Epigrafico (matematica): differenze tra le versioni
Aspetto
Contenuto cancellato Contenuto aggiunto
m →Funzioni lineari: fix |
m sotto -> sopra |
||
Riga 1: | Riga 1: | ||
In [[analisi matematica]], l''''epigrafico''' di una [[funzione (matematica)|funzione]] |
In [[analisi matematica]], l''''epigrafico''' di una [[funzione (matematica)|funzione]] |
||
:<math>f:A\to \R </math> |
:<math>f:A\to \R </math> |
||
definita su un insieme <math>A</math> è l'insieme di punti che stanno al di |
definita su un insieme <math>A</math> è l'insieme di punti che stanno al di sopra o sul [[grafico di una funzione|grafico della funzione]]: |
||
: <math>\mbox{epi} f = \{ (x, \mu) \, : \, x \in A,\, \mu \in \mathbb{R},\, f(x)\ge \mu \} \subseteq A\times \mathbb{R}</math> |
: <math>\mbox{epi} f = \{ (x, \mu) \, : \, x \in A,\, \mu \in \mathbb{R},\, f(x)\ge \mu \} \subseteq A\times \mathbb{R}</math> |
Versione delle 10:42, 23 apr 2008
In analisi matematica, l'epigrafico di una funzione
definita su un insieme è l'insieme di punti che stanno al di sopra o sul grafico della funzione:
Se è un sottoinsieme di , l'epigrafico èun sottoinsieme di .
Proprietà
Convessità
Nell'ipotesi:
Una funzione è convessa se e solo se il suo epigrafico è un insieme convesso.
Funzioni lineari
L'epigrafico di una funzione affine reale
è un semispazio di .
Semicontinuità
Una funzione è inferiormente semicontinua se e solo se il suo epigrafico è chiuso.