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Abstract
Recently, Linear Temporal Logic (LTL) has been successfully applied to high-level task and motion planning
problems for mobile robots. One of the main attributes of LTL is its close relationship with fragments of
natural language. In this paper, we take the first steps toward building a natural language interface for LTL
planning methods with mobile robots as the application domain. For this purpose, we built a structured
English language which maps directly to a fragment of LTL.
© Koninklijke Brill NV, Leiden and The Robotics Society of Japan, 2008
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1. Introduction

Successful paradigms for task and motion planning for robots require the verifiable
composition of high-level planning with low-level controllers that take into account
the dynamics of the system. Most research up to now has targeted either high-
level discrete planning or low-level controller design that handles complicated robot
dynamics (for an overview, see Refs [1, 2]). Recent advances [3–6] try to bridge the
gap between the two distinct approaches by imposing a level of discretization and
taking into account the dynamics of the robot.

The aforementioned approaches in motion planning can incorporate at the high-
est level any discrete planning methodology [1, 2]. One such framework is based on
automata theory where the specification language is the so-called Linear Temporal
Logic (LTL) [7]. In the case of known and static environments, LTL planning has
been successfully employed for the non-reactive path planning problem of a single
robot [8, 9] or even robotic swarms [10]. For robots operating in the real world, one
would like them to act according to the state of the environment, as they sense it, in
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a reactive way. In our recent work [11], we have shifted to a framework that solves
the planning problem for a fragment of LTL [12], but now it can handle and react
to sensory information from the environment.

One of the main advantages of using this logic as a specification language is
that LTL has a structural resemblance to natural language (A. N. Prior, the father
of modern temporal logic, actually believed that tense logic should be related as
closely as possible to intuitions embodied in everyday communications). Never-
theless LTL is a mathematical formalism which requires expert knowledge of the
subject if one seeks to tame its full expressive power and avoid mistakes. This is
even more imperative in the case of the fragment of LTL that we consider in this
paper. This fragment has an assume–guarantee structure that makes it difficult for
the non-expert user even to understand a specification, let alone formulate one.

Ultimately, the human–robot interaction will be part of every day life. Neverthe-
less, most of the end-users, i.e., humans, will not have the required mathematical
background in formal methods in order to communicate with the robots. In other
words, nobody wants to communicate with a robot using logical symbols — hope-
fully, not even experts in LTL. Therefore, in this paper we advocate that structured
English should act as a mediator between the logical formalism that the robots ac-
cept as input and the natural language to which humans are accustomed.

From a more practical point of view, structured English helps even the robot
savvy to understand better and faster the capabilities of the robot without having
intimate knowledge of the system. This is the case since structured English can
be tailored to the capabilities of the robotic system, which eventually restricts the
possible sentences in the language. Moreover, since different notations are used for
the same temporal operators, a structured English framework targeted for robotic
applications can offer a uniform representation of temporal logic formulas. Finally,
usage of a controlled language minimizes the problems that are introduced in the
system due to ambiguities inherent in natural language [13]. The last point can be
of paramount importance in safety-critical applications.

Related research moves along two distinct directions. First, in the context of
human–robot interaction through natural language, there has been research that
converts natural language input to some form of logic (but not temporal) and then
maps the logic statements to basic control primitives for the robot [14, 15]. The
authors in Ref. [16] show how human actions and demonstrations are translated
to behavioral primitives. Note that these approaches lack the mathematical guaran-
tees that our work provides for the composition of the low-level control primitives
for the motion planning problem. The other direction of research deals with con-
trolled language. In Refs [17, 18], whose application domain is model checking [7],
the language is mapped to some temporal logic formula. In Ref. [19] it is used to
convey user-specific spatial representations. In this work we assume the robot has
perfect sensors that give it the information it needs. In practice one would have to
deal with uncertainties and unknowns. The work in Ref. [20] describes a system in
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which language as well as sensing can be used to get a more reliable description of
the world.

2. Problem Formulation

Our goal is to devise a human–robot interface where the humans will be able to
instruct the robots in a controlled language environment. The end result of our
procedure should be a set of low-level controllers for mobile robots that gener-
ate continuous behaviors satisfying the user specifications. Such specifications can
depend on the state of the environment as sensed by the robot. Furthermore, they
can address both robot motion, i.e., the continuous trajectories, and robot actions,
such as making a sound or flashing a light. To achieve this, we need to specify the
robot’s workspace and dynamics, assumptions on admissible environments, and the
desired user specification.

Robot workspace and dynamics. We assume that a mobile robot (or possibly
several mobile robots) is operating in a polygonal workspace P . We partition P

using a finite number of convex polygonal regions P1, . . . ,Pn, where P = ⋃n
i=1 Pi

and Pi ∩Pj = ∅ if i �= j . We discretize the position of the robot by creating Boolean
propositions Reg = {r1, r2, . . . , rn}. Here, ri is true if and only if the robot is located
in Pi . Since {Pi} is a partition of P , exactly one ri is true at any time. We also
discretize other actions the robot can perform, such as operating the video camera
or transmitter. We denote these propositions as Act = {a1, a2, . . . , ak} which are true
if the robot is performing the action and false otherwise. In this paper we assume
that such actions can be turned on and off at any time, i.e., there is no minimum or
maximum duration for the action. We denote all the propositions that the robot can
act upon by Y = {Reg,Act}.

Admissible environments. The robot interacts with its environment using sensors,
which in this paper are assumed to be binary. This is a reasonable assumption to
make, since decision making in the continuous world always involves some kind of
abstraction. We denote the sensor propositions by X = {x1, x2, . . . , xm}. An exam-
ple of such sensor propositions might be TargetDetected when the sensor is a
vision camera. The user may specify assumptions on the possible behavior of these
propositions, thus making implicit assumptions on the behavior of the environment.
We guarantee that the robot will behave as desired only if the environment behaves
as expected, i.e., is admissible, as explained in Section 3.

User specification. The desired behavior of the robot is given by the user in
structured English. It can include motion, e.g., ‘go to room1 and go to room2 and
go to room3 or room4’. It can include an action that the robot must perform, e.g.,
‘if you are in room5 then play music’. It can also depend on the environment, e.g.,
‘if you are sensing Mika then go to room3 and stay there’.

Problem 1 (from language to motion). Given the robot workspace, initial con-
ditions and a suitable specification in structured English, construct (if possible)
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Figure 1. Overview of the approach.

a controller so that the robot’s resulting trajectories satisfy the user specification in
any admissible environment.

3. Approach

In this section, we give an overview of our approach to creating the desired
controller for the robot. Figure 1 shows the three main steps. First, the user
specification, together with the environment assumptions and robot workspace and
dynamics, are translated into a temporal logic formula ϕ. Next, an automaton A that
implements ϕ is synthesized. Finally, a hybrid controller based on the the automa-
ton A is created.

The first step, the translation, is the main focus of this paper. In Section 4, we
give a detailed description of the logic that is used and in Section 5 we show how
some behaviors can be automatically translated. For now, let us assume we have
constructed the temporal logic formula ϕ, and that its atomic propositions are the
sensor propositions X and the robot’s propositions Y . The other two steps, i.e., the
synthesis of the automaton and creation of the controller, are addressed in Ref. [11].
Here, we give a high-level description of the process through an illustrative exam-
ple.

Hide and Seek. Our robot is moving in the workspace depicted in Fig. 2. It can
detect people (through a camera) and it can ‘beep’ (using its speaker). We want the
robot to play ‘Hide and Seek’ with Mika, so we want the robot to search for Mika in
rooms 1, 2 and 3. If it sees her, we want it to stay where she is and start beeping. If
she disappears, we want the robot to stop beeping and look for her again. We do not
assume Mika is willing to play as well. Therefore, if she is not around, we expect
the robot to keep looking until we shut it off.
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(a) (b)

Figure 2. Simulation for the Hide and Seek example. (a) The robot found Mika in 2. (b) Mika disap-
peared from 2 and the robot found her again in 3.

Figure 3. Automaton for the Hide and Seek example.

This specification is encoded in a logic formula ϕ that includes the sensor propo-
sition X = {Mika} and the robot’s propositions Y = {r1, . . . , r4,Beep}. The syn-
thesis algorithm outputs an automaton A that implements the desired behavior, if
this behavior can be achieved. The automaton can be non-deterministic, and is not
necessarily unique, i.e., there could be a different automaton that satisfies ϕ as well.
The automaton for the Hide and Seek example is shown in Fig. 3. The circles rep-
resent the automaton states and the propositions that are written inside each circle
are the robot propositions that are true in that state. The edges are labeled with the
sensor propositions that enable that transition, i.e., a transition labeled with ‘Mika’
can be taken only if Mika is seen. A run of this automaton can start, for example,
at the top-most state. In this state the robot proposition r1 is true, indicating that the
robot is in room 1. From there, if the sensor proposition Mika is true, a transition is
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taken to the state that has both r1 and Beep true, meaning that the robot is in room
1 and is beeping, otherwise a transition is made to the state in which r4 is true,
indicating the robot is now in room 4 and so on.

The hybrid controller used to drive the robot and control its actions continuously
executes the discrete automaton. When the automaton transitions from a state in
which ri is true to a state in which rj is true, the hybrid controller envokes a simple
continuous controller that is guaranteed to drive the robot from Pi to Pj without
going through any other cell [3, 5, 6]. Based on the current automaton state, the
hybrid controller also activates actions whose propositions are true in that state and
deactivates all other robot actions.

Returning to our example, Fig. 2 shows a sample simulation. Here Mika is first
found in room 2; therefore, the robot is beeping (indicated by the lighter colored
stars) and staying in that room (Fig. 2a). Then, Mika disappears so the robot stops
beeping (indicated by the dark dots) and looks for her again. It finds her in room 3
where it resumes the beeping (Fig. 2b).

4. Temporal Logic

We use a fragment of LTL [7] to formally describe the assumptions on the environ-
ment, the dynamics of the robot and the desired behavior of the robot, as specified
by the user. We first give the syntax and semantics of the full LTL. Then, following
Ref. [12], we describe the specific structure of the LTL formulas that will be used
in this paper.

4.1. LTL Syntax and Semantics

4.1.1. Syntax
Let AP be a set of atomic propositions. In our setting AP = X ∪ Y , including both
sensor and robot propositions. LTL formulas are constructed from atomic proposi-
tions π ∈ AP according to the following grammar:

ϕ ::= π | ¬ϕ | ϕ ∨ ϕ | ©ϕ | �ϕ,

where © is the next time operator and � is the eventually operator. As usual, the
Boolean constants True and False are defined as True = ϕ∨¬ϕ and False = ¬True,
respectively. Given negation (¬) and disjunction (∨), we can define conjunc-
tion (∧), implication (⇒) and equivalence (⇔). Furthermore, we can also derive
the always operator as �ϕ = ¬�¬ϕ.

4.1.2. Semantics
The semantics of an LTL formula ϕ is defined on an infinite sequence σ of truth
assignments to the atomic propositions π ∈ AP. For a formal definition of the se-
mantics we refer the reader to Ref. [7]. Informally, the formula ©ϕ expresses that
ϕ is true in the next ‘step’ (the next position in the sequence). The sequence σ sat-
isfies formula �ϕ if ϕ is true in every position of the sequence and satisfies the
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formula �ϕ if ϕ is true at some position of the sequence. Sequence σ satisfies the
formula ��ϕ if ϕ is true infinitely often.

4.2. Special Class of LTL Formulas

Following Ref. [12], we consider a special class of temporal logic formulas. These
LTL formulas are of the form ϕ = ϕe ⇒ ϕs. The formula ϕe acts as an assumption
about the sensor propositions and, thus, as an assumption about the environment,
and ϕs represents the desired robot behavior. The formula ϕ is true if ϕs is true, i.e.,
the desired robot behavior is satisfied, or ϕe is false, i.e., the environment did not
behave as expected. This means that when the environment does not satisfy ϕe and
is, thus, not admissible, there is no guarantee about the behavior of the robot. Both
ϕe and ϕs have the following structure:

ϕe = ϕe
i ∧ ϕe

t ∧ ϕe
g ϕs = ϕs

i ∧ ϕs
t ∧ ϕs

g,

where ϕe
i and ϕs

i describe the initial condition of the environment and the robot,
ϕe

t represents the assumptions on the environement by constraining the next pos-
sible sensor values based on the current sensor and robot values, ϕs

t constrains the
moves the robot can make, and ϕe

g and ϕs
g represent the assumed goals of the envi-

ronment and the desired goals of the robot, respectively. For a detailed description
of these formulas, the reader is referred to Ref. [11].

Despite the structural restrictions of this class of LTL formulas, there does not
seem to be a significant loss in expressivity as most specifications encountered in
practice can be either directly expressed or translated to this format. Furthermore,
the structure of the formulas very naturally reflects the structure of most sensor-
based robotic tasks.

5. Structured English

Our goal in this section is to design a controlled language for the motion and task
planning problems for a mobile robot. Similar to Ref. [18, 21], we first give a simple
grammar (Table 1) that produces the sentences in our controlled language and then
we give the semantics of some of the sentences in the language with respect to the
LTL formulas described in Section 4.

5.1. Grammar

First we define a set of Boolean formulas:

φ ::= x ∈ X | y ∈ Y | not φ | φ or φ | φ and φ | φ implies φ | φ iff φ

φenv ::= x ∈ X | not φenv | φenv or φenv | φenv and φenv | φenv implies φenv |
φenv iff φenv

φrobot ::= y ∈ Y | not φrobot | φrobot or φrobot | φrobot and φrobot |
φrobot implies φrobot | φrobot iff φrobot
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Table 1.
The basic grammar rules for the motion planning problem

EnvInit ::= ‘Environment starts with (φenv | false | true)’

RobotInit ::= ‘Robot starts [in φregion] [with φaction | with false |
with true]’

EnvSafety ::= ‘Always φenv’

RobotSafety ::= ‘(Always | Always do | Do) φrobot’

EnvLiveness ::= ‘Infinitely often φenv’

RobotLiveness ::= ‘(Go to | Visit | Infinitely often do) φrobot’

RobotGoStay ::= ‘Go to φregion and stay [there]’

Conditional ::= ‘If Condition then Requirement ’ | ‘Requirement unless Condition’ |
‘Requirement if and only if Condition’

Condition ::= ‘Condition and Condition’ | ‘Condition or Condition’ |
‘you (were | are) [not] in φregion’ |
‘you (sensed | did not sense | are [not] sensing) φenv’ |
‘you (activated | did not activate |
are [not] activating) φaction’ |

Requirement ::= EnvSafety | RobotSafety | EnvLiveness | RobotLiveness | ‘stay [there]’

φregion ::= r ∈ Reg | not φregion | φregion or φregion | φregion and φregion |
φregion implies φregion | φregion iff φregion

φaction ::= a ∈ Act | not φaction | φaction or φaction | φaction and φaction |
φaction implies φaction | φaction iff φaction.

Intuitively, φ captures a logical connection between propositions belonging to
both the environment and the robot, while φenv restricts to propositions relating to
the environment, φrobot restricts to propositions relating to the robot, φregion to to
the robot’s region propositions and φaction to the robot’s action propositions.

The grammar in Table 1 contains different types of sentences. In each of these,
exactly one of the terms written inside of parentheses is required while terms writ-
ten inside square brackets are optional. Past and present tenses in Condition are
treated differently only when combined with EnvSafety or RobotSafety or Stay as
explained in Section 5.4. In all other cases, they are treated the same. The user spec-
ification may include any combination of sentences and there is no minimal set of
instructions that must be written. If some sentences, such as initial conditions, are
omitted, their corresponding formulas are replaced by default values as defined in
the next sections.

We distinguish between two forms of behaviors, Safety and Liveness. Safety in-
cludes all behaviors that the environment or the robot must always satisfy, such as
not sensing Mika in a certain region or avoiding regions. These behaviors are en-
coded in ϕe

t and ϕs
t and are of the form �(formula). The other behavior, liveness,
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includes things the environment or the robot should always eventually satisfy, such
as sensing Mika (if we assume she is somewhere in the environment and not con-
stantly avoiding the robot) or reaching rooms. These behaviors are encoded in ϕe

g
and ϕs

g, and are of the form ��(formula).
A point that we should make is that the grammar is designed so as the user

can write specifications for only one robot. Any inter-robot interaction comes into
play through the sensor propositions. For example, we can add a sensor proposition
‘Robot2in4’, which is true whenever the other robot is in room 4, and then refer to
that proposition: ‘If you are sensing Robot2in4 then go to room1’.

The different sentences are converted to a single temporal logic formula by tak-
ing conjunctions of the respective temporal subformulas. We give several examples
in Section 6.

5.2. Initial Conditions: EnvInit, RobotInit

The formula capturing the assumed initial condition of the environment ϕe
i is

a Boolean combination of propositions in X while the initial condition for the robot
ϕs

i is a Boolean combination of propositions in Y . Therefore, the different options in
EnvInit are translated to ϕe

i = φenv, ϕe
i = ∧

x∈X ¬x and ϕe
i = ∧

x∈X x, respectively.
RobotInit is translated in the same way.

If EnvInit or RobotInit are not specified, then the corresponding formula is set to
true, thus allowing the initial values of the propositions to be unknown, meaning the
robot can start anywhere and can sense anything upon waking up. Furthermore, if
φenv or φregion or φaction do not contain all the relevant propositions, the set of valid
initial conditions contain all possible combinations of truth values for the omitted
propositions.

5.3. Liveness: EnvLiveness, RobotLiveness, RobotGoStay

The subformulas ϕe
g and ϕs

g capture the assumed liveness properties of the en-
vironment and the desired goals of the robot. The basic liveness specifications,
EnvLiveness and RobotLiveness, translate to ϕe

g = ��(φenv) and ϕs
g = ��(φrobot),

respectively. These formulas specify that infinitely often, φenv and φrobot must hold.
The ‘go to’ specification does not make the robot stay in room r once it arrives

there. If we want to specify ‘go to r and stay there’, we must add a safety behavior
that requires the robot to stay in room r once it arrives there. Note that the simple
grammar in Table 1 allows for ‘go to r’ and ‘go to q and stay there’. This is an
unfeasible specification since ‘go to’ implies visiting a region infinitely often and
the synthesis algorithm will inform the user that it is unrealizable. The specification
is translated to:

ϕs
tgGoStay(r)

= ��r ∧ �(r ⇒ ©r).

This formula states that if the robot is in room r , in the next step it must be in room
r as well.
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The general form of a liveness conditional is translated into:

If statement: ϕα
t = ��(Condition ⇒ Requirement)

Unless statement: ϕα
t = ��(Condition ∨ Requirement)

If and only if statement: ϕα
t = ��(Condition ⇔ Requirement),

where α ∈ {e, s}, the condition is captured by a combination of φenv, φregion and
φaction and the requirement is captured by (φenv) or (φrobot).

If there are no liveness requirements for the environment or for the robot then
the corresponding formula is set to ��(true).

5.4. Safety: EnvSafety, RobotSafety

The subformulas ϕe
t and ϕs

t capture how the sensor and robot propositions are al-
lowed to change from the current state in the synthesized automaton to the next.
Due to the way the algorithm works (see [11, 12]), the next sensor values can only
depend on the current sensor and robot values and the next sensor values while the
next robot values can depend on the current as well as the next sensor and robot val-
ues. (The sensing is done before acting, therefore when choosing the next motion
and action for the robot, the most recent sensor information can be used.)

The basic safety specifications, EnvSafety and RobotSafety, translate to ϕe
t =�(©(φenv)) and ϕs

t = �(©(φrobot)), respectively. These formulas specify that al-
ways, at the next state, φenv and φrobot must hold.

The general form of a safety conditional is translated into:

If statement: ϕα
t = �(Condition ⇒ Requirement)

Unless statement: ϕα
t = �(Condition ∨ Requirement)

If and only if statement: ϕα
t = �(Condition ⇔ Requirement),

where α ∈ {e, s}. The requirement is captured by ©(φenv) or ©(φrobot) or ‘Stay
[there]’ which is translated to the formula

∧
r∈Reg(r ⇔ ©r) that encodes the re-

quirement that the robot not change the region it is in (if ri is true that it is also true
in the next state).

As mentioned before, for safety conditions, the past tense relates to the value of
the propositions in the current state while the present tense relates to the value of
the propositions in the next state. The atomic conditions are translated into:

φ positive past

¬φ negative past

©φ positive present

¬ © φ negative present,

where φ is either φenv or φregion or φaction, depending on the sentence. A general
condition can be built up by combining several atomic conditions using ‘and’ (∧)
and ‘or’ (∨).
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One should keep in mind that the past tense only relates to situations that are true
in the current state. Such behaviors may include ‘If you were in r1 and
you are in r2 then Beep’, meaning that if the robot moved from region 1
to region 2 it should beep. This sentence does not capture a behavior in which if
the robot was sometime in the past in region 1 and now it is in region 2 it should
beep. If the desired behavior needs to depend on events that took place in the past,
an auxiliary proposition should be created to ‘remember’ that the event took place.

In addition to the structured English sentences, we automatically encode motion
constraints on the robot that are induced by the workspace decomposition. These
constraints are that the robot can only move, at each discrete step, from one region
to an adjacent region and it cannot be in two regions at the same time (mutual
exclusion). A transition is encoded as:

ϕs
tTransition(i)

= �(ri ⇒ (©ri ∨r∈N ©r)),

where N is the set of all the regions that are adjacent to ri . All transitions are
encoded as:

ϕs
tTransitions

= ∧i=1,...,nϕ
s
tTransition(i)

.

The mutual exclusion is encoded as:

ϕs
tMutualExclusion

= �(∨1�i�n (©ri ∧1�j�n,i �=j ¬ © rj )).

If there are no safety requirements for the environment then ϕe
t = �(true), thus

allowing the sensor propositions to become true or false at any time. If there are no
safety requirements for the robot then ϕs

t = ϕs
tTransitions

∧ϕs
tMutualExclusion

, encoding only
the workspace decomposition.

6. Examples

In the following, we assume that the workspace of the robot contains 24 rooms
(Figs 4 and 5). Given this workspace we automatically generate ϕs

tTransitions
and

ϕs
tMutualExclusion

relating to the motion constraints.

6.1. No Sensors

The behavior of the robot in these examples does not depend on its sensor inputs.
However, for the completeness of the LTL formula, at least one sensor input must
be specified. Therefore, we create a dummy sensor input X = {Dummy} which we
define to be constant in order to reduce the size of the automaton. We arbitrarily
choose it to be false.

6.1.1. Visit and Beep
Here the robot can move and beep; therefore, Y = {r1, . . . , r24,Beep}. The desired
behavior of the robot includes visiting rooms 1, 3, 5 and 7 infinitely often, and
beeping whenever it is in corridors 9, 12, 17 and 23, but only there. We assume the
robot does not initially beep. The user specification is:
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∗ ‘Environment starts with false’
∗ ‘Always not Dummy’
∗ ‘Robot starts in r1 with false’
∗ ‘Activate Beep if and only if you are in r9 or r12 or r17
or r23’

∗ ‘Go to r1’
∗ ‘Go to r3’
∗ ‘Go to r5’
∗ ‘Go to r7’.

The behavior of the above example is first automatically translated into the for-
mula ϕ:

ϕe = ¬Dummy ∧ �¬Dummy ∧ ��True

ϕs =

⎧
⎪⎪⎨

⎪⎪⎩

r1 ∧i=2,...,24 ¬ri ∧ ¬Beep
∧ϕs

tTransitions
∧ ϕs

tMutualExclusion

∧�((r9 ∨ r12 ∨ r17 ∨ r23) ⇔ ©Beep)

∧��(r1) ∧ ��(r3) ∧ ��(r5) ∧ ��(r7).

Then an automaton is synthesized and a hybrid controller is constructed. Sample
simulations are shown in Fig. 4. As in the Hide and Seek example of Section 3,
beeping is indicated by lighter colored stars.

6.1.2. Visit While Avoiding — Impossible Specification
Here, we assume the robot can only move. The user specification is:

∗ ‘Environment starts with false’
∗ ‘Always not Dummy’
∗ ‘Robot starts in r1 with false’
∗ ‘Always not r8 and not r22’

Figure 4. Simulation for the visit and beep example.
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∗ ‘Go to r2’
∗ ‘Go to r5’.

Viewing the workspace of the robot we can see that this user specification is im-
possible to implement since the robot cannot leave room 1 if it avoids 8 and, thus,
it cannot reach the other room. In this case, the synthesis algorithm terminates with
the message that the specification is not realizable.

6.2. Sensors

6.2.1. Search and Rescue I
Let us assume that the robot has two sensors, a camera that can detect an injured
person and another sensor that can detect a gas leak; therefore, X = {Person,Gas}.
Here, other than moving, the robot can communicate to the base station a re-
quest for either a medic or a fireman. We assume that the base station can track
the robot therefore it does not need to transmit its location. We define Y =
{r1, . . . , r24,Medic,Fireman}. The user specification is:

∗ ‘Environment starts with false’
∗ ‘Robot starts in r1 with false’
∗ ‘Do Medic if and only if you are sensing Person’
∗ ‘Do Fireman if and only if you are sensing Gas’
∗ ‘Go to r1’

...

∗ ‘Go to r24’.

A sample simulation is shown in Fig. 5. Here, a person was detected in region 10
resulting in a call for a Medic (light cross). A gas leak was detected in region 24
resulting in a call for a Fireman (light squares). In region 12, both a person and

Figure 5. Simulation for the search and rescue I example.
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a gas leak were detected resulting in a call for both a Medic and a Fireman (dark
circles).

6.2.2. Search and Rescue II
In this scenario, the robot must monitor rooms 1, 3, 5 and 7 for injured people
(we assume that injured people can only appear in these rooms). If it senses an
injured person, the robot must pick him or her up and take them to a medic who
is in either room 2 or room 4. Once the robot finds the medic, it leaves the injured
person there and continues to monitor the rooms. We define X = {Person,Medic}
and Y = {r1, . . . , r24, carryPerson}. The specification is:

∗ ‘Environment starts with false’
∗ ‘If you were not in r1 or r3 or r5 or r7 then always not

Person’
∗ ‘If you were not in r2 or r4 then always not Medic’
∗ ‘Robot starts in r1 with false’
∗ ‘If you are sensing Person then do carryPerson’
∗ ‘If you are not sensing Person and you did not activate

carryPerson then do not carryPerson’
∗ ‘If you are not sensing Medic and you activated

carryPerson then do carryPerson’
∗ ‘If you are sensing Medic and you activated carryPerson
then do not carryPerson’

∗ ‘Go to r1 unless you are activating carryPerson’
∗ ‘Go to r3 unless you are activating carryPerson’
∗ ‘Go to r5 unless you are activating carryPerson’
∗ ‘Go to r7 unless you are activating carryPerson’
∗ ‘If you are activating carryPerson then go to r2’
∗ ‘If you are activating carryPerson then go to r4’.

A sample simulation is shown in Fig. 6. In the simulation, the robot begins by
searching rooms 1 then 3 then 5 and finally 7 for an injured person (Fig. 6a). It
finds one in region 7 and goes looking for a Medic (indicated by the light crosses)
first in room 2 and then in room 4. It finds the Medic in room 4 and starts to head
back through region 17 towards region 1 to continue its task of monitoring (Fig. 6b).

7. Conclusions and Future Work

In this paper we have described a method for automatically translating robot be-
haviors from a user-specified description in structured English to actual robot con-
trollers and trajectories. Furthermore, this framework allows the user to specify
reactive behaviors that depend on the information the robot gathers from its envi-
ronment at run time. We have shown how several complex robot behaviors can be
expressed using structured English and how these phrases can be translated into
temporal logic.
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(a) (b)

Figure 6. Simulation for the search and rescue II example. (a) The robot search the rooms and found
an injured person in room 7. (b) The medic was found in room 4.

This paper focuses on the first step of the approach described in Section 3, the
translation of the language to the logic, and does not elaborate on other aspects of
this method. Real-world robotics issues such as dealing with complex dynamics,
non-holonomic constraints and control robustness were addressed in Refs [22, 23]
and are active research directions as is dealing with sensor noise and uncertainty.

As mentioned in this paper, we have not yet captured the full expressive power of
the special class of LTL formulas. This logic allows the user to specify sequences of
behaviors and add memory propositions among other things. We intend to explore
how more complex behaviors can be specified in this framework by both enriching
the structured English constructs and exploring how results from computational
linguistics can be adapted to this domain.

Another direction we intend to pursue is usability and user interface. Currently,
the user is alerted if the a sentence is not in the correct format and cannot be parsed.
We intend to examine how tools such as auto completion, error highlighting and
templates can facilitate the process of writing the specifications.
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