Vol.17 No.2 J. Comput. Sci. & Technol. Mar. 2002

A Non-Collision Hash Trie-Tree Based Fast

IP Classification Algorithm A

XU Ke (8 18), WU Janping (S22 ¥}, YU Zhongchao (ﬂfﬁj?—I—l 48} and XU Mingwel (2R)
Department of Computer Science and Technology, Tsinghua University
Betjing 100084, P.R. China
E-mail: {xuke,yzc,xmw}@csnet |.cs.tsinghua.edu.ca: jianping@cernet.edu.cn
Recetved August 29, 2000; revised June 4, 2001,

Abstract With the development of network applications, routers must support such
functions as firewalls, provision of QoS, traffic billing. etc. All these functions need the classifi-
cation of 1P packets, according to how different the packets are processed subsequently, which
is determined. In this article, a novel [P classification algorithm is proposed based on the Grid
of Tries algorithin. The new algorithm not only eliminates original limitations in the case of
multiple fields but also shows better performance in regard 1o both lime and space. [t has
better overall performance than many other algorithms.

Keywords [I" classification, hash, Trie-tree

1 Introduction

Future IP network must provide more scrvice types and better quality of service?!, including
differentiated serviceltl, firewalls’?, policy-based routing!®, virtual private network, traffic billing!!.
etc. All these functions need the classification of IP packets.

Iu this paper, we first provide the mathematical model of the TP classification problem. Then we
present a novel IP classification algorithm applying to multiple fields based on the two-dimension IP
classification. We also compare our new algorithm with others. The simulation result shows that our
algorithm has the best overall performance.

2 Mathematical Model of IP Classification

2.1 Terminology Definitions®!

An address D is a bit string of W bits in length.

A prefiz P is a bit string of the length between 0 and W. We use length (P) to denote the number
of bits n a prefix.

A header I has K fields, which are denoted by H[1], H[2],. .., H[K] respectively. Each feld is a
string of binary bits.

A filter F also has K fields. Each field F|i] in a filter can specify any of the three kinds of matches:
exact match, prefix match, or range match.

It is called an eract maich ifl a single value is specified for the ith filter field {i.e., F[¢]) and the
header field H|i| is equal to £7i].

It is called a prefir match iff a prefix is specified for the ith filter field and the first lengthi F[2])
binary bits of the header field H[i] are the same as those of F[i].

It is called a range match iff a range of values F|i] = vall... val2 is specified for the th flter feld
and the header field H[i] falls into that range, i.e., vall < H[i] < vai2.

This work is supperted by the National “863" High-Tech Programme of China (No.863-306-ZD-07-01) and the
National Natural Science Foundation of China {N0.90104002).

220 XU Ke, WU Jianping et al. Val17

A filter F is said to be a maiching filter for a header H iff each field H|[i| of H matches the
corresponding field £(i] of F. The type of match is specified by £i] and could be an exact mat-h, a
prefix match or a range match.

A set of N filters is called a filter datebase, which is denoted by FS.

Each filter F has a cost property denoted by cost(F). For YF|, Fy € F§, if cost(F)) = cost{Fs}
then Fy = F». We use the cost property to assure that there is al most one matching filter.,

2.2 Best Matching Filter Problem and IP Classification

We define the following problemn as the best matching filter problem:

Given a filter database FS # 0 and a header H, find the best matching filter fi... which meets
the following conditions:

(1) foest € FS

(2) fyese matches H

(3)Vf ¢ FS, f # fuest, if f matches H, then cost(fues) < cost(f).

IP classification is an instance of the best matching filter problem. In theory, seven ficlds can be
used for the filter: the destination/source IP address (32 bits each), the destination/source transport
port {16 bits each), the type of service (8 bits), the protocol type (8 bits) and the flag of transport
layer (8 bits). The sum of bits of these fields is 120 (we assume that all the seven fields reside in
the 1P packet header for the sake of convenience, although some fields are in TCP header actually).
Statistical results of some actual filter databases used by ISPs show that 17% of the filters specify
only one field, 23% specify three fields, and 60% specify four fields(®l,

3 Related Work

The packet classification based on patternsl’l is used in the operating system when dispatching data
packets of the input queue to different process spaces. It is the first algorithm avoiding linear lookup.
Its performance has direct proportion to the number of fields and is independent of the number of
filters. But this algorithm has very strong limitations on filters, thus it is not suitable for IP routers.

The crossproducting algorithml®! is based on caches. For bigger classifiers, the authors propose a
caching technique (on-demand crossproducting) with a non-deterministic classification time.

The modular algorithm® is an IP classification algorithm based on statistics. It may optimize the
lookup data structure according to the distribution of filter matching ratio and IP traffic. Without
enough effective statistic parameters, this algorithm cannot be practically used for I routers now.

The RFC (Recursive Flow Classification) algorithml® is a simple multi-stage classification algo-
rithm, which maps the §-bit header to the T-bit ClassID (T < S) step by step. It is the [astest
algorithm ever known, but it needs a lot of pre-computation (usually more than ten seconds) and it
may suffer from space explosion.

A solution called Grid of Tries is proposed in [8]. In this scheme, the Trie-trec data structure is
extended to two dimensions. This is a good solution if the filters are restricted to only two fields, but
it is difficult to extend it to apply to more fields.

A hardware-only algorithin can employ a ternary CAM (content-addressable memory). Ternary
CAMs store words with three-valued digits: ‘0%, ‘1" or ‘¥’ (wildcard). The rules are stored in the
CAM array in the order of decreasing priority. Given a packet-header to classify, the CAM performs
a comparison against all of its entries in parallel, and a priority encoder sclects the first matching
rule. While simple and flexible, CAMs are currently suitable only for small tables; they are too
expensive, and consume too much power for large classifiers. Furthermore, some operalors are not
directly supported, and so the memary array may be used very inefficiencly.

In this paper, we propose a novel lookup algorithm called non-callision hash Trie-trec algorithm.
which is based on the Grid of Tries algorithm. The average time consumed and the space requircimnens

No.2 A Non-Collision Hash Trie-Tree Based Fast [P Classification Algorithm 221

of this algorithm are less than those of Grid of Tries, and it gets rid of the limitation of filters in Grid
of Tries. It is the most attractive candidate algorithm if implemented by means of software.

4 Non-Collision Hash Trie-Tree Algorithm

4,1 Basic Algorithm

We mentioned that seven fields in [P packets might be the candidate fields of the filter. But actual
filter databases usually use only five fields: destination/source IP addresses, destination /sonrce ports
and protocol type. The width of the protocol type field is 8 bits. To program conveniently, we extend
the protocol type ficld to 16 bits.

The values of the destination port, the source port and the protocol type range from 0 to 65535, but
in actual filters they only use a very small part of the whole range. Currently, the value of the protocol
field is limited to TCP, UDP, ICMP, [GMP and (E)IGRP. [n most Client/Server software architectures,
ports can be roughly divided into two classes!®. One is the reserved port which numbers in 1-1023,
the other is the ephemeral port which numbers larger than 1023. Ephemeral ports are usually used
in client software and are usually assigned by the operating system kernel. They are nothing but to
identify an endpoint of a connection. It is almost impossible that a filter would specify a spetific port
larger than 1023, Usually, filters specily a range such as gt1023 meaning all ports larger than 1023
(but less than 65535). The most widely used reserved ports are 20, 21 (FTP) and 80 (www). other
ports are used less [requently.

Our analysis above shows that the number of combinations of destination,/source ports and protocol
values in actual filters is very small. Based on this observation, we construct a two-stage look up table
that can be used to lookup without collision at all. We take Table | as an example to illustrate our
idea.

Table 1, An Example Database of Filters

ClassID | Dest-IP | Src-IP | Dest-port | Src-port | Prot
\] 10.L.4%,% | 10.2.%.%x * * *
1 10.3.4.% | 10.40k% 80 * 17
2 10,5, [10.6.%.% 80 * 17
3 105« | 10.6.+.+ | [20, 2] * 6 |
4 10.7.%x | 10.7.%.% * gt 1023 [}
5 * * * % *

Table 1 is a filter database that contains six filters. We assume ClassID) is the same as the filter
cost in this database. Take the destination port as an example. We assign cach port in 0-63535
a birmap. This bitmap denotes the filters the port matches (the length of bitmap is equal to the
nurnber of filters). For example, the bitmaps of ports 21 and 22 are both 100111, which means they
match filters 0, 3, 4 and 5. According to these bitmaps, we classify all possible destination ports into
different equivalent classes. The ports with the same bitmap belong to the same class. The bitmap
of equivalent class A is denoted by bmp(A). The set of all such destination port equivalent classes is
denoted by D_Set. And the total number of destination port equivalent classes is denoted by D. For
example, the D_Set of Table 1 is {{80}. [20,21]. {0-65535 except 20, 21, 80}}. In the same manner,
we construct the set of source port equivalent classes S_Set and that of protocol equivalent classes
P_Set, whose element numbers are § and F respectively.

Ifae D._Set,bc S Set, c€ P_Set then the 3-tuple (a,b,¢) is called a cross-combination.

Now we further divide the set of all the cross-combinations into different equivalent classes called
DSP_Sel. We do it as follows.

Consider two cross-combinations (a, b, ¢) and (d, e, f). If bmpla) & bmp(b) & bmp(c) = bmp{d) & bmp
{¢) & bmp(f) then (a,b,c) and (d,e, f) belong to the same class. otherwise they belong to different
classes (*&" denotes logic “and” operation bit by bit).

Each element of the DSP_Set (a cross-combination equivalent class, notice that it is a set irself)
has a corresponding set of destination and source 1P prefix pairs. These II’ prefix pairs are those of

222 XU Ke, WU Jianping ef al. Vol 17

the filters whose 3-tuple destination port, source port and protocol number belongs to the element.
The cross-combinations that belong to the same element of DSP_Set share the same polnter to a
destination and source [P prefix set. The non-collision hash Trie-tree algorithun first finds out the
pointer to the destination and source prefix pair sct by looking up a non-collision hash tabie according
to the destination port, the source port and the protocol number. Then we perforin a two-dimension
Trie-tree lookup in the destination and source [P prefix pairs to obtain the final Class[D.

4.2 Non-Collision Hash Lookup

When classifying a packet with its header H{dport. sport, proto) {representing the destination port.
the source port and the protocol respectively, we do not con-
sider IP address flelds in this step). we first look 1p three

dport sport proto tables using dport, sport and proto as the indices respec-
7 [Js tively. We use a function of these lookup result ¢{ fd dport).

[fs(sport), fp(proto)) as the index to perform another lookup.
The result is h(g(f{dport), fs(sport). fplproto}}). which is
the pointer to a set of destination and source 1P prefix
pairs. We number the [equivalent classes' 1Ds of D _Set
as 0.1,2,...,D - 1 and define fd{dpert) as the equivalent
ClassiD of dport. And it is the same with fs and fp.

Fig.1 shows the lookup process stated ahove. The rect-

: ‘ o angle represents a lookup table and g is a hash funeiion,
s The bottom of Fig.1 is the sre-dest Trie tree that is used to
\ / \ look up with the source IP address and the destination 1P
address. We choose g(d, s,p) = PSd 4+ Fs + p. According
Fig.1. Non-collision hash Trie-tree algorithm. to our definitions of fd, fs and fp, we have 0 < d <) - 1.
0<s<8-1,0<p<P—1 Now we prove ¢ will not

causc any collision.

Theorem. Define g(d,s,p) = PSd + Ps + p {d,5,p, D, 5P € Z),0<d <D -1.0<s 51,
0<p<P—1,14f gldy,s1.p1) — g(da,92,p2), then dy = dy, 51 = s3,p1 = pa.

PTOOf‘ Because P5d1+P31 +p = PSd2+PSQ +p2. 21 = PSdy + Ps, — PSdo— Psy = P{S[(I’] -
da) + 51 — s3] Taking the absolute values of both sides, we have [ps — 1| = P|S(d, - da} - 51 - s2l.
Because py,p; € [0, P — 1], |pp — p1| < . Since |5(d; — d3) + 51 — s3] is an integer. we conclude thal
pr—p1 = 0, e, pz = p. For the same reason, we have s — 5;, d) = d3.]

Now we have proved that g is a non-collision function. The construction of these tables and
the two-dimension Trie-tree is completed by reading the filter database during the pre-computation
stage. Thus, we can find the pointer to the set of destination-source IP prefix pairs with four memory
accesses. The next step is to look up through the two-dimension Trie-tree using destination and source
[P addresses in the packet header. Algorithms 1 and 2 are the setup algorithms of these tables.

Algorithm 1. Construction of fd(fs, fp) Table Table 2. An Fxample of
*table_fx tablefx_setup() Source-Destination 1P Pairs
ClassID} | Dest-IP | Sce-IP
s e e s 0 0* 10*
/[*allocate memory and initialization*/ — T 5 e
p = new_table fx(); 7 0 B
for (n =0;n < 655336, n + +) 3 G T
{ 4 00* -
Get bmp(n); 5 R
eq = search_in_equivalence class x set(bmp(n)); N
if (eq == NULL) /* new bmp */
{

eq = new equivalence class x(bmp(n));
add eq into x set:

No.2 A Non-Collision Hash Trie-Tree Based Fast [P Classification Algorithm 223

p — tablejn| 1 D=eq— (D}

}

return p;

}
Algorithm 2. Counstruction of i Table
*table A table b setup()

{
indx =0
allocate memory and initialization®/
p=new.table h(D. 5, P);
for eqd in d_sct, egs in 5_set, eqp in pset
{
bip = eqd = bmp&eqs — bmpéeqp — biup;
eq = search_equivalence_class_dsp(bmp);
if (eq is null) /*new bmp*/
{
eq = new_equivalence_class_dsp(bmp):
add eq into dsp_set:
1
p — table[indx++].ID=eq — ID};
¥
}

4.3 Lookup in Destination-Source 1P Prefix Pairs

In this section, we introduce a simplificd Grid-of-Tries lookup algorithm. Extending the ‘Irie-tree
data structure from one-dimension to two-dimension, we have the two-dimension Tric-tree. We take
the filter databasc in Table 2 as an example to show this process (assume that the width of IP address
in the table is 2J.

We first build up a Trie-tree (denoted by Dest-Trie trec) according to the destination [P prefixes.
For each node in Dest-Trie tree, if there exists the corresponding destination IP prefix. it points to
a source IP prefix Trie-tree (denoted by Src-Trie}, otherwise the pointer is null. A Dest-Tric node
not only contains the corresponding source [P prefixes but also those of its ancestors in Dest-Trie. In
that case, time complexity of lookup in the two-dimension Trie tree is O(W). but since cach Dest-Trie
node stores both the pair source [P prefixes of its own and those of its ancestors, the space compexity
turns out to be A(N?).

We can get rid of the redundant copies. Every Dest-Trie node only contains the corresponding
source TP prefixes in the database. But in this case, in order to find out the final ClassID with the least
cost, we need to search not only the Sre-Trie but also that of its ancestors. Thus the time complexity
rises up to O(W2), although we need less space.

The solution is to introduce a switch pointer. In the process of pre-computation. we direct the
null pointer of the Sre-Trie node to an Sre-Trie node of one of its Dest-Trie ancestors’ so that we can
proceed further when we go along the longest matching path. In addition, we must make sure that
the longer a destination-source prefix pair is, the lower its cost is. Take filters 2. 3 and 4 of Table 2
as an example, filter 2 is shorter than filter 3 in destination-source pair length, and filter 3 i shorter
than filter 4. But the fact is that filter 2s cost is lower than filter 3 and filter 3's cost is lower than
filter 4’s. So thev do not accord with our principle of a longer pair with a lower cost. However, we
observe that if we remove filters 3 and 4 from the table. our lookup result does not change. That is
because a header matching filter 3 and filter 4 will surely match filter 2, and filter 2 has a lower cost.
In other words. filter 3 and filter 4 are redundant. There are two ways to deal with the problem. The
first one is to guarantee that there is no redundancy at all when building up our filter database; the

224

XU Ke, WU Jianping et al. Val.LT

other is to change both filters 3's and 4’s Class{D to 2 in the pre-computation stage to guaraniee the

correctiess of the algorithm.

Dest-Trie

Ser-Trie

A e
f2 flJr.O fo

Fig.2. [inproved data struciure

of the 2-dimension Trie-tree.

The ultimate two-dimension Trie tree is shown as ['ig.2,
where the number beside the letter *f” denotes the cor-
responding ClasslD (it is also the sequence number of the
filter and its cost}). Given this figure, we ook up the
matching filter with the lowest cost for o coming header
as follows.

First perform the longest destination 1P prefix match-
ing process ending at some node in Dest-Trie. Then go
along the 0 or 1 pointer (or if null, a switch pointer) of
the corresponding Src-Trie to perform the longest source
IP prefix matching according to the header’s destination
and source IP’s. We go as farther as we can, and the Clas-
sID of the flter with the lowest cost is the final result we
want.

Algorithm 3 is the construction algorithm of the Src-Dest Trie tree.

Algorithm 3. Construction of Src-Dest Trie Tree
vold insert.ip.pair(dst_trie_node *root, ip dip, ip sip)
/*insert. destination II* address into dst-trie node*/
dp = dst tricnsert(root, dip);
/*inserl source [P address into sre-trie node */
sp =src.tricdnsert (&dp — psre, srcdp);
msert information of the rule into sp node;

[*set up dest ip nodes™/
dest tric node* dest_trie_insert(dest_trie node *root, ip dest_ip)
{
if {'dest.ip) return NULL;
if {strlen (dest.ip}>NMAXIPWIDTH) return NULL;
if (I(*root))
{
*root = new dst _trie;
initialize ront;
}
set up dest_trie nodes according to string dest_ip;
continue until we meet 0 or = in dest_ip;
return the pointer to the last dest_trie node;

}

src_trie_nodex src_tric_insert(src_trienode *root, ip srcip)
{
if (srcip) return NULL;
if (strlen (src ip) >NMAXIPWIDTH) return NULL:
il (/{*root}))

*root = new src_trie;

initialize root;
set up stc._trie nodes according to string src.p,
continue until we meet 0 or ¥ in sreip;
return the pointer to the last src_trie node;

}

Algorithm 4 is the pre-compute procedure of the sre-dest ‘I'rie tree.

No.Z A Non-Collision Hash 'Trie-Tree Based Fast. [P Classification Algurithm 225

Algorithm 4. Pre-Computation of Src-Dest Trie Tree
void pre_ compute(dst_tric node *¥root)

if (root ==null} return;
p= pointer to the lowest src_trie of root’s ancestors;
if {root — sre_trie == null)

root — src_tric=p;
else
{

if (p is not. null and has less cost)

*root — src_trie = *p;
search root — src_trie, be sure the cost of sre_ip is lvss than its prefix:

/*search left sub-tree*/
pre_compute {root — chitd|0]);
[*search right sub-tree*/
pre_compute {root — child[1)):

}

The whole working procedure of the non-collision hash Trie-tree algorithm is divided into two
steps.

The first step is the pre-computation of four hash tables (fd, fs, fp and h) and src-dest Trie-tree
according to the filter database. The construction algorithms of these tables are shown in Algorithm
1 through Algorithm 4.

After establishing these tables and the Trie tree, the second step is the lookup procedure.

5 Lookup Performance

In the worst case, it takes four serial lookups to obtain the pointer to the two-dimension Trie-tree,
Le., the leokups in tables fd, fs, fp and k. Lookup through the two-dimension Trie-trec needs tu visit
21 nodes in the worst case. So the total number of memory accesses is 2W + 4 in the worst case.
What is more, the constumed time is irrelevant to the npumber of filters, In contrast, even with a hash
function without collision, Grid-of-Trics needs 4(1 + 2W) memory accesses.

It is a little more complicated as for the space complexity of the non-collision hash algorithmu. The
numbers of entries of the fs, fd and fp tables arc all 65536 and the number of entries of table A is
D% 5x P, Theoretically speaking, the number of table k's entries could be up to 65536 x 65536 % 65536.
However. as analyzed above, D, § and P are rather small in normal cases, so we expect that the number
of table h's entries is quite small. As for the two-dimension Trie-tree, since a filter needs 2W Trie
nodes at most and there are N filters altogether, the space needed is about 2NW. Thus we could
estimate that the total space is Table_Size+2NW in the worst case, while Grid-of-Tries for multi-fields
also needs about Hash_Size+2NW, where Hash Size denotes the space for the hash table. In order
to gain higher time efficiency, the hash table usually consumes a lot of memory. In our test, the
non-collision hash Trie-tree algorithm also shows better performance in space.

It is difficult to analyze the average performance of both time and space. Even worse, little is
done in sampling for both filters and IP flow in the real Internet. Because of that, we design a
virtual environment to perform a testing. Our coucern focuses on the relative performance between
the non-collision hash Trie-tree and Grid-of-Tries, so the virtual environment will be sufficient. We
make reascnable assumptions about IP flows and filters and generate IP packet flow and filters from
a random number generator. For the sake of comparability, we add the same limitations needed by
the Grid-of-Trics algorithm. We observe that even our assumptions favor the Grid-of-Tries. the non-
collision hash algorithm still shows better performance in both time and space. So we expect the
difference will be more obvious in practice. Testing results are shown in Fig.3 and Fig.4.

226 XU Ke, WU Jianping et aol. Vol 7

60 8

e = = = oo ey

. . N Y | 1 = —_—
20 4{ » a(;?(fnl —— Noncol
) [2 ——(irid 7|
P MR 0 P .
1000 3000 5000 7000 9000 1000 3000 3000 oo 9000

Fig.3. Comparison of time performance between non-
coullision Trie-tree (denoted by Noncol) and
Grid-of-Tries {denoted by Grid), where x-axis
plots the number of filters and y-axis plots the
total seconds consumed while processing 107
packets,

Fig.4. Comparison of space performance betweer
non-collision Trie-tree {denoted by Nonenl.
and Grid-of-Tries (denoted by Grid), where &
axis piots the number of filters and g-axis plots
the maximum memory [MB) consumed

6 Conclusions and Future Work

In this article, a novel [P classification algorithm is presented based on the Grid-of-Tries algorithun.
The new algorithm not only eliminates original limitations in the case of multiple fields but also shows
better performance in regard to both time and space. It has better overall performance than many
other algorithms.

We have implemented the algorithm in the “High-Performance Security Router”, a kev project of
the High Technology Research and Development Program of China. The “High- Performance Security
Router” implements packet filter and [PSec. It may support four Gigabit Ethernet interfaces al most.
so traditional classification algorithms cannot keep up with the speed of interface. Our new algorithm
meets the performance requirement of IP packet classification in the “High Performance Security
Router™.

The algorithm we presented can be improved further. In the process of lookup throngh the two-
dimension Trie-tree, our algorithm will go one step according to a bit of the header. If it can look up
several bits at a time, the depth of the Trie-tree will reduce greatly and the performance will iuprove,
Future work is to explore the distribution of IP prefixes', by which we hope that we cau select the
depth of Trie-tree and decide which bits to look at when going down the Trie-tree.

References

[1] Welss W. QuS with differentiated services. Technical Journal, 1998, 3(4): 48-62.
[2] Bellovin S, Cheswick W. Network firewalls. IEEE Communications Magazine, 1994, 32(9): 50-57.
|3] Jyh-haw Y, Randy €, Richard N W. [nterdomain access control with pelicy routing. In Proceedings of the [KEE
Computer Socrely Workshop on Future Trends of Distributed Computing Systems, QOctl., 1997, pp.46-32.
(4] Richard Edell, Nick McKeown, Pravin Varaiya. Billing users and pricing for TCP, IEEE Journal on Selected Areas
n Commumnacations, Sept., 1995, 13(7): 1162 1175.
[3] Xu Ke, Xiong Yong-qiang, Wu Jian-ping. Analysis of broadband IP router architecture. Jouwrnal of Software, 2008,
11(2): 178-186.
i6] Gupta P, McKcown N. Packet classification on multiple fields. ACM Computer Communication Revrew, 1999,
29(4): 116 160.
[7] Bailey M L, Gopal B. Pagels M A, Peterson L L. PATHFINDER: A pattern-based pacher classifier. In Frocesdimgs
of the Ist Symposium on Operating System Design and Implementetton, Usenix Assaciation, 1994, pp.93- 104,
[8] Srinivasn V, Varghese G, Suri S et al. Fast scalable level four switching, ACM Computer Communicatron Review,
1998, 28(4): 191 205.
9] Woo T Y C. A medular approach Lo packet classification: Algorithms and results. In Proceedings of IEFF info-
com 2000, 2000.
110] Stevens W R. UNIX Networking Programming (2nd Edition). Prentice Hall, Inc. 1998, Vol.l.
[11] Merit Inc. IPMA Statistics. http://mic.merit.edu/ipma.

