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S.1. Technical Details

In what follows, we provide the technical details and proofs that are omitted in the paper.

Proof of Lemma 4

To show the result, we slightly generalize the proof of Lemma 5 in Chichignoud et al. (2016).
Standard arguments from the lasso literature (Bithlmann and van de Geer, 2011) show that
on the event T,

A 246, 4
||/8)\/’SC - B;[}Hl < TH/B)\’,S - Bg'Hl’

that is, By — B* € C;5(S) for every X > (1 + 6)A. Under the ly-restricted eigenvalue
condition (13), we thus obtain that on 7y,

IXTX By = B)llc
n

BBy — Bl < (S.1)

for every X' > (1 + 0)X. Moreover, since the lasso satisfies the zero-subgradient condition
2X (X By —Y)/n+ Nz =0 with 2 € R? belonging to the subdifferential of the function
£(8) = 18], it holds that

2X'TX . . . 2X e
By —B") =Nz + -

n

Taking the supremum norm on both sides of this equation and taking into account that
2| X Te||oo/n < A on the event Ty, we obtain that

21X X (By = B _ 5y, X el
n n

<2X (S.2)

for every X' > (1+0)X on T. The statement of Lemma 4 follows upon combining (S.1) and
(S.2).
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Proof of Lemma A.1

Let 0 be a small positive constant with 0 < 6 < (6 —4)/6 and 6 > 4 defined in (C3). Define

Zz'jk = XinikE% along with Zz'jk = ng + Zi?kﬁ where

1-9

Z; = Zijk 1(|€2| <n1 ) and ZZk

1-6

= ZZ]k 1(|€z’ >n 4 ),

and write A < AS + A> with

1~ < <
AS = -y (Z5, —EZ;
1 n
A~ = —E:Z? —EZZ,)|.
1?]15?;}) n i:1( ijk ij)

In what follows, we prove that

P(AS > By/log(nVp)/n) < Cn K (S.3)
P(A” > By/log(n V p)/n) < Cnl_(%é)e, (S.4)

where B, C' and K are positive constants depending only on the parameters ©, and K can
be made as large as desired by choosing B and C large enough. Lemma A.l is a direct
consequence of the two statements (S.3) and (S.4).

We start with the proof of (S.3). A simple union bound yields that

P
IP’(AS > By/log(n V p)/n) < Z Pﬁg, (S.5)
k=1

where
1 n
Pﬁc = P(’\/ﬁ Z Uijk‘ > By/log(n \/p))
i=1

with Usjp, = Z%k . IEZEk Using Markov’s inequality, Pﬁg can be bounded by

P5, < exp (— pBy/log(n V p)) E[@XP(M\\}E;”;UWM
< exp (— uB/log(n v p)) {E [exp<\% g Uz’jk:)]
S

with an arbitrary constant ;¢ > 0. We now choose p = y/log(n V p)/C,,, where the constant
C,, > 0 is picked so large that u|Usjx|/+/n < 1/2 for all n. With this choice of y, we obtain
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that

E [exp (i\% Z:; Uijkﬂ HE {exp( fU”’fﬂ < lf[1<1 + ‘::E[Ufjko

< Hexp< U3 < expéom,

where the first inequality follows from the fact that exp(z) < 1+ 2 + 22 for |z| < 1/2 and
Cy < oo is an upper bound on E[Ufjk] Plugging this into (S.6) gives

P5 < 2exp (— uBy/log(n V p) + Cyp®)

B Cy -5

§2exp<— — log(n\/p)>—2(n\/p)0u o
{& &l

Inserting this bound into (S.5), we finally obtain that
Sy

Sy_ B
P(AS > By/log(n V p)/n) < 2p*(n V p) yoi 9w < onK,

where K > 0 can be chosen as large as desired by picking B sufficiently large. This completes
the proof of (S.3).
We next turn to the proof of (S.4). It holds that

P(A” > By/log(nV p)/n) < P + Py,

where
B [log(nV
_ P max ‘f Z5] > log(n v p)
1<jk<plmn i 2 n
< P(|Ei| > nT for some 1 <1 < n)
n n
1-9 1-6
<Y Pl >n 7 ) <> Bfel?]/nt70
=1 i=1
< Cynl=(700 (S.7)
and
log(n V p)
> _ =
pre=p( s 1 om0 s5)

for sufficiently large n, since

2 —d
s 1365 < g el

(6-2)(1-9)
< C% max E[|€l| /n = }

1<i<n

(6-2)(1-6) 1 vV

< 2 Cpn—"H :O< 0g<np>>
n

(S.4) follows upon combining (S.7) and (S.8).
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Proof of Lemma A.2

Suppose we are on the event S, and let 4/ > ~. In the case that f* = 0, it holds that
Bh’ svn = 0 for all 4/ > v, implying that R(y',e) = 0. Hence, Lemma A.2 trivially
holds true if 5* = 0. We can thus restrict attention to the case that 8* # 0. Define
an = B(logn)?\/||3*||1 with some B > 0 and write ¢; = eiS + e with

e; = e; 1(|e;| <logn) — Ele; 1(|e;| < logn)]
7 =e; 1(Je;| > logn) — Ele; 1(|e;| > logn)].

With this notation, we get that

anVvy'
P, <R('V’, e) > I{j)

>

anﬁ>

nl/4

_ T 4
- <1<J<p‘fZX”X _5%”/)%

>

anﬁ)

nl/4

(‘WZX”XT =Pl

<

M"@ I M*@

{Psﬁpsj}, 59
1

<.
Il

where

>

anﬁ>

2711/4

1 O .
P5 =P, (’\/ﬁ Z; X X (8" — 5%7,)65

1 < anv/y'
> v T (p*x _ 2 > n
In what follows, we prove that for every 5 € {1,...,p},
P5<Cn® and P <CnF, (S.10)

where the constants C' and K depend only on the parameters ©, and K can be chosen as
large as desired by picking C' large enough. Plugging this into (S.9) immediately yields the
statement of Lemma A.2.

We first show that PEJ- < Cn~K. To do so, we make use of the prediction bound (2)
which implies that

NG

for any 7' > ~ on the event S,. From this, it immediately follows that on S,

eNGA s12

nl/4

%Z {XZT(ﬁ* — 5%7/)}2 < % (S.11)
i—1

~

X (5~ CED)
—
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for all 7. Using Markov’s inequality, P— can be bounded by

I .

< * <

PE, :Pe<‘n1/4 N XX (8—Ba)er| >
=1

anﬁ
2
1 - T * A <
< Ecexp M’WZXiJXi (ﬁ — B2 ,)ei—
i=1

n R n /
< E. exp<n/1db/4 ZXiniT(ﬂ* _ 527/)6¢§>/exp<ﬂa 2ﬁ)
=1

n . n 7
+ E, exp(—n/lc4 ZXinZT(B* — ﬁz,y,)ei<>/exp</m2\/’7> (S.13)
i=1

with any 1 > 0. We make use of this bound with the particular choice u = (4Cx+/'||3*|1
logn)~t. Since |uX;; X, (8% — 627,/\/5)ei§/n1/4| < 1/2 by condition (C2) and (S.12) and
since exp(z) < 1+ z + 22 for any |z| < 1/2, we obtain that

<eXp( Z{XT BT )}2> (S.14)

with a sufficiently large ¢ > 0. Plugging (S.14) into (S.13) and using (S.11) along with the
definition of u, we arrive at

2 N . 7
eXP(i% Z; {x;(B* - 5%7/)}2 - W)
Manﬁ)

2

<
P

IN

< 2eXP<4cu27’|B*II1 -

c Blogn _K
<2 — <C
- eXp<4C§((logn)2 8Cx > =

where K can be chosen as large as desired by picking C' large enough.
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We next verify that P> < Cn~ K. The term P> can be bounded by P> < P> i 1+Pej 9
where

T A anﬁ
P2, = <’ fZngX ﬁ%»ﬂez‘ 1(lei| > log”)’ > W)

P,]Q <‘\FZXUXT B% /) [ '1(|e¢] >logn)]‘ > CZ;:{/Z)

Since the variables e; are standard normal, it holds that

P> <P(’61‘ > log n for some 1<z<n)

€,J,1

(logn)? -K
< E P(le;| > logn) < ———— exp (— <Cn (S.15)
— V2r logn 2

for any n > 1, where K > 0 can be chosen as large as desired. Moreover, with the help of
condition (C2) and (S.12), we get that
n

_l_( ~
(2

=1 f
VY181 anvy'
S IFDe <C 1/4 Z ‘ez‘ 1 ‘€2| > log n)} 4”1/4

!

2 .,
vn !

Ellesl 1l > log )] > 27

anﬁ>

(logn)?\
_m4gywmwwu%w>&k)—o (5.16)

for n large enough, where the last equality follows from the fact that for any ¢ > 1,

Z]E lei| 1(]e;| > logn)] < Z {GZ‘GXP (clesl) 1(|ei| > logn)]

exp(clogn)

nEHEiI exp(clei])]

=o(1).

exp(clogn)
Combining (S.15) and (S.16), we can conclude that Pe>7j < On~K | where K can be picked
as large as desired.

Proof of Lemma A.3

The proof is based on standard concentration and maximal inequalities. According to the
Gaussian concentration inequality stated in Theorem 7.1 of Ledoux (2001) (see also Lemma
7 in Chernozhukov et al. (2015)), it holds that

1
P(max |G;/oj| > E[max ‘G]/O']‘] + 2log(n\/p)) < — (S.17)
1<5< nvp
where we use the notation a = E[GQ] Combining (S.17) with the maximal inequality

Elmaxi<j<p |Gj/0;]] < 210g(2p) (see e.g. Proposition 1.1.3 in Talagrand (2003)) and
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multiplying each term inside the probability of (S.17) with Cg = CxC, yields

]P(C’G 112;_2{}) |Gj/aj’ > Cg[\/Z log(2p) + v/2log(n \/p)]) < nl\/p (S.18)

Since 0 < C¢ for any j, it holds that Cg maxi<;<p |G;/0;| > maxi<j<p, |G;|. Plugging this
into (S.18), we arrive at

1
P(gﬁgp\(}jl > Cg[v/2log(2p) + \/210g(an)]> <

which implies that 7§ < Cg[v/2log(2p) + /2log(n V p)] for any a > 1/(n V p).

Proof of Lemma A.7

The proof is by contradiction. Suppose that P(maxi<j<, V; < 7Y) > 1 — a, in particular,
P(maxi<j<p V; < ) =1— a+n with some > 0. By Lemma A .4,

supp<1 max V1] < a) < b(6) := C5\/TV 10g(p/0)
teR 1<5<p

for any § > 0, which implies that

Pz Vo<t —9) =P o <o) P00 -0 < ax Vi <)

ZIP’( maijgyt‘x/) —sup}P’(‘ max Vj—t) §5>

Isj=p teR 1<5<p
>1—a+mn—>b(d).

Since b(6) — 0 as 6 — 0, we can find a specific 6 > 0 with b(§) < n. For this specific §, we
get that P(max;<j<, V; <Y — &) > 1 — «, which contradicts the definition of the quantile
7Y according to which 7Y = inf{q : P(maxi<j<, V; < ¢q) > 1 —a}.

Proof of Proposition A.11

We first have a closer look at the statistic 1% = [[(PX p)  ullew/v/n. Without loss of
generality, we let A = {1,...,pa} and B = {pa + 1,...,pa + pp} with ps + pp = p,
and we write X; 4 = (Xi1,... ,XipA)T to shorten notation. Moreover, we define 1;, =

n~ ) Xy X and set ¢y a = (i1, Pp,) T € RPA along with U4 = (¢ : 1 <
j k < pa) € RPAXPA_ Similarly, we let v, = E[Xij Xikl, ¥j4 = (¥j1,-..,%jp,) " and
Uy = (¥jr : 1 < j,k <pa). With this notation, the statistic IIy = [|[(PX 5) " ullsc/vn =
|(PX )" Pelloo/v/n = (PXB) T€|loo/+/T can be rewritten as I1% = maxjep (W} pl, where

JaB:\/ﬁ

and W = (W : j € B) is the vector with the elements W/p. In contrast to X;, the

random vectors Z; = (Zw : j € B) are not independent across 7 in general. In order to deal

1 - - . ; T G-
* — Z Zij&; with Zij = Xl'j — w;l:A\I/AlXi,A,
=1
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with this comphcatlon we introduce the auxiliary statistic I} = maxjcp |W B| where
Wg = (W5 :j€ B)and

1 < , _
W;B = ﬁ Z ZijEi with Zij = Xij — 1/1;A\IIA1X1',A~
=1

The random vectors Z; = (Z;; : j € B) have the following properties: (i) Unlike Zi,
they are independent across 4. (ii) Since |X;;| < Cx by (C2) and ¥4 is positive definite
by assumption, |Z;;| < Cz < oo with a constant Cz that depends only on the model
parameters ©’. (iii) Since Z;; can be expressed as Z;; = X;; — X Aﬁ( 7) with 90) introduced
before the formulation of Proposition 7, it holds that E[Z%] > cZ > 0 with 02Z = cy. We
denote the (1 — a)-quantile of I} by 7*5. In the course of the proof, we will establish that
Yo p 18 close to the quantile v, g of the statistic IT% in a suitable sense.

In addition to the above quantities, we introduce some auxiliary statistics that parallel
those defined in the proof of Theorem 1. To start with, let IT5(y, e) = max;ep \ijg(fy, e)l,
where Wg(v,e) = (W, p(v,¢) : j € B) with

N

1 4 .
Wijs(v.€) = 7 ; Zijlh 2 i€

and let 7, 5(7) be the (1 — a)-quantile of IIz(7,e) conditionally on X and e. With this
notation, the estimator 4, g can be expressed as

Ya,p = inf {7 > 0: 7tq p(7) <9 for all /' > ~}.

Moreover, let TI§ = max;ep |G;|, where Gp = (Gj : j € B) is a Gaussian random vector
with E[Gg] = E[W}] = 0 and E[GpG5] = E[W5 (W) '], and let ’yOCiB denote the (1 — a)-
quantile of I1%. Finally, define the statistic Ilg(e) = maxjep |Wj p(e)|, where Wg(e) =
(Wj.B(e) : j € B) with

W]B IZZ'ngzeza

and let v, p be the (1 — a))-quantile of IIp(e) conditionally on X and e.
We next define some expressions which play a similar role as the quantity A in the proof
of Theorem 1. In particular, we let Ay = |[n™1 Y7 | X; ael|2 along with

2.2 22
Ag = max|— E {Xiei - Xijfi]}'
1 n
= g o 3 DB
1 n
Ay = max| ;:1 {ZijZe} — Bl Zij Zire; ]}‘~
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Applying Markov’s inequality, we obtain that

P(Ay > n"3t°) < Cn~2 (S.19)
P(Ag > n~3H°) < Cn~ %, (S.20)

where we choose p to be a fixed constant with p € (0,1/2) and C' depends only on ©'.
Moreover, noticing that |Z;;| < Cz < oo and E[Zf]] > C2Z > 0 under the conditions
of Proposition 7, the same arguments as for Lemma A.1 yield the following: there exist
positive constants C, D and K depending only on ©' such that

P(As > D+/log(nV p)/n) < cn~ K (S.21)
P(A4 > D+/log(nV p)/n) < cn K. (S.22)

Taken together, (S.19)-(S.22) imply that the event

A= {(A1V Ag) <72t and (Ag V Ay) < Dy/log(n vV p)/n}

occurs with probability at least 1 — O(n™5 v n=2°).
With the above notation at hand, we now turn to the proof of Proposition A.11. In a
first step, we show that the quantiles of the statistic II; are close to those of the auxiliary

statistic IIZ" in the following sense: there exist positive constants C' and K depending only
on ©' such that

Votcn,B S YauB < Vacn,B (S.23)

*ok * sk
Yotin,B S Ya,B S Ya—(n,B

for any o € ((n,1 — ¢u) with ¢, = On~%. The proof of (S.23) is postponed until the
arguments for Proposition A.11 are complete. In the second step, we relate the quantiles
7;’:‘3 of ITF to the quantiles v, g of IIg(e). Arguments completely analogous to those for
Proposition A.10 yield the following: there exist positive constants C' and K depending
only on © such that on the event A,

Yotél, B < Va.B < Ya—tel,B (5.24)

for any a € (¢/,,1—¢/) with & = Cn~. In the third step, we relate the auxiliary statistic
I1p(e) to the criterion function II(7,e), which underlies the estimator 4, p. Straightfor-
ward calculations show that

(S.25)
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where Rp(vy,e) = Rp1(7,e) + Rpa(e) + Rp3(e) with

1 = A . 5
Rp1(7,e) = max % ; Zij{PXB(ﬁB - 53,%7) }Z €i

JjEB

R
_ T T Neer
Rpa(e) gleag \/ﬁ;( ij EE

jeB

1 <4
RB,g(e) = max % ; Zij(si — ui)ei .

The terms Rp1(7v,e), Rp2(e) and Rp3(e) have the following properties: on the event
SINA
v n

2 * !
P, <R371(’)/,6) - D(logn) vV H/BB”lV > < on—K (S.26)

/4

for every ' > v, where the constants C, D and K depend only on ©’. Moreover, on the
event A/,

1/2
P, (RB 2(e) > W) < Cn~2 (S.27)
b n —p
D1
P, (RB’g(e) > W) <Con K, (S.28)
n -p

where p € (0,1/2) has been introduced in (S.19)—(S.20) and the constants C, D and K
depend only on ©’. The proofs of (S.26)—(S.28) are provided below. With (S.23)—(S.28)
in place, we can now use the same arguments as in the proof of Theorem 1 (with minor

adjustments) to obtain that v, ,, 5 < 4a,p < 7,_,, 5 on the event S’*+ . NA,.

Proof of (S.23) We prove that

sup [P(ITf < t) —P(IIG <t)| < Cn™* (S.29)
teR
sup [P(IT < t) — P(IIG < ¢)| < Cn ™K, (S.30)
teR

where C' and K depend only on ©'. Applying the same arguments as in the proof of
Proposition A.9 to the statements (S.29) and (S.30) yields that

*ok G *ok * G *
,ya+Cn_K,B < Ya,B < ’yaan—K,B ryaJrCn_K,B < Ya,B < fyafc'n_K,B

and
G *ok G G * G
fYoc—&-Cn*K,B < Yo,B < Ya—Cn-K B ’Yoz—l—Cn*K,B < Ya,B < Pya—Cn*K,B7

from which (S.23) follows immediately.

It remains to prove (S.29) and (S.30). (S.29) is a direct consequence of Lemma A.6, since
0 < cycy <n ' 301 E[(Zijey)?] < C3C% < o0 and maxg—y o {n~' 300 E[| Zyjei 7 /CM}+
E[{max;cp | Zijei|/C}*] < 4 for C large enough, where we have used (C3) and the fact that
|Zij| < Cz < oo and E[Zf]] > ¢2 > 0 under the conditions of Proposition 7. For the proof
of (S.30), it suffices to show that

sup [P(Il; < t) —P(IlF <t)| < On™* (S.31)
teR

10
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with C and K depending only on @', since by (S.29),

sup [P(ITy < t) — P(IIF < t)| < sup [P} < t) — PTG < t)]

teR teR
+sup |P(ITy < t) — P(IIF < t))|
teR
<sup |P(IT; < t) — P <t)| + cnK.
teR

To prove (S.31), we fix a constant d € (0,1/2) and let ¢, = Dn\/log(n V p)/n, where
D is a sufficiently large constant that depends only on ©'. In the case that P(IT}; < t) >
P(IT5 < t), the difference P(IT; < t) — P(II; < t) can be bounded as follows:

PTG < t) — P(IT < t)
=P(ly <t+1p — g, Il — U <cpn)
+P(II < t+ 105 — g, [T — 1| > ¢,) — P(ITE < t)
<P <t+4c,) —PII5 <t)+P(|U5 — x| > cn)
< PTG <t+cn) — PG <t +cy)| + [P < t) — PG < 1)
+ PG <t +¢) — PG < t)| + P — ] > )
< PTG <t+cn) — PG <t +cy)| + [P < t) — PG < 1)
+ PG — t] < ¢,) + P(|IT — IT] > cn). (S.32)

For the case that P(II}; < t) < P(IT}y < t), we similarly get that

P(IT < t) — P(IT < t)
< |P(IF < t) = P(IG < t)] + [P <t —c,) — PIIF <t —c,)|
+P(|IIG — t| < ¢,) + P(II — I > ¢,). (S.33)

(5.32) and (S.33) immediately yield that

sup [P(II; < ¢) — P15 < t)] < 2sup |P(ITF < t) — P(IIF < )|
teR teR

+sup P(|TIE — 1] < c,)
teR

+ P(|I5 — | > cn).

Since sup,cp |P(IT% < ¢) — P14 < ¢)] < Cn~ K by (S.29) and sup,cp P(IE — ¢ < ¢,) <
Cn~ K by Lemma A.4, we further get that

sup |P(IT; < t) — P(IT5 < t)| < P(II —Ip| > c,) + Cn X,
teR

where C' and K depend only on ©’. To complete the proof of (S.31), we thus need to show
that

P(|IT} — IT| > ¢,) < Cn ™K (S.34)

11
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with C' and K depending only on ©’. To do so, we bound the term |II}; — IT%| by

n

\/15 > (Zij = Zijei

Ty — 3] < max

jeb =1
= max {q]Z)T \Ilil — qZ}T \i]*l}i iX AEi
JeB AT A AT A NG g 1A%

B

< < max ||t 4 — 1
< {30~ .

+ a4l 9531~ 5o | o= > Xuac,  s3)
From (S.21), it immediately follows that
P(max 5.4 = ralls > Dv/log(n v p)/n) < Cn " (5.36)
]P’(H\IIA — U 4ll2 > D+/log(n \/p)/n) <cn K (S.37)
with C, D and K depending only on ©’. Moreover, it holds that
IP’(H\I/Zl — U2 > DV/log(n \/p)/n) <cnK, (S.38)
which is a consequence of (S.37) and the fact that
R7Y3I|IR -
107 7 < R G (539

for every pair of invertible matrices ) and R that are close enough such that |R —
Q|l2|R~|2 < 1. Finally, a simple application of Markov’s inequality yields that

T
(|5 v
(\/ﬁ; i, A€

where C' depends only on ©'. The statement (S.34) follows upon applying the results (S.36)—
(S.38) and (S.40) to the bound (S.35). [ |

. nd) < Cn~2 (S.40)

Proof of (S.26) To start with, we bound Rp (7, e) by

Risa(r,e) < {1+ Vpama 9] 97"

X max

max . (S.41)

1 & .
— > X {PXp(Bs— B 2.)},e
vn i=1 vl
The same arguments as in the proof of Lemma A.2 yield that on the event 5’7,

P.( max
1<j<p

1 & L
Vi Z; Xig\PX 5 (05 — Op, 2.) }ie:
DUV ok s

nl/4

12



ESTIMATING THE LASSO’S EFFECTIVE NOISE

for every v/ >+, where C, D and K depend only on ©'. Moreover, on the event A/,

maXIIwJA j.all2 < Cy/log(n V p)/n (S.43)

194 = Wall2 < CVlog(n v p)/n (S.44)

193" = w32 < C\/log(n V p)/n, (S.45)

where C' is a sufficiently large constant that depends only on ©', and (S.45) is a simple

consequence of (S.44) and (S.39). To complete the proof, we apply (S.42)—(S.45) to the
bound (S.41), taking into account that ||¥ |2 < C < oo and maxjep [|1hjall2 < C < co. W

Proof of (S.27) We have the bound

. 1 &
T -1 T -1
Rpa(e) < max |95 495" =405 |, H\/ﬁ ;:1: Xiaciei| (S.46)

On the event A/,

1 n
P, <‘ 7 ; Xijeie;

1 n
>np> §n72p{EZX%€?} SniQP{E X2 2 -I—AQ}

=1
1
<n{CCE+n 72ty

for every j € A, which implies that ]P’e(\|n*1/2 Yoy Xiagieill2 > nP) < Cn~2° with C de-
pending only on ©’. To complete the proof, we apply this, (S.43)—(S.45) and the fact that
W H|2 < C < oo and maxjep ||¢9;,4]2 < C < 0o to the bound (S.46). [ |

Proof of (S.28) Let d,, = Dlog(n V p)/n'/?>=? and define

ez =e; 1(|e;| <logn) — Ele; 1(Je;| < logn)]
7 =e; 1(Je;| > logn) — Ele; 1(|e;| > logn)].

It holds that

")

jGB
<> {PZ+ P (S.47)
JEB
where
1 =~ d
<
Pe—J—Pe }—nZZw(EZ uj)e; >7n
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We first analyze the term st. With the help of (S.43)—(S.45), we obtain that on the
event A/,

| Zij| = 1 Xij — 0] a0 3" Xial < {1+ [95,4ll20 95 l2v/Pa}Cx < C

_ sl
lei — wil = {Xa(X )X a) ' X jehi| = ‘XIA\IlAl{nZX&Asg}
=1
C

L —
2 = nl/2-p’

. 1«
< VPACx 103 ||+ D Xeee
=1

which implies that |Z;;(e; — ui)eﬂ < C'logn/n'/?~r. Using Markov’s inequality, Pfj can

be bounded by
PS < E.exp ‘i iz(e —ug)es /exp (L%)
e,j — e M\/ﬁi:1 ig\&1 1)€; B
< {Ee exp(\;jlﬁ - ZAZ'j(EZ‘ — uz)eZS)
n ~ dn
+ Ec exp (—\;% Z Zij(ei — ui)ei§> }/exp (%), (S.48)

where we choose y1 = ¢,n'/?7 with ¢, > 0 so small that u|27;j(5¢ - uz)eﬂ/\/ﬁ < 1/2. Since
exp(z) <1+ + 22 for |z| < 1/2, we further get that

n n 5
0 , < 1Zij(gi — ui)e;
E. exp (i\/ﬁ ;:1 Zij(ei — ui)ei—) = HIEe exp (:I: ij i/ﬁ i)€;

2 n
= eXp<M > Zi(ei— uz')2E(€i<)2> < exp(c)

=1

with a sufficiently large constant ¢ that depends only on ©'. Plugging this into (S.48) yields
that
cuDlog(n V p)

Pfj < 2exp <c 5

) <on K, (S.49)

where K can be made as large as desired.
We next have a closer look at the term Pe>’j. Since maxjep | Y i Zij(ei — ui)| =

[(PX )" (e — Pe)|loo = 0, it holds that

n

1 =~ 1 .
7 ZZz’j<5i —uj)e;] = 7 Zij(ei — ui)ei 1(le;| > logn),
=1 =1
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and thus, as already proven in (S.15),
P2 < Pe(les] > logn for some 1 <7 <n) < cn K, (S.50)

where K can be made as large as desired. To complete the proof, we insert equations (S.49)
and (S.50) into (S.47) and invoke condition (C4). [ |

Proof of Equation (10)

Let Gi,...,G), be independent normal random variables with E[G;] = 0 for all j and
suppose w.l.o.g. that E[G?] =1 for all j. By Lemma A.7,

, G) _1_
P(lrgjasxp|Gj\ < ’7(1) =1-o. (S.51)

Moreover, standard arguments from classic extreme value theory show that

€T —x
]P( max |G| < — +bp> — e 2
1<j<p ap

as p — oo with a, = v/2logp and b, = \/2logp — {loglog p + log(4m)}/{2v/21og p}, which
in particular implies that for any fixed § > 0,

Tats
1< b)) > 1— .
IP( gfgp ]Gj‘ o) bp> 1—{axd} (S.52)

with 2445 = —log(—log(l — {a £6})/2). From (S.51) and (S.52), it follows that for any
null sequence of positive numbers 7,

Ta4s G G La—6
=+ bp < Vakn, S Van, S T+ b
P P
for p sufficiently large. We thus arrive at
Ta—§5 — Tats C

‘%Cj—np - 7§+np’ < =
v2logp v2logp

with some sufficiently large constant C.
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S.2. Robustness Checks

Choice of a for Tuning Parameter Calibration

Our estimates of the quantiles of the effective noise can be used for different tasks, with
inference and tuning parameter calibration as two examples. In inference, the choice of
« is determined by the significance level. In tuning parameter calibration, in contrast, «
can be chosen freely. In what follows, we examine how our tuning parameter calibration is
influenced by the choice of a. To do so, we repeat the simulation exercises from Section 5.2
(with k = 0.25) for three different values of «, namely « = 0.01,0.05,0.1. Choosing « in the
range between 0.01 and 0.1 in practice is sensible for the following reasons: The constraint
a < 0.1 makes sure that the finite sample guarantees for tuning parameter calibration
from Section 4.1 hold with reasonably high probability (= 90% or higher). The constraint
a > 0.01, on the other hand, ensures that the bias of the lasso does not get overly strong.
We thus restrict attention to a € [0.01,0.1], which is also the range of typical significance
levels in testing.

Figure S.1 reports the results for the Hamming loss. The grey-shaded area in each
panel depicts the histogram of the Hamming distances A H(B , B%) that are produced by our
estimator B over the N = 1000 simulation runs when « is set to 0.05, the red line depicts
the histogram for a = 0.01, and the blue line the histogram for o = 0.1. In addition,
the histogram of the cross-validated estimator is shown as a dotted line. Notice that the
grey-shaded histograms in Figure S.1 are the same as those in Figure 3a. Figures S.2-S.4
present the results for the ¢1-, ¢~ and prediction loss in an analogous way. Inspecting the
plots, we conclude that the precise choice of a only has a minor effect on tuning parameter
calibration with our method.

(n, p) = (500, 250) (n, p) = (500, 500) (n, p) = (500, 1000)
o o o
N T [QVIE N
— — —
[%2] — [%2] — [%2] —
c c c
L2 o | e o | e o |
g8 @ g % g @
=] . =] i =] i
£ = £
5 o _| » o | o o |
x < x < 5 <
o - o - o -
T 1T T 1T 1T 1 T 1T T 1T T 1 —r 1T T 1T 1T 1
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Hamming loss Hamming loss Hamming loss

Figure S.1: Histograms of the Hamming loss for different values of a.
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Figure S.2: Histograms of the ¢;-loss for different values of «.
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Figure S.3: Histograms of the f-loss for different values of a.
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Figure S.4: Histograms of the prediction loss for different values of «.
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Different Distributions of the Noise and the Design

In this section, we investigate how our simulation results are influenced by the distribution
of the noise ¢; and the design X;. In order to do so, we repeat the simulation exercises from
Sections 5.1-5.3 with non-normal noise variables ¢; and design vectors X;. Specifically,
we sample g; independently from a t-distribution with d degrees of freedom and variance
normalized to 1. Moreover, X; is drawn from a multivariate t-distribution with the same
number of degrees of freedom, where the covariance matrix is the same as in Section 5 (in
particular, it is given by (1 — k)I + KE with x = 0.25). We consider three different choices
of d, namely d € {5,10,30}. For small d, the ¢-distribution differs substantially from the
standard normal law, having much heavier tails. (Note in particular that d = 5 is the
smallest integer for which the ¢-distribution has 8 > 4 moments as required by condition
(C3).) As d increases, the t-distribution becomes less heavy-tailed and more akin to a
standard normal law.

We start with the simulations from Section 5.1, which concern the approximation quality
of our estimator j\a. To see how the quality of 5\@ depends on the distribution of the noise
and the design, we reproduce Figure 2 for the case of ¢-distributed errors and design vectors
with d € {5,10,30}. The results are reported in Figure S.5. As can be seen, the precision of
our estimator diminishes somewhat as d gets smaller. Nevertheless, even for the case d = 5,
we obtain quite precise results.

We now turn to the simulations on tuning parameter calibration from Section 5.2. We
reproduce Figures 3a, 4, 5 and 6, which correspond to the four different losses under con-
sideration, for the case of t-distributed noise terms and design vectors with d € {5, 10, 30}.
The results are presented in Figures S.6-S.9. The format is the same as in Figures 3a, 4,
5 and 6: the grey-shaded areas correspond to the histograms produced by our estimator,
the black lines correspond to the histograms of the oracle method, and the dotted lines
correspond to the histograms of the cross-validated lasso. In all of the considered cases,
the histograms of our estimator are extremely close to those of the oracle. Moreover, the
histograms are very similar to those of Figures 3a, 4, 5 and 6 for the Gaussian case.

We finally revisit the inference results from Section 5.3. As before, we repeat the simu-
lations with ¢-distributed noise and design vectors for d € {5,10,30}. The results are given
in Tables S.1-S.3. For all considered values of d, the size of the test under the null is close
to the target . Moreover, the power of the test is comparable to that in the Gaussian case,
even though it gets a bit lower for smaller d.

To summarize, the results demonstrate that our method does not require normally
distributed noise and design, which supports our general theory in the main part of the

paper.
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Figure S.5: Histograms of the estimates Ao for t-distributed noise variables and design vec-
tors with d € {5,10,30}.
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Figure S.6: Histograms of the Hamming loss for ¢-distributed noise variables and design
vectors with d € {5,10, 30}.
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Figure S.9: Histograms of the prediction loss for t-distributed noise variables and design
vectors with d € {5,10, 30}.
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(a) empirical size under Hp : f* =0

feasible test oracle test
a=001 =005 a=0.1 a=001 =005 a=0.1

(n,p) = (500,250) 0011  0.033  0.080 0.009  0.058  0.105
(n,p) = (500, 500) 0.009  0.036  0.078 0.013  0.054  0.094
(n,p) = (500,1000) 0.007  0.028  0.067 0.018  0.061  0.095

(b) empirical power under the alternative with SNR = 0.1

feasible test oracle test
a=001 =005 a=0.1 a=001 =005 a=0.1

(n,p) = (500, 250) 0.092 0.220 0.346 0.060 0.247 0.360
(n,p) = (500, 500) 0.100 0.247 0.401 0.107 0.298 0.419
(n,p) = (500, 1000) 0.085 0.223 0.365 0.139 0.309 0.397

(c) empirical power under the alternative with SNR = 0.2

feasible test oracle test
a=001 =005 a=0.1 a=001 =005 a=0.1

(n,p) = (500, 250) 0.471 0.741 0.856 0.602 0.836 0.917
(n,p) = (500, 500) 0.510 0.762 0.874 0.617 0.865 0.929
(n,p) = (500, 1000) 0.453 0.725 0.852 0.656 0.843 0.908

Table S.1: Empirical size under the null and power against different alternatives for t-
distributed noise variables and design vectors with d = 5.
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(a) empirical size under Hy : f* =0

feasible test oracle test
a=001 =005 a=0.1 a=001 =005 a=0.1

(n,p) = (500, 250) 0012 0054  0.087 0.011  0.045  0.095
(n,p) = (500,500) 0012  0.047  0.100 0.004  0.053  0.102
(n,p) = (500, 1000) 0.005  0.033  0.080 0.005  0.041  0.084

(b) empirical power under the alternative with SNR = 0.1

feasible test oracle test
a=001 =005 a=0.1 a=001 =005 a=0.1

(n,p) = (500, 250) 0.111 0.260 0.403 0.109 0.279 0.399
(n,p) = (500, 500) 0.119 0.270 0.393 0.096 0.297 0.418
(n,p) = (500, 1000) 0.106 0.247 0.374 0.088 0.262 0.376

(c) empirical power under the alternative with SNR = 0.2

feasible test oracle test
a=001 =005 a=0.1 a=001 =005 a=0.1

(n,p) = (500, 250) 0.607 0.822 0.922 0.649 0.860 0.938
(n,p) = (500, 500) 0.578 0.790 0.891 0.592 0.832 0.910
(n,p) = (500, 1000) 0.556 0.806 0.895 0.567 0.851 0.909

Table S.2: Empirical size under the null and power against different alternatives for t-
distributed noise variables and design vectors with d = 10.
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(a) empirical size under Hy : f* =0

feasible test oracle test
a=001 =005 a=0.1 a=001 =005 a=0.1

(n,p) = (500, 250) 0012 0057  0.111 0.007  0.056  0.105
(n,p) = (500,500) 0019  0.057  0.099 0012 0070  0.115
(n,p) = (500, 1000) 0011 0044  0.082 0.004  0.055  0.101

(b) empirical power under the alternative with SNR = 0.1

feasible test oracle test
a=001 =005 a=0.1 a=001 =005 a=0.1

(n,p) = (500, 250) 0120 0275  0.421 0113 0288  0.417
(n,p) = (500, 500) 0130 0278  0.391 0129 0335  0.437
(n,p) = (500, 1000) 0.140  0.287  0.407 0119  0.327  0.446

(c) empirical power under the alternative with SNR = 0.2

feasible test oracle test
a=001 =005 a=0.1 a=001 =005 a=0.1

(n,p) = (500, 250) 0629  0.824  0.908 0.653  0.855  0.922
(n,p) = (500,500) 0.605  0.823  0.905 0.660  0.892  0.935
(n,p) = (500, 1000) 0619  0.831  0.906 0620  0.854  0.935

Table S.3: Empirical size under the null and power against different alternatives for t-
distributed noise variables and design vectors with d = 30.
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Choice of L and M

When implementing our method, we need to choose the number of bootstrap iterations
L as well as the grid size M for computing the lasso estimates. We have experimented
with different choices of L and M and found that they have little effect on the simulation
results. To illustrate this, we consider the same simulation setting as in Section 5.1 and
produce N = 1000 estimates of A, for different choices of (L, M). In addition to the choice
(L, M) = (100, 100) which is used in Section 5, we consider the choices (L, M) = (200, 200)
and (L, M) = (300,300). Figure S.10 reports the results. In each panel, the grey-shaded
area is the histogram of the N = 1000 estimates of A, for the choice (L, M) = (100, 100),
the blue line is the histogram for (L, M) = (200,200), and the red line is the histogram for
(L, M) = (300,300). As one can see, the histograms are very similar across the different
choices of (L, M), which suggests that the precise choice of L and M has little effect on our
method.
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Figure S.10: Histograms of the estimates \, for different choices of (L, M).
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