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Abstract

In the 1980’s, Bennett introduced computational depth as a formal measure
of the amount of computational history that is evident in an object’s structure.
In particular, Bennett identified the classes of weakly deep and strongly deep
sequences, and showed that the halting problem is strongly deep. Juedes, Lath-
rop, and Lutz subsequently extended this result by defining the class of weakly
useful sequences, and proving that every weakly useful sequence is strongly
deep.

The present paper investigates refinements of Bennett’s notions of weak
and strong depth, called recursively weak depth (introduced by Fenner, Lutz
and Mayordomo) and recursively strong depth (introduced here). It is argued
that these refinements naturally capture Bennett’s idea that deep objects are
those which “contain internal evidence of a nontrivial causal history.” The fun-
damental properties of recursive computational depth are developed, and it is
shown that the recursively weakly (respectively, strongly) deep sequences form
a proper subclass of the class of weakly (respectively, strongly) deep sequences.
The above-mentioned theorem of Juedes, Lathrop, and Lutz is then strength-
ened by proving that every weakly useful sequence is recursively strongly deep.
It follows from these results that not every strongly deep sequence is weakly
useful, thereby answering a question posed by Juedes.
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1 Introduction

Computational depth was introduced by Bennett [3, 4] as a formal measure of the
amount of computational history that is evident in the structure of a computational,
physical, or biological object. Roughly speaking, if x is an object (such as a computer
program, a point in a phase space, or a DNA sequence) that can be encoded in
binary in a natural way — in which case we identify x with its encoding — then
the computational depth of x is the amount of time required for a computation to
derive x from its shortest binary description. (Precise definitions appear in sections
2 and 3 of this paper.) Like Solomonoff [27], Bennett regards a description of z as a
formal analog of a scientific explanation of x. By Occam’s razor, then, the shortest
description of x is the most plausible explanation of x, and the computational depth
of x is the amount of time required for an effective process to generate x from its
most plausible explanation. Bennett thus says that a deep object is “one whose most
plausible origin, via an effective process, entails a lengthy computation,” and, more
succinctly, that a deep object is one that contains “internal evidence of a nontrivial
causal history” [4].

In order to avoid undue sensitivity to the underlying computational model, Ben-
nett’s definition of depth refers not only to an object’s shortest description, but to all
descriptions of the object that have nearly minimal length. This is achieved by adding
a significance parameter to the definition. Specifically, for ¢ € N, the computational
depth of an object x at significance level ¢ is the time required for a computation to
derive z from a binary description 7 that is itself compressible by no more than ¢
bits. (That is, every description of m consists of at least |r| — ¢ bits.)

For (infinite, binary) sequences, Bennett [3, 4] introduced two interesting depth
conditions, strong depth and weak depth. A sequence S is strongly deep if, for every
computable time bound ¢ : N — N and every constant ¢ € N, for all but finitely many
n € N, the n-bit prefix S[0..n — 1] of S has depth greater than ¢(n) at significance
level c¢. If we regard a description 7 from which S[0..n — 1] can be derived in at
most ¢(n) computation steps as a t(n)-compression of S[0..n — 1], then this says that,
for all computable time bounds ¢ and constants ¢, for all but finitely many n, every
t(n)-compression of S[0..n — 1] is itself compressible by more than ¢ bits. Thus a
sequence is strongly deep if no computable time bound suffices to compress infinitely
many of its prefixes to within a constant number of bits of the optimal compression.

To put the matter more fancifully, no matter how (computably) much time is spent
looking for inner structure (i.e., basis for compression) in a strongly deep sequence,
an unbounded quantity of such inner structure remains undiscovered. A strongly
deep sequence is thus analogous to a great work of literature for which no number of
readings suffices to exhaust its value.



It was shown by Bennett [4] (and also in [10]) that no sequence that is either
decidable or random (i.e., algorithmically random in the sense of Martin-Lo6f [19])
can be strongly deep. However, strongly deep sequences do exist. For example,
Bennett [4] noted that K, the diagonal halting problem, is strongly deep. This is
because K, unlike a decidable or random sequence, can be used (as an oracle) to
decide any decidable sequence within a computable (in fact, polynomial) time bound
that does not depend on the sequence.

This relationship between depth and usefulness (as an oracle) was investigated
more explicitly and generally by Juedes, Lathrop, and Lutz [10], who defined strong
and weak usefulness conditions for sequences. A sequence S is strongly useful if there
is a fixed computable time bound ¢ : N — N such that the set DTIME®(¢), consisting
of all sequences that can be decided in #(n) time using the oracle S, contains every
decidable sequence, i.e., REC € DTIME®(t), where REC is the set of all decidable
sequences. A sequence S is weakly useful if there is a fixed computable time bound
t : N — N such that the set DTIME®(¢) does not have measure 0 in REC, i.e.,
DTIME® () N REC is a nonnegligible subset of REC in the sense of the recursive
case of the resource-bounded measure theory developed by Lutz [18]. That is, S is
weakly useful if a nonnegligible set of decidable sequences can be decided within a
computable time bound that may depend on S but does not depend on the sequence
being decided. By the above remark, K is strongly useful. It is evident that every
strongly useful sequence is weakly useful, and Fenner, Lutz, and Mayordomo [6] have
shown that the converse does not hold, so the set of strongly useful sequences is
properly contained in the set of weakly useful sequences.

Juedes, Lathrop, and Lutz [10] proved that every weakly useful sequence is strongly
deep. This generalized Bennett’s observation that K is strongly deep and gave formal
support to Bennett’s informal arguments relating depth and usefulness. Strong depth
is a necessary condition for weak usefulness. Juedes [9] subsequently asked whether
the converse is true, i.e., whether strong depth actually characterizes weak usefulness.

In this paper, we show that weakly useful sequences have a strictly stronger depth
property than strong depth, thereby answering Juedes’s question negatively. In fact,
this stronger depth property, a constructive refinement of strong depth called recur-
siwely strong depth, is the main topic of this paper.

In the terminology used above to describe strong depth, a sequence S is recursively
strongly deep (briefly, rec-strongly deep) if, for every computable time bound ¢ and
constant ¢, there exists a computable time bound [ such that, for all but finitely many
n, every t(n)-compression of S[0..n — 1] is itself [(n)-compressible by more than ¢ bits.
It is the existence of this computable time bound [ that distinguishes rec-strong depth
from strong depth. Returning to the more fanciful language used earlier, no matter
how (computably) much time is spent looking for inner structure in a rec-strongly



deep sequence, and no matter now much additional structure (any constant number
of bits) one wishes to find, there is always a greater (computable) amount of time
that suffices to find that much more structure. A rec-strongly deep sequence is thus
analogous to a great work of literature with the property that, no matter how many
times it has been read, there is a greater number of readings from which one can
derive significantly more value.

In this paper, we establish the existence of sequences that are strongly deep but
not rec-strongly deep. Such a sequence S must have the following two properties.

(i) There exist a fized computable time bound ¢y : N — N and a fized constant
c¢o € N such that, for every computable time bound [ : N — N, there are
infinitely many prefixes S[0..n — 1] of S that have to(n)-compressions that are
not [(n)-compressible by ¢y or more bits.

(ii) For every constant ¢ € N (no matter now much larger than c¢), for all but
finitely many prefixes S[0..n — 1] of S, every ty(n)-compression of S[0..n — 1] is
itself compressible by more than ¢ bits.

By (i), none of the additional compression (beyond ¢, bits) promised in (ii) can be
realized within any computable time bound. Once again comparing a sequence to a
work of literature and taking a number of readings as an analogy for a computable
time bound, a sequence that is strongly deep but not rec-strongly deep is analogous
to a work of literature for which no number of readings exhausts its value, but some
number of readings does exhaust all the value that can be exhausted by any number
of readings.

Using Bennett’s terminology, a rec-strongly deep sequence S shows evidence of a
nontrivial causal (computational) history in the constructive, incremental sense that
every explanation of S that can be realized by an effective process of computable
duration is significantly less plausible than some other explanation of S that can also
be realized by an effective process of some greater computable duration. In contrast,
a sequence that is strongly deep but not rec-strongly deep has an explanation that (i)
can be realized by an effective process of computable duration, and (ii) is as plausible
as any other explanation that can be realized by an effective process of computable
duration. Although such a sequence does have a more plausible explanation, there is
no constructive evidence of this fact.

None of the above should be taken to imply that rec-strong depth is a better (or
worse) notion than strong depth. Both notions merit further investigation. In the
case of rec-strong depth, there are several reasons for this. First, as noted above,
rec-strongly deep sequences show evidence of a “nontrivial causal history” in a nat-
ural, constructive, incremental sense. Second, as we show in this paper, rec-strong
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depth enjoys the same useful slow-growth property (and consequent upward closure
under truth-table reductions) that Bennett [4] proved for strong depth. Third, as
we show in this paper, rec-strong depth can be used to separate weak usefulness
from strong depth, thereby answering Juedes’s question. Fourth, as developed below,
rec-strong depth is based on a recursive depth function (with an additional latency
parameter), and therefore provide a useful model for the design and analysis of im-
plementable depth measures such as the compression depth introduced by Lathrop
[12]. Fifth, and perhaps most compelling, we show that the relationships among
rec-strong depth, the notion of rec-weak depth introduced by Fenner, Lutz and May-
ordomo [6], and the notion of rec-randomness that has been investigated by Schnorr
[24, 25], van Lambalgen [28], Lutz [18], Wang [29], and others correspond closely to
the relationships among strong depth, weak depth and algorithmic randomness.

This paper is largely self-contained. It can be read independently of [4, 10], but we
assume that [10] is at hand for reference. In section 2 we introduce basic terminology
and notation and summarize those elements of recursive measure, randomness, Kol-
mogorov complexity, and computational depth that are used in this paper. Section 3,
the main section of this paper, presents rec-strong depth, rec-weak depth, and our re-
sults on these notions. Section 3 is divided into a preamble and four (sub-)sections. In
the preamble, we develop the above-mentioned recursive depth function, depthlc(w).
In section 3.1 we use this function to define rec-strong depth; we review the notion
of rec-weak depth introduced by Fenner, Lutz, and Mayordomo [6]; and we introduce
the most basic properties of these notions. In section 3.2 we prove the deterministic
slow growth law for recursive computational depth and establish the basic inclusion
relations among the weak, strong, rec-weak, and rec-strong depth classes, namely,

rec-wkDEEP
@ O

rec-strDEEP wkDEEP.
O ¢
strDEEP

In section 3.3 we prove that all these inclusions are proper by proving that the classes
rec-wkDEEP and strDEEP are incomparable. Both directions of the incomparability
proof are nontrivial. One direction yields the stronger fact that rec-random sequences
can be strongly deep, while the other direction uses the recursive version of the first
Borel-Cantelli lemma [18] in a Baire category argument. In section 3.4 we prove
that every weakly useful sequence is rec-strongly deep, thereby answering Juedes’s
question. In section 4 we briefly indicate directions for future research.



2 Preliminaries

2.1 Notation and Terminology

We use the sets Z,Z",N,Q, and R, consisting of all integers, positive integers, non-
negative integers, rational numbers, and real numbers, respectively. Given a property
©(n), where the variable n ranges over N, we use the abbreviations

(3°n)p(n) = there exist infinitely many n € N such that p(n),
(V*n)p(n) = for all but finitely many n € N, ¢(n).

The Boolean value of a condition 1) is [1)] = if ¢ then 1 else 0. All logarithms are
base-2. The cardinality of a finite set X is denoted by |X|.

We write {0,1}" for the set of all (finite, binary) strings. We write |w| for the
length of a string w and A for the empty string. The self-delimiting version of a string
w € {0,1}" is the string sd(w) = 0/'1w. For k € N and wy, ... ,wp_; € {0,1}", the
self-delimiting encoding of the sequence (wy, -+, kx_1) is

(wg, -+ ,wg_1) = sd(sd(wy) - - -sd(wg_1)).

The standard enumeration of {0,1}" is the sequence so = A, s; = 0, 55 = 1, 53 = 00,
..., ordered first by length and then lexicographically. For u,v € {0,1}", u is a prefiz
of v, and we write u C v, if there is a string w € {0,1}" such that v = vw. For
w € {0,1}" and 0 < n < |w|, we write w[n] for the n™ bit of w. (The leftmost bit of
w is the 0™ bit.) For w € {0,1}" and 0 < n < |w|, we write w[0..n — 1] for the n-bit
prefix of w.

We work in the Cantor space C, consisting of all (infinite, binary) sequences. A
string w € {0,1}" is a prefir of a sequence S € C, and we write w C S if there is a
sequence A € C such that S = wA. For S € C and n € N, we write S[n] for the n'®
bit of S and S[0..n — 1] for the n-bit prefix of S. The complement of a set X C C is
the set X¢=C — X.

We write REC for the set of all decidable sequences in C and rec for the set of all
computable (total) functions from {0, 1} to {0,1}". Identifying strings s,, with their
indices n in the standard enumeration of {0, 1}, we also write rec for the set of all
computable functions from N to N.

Given a time bound s : N — N, we say that an oracle Turing machine M is s-time-
bounded if, given any input n € N and oracle A € C, M decides a bit M“(n) € {0,1}
in at most s(l) steps, where [ = |s,| = [log(n + 1)]. In this case, if B € C satisfies



Bn] = M*#(n) for all n € N, then we say that B is Turing reducible to A in time s
wia M, and we write B g?TIME(S) A via M. We say that B is Turing reducible to A
in time s, and we write B g?TIME(S) A, if there exists a Turing machine M such that

B <D™ ) 4 via M. For A€ Cand s: N — N, we write

DTIMEA (s) = {B =Xe ‘ B <DTIME() A} .
(Note that the time bound is sharp; there is no “big-O.”)

Asin [22], we define a truth-table condition (briefly, a tt-condition) to be an ordered
pair 7 = ((ny,...n%),g), where k,ny,...ny € Nand g : {0,1}* — {0,1}. We write
TTC for the set of all tt-conditions. The tt-value of a sequence S € C under a
tt-condition 7 = ((n,... ,ng), g) is the bit

7% = g(S[n] - - S[ng).

A truth-table reduction (briefly, a tt-reduction) is a computable function F' : N —
TTC. A tt-reduction F' naturally induces a function F' : C — C defined by

F(S)[n] = F(n)°

for all n € N. In general, we identify a tt-reduction F' with the induced function
F, writing F for either function. For A, B € C, A is truth-table reducible (briefly,
tt-reducible) to B, and we write A <y B, if there is a tt-reduction F' such that
A= F(B).

It is easy well known that tt-reductions are equivalent to time-bounded Turing

reductions in the sense that for all A, B € C, A <i; B if and only if there exists a

computable time-bound ¢ : N — N such that A g?TIME(“ B.

Definition. A uniform reducibility is a computable function F': N x N — TTC.

If F is a uniform reducibility, then we use the notation Fj(n) = F(k,n), thereby
regarding F' as a computable sequence Fy, F}, Fs, ... of tt-reductions.

Definition. If F' is a uniform reducibility and A, B € C, then A is F-reducible to B,
and we write A <p B, if there exists k € N such that A = Fj,(B).

The following well-known facts are easy to verify.

(i) For every computable function ¢t : N — N, there is a uniform reducibility F'
such that, for all A, B € C,

A<p B A <PTMEO B



(ii) For every uniform reducibility F, there is a computable function ¢ : N — N
such that, for all A, B € C,

A<p B= A <D0 B

Let D be a discrete domain such as N, {0,1}", or Nx{0,1}". A function f : D — Q
is exactly computable if there exist computable functions fi, fo : D — Z such that,
for all x € D, f(z) = fi(x)/f2(x). A function f : D — R is computable if there is

~

an exactly computable function f : N x D — Q such that, for all » € N and z € D,
|f(r,x) — f(x)] <277. A function f: D — R is lower semicomputable if there is an
exactly computable function f : N x D — Q such that (i) for all r € N and = € D,

~ ~ ~

f(r,z) < f(r+1,2); and (ii) for all x € D, lim,_,, f(r,2) = f(2).

A series > 7 | «, of nonnegative reals «, is rec-convergent if there is a computable
function m : N — N, called a modulus of convergence, such that, for all r € N,
Z;o:m(r) o, <277, More generally, if Y7 |« ,, Is a series of nonnegative reals for each
k € N, then the series Y " oy, (k=0,1,...) are uniformly rec-convergent if there
is a computable function m : N x N — N such that, for all k,r € N, > ) Qi <

n=m(k,r —
2-r

2.2 Randomness and Kolmogorov Complexity

We work with the uniform probability measure i on the Cantor space C. For each
w € {0,1}", the cylinder
C, = {4ec|wC 4]

is assigned the probability
1(Cy) = Pr(C,,) = 2711,
For each event (measurable set) £ C C, the probability u(€) = Pr(€) is then defined
in the standard way [23]. We write Pr[p(A)] or Prafp(A)] for Pr({A|p(A)}).
A martingale is a function d : {0,1}" — [0, 00) such that, for all w € {0,1}",

d(w) > d(w0) + d(wl)‘
- 2

The following inequality of Kolmogorov is easily verified.

Lemma 2.1. If d is a martingale and 0 < a € R, then

Pra[(3w C A)d(w) > a-d(N)] <

o=



In particular, for all w € {0, 1}", d(w) < 2*ld()).

A martingale d succeeds on a sequence A € C if

oO.

lim sup d(A[0..n — 1])

n—o0

The success set of a martingale d is
S™[d] = {A eC ‘ d succeeds on A} :

It follows readily from Lemma 2.1 that a set X C C is a probability 0 event (i.e.,
Pr(X) = 0) if and only if there is a martingale d such that X C S*[d]. As in [18],
we effectivize this characterization to obtain a notion of measure in REC.

A rec-martingale (recursive martingale) is a martingale that is computable in the
sense defined in section 2.1.

Definition (Lutz [18]). Let X C C.

1. X has rec-measure 0, and we write fie.(X) = 0, if there is a rec-martingale d
such that X C S*[d].

2. X has rec-measure 1, and we write figec(X) = 1, if firec(X¢) = 0.

3. X has measure 0 in REC, and we write u(X|REC) = 0, if piec(X NREC) = 0.

4. X has measure 1 in REC, and we write u(X|REC) = 1, if u(X¢|/REC) = 0.

Results proven in [18] justify the intuition that u(X|REC) = 0 if and only if

X NREC is a negligibly small subset of REC. Accordingly, if u(X|REC) = 1, we say
that X contains almost every sequence in REC.

The unitary success set of a martingale d is
S'd = | Cu
d(w)>1

In section 3.3 we use the following uniform, recursive version of the first Borel-Cantelli
lemma.

Theorem 2.2 (Lutz [18]).  Assume that
d:NxNx{0,1}" = [0,00)

is a computable function with the following two properties.

9



(i) For each k,n € N, the function dy, defined by dj ,(w) = d(k,n,w) is a martin-
gale.

(ii) The series Z din(X) (k=0,1,...) are uniformly rec-convergent.

n=0

Then

Hrec (U ﬂ U Sl[dk,n]> =0.

k=0 m=0n=m

Recursive randomness has been investigated by Schnorr [24, 25], van Lambalgen
[28], Lutz [18], Wang [29], and others. A sequence S € C is rec-random (recursively
random), and we write S € RAND(rec), if there is no rec-martingale that succeeds
on S. The following easy consequence of Theorem 2.2 is also used in section 3.3.
Corollary 2.3 (Lutz [18]). Assume that S € RAND(rec) and let

d:Nx{0,1}" — [0, 00)

be a computable function with the following two properties.

(i) For each n € N, the function d,, defined by d,(w) = d(n,w) is a martingale.

oo
(ii) The series Z d,(A) is rec-convergent.
n=0

Then there are only finitely many n € N such that S € S'[d,,].

An ezact rec-martingale is a martingale d with rational values (i.e., d : {0,1}" —
QnN[0,00)) that is exactly computable. The following lemma gives a convenient
sufficient condition for rec-randomness. It follows immediately from the definition of
rec-randomness, the recursive equivalence of martingale success and strong martingale
success [28], and the Exact Computation Lemma [11, 20].

Lemma 2.4. Let S € C. If for every exact rec-martingale d satisfying d(\) = 1
there exist ¢, € N and infinitely many prefixes w C S such that d(w) < ¢4, then S is
rec-random.

10



Algorithmic randomness, introduced by Martin-Lo6f [19], is a stronger condition
than rec-randomness that can be defined in several equivalent ways. The definition
in terms of martingales, introduced by Schnorr [24], states that a sequence S € C
is (algorithmically) random if no lower semicomputable martingale succeeds on S.
We write RAND for the set of all random sequences. It is well-known [19] that
Pr(RAND) =1, i.e., almost every sequence is random.

We refer the reader to section 4 of [10] for a concise presentation of our terminology
and notation on Kolmogorov complexity, including (self-delimiting) Turing machines,
the efficient universal Turing machine U, the program sets PROG’(x) and PROG', the
Kolmogorov complexity K (z), the time-bounded Kolmogorov complexity K*(z), the
algorithmic probability m(x), and the time-bounded algorithmic probability m®(z).
These notions are also developed in the text by Li and Vitanyi [15]. We write K (n)
for K(s,), where s, is the n'® string in the standard enumeration of {0, 1}".

Lemma 2.5 (Chaitin [5]). There is a constant ¢ € N such that, for all n,k € N,

Hx e {0,1}"

K(z) <n+K(n) — k}‘ < gntek

We also use the following result on the noncomputability of K (n).

Theorem 2.6 (Kolmogorov, reported in [30]).  If g : N — N is partial recursive
and unbounded, then there exist infinitely many n € N such that K(n) < g(n).

Randomness is characterized in terms of Kolmogorov complexity as follows.

Theorem 2.7 (Levin [13, 14], Schnorr [26]). A sequence S € C is random if and
only if there is a constant ¢ € N such that, for all n € N, K(S[0..n —1]) > n —c.

As in [10], for ¢, g : N — N, we use the notation
KL, [< g(n)] = {S € C| @*n)K'(S0.n 1)) < g(n)]

and the following result on measure in REC.

Theorem 2.8 (Lutz [18]). For every computable time bound ¢ : N — N and every
real number a < 1,

1 (Kfo (< an] ‘REC) =0.
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2.3 Computational Depth

Following Bennett [4], we define the computational depth of a string w € {0,1}" at a
significance level ¢ € N to be

depth,(w) = min {t eN ‘ (37 € PROG!(w)) || < K(7) + c} :

That is, depth,(w) is the minimum amount of time required to obtain w from a
program 7 that cannot itself be obtained from a program that is ¢ or more bits
shorter than 7. It is easy to see that depth,.(w) is not computable from ¢ and w.
(Otherwise K (w) would be computable, contradicting Theorem 2.6.) Also, for each
w € {0,1}", the value depth,(w) is nonincreasing in c.

Definition ([10]). For¢,¢g: N — N and n € N, define the sets
D} (n) = {5 eC ‘ depth,, (S[0.n — 1]) > t(n)}
and
D = {5 eC ‘ (V®n)S € D;(n)} .
Note that

Din)={sec ‘ (vr € PROG!(S[0..n — 1])) K () < || — g(n)} .

Definition (Bennett [4]). A sequence S € C is strongly deep, and we write S €
strDEEP, if for every computable time bound ¢ : N — N and every constant ¢ € N,
S € DL. That is,

strDEEP = () Di.

ceN
tErec

The following theorem due to Bennett shows that random sequences are very
shallow. A proof also appears in [10].

Theorem 2.9. RAND N strDEEP = (). In fact, there exist a computable function
t(n) = O(nlogn) and a constant ¢ € N such that RAND N D! = ().

Bennett [4] gave useful characterizations of strong depth in terms of the time-
bounded Kolmogorov complexities and algorithmic probabilities of prefixes. As in
[10], we state these characterizations in terms of the following classes, which turn out
to be “minor variants” of the classes D} (n) and D}.
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Definition. For t,g : N — N and n € N, define the sets

Di(n) = {5 € C| K(S[0.n— 1]) < K"(S[0.n — 1]) — g(n) }

D, ={sec|(n

D (n) = {s e C | m(S[0.n — 1]

D, ={sec|(n

Bennett’s alternate characterizations of strong depth are as follows. A proof also
appears in [10].

Theorem 2.10 (Bennett [4]). For S € C, the following three conditions are
equivalent.

(1) S is strongly deep.

(2) For every computable time bound ¢ : N — N and every constant ¢ € N, S € Dt

(3) For every computable time bound ¢ : N — N and every constant ¢ € N, S € DL,

Bennett defined weak depth as follows.

Definition. A sequence S € C is weakly deep, and we write S € wkDEEP, if there
is no sequence R € RAND such that S <;; R.

Bennett [4] proved that strtDEEP & wkDEEP. Juedes, Lathrop, and Lutz [10]
subsequently proved the stronger fact that, in the sense of Baire category (defined in
section 3.3 below), almost every sequence in C is weakly deep, but not strongly deep.

The reader is referred to [4], [10], or [15] for further discussion of computational
depth.

3 Recursive Computational Depth

As noted in section 2.3, the value depth.(w) — the computational depth of a string
w at significance level ¢ — is not computable from w and c¢. The following definition
remedies this at the expense of introducing an additional variable.
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Definition. For w € {0,1}" and ¢, € N, the recursive computational depth of w at
significance level ¢ with latency [ is

depth! (w) = min {t eN ‘ (3r € PROG! (w)) || < K'(r) + c} :

That is, depth’(w) is the minimum amount of time required to obtain w from a
program 7 that cannot itself be obtained in time [ from a program that is ¢ or more
bits shorter than 7. It is clear that depth!(w) is computable from w, ¢, and [; this is
why it is called the recursive computational depth. Two other properties of depth’ (w)
are immediately evident. For each w € {0,1}* and ¢ € N, depth(w) is nondecreasing
in 1, and lim;_, depth’(w) = depth,(w). For each w € {0,1}" and | € N, the value
depth’,(w) is, like depth,(w), nonincreasing in c.

In this section, we use the quantity depthi(w) to define recursively strong depth;
we review the notion of recursively weak depth introduced by Fenner, Lutz, and
Mayordomo [6]; and we investigate the relationships of these notions to each other,
to the strong and weak depth notions of Bennett [4] (defined in section 2.3), and to
the notion of weak usefulness introduced by Juedes, Lathrop, and Lutz [10].

3.1 Recursive Depth Classes

We begin by defining the recursive analogs of the depth classes DZ(n) and DZ discussed
in section 2.3.

Definition. For #, g,/ : N — N and n € N, define the sets
g9(n)

DE(n) = {s eC ‘ depth'® (S[0..n — 1]) > t(n)}

and

Dht = G ﬁ DL (n) = {5 €C ‘ (V>°n) S € D;’l(n)}.

m=0n=m

Note that

Db (n) = {s eC ‘ (¥x € PROG!(S[0..n — 1])) K'™ (x) < |x| — g(n)} .

(It is crucial here that the left-hand side of the inequality is K (), not K'(r), i.e.,
that the time bound is I(n), not I(|x]).)
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Definition. Let t,g: N — N. A sequence S € C is recursively t-deep at significance
level g, and we write S € Dz’ re¢ if there is a computable function [ : N — N such
that S € Db!. That is,

t,rec __ t,l
Dg o U Dg :

[Erec

It is clear that, for all ¢, g,/ : N — N with [ computable, D%! C Db C D!, To
define recursively strong depth, we substitute D} ™ for D! in the definition of strong
depth.

Definition. A sequence S € C is recursively strongly deep (or, briefly, rec-strongly
deep), and we write S € rec-strDEEP, if for every computable time bound ¢ : N — N
and every constant ¢ € N, S € D% ™. That is,

rec-strDEEP = (7] DL ™.

ceEN
tErec

We first note that every rec-strongly deep sequence is strongly deep.
Observation 3.1. rec-strDEEP C strDEEP.

Proof. This follows immediately from the fact that each D% C DL O

Since REC N strDEEP = () [4] (see also [10]), it follows immediately from
Observation 3.1 that no recursive sequence can be rec-strongly deep.

Recall that a sequence S is strongly deep if, for every computable time bound ¢
and constant c, all but finitely many prefixes of S can be described at least ¢ bits more
succinctly without a time bound than with the time bound ¢. In contrast, a sequence
S is rec-strongly deep if, for every computable time bound ¢ and constant ¢, there
exists a computable time bound [ such that all but finitely many prefixes of S can
be described at least ¢ bits more succinctly with the time bound [ than with the time
bound ¢. Very informally, a sequence is strongly deep if it has more regularity than can
be explained by a causal (computational) history of any computable duration. For a
sequence to be rec-strongly deep, it must also be the case that, for every computable
duration ¢ there is a larger computable duration [ such that more of the sequence’s
regularity can be explained by a causal history of duration [ than can be explained
by a causal history of duration ¢.

Our next objective is to prove a recursive analog of Theorem 2.9, stating that
rec-strongly deep sequences cannot be rec-random.
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Lemma 3.2. Let t,g,1 : N = N be computable. If Pr(D%’) = 0, then jie.(D}") = 0.

Proof. Assume the hypothesis. Then Pr (U ﬂ ng l(n)> =0, so for each m € N,

m=0n=m

Pr Db (n = 0. Thus, for each m,k € N, there exists r € N such that
9

Pr m Dy'(n) | < 27" Since Pr (ﬂ D.'(n) | is computable from m and r, it

follov%gntlhat the function r : N x N %ﬁnéeﬁned by

r(m, k) = the least r € N such that Pr (ﬂ Dy l(n)) <27k

is computable. For each m, k € N, define d,,, 1 : {0,1}" — [0,1] by

r(m,k)
dmi(w) =Pr | [ Db'(n)

n=m

C’LU )

and define d : {0,1}" — [0, 00) by

d(w) = Z Z 27" ke (w).

m=0 k=0

(Note that each d,x(\) < 27% so d(A\) < 4.) It is routine to check that each d, is
an exact rec-martingale, whence d is a rec-martingale.

o0

Let S € D%! and let a € N be arbitrary. Fix m € N such that S € m Db (n),

g
n=m

and let 7 = r(m, 2™ - a). Let w = S[0..r — 1]. Then
C, C () Dk'(n),

so forall0 <k <2™.a,
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whence d,, x(w) = 1. It follows that
d(w) >27™ Z Admp(w) =2""(1+2™-a) > a.
k=0
Since a € N is arbitrary here, this shows that S € S>[d].
The preceding paragraph establishes that D»' C $°[d], whence pie.(D5') =0 O

Lemma 3.3. There exist a computable function ¢(n) = O(nlogn) and a constant
¢ € N such that, for every computable function [ : N — N, pie.(D4Y) = 0.

Proof. Let t and ¢ be as in Theorem 2.9, and let [ : N — N be computable. Then
Dbt C DL so RANDN DY € RANDN D! = 0, so Pr(D4Y) = 0. Tt follows by
Lemma 3.2 that jie.(D5!) = 0. O

Theorem 3.4. RAND(rec) Nrec-strDEEP = (). In fact, there exist a computable
function ¢(n) = O(nlogn) and a constant ¢ € N such that RAND(rec) N D ¢ = ().

Proof. Let t and ¢ be as in Lemma 3.3. To see that RAND(rec) N D% = (), let
S € DL, Fix a computable function [ : N — N such that S € D4!. Then, by
Lemma 3.3, jirec(D5Y) =0, so S & RAND(rec). O

As with strong depth, it is useful to have characterizations of rec-strong depth in
terms of the time-bounded Kolmogorov complexities and algorithmic probabilities of
prefixes. To this end, we define recursive analogs of the classes D} and D}, of [10].

Definition. For t,g,/ : N — N and n € N, we define the sets

D%!(n) = {S eC ‘ K'(S[0.n —1]) < K*(S[0.n — 1]) — g(ﬂ)} ;
it = {s €C ‘ (V=n) S € f);’l(n)},

Bl e — {Se c ‘ (30 erec)Seﬁ;’l},

Db (n) = {s e C ‘ m'(5[0..n — 1]) > 29 m*(S[0..n — 1])} :
DLt = {s eC ‘ (V>®n) S € f)g’l(n)},

]5;’”‘3: {SE C ‘ (3 Grec)Seﬁz’l}.
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The following lemma is exactly analogous to Lemma 5.3 of [10], which is due to
Bennett [4]. The proof is a straightforward adaptation of the proof in [10].

Lemma 3.5. If ¢,/ : N — N are computable, then there exist constants cgy,c;,co € N
and computable functions tq,[/;,l5 : N — N such that the following nine conditions
hold for all g : N — N and n € N.

L. Dz’-ﬁco (TL) - f)t’ h (TL) 4. Dt’l C ﬁt’ h 7. Dta rec — f)z, rec

9 gtco = g g+co =
Nt | ~t, | NN i, [ Ati, rec ™t rec
2. Dte,(n) € D5 (n) 5. Dy, € D} 8. Dyiet € D}
" ! t, 1o Nt ! t, o i rec t, rec
3. Dy}, (n) CDL2(n) 6. Dy, €D} 9. Dyt C D!

This lemma immediately yields the following alternative characterizations of re-
cursively strong depth.

Theorem 3.6. For S € C, the following conditions are equivalent.

1. S is rec-strongly deep.

2. For every computable time bound ¢ : N — N and every constant ¢ € N, S €
DZ, rec
3. For every computable time bound ¢ : N — N and every constant ¢ € N, S €

N, rec
Db rec,

We now turn to recursively weak depth, which was introduced by Fenner, Lutz,
and Mayordomo [6]. Recall from section 2.1 the definitions of tt-reductions and the
set T'TC of all tt-conditions.

Definition. A uniform reducibility is a computable function F': N x N — TTC.

If F is a uniform reducibility, then we use the notation Fj(n) = F(k,n), thereby
regarding F' as a computable sequence Fy, F}, Fy, ... of tt-reductions.

Definition. If F is a uniform reducibility and A, B € C, then A is F-reducible to B,
and we write A <p B, if there exists k € N such that A = Fj,(B).

The following fact is well-known and easy to verify.
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Observation 3.7.

1. For every computable function ¢ : N — N, there is a uniform reducibility F'
such that, for all A, B € C,

A<p B A<PTMEO

2. For every uniform reducibility F, there is a computable function ¢ : N — N
such that, for all A, B € C,

A<pB—> A S?TIME(t) B

Definition. If F'is a uniform reducibility and A € C, then the upper F-span of A is
the set

F*l(A):{BeC‘AgFB}.

Definition (Fenner, Lutz, and Mayordomo [6]). Let F' be a uniform reducibility.
A sequence S € C is recursively F-deep (briefly, rec-F-deep), and we write S €
rec-F-DEEP, if pirec(F'(S)) = 0.

Definition (Fenner, Lutz, and Mayordomo [6]). A sequence S € C is recursively
weakly deep (briefly, rec-weakly deep), and we write S € rec-wkDEEP, if, for every
uniform reducibility F', S is rec-F-deep.

If S is a recursive sequence, then it is easy to see that there is a uniform reducibility
F such that F~'(S) = C. (Intuitively, the reduction decides S without using the
oracle.) It is thus immediate from the definition that no recursive sequence is rec-
weakly deep.

The notion of rec-weak depth is analogous to the notion of weak depth, in the
sense that (as is easily seen) a sequence S € C is weakly deep if and only if, for
every uniform reducibility F, the upper span F~1(S) has constructive measure 0.
The following is also true.

Observation 3.8. No rec-weakly deep sequence is tt-reducible to a rec-random se-
quence.
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Proof. Assume that S <i R € RAND(rec). Then there is a uniform reducibility F'
such that R € F~1(S). Since R is rec-random, this implies that ji.e.(F~(S)) # 0,
whence S is not rec-weakly deep. 0]

We do not know whether the converse of this observation holds, i.e., whether a
sequence that is not tt-reducible to any rec-random sequence must be rec-weakly deep.
As it is, however, Observation 3.8, together with the fact that RAND C RAND(rec),
tells us that every rec-weakly deep sequence is weakly deep.

Observation 3.9 (Fenner, Lutz, and Mayordomo [6]). rec-wkDEEP C wkDEEP.

If F'is any uniform reducibility such that the relation <p is reflexive, then by the
proof of Observation 3.8, the set rec-F-DEEP must be disjoint from RAND(rec), and
hence must have measure 0 in C. However, the measure of rec-F-DEEP in REC is a
different matter.

Theorem 3.10 (Fenner, Lutz, and Mayordomo [6]).  If F' is a uniform reducibility,
then

i (rec-F-DEEP ‘ REC) —1,

i.e., almost every sequence in REC is recursively F-deep.

3.2 Class Inclusions

In this section, we establish the basic inclusion relations that hold among the weak
and strong depth classes defined in sections 2.3 and 3.1. For this and later purposes,
we need a technical lemma. This result, called the deterministic slow-growth law
for recursive computational depth, places a quantitative upper bound on the ability
of a time-bounded oracle Turing machine to amplify the depth of its oracle. The
first slow-growth laws were proven by Bennett [4]. The slow-growth law here is a
refinement of Lemma 5.5 of [10]. As in [10], we need two special notations. First, for
any function s : N — N, we define the function s* : N — N by

P (TL) — 25(]'10g n])+1 )

Second, for any unbounded, nondecreasing function f : N — N, we define the special-
purpose “inverse” function f~!: N — N by

f'(n) = max {m ‘ f(m) < n} i
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Also as in [10], say that a function s : N — N is time-constructible if there exist a
constant ¢, € N and a Turing machine that, given the standard binary representation
w of a natural number n, computes the standard binary representation of s(n) in at
most ¢ - s(|w|) steps. Using standard techniques [2, 8], it is easy to show that, for
every computable function r : N — N, there is a strictly increasing, time-constructible
function s : N — N such that, for all n € N, r(n) < s(n).

Lemma 3.11 (Slow Growth Lemma, version I). Let s : N — N be strictly increasing
and time-constructible with the constant ¢; € N as witness. For each s-time-bounded
oracle Turing machine M, there is a constant c¢;; € N with the followmg property.
Given nondecreasing functions t¢,¢,l : N — N, define the functions 7, 1, g,l N — N
by

T(n) =t(s"(n+1
2ns*(n +

tn) = cu ( 7(n)[log(n)]),

)+ 2(n+1)cs - s([log(n +1)]) +

|l

I(n) = cM(l +1(t{n)) logl(t(n))).
For all A, B € C, it B <?"™"®) A via M and B € D-', then A € Db,

Proof. To save space, we refer to the proof of Lemma 5.5 in [10].

Let s and M be as in the statement of the lemma. Let M’ wpp, cppr, M, and mwpm
be as in [10]. Since our universal Turing machine U is efficient, there is a constant
cyre € N such that, for all 7* € {0,1}",

timeU(WM//T*) S Cprt (]_ + timeM// (7T*) lOg timeM// (71'*))

Let
ey = max {cy, ey || + ||}

Let t,g,l : N — N be nondecreasing, and define T, f q, and T as in the statement of
the lemma. Assume that A, B € C are such that B <DTIME Avia M and B € Dlt :

Fix ny € Z* such that B € Dtg l(n) for all n > ng, and let m; = s*(ng) + 1.

Cram 1. For all m > s*(1) and 7 € {0,1}", if 7 € PROG'(A[0..m — 1]), then
myrm € PROG!H(B[0..n — 1]), where n = (s*)~}(m).
CraM 2. For all m > m; and all 7 € PROG!(A[0..m — 1]),

K'(m) < || = §(n) + cu
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where n = (s*)"(m).

Claim 1 was proven in [10]. To prove Claim 2, we again follow the proof in [10].
Let m,m,n, and 7* be as in [10]. Then

timey () < U(|mprml),

SO
timey (T ™) < eppr - (1 4 timepp (7°) log timeppr (7))
= ¢y - (1 + timey (%) log timey ()
< e+ (1+ U(|mapee]) log (| mase )
< e - (L+1(#(n)) log(#(n)))
= A(n)
Thus,

KZ(W) S |7TMH7T*| = Kl(ﬂ'MIW) + |7TMH|
< |w| = g(n) + car,
verifying Claim 2.
To complete the proof of the lemma, let m > my, and let 7 € PROG*(A[0..m—1]).
Then, by Claim 2 and the monotonicity of g,

K'(r) < |r = g((s") 7" (m)) + en

= || = g(s"((s7) " (m) + 1))
<|rl—g(m).
Thus A € D4!(m). Since this holds for all m > m,, it follows that A € D, O

The Slow Growth Lemma will often be used in the following slightly weaker form,
which is an immediate consequence of Lemma 3.11

Lemma 3.12 (Slow Growth Lemma, version II). Let s : N — N be strictly increasing
and time-constructible, with the constant ¢, € N as witness. For each s-time-bounded
oracle Turing machine M, there is a constant ¢y, € N with the following property.
Given nondecreasing functions ¢, g : N — N, define the functions 7,¢,5: N — N by
7(n) =t(s"(n+1)) +4s*(n+ 1) +2(n + 1)cs - s(|log(n+1)]) +
2ns*(n + 1)s(|log(n +1)]),
fn) = exr(1 + () [log 7(n)]),

g(n) =g(s*(n+1)) 4+ cu-
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For all A, B € C, if B <?"™"*) A via M and B € D>™, then A € D} .

An easy consequence of the Slow Growth Lemma is the fact that the class of
rec-strongly deep sequences is (like the class of strongly deep sequences [10]) closed
upwards under tt-reductions.

Theorem 3.13. Let A,B € C. If B <;; A and B is rec-strongly deep, then A is
rec-strongly deep.

The proof of Theorem 3.13 is identical to the proof of Theorem 5.6 in [10], except
that Lemma 3.12 above is used in place of Lemma 5.5 in [10].

We now come to the main result of section 3.2. The following theorem gives the
inclusion relations that hold among the weak, strong, rec-weak, and rec-strong depth
classes defined in sections 2.3 and 3.1.

Theorem 3.14. The following diagram of inclusions holds.

rec-wkDEEP
@ O
rec-strDEEP wkDEEP
O ¢
strDEEP

Proof. It was shown by Bennett [4] (see also [10]) that sttDEEP C wkDEEP, and
Observations 3.1 and 3.9 tell us that rec-strDEEP C strDEEP and rec-wkDEEP C
wkDEEP. All that remains, then, is to show that rec-strDEEP C rec-wkDEEP.

Let S € rec-strDEEP, and let F' be a uniform reducibility. Fix a strictly increasing,
time-constructible function s : N — N such that, for all A, B € C,

A<p B= A<PTEG) B

Choose t, ¢ as in Lemma 3.3. Let g(n) = ¢ and define 7 and § as in Lemma 3.11. Then
g(n) is constant; say g(n) = ¢. Now S € Dg’ "¢ so there is a computable function
[ : N — N such that S € Dg’l. Define [ as in Lemma 3.11. Then Lemma 3.11 tells
us that F~1(S) C D% l By Lemma 3.3, fiyec(D5 lA) =0, 50 rec(F1(S)) =0, ie., S is
rec-F-deep. Since F' is arbitrary here, this shows that S € rec-wkDEEP. O

23



3.3 Class Separations
We now show that all four inclusions in Theorem 3.14 are proper. It is most efficient
(and most informative) to prove this by proving the two non-inclusions
sttDEEP ¢ rec-wkDEEP
and
rec-wkDEEP ¢ strDEEP.

We prove these in succession.

We prove that strDEEP ; rec-wkDEEP by proving the much stronger fact that,
in contrast with Theorems 2.9 and 3.4, strongly deep sequences can be recursively
random. We do this by examining the Kolmogorov and the time-bounded Kolmogorov
complexities of recursively random sequences.

We first prove that rec-random sequences have very high time-bounded Kol-

mogorov complexities.

Theorem 3.15. Assume that S is rec-random and that ¢, g : N — N are computable
functions with g nondecreasing and unbounded. Then, for all but finitely many n € N,

K'(S[0.n —1]) > n — g(n).

Proof. Assume the hypothesis. For each n € N and w € {0,1}", let
£, = {A ‘ KYA0.n—1]) < n — g(n)}

and

d,(w) = Pr(&€,|C,).

It suffices to show that the set
J:{neN‘Seé‘n}
is finite.

It is easy to see that the function (n,w) — d,(w) is computable, and that each
d, is a martingale. Choose a constant ¢ € N as in Lemma 2.5, and define m : N - N
by
m(r) = the least m € N such that g(m) > r + c.
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Then m is computable, and for all » € N,

o0

Yo N = ) Pr(&)
n=m(r)

n=m(r)

Thus the series Z d, () is computably convergent. It follows by Corollary 2.3 that
n=0

there are only finitely many n € N such that S € S'[d,]. Since, for all n € N,
neJ = d,(S[0.n—1])=1 = S € S'd,],
it follows that .J is finite. U

The function g above may be very slowly growing, e.g., an inverse Ackermann
function. Theorem 3.15 thus says that, for every rec-random sequence S and com-
putable time bound ¢, all but finitely many of the prefixes of S have K‘-complexities
that are nearly as large as their lengths.

We next show that the situation is very different in the absence of the time bound
t.

Definition. A sequence S € C is ultracompressible if, for every computable, non-
decreasing, unbounded function g : N — N, there exists n, € N such that, for all
n = ng,

K(S[0..n —1]) < K(n) + g(n). (3.1)

It is clear that every n-bit string w must satisfy K (w) > K(n)—O(1). A sequence
S is thus ultracompressible if, for every computable, nondecreasing, unbounded (but
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perhaps very slowly growing) function g, for all but finitely many n, the n-bit prefix
of S has K-complexity that is within g(n) bits of the minimum possible K-complexity
for an n-bit string.

We now show that a rec-random sequence can be ultracompressible. Similar results
have been proven by Wang [29] and Ambos-Spies and Wang [1] for the monotone
Kolmogorov complexities of rec-random sequences. The present result is slightly
stronger than these results in that it gives a single rec-random sequence S that has
property (3.1) for every computable, nondecreasing, unbounded function g. The proof
is based in part on a simpler, unpublished construction by Gasarch and Lutz [7] of a
rec-random sequence that is not algorithmically random.

Theorem 3.16. There is a rec-random sequence that is ultracompressible.

Proof. Let gy, g1,92,... be an enumeration of all computable, nondecreasing, un-
bounded functions g, : N — N, and let dg, d1,d>, ... be an enumeration of all exact
rec-martingales d with dg(\) = 1. (Both enumerations are necessarily noneffec-

tive.) For each k € N, fix a program prefix m;, € {0,1}" such that, for all w € {0,1}",
U(mg,sd(w)) = di(w), where sd(w) is the self-delimiting encoding of w defined in sec-
tion 2.1. For each k > —1, let 7T](€d) = (T4y,- .. , T4, ), where (...) is the self-delimiting
sequence encoding defined in section 2.1, and let a = ‘T](cd)‘.

Our objective is to exhibit a rec-random sequence S that is ultracompressible.
This sequence S is specified by a sequence

w,1§WU§1U1§1U2§ ES
of prefixes wy, that are defined inductively below. There is a single Turing machine

that carries out all of the extensions from wy to w1, given a suitable program at
each stage wi. We now describe this machine.

Fix a Turing machine M that, given a program of the form 7 = 7r,<€w>7r,(c‘?17rn, where

k> -1, U(7r,<cw>) = (wp, ... ,wg), U(m,) = sp, and n > |wg|, outputs the encoded list
{(wo, - .. ,wg, w(k,n)), where w(k,n) € {0,1}" is the string whose ‘" bit is given by
the recursion

w(k,n)[i] = N N
lde(w(k,n)[0..i — 1]1) < di(w(k,n)[0..i — 1]0)] if |wy| < i < mn,
where .
Bw) = 3 270
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and w_; = A\. (If the program 7 for M is not of the above form, then M (), which
may or may not be defined, is not used in this proof.)

In more intuitive terms, given such a program 7, M extends wj one bit at a
time, choosing the bit that minimizes the composite martingale dj. at each step of the
extension. In particular, it is evident that

dip(w(k,n)) < dy(wy). (3.2)
As defined below, the extended prefix wy; is precisely the string w(k, ny) for a

suitable value of ng;. The rec-randomness of S is then ensured by (3.2), while the
ultracompressibility of S is ensured by a judicious choice of ny.

Fix a constant ¢ € N such that, for all k¥ € N and all wy, ... ,w, € {0,1},
K(wy) < K((wo, ... ,w)) + ¢ (3.3)
and, for all z € {0,1}",
K(z) < Ky(x) +c. (3.4)

Define the sequence
w_1§w0§w1§w2§

inductively as follows. First, let w_; = A. Next, assume that w,l;,':,é iwk have
been defined, where k£ > —1. For each n > |wy/, let

m(k,n) = 7r,<€w>7r,(€'?17rn,

where 7r,<€w> is a minimum-length program for (wy, . .. , wx) and 7, is a minimum-length

program for s,, and let w(k,n) be the (unique) string such that
M(m(k,n)) = (wo, ... , wy, w(k,n)).
Note that, for all £ > —1 and n > |wy],
K ((wo, ..., wp, w(k,n))) < K (n) + K ((wo, ... ,wk) + arp1 +c. (3.5)

This is because, by (3.4), K ((wy, . .. ,wg, w(k,n))) = K (M (7 (k,n))) < Ky (M (7 (k,n)))+
c<|m(k,n)|+c=K(n)+ K ((wy,...,w))+ axs1+ c.

Define g : N — N by




Then g is computable and unbounded, so by Theorem 2.6 there exist infinitely many
n € N such that K(n) < g(n). Thus we can fix ny > |wg| such that

K (i) < g(ni) (3.6)
and
K ((wo, ... ,wk)) + ags1 + agro + 3¢ < g (ng) . (3.7)
Let wyy1 = w(k, ng). This completes the definition of the sequence w_ ;E wy ;E wy 5& e

For all 0 < j <1 +1, by (3.5), (3.6), and (3.7),

K ((wo, ... ,wi41)) + apo + 2¢ = K ((wo, ... ,w,w(l,n))) + ape + 2¢
< K (my) + K ({wo, ... ,w)) + a1 + ae + 3¢
< 2g (ny)
=29 (|wit1])
< gj (Jwig1])

It follows by the change of variable k = [ + 1 that, for all 0 < j <k,

K ((wo, ..., wg)) + app1 + 2¢ < g5 (Jwg)) - (3.8)

We next show that, for all £ > —1,
dy,(wy,) < 2 — 27+ (3.9)

We prove this by induction on k. It clearly holds for £ = —1; assume that it holds
for k. Then, by (3.2), Lemma 2.1, and (3.9),

dis1(Wis1) = dip(wppr) + 27FF2HeD g o (wy )
< Jk(wk) + 2~ (k+2)
< 92— 9= (kt1) 4 o=(kt2)
_ o _ o (k+2)

Y

so it holds for k + 1.

Now let S be the unique sequence such that w, T S for all £ € N. We show that
S is rec-random and ultracompressible.

To see that S is rec-random, let d be an exact rec-martingale with d(\) = 1. Fix
j € N such that d; = d. Then, for all £ > j, (3.9) tells us that the prefix wy of S
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satisfies

d(wy,) = 27 Hwi-tlg=Utlwi-1D g ()
< 27wl (wy)
< 9itlwi—l (2 _ 2*(k+1))
< 9Ftlwj—l+1

It follows by Lemma 2.4 that S is rec-random.

Finally, to see that S is ultracompressible, let ¢ : N — N be computable, nonde-
creasing, and unbounded. Fix j € N such that g; = g, and let n > |w;|. Fix k € N
such that |wg| < n < |wgy1]- Then, by (3.3), (3.5), (3.8), and the fact that g is
nondecreasing,

K (S[0.n — 1]) = K (w(k, n))

Hence S is ultracompressible. 0]

We now note that rec-random sequences can be strongly deep.
Theorem 3.17. There is a rec-random sequence that is strongly deep.

Proof. By Theorem 3.16, there is a rec-random sequence S that is ultracompressible.
To see that S is strongly deep, fix a computable function ¢ : N — N and a constant
¢ € N. By Theorem 2.10, it suffices to show that S € DL

Fix a real number a such that 0 < a < 1, and define g : N — N by

g9(n) = {@J :

Then ¢ is computable, nondecreasing, and unbounded, so by Theorem 3.15, there
exists n; € N such that, for all n > nq,

K'(S[0.n —1]) > n — g(n). (3.10)
Also, since S is ultracompressible, there exists no, € N such that, for all n > ns,

K(S[0..n —1]) < K(n) + g(n). (3.11)
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Finally, there exists n3 € N such that, for all n > ngs,

K(n) < g(n). (3.12)

Let ny = max{ny, ny,nz}. Then, for all n > ny, (3.10), (3.11) and (3.12) tell us that
K'(S[0..n — 1]) — K(S[0..n — 1]) > n — 3g(n) > an.

Hence, S € D, C D! O

The rec-random sequence S given by the above proof is not only strongly deep,
but is in the class D%, for all computable time bounds ¢. Since the real number o may
be arbitrarily close to 1, this says that S is strongly deep at very high significance
levels (significance levels very close to n bits).

Theorem 3.17 contrasts sharply with Theorems 2.9 and 3.4. There is of course
nothing paradoxical in this contrast. It is merely a consequence of the strong, quan-
titative separation of RAND(rec) from RAND given by Theorems 2.7 and 3.16.

We now have the first of the desired noninclusions.
Corollary 3.18. strDEEP ¢ rec-wkDEEP.

Proof. By Theorem 3.17, there is a sequence S that is rec-random and strongly deep.
Since S is rec-random, Observation 3.8 tells us that S is not rec-weakly deep. OJ

Our proof that strDEEP ¢ rec-wkDEEP uses Baire category and Banach-Mazur
games. We briefly review the relevant ideas.

A Banach-Mazur game is a two-player, infinite game in which the players construct
a sequence S € C by taking turns extending a prefix of S. There is a “payoff set”
X C C such that player I wins a play of the game if S € X, and player II wins
if S ¢ X. A strategy for a Banach-Mazur game is a function o : {0,1}* — {0,1}"
such that, for all w € {0,1}", w 2 o(w), ie., o(w) is a proper extension of w. A play
of a Banach-Mazur game is an ordered pair (a, ) of strategies. For t € N, the ¢
partial result of a play («, 3) is the string Ry(«v, 3) € {0,1}" defined by the following
recursion.

(i) Ro(e, B) = A.
(11) For all 7 € N, R2i+1(a, 6) = &(Rgi(&, 6))
(iii) For all i € N, Ryiyo(a, ) = B(Rais1(c, ).

30



(Player T uses strategy «, and player II uses strategy [.) The result of a play («, [3)
is the unique sequence R(«, ) € C such that , for all t € N, Ri(«, 8) C R(a, ). We
write G[X; Sy, Spy] for the Banach-Mazur game with payoff set X in which Player I is
required to use a strategy from the set S; of functions and player II is required to use
a strategy from the set S;; of functions. In this paper, the sets of functions that we
are interested in are the set rec, consisting of all computable functions from {0,1}"
into {0,1}", and the set all, consisting of all functions from {0,1}" into {0,1}". We
write G[X] for G[X; all, all].

A winning strategy for player Iin a Banach-Mazur game G[X; Sy, Sy is a strategy
a € S such that, for every strategy 8 € Siy, R(a, 3) € X. A winning strategy for
player I in a Banach-Mazur game G[X;S;,S;/] is a strategy 3 € S;; such that, for
every strategy o € §;,R(«, 3) ¢ X.

Definition (Mazur and Banach [21]). Let X C C.

1. X is meager if there is a winning strategy for player II in the Banach-Mazur
game G|[X].

2. X is comeager if X°¢ is meager.

A meager set is sometimes called a set of first category, or a set of first category
in the sense of Baire.

Definition (Lutz [17]). Let X C C.

1. X is rec-meager if there is a winning strategy for player IT in the Banach-Mazur
game G[X; all, rec|.

2. X is rec-comeager if X¢ is rec-meager.
Definition (Lisagor [16], Lutz [17]). Let X C C.

1. X is meager in REC if X N REC is rec-meager.
2. X is comeager in REC if X° is meager in REC.

For X C C, the implications

X is rec-meager === X is meager

ﬂ

X is meager in REC
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are clear. It is also clear that every subset of a meager set is meager and that every
countable set X C C is meager. In fact, it is well known that every countable union
of meager sets is meager [21]. On the other hand, the Baire Category Theorem [21]
says that no cylinder is meager. These facts justify the intuition that meager sets are
negligibly small in the sense of Baire category. Thus, if a set X C C is comeager, we
say that X contains almost every sequence in the sense of Baire category.

The situation is analogous for sets that are meager in REC. Every subset of a set
that is meager in REC is clearly meager in REC. Lisagor [16] has also shown that
every recursive union (a natural, effective notion of countable union) of sets that are
meager in REC is meager in REC and, more importantly, that no cylinder is meager
in REC. These facts justify the intuition that, if X € C is a set that is meager in
REC, then XNREC is a negligibly small subset of REC in the sense of Baire category.
Similarly, if X is comeager in REC, then X contains almost every sequence in REC
in the sense of Baire category.

It is well-known [21, 16] that a set may be large in the sense of measure but small
in the sense of Baire category, or vice versa.

The following known theorem says that the set of strongly deep sequences is small
in the sense of Baire category.

Theorem 3.19 (Juedes, Lathrop, and Lutz [10]). The class strDEEP is meager.

We show that rec-wkDEEP ¢ strDEEP by showing that rec-wkDEEP is comea-
ger. Our proof of this fact is somewhat more involved than the proof by Juedes,
Lathrop, and Lutz [10] that wkDEEP is comeager.

Theorem 3.20. For each uniform reducibility F', the class rec-F'-deep is rec-comeager,
hence comeager in REC.

Proof. Let F' be a uniform reducibility. For each n € Z*, let a(n) = $n(n—1)(2n—1),

so that a(n) +n? = a(n +1). Foreach n € Z" and 0 < k < n, let
I,(k) = {a(n)+l~m+m ‘ 0<m< n}
Note that the intervals

1,(0), 1(0), In(1), I5(0), I3(1), I5(2), 1, (0), ...

partition N into successive blocks, with each |1, (k)| = n.
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For eachn € ZT, 0 < k < n, z € {0,1}=", and A € C, say that A agrees with x
on I,,(k) if

Ala(n)+kn..an)+kn+ |z -1]=uz.
For each n € Z, 0 < k < n, and x € {0,1}=", define the event
ks = {B e C ‘ Fi(B) agrees with z on Tn(k)} .

For each n € Z" and 0 < k < n, let y,(k) be the n-bit string whose I'! bit is
defined by the recursion

Yn(R)I] = [Pr(Ekm,z1) < Pr(€n.z0)]
for all 0 <[ < n, where z =y, (k)[0..l — 1]. This definition ensures that
1
Pr(Exmynyo.g) < B Pr(Ek nyn(k)0.1-1)- (3.13)
For each n € Z* and 0 < k < n, define the event

gk,” = gk7n7yn(k)
Then, by (3.13), for all n € Z* and 0 < k < n,

Pr(E,) <27 (3.14)

Let
Y = {A €C ‘ (VE)(3I*n)A agrees with y, (k) on In(k)} .
It suffices to prove that
Y C rec-F-DEEP (3.15)
and

Y is rec-comeager. (3.16)

We first prove (3.15). For each k,n € N, define the function dj,, : {0,1}" — [0,1]
by

Ay () Pr(&n|Cy) if0<k<n
n(W) =
g 0 otherwise.
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It is easy to check that each dj, is a martingale, and that the function (k,n,w) —
din(w) is total recursive (with rational values). Also, by (3.14),

din(X) <277 (3.17)
for all k,n € N. It follows by Theorem 2.2 that

fre (U Ny Sl[dk,n]> =0, (3.18)

k=0 m=0n=m

To prove (3.15), let A € Y. Let B € F7'(A). Fix k € N such that A = Fi(B).
Since A € Y, the set

Jp = {n >k ‘ A agrees with y, (k) on In(k)}

is infinite. Let n € J;. Then B € & ,. In fact, since Fy is a tt-reduction, there is a
prefix w C B such that C,, C & .. Then di ,(w) = Pr(&,|Cyw) = 1, s0 B € S'[d}..).
Since Ji is infinite, this argument shows that

oo 0

FA) < U N U 8'dkal (3.19)

k=0 m=0n=m

It follows from (3.18) and (3.19) that pec(F1(A)) = 0, i.e., that A € rec-F-
DEEP. This proves (3.15).

Finally, to prove (3.16), define a strategy f for player II in the Banach-Mazur
game G[Y ¢ all;rec] as follows. Given w € {0,1}", fix the least n € ZT such that
a(n) > |w|, and set

Bw) = w0y (0)y,(1) -+ - yu(n — 1).

It is clear that 8 € rec and, for every strategy a that player I might use, R(«, 3) € Y.
Hence, [ is a winning strategy for player II in G[Y%; allrec]. It follows that Y is
rec-meager, whence (3.16) holds. O

Theorem 3.21. The class rec-wkDEEP is comeager.

Proof. The class rec-wkDEEP is a countable intersection of classes rec-F-DEEP,
each of which is rec-comeager, hence comeager, by Theorem 3.20. 0

Corollary 3.22. rec-wkDEEP ¢ strDEEP.
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Proof. This follows immediately from Theorems 3.19 and 3.21. U

We now have the main result of section 3.3.

Theorem 3.23. The following diagram of proper inclusions holds.

rec-wkDEEP
% NG
rec-strDEEP wkDEEP
o
N C/&
strDEEP

Proof. This follows immediately from Theorem 3.14, and Corollaries 3.18 and 3.22.
O

By Theorem 3.23, there exist sequences that are strongly deep, but not rec-
strongly deep. Let S be such a sequence. Since S is not rec-strongly deep, there
exist a fivzed computable time bound ¢; : N — N and a fized constant ¢y € N such
that, for every computable time bound [ : N — N, there are infinitely many prefixes
of S that cannot be described ¢y bits more succinctly with the time bound [ than with
the time bound t¢y. Nevertheless, since S is strongly deep, it must be the case that,
for every constant ¢ € N (even when ¢ is much greater than ¢), all but finitely many
prefixes of S can be described at least ¢ bits more succinctly without a time bound
than with the time bound ¢y3. None of this additional succinctness (beyond ¢y bits)
can be realized within any computable time bound; all of it requires greater-than-
computable running time. The depth of such a sequence S appears not to come from
so much from a nontrivial causal (computational) history as from something utterly
noncomputational.

If F is a uniform reducibility that is (like all standard reducibilities) reflexive,
then the measure and category of the class rec-F-DEEP are of some interest. First,
rec-F-DEEP must be disjoint from RAND(rec), so rec-F-DEEP must be a measure 0
subset of C. Also, by Theorem 3.20, rec- F-DEEP must be comeager. Thus, the class
rec- F-DEEP is small in the sense of measure, but large in the sense of Baire category.
This state of affairs is not unusual and would not be worth mention, were it not for
the fact that the situation changes when we look at the measure and category of rec-
F-DEEP in REC. By Theorems 3.10 and 3.20, rec-F-DEEP is large in REC in the
senses of both measure and category. The class rec-F-DEEP is thus one concerning
which measure and category agree in REC, but disagree in C.
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3.4 Weakly Useful Sequences

Juedes, Lathrop, and Lutz [10] defined the class of weakly useful sequences and proved
that every weakly useful sequence is strongly deep. Fenner, Lutz, and Mayordomo
[6] subsequently proved that every weakly useful sequence is rec-weakly deep. In this
section, we strengthen both these results by proving that every weakly useful sequence
is rec-strongly deep. Our argument closely follows that of [10], but it is short and
central, so we present it in full.

Definition (Juedes, Lathrop, and Lutz [10]). A sequence A € C is strongly useful,
and we write A € strUSEFUL, if there is a computable time bound s : N — N such
that REC C DTIME#(s). A sequence A € C is weakly useful, and we write A €
wkUSEFUL, if there is a computable time bound s : N — N such that DTIME"(s)
does not have measure 0 in REC.

Thus a sequence is strongly useful if it enables one to solve all decidable sequences
in some fixed, computable amount of time. A sequence is weakly useful if it enables
one to solve all elements of a nonnegligible set of decidable sequences in some fixed,
computable amount of time.

Recall that the diagonal halting problem is the sequence K whose n'" bit is
K[n] = [M,(n) halts],

where My, My, ... is a standard enumeration of all deterministic Turing machines.
It is well-known that K is polynomial-time many-one complete for the set of all
recursively enumerable subsets of N, so K is strongly useful.

It is clear that every strongly useful sequence is weakly useful. Fenner, Lutz,
and Mayordomo [6] used martingale diagonalization to construct a sequence that is
weakly useful but not strongly useful, so strUSEFUL ; wkUSEFUL.

Our proof that every weakly useful sequence is rec-strongly deep uses the following

theorem, which is a recursive strengthening of Theorem 5.8 of [10]. Recall the class
K'.  [< g(n)] defined in section 2.2.

Theorem 3.24. If t : N — N is computable and 0 < a« < # < 1, then
At, rec t
REC C D, UK i.o.[< fn).

Proof. Assume the hypothesis and let
t
S € REC — K% | [< fn].
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We will show that S € f)g;“.

Since S & Kti o [< Bn], it must be the case that, for all but finitely many n,

K'(S[0.n — 1]) > fpn.

Since S is recursive, there is a Turing machine M’ such that, for alln € N, M'(sd(s,)) =
S[0..n—1], where sd(s,) is the self-delimiting version of s, the n'" string in the stan-
dard enumeration of {0,1}".

Now let 73 be a program prefix for U such that for all = € {0,1}",
U(7TM/7T) = MI(TI').
In particular, we have

U(narsd(sy)) = M'(sd(sy,)) = S[0..n — 1].

Let [ : N — N give the running time of U on these programs, i.e.,
[(n) = timey (maprsd(sy)).
Then [ is computable and, for all but finitely many n € N,

K'(S[0.n — 1]) < |marsd(s,)]
=2[log(n+1)| + 2 + |mar|
< fBn —an
< KYS[0..n — 1]) — an,

o
so S € Dy, . O

Corollary 3.25. For every computable time bound ¢ : N — N and every 0 < v < 1,

(D4 REC) = 1.

Proof. Let ¢ : N — N be computable, and let 0 < v < a < # < 1. Choose a
computable time bound #; : N — N for ¢ and constants ¢;,c; € N as in Lemma 3.5,
so that for all n € N,

DI 1% L, (n) © D55, (n) € DEI(n).
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For all sufficiently large n, we have

DY (n) C DL L. (n),

Atl, rec t, rec
so Dy, " € Do,

By Theorem 2.8 Kt1 o [< Bn] has measure 0 in REC. Combined with Theo-

rem 3.24, this implies that D“’]rec has measure 1 in REC. Since Dtl’]rec C Db, it
follows that D% has measure 1 in REC. O

Corollary 3.26. For every computable time bound ¢ : N — N and every constant
ceN,

L <D£’ rec

REC) -

We now establish the rec-strong depth of weakly useful sequences.
Theorem 3.27. Every weakly useful sequence is rec-strongly deep.

Proof. Let A € C be weakly useful. To see that A is rec-strongly deep, let t : N — N
be a computable time bound, and let ¢ € N. Tt suffices to show that A € D% ™.

Since A is weakly useful, there is a computable time bound s : N — N such that
DTIME“(s) does not have measure 0 in REC. Since every computable function is
bounded above by a strictly increasing, time-constructible function, we can assume
without loss of generality that s is strictly increasing and time-constructible.

Let f(n) n-(1+7(n)[log 7(n)1), where 7 is defined from ¢ and s as in Lemma 3.12,
and let v = L. Since # is recursive, Corollary 3.25 tells us that Df;nrec has measure 1

in REC. Slnce DTIME"(s) does not have measure 0 in REC, it follows that Dg’qfec N

DTIME*(s) # 0. Fix a sequence B € D& 0 DTIME* (s ) Then there is an s-time-

bounded oracle Turing machine M such that B <DTIME A via M. Fix a constant

¢y as in Lemma 3.12. Define g(n) = ¢ for all n € N and define the functions 7, ¢, and
g from t and g as in Lemma 3.12. Since § and c); are constant, we have £(n) > t(n)
and yn > g(n) for all but finitely many n, so B € D@;“(Q)ng: "¢ It follows by
Lemma 3.12 that A € D% ™. O

Juedes [9] asked whether every strongly deep sequence is weakly useful. We can
now answer this question negatively.
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Corollary 3.28. wkUSEFUL & strDEEP

Proof. This follows immediately from Theorems 3.23 and 3.27. U

4 Conclusion

The results of this paper, together with earlier results of Bennett [4], Juedes, Lath-
rop, and Lutz [10], and Fenner, Lutz, and Mayordomo [6], establish the following
relationships.

rec-wkDEEP
(//X/ NG
strUSEFUL ; wkUSEFUL C rec-sttDEEP wkDEEP
(\
%
<
strDEEP

We conjecture that the inclusion wkUSEFUL C rec-strDEEP is also proper, i.e., that
rec-strong depth is not a sufficient condition for weak usefulness.

As noted in section 3.1, we do not know whether a sequence that is not truth-table
reducible to any rec-random sequence must be rec-weakly deep. The question here
is whether the upper truth-table span of a sequence S can avoid the set RAND(rec)
while F~1(.9) fails to have rec-measure 0 for some uniform reducibility . The answer
to this question may shed new light on recursive measure.

Beyond these specific questions, it is to be hoped that further investigation of
computational depth will lead to a better understanding of the role that information
plays in the complexity of computation.
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