Epigrafico (matematica): differenze tra le versioni
Aspetto
Contenuto cancellato Contenuto aggiunto
m Annullate le modifiche di 212.102.67.67 (discussione), riportata alla versione precedente di ValterVBot |
m senza fonti |
||
Riga 1: | Riga 1: | ||
{{F|matematica|ottobre 2015}} |
|||
In [[analisi matematica]], l''''epigrafico''' di una [[funzione (matematica)|funzione]] |
In [[analisi matematica]], l''''epigrafico''' di una [[funzione (matematica)|funzione]] |
||
:<math>f:A\to \R </math> |
:<math>f:A\to \R </math> |
Versione delle 10:49, 18 ott 2015
In analisi matematica, l'epigrafico di una funzione
definita su un insieme è l'insieme di punti che stanno al di sopra o sul grafico della funzione:
Se è un sottoinsieme di , l'epigrafico è un sottoinsieme di .
Proprietà
Convessità
Nell'ipotesi:
Una funzione è convessa se e solo se il suo epigrafico è un insieme convesso. Un insieme A è detto convesso se i segmenti che hanno estremi in A sono tutti suoi sottoinsiemi
Funzioni lineari
L'epigrafico di una funzione affine reale
è un semispazio di .
Semicontinuità
Una funzione è inferiormente semicontinua se e solo se il suo epigrafico è chiuso.