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The Galois system can automatically parallelize irregular 

algorithms written in a serial programming model and 

execute them efficiently on nonuniform memory access 

(NUMA) machines. Experimental results for five complex 

irregular algorithms show that the system scales up to 

420× on large NUMA systems at 512 threads.

Many applications in areas like social net-
work analysis and machine learning use 
irregular algorithms in which dependen-
cies between computations are functions of 

runtime values. Therefore, these applications cannot be 
parallelized using the restructuring compiler technol-
ogy that has found some success in computational sci-
ence.1 One solution is to use domain- specific languages 
(DSLs) or domain- specific parallelization techniques. 
This approach has been popularized in graph- analytics 
packages such as Pregel,2 GraphLab,3 and Ligra.4 How-
ever, these systems support a very restricted class of 
operations on graphs—for example, none permits mod-
ification of the graph structure by adding and remov-
ing nodes and edges, so even graph construction must 
be done outside these systems. Most complex irregular 
applications cannot be programmed in such systems. 

The Galois system,5 in contrast, does not require DSLs 
or domain- specific parallelization techniques; instead, 
it provides application programmers with a carefully 

restricted sequential programming model that can be 
implemented in any object- oriented language (we use 
C++, though prior implementations used Java). All con-
currency control is managed within a library of concur-
rent data structures, such as work lists and graphs, and 
within the runtime system. 

Galois was originally designed for uniform memory 
access (UMA) shared- memory systems, limiting its scal-
ability on modern hardware. Here, we describe an imple-
mentation of the Galois programming model and run-
time system that scales to non- UMA (NUMA) machines 
with 512 cores. This is achieved by changes to the con-
current data- structure library and runtime system, the 
most important of which are the following:

 › locality information is embedded pervasively 
throughout the Galois API, runtime system, and 
concurrent data- structure library;

 › algorithms from distributed systems are used in 
the Galois runtime system where appropriate;
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 › memory management for common-  
case memory-allocation patterns 
is handled by a fast, scalable, 
NUMA- aware custom memory- 
management system;

 › concurrent data structures are 
tailored to use scalable memory- 
allocation methods;

 › exception handling in C++ is re- 
implemented in a scalable way; and

 › interactions between fast run-
time components that result 
in nonscalable behavior are 
controlled. 

To demonstrate Galois scaling 
capabilities, we implemented five com-
plex irregular applications: Delaunay 
mesh refinement (DMR), Delaunay 
triangulation (DT), betweenness cen-
trality (BC), Barnes−Hut (BH), and tri-
angle finding (TRI). On a 512- core SGI 
UV NUMA machine, all applications 
scaled to more than 200× and two 
scaled to more than 400×. This is the 
first time that some of these applica-
tions have scaled to such levels.

GALOIS PROGRAMMING 
MODEL AND LOCALITY 
EXTENSIONS 
Galois implements a data- centric par-
allelism pattern called amorphous 
data- parallelism (ADP).5 Here we briefly 
describe the programming model and 
features for supporting NUMA archi-
tectures; a more complete discussion 
can be found elsewhere.5,6

Programming model 
A graph algorithm performs compu-
tation on the graph’s active nodes or 
edges. This computation is the oper-
ator for the algorithm. The applica-
tion of an operator to an active node 
is an activity. The set of data elements 
read and written by an activity is 

its neighborhood. In a correct par-
allel implementation, the operator 
must appear to execute atomically. 
Here we consider only unordered 
algorithms— those in which activities 
can be executed in any order. One way 
to parallelize unordered algorithms is 
to execute parallel activities with dis-
joint neighborhoods.

Galois is implemented in C++ and 
follows standard C++ idioms. Compu-
tations to be executed in parallel are 
written as ADP iterators, which are 
similar to the standard library’s for- 
each loop. The ADP iterators take an 
iteration range and a C++- style functor. 
The iteration range is the initial set of 
active elements, and the functor is the 
operator. Galois applies the functor 
to each element in the iteration range 
but can add new elements to the range, 
unlike conventional for- each loops. 
The Galois runtime passes a context 
object to the functor in addition to the 
active element. The context exposes 
a small API that allows the activity 
to create new activities (dynamically 
generate work) and exposes optimized 
memory allocators. Galois provides a 
DSL for scheduling and synthesizes 
efficient and scalable schedulers for 
each loop.

Figure 1 shows an example Galois 
operator for triangle counting. This 
implementation uses sorted edges to 
speed up the search and is very close to 
a simple serial implementation. Note 
the Galois- provided graph, loop con-
struct, and accumulator.

The Galois runtime system exploits 
parallelism by applying the functor to 
elements in the iteration range in par-
allel. The key goal is to ensure atomic 
execution of each of these applica-
tions because the set of data elements 
read and written by each functor 
application is not statically known. 

To this end, Galois provides a set of 
concurrent data structures including 
graphs, sets, trees, and bags that work 
with the runtime system to track the 
elements accessed by each activity; if 
two activities try to access the same 
element, the runtime system rolls 
back one of the conflicting activities. 
Galois makes this speculative paral-
lelization lightweight by requiring all 
functors to be cautious5—that is, they 
must read all graph elements in their 
neighborhood before modifying any 
element. 

The combination of smart data 
structures and runtime parelliza-
tion removes all concurrency con-
cerns from user code; iterations in the 
code are executed with transactional 
semantics, with the runtime system 
discovering and dealing with data 
dependencies. Therefore, application 
code can be written as though only one 
activity is active at any point.

Locality extensions
For NUMA architectures, we extend 
the Galois programming model with 
a single directive, local, to expose a 
notion of data placement to the pro-
grammer and to the runtime system. 
This is sufficient to implicitly express 
partitioning and data placement. We 
do this, rather than treating partition-
ing and data placement as first- class 
entities, to maintain an implicitly 
threaded programming model.

All Galois data structures, such 
as graphs and sets, have an implicit 
notion of locality. All elements are 
internally owned by a thread and allo-
cated on memory local to that thread. 
The data structures allow the runtime 
system to iterate over elements owned 
by a particular thread. Conceptually, 
the runtime system can convert a loop 
iterating over a data structure to a 
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per- thread loop iterating over thread- 
local data. User- specified scheduling 
policies might overrule this. Locality 
extensions are sufficient to load parti-
tioned graphs into memory, matching 
partitions to NUMA nodes.

DESIGN PRINCIPLES  
FOR SCALABLE  
IRREGULAR RUNTIME
Scaling runtime to numerous threads 
requires adhering to designs that 
respect the hardware’s inherent costs 
and organization. We group design 
principles into two classes: those 
arising from the programming model 
and from the hardware. 

Optimizing speculative execution
Implement conflict checking to ensure 
isolation between iterations without 
imposing an extra cache penalty for com-
munication when there is no contention. 
Communication is necessary to dis-
cover conflict, but absent conflict, no 
extra communication should occur.

Reduce memory latency by processing 
data locally wherever possible. Because 
a core in a NUMA system has different 
access latencies to different memory 
banks, cores should process data on the 
closest (lowest- latency) memory bank 
when possible. This locality concern is 
in addition to the normal multicore con-
siderations of cache locality.

Optimizing for hardware 
characteristics
Tailor algorithms to prefer local communi-
cation while minimizing remote communi-
cation. Communication costs are hier-
archical due to cache nesting and the 
topology of the interconnect network 
between NUMA nodes. Cores sharing 
an L3 cache, for example, communi-
cate faster than cores separated by the 
NUMA interconnect.

Avoid unnecessary cache invalidation. 
Implementations in which multiple 
cores write to the same cache line 
do not scale. Although data sharing 
through writes to memory is easy in a 
shared- memory programming model, 
the cost is high if the writes are to the 
same cache line. Thus, writes to shared 
cache lines should be given the same 
consideration as sending an explicit 
message would in a distributed- 
memory design.

Ensure that logically independent opera-
tions on a data structure are independent at 
the cache level. Simple implementations of 
many data structures on shared memory 
create mutable state shared among many 
threads. A scalable data structure cannot 
do this—for example, adding a node to a 
graph should be an entirely thread- local 
operation (including allocation).

Implications
Threads sharing a cache can coordi-
nate through shared data structures. As 
long as contention is controlled, they 
can scale to a few close threads. This 
allows the implementation simplicity 
of shared data structures for local clus-
ters of threads.

Threads that do not share a cache 
should use distributed algorithms for 
coordination. Due to the high cost of 
cache- coherence traffic across NUMA 
machines, the system- wide algo-
rithms used in the runtime system  
should be distributed. Communica-
tion is implicit through writes rather 
than message sends, but this only 
affects the implementation of the run-
time system’s algorithms; the design 
must be communication- aware.

The scheduler must know the mem-
ory layout of data structures and topol-
ogy of the memory system to optimally 
schedule tasks. The cost of cache 
misses can vary widely, depending 
on the data being accessed. Sched-
uling tasks on cores near their data 
minimizes cache- miss latency.

Reader- writer locks should not be used. 
Common implementations of such 
locks require updating shared state 
even for readers, making the locks non-
scalable even for all- reader workloads.

Lock- free data structures cannot solve 
scaling problems in NUMA systems. 
Lock- free data structures have writes 
to common memory locations, which 
does not scale.

GAccumulator <size_t> numTriangles; 

struct tricount { 
 void operator()(const GNode& n, UserContext <GNode>&) const { 
  // Partition neighbors, assumes no self loops 
  // [first, ea) [n] [bb, last) 
  auto first = graph.edge_begin(n); 
  auto last = graph.edge_end(n); 
  auto ea = lowerBound(first, last, n); 
  auto bb = upperBound(first, last, n); 
 
  for (; bb != last; ++bb) { 
   GNode B = graph.getEdgeDst(bb); 
   for (auto aa = first; aa != ea; ++aa) { 
    GNode A = graph.getEdgeDst(aa); 
    if (binarySearch(graph.edge_begin(A), graph.edge_end(A), B)) 
     numTriangles += 1;
    } 
   } 
  } 
 };
}; 

for_each_local(graph, tri_count()); 
std::count <<˝NumTriangles:˝ << numTriangles.reduce() << ˝\n˝; 

FIGURE 1. Example Galois operator for triangle counting. 
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GALOIS SOFTWARE STACK
Irregular algorithms use language 
and system features in ways that reg-
ular algorithms do not. Initially, a few 
key components in the Galois soft-
ware stack greatly limited scalability, 
requiring careful re- implementations 
of those components to conform with 
the design principles discussed above.

Memory allocation 
Memory allocation is common in com-
plex irregular algorithms. Even at 
low thread counts, the standard allo-
cation subsystems malloc and mmap 
are major scalability bottlenecks. For 
simple algorithms that do not morph 
the underlying graph’s structure and 
hence do not allocate or delete stor-
age for nodes and edges, allocation 
is needed only in the scheduler for 
dynamically generated work and for 
temporary allocations in the opera-
tor. More complex algorithms can be 
very allocation intensive because they 
add and remove nodes from a graph, 
expand a tree, or track temporary 
 variable- sized state within a task. 

Four of the five algorithms we 
evaluated require substantial mem-
ory allocation. DMR, for example, 
increases the graph by approximately 
550 bytes per task—at 512 threads, this 
can exceed 50 gibibytes (GiB) per sec-
ond. This is simply the persistent data 
and does not include temporary data 
structures used by the runtime system.

An additional complication on 
NUMA systems is that the physical 
location of memory used to satisfy an 
allocation is important. Memory used 
by a thread should be allocated on the 
memory bank local to that thread to 
minimize cache- miss latency.

Allocation scalability. While efforts 
to create scalable memory allocators7,8 

have been considerable, they have not 
addressed NUMA concerns directly 
or produced an allocator capable of 
scaling to large, allocation- intensive 
multithreaded workloads. 

Currently, the rate of kernel mem-
ory allocation, even with huge pages, 
is insufficient to meet the allocation 
demands of algorithms like those 
we evaluated at high thread counts. 
Further, contention in the kernel 
causes unpredictable and potentially 
unbounded sleep. Thus, we pre- allocate 
huge pages from the kernel into a page 
pool in our memory system. This has 
the added benefit of making it trivial 
to track the thread and NUMA affinity 
of each page of memory used, allowing 
layered allocators to behave correctly.

Exploiting structure in alloca-
tor usage. The Galois programming 
model offers considerable structure 
in allocator usage. We exploit this 
structure by using fast, scalable spe-
cialized allocators where appropriate. 
Allocator use falls into three catego-
ries: per- task variable- sized allocation, 
data- structure allocation, and general 
allocation. We optimize the first two 
cases, avoiding the third.

Per- task variable- sized allocation. 
Some irregular algorithms use tem-
porary data structures to track state. 
DMF, for example, collects a set of trian-
gles to be replaced. The Galois runtime 
system provides a per- task region allo-
cator that can be used for these types of 
allocations. It supports standard C++ 
allocator semantics, making it com-
patible with all standard containers, 
and allows efficient, node- local, vari-
able- sized allocations in the user code. 
The allocator is reused within a thread, 
reducing cold misses in the cache.

Data- structure allocation. Data 
structures are the most common 

source of runtime allocation. We 
codesign data structures with a fixed- 
size allocator family to efficiently sup-
port these allocations. Internally, the 
system creates fixed- sized allocators 
that are efficient and NUMA- friendly. 
Data structures are written to exclu-
sively use these allocators.

Node- local memory. The memory 
system targets two problems. First, 
memory allocation must scale to 
many threads as well as high alloca-
tion rates. The system meets this goal 
with a series of specialized allocators, 
careful data- structure design, and a 
layered allocation strategy. Second, 
memory allocation must be NUMA- 
aware—that is, it must return mem-
ory local to the NUMA node on which 
it is being allocated. The memory 
system achieves this through the use 
of per- thread allocators backed by a 
NUMA- aware page pool. Per- thread 
allocators are more fine- grained than 
NUMA nodes and naturally return 
node- local memory. The page pool 
tracks memory pages by NUMA node 
and never returns remote memory in 
response to a request. The page pool 
ensures that memory allocated from 
the OS resides on the node that per-
forms the allocation. 

Isolation: locking, 
speculation, and retry 
The Galois programming model 
requires isolation between tasks. We 
use speculative execution to imple-
ment isolation, and we exploit com-
mon structure in irregular algorithms 
to avoid the costs of generic solu-
tions, such as software transactional 
memory. As a task executes, the data- 
structure implementation marks ele-
ments used by the task. If a mark can-
not be acquired, the task aborts and 
is retried later. Marks are made in an 
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object header, so marking incurs very 
little overhead for subsequent access 
of the object.  Data structures are 
updated in place after all marks for a 
task are acquired. The communication 
involved in marking an object is nec-
essary to discover independent tasks, 
but is minimized by storing the mark 
in the object header. Thus, marking 

will bring into the cache a part of the 
object that the task will later access.

The handling of aborts and retries 
has several contradictory goals. 
Although rare in most algorithms, 
conflicts can occur at large thread 
counts. Simple cache invalidation at 
scale can be a performance bottleneck. 
It is therefore critical to resolve 

most conflicts and avoid live- lock 
by minimizing communication and 
synchronization between threads. 

Low- overhead live- lock freedom.  
At runtime, a task marks objects it 
requires for exclusive access. The 
task is speculatively executed, on 
the assumption that it will be able 

RELATED WORK 

Parallel programming models, languages, and 
frameworks are manifold. 
Implicitly parallel programming1 attempts 

to recover parallelism from a sequential pro-
gramming model with compiler analysis. It uses 
stylized tasks to simplify this discovery. We 
implement stylized loops as entry points to the 
parallel runtime system and perform the analysis 
at runtime to discover parallelism.

Cilk2 and OpenMP3 provide constrained, ex-
plicit forms of parallelism requiring programmer 
annotation. They leave data synchronization and 
safety to the programmer. We put the responsi-
bility for safety on the runtime system. Although 
it is possible to write NUMA- scalable applica-
tions in these frameworks (except, perhaps, for 
scheduling), one would have to implement most 
of the data structures and mechanisms demon-
strated here.

Chapel4 and UPC5 provide a partitioned global 
address space in which memory is explicitly parti-
tioned between local and remote, though address-
ing is still global. This differs from our approach in 
that we make partitioning of the memory space 
implicit in the data structures, rather than having 
data structures explicitly mapped to partitions.

Global Arrays6 and PETSc7 provide both 
NUMA and distributed process- centric program-
ming models with shared data structures and ex-
plicit data movement. We believe that for NUMA 
architectures, a successful programming model 
should require little change in how the average 
programmer thinks about programs.

Several OpenMP implementations2,8 add fea-
tures such as data- layout, memory- migration, and 
computation- placement directives; hierarchical 

task stealing; topology-  and NUMA- aware load 
balancing; and various scheduling hints. 

Charm++ has a number of NUMA opti-
mizations, most notably NUMA- aware load 
balancing.9 
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to mark all required objects. Specu-
lation fails when one task attempts 
to mark an object owned by another 
task. Speculation failure is very 
rare—usually a fraction of a percent 
of all tasks—but does increase with 
the number of threads. The highest 
failure rate in our evaluation is 4.5 
percent for DMR, which is also the 
best scaling benchmark.

Dealing with speculation failure—
freeing locks and deciding when to 
retry the task—does not require any 
communication. Simply retrying exe-
cution would require no communica-
tion, but often leads to live- lock. There-
fore, we apply a layered strategy that 
deals with aborted work in the com-
mon case using only local communi-
cation (for the machines in this study, 
communication between threads 
which share an L3 cache). Tasks are 
retried after some random delay. Sub-
sequent aborts of retried work incur 
more expensive communication to 
prevent live- lock. All packages are 
numbered consecutively and, after the 
initial retry, an aborted task is moved 
to a per- package (for example, L3 cache) 
retry queue with a number that is half 
the current package’s number. This 
forms a binary tree over packages that 
a retried task moves up in after each 
subsequent abort. If all work contin-
uously aborts, aborted work will seri-
alize into a single thread on the first 
package, thereby avoiding live- lock. In 

practice, work items rarely abort twice, 
let alone more often than that.

Scalable exception handling. The 
Galois runtime system uses excep-
tions to take advantage of compiler- 
supported state rollback in conjunc-
tion with per- task region allocators 
to reclaim memory. Conceptually, 
this rollback mechanism is entirely 
thread- local and thus scalable, but real 
implementations fail to achieve this. 
Although conflicts, and thus excep-
tions, are a small fraction of total tasks, 
at hundreds of threads we can expect at 
least one conflict at any point in time. 

The compiler, standard exception- 
handling library, and C library cooper-
ate to implement exception handling. 
This combination has two nonscal-
able components. First, the standard 
library uses dynamic allocation to 
store the thrown exception object. Sec-
ond, exception handling and dynamic 
library opening and closing have a 
potential race condition protected by 
a reader- writer lock. The cache inval-
idations from acquiring this lock in 
read mode when throwing excep-
tions inhibit scaling. We modify the 
relevant libraries to disable dynamic 
library loading and unloading during 
parallel loops. This allows lock- free 
access, which is now read only, to the 
various exception tables. An alternate 
implementation would be to change 
the type of reader- writer lock to one 

that does not require communication 
for reader- only workloads.

Figure 2 shows DMR scaling with and 
without scalable exception handling.

Scheduling 
We use the scheduling language devel-
oped by Donald Nguyen and one of this 
article’s authors, Keshav Pingali,9 to 
describe good scheduling orders for 
loops. The choice of scheduling pol-
icy is algorithm- specific, and an algo-
rithmically good scheduling policy 
can have orders- of- magnitude more 
benefit than a purely locality- based 
policy. Consequently, we do not simply 
implement a NUMA- aware scheduler 
and apply an owner- computes policy 
to all loops. Instead, we use a twofold 
approach: we present the initial work 
in a loop to the scheduler in a  locality- 
preserving way and supply NUMA- 
aware implementations of common 
scheduling policies. 

The notions of locality embedded 
in the data structures and runtime 
system are used during scheduling. A 
for- loop presents the portions of the 
iteration range owned by each thread 
to the scheduler on that thread. This 
is possible because the iteration range 
presented to the loop is over a data 
structure that exposes data place-
ment to the runtime system. Thus, the 
scheduler sees the data on the optimal 
node. How work is scheduled after this 
point entirely depends on the schedul-
ing policy and specific scheduler syn-
thesized for the loop.

Overhead is a critical aspect of 
scheduling for many irregular algo-
rithms. Tasks can be as small as 100 
cycles, so scheduling decisions must 
be very efficient. Scheduling is compli-
cated by the fact that many algorithms 
dynamically generate work, and sim-
ple local LIFO (last- in, first- out) or 
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FIFO (first- in, first- out) policies, such 
as those implemented in Cilk, are not 
ideal for all algorithms. For a sense of 
scale, the TRI benchmark schedules 9.6 
billion tasks per second at 512 threads.

Several changes to the core Galois 
work- list components improved NUMA 
scaling. Primarily, we converted the 
main Galois schedulers from hierarchi-
cally partitioned queue implementa-
tions to per- thread queues with NUMA- 
aware work stealing. When a thread’s 
work list is empty, it tries to steal half 
of the work from another thread within 
the same package. This preserves local-
ity, as work does not leave the L3 cache, 
while performing limited load bal-
ancing. When all threads in a package 
are out of work, a single master thread 
from each package attempts to steal the 
entire work list from another master 
thread in a different package. This limits 
the number of robbers and victims com-
municating across the NUMA intercon-
nect. The thread whose work was stolen 
will first try to steal work locally, effec-
tively drawing from a reserve of work 
not available to be stolen. 

Figure 3 shows the effect of NUMA- 
aware work stealing on a scheduler 
microbenchmark. The baseline is 
the Cilk scheduler using random 
work stealing. Using the same 
queuing policy, but NUMA- aware 
work stealing, significantly improves 
performance and scaling.

Interactions between stealing and 
termination detection. We used the 
Dijkstra−Scholten two- pass, ring- 
based termination detection algorithm 
(DS) to exit a parallel loop. The stealing 
protocol and termination detection 
interact in a way that can drastically 
affect scaling. Once a thread is out of 
work, it enters a loop in which it first 
checks for work, attempting to steal, 

and then checks for and passes the ter-
mination token. With the initial steal-
ing protocol, stealing by each thread 
had a cost proportional to the num-
ber of threads O(n). The token passing 
also required a number of steps pro-
portional to the number of threads 
O(n). On average, we expect the token 
to arrive in the middle of the stealing 
loop, resulting in local delay propor-
tional to the number of threads before 
a thread checked for and passed on the 
termination token. This leads to O(n2) 
runtime for exiting a loop. 

We modified the stealing proto-
col in all work lists to only attempt 
a single steal operation before fail-
ing. Future stealing attempts will try 
the next victim. This limits the local 
delay in propagating the termination 
token to a single stealing attempt from 

a single victim. At 256 threads, this 
change reduced shutdown time by 30 
ms, which at this scale was more than 
50 percent of some loop runtimes.

NUMA- aware hybrid barrier. We 
observed that, because of fast coher-
ence, a simple counting barrier is 
more efficient within a shared cache 
than a classic tree- based MCS bar-
rier. Inter- NUMA- node, tree- based 
barriers are significantly more 
efficient than counting barriers. We 
leverage this fact to use local count-
ing barriers between fast communi-
cating threads and select one from 
each group to participate in a tree- 
based barrier algorithm. Figure 4 
shows that the NUMA- aware hybrid 
barrier outperforms both classic 
implementations.
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numa8x4 is an eight- socket, four- cores- per- socket SGI UV Intel Xeon- based system.
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machines are the same as those described in Figure 3.



42 C O M P U T E R    W W W . C O M P U T E R . O R G / C O M P U T E R

IRREGULAR APPLICATIONS

EXPERIMENTAL RESULTS 
To assess Galois scaling capabilities, 
we ran several irregular algorithms 
from graphics, computational science, 
and graph analytics: 

 › DMR takes a Delaunay triangu-
lar mesh and produces a result-
ing mesh that satisfies several 
quality guaranties. We modified 
the Lonestar10 implementation 

to sort the initial triangles 
using a space- filling curve. This 
functions as a partitioner that 
assigns consecutive blocks of 
triangles to each thread.

 › DT takes a set of points and 
produces a triangular mesh 
satisfying the property that the 
circumcircle (bounding circle) for 
each triangle must not contain 
points in the mesh that are not 

part of the triangle. We extended 
the Lonestar implementation to 
sort points according to a space- 
filling curve. DT builds a spatial 
acceleration structure to map 
points to triangles in the mesh.

 › BH is a classic n- body simulation 
algorithm that builds a spatial 
decomposition tree containing 
center- of- mass information and 
uses that information to approx-
imate weak forces. We modified 
the Lonestar implementation 
to sort the bodies using a space- 
filling curve and build the octree 
in parallel, resulting in tree 
nodes local to the thread that 
will access the nodes most often.

 › BC11 computes a metric for nodes 
in a network that captures each 
node’s relative importance. 
We used an outer- loop paral-
lelization in which each thread 
computes the single- source 
shortest path and the update for 
one source node in the graph. 
Each iteration requires access-
ing the entire input graph, so we 
randomly distributed the graph 
across all NUMA nodes.

 › TRI12 counts the number of tri-
angles (3- cliques) in a graph. This 
algorithm is unchanged from the 
Lonestar implementation. We 
used a prepartitioned graph. 

Self- relative scaling 
We tested our algorithms at the Pitts-
burgh Supercomputing Center on 
Blacklight, an SGI UV NUMA system 
containing 4,096 cores and 32 tebi-
bytes of RAM (our machine allocation 
was limited to 512 cores). Each NUMA 
node contains 16 cores running at 2.27 
GHz on two processors and 128 GBytes 
of memory. We compiled using g++ 4.7 
at - O3. Table 1 summarizes the inputs 
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FIGURE 5. Self- relative scaling of five irregular algorithms on the Pittsburgh 
Supercomputing Center’s Blacklight at up to 512 threads.

TABLE 1. Algorithm inputs and configurations.

Algorithm Input and configuration

Delaunay mesh refinement 10 million bodies generated using a Plummer model; 
tolerance = 0.05; time step = 0.50; events/s = 0.05

Delaunay triangulation 20 million triangles in a square, 50 percent bad

Barnes−Hut 10 million points randomly distributed in a square

Betweenness centrality Random graph with average degree 4 and 218 nodes

Triangle finding Random planar graph with average degree 4 and 218 
nodes
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and configurations. We obtained sim-
ilar results on smaller- scale NUMA 
systems. Even standard large server- 
class machines with two to four sock-
ets showed notable improvement 
with these changes to the Galois run-
time system. 

As Figure 5 shows, DMR and BH 
achieve self- relative, strong scaling 
of 422× and 390×, respectively, at 512 
threads. This equates to 82 and 75 
percent parallel efficiency for pro-
grams written in a sequential pro-
gramming style. DT scales up to 304× 
at 512 threads, due in part to mem-
ory contention inserting into the 
lookup- acceleration tree. BC requires 
reading the entire graph by each iter-
ation. Adding NUMA nodes while 
simultaneously increasing parallel-
ism increases the average latency 
of memory accesses for all threads. 
This causes BC to scale at only about 
50 percent efficiency. Although the 
graph size is small enough to fit in the 
L3 cache, the temporary data neces-
sary for an outer- loop parallel BC cal-
culation is proportional to the graph’s 
size, so in actual parallel execution 
the graph could not remain in cache. 
TRI also scales at only about 50 per-
cent efficiency. 

Runtime comparisons 
As Table 2 shows, serial runtime per-
formance of our implementations of 
these algorithms compares favorably 
to third- party implementations.1,3,13,14 
Our goal is not necessarily to have the 
best- performing serial implementa-
tion, especially because some use hand- 
crafted, problem- specific data struc-
tures, but to show that we are within 
an acceptable margin of custom imple-
mentations while using the generic 
data structures provided by our run-
time system. For our serial runs, we use 

the full parallel system including work 
lists and contention management. 

Table 3 compares the runtimes of 
DMR, DT, and BH at 512 threads for 
random partitioning and partition-
ing based on a space- filling curve. All 
data structures built at runtime, other 
than the initial graph, maintain their 
default NUMA- aware allocation pat-
terns. We see that good data placement 

is responsible for a 10 to 50 percent 
improvement in the runtime. For DMR, 
this is the difference between scaling to 
422× as opposed to only 203×. 

Irregular algorithms stress both the 
hardware and support runtimes of 
modern computing systems. Never-

theless, a carefully designed runtime 

TABLE 3. Runtimes of three algorithms  
at 512 threads for spatial and random partitioning.

Algorithm Partitioning Runtime (s)

Delaunay mesh refinement Spatial 0.37

Random 0.77

Delaunay triangulation Spatial 0.18

Random 0.22

Barnes−Hut Spatial 3.55

Random 3.85

TABLE 2. Serial runtime implementations of the algorithms.

Algorithm Implementation No. of threads Runtime (s)

Delaunay mesh 
refinement

Triangle 1 96

Galois 1 155.7

Galois 512 0.37

Delaunay triangulation Triangle 1 1,185

Galois 1 56.6

Galois 512 0.18

Barnes−Hut Splash- 2 1 >6,000*

Galois 1 1,386

Galois 512 3.55

Betweenness centrality HPCS SSCA 1 6,720

Galois 1 5,394

Galois 512 21.6

Triangle finding GraphLab 2 531

Galois 1 7.03

Galois 512 0.028

*Timed out after 100 minutes
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system can enable an implicitly par-
allel programming model to scale 
to large numbers of processors in a 
NUMA system. As modern systems 
become increasingly nonuniform, 
runtime and algorithm design must 
adapt by recognizing that although 
shared memory provides a simple 
abstraction which hides communica-
tion, communication happens none-
theless. The design of large- scale 
NUMA systems shares many perfor-
mance considerations with that of 
distributed systems. However, even 
on large NUMA machines, closely cou-
pled execution units can benefit from 
fast shared- memory design. 
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