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Abstract The execution of composite Web services with WS-BPEL relies on externally autonomous Web services. This
implies the need to constantly monitor the running behavior of the involved parties. Moreover, monitoring the execution
of composite Web services for particular patterns is critical to enhance the reliability of the processes. In this paper,
we propose an aspect-oriented framework as a solution to provide monitoring and recovery support for composite Web
services. In particular, this framework includes 1) a stateful aspect based template, where history-based pointcut specifies
patterns of interest cannot be violated within a range, while advice specifies the associated recovery action; 2) a tool support
for runtime monitoring and recovery based on aspect-oriented execution environment. Our experiments indicate that the
proposed monitoring approach incurs minimal overhead and is efficient.
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1 Introduction

Modern software architectures are increasing dy-
namic. Among them, Service-Oriented Architecture
(SOA) has been emerging as a most promising architec-
tural paradigm which provides support to dynamically
evolving software architecture. In this paradigm, indi-
vidual service providers develop their Web services, and
publish them at service registries. Service consumers
can then discover the required services from the ser-
vice registries and compose them to create new services.
Web services composition is becoming a promising ap-
proach to developing flexible distributed applications
in the Internet era. Organizations are increasingly us-
ing composite Web services to automate business pro-
cesses by dynamically selecting and assembling a set
of autonomous and loosely coupled Web services. WS-
BPEL[1] now represents the de-facto standard for Web
services composition. In WS-BPEL, the composition
is called process and the composed services are called
partner services or partners.

The runtime monitoring of software has strong
motivation[2]. In the case of SOA, since publication and
discovery may be performed at runtime, binding may
also be established and modified dynamically. This

high degree of dynamism, while providing great bene-
fits in terms of flexibility, has a severe impact on the
system’s correctness and on the way verification can
be performed. Traditionally, verification of correctness
is performed statically, based on the known compo-
nents that compose the application. For the service-
based applications which are often developed by com-
posing services that are made available by third par-
ties and may change without notification, their run-
ning behavior may not comply with specified behavior
properties[3]. Moreover, for the demands of high level of
flexibility, composite Web services need to adapt them-
selves to rapidly changing environment. Some proper-
ties validated at design time may be violated at run-
time, which makes runtime monitoring and verification
more necessary. Also, monitoring the execution behav-
ior of composite Web services is critical to enhance the
reliability of the processes. There is an increasing inter-
est towards self-healing business process[4], which can
detect faults and errors instantly and then contain their
effects within defined boundaries. Thus it allows ap-
plications to recover from the negative effects of such
anomalies.

For some intuition about the type of monitoring
that composite Web services may require, consider an
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application of online travel arrangement (OTA) pro-
cess. Monitoring of such process execution may allow
the manager to detect faults and guarantee correct ex-
ecution. For instance, it can be specified that before a
user request to cancel a trip is accepted by the process,
both hotel and flight reservation must have been can-
celed successfully. Similarly, when the failure times of
a service invocation pass a certain threshold, it should
allow business process to switch to a backup service
automatically. In general, business process monitoring
encompasses the tracking of particular patterns during
the process execution. In case the specified patterns
are violated, suitable actions should be enacted timely
to supervise the running processes.

Current Web services specification language and or-
chestration engines offer limited support to accommo-
date monitoring requirements. The exception handling
mechanisms offered by the process orchestration en-
gines do not provide sufficient support for monitoring
to detect and handle the broad range of business excep-
tions or faults that may occur during the process execu-
tion. Moreover, the monitoring logic is often scattered
across different modules and tangled with the func-
tional specification of the normal process flow. This
negatively impacts the maintainability and increases
the design complexity.

Aspect-oriented programming (AOP) offers a new
set of language features to increase modularity and
separation of concerns, which makes it very suitable
for runtime monitoring[5,6]. However, monitoring com-
posite Web services based on AOP technology is not
yet adequately supported in existing work. In most as-
pect extension to WS-BPEL[5,7,8], the observation that
an aspect can make are confined to the current process
state: it is not possible to directly observe the history
(or the event trace) of the process execution. “Stateful
Aspect”[9,10], the advanced feature in Aspect-Oriented
Software Development (AOSD), is not supported cur-
rently, which makes it difficult to express complex mon-
itoring tasks, such as the behavior constraints men-
tioned above in the OTA process. There is an extra
concern that depends on history tracking, and without
language support, will be tangled with the base process
and the concern that depends on this history tracking.

This paper presents aspect-oriented runtime mon-
itoring and recovery solution for composite Web ser-
vices. Specifically, we provide a template that embod-
ies the AOP approach to specify the monitoring require-
ments and the associated recovery action. The template
consists of 〈pointcut, advice〉 pair, where the pointcut
specifies the behavior constraints, while the advice de-
fines what the recovery logic is. Different from existing
AOP extension, in our approach, pointcuts are a kind

of dynamic quantification[11] and expressed as “pattern
of interest cannot be violated within a range”, based
on the events occurred during the process execution.
In this paper, and the prototype we developed, we as-
sume the composite Web services are implemented in
WS-BPEL, the advices are therefore specified in WS-
BPEL for consistency with the target implementation.
However, as WS-BPEL supports only limited fault han-
dling mechanism, we provide some extended actions,
such as retry, alternate and skip. These actions can be
combined with normal WS-BPEL constructs to support
complex fault handling logic.

In fact, as we will see, the proposed pointcut de-
pends on the events occurred during the process execu-
tion, runtime weaving is more suited than static weav-
ing done at the code level. We present a prototype of an
aspect-oriented execution environment to support pat-
tern monitoring and advice enforcement. We show how
the stateful aspect based template can be efficiently im-
plemented based on finite state automata (FSA) in or-
der to transparently weave history tracking code with
the WS-BPEL process at runtime. Some optimization
technique is also discussed to speed up the computa-
tion, by pruning redundant monitoring based on the
analysis of the pointcut. Finally, we describe experi-
ments that indicate the resulting monitoring is efficient
and incurs very minimal overhead. All of the above in-
gredients of the solution correspond to the contribution
of this paper.

The remainder of this paper is organized as follows.
Section 2 further details stateful aspects and shows
three approaches that implement this concept. Section
3 introduces the WS-BPEL language and gives an On-
line Travel Arrangement business process as a motiva-
tion example. Section 4 elaborates stateful aspect based
template for the specification of behavior constraints
and recovery actions. Section 5 illustrates an aspect-
oriented prototype environment, the dynamic weaving
mechanism and the corresponding optimization tech-
nique. Section 6 describes the experiments to measure
the performance overhead of the system. Section 7 dis-
cusses the proposed history-based pointcut. Section 8
introduces related work. Finally, Section 9 concludes
the paper and provides some directions for further work
on this subject.

2 Stateful Aspect

Aspect-oriented programming offers a new set of lan-
guage features to increase modularity and separation of
concerns. In AOP programming, pointcut is predicate
that identifies sets of related join points in the execu-
tion of a program, where to execute behavior pertaining
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to crosscutting concerns.
The essence of AOP programming is making quan-

tified programmatic assertions over programs that oth-
erwise are not annotated to receive these assertions[11].
Quantification implies matching a predicate about a
program and it can be distinguished between static
quantification and dynamic quantification. Static
quantification works over the structure of the program.
Dynamic quantification speaks to matching against
events that occur in the course of the program exe-
cution.

Most common aspect implementation technique
(e.g., AspectJ, JBoss AOP) uses static quantification,
that is, the pointcut is restricted to describe joinpoint
and condition that relate to the current state. Dynamic
quantification supports a richer pointcut notation that
refers to the history of a computation as a trace of the
joinpoints encountered so far. Aspects that depend on
the history of program execution are called “stateful
aspects”. This technique is available in the JAsCo as-
pect language, and has been recently introduced in an
extension to AspectJ, the so-called Tracematches.

JAsCo[10] aims to combine technique from AOP with
component-based software development. The extension
of JAsCo can specify protocols as a pointcut descrip-
tion. The proposed pointcut language is equivalent to
a finite state machine. Transitions in the protocol cor-
respond to runtime events and are determined by a
standard pointcut. When the pointcut is matched at
runtime, the transition is fired. JAsCo allows the pro-
grammer to attach advice to all transitions in the pro-
tocol and the advice will be executed as soon as the
part of the protocol has been reached. Extra feature
supported by the stateful aspects in JAsCo is strict pro-
tocols, which only matches if no other joinpoints can be
matched between the activation of the transition in the
protocol.

Tracematches[9] is an extension of AspectJ for defin-
ing stateful aspects. This extension enables the pro-
grammer to trigger the execution of extra code by speci-
fying a regular pattern of events in a computation trace.
One of the compelling features of Tracematches is the
introduction of free variables in the matching patterns
and supports to keep traces based on variable bind-
ings. For a regular pattern, different traces can be
kept depending on different variable bindings. When
a new joinpoint is encountered, only the trace that cor-
responds to the variable of the joinpoint is updated.

While initial research on AOP has concentrated on
the area of object-oriented software development, there
are some aspect oriented extensions to the process-
oriented composition languages such as WS-BPEL. To
support advanced AOSD feature, Padus[12] proposes

a stateful aspect extension to BPEL language, where
history-based pointcut is specified with the regular ex-
pression based on their logic-based pointcut language.
To transparently weave history tracking code in the pro-
cess, Padus adopts static weaving strategy based on fi-
nite state automata.

3 Motivation Example

WS-BPEL is essentially a high level specification
language with an XML-syntax that describes the exe-
cution flow of a process and interaction with other pro-
cesses. WS-BPEL defines fifteen activity types, among
them the most important are the following:

Process ::= Process (Activity1, . . ., Activityn; V),
Activity ::= BasicActivity | StructuredActivity,
BasicActivity ::= receive | invoke | reply | assign
| throw | terminate | compensate | wait | empty,

StructuredActivity ::= sequence | switch | flow | while
| pick | scope.

Fig.1. OTA business process.

As a motivation example, consider an online travel
arrangement (OTA) process (see Fig.1), which makes a
travel plan for the clients. When the agency receives a
request from a client, it contacts the flight service. If
available tickets are found, the flight service returns an
offer including the cost. Similarly, the agency contacts
the hotel service and asks for hotel room reservation.
The travel agency also offers a shop search service,
which charges low fee and returns some sale information
near the hotel. After the travel package is available, the
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agency prepares and sends the client an aggregated of-
fer which includes transportation, accommodation and
sale information. If the client is satisfied with this of-
fer, then she/he sends payment information (e.g., the
credit card number) to the agency, which starts the
payment procedure. If the payment is successful, the
flight and hotel services will emit electronic tickets that
the agency will forward to the client.

In the OTA process scenario, we give the following
examples to illustrate the features available for moni-
toring. Possible recovery actions are also described if
the constraints are violated.

Example 1. Check whether the current process ex-
ecution preserves the specified behavior properties. It
can be specified that, before a user’s request to cancel
the trip has been accepted by BP, both hotel and flight
reservations must have been canceled successfully. If
the non-compliance is detected, some completed activi-
ties should be compensated and then notify the process
manager.

Example 2. It is possible to monitor the malicious
behavior from some users. It can be restricted that the
total times of cancelling a trip cannot exceed 4. In case
of violation, the process should be terminated timely.

As the WS-BPEL processes are loosely-coupled,
they are susceptible to a wide variety of faults, espe-
cially those from autonomous partner services. Exam-
ples 3 and 4 specify the behavior constraints of the part-
ner services.

Example 3. Consider the behavior of the hotel ser-
vice in case of a cancellation request. This request
can be accepted or refused by the hotel service. How-
ever, from the service level agreement between the OTA
and the hotel service, the hotel cancellation should be
granted whenever the payment of the requested room
reservation has not yet been done. If this constraint

is violated at runtime, a retry or alternate action (the
hotel service is substituted with a backup service) can
be performed to achieve user’s travelling requirements.

Example 4. To maintain a whole acceptable response
time of the OTA process, it can be specified that the
execution time of hotel reservation service cannot ex-
ceed 5 minutes. Otherwise, the shop search service can
be skipped.

4 Stateful Aspect Based Template for Process
Monitoring

While AOP seems to be the obvious choice to tackle
the monitoring requirements mentioned above, none of
the existing aspect oriented systems provides explicit
support for some of essential elements, in particular,
to express advance patterns of the process execution
history. We present a new stateful aspect based tem-
plate while allows such crosscutting concerns to be ex-
pressed concisely. Specially, it allows users to declar-
atively define the patterns of interest through history-
based pointcut and specify associated recovery action
to supervise the running process.

Fig.2 shows the stateful aspect based template of Ex-
ample 1. In the following we detail this template struc-
ture: we first introduce history-based pointcut and dis-
cuss the rationale for their design. Then the semantics
of the proposed pointcut is given. Finally, we present
the advices and elaborate some extended fault handling
action.

4.1 Join Point and History-Based Pointcut

For WS-BPEL language, join points are certain well
defined points in the execution flow of the process. Since
WS-BPEL process consists of a set of activities, each
WS-BPEL activity is a possible join point. Pointcuts
identify particular join points by filtering out a subset

Message Temporal Constraint Template

History-Based Pointcut Recovery Advice

{
〈partnerlinks〉

E1: exit(//receive[@pt=“hotel”@op=“cancel”]) 〈partnerlink name=“agency” partnerLinkType=“supervisePLT”. . ./〉
{:$outcome/confirm==true:} 〈/partnerlinks〉

E2: exit(//receive[@pt=“flight”@op=“cancel”]) 〈scope〉〈sequence〉
{:$result/confirm==true:} 〈compensate target = “arrangeTrip”/〉

E3: entry(//reply[@pt=“customer”@op=“cancel Trip”] 〈invoke partnerlink = “agency” portType = “supervisePT”

Pattern: all(E1, E2) precede E3 operation = “notify” inputVariable = “trace”/〉
Range: around //scope [@name = “confirm”] 〈exit/〉

〈/sequence〉〈/scope〉
}

Fig.2. Stateful aspect based template of Example 1.
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of all the join points in the process. The attributes of
an activity can be used as predicates to choose relevant
join points[13]. Similar to the work in [5, 13], we choose
XPath as the pointcut language since WS-BPEL pro-
cesses are XML-based documents. The set operators
XPath provides, such as union operator and intersect
operator, can be used to combine pointcuts that select
different types of activities.

However, in most aspect extension to WS-BPEL lan-
guage, the observation that an aspect can make are
confined to the current state. “Stateful aspect”, the
advanced feature in AOSD, is not supported currently.
This technique allows an aspect observes the events oc-
curred in the system execution, and when certain events
of interest take place, the aspect runs extra code of its
own. The ability to express temporal relations between
events is a key feature towards the expressive point-
cut language. We propose a history-based pointcut for
the specification of monitoring requirements based on
events occurred during the process execution.

As this pointcut language aims to specify the be-
havior constraints, more concretely, to specify that the
patterns of interest cannot be violated within a range,
it consists of two parts: pattern and range, where pat-
tern specifies the constraint on the temporal relation
of events and range specifies the extent of the process
execution over which the pattern holds.

We think that range is especially useful for pattern
monitoring. It reduces the number of events needed
to be checked at runtime. Further, it can control the
faults within defined boundaries by triggering suitable
fault handling action timely when an erroneous behav-
ior is observed.

Though the proposed pointcut originates from the
Property Specification Pattern[14], it shares the same
idea with some runtime monitoring languages. For ex-
ample, many researches[15,16] use WS-Policy[17] to ex-
press the monitoring requirements. WS-Policy is a part
of the Web Services Policy Framework. This frame-
work also includes WS-PolicyAttachment[18] that spec-
ifies how a policy document can be attached to WSDL
documents, UDDI entries, and general XML files repre-
senting the subject for which the policy holds. The con-
cept of range is similar to the WS-PolicyAttachment. It
specifies the extent of the process execution over which
the pattern holds.

Fig.3 presents, in a semi-formal way, the syntax of
history-based pointcut. Before we give the definition of
patterncut, we explain the tracecut firstly.

Tracecut. It specifies the events of interest oc-
curred during the process execution. The events
can be primitive or complex, which are captured by
primitive trace and complex tracecut respectively. Also,

primitive tracecut can be named.

〈history pointcut〉 → pattern 〈pattern〉 range 〈range〉;
〈pattern〉 → 〈quantitative pattern〉|〈qualitative pattern〉;
〈qualitative pattern〉 → 〈tracecut〉 absent

| 〈tracecut〉 exist [[at least] | [at most] 〈n〉 times]

| 〈tracecut〉 precede 〈tracecut〉
| 〈tracecut〉 leadto 〈tracecut〉;

〈qualitative pattern〉 → 〈tracecut〉 leadto 〈tracecut〉 within 〈c〉
time units

| 〈tracecut〉 precede 〈tracecut〉 at least 〈c〉 time units

| 〈tracecut〉 exist [[at least ] | [at most ]] 〈n〉 times

within 〈c〉 time units

| 〈tracecut〉 exist at least every 〈c〉 time units

〈tracecut〉 → 〈primitive tracecut〉 | 〈complex tracecut〉 |〈named

tracecut ref〉;
〈named tracecut ref〉 → id;

〈named tracecut〉 → id ::= 〈primitive tracecut〉;
〈complex tracecut〉 → 〈modifier〉 (〈tracecut〉 [, 〈tracecut〉 ]∗);
〈modifier〉 → seq | all | any ;

〈range〉 → global | before 〈pointcut〉 | after 〈pointcut〉
|around 〈pointcut〉;

〈primitive tracecut〉 → entry (〈pointcut〉 [{:condition:}]) | exit
(〈pointcut〉[{:condition:}]);

Fig.3. Semi-formal syntax of the history-based pointcut.

Primitive Tracecut. It defines the lexeme of declar-
ative patterns, capturing individual event of interest in
the execution trace. For each activity, two events oc-
cur at its activation (entry into the join point) and its
completion (exit from the join point). Two kinds of
primitive tracecut are provided to capture the activity
events. Activation event can be captured through the
use of entry primitive tracecut, and completion event
can be captured through the use of exit primitive trace-
cut.

Both of these take a pointcut as parameter, which
can expose the state surrounding the specified join
point. Hence, it is possible to specify the con-
dition to the variable of the join point. For ex-
ample, exit(//receive[@partnerlink=“hotel” @ oper-
ation=“cancel”]){:$outcome/confirm == true:} cap-
tures the completion events of receive activity that can-
cellation request from the user has been accepted by
the hotel service. Currently, the condition supports the
typical Boolean operators, such as && (and) and ‖ (or),
relational operators, such as 〈, 〉 and ==, and mathe-
matical operators such as +, −, ∗ and /.

Complex Tracecut. Based on primitive tracecut, we
define three kinds of complex tracecut operator any, seq
and all to capture the complex event. Also, more com-
plex event can be defined based on the combination of
these operators.
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1) any operator takes a set of tracecut as input. The
complex event is captured when any event of them oc-
curs.

2) seq operator takes a list of n (n > 1) tracecuts
as its parameter, e.g., seq(E1, E2, . . . , En). It specifies
an order in which the events of interest should occur
sequentially. However, it does not allow an arbitrary
number of events specified in E1, E2, . . . , En to appear
between the two events addressed by two consecutive
parameters. The reason why we limit this is considering
the filtering semantics in AOP which will be explained
in Subsection 4.2.

3) all operator takes a list of tracecuts as input. If all
specified events occur, the complex event is captured.
This operator does not specify the order of events oc-
curred.

Patterncut. It specifies the constraints on the tem-
poral ordering of events, and is classified into quali-
tative pattern and quantitative pattern. Qualita-
tive pattern specifies abstract temporal relationship
of events and quantitative pattern specifies concrete
timing-based temporal relationship of events (E, E′

represents the event captured through tracecut).
Qualitative Pattern. At present, it includes the fol-

lowing five pattern operators.
1) absent operator restricts the specified event does

not occur (within the given range).
2) exist operator states the specified event must oc-

cur.
3) bounded exist operator extends exist with lower

and upper bounds on the number of event occurrence.
4) E precede E′ states that there must be at least

one event E before E′ occurs. One may think E enables
E′.

5) E leadto E′ states that E must eventually be fol-
lowed by E′. In essence, this specifies a cause-effect
relationship between E and E′.

Quantitative Pattern. To express timing-based con-
straints, based on [19], we introduce three time-related
limits: at least every c time units, within c time units, at
least c time units, accompanied by the qualitative pat-
terns. The following combinations are supported for
the moment.

1) E leadto E′ within c time units restricts the max-
imum amount of time that passes after E occurs until
E′ becomes true.

2) E precede E′ at least c time units restricts the
minimum amount of time that E precedes E′.

3) E bounded existence k times within c time units
restricts the maximum amount of time that passes for
“E bounded existence c times” holds.

4) E exist at least every c time units describes the

periodic satisfaction of an event occurrence. It restricts
the amount of time in which E has to occur at least
once.

Range. At this stage, the range we defined includes
global, before, after and around.

1) global refers to the entire history of the process
execution.

2) before concerns the initial portion of the history
up to first execution of the specified activity (designated
by the pointcut).

3) after concerns the portion after the completion of
the specified activity, which is firstly encountered dur-
ing the process execution.

4) around concerns the portion “during the execu-
tion of the specified activity”. This range may occur
repeatedly over the course of the process execution.

In [11], Filman and Havelund have specified that
an expressive event-based pointcut language should ex-
press: 1) abstract temporal relationship; 2) abstract
temporal quantifiers; 3) concrete temporal relationship
referring to clock time, 4) cardinality relationship on
the number of times some event has occurred; 5) ag-
gregation relationships for describing sets of events.
Our proposed pointcut language satisfies these require-
ments. For example, leadto specifies abstract temporal
relationship, bounded exist specifies abstract temporal
quantifiers, and complex tracecut specifies the aggrega-
tion of events.

4.2 Semantics of History-Based Pointcut

So far, we described the semantics of history-based
pointcut informally. To enable automated tool support
for runtime validation, we need to formally define their
semantics. In our approach, we choose FSAs as their
underlying semantics since it is easily understandable,
mathematically well defined and can be directly used
for online trace matching.

Although in [20] the authors have given the FSA
semantics of Property Specification Pattern, its skip-
ping based semantics (where any event may be skipped
during the match) is generally favored by runtime ver-
ification community. Here, we give its FSA notation
based on filtering semantics (where every relevant event
must be matched), which is shared in the AOP commu-
nity[21]. An important difference between the two is
that under filtering semantics, taking the regular ex-
pression “AB ” as an example, it means “A implies next
B”, while under skipping semantics, it means that “A
implies eventually B”. Fig.4 gives the FSA notation
of the pattern operators based on filtering semantics.
The semantics of timing-based patterns is described by
timed automata[22] (x denotes clock).
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Fig.4. FSA semantics of pattern.

For the complex event operator any, seq and all, as
the constructed complex event expressions are equiva-
lent to regular expressions, it is possible to detect com-
plex event using FSA[23]. We do not give their FSA
notation here (also the constructed FSA is based on
filtering semantics).

4.3 Advice

An advice corresponds to the code that is executed
when the specified behavior constraint is violated. We
choose WS-BPEL as an advice language for consistency
with the original BPEL service implementation[5,13].

Like AO4BPEL[7], the proposed stateful aspect al-
lows to define the variable, partnerlink, etc. In some
cases, the advice activity may require context informa-
tion about the running process. We provide a special
variable $trace to hold information about the current
process such as process name, process id, and the al-
ready identified event trace in the pattern monitoring.

If specified pattern is violated, some actions need to
be performed to manage the running process. For ex-
ample, Fig.2 shows that if the constraint is violated, the
advice first compensates the already completed activ-
ity, then notifies the process manager with the violation
information, and finally terminates the process execu-
tion. However, WS-BPEL only provides some basic and
limited fault handling mechanism. To facilitate speci-
fication of the recovery advices, we provide several ex-
tended actions: retry, alternate and skip to supervise
the running process. These actions work on a single
process instance. Therefore, the performed action is
only valid for the life-span of a single process instance.
• retry(S, number, duration)
retry action repeats execution of the activity S

(specified in XPath expression). number specifies the
upper bound of retry times, while duration specifies how
long it should be between two executions of the specified

activity. For instance, to Example 2, 〈retry activ-
ity=“//confirm/scope[@ name=‘cancel hotel’]” num-
ber= “3” duration= “PT5S”/〉 specifies a retry of “can-
cel hotel” activity 3 times with 5 seconds delay between
retries.
• alternate(S, url, servicename)
alternate action allows replacing a partner service in

activity S by dynamically binding to another function-
ally equivalent service (identified by url and service-
name). Currently, this action requires the replacement
service has the same interface with the substituted ser-
vice.
• skip(S)
This action specifies that activity S need not be ex-

ecuted due to such reasons as the time constraint men-
tioned in Example 4.

To add a new activity, we just need to add the corre-
sponding WS-BPEL codes of the activity in the advice
part of the template. Note that the actions mentioned
above can be combined with WS-BPEL constructs to
express complex fault handling logic. For example, if
the skipped activity and the successor activities have
data dependencies, these values can be provided using
assign activity.

5 Implementation and Tool Support

In the previous section we elaborate the design of
AOP-based templates. However, to supervise the busi-
ness processes at runtime, we need to capture the events
occurred during the process execution, check its confor-
mance with predefined behavior constraints and recover
the process from the abnormal state in case of violation.
In this section, we introduce AOP technology based im-
plementation to support pattern monitoring and advice
enforcement. As a proof-of-concept, we implemented
the prototype on the top of our developed service com-
position platform ONCE-BPEL. It consists of aspect



Tao Huang et al.: Runtime Monitoring Composite WS on Stateful Aspect 301

Fig.5. Framework of prototype.

development environment and runtime aspect exten-
sion. Fig.5 shows the overall framework of the pro-
totype.

5.1 Development Environment

The development environment assists the developer
in instantiating the stateful aspect based templates. To
specify the behavior constraint, the users can select the

〈aspect processName =“TravelPlan” type=“process”〉
〈partnerlinks〉
〈partnerlink name =“agency” partnerlinkType=

“SupervisePLT” myRole=“caller”/〉
〈/partnerlinks〉
〈variables〉〈variable name =“trace” messageType =

“traceInfoMsg”/〉〈/variables〉
〈eventcut name=“E1” designator=“exit”〉
〈pointcut condition=“$outcome/confirm==true”〉

//receive[@partnerLink=‘hotel’ and @operation=

‘cancel’]

〈/pointcut〉
〈/eventcut〉 · · ·
〈pointcutandadvice〉
〈pointcut〉//reply[@partnerLink=‘customer’ and @ope-

ration=‘cancelTrip’]〈/pointcut〉
〈advice type = “around”〉〈activatepattern/〉〈proceed/〉
〈completepattern/〉〈/advice〉

〈/pointcutandadvice〉
〈recovery〉
〈scope〉〈sequence〉
〈compensate target = “arrangeTrip”/〉
〈invoke partnerlink = “agency” portType = “supervise-

PT” operation = “notify” inputVariable = “trace”/〉
〈/exit〉
〈/sequence〉〈/scope〉

〈/recovery〉
〈/aspect〉

Fig.6. Example of aspect definition file.

pattern and range operators and provide the associated
parameters. Then they can specify the corresponding
recovery action.

Once both the behavior constraint and recovery ad-
vice are provided, the development environment gener-
ates two outputs: the aspect definition file and monitor
configuration file.

An example of the aspect definition file is given in
Fig.6. It is an XML file that consists of primitive trace-
cut information (called eventcut) and related recovery
advice. Two special predefined functions: activatepat-
tern and completepattern are provided to manage the
lifecycle of the pattern and we will discuss them in Sub-
section 5.2.3.

Monitor configuration file (see Fig.7) saves the
information about pattern operator. Used together,
they allow the runtime environment to supervise the
running processes.

〈?xml version =“1.0” encoding = “UTF-8”?〉
〈monitor name = “monitor1” type = “process”〉
〈process name = “TravelPlan”/〉
〈pattern type = “precede”〉
〈parameter name = “para1” value = “CE”〉
〈composite type = “all”〉
〈parameter name = “para1” value = “E1”/〉
〈parameter name = “para2” value = “E2”/〉

〈/composite〉〈/parameter〉
〈parameter name = “para2 ” value = “E3”/〉

〈/pattern〉
〈/monitor〉

Fig.7. Monitor configuration file.

The development environment also supports
process-level and instance-level aspect deployment.
With process-level deployment, the deployed aspect
will function on every running process instance. With
instance-level aspect deployment, only some process in-
stances are affected by the aspect. To achieve this, the
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prototype allows users to specify some conditions on the
correlation set (e.g., the customerID) in instantiating
the templates.

5.2 Runtime Aspect Extension

The runtime aspect extension is the dynamic weaver,
which enables monitoring the event trace occurred dur-
ing the process execution and weaves the advices with
the processes when the specified behavior constraint is
violated. To support this, our implementation is made
up of the following main components. Similar exten-
sions can be considered for other WS-BPEL engine im-
plementation.

5.2.1 Architecture

WS-BPEL Engine. Our WS-BPEL engine is an in-
terpreter and its implementation revolves around the
runtime visit and management of an internal tree based
representation of WS-BPEL processes. It contains one
visit method for each WS-BPEL instruction and tra-
verses, from top to bottom, the ASTs that represent the
WS-BPEL documents. These trees are not only strictly
typed to meet the pattern requirements but also based
on the DOM API to enable XPath selections of nodes.
A thorough study led us to define our concerns (using
AspectJ) as before and after it visits the activity nodes.

Aspect Registry. It saves all deployed aspect enti-
ties information. When the aspect definition file is de-
ployed, the pointcut expression is evaluated. This eval-
uation operates on AST and returns a set of match-
ing nodes for each pointcut expression. Then the in-
formation of the returned activity nodes, along with
the associated eventcut information (e.g., event name,
designator type) is stored into an internal structure of
the aspect registry. As such, dynamic aspect addition
and removal becomes possible. When an aspect is un-
deployed at runtime, we just need to delete the corre-
sponding registration information.

Monitor Manager. It maintains all deployed moni-
tors and includes a parser. According to Pattern FSA
Library and monitoring configuration file, the FSA of
the history based pointcut will be constructed. As we
did not construct a single automaton, an event tree is
constructed to organize the relationship of multiple au-
tomata (as shown in Fig.8).

Aspect Manger. Aspect manager represents the
main advice which is weaved into the execution envi-
ronment. After weaving, this component has direct ac-
cess to the internal representation of the process and
its state. This component is responsible for managing
all the steps in the pattern monitoring.

Before or after an activity is executed, aspect man-
ager is inserted that defers execution to the aspect

runtime infrastructure. It looks up all the eventcut in-
formation registered for that particular activity based
on the current execution context. This infrastructure
will trigger any aspects that apply to the join point or,
when no aspects are applicable, return to the normal
execution. The aspect manager also maintains the re-
lation between the process instance and the monitor
instance, and dispatches event to the right monitor in-
stance if the specified eventcut condition is satisfied un-
der the current process execution context. We will defer
a more in depth analysis of pattern validation process
in Subsection 5.2.3.

Fig.8. Event tree structure.

To support dynamic weaving, AO4BPEL[24] imple-
mented an aspect-aware engine. It modifies the activ-
ity lifecycle of the WS-BPEL engine with the dynamic
checks for aspects. The aspect runtime builds a wrap-
per around the WS-BPEL interpreter using object-
oriented technology by applying subclasses to add ad-
ditional functionality. During the process execution, it
checks whether there is an aspect with a pointcut that
matches the current activity. If such an aspect is found,
the respective advice activity will be executed accord-
ing to advice type.

Different from their proposed mechanism, our imple-
mentation utilizes the visitor design pattern: the WS-
BPEL engine is implemented as visitor of an abstract
syntax tree representing a WS-BPEL process. Inter-
estingly, the runtime aspect extension has itself been
implemented as an aspect weaved with WS-BPEL en-
gine using AspectJ, which keeps the base system (i.e.,
WS-BPEL engine) and the extension as separate as pos-
sible. Thus it supports the aspect extension component
to be plugged in or unplugged from the WS-BPEL en-
gine easily.

5.2.2 Optimization

The runtime weaving technology mentioned above
was essentially trap-based. The proposed aspect run-
time extension contains a pre-processor that registers
eventcut information at all possible join points before
runtime. The main problem of this pre-processing ap-
proach is performance. This overhead stems in part
from the nàıve interception system, namely inserting
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Retry(S, n, duration) { Alternate(S, url , servicename) {
〈variable name =“n” type = “xsd:int”/〉 〈sequence〉
〈while condition = “n > 0”) 〈assign〉
〈scope name = “S”〉 〈copy〉
〈faulthandler · · ·〉〈catch〉 〈from〉〈wsa:EndpointReference〉
〈switch〉 〈wsa:Address〉url〈/wsa:Address〉
〈case condition = “n = 0”〉 〈wsa:ServiceName〉servicename

〈rethrow/〉〈/case〉 〈/wsa:ServiceName〉
〈otherwise〉 〈/wsa:EndpointReference〉
〈wait for = “$ duration”/〉 〈/from〉
〈assign〉 n := n− 1〈/assign〉 〈to partnerLink = $S.partnerlink/〉

〈/otherwise〉〈/switch〉〈/catch〉〈/faulthandler〉 〈/copy〉
· · · 〈/assign〉

〈assign〉 n := 0 〈/assign〉 S;

〈/scope〉〈/while〉 〈/sequence〉
} }

Fig.9. WS-BPEL codes of retry and alternate actions.

traps at all possible join points. To reduce the over-
head incurred, for the instance-level aspect deployment,
some optimization technique is adopted. We make the
best use of the range part in the proposed history-based
pointcut. That is, the possible join point traps are an-
notated only when the range activity is entering. When
the range is exited, the traps are all un-deployed from
the aspect registry. For example, to the range after, the
pattern related join points will be deployed right after
the specified range activity completes. To the range
before, the aspect information is undeployed from the
aspect registry just before the specified range activity
activates.

To the range around, as the XPath based pointcut
can express the nested relationship of join points, it is
possible to merge the range-related pointcut with the
pattern-related pointcut during the deployment of as-
pect definition file. Then we can make annotations
to the possible join points according to the merged
pointcut, thus it greatly reduce the events to be gener-
ated. This kind of optimization can be applied to both
instance-level and process-level aspect deployment.

5.2.3 Behavior Constraint Validation Process

As we construct pattern automata and complex
event automata separately, to detect the violation to
pattern constraint, an event tree is constructed to orga-
nize the relationship of multiple automata (see Fig.8).
The event tree consists of a root node, non-terminal
nodes (N-node), terminal nodes (T-node) and edges.
Root node represents pattern automaton, N-node rep-
resents complex event automata and may have sev-
eral incoming and several outgoing edges. T-node

represents primitive event and possibly has several out-
going edges. When a primitive event occurs, it acti-
vates the terminal node that represents the event. This
in turn activates all nodes attached to it via outgoing
edges. When N-node receives an event, the correspond-
ing automata will match the incoming data and if the
specified complex event happens, it sends the corre-
sponding symbol to the parent nodes. Both control
and data flow from the leaf nodes to the root node in
the event tree. A finite sequence of events is considered
valid if taking the events sequentially leads the pattern
automata into a final state. A violation will occur if the
pattern automata receive an event that is unspecified or
the clock condition is not satisfied at the current state.
This will lead the automata into a violation state (not
shown in Fig.4 for brevity).

The range operator defines the boundaries for the
pattern monitoring, which can reduce the events to
be matched at runtime. To implement this, we uti-
lize the advice type “before”, “after” and “around” in-
troduced in AOP, and define two internal functions:
activatepattern and completepattern to manage the life-
cycle of the pattern. For each monitor instance we use
an internal flag to indicate whether the specified pat-
tern is being identified. Function activatepattern initial-
izes the monitor instance, and sets the flag true. The
constructed automata (including pattern automata and
complex event automata) could start afterward. Func-
tion completepattern checks whether the pattern au-
tomata is in a non-terminal state or a violation state.
In these two cases, the corresponding recovery advices
will be weaved into the engine by the aspect manager
to recover the process from the abnormal state. This
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function also sets the flag false, which will stop match-
ing the event afterward. Note that to the range before
and global, function activatepattern will be invoked im-
mediately after the monitored process starts. To the
range after and global, if the pattern automaton enters
into the violation state, the corresponding recovery ad-
vices will be executed immediately.

5.2.4 Advice Enforcement

If the violation is detected, the recovery advice is
loaded and executed according to the definition.

To enforce retry and alternate actions, which may
access the internal variable and change the behavior of
the running process, we transform them into the WS-
BPEL codes (see Fig.9). These WS-BPEL codes are
then weaved into the engine to manage the running
process. Note that, the implementation of alternate
action utilizes the dynamic partner service resolution
WS-BPEL language provides.

To support skip action, an ordinary aspect is gen-
erated by the aspect manager at runtime, where the
pointcut identifies the activity to be skipped, the at-
tribute condition specifies the impacted process in-
stance and the type of the advice is around (as shown
in Fig.10).

Skip(S){
〈aspect name = “skip” condition = “· · ·”〉
〈pointcut〉

//xpath to identify activity S

〈/pointcut〉
〈advice type = “around”/〉
〈/aspect〉
}

Fig.10. Aspect codes of skip action.

6 Experiments and Evaluation

To estimate the overhead incurred by the proposed
pattern monitoring approach, the performance impact
on the monitored processes, we conducted several ex-
periments. Note that here we focus on the matching of
the event pattern, and our measurements do not include
the execution time of the recovery advice.

In the experiments, we used a process with 150 ac-
tivities, which consist of sequences of nested while con-
structs, with atomic activities that each invokes a Java
class and some run in parallel within flow activity. The
tests were performed on P4 2.8GHZ, 1GB RAM mem-
ory, running Windows 2003. The WS-BPEL engine (in
the experiment we use our developed ONCE-BPEL en-
gine) ran on Tomcat 5.5.

Our experimental setup consists of two configura-
tions: one without runtime aspect extension and one
with runtime aspect extension. We measured execu-
tion time of the process from the perspective of the
client using the Round Trip Time (in seconds), which
is a measurement from the time the client sends a re-
quest to the point when it receives the fully reply from
the process.

In the first experiment, the deployed aspects involve
about 30% of WS-BPEL events, the deployment type
is the process-level and range is global. We compare the
performance overhead incurred by aspect monitoring.

Fig.11. Performance overhead.

Fig.11 shows, for a varying number of process in-
stances, two measurements of total execution time for
an entire workload. The first column in each set shows
the execution time of the process instances without
monitoring. The second column shows the execution
time of the processes with monitoring. Clearly, the
overhead due to monitoring is very low. The average
time of the process execution is only 5% higher than
(the first column) when monitored. Obviously, all the
results are affected by the scalability of the WS-BPEL
server itself. We can see that the execution time grows
linearly with the number of concurrent processes.

In the second experiment, we measured the perfor-
mance overhead when monitoring different percentage
of the WS-BPEL events. We ran the experiment with
50 process instances. The aspects with the process-level
deployment involve 10% to 80% of WS-BPEL events.
Fig.12 shows the execution time grows moderately with
the percentage of the monitored events. In practice, as
typical business process is large with only small parts
being relevant for a particular monitoring task, the
right column will be close to the left column.

In the following experiments we concentrate on the
effect of applying optimization technique to reduce the
performance overhead.

In the third experiment, we compared the perfor-
mance overhead after applying optimization technique
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to the range around. The deployed aspects involve
60% WS-BPEL events, and the deployment type is the
process-level.

Fig.12. Varying the number of WS-BPEL events.

Fig.13. Impact of optimization to range around.

Fig.13 shows three measurements of total execution
time, varying the number of process instances. The first
column in each set shows the execution time of pro-
cesses without monitoring. The second column shows
the execution time of the processes when monitored but
with no optimization. The last column shows the exe-
cution time with optimization. From this figure, we can
see that before optimization, to each monitored process,
the average performance overhead increases 10%, and
after optimization, decreases about 5%.

Fig.14. Impact of Optimization to range after.

In the last experiment, we consider the effect af-
ter applying the optimization to the range after. The

deployed aspect involves 80% WS-BPEL events. The
deployed type is instance-level and the amount of mon-
itored processes is 15% of the running processes. We
have similar results as the third experiment. Fig.14
shows that before optimization, the average perfor-
mance overhead increases 11%, and a performance gain
of 7% is achieved after optimization to the range after.

Of course, in general the performance improvement
is related with the characteristics of the monitored pro-
cess structure and the specified behavior constraints.

7 Discussion

In this section, we consider some issues surrounding
the concept of history-based pointcut.

Join Point and Event. One may think that we could
directly use the join point to represent the events occur-
ring in the execution trace. However, the activity-based
join point model does not easily support the expression
of event patterns because its join points are not well-
ordered.

To see this, consider the example OTA process in
Fig.2. A straightforward interpretation of this situa-
tion might be that activity scope arrangeTrip executes
before activity invoke flight. However, consider apply-
ing before and after advice to the execution of each of
these activities. The before advice on scope arrangeTrip
would execute before that on invoke flight, but the af-
ter advice would execute in the reversed order. In other
words, the execution pointcut does not describe a dis-
crete event but an interval from its start of the acti-
vation to its end from a trace-based perspective. This
problem becomes more obvious when the sub-process
extension for WS-BPEL[25] is considered.

Extensibility. Runtime monitoring is one of the typi-
cal crosscutting concerns in developing service-based
system. To solve this problem, we proposed a history-
based pointcut to specify the behavior constraint to the
WS-BPEL processes, including qualitative constraint
pattern and quantitative constraint pattern. Note that
the proposed pointcut is extensible. For example, the
complex tracecut part of the proposed history-based
pointcut can be extended to specify regular expression
based patterns: ∗ specifies the event can occur zero
or more times, + specifies the event can occur one or
more times, etc. In [4], the authors define five ranges.
At this stage, besides the global range, we support three
activity-related ranges, such as before, after and around.
The reason we do this is considering the nested struc-
ture of WS-BPEL processes. We think these four ranges
are sufficient to express most behavior constraints now.
More pattern and range operators can be added easily
if we find it necessary later.
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Limitation. Though the complex monitoring re-
quirements could be specified using traditional aspects
by keeping an explicit state variable in the aspect code,
such a manual implementation is an error-prone task.
Our solution provides linguistic support for the state-
ful aspect, which frees the developer from the burden
of writing the state bookkeeping code and allows for a
clean implementation of stateful aspects.

At the moment, the monitoring requirements need
to be manually specified by the process developer. It
would be better to generate them automatically from
some high-level specification or policy. For example,
some behavior constraints to the partner services can
be generated from the policy of the partner service[17]

or the service level agreement between the partner and
process (i.e., WS-Agreement[26]), and constraints to the
process itself can come from some high-level software
requirements specified in UML[27], etc. We will investi-
gate these problems in the future work.

8 Related Work

In this section, we first discuss the existing aspect
extensions to WS-BPEL language. Then some recent
research efforts on runtime monitoring of WS-BPEL
processes are presented.

8.1 Aspect-Oriented Extension to WS-BPEL

AO4BPEL[11] is an aspect-oriented extension to WS-
BPEL that allows for more modular and dynamically
adaptable Web service compositions. Each WS-BPEL
activity is a potential join point, and the XPath is cho-
sen as the pointcut language. To support middleware
concerns such as security, reliable message and trans-
action, two special internal message join point designa-
tors messagein/messageout are introduced. The aspect
runtime is the dynamic weaver, which modifies the in-
terpretation flow of the activity lifecycle by checking
if any aspect matches the current join point activity.
AO4BPEL also supports to separate the business rules
from the business process[28], but it does not consider
the complex business rules, whose triggering events re-
lies on the execution history of the core application.

Courbis and Finkelstein[5] present an aspect-oriented
extension to WS-BPEL, which is very similar to
AO4BPEL. They also use XPath as a pointcut lan-
guage, and the advice language can be Java or WS-
BPEL. They focus on the dynamic adaptation, but do
not address the issues of crosscutting concerns in Web
service composition and how to modularize them using
aspects. The dynamic weaving mechanism modifies the
abstract syntax tree representation of the WS-BPEL
process to annotate some aspect information on it. In

order to weave aspects, the engine is suspended at some
points and the AST tree is transformed, e.g., by adding
or removing activities from/to the process, which has
serious implications on performance. Unlike this ap-
proach, the advice in our approach only acts on the
impacted process instance.

As far as we know, there is only one proposal
Padus[12] that supports stateful aspect extension to
WS-BPEL language. Different from the above men-
tioned work, the basic pointcut is based on a logic-based
programming language, and pointcut matching is done
by Prolog engine. To support stateful aspect, their
work specifies pattern with regular expression, which
is not enough to express complex behavior constraints.
The implementation of Padus uses static weaving at
source code level. The logic which traces the process
history is added by injecting some pieces of advice into
the process, which performe some book keeping on the
state of the process by employing process variables to
store the state information. The shortcoming of this ap-
proach is that it has some degree of intrusiveness. After
weaving, the process will be blended with a lot of as-
sign and switch activities that have nothing to do with
the business logic. Also, static weaving is not flexible,
as it does not support to modify/add/remove aspects
during the process execution.

8.2 Runtime Monitoring

To ensure the correctness of a distributed process,
some static techniques can be used to verify the behav-
ior of Web services, such as the work in [29, 30]. While
static analysis for checking Web services composition
against properties is appealing, they have some limi-
tations: since Web services communicate via infinite-
length channels, the problem is decidable only under
certain condition. Further, some advanced features in
WS-BPEL, for example, the endpoint reference (to dy-
namically determine the partner to talk to), are not
considered. Also, existing techniques are unable to
deal with complex message interaction[31]. Instead, we
choose dynamic analysis via runtime monitoring.

At this stage, a lot of work has been studied in the
area of runtime monitoring WS-BPEL processes, which
can be classified into two kinds, assertion-based moni-
toring and event-based monitoring.

In [32], Baresi et al. propose an assertion-based ap-
proach to monitoring the WS-BPEL processes, where
the monitors are specified as assertions that annotate
the WS-BPEL codes, which are then automatically
translated to “monitored processes”. In [33], they fur-
ther propose a design process model for the definition
of supervised processes and an AOP-based prototype
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implementation is also presented.
For the event-based monitoring, Mahbub et al.[3] de-

veloped a framework for monitoring requirements of
WS-BPEL processes. Their approach uses event calcu-
lus (EC) to specify the requirements to be monitored.
During the execution, all process events are generated
and transformed to terms of events in EC. Run-time
checking is interpreted as integrity constraint checking
in a temporal deductive database. This approach is less
intrusive that monitor proceeds in parallel with the ex-
ecution of the business process and has a lesser impact
on performance. It also leads to a lesser responsiveness
in discovering erroneous situations. The monitoring ap-
proach we proposed only detects the events of interest
and can supervise the running process in case of viola-
tion.

Other researches address the reliability problem of
WS-BPEL processes[34−36]. In [34], the authors present
an approach where a designer defines a WS-BPEL pro-
cess annotated with some information about recovery
actions and then a pre-processing phase, then starting
from the “annotated” WS-BPEL, generates a “stan-
dard” WS-BPEL, which is understandable for any stan-
dard WS-BPEL engine. Inspired by this work, [35]
proposes a declarative approach to enhancing the re-
liability of WS-BPEL processes. ECA rules based fault
handling logic, such as retry, alternate and skip, are
integrated with business logic through static weaving
before deployment. In [36], a set of extensible recov-
ery policies is proposed to specify how to recover from
typical faults in Web services composition. The en-
forcement of the recovery policies is delegated to the
underlying messaging middleware. Different from their
work, we focus on pattern monitoring and the advices
are dynamically weaved at the process level.

9 Conclusion and Future Work

Web services compositions are rapidly emerging as
critical building blocks for process integration. Moni-
toring the execution of such composition is important
to enhance the reliability of the process.

In this paper, we have discussed limitations of ex-
isting aspect extension to WS-BPEL language. We in-
troduced stateful aspect based template, presented and
implemented an aspect-oriented framework as a solu-
tion to provide monitoring and recovery support for the
composite Web services.

Recently there have been several proposals for en-
hancing the AspectJ with the ability of trace matching
by specifying patterns with the regular expression[37] or
context-free grammar[9]. Our work is focused on WS-
BPEL and complex event is allowed in the template.

An event tree is also constructed to organize the rela-
tionship of multiple automata for pattern validation.

This proposal could be improved in a number of
ways. First, as discussed in Section 7, currently the
stateful aspect template needs to be manually speci-
fied by the process developer. It would be helpful if
the stateful aspect template could be generated auto-
matically from some high level specifications, such as
WS-Agreement, WS-Policy, etc. We will investigate
this issue in the future. Second, the recovery actions
supported are limited now. In the future work, we plan
to explore more complex recovery action to enhance the
reliability of WS-BPEL processes.
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