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Abstract Resolution modulo is an extension of first-order resolution in which rewrite rules are used to rewrite clauses
during the search. In the first version of this method, clauses are rewritten to arbitrary propositions. These propositions
are needed to be dynamically transformed into clauses. This unpleasant feature can be eliminated when the rewrite system
is clausal, i.e., when it rewrites clauses to clauses. We show in this paper how to transform any rewrite system into a clausal
one, preserving the existence of cut free proofs of any sequent.
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1 Introduction

Deduction modulo[1] is an extension of first-order
predicate logic where axioms (for instance P ⇔ (Q ⇒
R)) are replaced by rewrite rules (for instance P →
(Q ⇒ R)) used to replace a proposition by an equiva-
lent one at any time during a proof. One of its applica-
tions is the sequent calculus modulo[1] which is an ex-
tension of pure sequent calculus (see Fig.1). The resolu-
tion method in deduction modulo, resolution modulo[1],
is an extension of first-order resolution[2-4] in which
rewrite rules are used to narrow clauses during the
search. Resolution modulo is sound and complete, i.e.,
for any confluent rewrite system R, the sequent Γ ` ∆
has a cut free proof in sequent calculus modulo R if
and only if the empty clause can be derived from the
clauses of Γ,¬∆ (denoted by Cl(Γ,¬∆)) with two rules:
the usual resolution rule and the narrowing rule that
permits to rewrite, or more generally narrow, a clause.

In resolution modulo, rules rewrite clauses to ar-
bitrary propositions, which need to be dynamically
transformed into clauses. For instance, the rule P →
(Q ⇒ R) rewrites the clause P to a non-clausal propo-
sition Q ⇒ R. In the process of deriving the empty
clause from the clauses {P}, {Q}, {¬R}, we first de-
rive {Q ⇒ R} from {P}, then we need to transform
{Q ⇒ R} into a clause {¬Q,R}. See the left deriva-
tion in Fig.2 (Ã: resolution, →: rewriting, →→: dy-
namic transformation to clauses). In another exam-
ple, attempting to derive the empty clause from {P},

{¬Q(x)} with the rewrite rule P → ∃xQ(x), we first
derive {∃xQ(x)} from {P}, then {∃xQ(x)} needs to be
transformed into a clause {Q(c)} with a new Skolem
symbol c (see the right derivation in Fig.2). The prob-
lem we address in this paper is to avoid these dynamic
transformations.

This unpleasant dynamical transformation can be
eliminated when the rewrite system is clausal, i.e., when
it rewrites clauses to clauses. This is the idea of polari-
zed resolution modulo[5]. See Fig.3 for a presentation
of polarized resolution modulo where unification prob-
lems are kept as constraints and |A| denotes the clause
of proposition A. See [6] for an efficient implementation
of polarized resolution modulo.

Polarized resolution modulo is sound and complete,
i.e., for any clausal rewrite systemR, the sequent Γ ` ∆
has a cut free proof in polarized sequent calculus mod-
ulo R if and only if a clause ¤[C] with E-unifiable con-
straints C can be derived from Cl(Γ,¬∆) in polari-
zed resolution modulo R. See Fig.4 for an example
of polarized resolution module with the clausal rewrite
system containing one rule P →− ¬Q ∨ R. Compared
with Fig.2, in the process of deriving the empty clause
from the clauses {P}, {Q}, {¬R}, we do not need to
dynamically transform Q ⇒ R to {¬Q,R} in Fig.4.
Thus the problem can be reformulated as translating a
rewrite system into a clausal one.

In polarized resolution modulo, rewrite systems dis-
tinguish rules as positive and negative, with negative
rules rewriting atomic propositions to clausal proposi-
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Γ ` ∆
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Γ ` ∆
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− ⊥
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− ¬B
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¬-right if A →∗

+ ¬B

Γ, B, C ` ∆

Γ, A ` ∆
∧-left if A →∗

− (B ∧ C)
Γ ` B, ∆ Γ ` C, ∆
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∧-right if A →∗

+ (B ∧ C)

Γ, B ` ∆ Γ, C ` ∆

Γ, A ` ∆
∨-left if A →∗

− (B ∨ C)
Γ ` B, C, ∆

Γ ` A, ∆
∨-right if A →∗

+ (B ∨ C)

Γ ` B, ∆ Γ, C ` ∆

Γ, A ` ∆
⇒-left if A →∗

− (B ⇒ C)
Γ, B ` C, ∆

Γ ` A, ∆
⇒-right if A →∗

+ (B ⇒ C)

Γ, C ` ∆

Γ, A ` ∆
∀-left if A →∗

− ∀xB, (t/x)B →∗
− C

Γ ` B, ∆

Γ ` A, ∆
〈x, B〉∀-right if A →∗

+ ∀xB, x 6∈ FV (Γ∆)

Γ, B ` ∆

Γ, A ` ∆
∃-left if A →∗

− ∃xB, x 6∈ FV (Γ ∆)
Γ ` C, ∆

Γ ` A, ∆
∃-right if A →∗

+ ∃xB, (t/x)B →∗
+ C

Fig.1. Polarized sequent calculus modulo.

Fig.2. Examples of resolution modulo.

Fig.3. Polarized resolution modulo.

Fig.4. Example of polarized resolution modulo.

tions and positive rules rewriting atomic propositions
to negation of clausal propositions. This is needed be-
cause the extended narrowing rule with P → ¬Q ∨ R
for example transforms the clause {P} to the clause
{¬Q,R}. But when we have the clauses {¬P} and
{¬Q} for example, we cannot use the same rewrite rule,
since it would transform {¬P} into {¬(¬Q∨R)} which
is not a clause. In this case, since Cl({¬(¬Q ∨ R)}) =
{{Q}, {¬R}}, we want to transform {¬P} into clause
{Q} directly. Instead of P → ¬Q ∨ R, we want to

use the positive rule P → ¬Q. Using this rewrite rule,
the extended narrowing of Fig.3 transforms the clause
{¬P} into the clause {Q} and we can conclude with the
resolution rule.

In this paper, we show how to transform any rewrite
system into an equivalent clausal one, preserving the
existence of cut free proofs of any sequent. In this way,
polarized resolution modulo can be applied to the sys-
tem directly.

The paper is organized as follows. In Section 2 we re-
call some basic notions in resolution modulo and polari-
zed resolution modulo. In Section 3 we construct the
translator (Definition 4). Then we prove that the trans-
lator terminates and returns a clausal rewriting system
(Theorem 1). In Section 4 we prove that the clausal
rewrite system returned by the translator preserves the
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existence of cut free proofs for any sequent of the origi-
nal language (Theorem 2). In Section 5 we give a com-
plete example. Finally, we conclude the paper in Sec-
tion 6.

2 Preliminaries

Definitions and propositions of this section are taken
from [1, 4-5].

Definition 1. A proposition is a literal if it is ei-
ther atomic or the negation of an atomic proposition.
A clause is a set of literals. A proposition is clausal if
it is ⊥ or of the form L1∨ . . .∨Ln where L1, . . . , Ln are
literals. If A = L1 ∨ . . . ∨ Ln is a clausal proposition,
we write |A| for the clause {L1, . . . , Ln}.

Definition 2. A polarized rewrite system is a triple
R = 〈E ,R−,R+〉 where E is a set of equations between
terms, R− and R+ are sets of rewrite rules whose left-
hand sides are atomic propositions and right-hand sides
are arbitrary propositions. The rules of R− are called
negative rules and those of R+ are called positive rules.
A rewrite system is clausal if negative rules rewrite
atomic propositions to clausal propositions and posi-
tive rules rewrite atomic propositions to negations of
clausal propositions. Let R = 〈E ,R−,R+〉 be a polari-
zed rewrite system. We define the equivalence relation
=E as the congruence on terms generated by the equa-
tions of E. We then define the one-step negative and
positive rewriting relations →− and →+ as follows.
• If ti =E u then P (t1, . . . , ti, . . . , tn) →−

P (t1, . . . , u, . . . , tn) and P (t1, . . . , ti, . . . , tn) →+

P (t1, . . . , u, . . . , tn).
• If P → A is a rule of Rs and σ is a substitution

then σP →s σA, where s is either − or +.
• If A →s A′ then ¬A −→s ¬A′, where . swaps −

and +.
• If (A →s A′ and B = B′) or (A = A′ and

B →s B′), then A∧B →s A′∧B′ and A∨B →s A′∨B′.
• If (A →s A′ and B = B′) or (A = A′ and

B −→s B′), then A ⇒ B →s A′ ⇒ B′.
• If A →s A′ then ∀xA →s ∀x A′ and ∃x A →s

∃x A′.
We define the sequent one-step term rewriting rela-

tion → as follows:
• If A →− A′ then (Γ, A ` ∆) → (Γ, A′ ` ∆).
• If A →+ A′ then (Γ ` A,∆) → (Γ ` A′,∆).
As usual, if R is any binary relation, we write R∗ for

its reflexive-transitive closure.
Proposition 1. Let R = (E ,R−,R+) be a polarized

rewrite system. If (Γ ` ∆) →∗ (Γ′ ` ∆′) and Γ′ ` ∆′

has a cut free proof modulo R then Γ ` ∆ has a cut free
proof modulo R of the same size.

Intuitively, the size of a proof is the number of nodes
in the proof tree.

Definition 3. Let L be a language containing an
equality predicate in each sort. Let R be a polarized
rewrite system in L. Let UR be the set of axioms
containing:
• the axioms of equality for L,
• for each equational axiom t = u of E, the universal

closure of the proposition t = u,
• for each rule P → A of R−, the universal closure

of the proposition P ⇒ A,
• for each rule P → A of R+, the universal closure

of the proposition A ⇒ P .
Proposition 2. Let L be a language and R be a

polarized rewrite system in L. Let L′ be the language
obtained by adding an equality symbol in each sort of
L. Then, a sequent Γ ` ∆ of L is provable modulo R if
and only if it is provable in UR①.

3 Translator

In this section we will show how to translate a
rewrite system into a clausal one. We first translate
each rule into a negative rule and a positive rule, then
translate the negative rule into rule(s) rewriting atomic
propositions to clausal propositions and translate the
positive rule into rule(s) rewriting atomic propositions
to negations of clausal propositions (see Fig.5).

Fig.5. Main idea underlying our translation.

To make our translator simpler, rewrite rules P →−
A, P →+ A need to be transformed into P →− A ∨ ⊥′
and P →+ ¬(¬A∨⊥′) respectively before put into the
translator defined as follows.

We add a symbol ⊥′ into the language which is just
a primed version of ⊥. This symbol is used to prove
the termination of the translator only.

Definition 4 (Translation).
Step 1: translate the rewrite rule P →− A, P →+ A

into P →− A ∨ ⊥′ and P →+ ¬(¬A ∨ ⊥′) respectively.
Step 2: translate the source rule in Table 1 into its

target rule(s) and keep on recurring in step 2 while it
can be applied.

Step 3: translate the rewrite rule P →− ⊥′ ∨B and
P →+ ¬(⊥′∨B) into P →− B, P →+ ¬B respectively.

If the rewrite rule r′ is one of the target rule(s) of r,
we denote this by r . r′. The polarized rewrite system
R is one step translated into R′ (denoted by R I R′)

①Dowek G. Simple type theory as a clausal theory. https://who.rocq.inria.fr/Gilles.Dowek/publi.html, April 2013.



1088 J. Comput. Sci. & Technol., Nov. 2013, Vol.28, No.6

Table 1. Translator for the Negative and Positive Rules

Case Source Rule Target Rule(s)

Number

1 P →− ⊥ ∨R P →− R

2 P →− Q ∨R (Q is atomic) P →− R ∨Q

3 P →− (Q1 ∧Q2) ∨R P →− (Q1 ∨R)

P →− (Q2 ∨R)

4 P →− (Q1 ∨Q2) ∨R P →− Q1 ∨ (Q2 ∨R)

5 P →− (Q1 ⇒ Q2) ∨R P →− (¬Q1 ∨ (Q2 ∨R))

6 P →− ∀xQ ∨R P →− (Q ∨R)

7 P →− ∃xQ ∨R P →− ((f(l)/x)Q ∨R)

l free variables of ∃xQ, R

8 P →− ¬⊥ ∨R Drop this rule

9 P →− ¬Q ∨R P →− R ∨ ¬Q

(Q is atomic)

10 P →− ¬(¬Q) ∨R P →− Q ∨R

11 P →− ¬(Q1 ∧Q2) ∨R P →− ¬Q1 ∨ (¬Q2 ∨R)

12 P →− ¬(Q1 ∨Q2) ∨R P →− ¬Q1 ∨R

P →− ¬Q2 ∨R

13 P →− ¬(Q1 ⇒ Q2) ∨R P →− Q1 ∨R

P →− ¬Q2 ∨R

14 P →− ¬(∀xQ) ∨R P →− ((f(l)/x)¬Q) ∨R

l free variables of ∀xQ, R

15 P →− ¬(∃xQ) ∨R P →− (¬Q) ∨R

16 P →+ ¬(⊥ ∨R) P →+ ¬R

17 P →+ ¬(Q ∨R) P →+ ¬(R ∨Q)

(Q is atomic)

18 P →+ ¬((Q1 ∧Q2) ∨R) P →+ ¬(Q1 ∨R)

P →+ ¬(Q2 ∨R)

19 P →+ ¬((Q1 ∨Q2) ∨R) P →+ ¬(Q1 ∨ (Q2 ∨R))

20 P →+ ¬((Q1 ⇒ Q2) ∨R) P →+ ¬(¬Q1 ∨ (Q2 ∨R))

21 P →+ ¬(∀xQ ∨R) P →+ ¬(Q ∨R)

22 P →+ ¬(∃xQ ∨R) P →+ ¬((f(l)/x)Q ∨R)

l free variables of ∃xQ, R

23 P →+ ¬(¬⊥ ∨R) Drop this rule

24 P →+ ¬((¬Q) ∨R) P →+ ¬(R ∨ (¬Q))

(Q is atomic)

25 P →+ ¬(¬(¬Q) ∨R) P →+ ¬(Q ∨R)

26 P →+ ¬(¬(Q1 ∧Q2) ∨R) P →+ ¬(¬Q1 ∨ (¬Q2 ∨R))

27 P →+ ¬(¬(Q1 ∨Q2) ∨R) P →+ ¬(¬Q1 ∨R)

P →+ ¬(¬Q2 ∨R)

28 P →+ ¬(¬(Q1 ⇒ Q2) ∨R) P →+ ¬(Q1 ∨R)

P →+ ¬(¬Q2 ∨R)

29 P →+ ¬(¬(∀xQ) ∨R) P →+ ¬(((f(l)/x)¬Q) ∨R)

l free variables of ∀xQ, R

30 P →+ ¬(¬(∃xQ) ∨R) P →+ ¬(¬Q ∨R)

if R′ is from R by translating one rule of R (replace
one rule of R by its target rule(s)).

For example, given the polarized rewrite system con-
taining only two rules P →− (Q ⇒ R) and P →+ (Q ⇒
R). Here we start step 2 with P →− (Q ⇒ R) ∨ ⊥′
and P →+ (Q ⇒ R) ∨ ⊥′. Finally, we get the rules
P −→− ¬Q ∨ R, P −→+ ¬Q, P −→+ ¬(¬R) (see
Fig.6).

Notice that variables that are free in the right-hand
side but not in the left-hand side are authorized in the
rewrite rule. This does not have impact on the correct-
ness of the results. We can universally quantify on the
free variables in the right-hand side but not in the left-
hand side. For instance, we have P (x) →− ∀yQ(x, y)
and P (x) →+ ¬∀yQ(x, y) by quantifying on P (x) →−
Q(x, y) and P (x) →+ ¬Q(x, y), respectively.

We now prove that the translator terminates and re-
turns a clausal rewriting system. We only prove this for
the negative rules, as the proofs for the positive rules
are similar. Let P →− A ∨ ⊥′ be the input of step
2. During the translation, ⊥′ always splits A into the
part that has been translated and the part that has not
been translated. The part that has not been translated
becomes smaller and smaller until it disappears.

Definition 5. Let P →− A be a negative rule with
only one occurrence of ⊥′. We say that ⊥′ is free in
P →− A, if
• A = ⊥′ or,
• A = B1 ∨B2 and ⊥′ is free in P →− B1 or,
• A = B1 ∨B2 and ⊥′ is free in P →− B2.
Intuitively, we say that ⊥′ is free in P →− A when

⊥′ is not an argument of other connectives than ∨, for
instance, A = ∃xB ∨ (⊥′ ∨ C). But A = ⊥′ ∧ C is not
an instance of Definition 5, because ⊥′ is an argument
of ∧ in ⊥′ ∧ C.

Lemma 1. Let r1 . r2 . . . . . rn be a translation se-
quence in step 2 such that ⊥′ is free in r1. Then ⊥′ is
free in ri where 1 6 i 6 n.

Proof. We prove this by induction on the number of
translation steps. It is sufficient to show that if ⊥′ is
free in ri then ⊥′ is free in ri+1. We prove this for each
case of Table 1 used for ri . ri+1. We only consider the
four most complex cases (the proofs for the other cases
are similar):

Fig.6. Translation example.
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Case 1. By induction hypothesis, ⊥′ is free in ri,
where ri has the form P → ⊥ ∨ R. By Definition 5,
there exists a ⊥′ in ⊥ ∨ R. Since ⊥ 6= ⊥′, ⊥′ in R, by
Definition 5, ⊥′ is free in P →− R, that is ri+1.

Case 2. By induction hypothesis, ⊥′ is free in ri,
where ri has the form P → Q∨R where Q is atomic. By
Definition 5, there exists a ⊥′ in Q ∨R. Since Q 6= ⊥′,
⊥′ in R, by Definition 5, ⊥′ is free in P → R. So ⊥′ is
free in P → R ∨Q.

Case 3. By induction hypothesis, ⊥′ is free in ri,
where ri has the form P → (Q1 ∧Q2) ∨ R. By Defini-
tion 5, there exists a ⊥′ in (Q1 ∧Q2)∨R. Moreover ⊥′
is in R, because if ⊥′ is in Q1 ∧Q2, then ⊥′ is not free
in P → (Q1 ∧ Q2) ∨ R. By Definition 5, ⊥′ is free in
P → R. So ⊥′ is free in P → Q1 ∨R and P → Q2 ∨R.

Case 4. By induction hypothesis, ⊥′ is free in ri,
where ri has the form P → (Q1 ⇒ Q2)∨R. By Defini-
tion 5, there exists a ⊥′ in (Q1 ⇒ Q2)∨R. Since if ⊥′ is
in Q1 ⇒ Q2, then ⊥′ is not free in P → (Q1 ⇒ Q2)∨R,
so ⊥′ is in R. By Definition 5, ⊥′ is free in P → R. So
⊥′ is free in P → (¬Q1 ∨Q2) ∨R. ¤

Lemma 2. Let (P → (A ∨ ⊥′)) . (P → A1) . . . . .
(P → An) be a translation sequence in step 2 such that
⊥′ is free in P → A ∨ ⊥′. Then the symbols occurring
on the right-hand side of ⊥′ consist of “(”, “)”, “∨”
and literals in Ai, where 1 6 i 6 n.

Proof. Since ⊥′ is free in P → A ∨ ⊥′, by Lemma
1, ⊥′ is free in P → Ai where 1 6 i 6 n. We prove
this lemma by induction on the number of translation
steps. It is sufficient to show if the symbols on the right-
hand side of ⊥′ consist of “(”, “)”, “∨” and literals in
Ai so do the symbols on the right-hand side of ⊥′ in
Ai+1. We prove this for each case of Table 1 used for
(P → Ai) . (P → Ai+1). We only consider the four
most complex cases (the proofs for the other cases are
similar):

Case 1. Since ⊥′ is free in P → Ai where Ai has the
form ⊥ ∨ R, so ⊥′ is in R. By induction hypothesis,
the symbols on the right-hand side of ⊥′ consist of “(”,
“)”, “∨” and literals in R.

Case 2. Since ⊥′ is free in P → Ai where Ai has the
form Q∨R where Q is atomic, so ⊥′ is in R. By induc-
tion hypothesis, the symbols on the right-hand side of
⊥′ consist of “(”, “)”, “∨” and literals in R. Because
Q is literal, the symbols on the right-hand side of ⊥′
consist of “(”, “)”, “∨” and literals in R ∨Q.

Case 3. Since ⊥′ is free in P → Ai where Ai has
the form (Q1 ∧ Q2) ∨ R, so ⊥′ is in R. By induction
hypothesis, the symbols on the right-hand side of ⊥′
consist of “(”, “)”, “∨” and literals in R. So do the
symbols on the right-hand side of ⊥′ in Q1 ∨ R and
Q2 ∨R.

Case 4. By induction hypothesis, the symbols on

the right-hand side of ⊥′ consist of “(”, “)”, “∨” and
literals in r1 where r1 has the form P → (Q1∨Q2)∨R.
So do these symbols in P → Q1 ∨ (Q2 ∨R). ¤

Definition 6. Let P be a proposition. The size of
P (denoted by |P |) is defined as follows:
• if P is atomic, then |P | = 1,
• if P = ⊥, then |P | = 1,
• if P = ⊥′, then |P | = 1,
• if P = Q1 ∨Q2, then |P | = |Q1|+ |Q2|+ 1,
• if P = Q1 ∧Q2, then |P | = |Q1|+ |Q2|+ 3,
• if P = Q1 ⇒ Q2, then |P | = |Q1|+ |Q2|+ 3,
• if P = ¬Q1, then |P | = |Q1|+ 1,
• if P = ∃xQ1, then |P | = |Q1|+ 1,
• if P = ∀xQ1, then |P | = |Q1|+ 1.
The next definition introduces the notion of size for

the part of a rule that is on the left of ⊥′, i.e., the size
of the part that has not been translated.

Definition 7. Let P → A be a negative rule with
⊥′ free in it. The size of P → A (denoted by ||P → A||)
is defined as follows:

||P → A|| =



1, if A = ⊥′,
||P → Q1||, if A = Q1∨Q2 with⊥′ in Q1,

|Q1|+ ||P → Q2||+ 1, if A = Q1∨Q2 with⊥′ in Q2.

According to Definition 5, either A = ⊥′ or A has
the form Q1 ∨Q2, so Definition 7 is well formed.

Lemma 3. For any negative rule P → A ∨ ⊥′ with
⊥′ not in A, the translation in step 2 terminates at
P → An where An has the form ⊥′ or ⊥′ ∨B.

Proof. Suppose the translation proceeds as follows:
(P → A ∨ ⊥′) . . . . . (P → Am) . . . .. By Definition
5, ⊥′ is free in P → A ∨ ⊥′. By Lemma 1, ⊥′ is in
P → Ai. That is either Ai = ⊥′ or Ai = A1

i ∨A2
i .

The translation terminates since the pair 〈||P →
Ai||, |A1

i |〉 decreases according to the lexicographic or-
der after each translation step. We prove this for
each case used for translation in Table 1. In gene-
ral except case 4, the first part of the pair 〈||P →
Ai||, |A1

i |〉 decreases. For instance, in case 11 the pair
〈||P →− ¬(Q1 ∧ Q2) ∨ R||, |¬(Q1 ∧ Q2)|〉 decreases to
〈||P →− ¬Q1 ∨ (¬Q2 ∨R)||, |¬Q1|〉. This is because

||P →− ¬(Q1 ∧Q2) ∨R||
= |¬(Q1 ∧Q2)|+ ||P →− R||+ 1

= |(Q1 ∧Q2)|+ 1 + ||P →− R||+ 1

= |Q1|+ |Q2|+ 3 + 1 + ||P →− R||+ 1

= (|Q1|+ 1) + (|Q2|+ 1) + ||P →− R||+ 3

= |¬Q1|+ |¬Q2|+ ||P →− R||+ 3

= |¬Q1|+ (|¬Q2|+ ||P →− R||+ 1) + 2

= |¬Q1|+ ||P →− ¬Q2 ∨R||+ 2
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= ||P →− ¬Q1 ∨ (¬Q2 ∨R)||+ 1.

In case 4, the pair 〈||P → (Q1∨Q2)∨R||, |(Q1∨Q2)|〉
decreases to 〈||P → (Q1∨Q2)∨R||, |Q1|〉. The first part
is unchanged and the second part decreases. ¤

By Lemma 3, after using Table 1, every rule is trans-
formed into one of the two following forms: P → ⊥′ or
P → ⊥′ ∨B. By Lemma 2, symbols occurring in B are
“(”, “)”, “∨” and literals, that is B is clausal. Step 3
finishes the transformation, that is (P → ⊥′)B(P → ⊥)
or (P → ⊥′∨B)B(P → B) where B is a clausal propo-
sition.

The proofs for positive rules are the same as those
for negative rules. We are now able to state the first
main result of this paper.

Theorem 1. For any polarized rewrite system R0,
the translator will eventually stop, producing a rewrite
system Rf such that R0 I R1 I . . . I Rf and Rf is
clausal. We say that Rf is the final polarized rewrite
system of R0.

Proof. Here we only prove this for the part of R0−,
as the proof for the part of R0+ is similar.

We first deal with each rule in R0− by step 1. Then
⊥′ is free in every rule and we process each rule by step
2. The transformation in step 2 terminates because the
multi-set (there is a number pair for each rule in Rj−)
of pairs 〈||P → Ai||, |A1

i |〉 defined in Lemma 3 decreases
according to the multi-set ordering. Finally we deal
with each rule by step 3 and obtain Rf . By Lemma 2,
the polarized rewrite system Rf is clausal. ¤

4 Equivalence

In this section we prove that the clausal rewrite
system returned by the translator preserves the exis-
tence of cut free proofs for any sequent of the origi-
nal language. Let Γ `R ∆ (respectively Γ `cf

R ∆)
denotes that the sequent Γ ` ∆ has a proof (cut
free proof) in polarized sequent calculus modulo R
(Fig.1), →R∗

+ (respectively →R∗
− ) denotes the reflexive

and transitive closure of →+ (respectively →−) in R
and Cl(Γ,¬∆) ÃR ¤ denotes that empty clause can be
derived from Cl(Γ,¬∆) in polarized resolution modulo
R (Fig.3). Our final goal is to prove that when R0 has
the cut elimination property and Γ ` ∆ is a sequent in
the language of L,

Γ `R0 ∆ ⇔ Cl(Γ,¬∆) ÃRf
¤.

It has been proved in [5] following the lines of [1, 7]
that Γ `cf

Rf
∆ if and only if Cl(Γ,¬∆) ÃRf

¤. So it is

sufficient to show (Γ `R0 ∆) ⇔ (Γ `cf
Rf

∆). The road
map of the proof is depicted in Fig.7, where P. is the
abbreviation of proposition.

Fig.7. Structure of the equivalence proof.

4.1 Basic Facts

Propositions in this subsection will be used in the
next subsection.

Proposition 3 (Substitution). Let R =
(E ,R−,R+) be a polarized rewrite system and σ be a
capture-avoiding substitution (substitute variables with
terms). If Γ ` ∆ has a cut free proof modulo R, then
σ(Γ ` ∆) has cut free proof modulo R of the same size,
where σ(Γ ` ∆) is obtained by applying σ to each propo-
sition in Γ ` ∆.

Proof. We will prove this by induction on the size
of the proof of Γ ` ∆ in R. We only consider the non-
trivial cases: ∀ rules.

If the proof has the form:

π

Γ, C ` ∆
Γ, A ` ∆

∀ − left

with a proposition B and term u such that A →R∗
− ∀xB

and (u/x)B →R∗
− C, then σA →R∗

− ∀wσ(w/x)B and
(σu/w)σ(w/x)B →R∗

− σC, where w /∈ domain(σ). By
induction hypothesis, the sequent σ(Γ, C ` ∆) has a
cut free proof modulo R. We conclude with rule ∀-left
and the proof of σ(Γ, A ` ∆).

If the proof has the form:

π

Γ ` B,∆
Γ ` A,∆

∀ − right

with A →R∗
+ ∀xB and x /∈ FV (Γ,∆), then σA →R∗

+

∀wσ(w/x)B, where w /∈ domain(σ) and w /∈
FV (σΓ, σ∆). By induction hypothesis, the sequent
Γ ` (w/x)B,∆ has a cut free proof of the same size
as that of Γ ` B,∆. By induction hypothesis, the se-
quent σΓ ` σ(w/x)B, σ∆ has a cut free proof of the
same size as that of Γ ` (w/x)B,∆. We build the
cut free proof of σ(Γ ` A,∆) with ∀-right applied to
σΓ ` σ(w/x)B, σ∆. ¤

Proposition 4 (Inversion). Let R = (E ,R−,R+)
be a polarized rewrite system. If a sequent of the left
column in Table 2 has a cut free proof π modulo R,
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then we can build a cut free proof π′ modulo R for cor-
responding sequent in the right column such that π′ is
either smaller than π or of the same size as π.

Table 2. Inversion

Γ ` Q1 ∧Q2, ∆ Γ ` Q1, ∆ and Γ ` Q2, ∆

Γ ` Q1 ∨Q2, ∆ Γ ` Q1, Q2, ∆

Γ ` Q1 ⇒ Q2, ∆ Γ, Q1 ` Q2, ∆

Γ ` ¬Q, ∆ Γ, Q ` ∆

Γ ` ∀xQ(x), ∆ Γ ` Q(t), ∆ for all terms t

Γ, Q1 ∧Q2 ` ∆ Γ, Q1, Q2 ` ∆

Γ, Q1 ∨Q2 ` ∆ Γ, Q1 ` ∆ and Γ, Q2 ` ∆

Γ, Q1 ⇒ Q2 ` ∆ Γ ` Q1, ∆ and Γ, Q2 ` ∆

Γ,¬Q ` ∆ Γ ` Q, ∆

Γ, ∃xQ(x) ` ∆ Γ, Q(t) ` ∆ for all terms t

Proof. All proofs are similar, so we only consider the
most complex case: Γ ` ∀xQ(x),∆.

We prove it by induction on the size of the proof of
Γ ` ∀xQ(x),∆.

We consider the last rules in π. In the first series of
cases these rules are applied to the proposition ∀xQ(x).

If the proof has the form

π1

Γ ` B,C,∆
Γ ` ∀xQ(x),∆

contr-right,

then ∀xQ(x) →R∗
+ B, ∀xQ(x) →R∗

+ C. By Proposi-
tion 1, the sequent Γ ` ∀xQ(x),∀xQ(x),∆ has a cut
free proof of the same size as that of Γ ` B,C,∆. We
conclude with induction hypothesis (twice) and the rule
contr-right.

If the proof has the form

π1

Γ ` ∆
Γ ` ∀xQ(x),∆

weak-right,

then Γ ` ∆ has a proof smaller than that of Γ `
∀xQ(x),∆. We conclude with the rule weak-right.

If the proof has the form

π1

Γ ` C,∆
Γ ` ∀xQ(x),∆

∀-right

with ∀xQ(x) →R∗
+ ∀xC and x /∈ FV (Γ,∆), by the defi-

nition of one-step rewriting, we have Q(x) →R∗
+ C. By

Proposition 1, Γ ` Q(x),∆ has a cut free proof which
is the same size as that of Γ ` C, ∆. We conclude with
Proposition 3.

In the second series of cases, the last rule in π applies
to a proposition different from ∀xQ(x). For example, if

the last rule in π is ∃-left, then π has the form

π1

Γ, B ` ∀xQ(x),∆
Γ, A ` ∀xQ(x),∆

∃-left

with A →R∗
− ∃yB and y /∈ FV (Γ,∆) ∪ FV (∀xQ(x)).

Since y is a bound variable in ∀yB, we suppose y /∈
FV (t). By induction hypothesis, the sequent Γ, B `
Q(t),∆ has a cut free proof. We conclude with the rule
∃-left. ¤

Proposition 5 (∀1). Let R = (E ,R−,R+) be a
polarized rewrite system with one negative rule P →−
(Q(x) ∨ R) where x is a variable not free in P nor in
R. If sequents Γ,∀xQ(x) ` ∆ and Γ, R ` ∆ have cut
free proofs modulo R so does Γ, P ` ∆.

Proof. We will prove a more general property: if
the sequents Γ, (∀xQ(X))n ` ∆ and Γ′, R ` ∆′ have
cut free proofs modulo R so does the sequent Γ,Γ′, P `
∆,∆′, where (∀xQ(x))n is n copies of ∀xQ(x).

The proof is by induction on the size of the cut free
proof π of Γ, (∀xQ(X))n ` ∆.

We consider the last rules in π. In the first series of
cases these rules are applied to the proposition ∀xQ(x).

If the proof has the form

π1

Γ, B, C, (∀xQ(x))n−1 ` ∆
Γ,∀xQ(x), (∀xQ(x))n−1 ` ∆

contr-left

with ∀xQ(x) →R∗
− B, ∀xQ(x) →R∗

− C, by Proposition
1, the sequent Γ, (∀xQ(x))n+1 ` ∆ has a cut free proof
with the same size as that of Γ, B, C, (∀xQ(x))n−1 ` ∆.
We conclude with induction hypothesis.

If the proof has the form

π1

Γ, (∀xQ(x))n−1 ` ∆
Γ, (∀xQ(x))n ` ∆

weak-left,

we conclude with induction hypothesis.
If the proof has the form

π1

Γ, (∀xQ(x))n−1, C ` ∆
Γ, (∀xQ(x))n ` ∆

∀-left

with a proposition B and a term u such that
∀xQ(x) →R∗

− ∀xB and (u/x)B →R∗
− C, then

Q(x) →R∗
− B. So Q(u) →R∗

− (u/x)B →R∗
− C. By

Proposition 1, the sequent Γ, (∀xQ(x))n−1, Q(u) ` ∆
has a cut free proof with the same size as that of
Γ, (∀xQ(x))n−1, C ` ∆. By induction hypothesis,
Γ,Γ′, P, Q(u) ` ∆,∆′ has a cut free proof. We ob-
tain the proof of Γ,Γ′, P, P ` ∆,∆′ by applying the
rule ∨-left to proofs of Γ,Γ′, P, Q(u) ` ∆,∆′ and
Γ,Γ′, R ` ∆,∆′. We conclude with the rule contr-left.
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In the second series of cases, the last rule in π applies
to a proposition different from ∀xQ(x). For example, if
the last rule in π is ∀-right, then π has the form

π1

Γ, (∀xQ(x))n ` B,∆
Γ, (∀xQ(x))n ` A,∆

∀-right

with A →R∗
+ ∀yB and y /∈ FV (Γ,∆,Γ′,∆′) ∪ FV (P ).

By induction hypothesis, the sequent Γ,Γ, P ` B,∆,∆′

has a cut free proof. We conclude with the rule ∀-right.
¤

The proofs for Propositions 6 ∼ 8 are similar to that
of Proposition 5.

Proposition 6 (∀2). Let R = (E ,R−,R+) be a
polarized rewrite system with one positive rule P →
¬((Q(x) ∨ R)) where x is a variable not free in P nor
in R. If sequents Γ,∀xQ(x) ` ∆ and Γ, R ` ∆ have cut
free proofs modulo R so does Γ ` P, ∆.

Proposition 7 (∃). Let R = (E ,R−,R+) be a
polarized rewrite system. If the sequent Γ ` ∃xQ,∆
has a cut free proof modulo R so does Γ,∀x¬Q ` ∆.

Proposition 8 (⊥). Let R be a polarized rewrite
system. If the sequent Γ ` ⊥,∆ has a cut free proof in
R so does Γ ` ∆.

4.2 From R0 to Rf

We now prove (Γ `cf
R0

∆) ⇒ (Γ `cf
Rf

∆). It is suf-

ficient to show (Γ `cf
Rn

∆) ⇒ (Γ `cf
Rn+1

∆). We prove
this for the steps 1∼3 of the translator.

Proposition 9 (Step 1). Let R be a polarized
rewrite system and P →− Q a negative rule of R. The
sequent Γ ` ∆ has a cut free proof modulo R if and only
if it has a cut free proof modulo R′ where R′ is obtained
from R by replacing P →− Q with P →− Q ∨ ⊥.

Proof. It is proved by induction over the proof size.
If the proof has the form

A ` B
axiom

with an atomic proposition C such that A →R∗
− C and

B →R∗
+ C, then B →R′∗

+ C. There are two cases.
In the first case, if P →− Q is used in the derivation
A →R∗

− C, for instance, the derivation A →R∗
− P →R∗

−
Q →R∗

− C, then A →R′∗
− P →R′

− Q ∨ ⊥ →R′∗
− C ∨ ⊥.

We build the cut free proof of A ` B in R′ as follows:

C ` B
axiom ⊥` B
A ` B

⊥ -left
∨-left .

In the second case, if P →− Q is not used in the deriva-
tion A →R∗

− C, then A →R′∗
− C and B →R′∗

+ C. So we

can obtain the cut free proof of A ` B by using the rule
axiom in R′.

If the proof has the form

π

Γ, B, C ` ∆
Γ, A ` ∆ contr-left

with A →R∗
− B, A →R∗

− C, by Proposition 1, the se-
quent Γ, A, A ` ∆ has a cut free proof of the same size
as that of Γ, B, C ` ∆. By induction hypothesis, the
sequent Γ, A, A ` ∆ has a cut free proof in R′. We
conclude with the rule contr-left.

If the proof has the form

π

Γ ` ∆
Γ, A ` ∆

weak-left

by induction hypothesis, the sequent Γ ` ∆ has a cut
free proof in R′. We conclude with rule weak-left.

If the proof has the form

Γ ` A,∆
>-right

with A →R∗
+ >, since P →− Q is not used in the deriva-

tion A →R∗
+ >, we have A →R′∗

+ >. We conclude with
rule >-right.

If the proof has the form

Γ, A ` ∆
⊥-left

with A →R∗
− ⊥. There are two cases. In the first case,

if P →− Q is used in the derivation A →R∗
− ⊥, for in-

stance, the derivation A →R∗
− P →R∗

− Q →R∗
− ⊥, then

A →R′∗
− P →R′

− Q ∨ ⊥ →R′∗
− ⊥ ∨ ⊥. We build the cut

free proof of Γ, A ` ∆ in R′ as follows:

Γ,⊥ ` ∆
⊥-left

Γ,⊥ ` ∆
Γ, A ` ∆

⊥-left
∨-left .

In the second case, if P →R Q is not used in the deriva-
tion A →R∗

− C, then A →R′∗
− ⊥. We conclude with the

rule ⊥-left.
If the proof has the form

π

Γ ` B,∆
Γ, A ` ∆

¬-left

with A →R∗
− ¬B, then A = ¬A′ or A is atomic. If

A = ¬A′, then A′ →R∗
+ B. By Proposition 1, the se-

quent Γ ` A′,∆ has cut free proof of the same size
as that of Γ ` B,∆ in R. By induction hypothe-
sis, the sequent Γ ` A′,∆ has a cut free proof in
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R′. We conclude with rule ¬-left. If A is atomic,
then A →R∗

− A′ →R∗
− ¬B′ →R∗

− ¬B with B′ →R∗
+ B,

where A′ is the last atomic proposition in the deriva-
tion. By Proposition 1, the sequent Γ ` B′,∆ has a
cut free proof of the same size as that of Γ ` B,∆ in
R. By induction hypothesis, the sequent Γ ` B′,∆
has a cut free proof π′ in R′. There are two cases.
In the first case, if P →− Q is used in the derivation
A →R∗

− ¬B′, for instance, A →R∗
− P →R∗

− Q →R∗
− ¬B′,

then A →R′∗
− P →R′

− Q ∨ ⊥ →R′∗
− ¬B′ ∨ ⊥. We build

the cut free proof of Γ, A ` ∆ in R′ as follows:

π′

Γ ` B′,∆
Γ,¬B′ ` ∆

¬-left
Γ,⊥ ` ∆

Γ, A ` ∆

⊥-left
∨-left .

In the second case, if P →− Q is not used in the deriva-
tion A →R∗

− ¬B′, then A →R′∗
− ¬B′. We conclude with

the rule ¬-left.
If the last rule is one of the other rules, the argument

is analogous. ¤
The proofs for Propositions 10 ∼ 12 are similar to

that of Proposition 9. Propositions 5 ∼ 8 are used to
prove Propositions 10 ∼ 12.

Proposition 10 (Step 1). Let R be a polarized
rewrite system and P →+ A a positive rule of R. The
sequent Γ ` ∆ has a cut free proof modulo R if and only
if it has a cut free proof modulo R′ where R′ is obtained
from R by replacing P →+ A with P →+ ¬(¬A ∨ ⊥).

Proposition 11 (Step 3). Let R be a polarized
rewrite system and P →− ⊥ ∨ A a negative rule of
R. The sequent Γ ` ∆ has a cut free proof modulo R
if and only if it has a cut free proof modulo R′ where
R′ is obtained from R by replacing P →− ⊥ ∨ A with
P →− A.

Proposition 12 (Step 3). Let R be a polarized
rewrite system and P →+ ¬(⊥ ∨ ¬A) a positive rule
of R. The sequent Γ ` ∆ has a cut free proof modulo
R if and only if it has a cut free proof modulo R′ where
R′ is obtained from R by replacing P →+ ¬(⊥ ∨ ¬A)
with P →+ A.

Proposition 13 (Step 2). Let R, R′ be a polarized
rewrite system with R I R′. If the sequent Γ ` ∆ has
a cut free proof modulo R, then it has a cut free proof
modulo R′.

Proof. We prove this for each case of Table 1. We
only consider the most complex cases: case 3, 6, 7, 22.
In general, we prove this by induction on the size of the
proof of the sequent Γ ` ∆ in R.

Case 3. Consider the last rule used in the proof of
Γ ` ∆ in R. We only consider the non-trivial case: the
rule ∨-left.

If the proof has the form

π

Γ, B ` ∆
π′

Γ, C ` ∆
Γ, A ` ∆

∨-left

with A →R∗
− (B ∨ C), by the definition of one-step

rewriting, either A = (B′ ∨ C ′) for some B′ and C ′ or
A is atomic.

In the first case we have B′ →R∗
− B, C →R∗

− C ′. By
Proposition 1, the sequents Γ, B′ ` ∆ and Γ, C ′ ` ∆
have cut free proofs of the same size as that of Γ, B ` ∆
and Γ, C ` ∆ respectively. By induction hypothesis,
the sequents Γ, B′ ` ∆ and Γ, C ′ ` ∆ have cut free
proofs in R′ and we conclude with the ∨-left rule.

In the second case, there exist an atomic proposi-
tion A′ and two propositions B′, C ′ such that A →R∗

−
A′ →R

− B′ ∨ C ′ →R∗
− B ∨ C with B′ →R∗

− B and
C ′ →R∗

− C. By Proposition 1, the sequents Γ, B′ ` ∆
and Γ, C ′ ` ∆ have cut free proofs of the same size as
that of Γ, B ` ∆ and Γ, C ` ∆ respectively. By induc-
tion hypothesis, the sequents Γ, B′ ` ∆ and Γ, C ′ ` ∆
have cut free proofs in R′.

As A′ is atomic and A′ →R
− B′ ∨ C ′, then either

A′ →R
− B′ ∨ C ′ is the rule P →R

− (Q1 ∧ Q2) ∨ R with
B′ = (Q1 ∧ Q2) and C ′ = R or A′ →R

− B′ ∨ C ′ is not
the rule P →R

− (Q1 ∧Q2) ∨R.
If A′ →R

− B′ ∨ C ′ is the rule P →R
− (Q1 ∧ Q2) ∨ R

with B′ = (Q1∧Q2) and C ′ = R, by Proposition 4, the
sequent Γ, Q1, Q2 ` ∆ has a cut free proof in R′. We
can build a cut free proof of Γ, P, Q2 ` ∆ in R′ with
the rule ∨-left applied to the proofs of Γ, Q1, Q2 ` ∆
and Γ, C ′ ` ∆. We can build a cut free proof of
Γ, P, P ` ∆ in R′ with the rule ∨-left applied to the
proofs of Γ, P, Q2 ` ∆ and Γ, C ′ ` ∆. We can build a
cut free proof of Γ, P ` ∆ in R′ with the rule contr-left
applied to the proof of Γ, P, P ` ∆. Since A →R∗

− P

and both A and P are atomic, we have A →R′∗
− P . We

conclude with Proposition 1.
If A′ →R

− B′∨C ′ is not the rule P →R
− (Q1∧Q2)∨R,

we can build a cut free proof of Γ, A′ ` ∆ in R′ with
the rule ∨-left applied to the proofs of Γ, B′ ` ∆ and
Γ, C ′ ` ∆. Since A →R∗

− A′ and both A and A′ are
atomic, we have A →R′∗

− A′. We conclude with Propo-
sition 1.

Case 6. Consider the last rule used in the proof of
Γ ` ∆ in R. We only consider the non-trivial case: the
rule ∨-left.

If the proof has the form

π

Γ, B ` ∆
π′

Γ, C ` ∆
Γ, A ` ∆

∨-left
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with A →R∗
− (B ∨ C), then either A = (B′ ∨ C ′) or A

is atomic.
In the first case we have B′ →R∗

− B, C →R∗
− C ′. By

Proposition 1, the sequents Γ, B′ ` ∆ and Γ, C ′ ` ∆
have cut free proofs of the same size as that of Γ, B ` ∆
and Γ, C ` ∆ respectively. By induction hypothesis,
the sequents Γ, B′ ` ∆ and Γ, C ′ ` ∆ have cut free
proofs in R′ and we conclude with the ∨-left rule.

In the second case, there exist an atomic proposi-
tion A′ and two propositions B′, C ′ such that A →R∗

−
A′ →R

− B′ ∨ C ′ →R∗
− B ∨ C with B′ →R∗

− B and
C ′ →R∗

− C. By Proposition 1, the sequents Γ, B′ ` ∆
and Γ, C ′ ` ∆ have cut free proofs of the same size as
that of Γ, B ` ∆ and Γ, C ` ∆ respectively. By induc-
tion hypothesis, the sequents Γ, B′ ` ∆ and Γ, C ′ ` ∆
have cut free proofs in R′.

As A′ is atomic and A′ →R
− B′ ∨ C ′, then either

A′ →R
− B′ ∨ C ′ is the rule P →R

− ∀xQ ∨ R with
B′ = ∀xQ and C ′ = R or A′ →R

− B′∨C ′ is not the rule
P →R

− ∀xQ ∨R.
If A′ →R

− B′ ∨ C ′ is the rule P →R
− ∀xQ ∨ R with

B′ = ∀xQ and C ′ = R, by Proposition 5, the sequent
Γ, P ` ∆ has a cut free proof in R′. Since A →R∗

− P

and both A and P are atomic, we have A →R′∗
− P . We

conclude with Proposition 1.
If A′ →R

− B′ ∨ C ′ is not the rule P →R
− ∀xQ ∨ R,

we can build a cut free proof of Γ, A′ ` ∆ in R′ with
the rule ∨-left applied to the proofs of Γ, B′ ` ∆ and
Γ, C ′ ` ∆. Since A →R∗

− A′ and both A and A′ are
atomic, we have A →R′∗

− A′. We conclude with Propo-
sition 1.

Case 7. Consider the last rule used in the proof of
Γ ` ∆ in R. We only consider the non-trivial case: the
rule ∨-left.

If the proof has the form

π

Γ, B ` ∆
π′

Γ, C ` ∆
Γ, A ` ∆

∨-left

with A →R∗
− (B ∨ C), then either A = (B′ ∨ C ′) or A

is atomic.
In the first case we have B′ →R∗

− B, C →R∗
− C ′. By

Proposition 1, the sequents Γ, B′ ` ∆ and Γ, C ′ ` ∆
have cut free proofs of the same size as that of Γ, B ` ∆
and Γ, C ` ∆ respectively. By induction hypothesis,
the sequents Γ, B′ ` ∆ and Γ, C ′ ` ∆ have cut free
proofs in R′ and we conclude with the ∨-left rule.

In the second case, there exist an atomic proposi-
tion A′ and two propositions B′, C ′ such that A →R∗

−
A′ →R

− B′ ∨ C ′ →R∗
− B ∨ C with B′ →R∗

− B and
C ′ →R∗

− C. By Proposition 1, the sequents Γ, B′ ` ∆
and Γ, C ′ ` ∆ have cut free proofs of the same size as
that of Γ, B ` ∆ and Γ, C ` ∆ respectively. By induc-

tion hypothesis, the sequents Γ, B′ ` ∆ and Γ, C ′ ` ∆
have cut free proofs in R′.

As A′ is atomic and A′ →R
− B′ ∨ C ′, then either

A′ →R
− B′ ∨ C ′ is the rule P →R

− ∃xQ ∨ R with
B′ = ∃xQ and C ′ = R or A′ →R

− B′∨C ′ is not the rule
P →R

− ∃xQ ∨R.
If A′ →R

− B′ ∨ C ′ is the rule P →R
− ∃xQ ∨ R with

B′ = ∃xQ and C ′ = R, by Proposition 4, the sequent
Γ, (f(l)/x)Q ` ∆ has a cut free proof in R′. We can
build a cut free proof of Γ, P ` ∆ in R′ with the rule
∨-left applied to the proofs of Γ, (f(l)/x)Q ` ∆ and
Γ, R ` ∆. Since A →R∗

− P and both A and P are
atomic, we have A →R′∗

− P . We conclude with Propo-
sition 1.

If A′ →R
− B′ ∨ C ′ is not the rule P →R

− ∃xQ ∨ R,
we can build a cut free proof of Γ, A′ ` ∆ in R′ with
the rule ∨-left applied to the proofs of Γ, B′ ` ∆ and
Γ, C ′ ` ∆. Since A →R∗

− A′ and both A and A′ are
atomic, we have A →R′∗

− A′. We conclude with Propo-
sition 1.

Case 22. Consider the last rule used in the proof of
Γ ` ∆ in R. We only consider the non-trivial case: the
rule ¬-right.

If the proof has the form

π

Γ, B ` ∆
Γ ` A,∆

¬-right

with A →R∗
+ ¬B, then either A = ¬B′ or A is atomic.

In the first case we have B′ →R∗
− B. By Proposition

1, the sequent Γ, B′ ` ∆ has a cut free proof of the same
size as that of Γ, B ` ∆. By induction hypothesis, the
sequent Γ, B′ ` ∆ has a cut free proof in R′ and we
conclude with the ¬-right rule.

In the second case, there exist an atomic proposi-
tion A′ and a proposition B′ such that A →R∗

+ A′ →R
+

¬B′ →R∗
+ ¬B with B′ →R∗

− B. By Proposition 1, the
sequent Γ, B′ ` ∆ has a cut free proof of the same
size as that of Γ, B ` ∆. By induction hypothesis, the
sequent Γ, B′ ` ∆ has a cut free proof in R′.

As A′ is atomic and A′ →R
+ ¬B′, then either

A′ →R
+ ¬B′ is the rule P →R

+ ¬((∃xQ) ∨ R) with
B′ = (∃xQ) ∨ R or A′ →R

+ ¬B′ is not the rule
P →R

+ ¬((∃xQ) ∨R).
If A′ →R

+ ¬B′ is the rule P →R
+ ¬((∃xQ) ∨ R)

with B′ = (∃xQ) ∨ R, by Proposition 4, the sequents
Γ, (f(l)/x)Q ` ∆ and Γ, R ` ∆ have cut free proofs in
R′. We can build a cut free proof of Γ, (f(l)/x)Q∨R `
∆ in R′ with the rule ∨-left applied to the proofs of
Γ, (f(l)/x)Q ` ∆ and Γ, R ` ∆. Then we can get a
cut free proof of Γ ` P, ∆ by the rule ¬-right. Since
A →R∗

+ A′ = P and both A and P are atomic, we have
A →R′∗

+ P . We conclude with Proposition 1.
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If A′ →R
+ ¬B′ is not the rule P →R

+ ¬((∃xQ)∨R), we
can build a cut free proof of Γ ` A′,∆ in R′ with the
rule ¬-right applied to the proof of Γ, B′ ` ∆. Since
A →R∗

+ A′ and both A and A′ are atomic, we have
A →R′∗

+ A′. We conclude with Proposition 1. ¤

4.3 From Rf to R0

In this subsection we will prove (Γ `cf
Rf

∆) ⇒
(Γ `cf

R0
∆). The method to prove this is different

from that used in Subsection 4.2.
As R0 has the cut elimination property, it is suffi-

cient to show (Γ `Rn+1 ∆) ⇒ (Γ `Rn
∆). If a sequent

Γ ` ∆ has a cut free proof in Rf , then it has a proof in
Rf . If we can prove (Γ `Rn+1 ∆) ⇒ (Γ `Rn ∆), then
it has a proof in R0. Using the cut elimination theorem
for R0, we get that it has a cut free proof in R0.

Proposition 14. Let L be a language and R be
a polarized rewrite system in L. Let R′ be polarized
rewrite system with R I R′. If a sequent in the lan-
guage L has a proof in R′, then it has a proof in R.

Proof. Using Proposition 2, all we need to prove is
that the theory UR′ is a conservative extension of UR.
We will prove this by cases. There are four interesting
cases. The other cases are trivial and we omit them.

If R′ is obtained from R by replacing the negative
rule P →− ⊥ ∨ R with P →− R, then there is only
one difference between UR and UR′ . The theory UR
contains the universal closure of P ⇒ ⊥ ∨ R while the
theory UR′ contains the universal closure of P ⇒ R.
But they are equivalent in predicate logic.

If R′ is obtained from R by dropping the negative
rule P →− ¬⊥ ∨ R, then there is only one difference
between UR and UR′ . The theory UR contains the uni-
versal closure of P ⇒ ¬⊥ ∨ R while the theory UR′
does not contain this axiom. But this axiom is trivially
provable in predicate logic.

If R′ is obtained from R by replacing the negative
rule P →− (Q1 ∧ Q2) ∨ R with P →− Q1 ∨ R and
P →− Q2∨R, then there is only one difference between
UR and UR′ . The theory UR contains the universal clo-
sure of P ⇒ (Q1∧Q2)∨R while the theory UR′ contains
the universal closure of propositions P ⇒ Q1 ∨ R and
P ⇒ Q2 ∨R. But the conjunction of the two axioms of
UR′ is equivalent to that of UR.

If R′ is obtained from R by replacing the nega-
tive rule P →− ∃xQ ∨ R with P →− (f(l)/x)Q ∨ R,
then there is only one difference between UR and UR′ .
The theory UR contains the universal closure of P ⇒
∃xQ ∨ R while UR′ contains the universal closure of
P ⇒ (f(l)/x)Q ∨ R. But the axiom of UR′ is equiva-
lent to the Skolemization of that of UR. ¤

Theorem 2. Let R0 be a polarized rewrite system
with cut elimination property and Rf be the final polari-
zed rewrite system of R0. For a sequent Γ ` ∆ con-
taining no occurrence of the Skolem symbols that are
introduced by the translation of the rewrite system, the
following conditions are equivalent:

1) Γ `cf
R0

∆,

2) Γ `cf
Rf

∆,
3) Γ `Rf

∆,
4) Γ `R0 ∆.
Proof. 1) ⇒ 2) is by Propositions 9 ∼ 13; 2) ⇒ 3) is

trivial; 3) ⇒ 4) is by Proposition 14; 4) ⇒ 1) is derived
by the cut elimination property of R0. ¤

5 Example

Consider the rewrite system R0 containing two rules
P → (Q ⇒ R) and Q → (∃xG(x)). With R0 as
input, the translator returns Rf containing five rules
P →− (¬Q∨R), Q →− G(c), P →+ ¬Q, P →+ ¬(¬R),
Q →+ ¬G(x). See Fig.8 for the derivation of ¤ from
{¬P}, {¬G(x)} in resolution modulo R0. See Fig.9 for
the derivation of ¤ from {¬P}, {¬G(x)} in polarized
resolution modulo Rf . There is no dynamic transfor-
mation in Fig.9.

Fig.8. Resolution modulo R0.

Fig.9. Polarized resolution modulo Rf .

6 Conclusions and Future Work

Notice that as a by-product of our results we have a
partial cut elimination property forRf . Indeed if Γ ` ∆
is a sequent in the language L (i.e., it does not con-
tain any Skolem symbol), then Γ `Rf

∆ ⇒ Γ `cf
Rf

∆.
This result does not extend to the full language. For
instance, let R0 be the rewrite system containing one
rule P → ∀xQ(x). Its final rewrite system Rf contains
two rules P →− Q(x) and P →+ ¬¬Q(c), where c is a
new Skolem symbol. The sequent Q(c) ` ∀xQ(x) has a
proof in Rf (see Fig.10), but it does not have a cut free
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Fig.10. Proof with cut.

proof. Fortunately, we do not need the cut elimina-
tion property of Rf to prove Γ `R0 ∆ if and only if
Cl(Γ,¬∆) ÃRf

. ¤
In this paper, we translated any polarized rewrite

system into a clausal one. We proved that the ob-
tained clausal polarized rewrite system preserves the
existence of cut free proofs for any sequent of the origi-
nal language. In this way, polarized resolution modulo
can be applied to the system directly. However the ob-
tained clausal polarized rewrite system may lose the cut
elimination property. So one of possibilities for the fu-
ture work is dropping the hypothesis that R0 has the
cut elimination property. We could then try to prove
the equivalence between R0 and Rf by using polarized
unfolding sequent calculus[8] which is equivalent to the
polarized sequent calculus. There are only two deriva-
tion rules with rewriting as side conditions in polarized
unfolding sequent calculus, so the proof of equivalence
between R0 and Rf may be simpler. Another one is
fixing Rf such that Rf has the cut elimination pro-
perty. Since the proofs of the paper rely on the par-
ticular translator used here, if we use another way of
transforming rewriting systems into clausal ones, we
have to redo the proof of correctness. So the third pos-
sibility for the future work is to use a more abstract
way of transforming rewriting rules into clausal ones.
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