import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
df = pd.read_csv("data.tsv", index_col=0 , sep = "\t")
fig, ax = plt.subplots(figsize=(8, 5))
x = np.arange(df.index.size)
ax.bar(x-0.25, df["General practitioner"] , color="#3b95d3", width=0.25, bottom=0)
ax.bar(x, df["Psychiatrist"] , color="#D676AB", width=0.25, bottom=0)
ax.bar(x+0.25, df["Psychologist"] , color="#9BBB59", width=0.25, bottom=0)
ax.legend(df.columns, fontsize=10, ncol=2, loc='upper right', frameon=True, facecolor="#dddddd")
ax.set_axisbelow(True)
plt.rcParams['font.family'] = 'sans-serif'
plt.rcParams['font.sans-serif'] = ['Noto Sans Display']
plt.subplots_adjust(left=0.08, bottom=0.17, right=0.99, top=0.88)
plt.title("Type of provider(s) consulted for mental health problems 2010\n(OECD Making Mental Health Count 2014)", fontsize=13)
plt.tick_params(labelsize=10, pad=4)
plt.xticks(x, df.index, rotation=55, size=8)
plt.ylabel("Percentage", size=8)
plt.yticks(fontsize=9)
plt.ylim([0,100])
ax.minorticks_on()
plt.grid(which='major',color='#999999',linestyle='-', axis="y")
plt.grid(which='minor',color='#eeeeee',linestyle='--', axis="y")
plt.savefig("image.svg")