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Abstract—As an alternative to replication of data blocks,
the Hadoop Distributed File System offers the possibility of
erasure coding using Reed-Solomon codes. The use of Reed-
Solomon codes significantly reduces storage overhead but
has more expensive failure recovery. Using the shortened
Reed-Solomon code RS(10,4), with 10 data symbols and
4 check symbols, standard erasure repair requires down-
loading 10 symbols or 80 bits. Known schemes attain a
reduced repair bandwidth of 65 or 64 bits. In this paper
we present three repair schemes with bandwidth 60, 56 and
54, respectively.

INTRODUCTION

The HDFS-RAID module for the Hadoop Distributed
File System (HDFS) [1] offers different solutions for
erasure coding including the use of the code RS(10,4),
a shortened version of the double error-correcting Reed-
Solomon code of length 255. Codewords have 10 data
symbols and 4 check symbols. The code has the property
that a codeword can be rebuilt from any subset of ten
symbols. To repair a single erased symbol it suffices
to first collect any ten other symbols and then use the
rebuilding properties of the code. The repair bandwidth
for collecting ten symbols is 80 bits. A different ap-
proach is to divide an erased symbol into sub-symbols
and to collect different sets of repair data at the sub-
symbol level. In the sub-symbol setting a helper node
will receive multiple sub-symbol requests. A sub-symbol
repair scheme lowers the bandwidth by arranging that
some of the requests are dependent and can be ignored.
The approach was applied previously to the RS(10,4)
code in [2], [3], with reductions in bandwidth from 80
to 65 and 64 bits, respectively.

For a linear code, a sub-symbol repair scheme is built
from combinations of parity check equations. The parity
check equations for the RS(10,4) code use the values of
polynomials of degree at most three in 1, ζ, . . . , ζ13, for
ζ255 = 1. The larger codes RS(12,2) and RS(11,3) are
defined with the same set of elements but use linear and
quadratic checks, respectively. We first build a collection
of basic parity check combinations for these two codes.

We express the reduction in bandwidth geometrically
in terms of the cross-ratio of four field elements. We
then use the basic combinations to construct three repair
schemes for the RS(10,4) code, with bandwidth 60, 56
and 54 bits, respectively. The 54 bit scheme uses a differ-
ent combination of checks for each position. The checks
for the 56 bit scheme all have a common structure.
The structure has several benefits for implementations
and will be useful for guiding computer searches when
building repair schemes for other codes. The 60 bit
scheme uses essentially one combination of checks, with
a 4-fold symmetry that allows it to correct erasures in
any of the 14 positions.

OUTLINE

In Section I we give a formal description of a linear
repair scheme and its bandwidth. Section II presents
general properties of the scalar restriction of a code and
Section III describes erasure repair for the full-length
RS-code of rate one-half. Section IV summarizes the
construction of low bandwidth repair relations by use
of the trace operator. Section V describes the RS(10,4)
code and discusses basic repair relations (presented in
Tables II, III, IV). In Section VI we construct three
different repair schemes for the code RS(10,4), that are
of bandwith 60, 56 and 54, respectively (presented in
Tables V, VI, VII).

I. BLOCK ERASURES

We describe repair schemes and the notion of repair
bandwidth for linear codes with n blocks.

Definition I.1. A repair scheme for a linear code with
n blocks is a collection {Rj : j ∈ [n]} of matrices,
such that Rj is orthogonal to the code and of the form
(H1|H2| · · · |Hn) with Hj a square matrix of full rank.

Lemma I.2. For a linear code with n blocks and repair
scheme {Rj : j ∈ [n]}, the parity checks Rj can be
used to repair the erasure of the j-th block. The repair
requires a bandwidth of γj =

∑
i6=j rankHi symbols.



R1 =

[
1 0 1 1 0 1 0 0
0 1 1 1 0 0 1 0

]
R3 =

[
0 1 0 0 1 0 1 1
0 0 1 0 0 1 1 1

]
R2 =

[
1 1 1 0 0 0 0 1
1 1 0 1 1 0 0 0

]
R4 =

[
0 0 0 1 1 1 1 0
1 0 0 0 1 1 0 1

] (1)

Proof. The repair of the j−th block in a codeword
(c1|c2| · · · |cn) uses Hjc

T
j +

∑
i6=j Hic

T
i = 0. The vector

Hic
T
i is uniquely determined by a subset of rankHi

independent symbols. Thus the repair can be completed
after collecting a total of γj symbols.

The repair bandwidth γ of a repair scheme {Rj : j ∈
[n]} is defined as the maximum bandwidth used by the
scheme to repair any single block, i.e., γ = max γj .

Example I.3. Concatenation of the [4, 2, 3] code

C =

[
1 0 b a
0 1 a b

]
,

defined over F4 = {0, 1, a, b}, yields a binary code

C ′ =


1 0 0 0 1 1 0 1
0 1 0 0 1 0 1 1

0 0 1 0 0 1 1 1
0 0 0 1 1 1 1 0

 .
The code is equivalent to the extended Hamming code of
type [8, 4, 4] and is self-dual. Using either the first two
rows or the last two rows, any block can be repaired
with bandwidth 4. Equation (1) gives a complete repair
scheme with bandwidth 3. The rows used for R3 and R4

are both subsets of the rows in C ′.

The same steps as in the example will be followed
when we consider repair schemes for the code RS(10,4).
That code is defined over the field F = GF (28). We
choose a subfield L ⊂ F and, after concatenation, we
consider the code as a code with coefficients in L. For the
code with coefficients in L we then select combinations
of checks that yield low bandwidth repair schemes.

II. RESTRICTION OF SCALARS

This section takes the general point of view of
representing a linear code that is defined over a
field F over one of its subfields L. The part that is
used for the RS(10,4) code is summarized in Section IV.

Let C be a F -linear code of type [n, k]. Let L ⊂
F be a subfield such that F is of dimension ` as L-
vector space and let A = {a1, . . . , a`} be a basis for F
over L. Field elements x ∈ F can be expressed uniquely

as x = x1a1 + · · ·+x`a`, with x1, . . . , x` ∈ L. The map
φ(x) = (x1, . . . , x`) defines an isomorphism of L-vector
spaces. For x, y ∈ F and c ∈ L,

φ(x+ y) = φ(x) + φ(y), φ(cx) = cφ(x). (2)

Applying the map φ coordinate-wise to every codeword
in C yieds a L-linear code φ(C) of type [n`, k`]. The
code φ(C) over the subfield L is called the scalar
restriction of C. It is the concatenation of C with a full
space outer code.

Let {uh : h ∈ [k]} ⊂ Fn be a basis for C as F -linear
code. Then {aiuh : h ∈ [k], i ∈ [`]} ⊂ Fn is a basis for
C as L-vector space, and {φ(aiuh) : h ∈ [k], i ∈ [`]} is
a basis for φ(C) as L-linear code.

Lemma II.1. Let (uh,i : h ∈ [k], i ∈ [n]) be a generator
matrix for C. Then (Φ(uh,i) : h ∈ [k], i ∈ [n]) gives a
generator matrix in block form for φ(C), where

Φ(x) =

 φ(a1x)
...

φ(a`x)

 . (3)

Example II.2. For F = F4 = {0, 1, a, b} and L =
{0, 1}, let A = {a, b}. Then

Φ(0) =

[
0 0
0 0

]
, Φ(a) =

[
0 1
1 1

]
,

Φ(1) =

[
1 0
0 1

]
, Φ(b) =

[
1 1
1 0

]
.

With Lemma II.1 we recover the matrix for the code
C ′ = φ(C) in Example I.3.

Lemma II.3. For x, y ∈ F ,

φ(x)Φ(y) = φ(xy). (4)

Proof.

φ(x)Φ(y) = φ( (φ(x) · (a1, . . . , an))y ) = φ(xy).

Lemma II.4. The map Φ : F → L`×` in (3) is an L-
algebra homomorphism. For x, y ∈ F and c ∈ L,

Φ(x+ y) = Φ(x) + Φ(y),

Φ(cx) = cΦ(x), and Φ(xy) = Φ(x)Φ(y).
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Proof. The first two properties are a direct consequence
of (2). For the third property we need that φ(aix)Φ(y) =
φ(aixy), for i = 1, 2, . . . , n.. This follows from the
previous lemma after replacing x with aix.

Lemma II.5. The vector (a1, . . . , an)T ∈ Fn is an
eigenvector for Φ(x) with eigenvalue x.

Proof. By the definition of φ, φ(aix) · (a1, . . . , an) =
aix, and thus

Φ(x)(a1, . . . , an)T = (a1x, . . . , anx)T .

The properties that were established thus far all refer
to a basis a1, . . . , a` for F over L but did not make
use of the Frobenius automorphism σ. For L of size
q, and thus F of size q`, it is defined by σ(x) = xq .
For x ∈ F , define δ(x) = (x, σ(x), . . . , σ`−1(x)) and
∆(x) = diag(x, σ(x), . . . , σ`−1(x)). Furthermore, let

Σ(A) =

 δ(a1)
...

δ(a`)

 =

 a1 · · · σ`−1(a1)
...

...
a` · · · σ`−1(a`)


The matrix Σ(A) is invertible if and only if the elements
of A are linearly independent over L.

Lemma II.6. The eigenvectors and eigenvalues for Φ(x)
are given by

Φ(x)Σ(A) = Σ(A)∆(x).

For the unique basis B = {b1, . . . , b`} such that
Σ(A)Σ(B)T = I ,

Φ(x) = Σ(A)∆(x)Σ(B)T .

Proof. For the first claim apply σ repeatedly to the
previous lemma. The second claim is clear.

The basis B in the lemma is a dual basis for A. For
x ∈ F , let φA(x), resp. φB(x), denote the coefficients
of x wrt A, resp. wrt B. Let Tr(x) = Trace(∆(x)) =∑`−1
i=0 σ

i(x) be the trace map from F to L. The second
claim in the lemma can be stated as

Φ(x) = (Tr(aibjx) : i, j ∈ [`]).

If we let eA = φA(1) and eB = φB(1) then

φA(x) = eAΦ(x) = eA(Tr(abx))

= (Tr(b1x), . . . ,Tr(b`x)).

φB(y) = eBΦ(y)T = eB(Tr(bay))

= (Tr(a1y), . . . ,Tr(a`y)).

Moreover

Tr(xy) = eAΦ(xy)eTB

= (eAΦ(x)) · (eBΦ(y)T ) = φA(x) · φB(y). (5)

Lemma II.7. If C and C ′ are orthogonal codes (resp.
dual codes) over F then φA(C) and φB(C ′) are orthog-
onal codes (resp. dual codes) over L.

Proof. For c = (c1, . . . , cn) ∈ C and c′ =
(c′1, . . . , c

′
n) ∈ C ′, so that c · c′ = 0, we need to show

that
n∑
i=1

φA(ci) · φB(c′i) = 0.

Using (5), we have
n∑
i=1

Tr(cic
′
i) = Tr(

n∑
i=1

cic
′
i) = Tr(0) = 0.

Remark II.8. For a different proof that uses Lemma II.1
and Lemma II.4 note that it suffices to prove

n∑
i=1

Φ(ci)(Φ(c′i)
T )T = 0.

Clearly this reduces to
n∑
i=1

Φ(ci)Φ(c′i) = Φ(

n∑
i=1

cic
′
i) = Φ(0) = 0.

III. RS-CODES IN CAUCHY FORM

We describe a special case of a result in [3] for
repairing Reed-Solomon codes. It illustrates that
standard concatenation as in the previous section does
not by itself yield efficient repair schemes over a
subfield. The section is independent from the following
sections that deal with the code RS(10,4).

Let F = GF (2`) and let L = {0, 1} be the binary
subfield. Thus σ(x) = x2 and Tr(x) =

∑l−1
i=0 σ

i(x) =∑l−1
i=0 x

2i . For x ∈ F , either Tr(x) = 0 or Tr(x) = 1.
Let F0 = {x ∈ F : Tr(x) = 0} and F1 = {x ∈ F :
Tr(x) = 1}. Define a code C over F with length n =
|F | and dimension k = |F0| by the matrix

C = (Ik|A), Ay,z =
1

z − y
, (y ∈ F0, z ∈ F1).

The matrix A is a Cauchy matrix and thus the code is
MDS. If we label the rows by elements y ∈ F0 and the
columns by elements z ∈ F , with z ∈ F0 for the first
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Φ(x) =


T (a1b1x) T (a1b2x) · · · T (a1b`x)
T (a2b1x) T (a2b2x) · · · T (a2b`x)

... · · ·
...

T (a`b1x) T (a`b2x) · · · T (a`b`x)

 R(x) =


T (a1x)
T (a2x)

...
T (a`x)




T (b1x
−1)

T (b2x
−1)

...
T (b`x

−1)


T

(6)

block and z ∈ F1 for the second block, then row y of
C gives the values in z ∈ F of the polynomial

ty(x) =
T (x− y)

x− y
.

As y runs through the different elements of F0, the
polynomials ty(x) span the space of all polyniomials in
x of degree less than 2`−1. Thus the code is the Reed-
Solomon code of length 2` and dimension 2`−1. The
code is self-dual.

The matrix Φ(x) = Σ(A)∆(x)Σ(B)T describes
blocks for a generator matrix of φ(C) (Lemma II.1 and
Lemma II.6). Using this format for the code φ(C) when
repairing erasures in the dual code will be inefficient
since the blocks Φ(x) are of full rank when x 6= 0.
We give a different format for φ(C) that uses blocks
of the form R(x) = Σ(A)J(x)Σ(B) with J(x) =
∆(x)J∆(x−1) and J the all-one matrix of size ` × `.
Clearly the blocks R(x) are of rank one. The matrix
J(x) has entries, for x 6= 0,

σi−1(x)/σj−1(x), i ∈ [`], j ∈ [`].

For x ∈ F , the polynomial σ`+i−1(x)/σj−1(x) can
be used to compute entries without division and we
set J(0) = I . The matrix ∆(x) is what we will call
σ−circulant, every row is obtained by applying σ to a
shift of the previous row. As a product of σ−circulant
matrices J(x) is also σ−circulant. The special case
J(0) = I is σ-circulant by direct verification. We have
the following relation between rank one matrices J and
diagonal matrices ∆.

Lemma III.1. For z ∈ F1,

J(z) =
∑
y∈F0

J(y)∆(
1

z − y
)

Proof. The two sides represent `×` matrices. Comparing
entries in row i and column j yields

σi−1(z)

σj−1(z)
=
∑
y∈F0

σi−1(y)

σj−1(y(z − y))
.

It suffices to prove equality for entries in the first column
j = 1. Equality for columns j > 1 then follows from
the σ−circulant property on both sides of the equation,

i.e., by repeated application of σ. Thus the equality to
be proven takes the form

σi−1(z)

z
=
∑
y∈F0

σi−1(y)

y
· 1

z − y
.

This is a special case of a partial fraction decomposition.
For f(x) with simple roots and for 0 ≤ r < deg f ,

xr

f(x)
=

∑
f(α)=0

αr

f ′(α)
· 1

x− α
.

For the special case f(x) = Tr(x) we have that f ′(x) =
1 and f(z) = 1 for z ∈ F1.

Let
R(x) = Σ(A)J(x)Σ(B)T

For x 6= 0, the matrix R(x) is of rank one. It has entries
T (aix)T (bjx

−1) ∈ L, for i, j ∈ [l]. With J(0) = I , we
have R(0) = I .

Proposition III.2. Let

C = (Ik|A), Ay,z =
1

z − y
, for y ∈ F0, z ∈ F1,

The block matrix with block

R(z − v)

of size ` × ` in row v ∈ F0 and column z ∈ F is a
generator matrix for φ(C).

Proof. The generator matrix for the scalar restriction
φ(C) in standard form has blocks indexed by y ∈ F0

and z ∈ F . The matrix is systematic in the columns
z ∈ F0 and has blocks

Φ(
1

z − y
)

in the columns z ∈ F1. Thus the claim amounts to
verifying that, for all v ∈ F0 and z ∈ F1,

R(z − v) =
∑
y∈F0

R(y − v)Φ(
1

z − y
)

Or, equivalently, that

J(z − v) =
∑
y∈F0

J(y − v)∆(
1

z − y
).
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Rv :

 1 0 0
0 1 0
0 0 1

 cTv =

 1 0 0
1 0 0
0 0 0

 cTv+110 +

 0 0 0
0 1 0
0 1 0

 cTv+011 +

 0 0 1
0 0 0
0 0 1

 cTv+101+

 1 1 0
0 0 0
0 0 0

 cTv+100 +

 0 0 0
0 1 1
0 0 0

 cTv+010 +

 0 0 0
0 0 0
1 0 1

 cTv+001 +

 1 1 1
1 1 1
1 1 1

 cTv+111. (7)

This is Lemma III.1 after the substitution z 7→ z − v,
y 7→ y − v.

Corollary III.3. For codewords that are orthognal to
φ(C), a block erasure in position v ∈ F can be repaired
using

cTv +
∑
z∈F\v

R(z − v)cTz = 0

The repair uses one bit each from |F | − 1 nodes.

Proof. The proposition gives a generator matrix with
blocks R(z− v), v ∈ F0, z ∈ F, that is sytematic in the
positions z ∈ F0. By symmetry, φ(C) has a generator
matrix with blocks R(z − v), v ∈ F1, z ∈ F, that
is sytematic in the positions z ∈ F1. Thus, for either
v ∈ F0 or v ∈ F1, the blocks R(z − v), z ∈ F , form a
submatrix of a generator matrix for φ(C).

Example III.4. For F = GF (23), φ(C) is the binary
Golay code of type [24,12,8]. Codewords in φ(C) are
divided into eight blocks of three bits, labeled as cz ,
for z ∈ F . Equation (7) gives the repair equation for
a single block erasure using the corollary. The equation
uses a binary labeling for the blocks. Thus the Golay
code in the given format repairs any one block out of
eight blocks of three bits with repair bandwidth seven
bits.

IV. DEGREE TWO ERASURE CODING

The previous sections showed that while standard
concatenation gives generator matrices in a structered
block format, with blocks as in Lemma II.1, for efficient
repair it is in general necessary to modify this structure
and replace the standard blocks with other carefully
chosen blocks, such as in Proposition III.2. It is in
general difficult to find repair schemes of the form
(H1| · · · |Hn) in Definition I.1 that have full rank in one
block and low rank in the remaining blocks. We consider
first repair schemes of degree two, i.e., schemes with
blocks Hi of size 2.

For a linear code C of length n with parity check
matrix H , a vector c = (c1, c2, . . . , cn) is a codeword in
C if and only if

p1c1 + p2c2 + · · ·+ pncn = 0 (8)

for every vector p = (p1, p2, . . . , pn) in the row space of
H . For correcting a single erasure in a codeword, say in
the position i, it suffices to choose a check vector p with
pi 6= 0 and to use the interpolation relation (8) to obtain
ci from the remaining codeword symbols. A codeword
symbol cj with j 6= i is needed for interpolation only
if pj 6= 0, in other words only if j is in the support of
the vector p. Check vectors with small support use fewer
computations for the interpolation. A further benefit of
a small support is that it reduces repair bandwidth, since
there is no need to collect codeword symbols outside the
support.

For a field F of size q2 and a subfield L of size q, the
element x ∈ F has a unique conjugate σ(x) = xq ∈ F
and the trace of x is T (x) = x + xq . The trace map is
linear over the subfield, i.e. T (x + y) = T (x) + T (y)
and T (ax) = aT (x) for all x, y ∈ F and a ∈ L. For
any two checks p ·c = 0 and q ·c = 0 as in (8), and after
applying the trace operator to each of them, we have that{

T (p1c1) + · · ·+ T (pncn) = 0

T (q1c1) + · · ·+ T (qncn) = 0

In matrix form[
T (p1c1)
T (q1c1)

]
+ · · ·+

[
T (pncn)
T (qncn)

]
=

[
0
0

]
After writing out the trace in terms of σ(x) = xq and
using that σ(xy) = σ(x)σ(y),[

p1 σ(p1)
q1 σ(q1)

] [
c1

σ(c1)

]
+ · · · +

+

[
pn σ(pn)
qn σ(qn)

] [
cn

σ(cn)

]
=

[
0
0

]
. (9)

Let

Pi =

[
pi σ(pi)
qi σ(qi)

]
. (10)
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The interpolation relation (9) is used as before to
interpolate ci. This time the interpolation coefficients
are matrices and recovery of ci from Pi(ci, σ(ci))

T is
possible only if Pi is invertible. A symbol cj participates
in the interpolation only if Pj 6= 0. The added feature
compared to (8) is that Pj may be nonzero but not of
full rank. In that case it suffices to download one subfield
symbol, namely Tr(pjcj) or Tr(qjcj).

To pass from the matrices P1, . . . , Pn to a repair
scheme (H1| · · · |Hn) with coefficients in the subfield
L, let {a1, a2} and {b1, b2} be a pair of dual bases for
F as L-vector space, so that[

a1 σ(a1)
a2 σ(a2)

] [
b1 b2

σ(b1) σ(b2)

]
=

[
1 0
0 1

]
.

Let

Hi =

[
pi σ(pi)
qi σ(qi)

] [
a1 a2

σ(a1) σ(a2)

]
and

φ(ci)
T =

[
b1 σ(b1)
b2 σ(b2)

] [
ci

σ(ci)

]
.

Then (9) becomes

H1φ(c1)T + · · ·+Hnφ(cn)T =

[
0
0

]
. (11)

The rank of Hi, which is the relevant property for repair
bandwidth, is the same as the L-rank of Pi.

V. THE CODE RS(10,4)

The Hadoop Reed-Solomon code RS(10,4) is defined
over the field F = GF (28) of 256 elements. The field F
is represented as the ring of binary polynomials modulo
x8+x4+x3+x2+1. This is the standard choice for Reed-
Solomon codes. The polynomial is the lexicographically
first polynomial p(x) such that 1, x, x2, . . . , x254 have
distinct remainders modulo p(x). The polynomial x8 +
x4 + x3 + x+ 1 is lexicographically earlier and is also
irreducible but it divides x51+1 so is not primitive which
is required for Reed-Solomon codes. The subfields of F
that we use are primarily the subfield L = GF (24) but
also B = GF (2) and K = GF (22), such that B ⊂
K ⊂ L ⊂ F . We will represent elements of the field L as
binary polynomials modulo y4+y+1 and elements of K
as binary polynomials modulo z2 + z+ 1. The inclusion
K ⊂ L holds for z = y · y4 = y5 and L ⊂ F holds for
y = x·x16 = x17. Let ζ = x (mod x8+x4+x3+x2+1)
be a fixed primitive element for GF (28).

The code RS(10,4) is the shortening to length 14
of the double error-correcting Reed-Solomon code of
length 255. The four checks for the code are therefore

1 1 1 · · · 1 1
1 ζ ζ2 · · · ζ12 ζ13

1 ζ2 ζ4 · · · ζ24 ζ26

1 ζ3 ζ6 · · · ζ36 ζ39


The repair properties of the code depend on the choice
of primitive element ζ. The choice for ζ such that
ζ8 + ζ4 + ζ3 + ζ2 + 1 = 0 turns out to be a favorable
choice, providing us with relations that help to reduce
bandwidth. Another useful property of the code is that
it is defined with consecutive roots of unity 1, ζ, . . . , ζ13

which gives two ways to exploit symmetry. First, for any
scheme that repairs erasures in ζi there is an equivalent
reciprocal scheme that repairs erasures in ζ13−i. And
second, some repair schemes that repair erasures in ζi

can be shifted to repair erasures in ζi+1. The self-
reciprocal partition

{0, 3, 5, 8, 10, 13} ∪ {6, 7} ∪ {1, 2, 4, 9, 11, 12}

of the positions plays a role in several of the low
bandwidth checks that we use in our repair schemes
for the RS(10,4) code. Geometrically what helps us to
reduce bandwith is that for any subset of four elements
in {ζ, ζ2, ζ4, ζ9, ζ11, ζ12} the cross-ratio of the four
elements lies in the subfield L = GF (24). For a different
choice of primitive element ζ (other than conjugates
and their reciprocals) the size of such a subset among
1, ζ, . . . , ζ13 would have been at most five.

The codes RS(12,2) and RS(11,3) are defined with the
same set of elements but use linear and quadratic checks,
respectively. The code RS(12,2) has a self-reciprocal
repair scheme that repairs erasures in the first two classes
of the partition and reduces bandwith in the last class.
The code RS(11,3) has self-reciprocal repair schemes
that repair erasures in the first class (resp. last class) and
reduce bandwith in the last two classes (resp. first two
classes). We rely on the repair schemes for these two
codes to construct repair schemes for RS(10,4).

A. Repair relations of type A

For a degree two repair scheme using linear poly-
nomials, a greedy choice is to start with polynomials
p(x) = (x − a) and q(x) = (x − b), which guarantees
a rank reduction in the matrices Pa and Pb in (9). By
using the scaled polynomials p(x) = (c − b)(x − a)
and q(x) = (c − a)(x − b) we assure that the L-linear
span of p(x) and q(x) contains a polynomial, namely
p(x) − q(x), such that p(c) − q(c) = 0, raising the
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number of positions with bandwidth reduction to three.
For a fourth position d to have bandwidth reduction
with this choice of p(x) and q(x) it is necessary that
q(d)/p(d) ∈ L. The latter quantity is called the cross-
ratio of the four elements a, b, c, d.

h =
(c− a)(d− b)
(c− b)(d− a)

. (12)

Clearly it satisfies a symmetry property

h(a, b, c, d) = h(c, d, a, b) (13)

and a transitivity property

h(a, b, c, e) = h(a, b, c, d)h(a, b, d, e). (14)

The three sets I1, I2, I3 in Table II have the property
that, for any four elements chosen from the set, the cross-
ratio is in L. Let {a, b, c} = {ζ, ζ2, ζ11} and {d, e, f} =
{ζ4, ζ9, ζ12} be a partition for I2. The matrix(

1 1 1 1 1 1
a b c d e f

)
is equivalent to the matrix(

(b− c) (c− a) (a− b)
(b− c)a (c− a)b (a− b)c

(e− f) (f − d) (d− e)
(e− f)d (f − d)e (d− e)f

)
.

The last matrix has all its minors in the subfield L =
GF (24). This implies that any three of the following
polynomials are linearly dependent over L.

(b− c)(x− a), (c− a)(x− b), (a− b)(x− c),
(e− f)(x− d), (f − d)(x− e), (d− e)(x− f).

For row A2 in Table II we select p(x) = ζ11(x − ζ4)
and q(x) = (x− ζ9). Both polynomials are scaled, such
that q(x) is monic and such that the leading coefficient
of p(x) is among 1, ζ, . . . , ζ16. Rows A1 and A3 follow
by shifting.

B. Repair relations of type B

The relations in Table III arise from four-tuples of
quadratic polynomials such that any three are linearly
dependent over the subfield L = GF (24). For row B2
the four polynomials are scaled versions of

(x− ζ)(x− ζ12), (x− ζ2)(x− ζ11),

(x− ζ4)(x− ζ9), (x− ζ6)(x− ζ7).

The polynomials have the same constant terms and
are all of the form (x2 + ζ13) + αx. It follows that
they can be scaled such that any three become linearly

dependent over L if and only if the corresponding linear
polynomials y+α have this property, where α is one of

a = ζ + ζ12, b = ζ2 + ζ11, c = ζ4 + ζ9, d = ζ6 + ζ7.

The cross-ratio of these four elements is ζ170 ∈ L. The
other rows use a similar verification.

C. Repair relations of type C

The relations in Table IV arise from pairs of quadratic
polynomials (p, q) that each have five linear combina-
tions p+ αq with a zero in 1, ζ, . . . , ζ13, for a nonzero
coefficent α ∈ L. This property can be stated in terms
of cross-ratios as follows. Let

p(x) = (x− c1)(x− c2), q(x) = (x− d1)(x− d2).

The rescaled versions q(a)p(x) and p(a)q(x) have a
L−linear combination, namely the difference q(a)p(x)−
p(a)q(x), that is zero in x = a. A L−linear combination
with a zero in x = b exists if and only if

p(a)q(b)

q(a)p(b)
=

(a− c1)(b− d1)

(a− d1)(b− c1)

(a− c2)(b− d2)

(a− d2)(b− c2)

= h(c1, d1, a, b)h(c2, d2, a, b)

= h(a, b, c1, d1)h(a, b, c2, d2) = h1h2 ∈ L

In row C2, p(x) has zeros (c1, c2) = (ζ, ζ11) and q(x)
has zeros (d1, d2) = (ζ6, ζ7). And h1h2 ∈ L for any
two a, b ∈ {2, 4, 5, 9, 12}. That this is true for a, b ∈
{2, 4, 9, 12} follows from relation under A2 and B2. For
example, for a = ζ2, b = ζ4, using A2 and transitivity
shows that

h(ζ2, ζ4, ζ, ζ6)h(ζ2, ζ4, ζ11, ζ7) ∈ L
⇔ h(ζ2, ζ4, ζ, ζ6)h(ζ2, ζ4, ζ12, ζ7) ∈ L

and the latter holds by B2. Thus there is strict bandwith
increase between the solutions B2 and C2 and it occurs
at ζ5.

D. Degree two relations of other type

There is a modest total number of 17 · (364 · 363)/2
pairs (p(x), q(x)ζa) where p(x) and q(x) are both
monic and each with three zeros in 1, ζ, . . . , ζ13, and
a = 0, 1, . . . , 16 (so that ζa represents the cosets
of the mutliplicative subgroup L∗ in F ∗). Using the
MAGMA program we found, in a matter of seconds,
100 pairs of polynomials that give a repair scheme with∑
j rankHj = 68 and 2375 pairs with next lowest total

rank
∑
j rankHj = 72. Table I gives a breakdown of

these pairs according to their rank distributions and in-
cludes their mutliplicities (when different pairs span the
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same space over L). A similar search in [3] is over pairs
of monic polynomials, i.e. the special case a = 0. The
case a = 0 produces five pairs with

∑
j rankHj = 68

that correct erasures in the positions 2, 3, 4, 8, 11 with
bandwith 60 but not in the other positions.

VI. REPAIR SCHEMES FOR RS(10,4)
The repair relations A1–A3 in Table II have∑
j rankHj = 8 · 8 + 6 · 4 = 88. They correct erasures

for RS(12,2) with bandwith 80. For RS(10,4) we can
mutliply the linear polynomials p(x) and q(x) with the
same quadratic polynomial (x − c1)(x − c2) to reduce
the rank in the positions c1 and c2. Using A1, A2 and
A3 in this way results in a repair scheme for RS(10,4)
of bandwidth 64.

The relations B1–B6 in Table III reduce the band-
with to one half in eight positions. The relations have∑
j rankHj = 6 · 8 + 8 · 4 = 80. They repair RS(11,3)

with bandwith 72. Mutliplication of the quadratic poly-
nomials p(x) and q(x) with the same linear polynomial
x − c reduces the rank in the position c. This results
in a different repair scheme for RS(10,4) with same
bandwith 64.

A. Repair scheme with bandwidth 60
The relations C1–C12 in Table IV reduce the band-

with to one half in nine positions. The relations have∑
j rankHj = 5 · 8 + 9 · 4 = 76. After mutliplying

the polynomials with a common linear factor the rela-
tions repair erasures for RS(10,4) with bandwith 60. A
minimal set of such relations is given in Table V. The
relations are obtained with C1, C2, C5 and C6 and are
such that C1-C2 and C5-C6 are related by shifting and
C1-C6 and C2-C5 via reciprocity. Each has full rank in
four of the fourteen positions. Together they repair single
erasures in any of the fourteen positions.

B. Repair scheme with bandwidth 56
To arrive at bandwidth 56 we use repair schemes

of degree four. A single repair relation combines four
different checks p · c = q · c = r · c = s · c = 0, obtained
with four different polynomials p(x), q(x), r(x), s(x),
all of degree three. The field F = GF (28) contains
the subfield K = GF (22). For σ(x) = x4, and for
Tr(x) = x+ σ(x) + σ2(x) + σ3(x), we have

Tr(p · c) = Tr(q · c) = Tr(r · c) = Tr(s · c) = 0.

which may be written as

∑
i

Pi


c

σ(c)
σ2(c)
σ3(c)


T

= 0,

for

Pi =


p(xi) σ(p(xi)) σ2(p(xi)) σ3(p(xi))
q(xi) σ(q(xi)) σ2(q(xi)) σ3(q(xi))
r(xi) σ(r(xi)) σ2(r(xi)) σ3(r(xi))
s(xi) σ(s(xi)) σ2(s(xi)) σ3(s(xi))

 .

Rather than searching over all 4-tuples we took a semi-
greedy approach and searched over combinations of pairs
(p, q) and (r, s) such that each of (p, q) and (r, s) has
low (but not necessarilly optimal) bandwidth as degree
two repair scheme. Among the various solutions that we
found Table VI gives seven repair relations that together
repair single erasures in each of the fourteen positions.
Each of the seven relations repairs two unique positions.
The choices for p(x), q(x), r(x), s(x) are of the special
form

p(x) = f0(x)g0(x), q(x) = f0(x)g1(x),

r(x) = f1(x)g0(x), s(x) = f1(x)g1(x), (15)

for linear polynomials f0(x), f1(x) and quadratic poly-
nomials g0(x), g1(x).

C. Repair scheme with bandwidth 54

Table VII gives individual repair solutions with band-
width 54 for each of the positions j = 0, 1, . . . , 13.
Each individual relation has a certain structure, and this
structure was used to search in a non-exhaustive and
non-greedy way within the search space of all relations.
Solutions are equivalent for each pair of positions j and
13 − j through reciprocity. The solutions for positions
2, 5, 8, 11 are of the special form (15). All solutions are
of degree 4 except for the positions j = 0 and j = 13.
Those are of degree 8. They combine two degree 4
solutions of low bandwidth in such a way that the eight
polynomials contain a third degree four low bandwidth
solution.
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full half zero total rank # pairs # checks

4 9 1 68 90 90
3 11 0 68 10 10
6 6 2 72 1260 84 (15)
5 8 1 72 828 36 (6), 60 (3), 432
4 10 0 72 287 62 (3), 101

TABLE I
COUNTING PAIRS OF DEGREE THREE POLYNOMIALS THAT DEFINE CHECKS FOR RS(14,10) OF TOTAL RANK WEIGHT AT MOST 72

(EQUIVALENT TO 9 FULL SYMBOLS). A STANDARD CHECK USES 11 FULL SYMBOLS. THE LAST COLUMN GIVES THE MULTIPLICITY OF A
CHECK (IN PARENTHESES) IF THE SAME CHECK IS DEFINED BY MORE THAN ONE PAIR OF POLYNOMIALS.

A p(x) q(x) I J

1 [ 3 ]ζ11 [ 8 ] I1 = {0, 1, 3, 8, 10, 11} J1 ∪ {5, 6}
2 [ 4 ]ζ11 [ 9 ] I2 = {1, 2, 4, 9, 11, 12} J2 ∪ {6, 7}
3 [ 5 ]ζ11 [ 10 ] I3 = {2, 3, 5, 10, 12, 13} J3 ∪ {7, 8}

TABLE II
RS(12,2): PAIRS OF LINEAR POLYNOMIALS, SIX POSITIONS I WHERE THEY REDUCE BANDWIDTH, AND EIGHT POSITIONS J IN WHICH

THEY CAN CORRECT SINGLE ERASURES

B p(x) q(x) I J

1 [ 1, 10 ] [ 5, 6 ]ζ6 I1 ∪ {5, 6} J1 = {2, 4, 7, 9, 12, 13}
2 [ 2, 11 ] [ 6, 7 ]ζ6 I2 ∪ {6, 7} J2 = {3, 5, 8, 10, 13, 0}
3 [ 3, 12 ] [ 7, 8 ]ζ6 I3 ∪ {7, 8} J3 = {4, 6, 9, 11, 0, 1}

4 [ 4, 8 ] [ 0, 12 ]ζ2 J5 ∪ {5, 8} J4 = {1, 3, 6, 9, 11, 13}
5 [ 5, 9 ] [ 1, 13 ]ζ2 J4 ∪ {5, 8} J5 = {0, 2, 4, 7, 10, 12}

TABLE III
RS(11,3): PAIRS OF QUADRATIC POLYNOMIALS, EIGHT POSITIONS I WHERE THEY REDUCE BANDWIDTH, AND SIX POSITIONS J IN WHICH

THEY CAN CORRECT SINGLE ERASURES

C p(x) q(x) I J

1 [ 0, 10 ] [ 5, 6 ]ζ8 I1 ∪ {4, 5, 6} J1\4
2 [ 1, 11 ] [ 6, 7 ]ζ8 I2 ∪ {5, 6, 7} J2\5
3 [ 2, 12 ] [ 7, 8 ]ζ8 I3 ∪ {6, 7, 8} J3\6

4 [ 1, 11 ] [ 5, 6 ]ζ9 I1 ∪ {5, 6, 7} J1\7
5 [ 2, 12 ] [ 6, 7 ]ζ9 I2 ∪ {6, 7, 8} J2\8
6 [ 3, 13 ] [ 7, 8 ]ζ9 I3 ∪ {7, 8, 9} J3\9

7 [ 1, 3 ] [ 5, 6 ]ζ4 I1 ∪ {5, 6, 12} J1\12
8 [ 2, 4 ] [ 6, 7 ]ζ4 I2 ∪ {6, 7, 13} J2\13

9 [ 9, 11 ] [ 6, 7 ]ζ11 I2 ∪ {0, 6, 7} J2\0
10 [ 10, 12 ] [ 7, 8 ]ζ11 I3 ∪ {1, 7, 8} J3\1

11 [ 0, 4 ] [ 12, 8 ]ζ9 {0, . . . , 13}\J {2, 3, 9, 10, 13}
12 [ 1, 5 ] [ 13, 9 ]ζ9 {0, . . . , 13}\J {0, 3, 4, 10, 11}

TABLE IV
RS(11,3): PAIRS OF QUADRATIC POLYNOMIALS, NINE POSITIONS I WHERE THEY REDUCE BANDWIDTH, AND FIVE POSITIONS J IN WHICH

THEY CAN CORRECT SINGLE ERASURES
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f0(x) g0(x) g1(x) J (g0, g1)

[ 13 ] [ 0, 10 ] [ 5, 6 ] ζ8 J1\{4, 13} : 2, 7, 9, 12 C1
[ 0 ] [ 1, 11 ] [ 6, 7 ] ζ8 J2\{5, 0} : 3, 8, 10, 13 C2

[ 13 ] [ 2, 12 ] [ 6, 7 ] ζ9 J2\{8, 13} : 3, 5, 10, 0 C5
[ 0 ] [ 3, 13 ] [ 7, 8 ] ζ9 J3\{9, 0} : 4, 6, 11, 1 C6

TABLE V
RS(10,4): POLYNOMIALS f0g0 AND f0g1 REPAIR SINGLE ERASURES IN J WITH BANDWIDTH 60.

f0(x) f1(x) g0(x) g1(x) J (g0, g1)

[ 2 ] [ 7 ] ζ57 [ 5, 6 ] [ 1, 10 ] ζ28 4, 12 B1
[ 4 ] [ 12 ] ζ80 [ 5, 6 ] [ 1, 10 ] ζ28 2, 7 B1
[ 5 ] [ 8 ] ζ23 [ 6, 7 ] [ 2, 11 ] ζ28 3, 10 B2
[ 1 ] [ 9 ] ζ82 [ 7, 8 ] [ 3, 12] ζ28 6, 11 B3
[ 6 ] [ 11 ] ζ23 [ 7, 8 ] [ 3, 12] ζ28 1, 9 B3

[ 3 ] [ 13 ] ζ52 [ 6, 7 ] [ 1, 11 ] ζ26 0, 8 C2
[ 0 ] [ 10 ] ζ23 [ 6, 7 ] [ 2, 12 ] ζ25 5, 13 C5

TABLE VI
RS(10,4): POLYNOMIALS f0g0, f0g1, f1g0, f1g1 REPAIR SINGLE ERASURES IN J WITH BANDWIDTH 56.

j p(x) q(x) r(x) s(x) (p,q) (r,s)

0 [ 3, 1, 5 ] [ 3, 9, 13 ]ζ77 [ 1, 3, 12 ]ζ253 [ 1 ,7, 8 ]ζ140 C12 B3
[ 3, 1, 5 ]ζ85 [ 3, 9, 13 ]ζ162 [ 9, 3, 12 ]ζ80 [ 9, 7, 8 ]ζ52 C12 B3

1 [ 3, 4, 8 ] [ 3, 0, 12 ]ζ2 [ 0, 3, 12 ]ζ63 [ 0, 7, 8 ]ζ35 B4 B3
2 [ 12, 5, 9 ] [ 12, 1, 13 ]ζ2 [ 4, 5, 9 ]ζ3 [ 4, 1, 13 ]ζ5 B5 B5

3 [ 11, 1, 5 ] [ 11, 9, 13 ]ζ77 [ 13, 1, 11 ]ζ80 [ 13, 6, 7 ]ζ139 C12 C2
4 [ 10, 1, 5 ] [ 10, 9, 13 ]ζ77 [ 9, 3, 12 ] [ 9, 7, 8 ]ζ57 C12 B3

5 [ 8, 2, 9 ] [ 8, 1, 12 ]ζ21 [ 3, 2, 9 ]ζ62 [ 3, 1, 12 ]ζ83

6 [ 4, 10, 12 ] [ 4, 7, 8 ]ζ62 [ 2, 4, 12 ]ζ3 [ 2, 1, 3 ]ζ80 C10

7 [ 9, 1, 3 ] [ 9, 5, 6 ]ζ55 [ 11, 10, 12 ]ζ60 [ 11, 1, 9 ]ζ80 C7
8 [ 5, 4, 11 ] [ 5, 1, 12 ]ζ23 [ 10, 4, 11 ]ζ57 [ 10, 1, 12 ]ζ80

9 [ 3, 0, 4 ] [ 3, 8, 12 ]ζ77 [ 4, 1, 10 ] [ 4, 5, 6 ]ζ57 C11 B1
10 [ 2, 0, 4 ] [ 2, 8, 12 ]ζ77 [ 0, 2, 12 ]ζ80 [ 0, 6, 7 ]ζ55 C11 C5

11 [ 1, 4, 8 ] [ 1, 0, 12 ]ζ2 [ 9, 4, 8 ]ζ80 [ 9, 0, 12 ]ζ82 B4 B4
12 [ 10, 5, 9 ] [ 10, 1, 13 ]ζ2 [ 13, 1, 10 ]ζ63, [ 13, 5, 6 ]ζ35 B5 B1

13 [ 10, 0, 4 ] [ 10, 8, 12 ]ζ77 [ 12, 1, 10 ]ζ252 [ 12, 5, 6 ]ζ139 C11 B1
[ 10, 0, 4 ]ζ85 [ 10, 8, 12 ]ζ162 [ 4, 1, 10 ]ζ87 [ 4, 5, 6 ]ζ59 C11 B1

TABLE VII
RS(10,4): POLYNOMIALS p, q, r, s, REPAIR ERASURES IN j WITH BANDWIDTH 54.
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