コンテンツにスキップ

「有理関数」の版間の差分

出典: フリー百科事典『ウィキペディア(Wikipedia)』
削除された内容 追加された内容
TobeBot (会話 | 投稿記録)
m ロボットによる 追加: el:Ρητή συνάρτηση
 
(17人の利用者による、間の27版が非表示)
1行目: 1行目:
[[数学]]における'''有理関数'''ゆうりかんすう、{{lang-en-short|rational function}})は、
{{簡易区別|[[有理関数]]({{lang-en-short|meromorphic function}})}}
{{出典の明記|date=2015年10月}}
二つの[[多項式]]をそれぞれ分子と分母に持つ[[分数]]として書ける[[関数 (数学)|関数]]の総称である。
[[抽象代数学]]においては[[変数 (数学)|変数]]と不定元とを区別するので、後者の場合を'''有理式'''と呼ぶ。<!-- [[有理式]]からのリダイレクト補助 -->
[[数学]]における'''有理関数'''(ゆうりかんすう、{{lang-en-short|rational function}})は、二つの[[多項式]]をそれぞれ分子と分母に持つ[[分数]]として書ける[[関数 (数学)|関数]]の総称である。[[抽象代数学]]においては[[変数 (数学)|変数]]と[[不定元]]とを区別するので、後者の場合を'''有理式'''と呼ぶ。<!-- [[有理式]]からのリダイレクト補助 -->


== 定義 ==
== 定義 ==
[[Image:RationalDegree2byXedi.gif|thumb|right|250px|2次の有理関数の例:<br/><math>y = \frac{x^2-3x-2}{x^2-4}</math>]]
[[Image:RationalDegree2byXedi.svg|thumb|right|250px|2次の有理関数の例:<br/><math>y = \frac{x^2-3x-2}{x^2-4}</math>]]


一変数の場合(<math>x</math> とする)、有理関数は次の形の関数である:
一変数の場合(<math>x</math> とする)、有理関数は次の形の関数である:
10行目: 10行目:
: <math> f(x) = \frac{P(x)}{Q(x)}</math>
: <math> f(x) = \frac{P(x)}{Q(x)}</math>


ここで <math>P, Q</math> は <math>x</math> の任意の多項式である。
ここで <math>P, Q</math> は <math>x</math> の任意の多項式である。ただし <math>Q</math> はゼロ多項式([[0]]となる多項式)であってはならない。上の <math>f</math> の[[定義域]]は、分母の <math>Q(x)</math> が0とならない全ての <math>x</math> から成る。
ただし <math>Q</math> は[[0|ゼロ多項式]]であってはならない。
上の <math>f</math> の[[定義域]]は、分母の <math>Q(x)</math> が0とならない全ての <math>x</math> から成る。


'''有理方程式'''とは、二つの有理式を等しいとおいて得られる方程式である。
'''有理方程式'''とは、二つの有理式を等しいとおいて得られる方程式である。これには通常の(数の比である)[[分数]]と同様に、分母を払う等の操作を行ってよい。ただしそうして得た解のうち、分母が0になるようなものは元の有理方程式の解として不適切として除かれる。
これには通常の(数の比である)[[分数]]と同様に、分母を払う等の操作を行ってよい。
ただしそうして得た解のうち、分母が0になるようなものは元の有理方程式の解として不適切として除かれる。


== 例 ==
== 例 ==
[[Image:RationalDegree3byXedi.gif|thumb|right|250px|3次の有理関数の例:<br/><math>y = \frac{x^3-2x}{2(x^2-5)}</math>]]
[[Image:RationalDegree3.svg|thumb|right|250px|3次の有理関数の例:<br/><math>y = \frac{x^3-2x}{2(x^2-5)}</math>]]


次の有理関数
次の有理関数
25行目: 21行目:
: <math>f(x) = \frac{x^3-2x}{2(x^2-5)}</math>
: <math>f(x) = \frac{x^3-2x}{2(x^2-5)}</math>


は、分母の[[零点]]である <math>x^2=5</math> なる <math>x</math> 、すなわち <math>x=\pm \sqrt{5}</math> においては[[定義域|定義されない]]。
は、分母の[[零点]]である <math>x^2=5</math> なる <math>x</math> 、すなわち <math>x=\pm \sqrt{5}</math> においては[[定義域|定義されない]]。なお、この有理関数は、 <math>x\to\infty</math> で <math>\frac{x}{2}</math> に漸近する(直線 <math>y=\frac{x}{2}</math>が[[漸近線]])
なお、この有理関数は、 <math>x\to\infty</math> で <math>x/2</math> に漸近する。


また次の有理関数
また次の有理関数
32行目: 27行目:
: <math>f(x) = \frac{x^2 + 2}{x^2 + 1}</math>
: <math>f(x) = \frac{x^2 + 2}{x^2 + 1}</math>


は全ての[[実数]]について定義されているが、
は全ての[[実数]]について定義されているが、全ての[[複素数]]については定義されていない。これもやはり <math>x=\pm i</math> が分母の零点となっているからであり、その2点が定義域から除かれる。
全ての[[複素数]]については定義されていない。
これもやはり <math>x=\pm i</math> が分母の零点となっているからであり、その2点が定義域から除かれる。


自明な例としては、<math>f(x) = x^2 + 1</math> 等の[[多項式関数]]も有理関数に含まれる。
自明な例としては、<math>f(x) = x^2 + 1</math> 等の[[多項式関数]]も有理関数に含まれる。これは分子が2次の多項式 <math>x^2+1</math> 、分母は0次の多項式 1 であるとみなせる。
これは分子が2次の多項式 <math>x^2+1</math> 、分母0次の多項式 1 であるとみなせる。
さらに自明な例として、他に <math>f(x) = \pi</math> 等の[[定数関数]]も有理関数に含まれる。これは分子が0次の多項式 <math>\pi</math> 、分母0次の多項式 1 であるとみなせる。
ここで注意すべきは、 <math>\pi</math> が[[無理数]]であることと、上の <math>f</math> が有理関数であることは両立する点である。「関数が有理関数である/ない」という概念と、「返り値が[[有理数]]である/ない」という概念を混同してはならない。
さらに自明な例として、他に <math>f(x) = \pi</math> 等の[[定数関数]]も有理関数に含まれる。

これは分子が0次の多項式 <math>\pi</math> 、分母も0次の多項式 1 であるとみなせる。
== 不定積分 ==
ここで注意すべきは、 <math>\pi</math> が[[無理数]]であることと、
実係数の一変数有理関数
上の <math>f</math> が有理関数であることは両立する点である。
:<math> f(x) = \frac{P(x)}{Q(x)} </math>
「関数が有理関数である/ない」という概念と、「返り値が[[有理数]]である/ない」という概念を混同してはならない。
が与えられたとき、分母 {{math|''Q''(''x'')}} の最高次係数が {{math|1}} で {{mvar|k}} 個の相異なる実根 {{math|''r''{{sub|1}}, &hellip;, ''r''{{sub|''k''}}}} をもつならば、[[既約多項式]]の積
:<math>
Q(x) = (x - r_1)^{m_1} \dotsm (x - r_k)^{m_k} (x^2 + s_1 x + t_1)^{n_1} \dotsm (x^2 + s_l + t_l)^{n_l}
</math>
に分解できる。このとき有理関数 {{math|''f''(''x'')}} は以下の形をした関数を用いて表せる([[部分分数分解]])。
:<math>
\begin{align}
f_0(x) &= x^u && (u \ge 0) \\
f_1(x) &= \frac{1}{x - r} && \\
f_2(x) &= \frac{1}{(x - r)^v} && (v > 1) \\
f_3(x) &= \frac{1}{x^2 + a^2} && (a \neq 0) \\
f_4(x) &= \frac{1}{(x^2 + a^2)^w} && (w > 1,\ a \neq 0) \\
f_5(x) &= \frac{x}{x^2 + a^2} && (a \neq 0)\\
f_6(x) &= \frac{x}{(x^2 + a^2)^w} && (w > 1,\ a \neq 0)
\end{align}
</math>
したがって有理関数 {{math|''f''(''x'')}} の[[不定積分]]は {{math|''f''{{sub|''i''}}(''x'')}} の不定積分 {{math|''F''{{sub|''i''}}(''x'')}} を用いて表せる。
:<math>
\begin{align}
F_0(x) &= \frac{1}{u + 1} x^{u + 1} \\
F_1(x) &= \log|x - r| \\
F_2(x) &= \frac{-1}{v - 1}\frac{1}{(x - r)^{v - 1}} \\
F_3(x) &= \frac{1}{a}\arctan\frac{x}{a} \\
F_4(x) &= \frac{1}{2a^2}\bigg(\frac{1}{w - 1}\frac{x}{(x^2 + a^2)^{w - 1}} + \frac{2w - 3}{w - 1}\int\frac{dx}{(x^2 + a^2)^{w - 1}} \bigg) \\
F_5(x) &= \frac{1}{2}\log(x^2 + a^2) \\
F_6(x) &= \frac{-1}{2(w - 1)}\frac{1}{(x^2 + a^2)^{w - 1}}
\end{align}
</math>
特に有理関数の不定積分は有理関数を用いて表せるとは限らないが、有理関数に加えて[[対数関数]] {{math|log}} と[[逆正接関数]] {{math|arctan}} を用いれば必ず表せる。

一方で複素係数の一変数有理関数が与えられたとき、その不定積分は有理関数と対数関数さえ用いれば必ず表せるので、より簡明である。([[複素対数関数|対数関数]]は[[多価関数]]で[[複素数の偏角|偏角]]に由来する不定性があるが、不定積分では積分定数への影響しかない。)

{{See also|リッシュのアルゴリズム}}


== 応用 ==
== 応用 ==
有理関数に最初に触れる機会は、日本では高校の「数学III」が普通であろう。
(多項式や反比例等を除いて)有理関数に最初に触れる機会は、日本では高校の「数学III」が普通であろう。
{{Main|数学 (教科)#普通教科「数学」における学習内容}}
{{Main|数学 (教科)#普通教科「数学」における学習内容}}
より高度な数学においては[[抽象代数学]]の[[体論]]、特に[[体の拡大]]において重要となる。
より高度な数学においては[[抽象代数学]]の[[体論]]、特に[[体の拡大]]において重要となる。有理関数は'''非アルキメデス体'''の例でもある。
{{Main|[[:en:Archimedean property]]}}
有理関数は'''非アルキメデス体'''の例でもある。
{{Main|:en:Archimedean property}}


有理関数は[[数値解析]]において点の[[補間]]や関数の[[近似]]に用いられる。
有理関数は[[数値解析]]において点の[[補間]]や関数の[[近似]]に用いられる。代表例として[[アンリ・パデ]]による[[パデ近似]]がある。有理関数を用いた近似法は[[計算機代数]]システムを始めとする数値計算ソフトウェアに適している。有理関数は多項式と同様に計算が容易でありながら、多項式よりも幅広い表現が可能である。
代表例として[[アンリ・パデ]]による[[パデ近似]]がある。
有理関数を用いた近似法は[[計算機代数]]システムを始めとする数値計算ソフトウェアに適している。
有理関数は多項式と同様に計算が容易でありながら、多項式よりも幅広い表現が可能である。


== 関連項目 ==
== 関連項目 ==
* [[解析学]](特に[[複素解析]])における[[有理型関数|有理''型''関数]]とは全く異なる概念であり、混同しないよう注意すること。日本語では似通った語が用いられているが、例えば英語では二つは全く異なる語で表される("rational" 対 "meromorphic")。
* [[解析学]](特に[[複素解析]])における[[有理型関数|有理''型''関数]]とは異なる概念であり、混同しないよう注意すること。日本語では似通った語が用いられているが、例えば英語では二つは全く異なる語で表される("rational" 対 "meromorphic")。
** ただし、概念としては異なるが関連はある。有理関数であれば有理型関数であるし、'''C''' &cup; {∞}全体で有理型である関数は有理関数に限る。
** ただし、概念としては異なるが関連はある。有理関数であれば有理型関数であるし、'''C''' &cup; {∞}全体で有理型である関数は有理関数に限る。
* [[部分分数分解]]
* [[部分分数分解]]


{{math-stub}}
{{Algebra-stub}}


{{DEFAULTSORT:ゆうりかんすう}}
{{DEFAULTSORT:ゆうりかんすう}}
[[Category:分数]]
[[Category:関数]]
[[Category:関数]]
[[Category:初等数学]]
[[Category:初等数学]]
[[Category:有理関数|*]]
[[Category:数学に関する記事]]
[[Category:数学に関する記事]]

[[cs:Racionální funkce]]
[[de:Rationale Funktion]]
[[el:Ρητή συνάρτηση]]
[[en:Rational function]]
[[es:Función racional]]
[[fr:Fonction rationnelle]]
[[hu:Racionális törtfüggvény]]
[[is:Rætt fall]]
[[it:Funzione razionale]]
[[lb:Rational Funktioun]]
[[nl:Rationale functie]]
[[no:Rasjonal funksjon]]
[[pl:Funkcja wymierna]]
[[pt:Função racional]]
[[ru:Рациональная функция]]
[[sk:Racionálna funkcia]]
[[sl:Racionalna funkcija]]
[[sr:Рационална функција]]
[[sv:Rationell funktion]]
[[uk:Раціональна функція]]
[[zh:有理函數]]

2023年8月1日 (火) 12:36時点における最新版

数学における有理関数(ゆうりかんすう、: rational function)は、二つの多項式をそれぞれ分子と分母に持つ分数として書ける関数の総称である。抽象代数学においては変数不定元とを区別するので、後者の場合を有理式と呼ぶ。

定義

[編集]
2次の有理関数の例:

一変数の場合( とする)、有理関数は次の形の関数である:

ここで の任意の多項式である。ただし はゼロ多項式(0となる多項式)であってはならない。上の 定義域は、分母の が0とならない全ての から成る。

有理方程式とは、二つの有理式を等しいとおいて得られる方程式である。これには通常の(数の比である)分数と同様に、分母を払う等の操作を行ってよい。ただしそうして得た解のうち、分母が0になるようなものは元の有理方程式の解として不適切として除かれる。

[編集]
3次の有理関数の例:

次の有理関数

は、分母の零点である なる 、すなわち においては定義されない。なお、この有理関数は、 に漸近する(直線 漸近線)。

また次の有理関数

は全ての実数について定義されているが、全ての複素数については定義されていない。これもやはり が分母の零点となっているからであり、その2点が定義域から除かれる。

自明な例としては、 等の多項式関数も有理関数に含まれる。これは分子が2次の多項式 、分母は0次の多項式 1 であるとみなせる。 さらに自明な例として、他に 等の定数関数も有理関数に含まれる。これは分子が0次の多項式 、分母も0次の多項式 1 であるとみなせる。 ここで注意すべきは、 無理数であることと、上の が有理関数であることは両立する点である。「関数が有理関数である/ない」という概念と、「返り値が有理数である/ない」という概念を混同してはならない。

不定積分

[編集]

実係数の一変数有理関数

が与えられたとき、分母 Q(x) の最高次係数が 1k 個の相異なる実根 r1, …, rk をもつならば、既約多項式の積

に分解できる。このとき有理関数 f(x) は以下の形をした関数を用いて表せる(部分分数分解)。

したがって有理関数 f(x)不定積分fi(x) の不定積分 Fi(x) を用いて表せる。

特に有理関数の不定積分は有理関数を用いて表せるとは限らないが、有理関数に加えて対数関数 log逆正接関数 arctan を用いれば必ず表せる。

一方で複素係数の一変数有理関数が与えられたとき、その不定積分は有理関数と対数関数さえ用いれば必ず表せるので、より簡明である。(対数関数多価関数偏角に由来する不定性があるが、不定積分では積分定数への影響しかない。)

応用

[編集]

(多項式や反比例等を除いて)有理関数に最初に触れる機会は、日本では高校の「数学III」が普通であろう。

より高度な数学においては抽象代数学体論、特に体の拡大において重要となる。有理関数は非アルキメデス体の例でもある。

有理関数は数値解析において点の補間や関数の近似に用いられる。代表例としてアンリ・パデによるパデ近似がある。有理関数を用いた近似法は計算機代数システムを始めとする数値計算ソフトウェアに適している。有理関数は多項式と同様に計算が容易でありながら、多項式よりも幅広い表現が可能である。

関連項目

[編集]
  • 解析学(特に複素解析)における有理関数とは異なる概念であり、混同しないよう注意すること。日本語では似通った語が用いられているが、例えば英語では二つは全く異なる語で表される("rational" 対 "meromorphic")。
    • ただし、概念としては異なるが関連はある。有理関数であれば有理型関数であるし、C ∪ {∞}全体で有理型である関数は有理関数に限る。
  • 部分分数分解