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Abstract. We propose several possible metrics for measuring the strength
of an individual password or any other secret drawn from a known,
skewed distribution. In contrast to previous ad hoc approaches which
rely on textual properties of passwords, we consider the problem without
any knowledge of password structure. This enables rating the strength
of a password given a large sample distribution without assuming any-
thing about password semantics. We compare the results of our generic
metrics against those of the NIST metrics and other previous “entropy-
based” metrics for a large password dataset, which suggest over-fitting
in previous metrics.

1 Introduction

It is often desirable to estimate the resistance to guessing provided by a spe-
cific password. This can be useful both for research purposes to compare pass-
word choices between two groups with insufficient data to construct full distribu-
tions [9,11,14]. It can also be used to make a proactive password checker which
indicates to a user the strength of a particular password during enrolment. [1].
Current practice usually relies on rules-of-thumb based on entropy estimates of
English such as those standardised by NIST [3]. These have been argued to be
inaccurate estimators of a password’s vulnerability to cracking attacks [15].

Instead, we advocate using probability estimates based on an approxima-
tion of the distribution X which a passord x was drawn from. We’'ll call such
a measure the estimated strength and denote it as Sx(z). It is important to
recognise that any estimated strength is only as accurate as our approximation
for X is accurate for a target population. For example, the password tequiero
(which roughly translates to iloveyou) is much weaker within a distribution of
passwords chosen by Spanish speakers than by English speakers.! We’ll assume
initially that the purposes of this paper that the population-wide distribution of
passwords X' is completely known before exploring the implications of relaxing
this assumption.

! This problem was illustrated by the research of Dell’Amico et al. [7], who found
vastly different guessing efficiency based on the language of a password dictionary
and the users who chose passwords in a dataset.
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2 Desired properties

We can describe two important properties that we would like for a strength
metric:

1. Consistency for uniform distributions: For a discrete uniform distribu-
tion Uy in which each of N events is equally likely, such as randomly-chosen
64-bit keys, we want any strength metric to indicate that each value has 2V
bits of strength. Specifically:

vwEUN SZ/IN (JZ) = lgN (1)

2. Monotonicity: A strength metric should rate any event more weakly than
events which are less common in the underlying distribution &

Vm,z/eX Da = Dot < SX(:E) < S)(("E/) (2)

3 Strength metrics

We formalise several purely statistical techniques for estimate a password’s
strength in this way, which require no general assumptions about human ten-
dencies in password selection. In all cases, we convert our strength estimates into
units of bits to satisfy our desired consistency property.

3.1 Probability metric

The simplest approach is to take the estimated probability p, from X and es-
timate the size of a uniform distribution in which all elements have probability
2N

Sx(@) = —lgp, (3)
This is, in fact, the classic definition of the self-information of x (also called the
surprisal), which is the underlying basis for Shannon entropy H; [13]. It is easy

to see that for a randomly drawn value x & x , the expected value of this metric
is:
| X
E[S%(@)|z & X = po - —lgp. = Hi(X) (4)
i=1
Previous metrics which attempt to measure the probability of a password,
for example using Markov models [6,12,4] or probabilistic context-free gram-
mars [16], can be seen as attempts to approximate S% (z).
Applied to guessing, this model measures the (logarithmic) expected number

of guesses before x is tried by an attacker who is guessing random values x Ex
with no memory. This attack model might apply if an attacker is guessing ran-
domly according to the distribution to evade an intrusion-detection system. For
optimal sequential guessing attacks however, this metric has no direct relation.



3.2 Index metric

To estimate the strength of an individual event against an optimal guessing
attack, the only relevant fact is the index i, of z, that is, the number of items in
X of greater probability than p,. We can convert this to an effective key-length
by considering the size of a uniform distribution which would, on average, require
1, guesses. This gives us a strength metric of:

Sh(z) =1g(2-i, — 1) (5)

Intuitively, this metric is related to real-world attempts to measure the
strength of an individual password by estimating when it would be guessed
by password-cracking software [10].

A practical problem with this metric is that many events may have the same
estimated probability. If we break ties arbitrarily then in the case of the uniform
distribution Uy the formula won’t give lg IV for all events. In fact, it won’t even
give lg N on average for all events, but instead =~ lg N — (Ige — 1) (proved in
Appendix B).

A better approach for a sequence of j equiprobable events x; - - - x;4; where
Di = ... = p;y; is to assign index % to all events when computing the index
strength metric. This is equivalent to assuming an attacker will choose randomly
given a set of remaining candidates with similar probabilities and it does give a
value of 1g N to all events in the uniform distribution.

This is slightly unsatisfactory however, as it means for a distribution X = Uy
which is “close” to uniform but with a definable ordering of the events, the
average strength will appear to jump down by (Ige — 1) ~ 0.44 bits.

A second problem is that the most probable event in X is assigned a strength
of Ig 1 = 0. To satisfy our consistency requirement is a necessary limitation, since
for U; we must assign the single possible event a strength of 1g1 = 0.

3.3 Partial guessing metric

The probability metric doesn’t model a sequential guessing attack, while the
index approach has a number of peculiarities. A better approach is to consider
the minimum amount of work done per account by an optimal partial guessing
attack which will compromise accounts using z. The a-guesswork Gg, defined
in [2], reflects exactly the (logarithmic) expected amount of work per account
required of an attacker desiring to break a proportion a of accounts. We provide
the full definition for computing G in Appendix A.

For example, if a user chooses the password encryption, an optimal attacker
performing a sequential attack against the RockYou distribution will have broken
51.8% of accounts before guessing encryption. Thus, a user choosing the password
encryption can expect to be safe from attackers who aren’t aiming to compromise
at least this many accounts, which takes @0_518 work on average per account.
We can turn this into a strength metric as follows:



S§) = G, () r e = 3 (6)

Because Gy (Un) = 1g N for all a, the consistency property is trivially sat-
isfied. Moreover, for “close” distributions X ~ Uy where |p; — %\ < ¢ for all ¢,
we’ll have S$(z;) — lg NV for all i as e — 0, unlike for ST where strength will
vary as long as there is any defined ordering.

As with S% though, we encounter the problem of of ordering for events with
statistically indistinguishable probabilities. We’ll apply the same tweak and give

1+7

each event in a sequence of equiprobable events z; - - - z;; the index 7.

4 Estimation from a sample

Just like for distribution-wide metrics [2], there are several issues when estimat-
ing strength metrics using an approximation for X obtained from a sample.

4.1 Estimation for unseen events

All of the above metrics are undefined for a previously unobserved event 2’ ¢ X.
This is a result of our assumption that we have perfect information about X.
If not, we inherently need to rely on some approximation. As a consequence
of the monotonicity requirement, S(z’ ¢ X) must be > max (S(z € X)). The
naive formula for S% (z’) assigns a strength estimate of oo though, which is not
desirable.

We should therefore smooth our calculation of strength metrics by using some
estimate p(z’) > 0 even when 2’ ¢ X. Good-Turing techniques [8] do not address
this problem as they provide an estimate for the total probability of seeing a new
event, but not the probability of a specific new event. A conservative approach is
to add 2’ to X with a probability ﬁ, on the basis that if it is seen in practice in
a distribution we’re assuming is close to our reference X', then we can treat =’ as
one additional observation about &X'. This is analogous to the common heuristic
of “add-one smoothing” in word frequency estimation [8]. This correction gives
an estimate of S (z) = lg(N + 1) for unobserved events.

For the index metric, this correction produces the smoothed estimate S%.(z') =
lg2N + 1, an increase of roughly 1 bit, due to the aforementioned instability
for a distribution X ~ Upy. For the partial guessing strength metric we have
S$ (') ~ Gl(X ), representing that guessing an unseen value requires at least an
attacker willing to guess all known values.

All of these estimates are somewhat unsatisfactory because they don’t allow
us to distinguish between the estimated security of a new observation encryptionl
compared to e5703572ae3c, the latter of which intuitively seems much more
difficult to guess. Solving this problem inherently relies on semantic evaluation
of the newly-seen event, which is out of scope.



4.2 Stability of metrics

All of the proposed metrics will produce variable results for low-frequency events
in a sample. The logarithmic nature of the estimators damps this problem to a
large extent: if the hapax legomenon password sapo26 occurred two more times in
the RockYou data set, tripling its observed frequency, its strength estimate would
decrease by only 1.59, 2.22 and 2.55 bits for Sfy, Sky, and S§y, respectively.
It is straightforward to establish bounds on the worst case error when chang-
ing an event’s observed probability from p — p’ = p + Ap. For ST, the estimate

can change from lgp to lgp’, a difference of at most abs <1g %) bits.

For the index metric the worst-case scenario is that changing from p — p’ =

p + Ap changes the index by N, the total number of events in the distribution,

if all other events have probability p < p* < p+ Ap. In this case, the maximum

number of events in the distribution is N = This gives a worst-case
~ 2

The worst-case change for S occurs in the same situation but is just lg N —

1
min(p,p’) *

lg 1% = lg% —lg ; = abs (lg %), exactly as the case was for S¥. This is an

attractive property of SC: it offers worst-case stability equivalent to S¥ while
having a better connection to real guessing attacks.

However, in the special case where X is a Zipf distribution For a Zipf distri-
bution each event’s probability is roughly proportional to the inverse of its index
in the distribution raised to a constant s:

<1>S
Pz X | —
iz

Thus, if an event’s probability increases by a constant factor k, its index should
decrease by a factor of k. This will decrease ST by lg k bits and decrease ST by
% bits. For the classic Zipf distribution with s ~ 1, this means that changing
an event’s probability by k will affect S% and S% by exactly the same amount.
While we reject the hypothesis that passwords are produced by a simple Zipfian
distribution [5], this is a rough justification for why we don’t expect S% to be
highly unstable in practice.

5 Example estimates for individual passwords

Example values for the proposed strength metrics are given in Table 1 for pass-
words in the RockYou data set. Overall, the differences between ST, ST, and
SG are moderate with the exception of very common passwords, which receive
significantly lower strength estimates by S!. For much of the distribution, S¢
provides estimates in between those of S¥ and ST, until the region of less-common
passwords for which S© is lower as it incorporates an attacker’s ability to stop
early upon success.

The fact that ST < ST holds in every row is not a coincidence. Because the
elements are ordered by probability, an event’s index will always be lower in a



z lg(iz) fa SII;,Y Sllz{y SPG{Y SNIST

123456 0 290729 6.81 0.00 6.81 14.0
12345 1 79076 8.69 1.58 7.46 12.0
password 2 59462 9.10 2.81 8.01 18.0
rockyou 3 20901 10.61 3.91 8.68 16.0
jessica 4 14103 11.174.95 9.42 16.0
butterfly 5 10560 11.59 5.98 10.08 19.5
charlie 6 7735  12.04 6.99 10.71 16.0
diamond 7 5167 12.627.99 11.30 16.0
freedom 8 3505 13.189.00 11.88 16.0
letmein 9 2134 13.90 10.00 12.48 16.0
bethany 10 1321  14.59 11.00 13.09 16.0
loversl 11 739 15.43 12.00 13.74 22.0
samanta 12 389 16.35 13.00 14.42 16.0
123456p 13 207 17.27 14.00 15.13 22.0
diving 14 111 18.16 15.00 15.87 14.0
flower23 15 63 18.98 16.00 16.62 24.0

scotty2hotty 16 34 19.87 17.02 17.38 30.0

lilballa 17 18 20.79 18.01 18.13 18.0
robbies 18 9 21.79 19.06 18.93 16.0
DANELLE 19 5 22.64 19.96 19.62 22.0
antanddeck06 20 3 23.37 20.84 20.30 30.0
babies8 21 2 23.96 21.78 21.00 22.0
sapo26 22 1 24.96 24.00 22.44 20.0
jcb82 23 0 23.77 24.00 22.65 18.0

Table 1. Example strength estimates for a selection of passwords from the RockYou
data set. The estimator S™57T is calculated using the NIST entropy estimation for-
mula [3].

skewed distribution than in a uniform distribution with identical events, so we
will always have ST < SP.

The entropy estimation formula proposed by NIST [3] is shown for com-
parison as SNST (though note that SNST doesn’t meet either of our desired
mathematical criteria for a strength metric). It fails for a few passwords which
demonstrate the challenges of semantic evaluation: both scotty2hotty and an-
tanddeck06 score highly by SNST for being long and including digits. Neither
is particularly strong, however: scotty2hotty is a professional wrestler, while an-
tanddeck06 is based on the name of a British comedy show. In contrast sapo26 is
much shorter and rated 10 bits lower by SNST | but doesn’t have a well-known
real-world meaning.

Because we listed passwords in order of exponentially increasing index, we
can test the Zipfian relationship on the difference between ST and ST using the
data by comparing the ratio of differences for successive passwords xs,z; in



Table 1:
Sy (Tit1) = Siy (@)
Sy (it1) — Sky (@)

For successive rows of the table, we get estimates for s ranging from 0.34 to
1.37. The average estimate, however, is s = 0.76, almost identical to the estimate
we would get by computing s using only the first and last row of the table. Using
the equivalence between the power-law and Zipf formulation that a =1+ %7 we
would estimate a = 2.31 given s = 0.76. This is not a sound way of computing a
Zipfian fit for the data set s in general, but the fact that it is plausible supports
our hypothesis that ST will be stable for realistic distributions which follow a
(very rough) power-law approximation.

S =

6 Application to small data sets

A second application of strenth metrics is to estimate the average strength given
only a very small sample for which distribution-wide statistics [2] can’t be com-
puted. This method can only be accurate for data sets which are approximately
drawn from the same population as the base distribution, though this limita-
tion is equally true of evaluation by password cracking [10] or semantic evalua-
tion [14].

If we interpret the small set of passwords as a sample from some larger
distribution, we need to reason about the expected value of each strength metric.
We've already shown in Equation 4 that E [S%(z)| & X] = Hi(X). The
expected value of ST was too complicated to compute directly even for a uniform
distribution. Similarly, the expected value of S is:

E[S$(0)|x & x] = /O Go(X)dar )

which doesn’t appear to admit a simple analytic formula. Instead, we can only
compute E [S%(z)|z & X] and E [S$(2)| @ & X] directly for our reference
distribution X and use this as a benchmark for comparison against a smaller
distribution.

In Table 2 a variety of small password data sets for which cleartext passwords
are available are evaluated using the RockYou data set as a baseline. None of
the statistical metrics are obviously superior, though S¢ is typically in between
the values produced by the other two.

The NIST formula produces more plausible results when averaged than for in-
dividual passwords, correctly ranking the 2011 Twitter blacklist as much weaker
than the other lists (though not as weak as the statistical estimates). The NIST
formula also plausibly rates the foreign-language Hebrew data set lower than the
statistical estimates, as it doesn’t assume the passwords are in English like using
RockYou as a baseline implicitly does.

In the myBart data set about two-thirds of users retained site-assigned ran-
dom passwords. This set was rated highly by all of the metrics, being recognised



Dataset M % seen Sky Sky Sty SNST
RockYou (baseline) —  100.0% 21.15 18.79 18.75 19.82
small password sets
70yx (sampled) 1000 34.0% 22.28 21.24 21.52 20.21

Fox 369 68.8% 20.95 18.99 19.33 19.28
Hebrew 1307 50.3% 21.25 19.63 20.14 17.46
Hotmail 11576 57.6% 21.82 20.29 20.43 18.21
myBart 2007 19.0% 22.93 22.37 22.54 23.53
MySpace 50546 59.5% 21.64 20.02 20.19 22.53
NATO-Books 11822 50.9% 21.66 20.17 20.47 19.35
Sony-BMG 41024 61.3% 20.93 19.10 19.53 19.87
malware dictionaries
Conficker 190 96.8% 16.99 13.60 15.07 16.51
Morris 445  94.4% 18.62 15.68 16.56 15.27
blacklists
Twitter-2010 404 7.9% 23.16 22.86 23.02 15.30
Twitter-2011 429  99.8% 15.11 11.31 13.46 15.27

Table 2. Average strength estimates for small lists of leaked passwords. The NIST
entropy estimation formula [3] is listed as SN'ST.

inadvertently by the NIST formula because the site-assigned passwords always
contained a number.

The largest difference in the rankings occurred for the Hotmail and MySpace
data sets, which produced indistinguishable statistical estimates but differed by
over 4 bits by the NIST formula. Examining the passwords, it appears that a
good portion of the MySpace data was collected under a policy mandating non-
alphabetic characters: passwordl is the most popular password, over twice as
popular as password, and most of the other top passwords include a number.
Popular numeric passwords such as 123456 appear to have been banned under
some of the collection rules, as they are less common than variants like 123456a.
The Hotmail data set, on the other hand, appears to have had no restrictions.
Because the NIST formula awards a constant 6 points to passwords with a mix of
numbers and letters, the MySpace complexity policy significantly raises SNST.
However, the statistical estimators suggest these passwords may not actually be
much stronger by this policy as a large number of users simply append a digit
(usually a 1 or 0) to a weak password. In this case, statistical strength metrics
are less influenced by the effects of complexity requirements.

The NIST formula also struggled to recognise datasets of explicitly weak pass-
words. For example, it considers the Conficker password dictionary to contain
stronger passwords than the the Morris password dictionary, though the Con-
ficker list is a more modern, better attack dictionary (containing much weaker
passwords). Similarly, the two versions of the Twitter blacklist are rated simi-
larly by the NIST formula, but the statistical metrics identify the 2011 version
as a vast improvement (again in that it contains weaker passwords).



References

1.

2.

10.

11.

12.

13.

14.

15.

16.

Matt Bishop and Daniel V. Klein. Improving System Security via Proactive Pass-
word Checking. Computers € Security, 14(3):233-249, 1995.

Joseph Bonneau. The science of guessing: analyzing an anonymized corpus of 70
million passwords. In SP ’12: Proceedings of the 2012 IEEE Symposium on Security
and Privacy, 2012.

William E. Burr, Donna F. Dodson, and W. Timothy Polk. Electronic Authenti-
cation Guideline. NIST Special Publication 800-63, 2006.

Claude Castelluccia, Markus Diirmuth, and Daniele Perito. Adaptive Password-
Strength Meters from Markov Models. In NDSS ’12: Proceedings of the Network
and Distributed System Security Symposium, 2012.

Aaron Clauset, Cosma Rohilla Shalizi, and M. E. J. Newman. Power-Law Distri-
butions in Empirical Data. SIAM Review, 51:661-703, 2009.

Chris Davies and Chris Ganesan. BApasswd: A New Proactive Password Checker.
In Proceedings of the 16™ National Computer Security Conference, 1993.

Matteo Dell’Amico, Pietro Michiardi, and Yves Roudier. Password Strength: An
Empirical Analysis. In INFOCOM’10: Proceedings of the 29" Conference on In-
formation Communications, pages 983-991. IEEE, 2010.

William A. Gale and Geoffrey Sampson. Good-Turing Frequency Estimation With-
out Tears. Journal of Quantitative Linguistics, 2(3):217-237, 1995.

. Mike Just and David Aspinall. Personal Choice and Challenge Questions: A Secu-

rity and Usability Assessment. In SOUPS ’09: Proceedings of the 5™ Symposium
on Usable Privacy and Security, 2009.

Patrick Gage Kelley, Saranga Komanduri, Michelle L. Mazurek, Rich Shay, Tim
Vidas, Lujo Bauer, Nicolas Christin, Lorrie Faith Cranor, and Julio Lopez. Guess
again (and again and again): Measuring password strength by simulating password-
cracking algorithms. Technical Report CMU-CyLab-11-008, Carnegie Mellon Uni-
versity, 2011.

Patrick Gage Kelley, Michelle L. Mazurek, Richard Shay, Lujo Bauer, Nicolas
Christin, Lorrie Faith Cranor, Saranga Komanduri, and Serge Egelman. Of Pass-
words and People: Measuring the Effect of Password-Composition Policies. In
CHI ’11: Proceedings of the 29" ACM SIGCHI Conference on Human Factors in
Computing Systems, 2011.

Arvind Narayanan and Vitaly Shmatikov. Fast Dictionary Attacks on Passwords
Using Time-Space Tradeoff. In CCS ’05: Proceedings of the 12" ACM Conference
on Computer and Communications Security, pages 364-372. ACM, 2005.

Claude E. Shannon. A Mathematical Theory of Communication. In Bell System
Technical Journal, volume 7, pages 379-423, 1948.

Richard Shay, Saranga Komanduri, Patrick Gage Kelley, Pedro Giovanni Leon,
Michelle L. Mazurek, Lujo Bauer, Nicolas Christin, and Lorrie Faith Cranor. En-
countering Stronger Password Requirements: User Attitudes and Behaviors. In
SOUPS ’10: Proceedings of the 6 Symposium on Usable Privacy and Security.
ACM, 2010.

Matt Weir, Sudhir Aggarwal, Michael Collins, and Henry Stern. Testing Metrics for
Password Creation Policies by Attacking Large Sets of Revealed Passwords. In CCS
’10: Proceedings of the 17 ACM Conference on Computer and Communications
Security, pages 162-175. ACM, 2010.

Matt Weir, Sudhir Aggarwal, Breno de Medeiros, and Bill Glodek. Password Crack-
ing Using Probabilistic Context-Free Grammars. In SP ’09: Proceedings of the 2009
IEEE Symposium on Security and Privacy, pages 391-405. IEEE, 2009.



A Definition of a-guesswork G,

Taken directly from the derivation in [2], the definition of Gy, requires several
parts. The a-work-factor u, reflects the required size u of a dictionary needed
to have a cumulative probability « of success in an optimal guessing attack:

o (X) = min { P > Oz} (8)

This metric doesn’t account for the average number of guesses per account, which
will be lower since the attacker is able to stop early after correct guesses. The
a-guesswork G, reflects the average number of guesses per account:

Pa(X)

Go(X) = (1 =) ZPM (9)

Note that a rounded-up [[a]] is used to reflect that the actual probability of
success after pglpha guesses may be more than a:

l"a(X)

Tall = Z Di (10)

Finally, G, is converted to bits by finding the size of a uniform distribution
which would have an equivalent value of GG, and taking a logarithm:

GulX) = 1g [ ﬁﬂ( tl}—lg@—ﬂaﬂ) (1)

B Proof of expected sum for naive index strength metric
S1(z) for the uniform distribution

As claimed in Section 3.2, using the definition from Equation 5:

Sk(z) =1g(2-iz — 1)

and randomly assigning an ordering to the uniform distribution does not produce
an expected value of Ig N, but = lg N — (Ige — 1).



Proof. We first take the expectation:

E[S&(m)}x&b{]\; Z— lg(2-i—1)

-(lgl1+1g3+1g5+... +1g(2N - 1))

Jdg(1-3-5-...- (2N — 1))

v e (3w

We can use Stirling’s approximation In N! ~ N In N — N, converting the base
to get lgN!~ NlgN — Nlge:

e (2(13Nz)\;')

- (Ig(2N)! —1g N1 —1g2V)

-1

o

E [Sh(@)|z & Uy) =

-(2N1g2N —2Nlge— NlgN + Nlge — N)

-(2N1gN +2N —2Nlge— NIlgN + Nlge— N)

Z\HZ\HZ\HZ\H =]~

-(NlgN+ N —Nlge)

N —(lge—1)

—
0]



	Statistical metrics for individual password strength

