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Executive Summary 
TRAKLA2 is a web-based learning environment for data structures and algorithms. The system 
delivers automatically assessed algorithm simulation exercises that are solved using a graphical 
user interface. 

In this work, we introduce a novel learning environment for spatial data algorithms, 
SDA-TRAKLA2, which has been implemented on top of the TRAKLA2 system. Spatial data 
items are identified by a set of coordinates, such as x and y for two-dimensional spatial data. The 
spatial environment contains new visualizations for representing spatial data, and a number of 
new exercises that cover a variety of spatial data algorithms. 

The new exercises have been used in the spatial data algorithms course at the Helsinki University 
of Technology since spring 2007. Here, we summarize previous research and report on an analy-
sis of the quantitative data on the students’ learning outcomes for years 2007 and 2008. We have 
also analyzed the students’ learning results using qualitative methods in order to discover how the 
new system affects the students’ learning outcomes.  

Keywords: Algorithm visualization, automatic assessment, learning environments, spatial data 
algorithms, TRAKLA2 

Introduction 
Spatial data is data that is located in a multidimensional space (Laurini & Thompson, 1992). In 
other words, each spatial data item is identified by a set of coordinates, which define its location 
in relation to other data items. Thus, each spatial data item contains spatial information (coordi-
nates) that describes the location of the item and associated attribute data that describes what it 
represents. Spatial data is used in numerous disciplines, such as geographic information systems 
(GIS), computer graphics, robotics, virtual reality, computer–aided design, biology, VLSI design, 
and many others. In the context of GIS and related disciplines, the data is assumed to model geo-
graphic locations on the Earth’s surface and their associated properties. In this paper, we discuss 

spatial data in this context. In GIS, there 
are at least two coordinate axes (x and y, 
which represent geographical longitude 
and latitude), and two additional ones 
(height and time) can also be used. Spa-
tial data algorithms (SDA) are algo-
rithms designed to process and manipu-
late such data and spatial data struc-
tures are entities used to store the data. 

Spatial data structures are based on 
regular non–spatial data structures such 
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as arrays and trees, as well as algorithms that manipulate these basic structures. However, the 
multidimensional nature of spatial data makes them more complex than the basic data structures. 
This also makes the design and implementation of efficient spatial data algorithms more difficult. 
For example, dictionary structures for spatial data must be able to locate data items according to 
their coordinates instead of using one-dimensional key values. 

Furthermore, the spatial nature of the data makes teaching spatial data algorithms more challeng-
ing than basic non–spatial data structures and algorithms. For example, in order to show both how 
data items are related to each other and how they are arranged in a data structure, typically two 
illustrations are required: one to show the data items and the space they occupy, and another to 
show the data structures. Consequently, the learner must be able to connect the illustrations in 
order to comprehend how the data is organized. In basic data structures, on the other hand, the 
relationships between the data items are typically distinguishable with just a single picture. 

SDA and associated data structures are an integral part of geoinformatics, a branch of science 
where computer science is applied to cartography and geosciences. The data geoinformatics stud-
ies is location data on the Earth’s surface, and therefore SDA are required for efficient storage 
and processing. Geoinformatics is also closely related to cartography, and therefore many differ-
ent kinds of illustrations are used. Maps are the most fundamental way to represent spatial infor-
mation. Visualization of maps is in itself a large, varied and important field (Slocum, McMaster, 
Kessler, & Howard, 2004). However, since many spatial data sets have several properties for each 
location, other visualization methods are also required for understanding the data. For example, 
multivariate visualization techniques such as parallel coordinate plots or star plots can be used in 
conjunction with map views. A map view shows how the data is distributed geographically, while 
other views show what information the data contains. 

Software Visualization (SV) is a branch of software engineering that aims to use graphics and 
animation to illustrate the different aspects of software (Stasko, Domingue, Brown, & Price, 
1998). Price, Baecker, and Small (1993) divide SV into two subcategories: program visualization 
(PV) and algorithm visualization (AV). PV is the use of various visual techniques to enhance the 
human understanding of computer programs. It is typically used to illustrate actual, implemented 
programs. AV, on the other hand, illustrates abstractions of algorithmic concepts and is inde-
pendent of any actual algorithm implementation. In this paper, we will concentrate on AV. 

One of the primary uses for SV is education. Numerous SV systems have been developed for 
teaching purposes. It has been noted by Hundhausen, Douglas, and Stasko (2002) that merely in-
troducing SV to teaching does not seem to improve learning results. In order to benefit from the 
use of SV, the learner must become an active participant in the learning process by interacting 
with the visualizations. They must, for example, construct an animation or simulate the workflow 
of a data structure. 

One way to activate the learner is to use exercises where interaction with the algorithm visualiza-
tions is required for solving the problem. For example, the learner could manipulate data structure 
visualizations in order to simulate the modifications a real algorithm would do to the data struc-
tures in question. We call these exercises visual algorithm simulation exercises (Korhonen, 2003; 
Malmi et al., 2004). Such exercises have been implemented in the TRAKLA2 system. Previous 
studies show that TRAKLA2 is an effective teaching tool (Laakso et al., 2005; Malmi, Korhonen, 
& Saikkonen, 2002) for basic data structures and algorithms. The exercises incorporate automatic 
assessment that allows the learners to practice without the need for instructor participation. 
Automatic assessment is a computerized procedure that takes a learner-made solution to an exer-
cise as an input and produces a mark for the solution without human intervention. This novel ap-
proach seems to be a promising alternative also for explaining how the hard-to-grasp spatial data 
algorithms and data structures work. 
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In this paper, we describe and evaluate how the idea of visual algorithm simulation exercises can 
be used in the learning of spatial data structures and algorithms (SDA). We have created a learn-
ing environment for spatial data algorithms, based on the TRAKLA2 system (Nikander & 
Helminen, 2007). In this work, we call this spatial extension “SDA-TRAKLA2” to differentiate it 
from the base system. We have already done preliminary analysis on the use of the system in 
teaching SDA (Nikander, Helminen, & Korhonen, 2008). The system has been in use in the SDA 
course at the Helsinki University of Technology since spring 2007. Here, we report on the find-
ings from the course in years 2007 and 2008. The results are based on several data sources and 
analysis methods including linear regression comparison of TRAKLA2 exercise performance 
with exam results, content analysis of the exam answers, student interviews, attitude studies 
(questionnaire), and course feedback. The overall attitude of the students has been positive, and 
they generally wish to have more TRAKLA2 exercises, as the system does not yet cover all the 
course topics. Furthermore, there is a strong correlation between successfully solving TRAKLA2 
exercises and performing well in the final examination. Finally, the students’ examination an-
swers show influence of TRAKLA2 exercises. 

The rest of this paper is organized as follows. In the background and related work section, we 
survey related work on software visualization and automatic assessment. In the system descrip-
tion section, we give an overview of the SDA-TRAKLA2 system and a detailed description of 
one spatial algorithm exercise. In the research setting and data collection section, we introduce 
the course in detail, and enumerate the research methods we have used to evaluate the use of the 
system on the course. In the prior studies section we summarize some of our previous publica-
tions, and do a new analysis on some of the old results. The qualitative results section describes 
the qualitative analysis of the students’ learning outcomes. The discussion section contains dis-
cussion about the results and the use of the system, and last section contains our conclusions. 

Background and Related Work 
Geoinformatics contains elements from both cartography and earth sciences as well as elements 
from computer science. However, the focus in teaching geoinformatics is often on how to use 
available tools and techniques instead of how to develop them. Therefore, geoinformatics courses 
often deal with how to run different types of analyses, such as numerical modeling (Karssenberg, 
Burrough, Sluiter, & de Jong, 2001), simulations (Crouch, Shen, Austin, & Dinniman, 2008), or 
exploratory data analysis (Andrienko, Andrienko, Fischer, Mues, & Schuck, 2006) and how to 
use standard tools such Matlab (Degrande & Geraedts, 2008). Internet and various eLearning en-
vironments have also been utilized (Degrande & Geraedts, 2008; Purves, Medyckyj-Scott, & 
Mackaness, 2005). 

Information visualization is often used in teaching geoinformatics as well, but the use of software 
visualization is rare. Several visualization systems exist that can be used to illustrate some spatial 
data structures, algorithms, and concepts such as geometric algorithms (Hausner & Dobkin, 1998; 
Hipke & Schuierer, 1998; Shneerson & Tal, 2000) or Voronoi diagrams (Fisher, 2004). There are 
also numerous applets and applet collections in the web that handle the topic, but their quality 
varies greatly, and the maintenance or course integration such applets have is unknown. For app-
let examples, see http://www.cosc.canterbury.ac.nz/mukundan/JavaP.html 
http://www.diku.dk/hjemmesider/studerende/duff/Fortune/ 
http://www.cs.cornell.edu/home/chew/Delaunay.html  . 

It seems, however, that most existing SDA visualization systems are designed for and used in the 
computer science domain as opposed to geoinformatics. Furthermore, none of the systems come 
even close to covering the basic set of spatial data structures typically used in geoinformatics. In 
addition, many of the existing systems seem to use only one view, a two-dimensional area, to 
show how the algorithm operates on the data. Such limited visualization completely omits how 
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the data structures used in the algorithm are modified as the algorithm executes and thus gives the 
viewer only a limited view of how the algorithm operates. It also seems that the visualization of 
spatial structures and algorithms is not currently an active area of research. A recent paper on the 
MAVIS algorithm visualization tool has one spatial algorithm example (Koifman, Shimshoni, & 
Tal, 2008), but we are not aware of other recent progress in the field. 

In computing education, software visualization is utilized more often. Especially for the topic of 
basic data structures and algorithms, numerous visualization systems have been implemented at 
many different institutions. For examples see Akingbade, Finley, Jackson, Patel, and Rodger 
(2003), Hundhausen and Brown (2005), Karavirta, Korhonen, Malmi, and Stålnacke (2004), and 
Rößling (2002). Early systems focused on creating clear and attractive visualizations. This is re-
flected in Price et al. (1993), which grouped systems based on how well the different aspects of 
the graphical representation have been implemented and how versatile the graphical representa-
tions are. A more recent work by Hundhausen et al. (2002) recognized that the pedagogical effec-
tiveness of a visualization depends more on the level of engagement the learners have with the 
visualizations than on the attractiveness of the graphical representation. Therefore, many modern 
systems are more concerned about the type and amount of interaction they offer than how visu-
ally pleasing the graphical representations are. Types of interaction can be categorized using, for 
example, the engagement taxonomy (Naps et al., 2003). 

Software visualization can be used to create interactive exercises that the students can solve by 
manipulating the visual elements (Janhunen, Jussia, Järvisalo, & Oikarinen, 2004; Malmi et al., 
2004; Tscherter, Lamprecht, & Nievergelt, 2002). When such exercises are combined with auto-
matic assessment, the learners can get feedback on their solutions without human intervention. 
Automatic assessment is also commonly used in computing education separately from software 
visualization. Solutions range from multiple-choice question systems (Denny, Hamer, Lux-
ton-Reilly, & Purchase, 2008) to those assessing programming assignments (Benford, Burke, 
Foxley, Gutteridge, & Zin, 1993; Saikkonen, Malmi, & Korhonen, 2001) and style (Ala-Mutka, 
Uimonen, & Järvinen, 2004). For more in-depth investigation on the use of automatic assessment, 
see Carter et al. (2003). 

System Description 

Visual Algorithm Simulation Exercises 
Visual algorithm simulation (Korhonen, 2003; Malmi et al., 2004) is a novel technique for allow-
ing a user to directly manipulate data structures on the screen. Not only does it enable user inter-
action with data structure visualizations, but it also makes it possible to modify real data struc-
tures by using simple GUI operations. The user can simulate real algorithms by manipulating 
elements on the screen. This concept can easily be extended to automatically assessed visual al-
gorithm simulation exercises where the grading is based on comparing the student-made simula-
tion sequence to a sequence produced by an actual algorithm implementation.  

In tracing exercises the task is to simulate a specific algorithm with the given input. Thus, the 
focus of the exercise is on the understanding of the given algorithm and how that particular algo-
rithm manipulates data. The primary method of interaction is clicking and drag-and-dropping data 
item visualizations, although other basic GUI components, such as buttons and combo boxes, are 
also used in some exercises. A typical interface operation in an exercise is to drag an item from 
its current location to another. This simulates the action of deleting a data item from one structure 
and inserting it into another. The new location could be another position in the same structure or 
in another data structure altogether. 
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In tracing exercises, the input of the algorithm fully determines the control flow of the algo-
rithm’s execution, and the learner’s task is to reproduce the execution by appropriately manipu-
lating visualizations. At each step, the learner traces the pseudo code and is forced to think of 
how the algorithm works in order to carry out the next operation. For example, the learner might 
drag an item from a stack visualization onto a visualization of a search tree and drop it there, thus 
inserting the item into the tree. In essence, they are constructing an animation of the algorithm’s 
execution. The assessment of the solution is then carried out by comparing the learner’s anima-
tion sequence to a sequence generated by running an actual implementation of the algorithm. 
Feedback is given in terms of the number of correct steps from the beginning of the sequence and 
by showing the correct solution as an algorithm animation. 

Open tracing exercises, on the other hand, are more exploratory in nature and are used to allow 
students to examine a specific concept through visual exploration. In these exercises, the correct-
ness of the solution is evaluated based on the end state. An example of such an exercise is the 
coloring of a red black tree: the student is not required to follow a specific algorithm, but is asked 
to give any correct coloring. Thus, the focus in this exercise is on the conceptual knowledge and 
understanding of the rules that govern the creation of red black trees (such as “the root node is 
black” or “red nodes cannot have red children”). These conditions are easy to check, and the 
feedback can explicitly state which constraints are satisfied and which are not. For more discus-
sion about different types of exercises, see Korhonen and Malmi (2004). 

TRAKLA2 
TRAKLA2 is a web-based learning environment aimed at teaching data structures and algorithms 
(Malmi et al., 2004). The system contains a number of visual algorithm simulation exercises and 
instructional material, help files, and links to additional material. The basic exercise set includes 
assignments for basic data structures, sorting, hashing, graph algorithms, and algorithm analysis. 
For going beyond the basic data structures and algorithms of core computer science, the system 
was extended to support the visualization and manipulation of spatial primitives and data struc-
tures. 

TRAKLA2 visualizations are built using a general-purpose application framework written in Java 

  

 
Figure 1: The canonical views of basic data structures. 
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for creating algorithm animations and simulations. In the system, all data structures are visualized 
by combining instances and variations of a small number of well-known visualizations, which we 
call canonical views (Nikander, Korhonen, Valanto, & Virrantaus, 2007). We use four canonical 
views that represent the data structures array, list, tree and graph. Examples of canonical views 
can be seen in Figure 1.  

The framework also allows for many simultaneous synchronized views of the same underlying 
data. In other words, we can, for example, have both an array and a tree visualization of a heap 
data structure, where invoking operations via either of them modifies the same underlying data 
structure and triggers an update of both visualizations. Furthermore, visualizations can be com-
bined hierarchically. For example, a B-tree may be visualized as a tree in which each node con-
tains a data item that is visualized as an array.  

The SDA-TRAKLA2 Environment 
The canonical views in TRAKLA2 can accurately depict the internal hierarchy of a data structure. 
For example, a tree is visualized as a layered hierarchy of nodes that are connected by edges that 
represent links between the data items. However, because of spatial properties such as proximity, 
length, and direction, these types of visualizations cannot adequately represent the relationships 
between spatial data items. Although we might use a list of coordinate values to represent spatial 
data, this type of rudimentary visualization is insufficient for conveying spatial information. For 
example, a polygon could be represented by a tuple of the coordinates of its vertices. However, 
using such visualization it would be hard to make any observations on the area of the polygon or 
the overlap of several polygons. To tackle this, we included a new visualization to the TRAKLA2 
system called the area view. 

The area view is fundamentally different from the canonical views. The canonical views depict 
the internal hierarchy of a data structure. An area view, on the other hand, depicts a rectangular 
region of a 2-dimensional plane and can, therefore, be used to show data item positions in a 
2-dimensional coordinate space. For example, in the area visualization we can show how spatial 
primitives, such as points, lines, and polygons, are laid out in the associated space, as shown in 
Figure 3. The elements can be differentiated using colors, transparency, line thickness, and dash 
types. However, while this does allow us to illustrate spatial relationships well, it is equally diffi-
cult to depict the structural relationships of data in this view as it is to display spatial attributes 
with canonical visualizations. Thus, in order to get the complete picture, we generally need two 
simultaneous views of the data: a data structure visualization based on canonical views to show 
how the data is stored and an area view to show how the data items relate to each other in terms 
of their coordinates. An example of using several different views simultaneously can be seen in 
Figure 4. In addition, it is possible to include extra visual cues in the area view that represent 
conceptual elements. An example of this is drawing a sweep line in sweep line algorithms, or the 
Delaunay triangulation circumcircle depicted in Figure 3. 

By using an area view and associated two-dimensional data items we created SDA-TRAKLA2, a 
novel learning environment for spatial data algorithms. Using the area view in SDA-TRAKLA2 
the learner can see how the spatial data items are arranged in the space they occupy. By including 
also canonical views we can create even more engaging exercises where the learner can also see 
how the data is arranged in data structures and how the contents of these structures change as the 
algorithm executes. Furthermore, by designing the exercises so that both the area view and the 
canonical views are required in order to solve the exercise, we can force the learner to interact 
with all relevant visualizations. Since interaction between the user and the visualizations is shown 
to be crucial in order to facilitate learning, having the learner to interact with the visualization 
increases the value of the exercises. 
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The Exercises 
The set of exercises in TRAKLA2 is divided into rounds with defined publish dates, deadlines, 
and minimum requirements. Figure 2 shows a screenshot of an exercise. An exercise consists of a 
description and instructions for solving the exercise (not shown in the picture), pseudo code for 
the algorithm (in tracing exercises), and an interactive Java applet for carrying out the assign-
ment. 

 

 
Figure 2: SDA-TRAKLA2 exercise for the Douglas-Peucker line simplification. Pseudo code 

for the algorithm is on the left, and the Java applet for solving the exercise is on the right. 

 

For SDA-TRAKLA2 we have implemented two types of exercises (as defined above in the 
sub-section on Visual Algorithm Simulation Exercises): tracing and open tracing exercises. For 
example, in an exercise exploring the construction of a Voronoi diagram by means of the Delau-
nay triangulation (see Figure 3), the learner is provided with interface operations for modifying 
the edges of the triangulation and testing for Delaunay conditions. Success is evaluated based on 
whether the points are correctly connected to create the new triangulation. One example exercise 
is described in more detail in the next sub-section, and a list of all implemented exercises is given 
in the Appendix. 

Finally, one of the key ideas in TRAKLA2 is to allow multiple tries for each assignment. This is 
possible because, for each attempt, a new set of random input is generated. The randomized input 
also prevents the students from using trial-and-error problem solving methods and prevents pla-
giarism. Care must be taken, however, to ensure that exercise instances are neither impossible to 
solve nor trivial. This is typically achieved by setting a number of constraints that the input must 
conform to. For example, if the task is to insert items to a balanced binary tree, then the input 
should be such that the tree needs to be balanced during the simulation sequence. 
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Figure 3: TRAKLA2 exercise for Delaunay triangulation construction. The Figure shows a 
partially constructed Delaunay triangulation using white lines, the corresponding Voronoi 

diagram using dark lines, and one Delaunay circumcircle using a dashed red line. 

An Example Exercise: Line Segment Intersections 
The line segment intersections problem is to find all intersections in a given set of line segments. 
Such a problem is trivial for a human to answer, once the line segments have been drawn. A 
computer, however, cannot see the intersections, and therefore the problem is algorithmically 
non-trivial. 

One efficient solution to the problem is to use a line sweep (Bentley & Ottmann, 1979). In the 
line sweep approach a conceptual sweep line is moved across the plane, stopping at each line 
segment endpoint or intersection. The algorithm finds intersections by using an adjacency struc-
ture, which contains the line segments that intersect the sweep line at any given point. The adja-
cency structure can be used to search for line segment intersections effectively. The line sweep 
algorithm is capable of finding all line segment intersections in O(nlogn+klogn) time, where k is 
the number intersections in the data set. 

Figure 4 shows a screenshot of the SDA-TRAKLA2 exercise applet for the problem. The applet 
contains four data structure visualizations. In the top row there is a tree view of a binary heap, 
which is used as a priority queue, and an area view showing the line segments, their intersections 
and the current position of the sweep line. In the bottom row there is the adjacency structure used 
by the algorithm, visualized as an array, and a linked list for storing the output. In the figure, the 
student has started solving the exercise. As can be seen from the area view, three line segment 
intersections have been discovered in the simulation and are explicitly shown. Intersections are 
drawn to the area view as points when the corresponding line segments are next to each other in 
the adjacency structure, simulating how the real algorithm finds the intersections. 

The visualizations used in the exercise give two very different views to the problem. The priority 
queue and adjacency structure views show internal details of the data structures used in the algo-
rithm. The area view, on the other hand, shows how the data is arranged spatially. The output 
visualization is used to store the intersections. 
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To solve the exercise, the student needs to simulate how the algorithm manipulates the priority 
queue, the adjacency structure, and the output. Snapshots of the solution process can be seen in 
Figure 5. At the beginning of the simulation, the priority queue contains all line segment end-
points, and the sweep line is at the top of the area visualization, as shown in the top left snapshot. 
To solve the exercise, the student then dequeues items from the priority queue, maintains the ad-
jacency list, and adds intersections to the priority queue and the output. All these actions can be 
done by drag-and-dropping items to the appropriate positions in the visualizations. The second 
snapshot, at the top right, shows the visualizations after four items from the priority queue have 
been handled. The sweep line has advanced and currently is at y-coordinate of the last dequeued 
item. In this case, it is the line segment endpoint labeled 0. At this point, two intersections have 
been found and added to the priority queue. The next item to be processed is the intersection la-
beled (0,6), after the top endpoints of the corresponding line segments. At the bottom left snap-
shot, the algorithm simulation is at a point where the last item handled was the intersection (4,10). 
The bottom right snapshot shows the situation at the end of the simulation process. Priority queue 
and adjacency structure are empty, and all intersections have been added to the output. 

The line segment intersection exercise has been used on the SDA course since the year 2007. It 
was completely re-designed after the first year, and Figures 4 and 5 illustrate the current version. 
In the original design the sweep line swept from left to right and was not visualized in the area 
view, and the line segment endpoints and intersections used much larger visualizations. The 
original version of the exercise was much harder for the students to solve than the current version, 
and most gained approximately 50% of the points. Using the new version students typically gain 
80-100% of the points from the exercise. 

 
Figure 4: Line segment intersections with line sweep. 
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Research Setting and Data Collection 
The SDA-TRAKLA2 was implemented for the Spatial Data Algorithms course (SDA course) at 
the Helsinki University of Technology. The course is given by the Department of Surveying each 
spring. The prerequisites are basic knowledge on geoinformatics, programming, data structures, 
and algorithms. Thus, the students should have passed CS1 and CS2, as well as the geoinformat-
ics equivalents of those before enrolling for the course. The SDA course typically has 15 to 25 
students per year. Most participants are third year students of the Department of Surveying. 

Details of the Spatial Data Algorithm Course 
The SDA course is worth 6 ECTS credits and is an obligatory part of the bachelor’s studies for 
students who specialize in geoinformatics. After having completed the course, the students should 
be able to define and compare spatial data algorithms, be able to select efficient algorithms for 
spatial problems, and be able to describe how spatial algorithms and data structures work. Fur-
thermore, the students should be able to implement simple spatial data structures and algorithms. 
It should be noted, however, that the SDA course is intended to be just an introduction to spatial 
algorithms and covers only a small fraction of the whole field. 

The data structures and algorithms on the course are mostly presented on a conceptual level, as 
opposed to a specific algorithm implementation. Thus, the minute details of the algorithm imple-
mentation are not discussed, and the focus is more on how different problems can be solved and 
how the algorithms work on a high level of abstraction. Thus, it is more important to know how 
the sweep line problem solving method works and what problems can be solved using it, than to 

Figure 5: Four snapshots of solving the line segment exercise.  
Snapshots start at the top left, and end at the bottom right picture. 
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know how the intersection of two line segments can be calculated, or how the pointers in an ad-
jacency structure need to be modified in order to maintain it. 

Before the introduction of SDA-TRAKLA2, the course consisted of combined lecture and studio 
sessions, a programming project, and a final examination (exam). The lecture and studio sessions 
were the first part of the course. There were 6 or 7 four-hour sessions on the course, held once a 
week. Each session consisted of a small lecture – typically one hour – which introduced the topic 
to the students. At the end of the lecture the students were divided into groups of three or four. 
Each group was given one spatial data structure or algorithm, which they then had two hours to 
familiarize themselves with. During the last hour of the session each group presented their results 
to the rest of the class. The goal of the studio sessions was for the students to familiarize them-
selves with one data structure or algorithm on a conceptual level. They could use lecture slides, 
handouts, book excerpts or research articles as study material. 

After the studio sessions were over, the students had their first chance to take the exam. The exam 
consisted of four or five questions, which typically tested the students’ conceptual understanding 
of the topics. A typical exam question was to describe an algorithm for solving a given problem. 
In case they failed their first attempt, the students typically had at least two additional opportuni-
ties to take the exam.  

The students also started the programming project after the sessions had ended. The students 
worked in the project either alone or in pairs. They were required to study and implement one 
spatial algorithm or data structure and also present their results to the rest of the class. They had 
approximately seven weeks to complete the project. 

It was deemed that there was room on the course for additional learning activities. Thus, the 
SDA-TRAKLA2 system was included in spring 2007 without touching the other parts of the 
course. The motivation for including SDA-TRAKLA2 was to increase the amount of practical 
exercises the students had and to strengthen their understanding on how algorithms work. Fur-
thermore, the system allowed the students to learn how certain data structures and algorithms 
work in more detail by giving them hands-on experience with the algorithms on a conceptual 
level. The course staff was also interested in the system, since by using SDA-TRAKLA2 the stu-
dents could solve the problems independent of time and place, and because of the automatic as-
sessment functionality the use of the system would not require additional human resources. 

The SDA-TRAKLA2 exercises on the course were divided into a couple of rounds in order to 
even up the students’ workload and to prevent them from trying to do too much work at once. 
Deadlines had one or two weeks between them. In order to pass the course the students were re-
quired to gain at least 50% of the points awarded from the exercises. There was no further advan-
tage they could gain from solving more exercises. 

Research Methods and Goals of the Evaluation 
In order to ascertain whether adding SDA-TRAKLA2 to the course affected student learning, we 
evaluated the use of the system using several methods. The goal was also to ascertain whether it 
was possible to successfully extend TRAKLA2 beyond basic data structures and algorithms. 
Thus, during the years 2007 and 2008 we gathered data on both student learning outcomes and 
their attitudes towards the system.  

The data on student learning outcomes was gathered from SDA-TRAKLA2 and the students’ 
exam answers. The system stores all student submissions, enabling us to see how many times 
each student has submitted each exercise and how each submission was assessed. The course staff 
gave us the students’ exam answers. Two methods were used for collecting data on student atti-
tudes. First, at the end of the course, all students filled out an anonymous course feedback form. 
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This consisted of questions both about the students’ attitudes towards the course as a whole and 
towards the SDA-TRAKLA2 system. Second, after the spring 2008 course, four students were 
interviewed (Nikander et al., 2008). We used both quantitative and qualitative methods to analyze 
the data gathered. The decision to use both methods rose partially out of necessity, as the small 
size of the course prevented us from using a formal research setting where the students were di-
vided into test and control groups. Partially the decision to include qualitative methods came from 
the available data. We had access to the students’ exam answers and also had used interviews as 
one data gathering method. 

Quantitative learning data we decided to analyze using standard statistical methods, namely linear 
regression analysis on the learning outcomes. The output of the analysis shows us – if you accept 
its validity despite the small sample sizes – whether there is statistical correlation between the 
student learning activities and their learning outcomes. The students’ exam answers we decided to 
analyze also using content analysis (Krippendorff, 2004). We used content analysis to search how 
the effect of SDA-TRAKLA2 exercises could be found in the students’ exam answers and in-
ferred from that whether the system played a part in the students’ learning. 

The student attitudes we analyzed using the feedback questionnaires and interviews. On the 
feedback questionnaires we used simple summaries of student attitudes and compared the stu-
dents’ answers to various different questions to one other. Thus, we could achieve a ranking for 
the students’ attitudes towards different learning activities on the course. Similarly, from the ver-
bal feedback part of the questionnaires we could infer what parts of the course the students felt 
strongly about and what kinds of attitudes they had. In the interviews we used the interview guide 
approach (Patton, 2002), where the interviewer has an outline of topics to be covered, but may 
vary the wording and order of the questions to some extent. 

We have already published some results on using the SDA-TRAKLA2 in teaching. The results 
discussed in the next section have, for the most part, already been published in Nikander et al. 
(2008). The quantitative analysis of students’ learning outcomes presented in the first part of the 
section is, however, revised from the previous publication. First, the material used in Nikander et 
al. (2008) later turned out to be incomplete. Here we have used the whole dataset. Second, the 
two years’ exams shared one question which was, unfortunately, graded using very different cri-
teria on the different years. We therefore decided to regrade the students’ answers in order to 
make the results comparable. Third, in the next section we give a more detailed analysis of the 
course details and overall results than in Nikander et al. (2008). 

Prior Studies 
The details of the 2007 and 2008 courses are shown in Table 1. The table shows how many stu-
dents started the course each year (# stu), how many of them participated in the final exam (in 
exam), how many SDA-TRAKLA2 exercises there were in the course (and how many of those 
were spatial data algorithm exercises) (exer. (SDA)), the average number of submissions per stu-
dent (subs/stu) and the average number of submissions per student per exercise(subs/ex), as well 
as the students’ average SDA-TRAKLA2 scores (avg. score). The number of students in the 
course includes only those who actually participated in some learning activities on the course. In 
both years, there were students who enrolled to the course but did not do anything. In year 2007, 
there were five of them, but in 2008 only one. 
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Table 1: Basic course data for the Spatial Data Algorithm course. 

year # stu  in exam exer. (SDA) subs/stu subs/ex avg. score 

2007 16 10 15 (9 SDA) 45,1 3,0 67% 

2008 20 16 16 (10 SDA) 51,8 3,2 83% 

 

In spring 2007, the course was given by a professor who had been lecturing it for several years. 
Our plan was to have her lecture the course also in spring 2008. Unfortunately, she was able to 
give only half of the lectures in 2008 due to other obligations. Therefore, half of the lectures in 
spring 2008 were given by other people. One of the authors gave two of the six lectures, and a 
visiting lecturer gave one. Course contents were the same in both years. 

In spring 2007, the spatial exercises were divided into five rounds, each round consisting of 1–3 
exercises. In spring 2008, there were four rounds. In order to pass the course, the students needed 
to gain at least 50% of the SDA-TRAKLA2 points available. A student could submit each exer-
cise as many times as he or she wanted, and they were not penalized for submitting the exercises 
late. 

As can be seen in Table 1 students did fewer submissions in the year 2007 than in the year 2008 
(45.2 vs. 51.8 submissions) and gained a lower average score (67% vs. 83% of maximum). How-
ever, in 2007 there was one exercise less than in 2008, and thus the number of submissions per 
student per exercise was similar on both courses (3.0 vs. 3.2 submissions).  

The most likely reason for the increase in scores is the improvements to SDA-TRAKLA2 be-
tween the two courses. The improvements are: one exercise completely redesigned, one exercise 
removed, and two new exercises added to the system. In 2007, the students gained the lowest av-
erage scores on the exercises that were redesigned (56%) or removed (57%) before the 2008 
course. In 2008, students gained much better scores on the redesigned exercise (average score 
80%), and extremely good scores on the new exercises (average score 98% in both). The affected 
exercises were worth a total of 16 points on each course. However, the maximum points in 2007 
were higher (88 compared with 72 in 2008). Therefore, the affected exercises were proportionally 
worth a bit more in 2008. In the exercises which were not modified between the two years, there 
were no significant changes in the average scores. 

Learning Outcomes 
Linear regression analysis was used to ascertain whether the students’ SDA-TRAKLA2 per-
formance was a good indicator of their exam results. The analysis was made both between overall 
SDA-TRAKLA2 and exam results as well as between exercise and exam results covering the 
R-tree data structure, which is a multi-dimensional generalization of the B+-tree (Guttman, 
1984). The R-tree was selected for special study, since it is a complex data structure that is hard 
to comprehend, and therefore the students’ SDA-TRAKLA2 and exam answers were assumed to 
follow roughly normal distribution. In contrast, with easy exercises most student answers tend to 
be close to maximum points. In both years, there were two SDA-TRAKLA2 exercises about 
R-trees. In the first exercise, the students were required to insert data items into an R-tree, and in 
the second, they needed to search for specific data items in an R-tree. Both years’ exams con-
tained one R-tree question, where the students were required to describe the structure of an R-tree 
and what problems can be solved using it. 

As the criteria used in the original grading of the R-tree exercises were very different on the two 
years, we regraded the students’ answers. Two of us regraded the exercises independently, and 
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we compared the two regradings using linearly weighted Cohen’s Kappa (Cohen, 1968), which 
measures the inter-rater reliability. Linearly weighted version was used since standard Cohen’s 
Kappa measures just how many ratings both raters have put in the same category. In the linearly 
weighted model the distance between the two ratings is also taken into account. In our opinion, 
this better reflects the fact that if one rater gives a grade 4 and the other a grade 5, the two ratings 
are still quite close to each other. The agreement between the two gradings was substantial 
(Kappa 0.64), and the average of the two was used in the linear regression analysis. 

Table 2 contains the results of the regression analysis. The table is divided into three categories. 
First category contains the course information (the year and the number of participants in the 
exam). The second category contains the results of the linear regression analysis for the whole 
course, while the third category contains the results for the R-tree exercises. For the linear regres-
sion analysis ρ (correlation), adjusted R2 (strength of relationship) and p (statistical significance) 
are reported. 

Table 2: Learning results for the spatial data algorithms course. 

Course info Whole exam R-trees 

Year N ρ adj. R2 p ρ adj. R2 p 

2007 10 0.74 0.50 0.01 0.90 0.78 <0.01 

2008 16 0.48 0.18 0.058 0.55 0.25 0.03 

 

As can be seen in Table 2, there was a strong correlation between students’ performance in 
SDA-TRAKLA2 and the course exams. The correlation is significant and, with the exception of 
the overall 2008 exam results, the relationship is statistically significant (p<0.05). 

The number of students in this study is low, thus making it hard to draw any strong conclusions. 
However, similar results have been observed on large basic data structures and algorithms courses 
(Korhonen, Malmi, Myllyselkä, & Scheinin, 2002). In that study, TRAKLA2 exercises were 
compared with similar exercises done with pen and paper. The study showed that there was no 
difference in learning outcomes if the exercises were the same.  

Due to the small class sizes in the SDA course, a similar research setup was not possible here. 
However, if we accept that the results we gained here indicate similar learning outcomes also in 
this context, our results show that TRAKLA2 can be used in the context of spatial data algorithms 
the same way that it can be used with basic data structures and algorithms. Of course, given the 
small class size on the SDA course and lack of a control group, these results can be considered 
merely indicative.  

Student Attitudes 
The students’ attitudes to the SDA-TRAKLA2 system were primarily measured in two ways: us-
ing a course feedback questionnaire and through interviews. Some hints about student attitudes 
could also be found in the students’ SDA-TRAKLA2 data. 

The course feedback questionnaire was given almost identically in both years. The only differ-
ence between the two years was in one series of questions, where the scale used was changed. 
The questions discussed the different teaching methods used in the course. In 2007, the scale was 
from 1 to 4, but in 2008 it was changed to conform to the 0 to 5 scale used to grade exams and 
courses. The change was done in order to make it easier for the students to answer to the question 
since they had a direct analogy in the exam grades. In the questionnaire, there were several ques-
tions regarding SDA-TRAKLA2. One was to give it a grade, while other questions discussed the 
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system’s usefulness (on a scale from 1–4 where 1 was “not useful” and 4 “very useful”), and the 
various aspects of the system from pseudo code to the applet’s user interface. 

In 2007, SDA-TRAKLA2 was among the lower ranking teaching methods on the course. Most 
students regarded the system as either a somewhat useful or a quite useful learning method and 
were of the opinion that it helped their learning. All students regarded SDA-TRAKLA2 exercises 
as suitably challenging. However, many students expressed the opinion that the system was their 
least favorite part of the course. 

In 2008, on the other hand, SDA-TRAKLA2 was the highest ranking teaching method on the 
course. Most students regarded the exercises as either quite useful or very useful for learning and 
were of the opinion that the system helped their learning. All students also thought that the exer-
cises were suitably challenging. This year, no student regarded SDA-TRAKLA2 as their least 
favorite part of the course, and a few actually named it the part of the course they enjoyed the 
most. 

Thus, there was a significant shift in overall student attitudes between the two years. In 2007 
SDA-TRAKLA2 was ranked rather low when compared to other teaching methods and several 
students complained about having to use the system. In 2008, on the other hand, SDA-TRAKLA2 
got the top rank, and some students mentioned that the system was their favorite part of the 
course. Furthermore, in 2008 students felt that the system was more helpful for their learning than 
in 2007.  

The interviews revealed some pros and cons of the system. The interviewees were one Finnish 
female, one Finnish male, one foreigner female and one foreigner male, aged between 22 and 28 
years. The interviews were conducted by the two authors not involved in teaching the course. 

The problems were mostly related to usability issues while the positive comments were related to 
the better learning experience. A more thorough report on the interviews is published elsewhere 
(Nikander et al., 2008). In the following we sum up the findings. 

All of the interviewees criticized the GUI and the feedback received from the exercises. Even 
though the GUI is quite simple, some students felt that it is too difficult to learn quickly. They 
especially complained about how the GUI changed between exercises. In addition, the feedback 
is merely a number of correct steps in the simulation sequence, and the students hoped for more 
detailed feedback on the mistakes they made. Moreover, a mistake early on results in lost points, 
thus a more humane grading scheme would have been appreciated. 

Most of the comments were positive, however. Especially the model answer was appreciated as 
well as the animations and visualizations in general. The students’ subjective opinion of the sys-
tem was that it helped them to learn and memorize the topic more easily compared to other 
teaching methods and learning materials. With the system, the students can actually practice the 
algorithm, which makes it easier to remember it later. In addition, there is a certain analogy be-
tween this and learning by doing. 

The students’ SDA-TRAKLA2 data shows that many students continued to solve the exercises 
even after they had gained points required for passing the course. The students needed to gain at 
least 50% of the TRAKLA2 score in order to pass the course and did not gain any further benefit 
from getting more points. However, as can be seen from Table 1, the average student score is 
much higher than 50%. Especially in the 2008 course, students seemed to solve many more exer-
cises than necessary to pass the course. Similar behavior has also been observed on basic data 
structures and algorithms courses (Malmi, Karavirta, Korhonen, & Nikander, 2005). It seems that 
TRAKLA2 inspires students to do extra work also in the SDA course. 
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Qualitative Results 
The small number of students and the lack of a control group caused by this prevents us from 
drawing definitive conclusions from the quantitative analysis. Furthermore, all the relationships 
in the analysis were not statistically significant. Therefore other analysis methods need to be used 
in order to further ascertain whether there actually is any effect of using SDA-TRAKLA2. We 
decided to use content analysis (Krippendorff, 2004) on the students’ exam papers in order to in-
vestigate how students’ experiences with the exercises are reflected in their exam answers. This 
helps us ascertain whether there is any effect of using the system on the course or, in other words, 
do students learn anything by using it. 

In the analysis, the answer to each question in a student’s exam paper was considered separately, 
and the analysis was mainly done per question and not per student. All exam questions were con-
sidered in the analysis, but most effort was spent on the R-tree questions. R-tree was the only data 
structure or algorithm that was a part of both years’ exam. Furthermore, the students’ answers to 
the R-tree question had already been analyzed quantitatively. 

Effect of SDA-TRAKLA2 Exercises 
Depending on the exam question, we were able to see none, slight, or even rather extensive evi-
dence of the effects of SDA-TRAKLA2. The effect was primarily observed in either the diagrams 
a student drew as part of their answer or on which parts of a given data structure or algorithm 
their answers concentrated.  

These two effects we were able to distinguish, since SDA-TRAKLA2 visualizations are quite 
distinct from the pictures included in other learning material, and some of the exercises concen-
trated on rather specific parts of a data structure or algorithm. Thus, if the diagrams reflected 
SDA-TRAKLA2 visualizations or the focus of the answer was the same as in the corresponding 
SDA-TRAKLA2 exercise, we could be reasonably certain that such effects were due to the in-
fluence of the system.  

Rather surprisingly, in the R-tree exercises, there is not much evidence that SDA-TRAKLA2 had 
any direct influence on students’ exam answers, especially in the 2008 exam. In the 2007 exam, 
many students did not remember R-tree at all, or remembered it completely incorrectly, and thus 
received no points from the exam question. Those who had some recollection of the structure 
typically drew R-trees where each non-leaf node had either two or three children, similar to the 
SDA-TRAKLA2 exercise. There was no other possible direct influence from the system ob-
served. Average student score, using the R-tree regrading described earlier in the sub-section on 
learning outcomes, was 1.4 points out of the maximum of 6. In that year, the students’ learning 
material on R-trees included only the lecture notes and the SDA-TRAKLA2 exercises. In the lec-
ture notes there were no pictures of R-trees, and therefore the students only saw R-tree visualiza-
tions in the system. 

In 2008, the lecture material on R-trees was redesigned and relevant parts from Worboys and 
Duckham (2004) and Samet (1989) were included as additional teaching material. The redesigned 
lecture material also contained R-tree pictures created using SDA-TRAKLA2. In 2008, the stu-
dents’ average score was substantially better than in the previous year: 3.75 out of the maximum 
of 6. Furthermore, the students’ answers showed practically no direct influence from the 
SDA-TRAKLA2 exercises. The students’ diagrams typically were very close to the ones included 
in Worboys and Duckham (2004), where each non-leaf node had two child nodes and each leaf 
node could contain two data items.  

In other exam questions where there was a corresponding SDA-TRAKLA2 exercise, influence of 
the system could clearly be seen. In the 2007 exam, one question was to describe algorithms for 
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creating a Delaunay triangulation. The course material contained several algorithms for calculat-
ing a Delaunay triangulation, including the random incremental algorithm (Guibas, Knuth, & 
Sharir, 1992), Fortune’s algorithm (Fortune, 1986), and the expanding wave-algorithm (McCul-
lagh & Ross, 1980). Of all the algorithms included in the course, only the expanding wave had a 
corresponding SDA-TRAKLA2 exercise. Other learning material for this algorithm included the 
lecture slides and the original research paper (McCullagh & Ross, 1980). Seven of the ten stu-
dents described the expanding wave in their answers, and five of them used illustrations. Four out 
of five used illustrations that were very similar to the visualizations used in the system, while one 
used an illustration similar to those found in McCullagh and Ross (1980). One student actually 
illustrated the whole algorithm step-by-step using visualizations functionally identical to the ones 
used in the SDA-TRAKLA2 exercise. 

In the 2008 exam, one question was about different algorithms for finding the shortest path in 
various situations. One of the algorithms discussed in the course was about using a visibility 
graph to find the shortest path in free space with polygon obstacles. The learning material for this 
consisted of lecture slides, relevant parts of de Berg, Kreveld, Overmars, and Schwarzkopf (2000) 
and a SDA-TRAKLA2 exercise concentrating on a single rotation of the rotational sweep algo-
rithm. In the exam, students who described the visibility graph almost exclusively concentrated 
on describing how the algorithm finds the points visible from a given point. Other parts of the 
algorithm that construct the visibility graph were glossed over by most students. Those who drew 
pictures, however, typically included the whole visibility graph even if they did not describe it in 
the text. Only three students included the rotational sweep algorithm in the pictures they drew. 

Thus, it is clear that the students do remember the SDA-TRAKLA2 exercises in the exam and, 
thus, that the system plays a part in the students’ learning. The amount of influence the exercises 
have can, however, vary a lot. In some cases, such as the expanding wave, it seems that most stu-
dents remembered the topic mainly through SDA-TRAKLA2. However, as seen in the case of 
R-tree, other teaching material can also have a large effect, and sometimes completely hide pos-
sible effects of the exercises. 

Discussion 
Spatial data structures are an important branch in the study of data structures and algorithms and 
are needed in numerous disciplines. Many advanced courses on data structures in computer sci-
ence, geoinformatics, and several other domains cover topics such as line sweep algorithms, 
finding the closest pair of points, and dictionaries for multi-dimensional data. Teaching and 
learning these topics is hard and typically requires heavy use of visualizations and other similar 
learning materials in order to be effective. 

We have demonstrated a novel tool for providing exercises for students to practice the topics and 
build feasible mental models of the functionality of spatial data structures and algorithms. The list 
of exercises in the SDA-TRAKLA2 system can be found in the Appendix. Although, we have 
implemented exercises for the topics most often covered in courses targeted to students in geoin-
formatics, many of the topics are covered also in computer science courses, such as computa-
tional geometry, computer graphics, and advanced algorithms. 

Our previous studies have shown that the exercises based on visual algorithm simulation are suc-
cessful in basic CS courses. The exercises can be personally tailored, which prevents 
trial–and–error problem solving and plagiarism. The feedback for the student is immediate and, 
thus, enhances learning as the student can continue to work with the exercise until he or she has 
mastered the algorithm. Model solutions provide important and timely feedback in order to 
self-study the topic. By logging the points received from the exercises, the system can also be 
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utilized to assess student performance. In our institution, this motivates students to do more exer-
cises compared with the case where they are not part of the assessment. 

All the above benefits can be achieved also in case of spatial data structures. However, spatial 
data structures are intrinsically more complex in their nature than basic data structures. In this 
paper, we have studied the feasibility of the spatial data algorithm version of the TRAKLA2 sys-
tem, the SDA-TRAKLA2. First, we have implemented new visualizations for the system, which 
include a two-dimensional area visualization regularly used in spatial data algorithm exercises. 
The visualization can contain different graphical primitives, spatial elements, and conceptual 
elements such as sweep lines or circumcircles. Second, we have used several methods to evaluate 
the system in teaching spatial data algorithms including comparison of SDA-TRAKLA2 exercise 
points and examination points, qualitative analysis of exam answers, interviews, and attitude sur-
veys. We have also compared the results with previous similar studies where the TRAKLA2 sys-
tem was utilized to teach basic data structures and algorithms. Our results indicate that the system 
can be used to teach SDA the same way it can be used to teach basic algorithms, and that we gain 
the same benefits from using the system, which also conforms to the results of our previous stud-
ies. 

Although there are similar systems, we have compared SDA-TRAKLA2 with other systems and 
found several advantages. First, many of the other tools use only one view, the area view, in the 
visualization. SDA-TRAKLA2 uses area and data structure views together. Therefore, changes in 
one view are reflected in all other relevant views, and the student can gain a more complete un-
derstanding on how the algorithms work. 

Second, typically other tools cover only a limited number of spatial data structures and algorithms 
and, thus, are suitable only for a very small fraction of an SDA course. We have covered much 
more of an SDA course, although there is still a long way to cover the whole course. All exercises 
include instructions on how to solve the exercise and a description of the algorithm in pseudo 
code. Many exercises also include links to additional learning material, which seems to be a 
lacking feature in many other tools.  

Third, the interaction in SDA-TRAKLA2 is more robust and engaging than in many other tools, 
which merely provide the user with the ability to insert desired input for the algorithm and view 
the algorithm animation as it executes. In SDA-TRAKLA2, the user needs to think how the algo-
rithm works and simulate its execution through the GUI. At the end of the simulation sequence, 
the user gets feedback of his or her performance. In addition, students can further explore the 
current problem instance by watching the model solution, which is similar to the algorithm an-
imations found in other systems. 

The results reported in this paper also back up our positive viewpoint on SDA-TRAKLA2. As 
can be seen in Table 2, there is a correlation between a student’s SDA-TRAKLA2 results and 
their final examination results. Students performing well in SDA-TRAKLA2 exercises typically 
do well also in the examination. This result is similar to the results obtained in a prior study in 
which the use of the system was compared to exercises done with pen and paper (Korhonen et al., 
2002). In our opinion this shows that the system is used similarly in learning both basic and spa-
tial algorithms. In addition, the qualitative analysis of the students’ exam answers shows that the 
students do remember the SDA-TRAKLA2 visualizations when they answer exam question, and 
typically, if there is a TRAKLA2 exercise, the exam answers reflect this. This shows that the stu-
dents also remember what they have learned while using the system. The influence of the system 
on the answers seems, however, to be somewhat topic-specific. And, as seen in the students’ an-
swers to the R-tree question, other learning material can also play a very important role. Further-
more, the students’ attitude towards the system is very positive. Actually, in the interviews, the 
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students expressed a desire for more SDA-TRAKLA2 exercises. All this has assured us to con-
tinue to develop and utilize the system in the future. 

From the teacher’s point of view, integrating the system into the course was straightforward and 
requires only little effort from the course staff. In addition, it provides many benefits not studied 
nor reported directly, but which are obvious. For example, plagiarism seems to be a problem in 
many institutions. SDA-TRAKLA2 provides exercises that are individually tailored for each stu-
dent, thus there is no point in copying answers from other students. Actually, the system provides 
the model answers itself, thus it can be used for learning purposes and not for bypassing the 
learning opportunity. The system also gives a meaningful way to increase the number of exercises 
in courses where there are limited resources to check the exercises and give feedback for the stu-
dents. Thus, some of the resources could be reallocated, for example, to activities that cannot be 
automatically assessed. 

Our way of using the SDA-TRAKLA2, however, is not the only possible one. Nowadays, most of 
the students in our institution have a home computer and internet connection, which makes the 
use of the system independent of time and place. Thus, it is natural that we have utilized the sys-
tem most often in open labs. The system could also be utilized in closed labs, which of course 
would require computer labs to be available. This would make sense especially if the system is 
not intended to be used for assessment, but merely for practicing the algorithms. In our university, 
however, the tradition has been to give homework. 

The system has been used since 2007 and is still in use and maintained. The system is open 
source and, thus, available also for other institutions. Interested parties can familiarize themselves 
with the system at the TRAKLA2 homepage < 
http://www.cse.hut.fi/en/research/SVG/TRAKLA2/ >. As the new spatial extension has been in-
corporated into the existing TRAKLA2 learning environment, one can also use all other exercises 
implemented in the system. These include data structures that are used as auxiliary structures in 
several spatial data structures and algorithms. A full list of implemented exercises can be found at 
the TRAKLA2 homepage. 

Issues of Validity and Reliability 
Due to the small number of students in the spatial data algorithm course, we were unable to create 
a proper experimental research setting. With less than 20 students on the course, it makes no 
sense to divide them into experimental and control groups.  

The content of the course was kept the same after the introduction of SDA-TRAKLA2. However, 
the system was further developed between 2007 and 2008, and thus the students did not receive 
the same set of exercises on both years. Furthermore, in spring 2008, the course was lectured by 
different people than the previous year. Several independent variables changed and, therefore, the 
two courses are not entirely comparable. Thus, the quantitative data gathered in the course is not 
in itself sufficient for making any sort of definitive analysis. However, the data gathered from this 
study confirms the earlier findings; thus we have a reason to expect the conclusions to hold also 
in case we could repeat the study with larger cohort of students in the future. At least, we have no 
reason to believe the way SDA-TRAKLA2 delivers the exercises would be any worse than other 
methods, e.g., delivery by paper and pencil. However, compared to other teaching methods 
SDA-TRAKLA2 has many additional benefits. 

Conclusions 
In this work, we have described SDA-TRAKLA2, a novel learning environment for spatial data 
algorithms. The environment has been implemented on top of the successful TRAKLA2 system 
and has been used in teaching a spatial data algorithms course at Helsinki University of Technol-
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ogy since spring 2007. The course has 15 to 25 students a year, and it is part of the obligatory 
studies for the students specializing in geoinformatics. The course also has studio sessions, an 
exam, and a programming project. The new SDA-TRAKLA2 exercises were included without 
modifying other parts of the course. 

We have implemented a set of visual algorithm simulation exercises to cover a number of SDA 
topics. Typically the exercises use several different algorithm visualizations at the same time to 
show both how spatial data items are related to one another and how they are arranged in data 
structures. To accomplish this, we have implemented novel visualizations to the SDA-TRAKLA2 
system. 

The students’ learning results gained with the system are similar to those witnessed previously 
when using TRAKLA2 in the basic data structures and algorithms course (Korhonen et al., 2002). 
Furthermore, by qualitative analysis of students’ examination papers, we have ascertained that 
using SDA-TRAKLA2 has an effect on the students’ exam answers, and thus they seem to benefit 
of using the system in their studies. Therefore, using the system appears to be a viable alternative 
to similar classroom exercises, and the idea of visual algorithm simulation exercises can be ex-
tended to cover spatial algorithms. However, the small class size of the SDA course makes it hard 
to draw definitive conclusions. Furthermore, the effect of other learning material can be consid-
erable and sometimes appears to mask the possible effects of using SDA-TRAKLA2. 

The students’ overall attitude towards the system is very positive. The students feel that the sys-
tem helps them in learning, and they have asked for more aspects of the course to be covered by 
SDA-TRAKLA2. In 2007, however, the students’ attitudes towards the system were rather poor. 
This was probably due to the large number of software bugs and the complicated UI the system 
had in its initial release. After bug fixes and some modifications to the UI, the student attitudes 
changed dramatically. 

Overall, our opinion is that SDA-TRAKLA2 is a viable learning tool in teaching spatial data al-
gorithms. This also proves that it is possible to use visual algorithm simulation exercises in 
teaching advanced data structures and algorithms. Previously, the system had covered only topics 
handled in basics algorithms courses. 

Future Work 
Several ways to improve the system remain. First, new exercises would be welcome to cover 
more spatial data algorithms. Second, several of the currently implemented exercises could be 
improved, however, not necessarily as radically as the complete redesign that was done to the line 
sweep exercise. Third, there are also some algorithms for which we have not been able to design 
a good exercise. For example, one exercise removed from the 2008 course was about a di-
vide-and-conquer algorithm for finding the closest pair of points (Preparata & Shamos, 1985). 
The implementation was so clumsy that learning to use the exercise took a long time for the stu-
dents. Also, the user interface contained so much functionality for the student that we came to the 
conclusion that even if a student was able to solve the exercise, their focus had been in “winning” 
the exercise and not in understanding the algorithm. Furthermore, in order to keep the number of 
steps in the exercise reasonable, the input for the exercise needed to be very small. Typically, 
with such input, it would have been better to just use the brute-force algorithm for finding the 
closest pair. 

Finally, in the field of spatial data algorithms, there is a whole group of algorithms, which we 
deemed to be unsuitable for SDA-TRAKLA2 – at least with its current implementation. Spatial 
data can be divided into two models: object data model where spatial items are stored as distinct 
objects, and field data model where spatial data is stored as continuous fields. In the object data 
model, the execution of an algorithm is typically ruled by the input. With different inputs, differ-
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ent lines of the algorithm code are executed in different order. Therefore, when doing tracing ex-
ercises, at each step of the algorithm simulation, the student needs to think what his next action 
would be with the given input. With many field algorithms, however, the algorithm execution is 
not governed by the input. The same lines of code are typically executed in the same order, no 
matter what the input is. Only the numerical values carried from one subroutine to the next are 
different. Therefore such algorithms are not, in our opinion, suitable for visual algorithm simula-
tion exercises. Regardless of the input, the algorithm simulation would always be more or less the 
same, thus making the exercises both boring and repetitive. 

Overall, our opinion is that the spatial exercises in SDA-TRAKLA2 are already a useful learning 
resource for teaching spatial data algorithms. The system is still being maintained, and we hope to 
expand it further in the future. The system is available for free at our website  
< http://www.cse.hut.fi/en/research/SVG/TRAKLA2/ >.  
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Appendix 
Table 3: Spatial exercises in the TRAKLA2 system 

Name Description Years used 

Point in poly-
gon 

The learner is to find whether a point is inside a poly-
gon by counting the number of intersections a half-line 
drawn from the point has with the polygon. 

 2007, 2008 

Closest pair of 
points 

The learner is to find the closest pair of points in a set of
points by using a divide-and-conquer approach based on
the mergesort algorithm. 

 2007 

Doulas-Peucker 
line simplifica-
tion 

The learner is to simplify a polyline using the Doug-
las-Peucker line simplification algorithm. 

 2007,2008 

Line sweep The learner is to find line segment intersections in a set 
of line segments by using the line sweep algorithm. The
exercise was completely redesigned between the two 
courses. 

 2007, 2008 

Voronoi con-
struction 

The learner is to construct a valid Voronoi diagram 
from a set of points. There is no need to follow a spe-
cific algorithm, only the end result is assessed. 

 2008 

Adding a point 
to TIN 

The learner is to add three new points to a Delaunay 
triangulation and to modify the triangulation so that it 
still stays valid. There is no need to follow a specific 
algorithm, only the end result is assessed. 

 2008 

Expanding 
wave-method 

The learner is to construct a Delaunay triangulation us-
ing the expanding wave algorithm. 

 2007, 2008 

Visibility with 
rotational 
sweep 

The learner is to find polygon end points visible from a 
given point by using the rotational sweep algorithm. 

 2007,2008 

R-tree insert The learner is to insert a number of polygons into an 
R-tree. 

 2007,2008 

Point-region 
quadtree insert 

The learner is to insert a number of points into a 
point-region quadtree. 

 2007,2008 

Point in poly-
gon with R-tree 

Point in polygon where the edges of the polygon are in 
an R-tree and the learner must search the R-tree for 
edges that may cross the half-line. 

 2007,2008 
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