P. Langtangen, eds., Birkhäuser Press, 1997,

pp. 163–202.

8. L.C. Freeman, “A Set of Measures of Centrality Based on

Betweenness,” Sociometry, vol. 40, no. 1, 1977, pp. 35−41.

9. L.L. Pilla et al., Improving Parallel System Performance with

a NUMA- Aware Load Balancer, tech. report, Univ. of Illinois

at Urbana−Champaign, 2001.

40 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

IRREGULAR APPLICATIONS

to mark all required objects. Specu-
lation fails when one task attempts
to mark an object owned by another
task. Speculation failure is very
rare—usually a fraction of a percent
of all tasks—but does increase with
the number of threads. The highest
failure rate in our evaluation is 4.5
percent for DMR, which is also the
best scaling benchmark.

Dealing with speculation failure—
freeing locks and deciding when to
retry the task—does not require any
communication. Simply retrying exe-
cution would require no communica-
tion, but often leads to live- lock. There-
fore, we apply a layered strategy that
deals with aborted work in the com-
mon case using only local communi-
cation (for the machines in this study,
communication between threads
which share an L3 cache). Tasks are
retried after some random delay. Sub-
sequent aborts of retried work incur
more expensive communication to
prevent live- lock. All packages are
numbered consecutively and, after the
initial retry, an aborted task is moved
to a per- package (for example, L3 cache)
retry queue with a number that is half
the current package’s number. This
forms a binary tree over packages that
a retried task moves up in after each
subsequent abort. If all work contin-
uously aborts, aborted work will seri-
alize into a single thread on the first
package, thereby avoiding live- lock. In

practice, work items rarely abort twice,
let alone more often than that.

Scalable exception handling. The
Galois runtime system uses excep-
tions to take advantage of compiler-
supported state rollback in conjunc-
tion with per- task region allocators
to reclaim memory. Conceptually,
this rollback mechanism is entirely
thread- local and thus scalable, but real
implementations fail to achieve this.
Although conflicts, and thus excep-
tions, are a small fraction of total tasks,
at hundreds of threads we can expect at
least one conflict at any point in time.

The compiler, standard exception-
handling library, and C library cooper-
ate to implement exception handling.
This combination has two nonscal-
able components. First, the standard
library uses dynamic allocation to
store the thrown exception object. Sec-
ond, exception handling and dynamic
library opening and closing have a
potential race condition protected by
a reader- writer lock. The cache inval-
idations from acquiring this lock in
read mode when throwing excep-
tions inhibit scaling. We modify the
relevant libraries to disable dynamic
library loading and unloading during
parallel loops. This allows lock- free
access, which is now read only, to the
various exception tables. An alternate
implementation would be to change
the type of reader- writer lock to one

that does not require communication
for reader- only workloads.

Figure 2 shows DMR scaling with and
without scalable exception handling.

Scheduling
We use the scheduling language devel-
oped by Donald Nguyen and one of this
article’s authors, Keshav Pingali,9 to
describe good scheduling orders for
loops. The choice of scheduling pol-
icy is algorithm- specific, and an algo-
rithmically good scheduling policy
can have orders- of- magnitude more
benefit than a purely locality- based
policy. Consequently, we do not simply
implement a NUMA- aware scheduler
and apply an owner- computes policy
to all loops. Instead, we use a twofold
approach: we present the initial work
in a loop to the scheduler in a locality-
preserving way and supply NUMA-
aware implementations of common
scheduling policies.

The notions of locality embedded
in the data structures and runtime
system are used during scheduling. A
for- loop presents the portions of the
iteration range owned by each thread
to the scheduler on that thread. This
is possible because the iteration range
presented to the loop is over a data
structure that exposes data place-
ment to the runtime system. Thus, the
scheduler sees the data on the optimal
node. How work is scheduled after this
point entirely depends on the schedul-
ing policy and specific scheduler syn-
thesized for the loop.

Overhead is a critical aspect of
scheduling for many irregular algo-
rithms. Tasks can be as small as 100
cycles, so scheduling decisions must
be very efficient. Scheduling is compli-
cated by the fact that many algorithms
dynamically generate work, and sim-
ple local LIFO (last- in, first- out) or

 0

 32

 64

 96

 128

 160

 192

 224

 256

 0 32 64 96 128 160 192 224 256

Sc
al

in
g

Threads

Standard EH
Scaling EH

FIGURE 2. Delaunay mesh refinement scaling with and without scalable exception
handling (EH). Contention in the allocator and reader- writer lock (only taken in read
mode), although only present in less than 1 percent of tasks, severely limit scaling.

 A U G U S T 2 0 1 5 41

FIFO (first- in, first- out) policies, such
as those implemented in Cilk, are not
ideal for all algorithms. For a sense of
scale, the TRI benchmark schedules 9.6
billion tasks per second at 512 threads.

Several changes to the core Galois
work- list components improved NUMA
scaling. Primarily, we converted the
main Galois schedulers from hierarchi-
cally partitioned queue implementa-
tions to per- thread queues with NUMA-
aware work stealing. When a thread’s
work list is empty, it tries to steal half
of the work from another thread within
the same package. This preserves local-
ity, as work does not leave the L3 cache,
while performing limited load bal-
ancing. When all threads in a package
are out of work, a single master thread
from each package attempts to steal the
entire work list from another master
thread in a different package. This limits
the number of robbers and victims com-
municating across the NUMA intercon-
nect. The thread whose work was stolen
will first try to steal work locally, effec-
tively drawing from a reserve of work
not available to be stolen.

Figure 3 shows the effect of NUMA-
aware work stealing on a scheduler
microbenchmark. The baseline is
the Cilk scheduler using random
work stealing. Using the same
queuing policy, but NUMA- aware
work stealing, significantly improves
performance and scaling.

Interactions between stealing and
termination detection. We used the
Dijkstra−Scholten two- pass, ring-
based termination detection algorithm
(DS) to exit a parallel loop. The stealing
protocol and termination detection
interact in a way that can drastically
affect scaling. Once a thread is out of
work, it enters a loop in which it first
checks for work, attempting to steal,

and then checks for and passes the ter-
mination token. With the initial steal-
ing protocol, stealing by each thread
had a cost proportional to the num-
ber of threads O(n). The token passing
also required a number of steps pro-
portional to the number of threads
O(n). On average, we expect the token
to arrive in the middle of the stealing
loop, resulting in local delay propor-
tional to the number of threads before
a thread checked for and passed on the
termination token. This leads to O(n2)
runtime for exiting a loop.

We modified the stealing proto-
col in all work lists to only attempt
a single steal operation before fail-
ing. Future stealing attempts will try
the next victim. This limits the local
delay in propagating the termination
token to a single stealing attempt from

a single victim. At 256 threads, this
change reduced shutdown time by 30
ms, which at this scale was more than
50 percent of some loop runtimes.

NUMA- aware hybrid barrier. We
observed that, because of fast coher-
ence, a simple counting barrier is
more efficient within a shared cache
than a classic tree- based MCS bar-
rier. Inter- NUMA- node, tree- based
barriers are significantly more
efficient than counting barriers. We
leverage this fact to use local count-
ing barriers between fast communi-
cating threads and select one from
each group to participate in a tree-
based barrier algorithm. Figure 4
shows that the NUMA- aware hybrid
barrier outperforms both classic
implementations.

Galois

Cilk Galois

Cilk
Galois

Cilk

m2x4 m4x10 numa8x4

40

0

80

120

160

0

50

100

150

200

0

50

100

150

200

250

0 4 8 12 16 0 10 20 30 40 0 10 20 30

Threads

Ti
m

e
(m

s)
FIGURE 3. Runtime of fibonacci(30), a task- scheduling microbenchmark, implemented
using two tasks per recursive step. m2x4 is a two- socket, four- cores- per- socket Intel
Xeon system; m4x10 is a four- socket, 10- cores- per- socket Intel Xeon system; and
numa8x4 is an eight- socket, four- cores- per- socket SGI UV Intel Xeon- based system.

Tree

Galois

Counting

Tree

Galois

CountingTree

Galois

Counting

m2x4 m4x10 numa8x4

0

200

100

300

400

500

0

250

500

750

0 4 8 12 16 0 10 20 30 40 0 10 20 30

Threads

Ti
m

e
(m

s)

20

15

10

5

0

FIGURE 4. Runtime for 16 × 1,024 barrier invocations. Counting is a simple counting
barrier, Tree is a classic MCS barrier, and Galois is our hybrid NUMA- aware barrier. The
machines are the same as those described in Figure 3.

42 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

IRREGULAR APPLICATIONS

EXPERIMENTAL RESULTS
To assess Galois scaling capabilities,
we ran several irregular algorithms
from graphics, computational science,
and graph analytics:

 › DMR takes a Delaunay triangu-
lar mesh and produces a result-
ing mesh that satisfies several
quality guaranties. We modified
the Lonestar10 implementation

to sort the initial triangles
using a space- filling curve. This
functions as a partitioner that
assigns consecutive blocks of
triangles to each thread.

 › DT takes a set of points and
produces a triangular mesh
satisfying the property that the
circumcircle (bounding circle) for
each triangle must not contain
points in the mesh that are not

part of the triangle. We extended
the Lonestar implementation to
sort points according to a space-
filling curve. DT builds a spatial
acceleration structure to map
points to triangles in the mesh.

 › BH is a classic n- body simulation
algorithm that builds a spatial
decomposition tree containing
center- of- mass information and
uses that information to approx-
imate weak forces. We modified
the Lonestar implementation
to sort the bodies using a space-
filling curve and build the octree
in parallel, resulting in tree
nodes local to the thread that
will access the nodes most often.

 › BC11 computes a metric for nodes
in a network that captures each
node’s relative importance.
We used an outer- loop paral-
lelization in which each thread
computes the single- source
shortest path and the update for
one source node in the graph.
Each iteration requires access-
ing the entire input graph, so we
randomly distributed the graph
across all NUMA nodes.

 › TRI12 counts the number of tri-
angles (3- cliques) in a graph. This
algorithm is unchanged from the
Lonestar implementation. We
used a prepartitioned graph.

Self- relative scaling
We tested our algorithms at the Pitts-
burgh Supercomputing Center on
Blacklight, an SGI UV NUMA system
containing 4,096 cores and 32 tebi-
bytes of RAM (our machine allocation
was limited to 512 cores). Each NUMA
node contains 16 cores running at 2.27
GHz on two processors and 128 GBytes
of memory. We compiled using g++ 4.7
at - O3. Table 1 summarizes the inputs

Sc
al

in
g

Threads

Barnes–Hut
Delaunay mesh re	nement

Delaunay triangulation
Betweenness centrality

Triangle 	nding

512

480

448

416

384

352

320

288

256

224

192

160

128

96

64

32

0
0 64 128 192 256 320 384 448 512

FIGURE 5. Self- relative scaling of five irregular algorithms on the Pittsburgh
Supercomputing Center’s Blacklight at up to 512 threads.

TABLE 1. Algorithm inputs and configurations.

Algorithm Input and configuration

Delaunay mesh refinement 10 million bodies generated using a Plummer model;
tolerance = 0.05; time step = 0.50; events/s = 0.05

Delaunay triangulation 20 million triangles in a square, 50 percent bad

Barnes−Hut 10 million points randomly distributed in a square

Betweenness centrality Random graph with average degree 4 and 218 nodes

Triangle finding Random planar graph with average degree 4 and 218
nodes

 A U G U S T 2 0 1 5 43

and configurations. We obtained sim-
ilar results on smaller- scale NUMA
systems. Even standard large server-
class machines with two to four sock-
ets showed notable improvement
with these changes to the Galois run-
time system.

As Figure 5 shows, DMR and BH
achieve self- relative, strong scaling
of 422× and 390×, respectively, at 512
threads. This equates to 82 and 75
percent parallel efficiency for pro-
grams written in a sequential pro-
gramming style. DT scales up to 304×
at 512 threads, due in part to mem-
ory contention inserting into the
lookup- acceleration tree. BC requires
reading the entire graph by each iter-
ation. Adding NUMA nodes while
simultaneously increasing parallel-
ism increases the average latency
of memory accesses for all threads.
This causes BC to scale at only about
50 percent efficiency. Although the
graph size is small enough to fit in the
L3 cache, the temporary data neces-
sary for an outer- loop parallel BC cal-
culation is proportional to the graph’s
size, so in actual parallel execution
the graph could not remain in cache.
TRI also scales at only about 50 per-
cent efficiency.

Runtime comparisons
As Table 2 shows, serial runtime per-
formance of our implementations of
these algorithms compares favorably
to third- party implementations.1,3,13,14
Our goal is not necessarily to have the
best- performing serial implementa-
tion, especially because some use hand-
crafted, problem- specific data struc-
tures, but to show that we are within
an acceptable margin of custom imple-
mentations while using the generic
data structures provided by our run-
time system. For our serial runs, we use

the full parallel system including work
lists and contention management.

Table 3 compares the runtimes of
DMR, DT, and BH at 512 threads for
random partitioning and partition-
ing based on a space- filling curve. All
data structures built at runtime, other
than the initial graph, maintain their
default NUMA- aware allocation pat-
terns. We see that good data placement

is responsible for a 10 to 50 percent
improvement in the runtime. For DMR,
this is the difference between scaling to
422× as opposed to only 203×.

Irregular algorithms stress both the
hardware and support runtimes of
modern computing systems. Never-

theless, a carefully designed runtime

TABLE 3. Runtimes of three algorithms
at 512 threads for spatial and random partitioning.

Algorithm Partitioning Runtime (s)

Delaunay mesh refinement Spatial 0.37

Random 0.77

Delaunay triangulation Spatial 0.18

Random 0.22

Barnes−Hut Spatial 3.55

Random 3.85

TABLE 2. Serial runtime implementations of the algorithms.

Algorithm Implementation No. of threads Runtime (s)

Delaunay mesh
refinement

Triangle 1 96

Galois 1 155.7

Galois 512 0.37

Delaunay triangulation Triangle 1 1,185

Galois 1 56.6

Galois 512 0.18

Barnes−Hut Splash- 2 1 >6,000*

Galois 1 1,386

Galois 512 3.55

Betweenness centrality HPCS SSCA 1 6,720

Galois 1 5,394

Galois 512 21.6

Triangle finding GraphLab 2 531

Galois 1 7.03

Galois 512 0.028

*Timed out after 100 minutes

44 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

IRREGULAR APPLICATIONS

ABOUT THE AUTHORS

ANDREW LENHARTH is a research associate in the Institute for Computa-

tional Science and Engineering (ICSE) at the University of Texas at Austin. His

research focuses on novel uses of compilers in operating systems, computer

architecture, and parallel programming. Lenharth received a PhD in computer

engineering from the University of Illinois at Urbana−Champaign. He is a mem-

ber of ACM. Contact him at lenharth@ices.utexas.edu.

KESHAV PINGALI is a professor in the Department of Computer Science at the

University of Texas at Austin and a member of ICES, where he holds the W.A.

“Tex” Moncrief Chair. His research interests include programming languages

and tools for multicore processors. Pingali received an ScD in computer science

from MIT. He is a Fellow of ACM, IEEE, and the American Association for the

Advancement of Science (AAAS). Contact him at pingali@cs.utexas.edu.

system can enable an implicitly par-
allel programming model to scale
to large numbers of processors in a
NUMA system. As modern systems
become increasingly nonuniform,
runtime and algorithm design must
adapt by recognizing that although
shared memory provides a simple
abstraction which hides communica-
tion, communication happens none-
theless. The design of large- scale
NUMA systems shares many perfor-
mance considerations with that of
distributed systems. However, even
on large NUMA machines, closely cou-
pled execution units can benefit from
fast shared- memory design.

REFERENCES
1. J.R. Shewchuk, “Triangle: Engineer-

ing a 2D Quality Mesh Generator
and Delaunay Triangulator,” Applied
Computational Geometry: Towards
Geometric Engineering, M.C. Lin and
D. Manocha, eds., Springer, 1996,
pp. 203–222.

2. G. Malewicz et al., “Pregel: A System
for Large- Scale Graph Processing,”
Proc. 2010 ACM SIGMOD Int’l Conf.
Management of Data (SIGMOD 10),
2010, pp. 135−146.

3. Y. Low et al., “GraphLab: A New
Framework for Parallel Machine
Learning,” Proc. 26th Conf. Uncer-
tainty in Artificial Intelligence (UAI
10), 2010; www.select.cs.cmu.edu
/publications/paperdir/uai2010- low
- gonzalez- kyrola- bickson- guestrin
- hellerstein.pdf.

4. J. Shun and G.E. Blelloch, “Ligra:
A Lightweight Graph Processing
Framework for Shared Memory,”
Proc. 18th ACM SIGPLAN Symp. Prin-
ciples and Practice of Parallel Program-
ming (PPoPP 13), 2013, pp. 135–146.

5. K. Pingali et al., “The Tao of Paral-
lelism in Algorithms,” Proc. 32nd
ACM SIGPLAN Conf. Programming
Language Design and Implementation
(PLDI 11), 2011, pp. 12–25.

6. D. Nguyen, A. Lenharth, and K. Pin-
gali, “A Lightweight Infrastructure

for Graph Analytics,” Proc. 24th ACM
Symp. Operating Systems Principles
(SOSP 13), 2013, pp. 456–471.

7. UPC Consortium, UPC Language
Specifications, V1.2, tech. report
LBNL- 59208, Lawrence Berkeley
Nat’l Lab, 2005.

8. R. Chandra et al., Parallel Program-
ming in OpenMP, Morgan Kaufmann,
2001.

9. D. Nguyen and K. Pingali, “Synthe-
sizing Concurrent Schedulers for
Irregular Algorithms,” Proc. 16th
Int’l Conf. Architectural Support for
Programming Languages and Operat-
ing Systems (ASPLOS 11), 2011,
pp. 333−344.

10. 10. M. Kulkarni et al., “Lonestar:
A Suite of Parallel Irregular Pro-
grams,” Proc. IEEE Int’l Symp. Perfor-
mance Analysis of Systems and Soft-
ware (ISPASS 09), 2009, pp. 65−76.

11. L.C. Freeman, “A Set of Measures of
Centrality Based on Betweenness,”
Sociometry, vol. 40, no. 1, 1977,
pp. 35−41.

12. T. Schank, “Algorithmic Aspects of
Triangle- Based Network Analysis,”
PhD dissertation, Univ. of Karlsruhe,
2007.

13. D.A. Bader and K. Madduri, “Design
and Implementation of the HPCS
Graph Analysis Benchmark on Sym-
metric Multiprocessors,” Proc. 12th
Int’l Conf. High Performance Comput-
ing (HiPC 05), 2005, pp. 465−476.

14. S.C. Woo et al., “The SPLASH- 2 Pro-
grams: Characterization and Meth-
odological Considerations,” Proc.
22nd Ann. Int’l Symp. Computer Archi-
tecture (ISCA 95), 1995, pp. 24–36.

Selected CS articles and
columns are also available for
free at http://ComputingNow
.computer.org.

