Jan. 2007, Vol.22, No.1, pp.60-70 J. Comput. Sci. & Technol.

Higher-Level Hardware Synthesis of the KASUMI Algorithm

Issam W. Damaj
Electrical and Computer Engineering Department, Dhofar University, P.O. Box 2509, Salalah 211, Oman
E-mail: i_damaj@du.edu.om

Received August 2, 2005; revised February 10, 2006.

Abstract Programmable Logic Devices (PLDs) continue to grow in size and currently contain several millions of gates.
At the same time, research effort is going into higher-level hardware synthesis methodologies for reconfigurable computing
that can exploit PLD technology. In this paper, we explore the effectiveness and extend one such formal methodology in the
design of massively parallel algorithms. We take a step-wise refinement approach to the development of correct reconfigurable
hardware circuits from formal specifications. A functional programming notation is used for specifying algorithms and
for reasoning about them. The specifications are realised through the use of a combination of function decomposition
strategies, data refinement techniques, and off-the-shelf refinements based upon higher-order functions. The off-the-shelf
refinements are inspired by the operators of Communicating Sequential Processes (CSP) and map easily to programs in
Handel-C (a hardware description language). The Handel-C descriptions are directly compiled into reconfigurable hardware.
The practical realisation of this methodology is evidenced by a case studying the third generation mobile communication
security algorithms. The investigated algorithm is the KASUMI block cipher. In this paper, we obtain several hardware
implementations with different performance characteristics by applying different refinements to the algorithm. The developed
designs are compiled and tested under Celoxica’s RC-1000 reconfigurable computer with its 2 million gates Virtex-E FPGA.

Performance analysis and evaluation of these implementations are included.

Keywords

1 Introduction

The rapid progress and advancement in electronic
chip technology provides a variety of new implementa-
tion options for system engineers. The choice varies be-
tween the flexible programs running on a general pur-
pose processor (GPP) and the fixed hardware implemen-
tation using an application-specific integrated circuit
(ASIC). Many other implementation options present,
for instance, a system with a RISC processor and a
DSP core. Moreover, other options include graphics pro-
cessors and microcontrollers. Specialist processors cer-
tainly improve performance over general-purpose ones,
but this comes as a quid pro quo for flexibility. Combin-
ing the flexibility of GPPs and the high performance of
ASICs leads to the introduction of reconfigurable com-
puting (RC) as a new implementation option with a
balance between versatility and speed.

Field Programmable Gate Arrays (FPGAs), nowa-
days are important components of RC-systems, and
have shown a dramatic increase in their integration den-
sity over the last few years. For example, companies like
Xilinx!] and Alteral? have enabled the production of
FPGAs with several millions of gates, such as in Virtex-
II Pro and Stratix-II FPGAs. The versatility of FPGAs
opened up completely new avenues in high-performance
computing.

The traditional implementation of a function on an
FPGA is done using logic synthesis based on VHDL,
Verilog or a similar HDL (hardware description lan-
guage). These discrete event simulation languages are
rather different from languages such as C, C++ or

data encryption, formal models, gate array, methodology, parallel algorithms

JAVA. An interesting step towards more success in hard-
ware compilation is to grant a higher-level of abstraction
from the point of view of programmer. Designer pro-
ductivity can be improved and time-to-market can be
reduced by making hardware design more like program-
ming in a high-level language. Recently, vendors have
initiated the use of high-level language dependent tools
like Handel-Cl3!, Forgel*!, Nimble!!, and SystemCl6!.

With the availability of powerful high-level tools
accompanying the emergence of multi-million FPGA
chips, more emphasis should be placed on affording an
even higher level of abstraction in programming recon-
figurable hardware. With these research motivations, in
the work in hand, we extend and examine a methodol-
ogy whose main objective is to allow for a higher-level
correct synthesis of massively parallel algorithms and to
map (compile) them to reconfigurable hardware. Our
main concern is the behavioural refinement, in particu-
lar the derivation of parallel algorithms. The presented
methodology systematically transforms functional spec-
ifications of algorithms into parallel hardware imple-
mentations. It builds on the work of Abdallah and
Hawkins!"®!, extending their treatment of data and pro-
cess refinement.

This paper is divided so that Section 2 introduce the
adopted development methodology. Section 3 presents
the theoretical background. In Section 4, we put some
emphasis on the approach to developing different im-
plementations of the KASUMI cryptographic algorithm.
Sections 5 and 6 detail the development steps. Section
7 demonstrates selected implementations. In Section 8§,
we analyze and evaluate the performance of the sug-

Regular Paper

Supported by Institute of Computing Research, London South Bank University.

Issam W. Damaj: Higher-Level Hardware Synthesis of the KASUMI Algorithm 61

gested implementations. Finally, Section 9 concludes

the paper.

2 Development Method

The suggested development model adopts the trans-
formational programming approach for deriving mas-
sively parallel algorithms from functional specifications
(See Fig.1). The functional notation is used for speci-
fying algorithms and for reasoning about them. This is
usually done by carefully combining a small number of
higher-order functions that serve as the basic building
blocks for writing high-level programs. The systematic
methods for massive parallelisation of algorithms work
by carefully composing an “off-the-shelf” massively par-
allel implementation of each of the building blocks in-
volved in the algorithm. The underlying parallelisation
techniques are based on both pipelining and data par-
allelism.

Functional
Calculus
Strategies

for

Parallelis

Place and Automated Compilation
Route Handel-C

High-Level Functional
Specification

Transformational
Derivation

CSpP
Algebraic
Laws

Network of Communicating CSP
Processes

Libraries

Tools

Reconfigurable Hardware

Fig.1. Overview of the transformational derivation and the hard-

ware realisation processes.

Higher-order functions, such as map, filter, and
fold, provide a high degree of abstraction in functional
programs®!. Not only do they allow clear and succinct
specifications for a large class of algorithms, but they
also are ideal starting points for generating efficient im-
plementations by a process of mathematical calculation
using Bird-Meertens Formalism (BMF). The essence of
this approach is to design a generic solution once, and
to use instances of the design many times for various
applications. Accordingly, this approach allows porta-
bility by implementing the design on different parallel
architectures.

In order to develop generic solutions for general par-
allel architectures, it is necessary to formulate the de-
sign within a concurrency framework such as Hoare’s
CSP!9. Often parallel functional programs show pecu-
liar behaviours which are only understandable in terms
of concurrency rather than relying on hidden implemen-
tation details. The formalisation in CSP (of the parallel
behaviour) leads to better understanding and allows for
analysis of performance issues. The establishment of
refinement concepts between functional and concurrent
behaviours may allow systematic generation of parallel

implementations for various architectures.

The previous stages of development require a back-
end stage for realising the developed designs. We note
at this point that the Handel-C language relies on the
parallel constructs in CSP to model concurrent hard-
ware resources. Mostly, algorithms described with CSP
could be implemented with Handel-C. Accordingly, this
langauge is suggested as the final reconfigurable hard-
ware realisation stage in the proposed methodology. It is
noted that, for the desired hardware realisation, Handel-
C enables the integration with VHDL and EDIF (Elec-
tronic Design Interchange Format), and thus various
synthesis and place-and-route tools.

3 Background

Abdallah and Hawkins defined in [8] some constructs
used in the development model. Their investigation
looked in some depth at data refinement; which is the
means of expressing structures in the specification as
communication behaviour in the implementation.

3.1 Data Refinement

In the following we present some datatypes used for
refinement. These are stream, vector, and combined
forms.

The stream is a purely sequential method of commu-
nicating a group of values. It comprises a sequence of
messages on a channel, with each message representing
a value. Values are communicated one after the other.
Assuming the stream is finite, after the last value has
been communicated, the end of transmission (EOT) on
a different channel will be signaled. Given some type A,
a stream containing values of type A is denoted as (A).

Each item to be communicated by the vector will
be dealt with independently in parallel. A vector re-
finement of a simple list of items will communicate the
entire structure in a single. Given some type A, a vector
of length n, containing values of type A, is denoted as
(Al

Whenever dealing with multi-dimensional data
structures, for example, lists of lists, implementation
options arise from differing compositions of our prim-
itive data refinements—streams and vectors. FExam-
ples of the combined forms are the streams of streams,
streams of vectors, vectors of streams, and vectors of
vectors. These forms are denoted by: (Si,Sa,...,S.),
<‘/1,‘/27"',VTL>7 |_51,S2,~--,SnJ and |_V15Vv25"'5V’ﬂJ‘

3.2 Process Refinement

The refinement of the formally specified functions to
processes is the key step towards understanding possible
parallel behaviour of an implementation. In this subsec-
tion, the interest is in presenting refinements of a subset
of functions — some of which are higher-order. A bigger
refined set of these functions is discussed in [7].

62

Generally, these highly reusable building blocks can
be refined to CSP in different ways. This depends on
the setting in which these functions are used (i.e., with
streams, vectors etc.), and leads to implementations
with different degrees of parallelism. Note that we do
not use CSP in a totally formal way, but we use it in
a way that facilitates the Handel-C coding stage later.
Recalling, for the following subsections, those values are
communicated through an elements channel, while a sin-
gle bit is communicated through another eotChannel
channel to signal the end of transmission (EOT).

3.2.1 Basic Definitions

The produce/store process (PRD/STORE) is fun-
damental to process refinement. It is used to pro-
duce/store values on/from the channels of a certain com-
munication construct (Item, Stream, Vector, and so on).
These values are to be received and manipulated by an-
other process.

The feed operator in CSP models function applica-
tion. The feed operator is written as >.

P> Q = (P[mid/out] || Q[mid/in])\{mid}.

Consider a potential refinement for f, a process F'.
The operator C denotes a process refinement, where the
left hand side is a function, and the right hand side is
a process. To state that f is refined to F', or in other
words, the process F' is a valid refinement of the function
f, the following may be used:

JEF

These rules were proven oncel”l, and in this paper we
use them systematically to refine the functional specifi-
cation into a network of communicating processes.

3.2.2 Process Refinement of Higher-Order Functions

Now the attention is turned to the refinement of
higher-order functions presented in [8] showing the re-
finement of the high-order function map as an instance.
Employing this function in stream and vector settings
is presented.

Streams. A process implementing the functionality
of mapf in stream terms should input a stream of val-
ues, and output a stream of values with the function f
applied.

In general, the handling of the EOT channels will be
the same. However, the handling of the value will vary
depending on the type of the elements of the input and
output stream.

SMAP(F) =uX e in.eotChannel?eot —
out.eotChannelleot — SKIP
O
F[in.elements.channel /in,

out.elements.channel [out]; X.

J. Comput. Sci. & Technol., Jan. 2007, Vol.22, No.1

Vectors. In functional terms, the functionality of
mapf in a list setting is modelled by vmapf in the vec-
tor setting. Consider F' as a valid refinement of the
function f. The implementation of VMAP can then
proceed by composing n instances of F' in parallel, and
directing an item from the input vector to each instance
for processing. In CSP we have:

VMAP,(F) = [|[I=1
Flin;/in, out;/ out].

3.3 Handel-C as a Stage in the Development
Model

Based on datatype refinement and the skeleton af-
forded by process refinement, the desired reconfigurable
circuits are built. Circuit realisation is done using
Handel-C, as it is based on the theories of CSP['% and
Occam!!!],

From a practical standpoint, each refined datatype is
defined as a structure in Handel-C, while each process is
implemented as a macro procedure. We divide the con-
structs corresponding to the CSP stage into two main
categories for organisation purposes. The first category
represents the definitions of the refined datatypes. The
second category implements the refined processes.

The refined processes are divided into different
groups; the utility, basic, and higher-order processes.
A separate group contains the macros that handle the
FPGA card setup and general functionality.

The datatype definitions are implemented using
structures. This method supports recursive as well as
simple types. The definition for an Item of a type Msg-
type is a structure that contains a communicating chan-
nel of that type.

#define Item (Name, Msgtype)

struct {
chan Msgtype channel;
Msgtype message;
} Name

For generality, in implementing processes the type of
such a communicating structure is to be determined at
compile time. This is done using the typeof type opera-
tor, which allows the type of an object to be determined
at compile time. For this reason, in each structure we
declare a message variable of type Msgtype.

A stream of items, called StreamOfItems, is a struc-
ture with three declarations, a communicating channel,
an EOT channel, and a message variable!8:

#define StreamOfItems(Name, Msgtype)
struct {
Msgtype message;
chan Msgtype channel;
chan Bool eotChannel;
} Name

A vector of items, called VectorOfItems, is a struc-
ture with a variable message and another array of sub-
structure elements!8!.

Issam W. Damaj: Higher-Level Hardware Synthesis of the KASUMI Algorithm 63

#define VectorOfItems(Name, n, Msgtype)
struct {
struct {
chan Msgtype channel;
} elements[n];
Msgtype message;
} Name

Other definitions are possible, but they affect the
way a channel is called using the structure member op-
erator (+).

The utility processes used in the implementation are
related to the employed datatypes. The Handel-C im-
plementation of these processes relies on their corre-
sponding CSP implementation. In the following, we
present an instance of these utility macros.

macro proc Produceltem(Item, x){
Item.channel ! x;}
macro proc StoreItem(Item, x) {

Item.channel ? x;}

This group of macros represents the fine-grained pro-
cesses. A sample basic macro procedure Addition is in-
cluded as an example.

macro proc
Addition (xItem, yItem, output) {
typeof (xItem.message) x,y;
xItem.channel 7 x;
yItem.channel 7 y;
x +y);}

output.channel !

3.3.1 Higher-Order Processes Macros

An example for an implementation in Handel-C of
the CSP refinement of a higher-order function (map) in
its vector setting is done as follows.

macro proc
VMAP (n, vectorin, vectorout, F) {
typeof (n) c;
par (c =0 ; c <mn; c++) {
F(vectorin.elements[c],

Vectorout.elements[c]);} }

In a similar procedure to what have been introduced
before, the implementations of the stream and vector
settings SZip With and VZip With are straightforward.

Different tools are used to measure the performance
metrics used for the analysis. These tools include the de-
sign suite (DK) from Celozica, where we get the number
of NAND gates for the design as compiled to the Elec-
tronic Design Interchange Format (EDIF). The DK also
affords the number of cycles taken by a design using
its simulator. Accordingly, the speed of a design could
be calculated depending on the expected maximum fre-
quency of the design. The maximum frequency could be
determined by the timing analyzer. To get the practi-
cal execution time as observed from the computer host-
ing the RC-1000, the C++ high-precision performance
counter is used. The information about the hardware
area occupied by a design, i.e., the number of Slices used

after the compiled code is placed and routed, is deter-
mined by the ISE place and route tool from Xilinz.

4 Third Generation of Mobile System
Security Algorithms

KASUMI is a modern and strong encryption algo-
rithm designed for the use in the Third Generation Part-
nership Project (3GPP) security functions for mobile
systems!'?l. KASUMI ciphers a 64-bit input data block
by repeating a round procedure 8 times. The round
composes a 32-bit non-linear mixing block (FO) and a
32-bit linear mixing block (FL). The FO-block is an it-
erated “ladder-design” consisting of 3 rounds of a 16-
bit non-linear mixing block FI. In turn, FI randomising
function is defined as a 4-round structure using non-
linear look-up tables S7 and S9. All functions involved
will mix the data input with key. The used S7 and S9
have been designed in a way that avoids linear structures
in FI—this fact has been confirmed by statistical test-
ing. Each functional component of KASUMI has been
carefully studied to reveal any weakness that could be
used as a basis for an attack on the entire algorithm.
The fact that the key schedule of KASUMI is very sim-
ple did not constitute any real weakness. There seems
to be no gain in practice by making it more complicated.

Hardware implementation of this cryptographic al-
gorithm is currently an active area of research. The
KASUMI was addressed by HoWon et al.['3| and Alcan-
tara et al.l Intell’ proposed architecture processors
for 3G control including the KASUMI. Moreover, SCI-
WORX! produced a system board for the KASUMI
cipher.

5 Formal Functional Specification

We will consider the following specifications for the
key scheduler, and the main algorithm (KASUMI). The
key scheduler takes the private key as an input, and out-
puts a desired set of subkeys. This set of subkeys is of 4
packs (see Fig.2). The KASUMI takes two inputs, the
generated subkeys and the input data, and it gives their
corresponding output.

Generally, the functional specification style applied
throughout this research uses higher-order functions as
the main keys for later parallelism. As a start, we define
some types to be used in the following formal specifica-
tion:

[Bool]
type SubKey = [Booll]
[Bool]

type Private =

type DataBlock =

The following specifications are also tested using the
Hugs98 Haskell compiler.

5.1 Key Scheduling

As shown in Fig.2, the 64 16-bit subkeys are organi-

64

sed into 4 packs of 8 sets of subkeys kL;1,kL;2, kO;1,
kOi2, kO3, kl;1, kl;2, and kl;3, where ¢ is an index cor-
responding to the round number where a subkey is to
be used. These subkeys are generated from the 128-bit
encryption private key.

Key scheduling is specified as the function keySched-
ule that inputs a private key and outputs 4 packs of sub-
keys. We divide each pack into 6 groups for later ease
of distribution to the encrypting rounds. Each group
is a list of subkeys selected from the predefined lists
kLil, kLZ‘Q, kOil, k‘Oiz, koig, k‘[ﬂ, klig, and k]lg For in-

stance, the first pack would contain:

[[kL117 kLlZ]a [k0117 k0127 kOlS]a [kIlla kIlZa kIlS]J
[kL217 kL22]7 [k0217 k0227 kOQS]a [k-[217 k1227 kIQS]]

The specification of keySchedule is formalised as fol-
lows.

J. Comput. Sci. & Technol., Jan. 2007, Vol.22, No.1

(map map [(shift 1), (shift 5),
(shift 8), (shift 13)1)
(mapWith [id, (shift 1),
(shift 5), (shift 6)]
(copy (segs 16 key) 4))
[kLi2, kI;1,kIs0,kIs3] =
mapWith [(shift 2), (shift 4),
(shift 3), (shift 7)1 (copy ks’ 4)
ks zipWith fullexor (segs 16 key)
(map itob [291, 17767, 35243, 52719,
65244, 47768, 30292, 12816])
g = ((map group) .transpose)
[kLi1,kLi2, k031, k052, k053,kTI;1, kI 0, kIis)
merge (gr) =
[(gr!!i)++(gr!!(i+1))

!

| i <- [0,2,4,6]1]

The function keySchedule generates the subkeys by
firstly determining the predefined ks’ and ks. ks is spec-
ified using the function segs as (segs 16 key). Recall that
segs selects n sublists from a list xs.

keySchedule :: Private -> [[[Subkey]]] o . .
keySchedule key = merge(g) After specifying ks, we formalise the computation for
where ks’ using the higher-order function zip With zipping two
[KLs1, k0s1,k0s5, k0s3] = lists with the function ezor. These lists correspond to
mapWith ks and C. After ks and ks’ are ready, KASUMI subkeys
Key
Key Scheduler

v v
pack,

[[kL11, kL12],[kO11, kO12,kO13], [kl11, kI12, kI13],
[kL21, kL22],[kO21, kO22, kO23], [kl 21, kI 22, kI23]]

)

‘l, pack

[[kL71, kL72],[kO71,kO72, kO73], k71, kI72, kI 73],
[kLg1, kLs2], [kOg1, kOg2, kOsg3], kIs1, kIg2, klg3]]

Fig.2. Key scheduling building blocks.

key

A

segs

16

+
ks

L

zipWith (exor) ks [291, 17767, 35243,

52719, 65244, 47768, 30292, 12816]

N4
ks'

1

[shifi 1] [shifi 5 | [sniri o | [sniri 2 [shi [sniri 3] [sniri 7]
N N2 A
map shift 1 | | map shift 5 | | map shift 8 | | map shift 13 |
¥ ¥ 4 ¥ +
k0, kO kO3 KLi ki, R k5

kL;,

[KL;y, kL5, kO;y. kOjy, kOps, ki, ki, k3]

transpose

[(g!i)y++(g"(i+1))]i<-[0, 2, 4, 6]]

VN

pack, pack,

Fig.3. Key scheduling

VN

packsy packy

specification steps.

Issam W. Damaj: Higher-Level Hardware Synthesis of the KASUMI Algorithm 65

Input

kO, kI, kL, 64 %0, K,

KL

32 32

Firp

Single Round

ybround Input64 subKeys

firstSubRound

‘><| Sedond Sybround
1 1

kL7 kO, ki

FO, 9

FLq

kOg , kg KLsg

——
R i W
E——

Output
(a)

Final Round

singleRound

secondSubRound

singleRound input64 subKeys
(b)

Fig.4. (a) KASUMI block. (b) Single round.

are determined employing the higher-order functions
map With and map, also, using the functions shift and
copy.

Finally, the functions group and transpose arrange
the subkeys in the form mentioned earlier. The arranged
groups are then merged into final 4 packs. To easily
understand these steps we include the chart shown in
Fig.3.

5.2 KASUMI Block Cipher

The KASUMI block cipher has two inputs, a 64-bit
data block in addition to the private key. The corre-
sponding ciphered output is also a 64-bit data block.
In this specification, we suggest the division of the KA-
SUMI structure into 4 similar rounds where each single
round is of two subrounds, called first and second sub-
rounds. The 4 generated packs of subkeys (using the
function keySchedule) are distributed to the KASUMI 4
rounds respectively. The total 8 subrounds of the KA-
SUMI constitute a Feistel network. This is visualised in
Fig.4.

KASUMI is formally specified as the function kasums
which inputs two lists of Bool input and key. This func-
tion outputs a list of Bool corresponding to the ciphered
data. The specification is done by folding a function
singleRound with the input over the generated subkeys
packs. With respect to the network shape, the foldable

single round is specified as the function singleRound.
kasumi ::
DataBlock -> Private -> DataBlock
kasumi input key = foldl singleRound input
(keyScheduling key)

A single round is of two blocks, the odd block for-
malised as the function firstSubRound and the even
round formalised as the function secondSubRound. The
function singleRound is specified as the functional com-
position of the functions firstSubRound and secondSub-
Round. The inputs to the function singleRound are an
input block of data and a single pack of subkeys.

singleRound ::

DataBlock -> [[Subkeys]] -> DataBlock

singleRound input64 subKeys =

secondSubRound (firstSubRound input64 subKeys)

The function firstSubRound could be described as
follows. It firstly takes the 64-bit data input block and
divides it into two left and right 32-bit words as shown
in Fig.4. It also inputs a pack of subkeys and distributes
them to their specific destinations. The data input left
half is passed to a function fL, which corresponds to the
FL block. The function fL forwards its output to a func-
tion fO (the functional specification of the FO block).
The output from the function fO is XORed with the
right half of the input data giving the final left half 1.
The firstSubRound outputs a 64-bit word, which is the

66

concatenation of the final left half with the initial left
half. Also, it outputs the subkeys needed for the second
subround.
firstSubRound ::
DataBlock -> [[SubKeyl] ->
(DataBlock, [[SubKeyll)
firstSubRound
input64 [kLo, k0o, kIo, kLe, kOe, kIe] =
(11++r1, [kLe, kOe, kIe])
where
[r1, ro]=[take 32 input64, drop 32 input64]
[11, t1, t2]=[(fullexor r0 t2), (fL rl1l kLo),
(£0 t1 k0o kIo)]

The function secondSubRound divides the input 64-
bit data block into two left and right halves. The left
half with the suitable subkeys are passed to the func-
tion fO. The output from the function fO is forwarded
to the function fL. The output from the function fL is
XORed with the input right half to give the final left half
[2. The secondSubRound outputs a 64-bit word, which
is the concatenation of the final left half with the final
right half 2.

secondSubRound ::
(DataBlock, [[SubKeyl]l) -> DataBlock

secondSubRound
(input64, [kL, k0, kI])

12 ++ r2
where
[r1, r2]= [drop 32 input64, take 32 input64]
[12, t1, t2]= [(fullexor rl t2),
(£0 r2 k0 kI), (£fL t1 kL)]
The remaining fL, fI, fO, s7 and s9 building blocks

are specified in a similar style.

[SHIFT(0), SHIFT(1),
SHIFT(S), SHIFT(6)]

[VMAP(SHIFT(1)),
VMAP(SHIFT(5)),
VMAP(SHIFT(8)),
VMAP(SHIFT(13))]

MAPWITH

MAPWITH

Key

IBROADCAST

J. Comput. Sci. & Technol., Jan. 2007, Vol.22, No.1
6 Algorithms Refinements

We move now to the second stage of development
following the same proposed method. The refinement of
the key scheduling, and the KASUMI specifications are
presented in the following subsections.

6.1 Key Scheduling

To get closer to hardware implementation, we refine
the general datatypes used in specifying the function
keySchedule as follows:

keySchedule :: Int128 — ||| Int16] ¢]4.

The key is a 128-bit integer item, and the output
packs of groups of lists can be refined to a vector of 4
vectors, each of 6 vectors of 16-bit integer items. The
refined processes KEYSCHEDULFE corresponds to the
function keySchedule.

keySchedule T KEYSCHEDULE.

From the specification, process KEYSCHEDULF in-
puts the key and then it divides it into segments using
process SEGS, the refinement of segs. These segments
are broadcasted to be later used for 5 times. At this
point, two parallel events could occur, corresponding to
the right and left branches depicted in Fig.5. The right
branch of processes refines the following part of the spec-
ification:

ks’

zipWith fullexor (segs 16 key)
(map itob [291, 17767, 35243, 52719, 65244,
47768, 30292, 12816]),
[kLi2, kIi1,kIs0,kIsz] =
mapWith [(shift 2), (shift 4), (shift 3),
(shift 7)] (copy ks’ 4).

[291, 17767, 35243, 52719,
65244, 47768, 30292, 12816]

\rl

VZIPWITH (EXOR) |

IBROADCAST

[SHFT(2), SHIFT(4),
SHIFT(3), SHIFT(T)]

MAPWITH

Ll 1]

|
Ill Ll

TRANSPOSE

)

GROUP

N

MERGE

!

pack |

!

pack,

!

packs

!

pack 4

Fig.5. Process KEYSCHEDULE.

Issam W. Damaj: Higher-Level Hardware Synthesis of the KASUMI Algorithm

To compute for ks’, the vector setting refinement of
zipWith (VZIPWITH) is used. Then the vector refine-
ment of map With, VMAPWITH, is used to compute for
the first set of subkeys.

The parallel left branch of processes computes for
the second set of subkeys by piping two instances of re-
fined process VMAPWITH. This refines the following
recalled specification:

[kLi1, k0i1,k0s2,k0i3] = mapWith (map map

[(shift 1), (shift 5), (shift 8), (shift
13)1)
(mapWith [id, (shift 1), (shift 5), (shift 6)]
(copy (segs 16 key) 4)).

The remaining processes are used to refine the func-
tions responsible for ordering the subkeys in the sug-
gested form — packs of groups of lists. The complete
network of processes (see Fig.5) is described as follows:

KEYSCHEDULE = (32 [> SEGS) ||

IBROADCASTs [d/out] ||

(
(([291, 17767, 35243, 52719, 65244,
47768, 30292, 1281611 VZIPWITH(EXOR))
>s IBROADCAST,[d/out] ||
VMAPWITH([SHIFT(2), SHIFT(4),
SHIFT(3), SHIFT(7)])
)
|
(
VMAPWITH([SHIFT(1), SHIFT(1),
SHIFT(5), SHIFT(6)]) >4
VMAPWITH[ID, VMAP(SHIFTL(5)),
VMAP(SHIFTL(8)), VMAP(SHIFTL(13))]
)

) >s TRANSPOSE >3 VMAP(GROUP) > MERGE

where
group L GROUP
merge T MERGE
shift C SHIFTL.
Process TRANSPOSEF is the standard matrix trans-
pose.

6.2 KASUMI Block Cipher

KASUMI block is the main ciphering part used for
the confidentiality and integrity algorithms standardised
for 3GPP. Based on the functional specification stage of
development, we suggest two refined designs for imple-
menting KASUMI block. The first is a 4-round pipelined
design, while the second proposes a single round stream-
based design.

Input 64

67

6.2.1 First Design

In this design, we construct a fully pipelined network
implementing KASUMI block. Four single rounds are
replicated to work in parallel forming a pipeline of pro-
cesses. Accordingly, this design is expected to have a
high degree of parallelism, and therefore to be highly
efficient. However, this processes-replicating implemen-
tation will require the use of large amounts of processing
resources.

The first step in refining the function kasumi ob-
serves its inputs as items with a precision of 64 bits for
the data block and 128 bits for the key. This is described
as follows:

kasuma :: Int64 — Int128 — Int64

where kasumi C KASUMI.

As for this design, the four groups of subkeys are
piped from process KEYSCHEDULE to replicated SIN-
GLEROUND processes. The foldl higher-order function
in this case is refined to its vector setting VVFOLDL.
Thus, process KASUMI is refined as follows:

KASUMI =KEYSCHEDULE ||
VVFOLDL(SINGLEROUND).

Note that the upper input to each SINGLEROUND
is a list of lists of subkeys, refined as a vector of vectors.
This is depicted in Fig.6.

Moving to the refinement of KASUMI sub-blocks,
datatypes employed in the function singleRound could
be refined as follows:

singleRound :: Int64 — |[Int16]|¢ — Int64
where singleRound = SINGLEROUND.

Recalling the functional specification for a singleR-
ound, we have:

singleRound input64 subKeys
secondSubRound (firstSubRound input64 subKeys).

This functional composition is refined to piping
of two processes FIRSTSUBROUND and SECOND-
SUBROUND. Process SINGLEROUND is depicted in
Fig.7(a) and described as follows:

SINGLEROUND = FIRSTSUBROUND
> SECONDSUBROUND

where

firstSubRound & FIRSTSUBROUND
secondSubRound & SECONDSUBROUND.

Key

|

KEYSCHEDULE |

L .

1

SINGLEROUND |—)| SINGLEROUND H SINGLEROUND H SINGLEROUND H Output

Fig.6. Process KASUMI, first fully-pipelined design.

68

Subkeys

Input 64 Subkeys
l L

FIRSTSUBROUND

1 L

SECONDSUBROUND

1

Output

Subkeys
(@)

Input

BROADCAST

CONCAT

Output
(b)

J. Comput. Sci. & Technol., Jan. 2007, Vol.22, No.1

InFut Subkeys

BROADCAST

CONCAT

Output
(©

Fig.7. Processes. (a) SINGLEROUND. (b) FIRSTSUBROUND. (c¢) SECONDSUBROUND.

In refining the function of firstSubRound, the

datatypes could be refined as follows:

firstSubRound :: Int64 — |[Int16]]¢
— (Int64, |[Int16]]3).

Recalling the functional specification:
firstSubRound input64

[kLo, k0o, kIo, kLe, kOe, kIe] =

(11 ++ 1, [kLe, kDe, kIe])

where

[r1, r0]= [take 32 input64, drop 32 input64]

[11, t1, t2] = [(fullexor rO t2),

(fL r1 kLo), (£0 t1 k0o kIo)]

process FIRSTSUBROUND after getting its inputs, and
depending on the functional specification, firstly broad-
casts the input left half r1 to be used twice. Then, the
subkeys are produced to processes FL and FO in the
order needed. The communications between FL and
FO is implicitly synchronised by the || operator. The
output from FO is passed to process FXOR with the
produced input right half. At this point, process CON-
CAT is synchronising on the output of processes EXOR
and the broadcasted r1. Finally, the remaining subkeys
are produced to be forwarded to process SECONDSUB-
ROUND. These processes are shown in Fig.7(b).
FIRSTSUBROUND =
(4n1?input64 — SKIP)|||
(\||2zg:§zgm2.elements[i] [7]?kss[i][j] — SKIP);

BROADCAST;(input64[32..63])[d/out] ||

((PRD(kss[0)[0]) || PRD (kss[0][1])) & FL) |

((PRD,(kss[0]) || PRD.,(kss[1])) > FO) ||

(PRD(input[0..31]) > EXOR))

|| CONCAT || PRD,(kss[3]) ||

PRD,(kss[4]) || PRD,(kss[5])
where

JLC FL
fOC FO.

Similarly, and for the function secondSubRound the
refinement is done as follows:

secondSubRound :: (Int64, |[Int16]]3) — Int64

SECONDSUBROUND =
(in_.fst?in_put64 — SKIP)|||
(S22 in-snd. clements il 2hss il[3]):
BROADCAST(input64[32..63])[d/ out] ||
((PRD(kss[1]) || PRD(kss[2])) > FO) |
((PRD(kss[0]0]) || PRD(Kss[0][1])) & FI) |
(PRD(input[0..31)) > EXOR)) || CONCAT .

6.2.2 Second Design

In this design, the subkeys packs are passed in a
stream setting to a single SINGLEROUND process.
This stream refinement of foldl implemented by SV-
FOLDL will use SINGLEROUND process to compute
for the final desired folded result. This design affords
an economical use of computing resources. However, it
is a quid pro quo for efficiency. This CSP network is
pictured in Fig.8 and implemented as follows:

KASUMI = KEYSCHEDULE ||
SVFOLDL(SINGLEROUND).

key
input 64 l
| KEYSCHEDULE |

J

pack

pack
N
el SVFOLD(SINGLEROUND)

|—) output

Fig.8. Process KASUMI, second design.

6.2.3 Third and Fourth Designs

The aim of introducing the third and fourth designs
is to reduce the communication in the fine levels, mainly
inside FL, FI, and FO blocks. These blocks will be
implemented with basic operations instead of commu-
nicating processes. For example, an addition will be
implemented using a (+) operator instead of a process

Issam W. Damaj: Higher-Level Hardware Synthesis of the KASUMI Algorithm 69

ADDITION. The refinement of the remaining blocks is
to be the same. Also, the external communications with
FL, FI, and FO blocks will be the same. The third de-
sign uses the new descriptions for F-blocks to modify
the first fully-pipelined design, while the fourth design
applies the changes to the second stream-based design.

7 Reconfigurable Hardware Implementations

Based on the refined networks of CSP processes we
include samples of Handel-C code used in the realisation
of the hardware circuit.

Getting a sample from KASUMI’s main blocks, we
present macro SingleRound realising the processes Sin-
gleRound. The correspondence with CSP description is
very clear by refering to the implementation presented
in the previous stage. In this macro, the macros of First-
SubRound and SecondSubRound are piped in parallel to
create macro SingleRound as follows:

macro proc SingleRound

(input64, skeysVoV, output64) {

par{
FirstSubRound (input64, skeysVoV, midTuple);
SecondSubRound (midTuple, output64);} }

The macros implementing the refined network of pro-
cesses describing KASUMI are called from macro Ka-
sumi. This macro implements the first design.

macro proc Kasumi(input64,

keysPacks, output64) {
VFOLDL (input64, keysPacks,
4, SingleRound, output64); }

8 Performance Analysis and Evaluation

In this paper, we have demonstrated a methodology
that can produce intuitive and high-level specifications
of algorithms in the functional programming style. The
development continues by deriving efficient and paral-
lel implementations described in CSP and realised by
using Handel-C that can be compiled into hardware on
an FPGA. We have provided a concrete study that ex-
ploited both data and pipelined parallelism and the com-
bination of both. The implementation was achieved by
combining behavioural implementations “off-the-shelf”
of commonly used components that refine the higher-
order-functions which form the building blocks of the
starting functional specification.

The development is originated from a specification
stage, whose key feature is its powerful higher-level
of abstraction. During the specification, the isolation
from parallel hardware implementation technicalities al-
lowed for deep concentration on the specification de-
tails. Whereby, for the most part, the style of specifica-
tion comes out in favor of using higher-order functions.
Two other inherent advantages in using the functional

paradigm are clarity and conciseness of the specifica-
tion. This was reflected throughout all the presented
studies. At this level of development, the correctness
of the specification is insured by construction from the
used correct building blocks. The implementation of the
formalised specification is tested under Haskell by per-
forming random tests for every level of the specification.

The correctness will be carried forward to the next
stage of development by applying the provably correct
rules of refinement. The available pool of refinement
formal rules enables a high degree of flexibility in cre-
ating parallel designs. This includes the capacity to di-
vide a problem into completely independent parts that
can be executed simultaneously (pleasantly parallel).
Conversely, in a nearly pleasantly parallel manner, the
computations might require results to be distributed,
collected and combined in some way. Remember, at this
point, that the refinement steps are systematic and the
refinement is done by combining off-the-shelf reusable
instances of basic building blocks.

In the following we will address the results found
after compiling, placing and routing, and running the
proposed designs. In Table 1 the key scheduling design
occupied 8905 Slices and performed at a throughput of
27.7Mbps. KASUMI block algorithm in the stream-
based second design occupied 13225 Slices and per-
formed at a throughput of 1.68Mbps (see Table 2). The
third and fourth designs outperformed the second de-
sign with speeds of 4.92Mbps and 32Mbps. The fourth
design had a better running frequency (72.71MHz) than
that of the third design (49.06MHz).

These testing results, as compared to the require-
ments and other hardware implementations, reveal the
high cost of applying the methodology in that man-
ner. Even if some tuning was made, tracking the critical
paths in timing analysis to increase the maximum possi-
ble frequency of the design does not promote an elevated
expectancy of the throughput. The high cost in hard-
ware resources arises from the applied systematic rules
blinding possibilities for intuitive ad hoc optimisations.
The trials for better speed could continue in a similar
way to those undertaken in KASUMI third and fourth
designs. Nevertheless, this lessens the use of communi-
cations on the fine-grained processes levels.

Table 1. Testing Results of the Key Scheduling Implementation

Metrics Design: Key Scheduling

Number of Gates 108238 NANDs
Number of Occupied Slices 8905 Slices (46%)
Total Equivalent Gate Count 130803 Gates

Number of Cycles NA
Maximum Frequency of Design 60.66MHz
Throughput NA
Measured Execution Time 169ms
Handshaking Time 132ms
Measured Throughput 27.7Mbps

70 J. Comput. Sci. & Technol., Jan. 2007, Vol.22, No.1
Table 2. Testing Results of the KASUMI Block Cipher Implementation
Metrics Designs

1st Fully-Pipelined

2nd Stream-Based

3rd Fully-Pipelined
with Modified F-Blocks

Refinement

4th Stream-Based
with Modified F-Blocks

Refinement

487625 NANDs
29281 Slices
(152% Overmapped)
598878 Gates

Number of Gates

Number of Occupied Slices
Total Equivalent Gate Count

134750 NANDs

13225 Slices (68%)
175476 Gates

170582 NANDs 61554 NANDs
14463 Slices (75%)

200308 Gates

5594 Slices (29%)
75910 Gates

Number of Cycles NA 1810 Cycles NA 519 Cycles
Maximum Frequency of Design MHz 32.71 MHz 49.06 MHz 72.71 MHz
Throughput NA 1.156 Mbps NA 8397 MBps
Measured Execution Time ms 170ms 13ms 2ms
Measured Throughput Kbps 1.68 Mbps 4.92 Mbps 32 Mbps

9 Conclusion

Recent advances in the area of reconfigurable com-
puting came in the form of FPGAs and their high-
level HDLs such as Handel-C. In this paper, we build
on these recent technological advances by presenting,
demonstrating and examining a systematic approach
for synthesizing parallel hardware implementations from
functional specifications. We have observed a case study
from applied cryptography, namely KASUMI algorithm
for 3GPP. The testing of the realised reconfigurable cir-
cuits allowed the ciphering with KASUMI in a through-
put of 32Mbps with an occupied area of 5594 Slices.
However, this confirms the conclusion showing the ex-
pense of using the higher-level approach adopted. Fu-
ture work includes extending the theoretical pool of
rules for refinement, the investigation of automating
the development processes, and the optimisation of the
realisation for more economical implementations with
higher throughput.

Acknowledgement I would like to thank Dr. Ali
Abdallah, Prof. Mark Josephs, Prof. Wayne Luk, Dr.
Sylvia Jennings, and Dr. John Hawkins for their insight-
ful comments on the research which is partly presented
in this paper.

References

[1] Xilinx. http://www.xilinx.com.

[2] Altera. http://www.Altera.com.

[3] Celoxica. http://www.celoxica.com.

[4] Edwards D, Harris S, Forge J. High performance hardware
from java. Xilinx Whitepaper, http://www.xilinx.com.

[5] Li Y, Callahan T, Darnell E et al. Hardware-software code-
sign of embedded reconfigurable architectures. In Proc. the
37th Design Automation Conference, Los Angeles, USA, June
2000, p.30.

[6] SystemC Network. http://www.systemc.org.

[7] Abdallah A E. Functional Process Modelling. Research Di-
rections in Parallel Functional Programming, Hammond K,
Michealson G (eds.), Springer Verlag, October 1999, pp.339—
360.

[8] Abdallah A E, Hawkins J. Formal behavioural synthesis of

Handel-C parallel hardware implementation for functional

specifications. In Proc. the 36th Annual Hawaii Int. Conf.

System Sciences, IEEE Computer Society Press, January,

2003, pp.278-288.

Bird R. Introduction to Functional Programming Using

Haskell. Addison Wesley, 1999.

[10] Hoare C A R. Communicating Sequential Processes. Prentice-
Hall, 1985.

[11] INMOS Ltd. OCCAM 2 Reference Manual.
International, 1988.

[12] SAGE. Report on the evaluation of 3GPP standard confiden-
tiality and integrity algorithms. Technical Report, ETSI, Oc-
tober, 2000.

[13] Kim H, Choi Y, Kim M, Ryu H. Hardware implementation
of 3GPP KASUMI crypto algorithm. In Proc. the 2002 Int.
Technical Conf. Circuits/Systems, Computers and Commu-
nications (ITC-CSCC), Phuket, Thailand, July 2002, 1: 317—
320.

[14] Alcantara J, Vieira A, Galvez-Durand F, Alves V. A method-
ology for dynamic power consumption estimation using VHDL
descriptions. In Proc. Symposium on Integrated Circuits and
Systems Design, Phuket, Thailand, September 2002, pp.149—
154.

[15] Intel. http://www.intel.com.

[16] SCI-WORX. http://www.sci-worx.com.

[9

Prentice-Hall

Issam W. Damaj received his
B.Eng. degree in computer engi-
neering from Beirut Arab Univer-
sity in 1999 (with high distinction),
and his M.Eng. degree in computer
and communications engineering from
the American University of Beirut in
2001 (with high distinction). He was
awarded his Ph.D. degree in computer
science from London South Bank Uni-
versity in 2004. Currently, he is an assistant professor of
Electrical and Computer Engineering at Dhofar University,
Sultanate of Oman. His research interests include reconfig-
urable computing, parallel processing, h.w./s.w. co-design,
computer interfacing and applications, fuzzy logic, and com-
puter security. He has more than 30 international and re-
gional research publications and projects. He is a member of
the IEEE and TEE professional organizations, and the order
of Engineers in Beirut.

