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Abstract 

Texture classification plays an important role in image analysis. The common method of 

texture classification is through feature extraction and identification. This method 

requires manual review and extraction of key features in advance, and then writes a 

dedicated algorithm, and then evaluates the algorithm with good effect. In recent years, 

the method of deep learning has been used to replace the feature extraction link through 

convolution calculation. However, this kind of research only focuses on the texture of a 

certain object with a special trainer. Therefore, this paper uses the complex texture 

database and the texture regular database for practice, and uses 12 kinds of trainers for 

performance evaluation under the transfer learning technology. In addition, the 

performance differences under different activation functions are also compared. We use 

the accuracy, precision, recall and F1 score indicators to evaluate the performance. The 

experimental results show that DenseNet201 has the highest accuracy under two different 

attribute datasets, while ReLU is the most efficient under five different activation 

functions. The results of this study clearly analyze the differences in the performance of 

various common trainers for texture classification, and can provide follow-up researchers 

to design better performance texture classification trainers. 

keyword: texture image, texture classification, feature extraction, deep learning, trainer, 

activation function, transfer learning 

 

1. Introduction 

Textures are uneven grooves on the surface of an object, which are repeated 

according to certain rules, and can be used to describe the composition of any material. 

In image analysis, texture is a very important feature, which can represent important 

information about the surface structure of objects and their relationship with the 

surrounding environment. Therefore, it is an important method for image segmentation, 

feature extraction and classification and recognition. Thus, texture analysis has been 

widely used in many different fields, including X-ray lung texture on medical images [1], 

muscle or blood vessel texture [2], microscopic image texture [3], telemetry image texture 

[4], terrain Photo lithological texture [5] and so on. In recent years, the method of deep 

learning has been used for texture analysis. When the amount of data is larger, the final 

judgment result will be more accurate. However, the past research only focused on a 

single trainer, and did not fully analyze the performance of various trainers. Therefore, 

this paper uses the complex texture database Describable Textures Dataset (DTD) and the 
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texture regular database University of Illinois at Urbana-Champaign (UIUC) for testing. 

And under the transfer learning technology, 12 kinds of trainers are used to evaluate the 

performance to provide reference for those who are interested in texture analysis 

applications. 

This section introduces the motivation and purpose of texture analysis, the second 

section describes the architectural principles of various neural network models for deep 

learning, the third section presents the research methods, the fourth section is the 

experimental results and discussion, and the last is the conclusion. 

 

2. Related work 

This section will introduce the architectural principles of in-depth learning of various 

types of neural network models. There are three subsections in this section. The first 

subsection will introduce the principle and architecture of the neural network model, the 

second subsection introduces the classification of activation functions commonly used by 

deep learning models when performing tasks. Finally, the third subsection introduces the 

loss functions commonly used by deep learning models for classification tasks. 

 

2.1. Deep learning applied to texture classification 

Texture classification is an important field of computer vision. Traditional texture 

description methods include structural and statistical methods. The former uses spatial 

arrangement to describe texture features [6], while the latter uses pixel value statistics as 

features [7]. In recent years, deep learning technology has been widely used in various 

fields and achieved good results. Therefore, CNN-based texture classification technology 

has been proposed one after another. Dixit [8] optimized CNN with Whale Optimization 

Algorithm (WOA) to improve the performance of texture classification. Azadnia [9] used 

CNN combined with SVM to classify the type of soil texture. Tivive [10] proposed a 

Convolutional Neural Network (CoNN) for texture classification and proved to be better 

than other traditional methods for describing textures. Bębas [11] used several 

classification methods, including SVM, kNN, RF, and deep learning, to analyze PET/MR 

texture images of two types of lung cancers. Kumar [12] applied deep learning in medical 

CT and CXR images to classify images infected with COVID-19. Bastidas-Rodrigueza 

[13] extracted texture features for mechanical failure classification using the deep 

learning method. Kırbaş [14] used deep learning architectures and transfer learning 

methods such as ResNet-50, Inception V3, Xception and VGG19 for texture classification 

and recognition of 12 wood species. Wang [15] analyzed land use and crop classification 

based on high-resolution deep learning telemetry imagery. Most of the above studies use 

deep learning to classify textures in different professional fields, including medicine, 

telemetry, machinery, soil, agriculture, forestry imaging, etc., and combine various 

mathematical techniques to improve performance. In conclusion, this study explores the 

performance comparison of well-known deep learning trainers for general standard 

texture databases. The results will provide a reference for future researchers to use 

appropriate trainers for texture classification of various topics. 
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2.2. Deep learning model 

Deep learning is an algorithm that builds multi-layer neural networks in a way 

similar to human neural networks and performs representational learning on data. This 

subsection will introduce AlexNet, VGG16/VGG19, Resnet, GoogLeNet, Inception v3, 

Xception, DenseNet201, MobileNetV2, ShuffleNet. The Architecture and principles of 

these common neural network models. 

 

2.2.1. AlexNet 

AlexNet is the name of a convolutional neural network (CNN) architecture, designed 

by Alex Krizhevsky in collaboration with Ilya Sutskever and Geoffrey Hinton, who was 

Krizhevsky's Ph.D. advisor. AlexNet model architecture has a total of eight layers, the 

first five were convolutional layers and max-pooling layers. After the first, second and 

fifth convolutional layers, we use Maxpooling with a size of 3×3 and a stride of 2, which 

can better retain important features. And pooling can overlap through stride < size (2 < 

3) to form a re-examination of features to avoid important features being discarded and 

to avoid the problem of overfitting, and the last three are fully Connected Layers using 

Dropout and Data augmentation to reduce overfitting[ 6]。AlexNet can input color images 

of size 224×224. Since the input layer becomes larger, the size of the convolution kernel 

is set to 11×11 and stride of 4 in the first layer, and also uses a larger step size to extract 

features; the kernel of the second layer is 5×5, all subsequent kernels use 3×3, and stride 

is set to 1. AlexNet is considered one of the most influential models in computer vision, 

and it has spurred more researches to use convolutional neural networks and GPUs to 

accelerate deep learning, and its architecture is shown in Figure 1. 

 

 
Figure 1. AlexNet architecture [6] 

 

2.2.2. VGG16/VGG19 

VGGNet as proposed by University of Oxford visual geometry group, in 2014. 

ImageNet made its debut in the competition and won the first place in the positioning task 

and the second place in the classification task of that competition with a low error rate of 

7.3%. The architecture of VGGNet is roughly inherited from AlexNet, and several 

methods are proposed for improvement. The first is that VGGNet uniformly uses a 

smaller 3×3 convolution filter for convolution operations compared to AlexNet’s use of 

5×5 and 7×7 convolution filters. By stacking several small convolutional filters to achieve 
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the same receptive field as the large convolutional filters, this reduces the number of 

parameters of the model to avoid complicated computations. The second method is to 

increase the number of filters in each convolutional layer, that is, to increase the number 

of feature channels to capture more feature information. The third method is to increase 

the number of layers of the model network. The original AlexNet has a total of eight-layer 

architecture, and VGGNet increases the network depth to a maximum of 19 layers. It has 

been confirmed that increasing the number of layers of the neural network can improve 

the classification accuracy [7]. In addition, the fully connected layer is replaced by 1×1 

convolution to facilitate the input of different image sizes and reduce the amount of 

parameters. At present, the most commonly used models are VGG16 and VGG19, which 

are 16 layers (13 convolutional layers and 3 fully connected layers) and 19 layers (16 

convolutional layers and 3 fully connected layers), and its architecture is shown in Figure 

2. 

 

 
Figure 2. VGG16 and VGG19 architecture [7] 

 

2.2.3. ResNet 

In 2015, Microsoft proposed the deep residual learning model (ResNet), reducing 

the classification error rate to 3.5% in the ImageNet competition that year, which is lower 

than the manual classification error rate (5%). In the past, deep learning models often 

faced problems such as gradient disappearance and conversion bottlenecks, which 

worsened the training effect when the number of hidden layers in the neural network 

increased. The Microsoft team proposes to use residual connections to help deeper 

networks train more efficiently. The method is to design a shortcut to connect the input 

data x to the output of the weight layer. At this time, the output feature data is H(x), the 

work of the weight layer will perform convolution calculation on the input data, output 
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its features, and finally convert it into the calculation of the residual function F(x)=H(x)-

x. The advantage of this is that even if the weight layer cannot output valid feature data 

due to the problem of gradient disappearance, the residual value is only 0 at most. The 

input data x of the network layer of this layer is equal to the output feature H(x). That is, 

the constant value is performed. Identity mapping means that this layer does not extract 

new feature data and will not affect the performance of the overall network model [8]. 

Residual connection solves the problem of gradient disappearance caused by too 

deep network depth. The neural network model can add more network layers to extract 

more feature information to enhance network performance. The benchmarks of the 

ResNet network are mainly inspired by the philosophy of the VGG network. The design 

of the convolutional layer mainly has 3×3 filters, and the convolutional layer directly 

performs the downsampling with stride 2. The network ends with a global average 

pooling layer and a 1000-dimensional fully connected layer with softmax. Models for 

ImageNet classification can use ResNet architectures with different numbers of layers. 

According to the different network layers, ResNet has derived a variety of structural 

forms, including Resnet-34, Resnet-50, Resnet-101, Resnet-152, and its architecture is 

shown in Figure 3. 

 

 
Figure 3. Resnet architecture [8] 

 

2.2.4. GoogLeNet 

The GoogLeNet model was proposed by Google's Szegedy and won the 

championship in the large-scale image recognition competition ILSVRC in 2014. 

GoogLeNet reduces the error rate to 6.7% on classification problems. GoogLeNet adopts 

a concept different from AlexNet or VGG when deepening the network, adding Inception 

architecture to replace the original separate convolutional layer, and the number of 

parameters is less than AlexNet, but the network architecture is deeper and more accurate 

[9]. GoogLeNet uses 9 Inception architectures. Because the deep neural network is prone 

to the problem of gradient disappearance, in addition to using the network layer of the 

Inception architecture, GoogLeNet also replaces the original fully connected layer with 

an average pooling layer. And add two auxiliary classifiers in the middle to avoid gradient 
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disappearance, improve stability and convergence speed, and its architecture is shown in 

Figure 4. 

 

 
Figure 4. GoogLeNet architecture [9] 

 

2.2.5. Inception v3 

The principles of the Inception v3 network design, including (i) avoid bottlenecks in 

the network architecture using the initial number of layers; (ii) increase the width and 

depth of the network to improve performance; (iii) reduce spatial aggregation through 

low dimensionality without compromising model capability; (iv) High-dimensional 

features are more suitable for local processing of the network, adding nonlinearity to the 

network to make training faster [10]. Inception v3 demonstrated the excellent 

performance of the model on the validation set of the ILSVRC 2012 Classification Task 

Challenge, achieving 21.2% top-1 and 5.6% top-1 for single-frame evaluation using a 

model with 5 billion multiply-accumulate operations per inference process 5 error rate, 

and the total parameters of the model are less than 2.5 million. Inception v3 uses the 

RMSProp optimizer, factorized 7×7 convolution, BatchNorm and label smoothing for the 

auxiliary classifier. In addition, it is mentioned that an output layer is added to the 

network. The auxiliary layer in the middle has little effect in the early stage of training, 

but it can improve the accuracy. Its architecture is shown in Figure 3. 
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Figure 5. Inception v3 architecture [10] 

 

2.2.6. Xception 

Xception improves the Inception module of Inception v3, and introduces the concept 

of depth-wise separable convolution: not only does it improve network efficiency, but 

also better than Inception v3 when using the ImageNet dataset [11]. Xception separates 

spatial correlation from channel correlation, making more efficient use of parameters, 

model accuracy is higher, and its architecture is shown in Figure 6. 

 

 
Figure 6. Xception architecture [11] 
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2.2.7. DenseNet201 

The core idea of Densenet201 is to establish the connection relationship between 

different layers, make full use of features to further solve the dilemma of gradient 

disappearance when the network is deepened, and improve the efficiency of model 

training. In addition, using bottleneck layer, translation layer and smaller growth rate 

makes the network narrower and the parameters are reduced, which effectively suppresses 

over-fitting [12]. Densenet201 not only alleviates the vanishing gradient problem, but 

also strengthens feature propagation and greatly reduces the number of parameters; its 

architecture is shown in Figure 7. 

 

 
Figure 7. DenseNet201 architecture [12] 

 

2.2.8. MobileNetV2 

MobileNetV2 model was proposed by Mark Sandler et al [13]. The main branch of 

the original residual nets has three convolutions, the two point-by-point convolutions 

have more channels, so the residual nets are just the opposite. The number of convolution 

channels in the middle (still using the depth separation convolution structure) are more 

than the channels beside. In addition, removing nonlinear transformations in the main 

branch maintains the expressiveness of the model, its architecture is shown in Figure 8.  
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Figure 8. MobileNetV2 architecture [13] 

 

2.2.9. ShuffleNet 

ShuffleNet is a lightweight neural network convolution proposed by Megvii 

Technology Limited, the goal is to use limited computing resources to achieve the best 

accuracy, the design concept of ShuffleNet is to shuffle for different channels. The 

grouped convolution is to group different feature maps of the input layer, and then use 

different convolution kernels to convolve each group, thereby reducing the amount of 

convolution operations [14]. ShuffleNet uses two operations: pointwise group 

convolution and channle shuffle. Using channle shuffle can maximize the advantages of 

group convolution, and avoid its disadvantages, not only greatly reduces the amount of 

calculation but also ensures accuracy: its architecture is shown in Figure 9. 

 

 
Figure 9. ShuffleNet architecture [14] 
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2.3. Activation function 

The main function of the activation function is to convert the input signal of the node 

in the ANN model into an output signal. That is, the sum of the product of the input (X) 

and its corresponding weight (W) is converted into an output by the activation function 

f(X), and then sent to the next layer of neural network. This process repeats until the 

output layer makes a classification. This process repeats until the output layer makes a 

classification. In addition, we can use appropriate activation functions to improve the 

performance according to their application fields, including linear or nonlinear. The 

following are common activation functions [15]. 

 ReLU: 

It is a function to obtain the maximum value. When the input value x is less than or equal 

to 0, the output value f(x) is all zero. When x is greater than 0, the output is equal to the 

input [16]. 

 𝑓(𝑥) = max(0, 𝑥) = {
𝑥𝑖, 𝑖𝑓 𝑥𝑖 ≥ 0
0, 𝑖𝑓 𝑥𝑖 < 0

 . (1) 

 

 Leaky ReLU: 

ReLU sets all negative values to zero, while Leaky ReLU assigns all negative values a 

non-zero slope "a" (usually, a=0.01) [17]. 

 

                                          𝑓(𝑥) = 𝑎𝑥 + 𝑥 = {
𝑥, 𝑖𝑓 𝑥 > 0

𝑎𝑥, 𝑖𝑓 𝑥 ≤ 0
 .                                      (2) 

 

 ClippedReluLayer: 

Input values less than zero are set to zero, and those above the clipping ceiling are set to 

the clipping ceiling. This clipping prevents the output from becoming too large [18]. 

 

                                       𝑓(𝑥) = {

0, 𝑖𝑓 𝑥 < 0
𝑥,

𝑐𝑒𝑖𝑙𝑖𝑛𝑔,
0 ≤ 𝑥 < 𝑐𝑒𝑖𝑙𝑖𝑛𝑔
𝑥 ≥ 𝑐𝑒𝑖𝑙𝑖𝑛𝑔

 .                                   (3) 

 

 ELU (Exponential linear unit): 

When the input value x is greater than 0, the output is equal to the input. When the input 

value x is less than or equal to 0, the exponential nonlinear operation is performed. This 

function tends to converge the cost to zero faster to speed up learning, and avoid the 

vanishing gradient problem [19]. Also, the extra alpha constant term is usually set to 1. 

 

                                         𝑓(𝑥) = {
𝑥, 𝑖𝑓 𝑥 > 0

𝑎 𝑒𝑥𝑝(𝑥) − 1, 𝑖𝑓 𝑥 ≤ 0
 .                                     (4) 

 

 TanhLayer: 

Tanh keep the output between -1 and 1, value is 0. 
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                                                      𝑓(𝑥) =
2

1+𝑒−2𝑥
− 1                                                  (5) 

 

2.4. Loss function 

Mean square error (MSE) is the most commonly used regression loss function, and the 

resulting value is the sum of the squares of the distance between the predicted value and 

the actual observed value. Since MSE only considers the average size of the error, not its 

direction. Therefore, predictions that deviate more from the true value will be penalized 

more than predictions that deviate less, so MSE is suitable for gradient calculation. When 

the value of MSE is smaller, it indicates that the prediction model has better accuracy in 

describing the experimental data. 

 

                                                𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑛

𝑖=1
                                            (6) 

 

3. Proposed texture classification model 

The task of this study is mainly to classify textured images, so we use various 

common pre-trainers to build a research model based on transfer learning techniques, as 

shown in Figure 10. 

 

 
Figure 10. Texture classification model based on transfer learning and pre-trainer 

 

3.1. Training and testing image 

The texture image standard database (benchmark) is divided into two parts: training 

data and test data. First, input the training data to the texture classification model for 

training. After the training is completed, use the test data for validation. The entire 

validation above is described in the next section. 

 

3.2. Transfer Learning 
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The ideal situation in machine learning is to have a large number of labeled training 

examples with the same distribution as the test data, however collecting enough training 

data is usually time-consuming, and semi-supervised learning can be used to solve this 

problem. Generally, semi-supervised methods only require a limited amount of labeled 

data and utilize a large amount of unlabeled data to improve learning accuracy. But in 

many cases, unlabeled instances are also difficult to collect, which usually makes the 

generated traditional models unsatisfactory. Transfer learning is a machine learning 

method that uses the original first task as the starting point for the second task model, 

allowing developers to directly transfer a neural network originally applied to another 

task to a new domain. [20] Transfer learning requires minimal retraining, and avoids the 

time-consuming and complex restarting of training models. It is suitable for situations 

where training data is insufficient or large-scale sample collection and sample labeling 

are required. The main purpose is to learn knowledge and experience from past problems 

and apply them to the next target area, which will achieve better results or solve problems 

faster. 

 

3.3. Load pretrained network 

The final layer of the pre-trained network is fine-tuned for the new classification 

problem, the original pre-trained network graph is retained from the pre-trained network, 

and the final layer is replaced with a fully connected layer, a softmax layer, and a 

classification output layer. Transfer these layers to a new classification task. Option to 

specify a new fully connected layer based on new data. Set the fully connected layer to 

be the same size as the number of classes in the new data. To learn faster than the transport 

layer in the new layer, increase the values of WeightLearnRateFactor and 

BiasLearnRateFactor of the fully connected layer. 

 

3.4. Replace final layers 

Use a pretrained image classification network that has been trained to extract 

informative features from images as a starting point for learning new tasks. Most 

pretrained networks are trained on a subset of the ImageNet database used for the 

ImageNet Large Scale Visual Recognition Challenge (ILSVRC). These networks have 

been trained on over a million images and can classify images into 1000 object categories 

such as animals, fruits, vehicles and many insects. Using a pretrained network with 

transfer learning is usually faster and easier than training the network from scratch.  

 

3.5. Train network 

The research model is retrained using the training data, which is a retraining of the 

existing neural network parameters, that is, freezing all the convolutional layers of the 

pretrained model and training only the fully connected layer of the last layer. 

 

4. Experiment 

4.1. Experimental environment 
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The development environment is Matlab R2020a [21] for Windows 10 (x64) 

operating system, and runs on a PC with Intel Core i5-11400 CPU, 3.2GHz and 16G 

RAM. 

 

4.2. Texture image databases 

In this study, two different texture image databases were tested, including the 

Describable Textures Dataset (DTD) database with complex textures and the University 

of Illinois at Urbana-Champaign (UIUC) database with regular textures. 

 

4.2.1. Describable Textures Dataset (DTD) [22] 

It is an image database with complex texture, divided into 47 different categories 

according to human perception, and each category has 120 images with a total of 5,640 

images, and the image size ranges from 300x300 to 640x640. All images of DTD are 

obtained from Flickr and Google websites, as shown in Figure 11. 

 

 
Figure 11. Describable Textures Dataset (DTD) [22] 

 

4.2.2. University of Illinois at Urbana-Champaign(UIUC) Textures Dataset [23] 

UIUC was proposed by the University of Illinois at Urbana-Champaign. There are 

25 different categories of regular texture images, each category has 40 images with a total 

of 1000 images, and the image size is 640 × 480 grayscale images. The database contains 

artificial and natural textures, such as materials, fabrics, etc., as shown in Figure 12. 
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Figure 12. University of Illinois at Urbana-Champaign(UIUC) [23] 

 

4.3. Evaluation Indicators 

After classifying texture images, the model needs to be evaluated for performance. 

We use the confusion matrix of binary classification to record the prediction results of the 

classifier [24], as shown in Figure 13. 

 

 
Predicted class 

Positive Negative 

True 

class 

Positive 
TP 

(True positive) 

FN 

(False negative) 

Negative 
FP 

(False positive) 

TN 

(True negative) 

Figure 13. Confusion matrix for binary classification 

 

In the confusion matrix, True Positive (TP) indicates that the actual condition is 

"Positive", and the model predicts the number of "Positive". True Negative (TN) indicates 

that the actual condition is "Negative", and the model predicts the number of "Negative". 

False Positive (FP) indicates that the actual condition is "Negative", and the model 

predicts the number of "Positive". False Negative (FN) indicates that the actual condition 

is "Positive" and the model predicts the number of "Negative". 

Then, we use 4 commonly used evaluation indicators, accuracy, precision, recall and 

F1-score to evaluate model performance. The accuracy is the proportion of correctly 

classified samples to the total number of samples, such as formula (8). Precision is the 

ratio of the number of correctly classified positive samples to the number of samples 

determined by the classifier as positive samples, as shown in formula (9). The recall is 

the ratio of the number of correctly classified positive samples to the number of true 

positive samples, such as formula (10). The F1-score is a comprehensive index that seeks 

a balance between precision and recall, such as formula (11). 
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 Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 (8) 

 Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (9) 

 Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (10) 

 F1-score =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (11) 

 

4.4. Validation 

With sufficient validation data, in order to confirm the performance of various 

trainers, we use the holdout method for validation, that is, take most of the texture samples 

for training, and the rest for testing. We use 70% of the samples for training and the 

remaining 30% for testing, and finally employ the evaluation metrics accuracy, precision, 

recall and F1-score to compare the performance of various trainers. 

 

4.5. Experimental results 

4.5.1. Experimental results for DTD database 

In this experiment, it can be observed that DenseNet201 has the best performance 

among all trainers, with an accuracy of 62.5%, a precision of 60.31%, a recall of 59.04% 

and an F1-Score of 59.67%, as shown in Table 1. In addition, it was also found that the 

performance of ResNet with the deepest depth did not increase accordingly. This means 

that the deep trainer is overfitting for complex textures. 

 

Table 1. Experimental results of DTD 

Model Precision Recall F1-Score Accuracy 

AlexNet 47.65 44.14 45.83 47.32 

VGGNet16 17.00 10.10 12.67 12.50 

VGGNet19 6.06 6.20 6.13 8.03 

ResNet18 57.00 53.00 55.00 56.00 

ResNet50 58.00 53.00 56.00 57.00 

ResNet101 57.19 55.67 56.42 58.63 

GoogLeNet 56.00 54.00 55.00 55.00 

Inception-v3 40.00 42.00 41.00 42.00 

Xception 56.54 49.29 52.67 53.86 

DenseNet201 60.31 59.04 59.67 62.50 

MobileNetV2 46.00 44.00 45.00 44.00 

ShuffleNet 51.89 49.29 50.56 49.29 

 

4.5.2. Experimental results for UIUC database 

In this experiment, it can be observed that ResNet18 and DenseNet201 have the best 

performance, the accuracy rate is 99.33%, the precision rate is 99.38%, the recall rate is 

99.33% and the F1-Score is 99.35%, as shown in Table 2. And from Table 1 and Table 

2, it can also be found that the performance of a trainer for different types of texture 
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databases is also very different. It is proved that the differences of texture datasets will 

affect the whole experimental results. 

 

Table 2. Experimental results of UIUC 

Model Precision Recall F1-Score Accuracy 

AlexNet 94.74 93.66 94.20 93.66 

VGGNet16 83.36 80.66 81.99 80.66 

VGGNet19 75.65 70.00 72.71 70.00 

ResNet18 99.38 99.33 99.35 99.33 

ResNet50 98.74 98.66 98.70 98.66 

ResNet101 98.51 98.00 98.25 98.00 

GoogLeNet 97.03 96.66 96.85 96.66 

Inception-v3 95.69 95.33 95.51 95.33 

Xception 97.82 97.66 97.74 97.66 

DenseNet201 99.38 99.33 99.35 99.33 

MobileNetV2 98.47 98.33 98.40 98.33 

ShuffleNet 96.35 95.66 96.00 95.66 

 

 4.5.3. Experimental results of activation function for DTD database 

We experiment with different activation functions on the GoogleNet trainer. The 

results show that ReLU has the best performance, with 54.76% accuracy, 55.88% 

precision, 53.54% recall and 54.69% F1-Score, as shown in Table 3. This also shows that 

different activation functions can affect the overall trainer performance. 

 

Table 3. Experimental results of activation functions for DTD database 

Model Precision Recall F1-Score Accuracy 

ReLU 55.88 53.54 54.69 54.76 

Leaky ReLU 48.46 48.22 48.34 48.22 

ClippedReluLayer 28.16 22.34 24.91 22.34 

ELU 50.63 47.87 49.21 47.87 

TanhLayer N/A N/A N/A N/A 

 

 4.5.4. Experimental results of activation function for UIUC database 

We experiment with different activation functions on the GoogleNet trainer. The 

results show that ReLU has the best performance, with 96.13% accuracy, 96.71% 

precision, 96.13% recall and 95.89% F1-Score, as shown in Table 4. This also shows that 

different activation functions can affect the overall trainer performance. 

 

Table 4. Experimental results of activation functions for UIUC database 

Model Precision Recall F1-Score Accuracy 

ReLU 96.71 96.13 95.89 96.13 

Leaky ReLU 93.67 93.00 93.91 93.00 
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ClippedReluLayer 85.65 82.42 83.91 82.42 

ELU 94.82 94.59 94.91 94.59 

TanhLayer N/A N/A N/A N/A 

 

4.5.5. Discussion of experimental results 

We can observe from experiments 4.5.1 and 4.5.2 that whether using DTD or UIUC, 

two different databases, in terms of texture classification, the accuracy of using 

DenseNet201 network is better than other existing deep learning models. It can also be 

observed from experiments 4.5.3 and 4.5.4 that using the ReLU activation function is also 

better than other activation functions. From the above four experimental results, it can be 

known that the results of experiments 4.5.2 and 4.5.4 using the UIUC data set are 

obviously better than those using the DTD data set in 4.5.1 and 4.5.3. The reason is 

speculated that the texture data in the UIUC data set is relatively simple. In contrast, the 

patterns in the DTD data set are very different and complex in texture. In this experiment, 

3948 texture images from the DTD dataset were used to train the DenseNet201 network. 

In this experiment, the learning rate was set to 0.0001, the epoch was 12, and the loss 

value converged below 0.01. The training time took a total of 311.10 minutes. The 

DenseNet201 network was trained using 840 texture images in the UIUC dataset. The 

learning rate was set to 0.0001, the epoch was 12, and the loss value converged below 

0.01. The training time took a total of 17.49 minutes. 

 

5. Conclusions 

In order to understand the performance comparison of various well-known deep 

learning trainers against standard texture databases, to provide researchers with the ability 

to use appropriate trainers for texture classification of various subjects. Therefore, this 

study uses transfer learning technology to conduct experiments on the complex texture 

database DTD and the texture regular database UIUC. The experimental results on the 

DTD database show that DenseNet201 performs the best among all trainers, with an 

accuracy of 62.5%, precision of 60.31%, recall of 59.04%, and F1-Score of 59.67%. The 

experimental results of the UIUC database show that ResNet18 and DenseNet201 have 

the best performance, with an accuracy rate of 99.33%, a precision rate of 99.38%, a recall 

rate of 99.33%, and an F1-Score of 99.35%. Throughout the study we found that it is not 

the deeper the trainer, the higher the accuracy, because the complex texture makes the 

trainer overfitting. At the same time, the classification performance of a trainer for 

different types of texture databases is also very different, which proves that the difference 

of texture datasets will affect the whole experimental results. In addition, there are many 

studies proving that data augmentation can improve performance, and data augmentation 

will be carried out in the future to further demonstrate whether it can also increase 

performance in texture images. 
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