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S.1. Technical Details

In what follows, we provide the technical details and proofs that are omitted in the paper.

Proof of Lemma 4

To show the result, we slightly generalize the proof of Lemma 5 in Chichignoud et al. (2016).
Standard arguments from the lasso literature (Bühlmann and van de Geer, 2011) show that
on the event Tλ,

‖β̂λ′,S{ − β∗S{‖1 ≤
2 + δ

δ
‖β̂λ′,S − β∗S‖1,

that is, β̂λ′ − β∗ ∈ Cδ(S) for every λ′ ≥ (1 + δ)λ. Under the `∞-restricted eigenvalue
condition (13), we thus obtain that on Tλ,

φ‖β̂λ′ − β∗‖∞ ≤
‖X>X(β̂λ′ − β∗)‖∞

n
(S.1)

for every λ′ ≥ (1 + δ)λ. Moreover, since the lasso satisfies the zero-subgradient condition
2X>(Xβ̂λ′ − Y )/n + λ′ẑ = 0 with ẑ ∈ Rp belonging to the subdifferential of the function
f(β) = ‖β‖1, it holds that

2X>X

n
(β̂λ′ − β∗) = −λ′ẑ +

2X>ε

n
.

Taking the supremum norm on both sides of this equation and taking into account that
2‖X>ε‖∞/n ≤ λ on the event Tλ, we obtain that

2‖X>X(β̂λ′ − β∗)‖∞
n

≤ λ′ + 2‖X>ε‖∞
n

≤ 2λ′ (S.2)

for every λ′ ≥ (1+ δ)λ on Tλ. The statement of Lemma 4 follows upon combining (S.1) and
(S.2).
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Proof of Lemma A.1

Let δ be a small positive constant with 0 < δ < (θ− 4)/θ and θ > 4 defined in (C3). Define
Zijk = XijXikε

2
i along with Zijk = Z≤ijk + Z>ijk, where

Z≤ijk = Zijk 1
(
|εi| ≤ n

1−δ
4
)

and Z>ijk = Zijk 1
(
|εi| > n

1−δ
4
)
,

and write ∆ ≤ ∆≤ + ∆> with

∆≤ = max
1≤j,k≤p

∣∣∣∣ 1n
n∑
i=1

(Z≤ijk − EZ≤ijk)
∣∣∣∣

∆> = max
1≤j,k≤p

∣∣∣∣ 1n
n∑
i=1

(Z>ijk − EZ>ijk)
∣∣∣∣.

In what follows, we prove that

P
(
∆≤ > B

√
log(n ∨ p)/n

)
≤ Cn−K (S.3)

P
(
∆> > B

√
log(n ∨ p)/n

)
≤ Cn1−( 1−δ

4
)θ, (S.4)

where B, C and K are positive constants depending only on the parameters Θ, and K can
be made as large as desired by choosing B and C large enough. Lemma A.1 is a direct
consequence of the two statements (S.3) and (S.4).

We start with the proof of (S.3). A simple union bound yields that

P
(
∆≤ > B

√
log(n ∨ p)/n

)
≤

p∑
j,k=1

P≤jk, (S.5)

where

P≤jk = P
(∣∣∣ 1√

n

n∑
i=1

Uijk

∣∣∣ > B
√

log(n ∨ p)
)

with Uijk = Z≤ijk − EZ≤ijk. Using Markov’s inequality, P≤jk can be bounded by

P≤jk ≤ exp
(
− µB

√
log(n ∨ p)

)
E
[
exp

(
µ
∣∣∣ 1√
n

n∑
i=1

Uijk

∣∣∣)]

≤ exp
(
− µB

√
log(n ∨ p)

){
E
[
exp

(
µ√
n

n∑
i=1

Uijk

)]

+ E
[
exp

(
− µ√

n

n∑
i=1

Uijk

)]}
(S.6)

with an arbitrary constant µ > 0. We now choose µ =
√

log(n ∨ p)/Cµ, where the constant
Cµ > 0 is picked so large that µ|Uijk|/

√
n ≤ 1/2 for all n. With this choice of µ, we obtain
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that

E
[
exp

(
± µ√

n

n∑
i=1

Uijk

)]
=

n∏
i=1

E
[
exp

(
± µ√

n
Uijk

)]
≤

n∏
i=1

(
1 +

µ2

n
E[U2

ijk]

)

≤
n∏
i=1

exp

(
µ2

n
E[U2

ijk]

)
≤ exp(CUµ

2),

where the first inequality follows from the fact that exp(x) ≤ 1 + x+ x2 for |x| ≤ 1/2 and
CU <∞ is an upper bound on E[U2

ijk]. Plugging this into (S.6) gives

P≤jk ≤ 2 exp
(
− µB

√
log(n ∨ p) + CUµ

2
)

≤ 2 exp

(
−
{ B
Cµ
− CU
C2
µ

}
log(n ∨ p)

)
= 2(n ∨ p)

CU
C2
µ
− B
Cµ .

Inserting this bound into (S.5), we finally obtain that

P
(
∆≤ > B

√
log(n ∨ p)/n

)
≤ 2p2(n ∨ p)

CU
C2
µ
− B
Cµ ≤ Cn−K ,

whereK > 0 can be chosen as large as desired by picking B sufficiently large. This completes
the proof of (S.3).

We next turn to the proof of (S.4). It holds that

P
(
∆> > B

√
log(n ∨ p)/n

)
≤ P>1 + P>2 ,

where

P>1 := P
(

max
1≤j,k≤p

∣∣∣ 1
n

n∑
i=1

Z>ijk

∣∣∣ > B

2

√
log(n ∨ p)

n

)
≤ P

(
|εi| > n

1−δ
4 for some 1 ≤ i ≤ n

)
≤

n∑
i=1

P
(
|εi| > n

1−δ
4
)
≤

n∑
i=1

E
[
|εi|θ

]
/n( 1−δ

4
)θ

≤ Cθn
1−( 1−δ

4
)θ (S.7)

and

P>2 := P
(

max
1≤j,k≤p

∣∣∣ 1
n

n∑
i=1

EZ>ijk
∣∣∣ > B

2

√
log(n ∨ p)

n

)
= 0 (S.8)

for sufficiently large n, since

max
1≤j,k≤p

∣∣∣ 1
n

n∑
i=1

EZ>ijk
∣∣∣ ≤ C2

X max
1≤i≤n

E
[
ε2
i 1(|εi| > n

1−δ
4 )
]

≤ C2
X max

1≤i≤n
E
[
|εi|θ

/
n

(θ−2)(1−δ)
4

]
≤ C2

XCθn
− (θ−2)(1−δ)

4 = o

(√
log(n ∨ p)

n

)
.

(S.4) follows upon combining (S.7) and (S.8).
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Proof of Lemma A.2

Suppose we are on the event Sγ and let γ′ ≥ γ. In the case that β∗ = 0, it holds that

β̂2γ′/
√
n = 0 for all γ′ ≥ γ, implying that R(γ′, e) = 0. Hence, Lemma A.2 trivially

holds true if β∗ = 0. We can thus restrict attention to the case that β∗ 6= 0. Define
an = B(log n)2

√
‖β∗‖1 with some B > 0 and write ei = e≤i + e>i with

e≤i = ei 1(|ei| ≤ log n)− E[ei 1(|ei| ≤ log n)]

e>i = ei 1(|ei| > log n)− E[ei 1(|ei| > log n)].

With this notation, we get that

Pe
(
R(γ′, e) >

an
√
γ′

n1/4

)
= Pe

(
max

1≤j≤p

∣∣∣ 1√
n

n∑
i=1

XijX
>
i

(
β∗ − β̂ 2√

n
γ′
)
ei

∣∣∣ > an
√
γ′

n1/4

)

≤
p∑
j=1

Pe
(∣∣∣ 1√

n

n∑
i=1

XijX
>
i

(
β∗ − β̂ 2√

n
γ′
)
ei

∣∣∣ > an
√
γ′

n1/4

)

≤
p∑
j=1

{
P≤e,j + P>e,j

}
, (S.9)

where

P≤e,j = Pe
(∣∣∣ 1√

n

n∑
i=1

XijX
>
i

(
β∗ − β̂ 2√

n
γ′
)
e≤i

∣∣∣ > an
√
γ′

2n1/4

)

P>e,j = Pe
(∣∣∣ 1√

n

n∑
i=1

XijX
>
i

(
β∗ − β̂ 2√

n
γ′
)
e>i

∣∣∣ > an
√
γ′

2n1/4

)
.

In what follows, we prove that for every j ∈ {1, . . . , p},

P≤e,j ≤ Cn
−K and P>e,j ≤ Cn

−K , (S.10)

where the constants C and K depend only on the parameters Θ, and K can be chosen as
large as desired by picking C large enough. Plugging this into (S.9) immediately yields the
statement of Lemma A.2.

We first show that P≤e,j ≤ Cn−K . To do so, we make use of the prediction bound (2)
which implies that

1

n

n∑
i=1

{
X>i (β∗ − β̂ 2√

n
γ′)
}2 ≤ 4γ′‖β∗‖1√

n
(S.11)

for any γ′ ≥ γ on the event Sγ . From this, it immediately follows that on Sγ ,

∣∣∣∣X>i (β∗ − β̂ 2√
n
γ′)

√
n

∣∣∣∣ ≤ 2
√
γ′‖β∗‖1
n1/4

(S.12)
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for all i. Using Markov’s inequality, P≤e,j can be bounded by

P≤e,j = Pe
(∣∣∣ 1

n1/4

n∑
i=1

XijX
>
i

(
β∗ − β̂ 2√

n
γ′
)
e≤i

∣∣∣ > an
√
γ′

2

)

≤ Ee exp

(
µ
∣∣∣ 1

n1/4

n∑
i=1

XijX
>
i

(
β∗ − β̂ 2√

n
γ′
)
e≤i

∣∣∣)/ exp

(
µan
√
γ′

2

)

≤ Ee exp

(
µ

n1/4

n∑
i=1

XijX
>
i

(
β∗ − β̂ 2√

n
γ′
)
e≤i

)/
exp

(
µan
√
γ′

2

)

+ Ee exp

(
− µ

n1/4

n∑
i=1

XijX
>
i

(
β∗ − β̂ 2√

n
γ′
)
e≤i

)/
exp

(
µan
√
γ′

2

)
(S.13)

with any µ > 0. We make use of this bound with the particular choice µ = (4CX
√
γ′‖β∗‖1

log n)−1. Since |µXijX
>
i (β∗ − β̂2γ′/

√
n)e≤i /n

1/4| ≤ 1/2 by condition (C2) and (S.12) and

since exp(x) ≤ 1 + x+ x2 for any |x| ≤ 1/2, we obtain that

Ee exp

(
± µ

n1/4

n∑
i=1

XijX
>
i

(
β∗ − β̂ 2√

n
γ′
)
e≤i

)

=
n∏
i=1

Ee exp

(
±µXij

X>i (β∗ − β̂ 2√
n
γ′)

n1/4
e≤i

)

≤
n∏
i=1

{
1 + µ2X2

ij

(X>i (β∗ − β̂ 2√
n
γ′)

n1/4

)2

E(e≤i )2

}

≤
n∏
i=1

exp

(
µ2X2

ij

(X>i (β∗ − β̂ 2√
n
γ′)

n1/4

)2

E(e≤i )2

)

≤ exp

(
cµ2

√
n

n∑
i=1

{
X>i (β∗ − β̂ 2√

n
γ′)
}2
)

(S.14)

with a sufficiently large c > 0. Plugging (S.14) into (S.13) and using (S.11) along with the
definition of µ, we arrive at

P≤e,j ≤ 2 exp

(
cµ2

√
n

n∑
i=1

{
X>i (β∗ − β̂ 2√

n
γ′)
}2 − µan

√
γ′

2

)
≤ 2 exp

(
4cµ2γ′‖β∗‖1 −

µan
√
γ′

2

)
≤ 2 exp

(
c

4C2
X(log n)2

− B log n

8CX

)
≤ Cn−K ,

where K can be chosen as large as desired by picking C large enough.
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We next verify that P>e,j ≤ Cn−K . The term P>e,j can be bounded by P>e,j ≤ P
>
e,j,1+P>e,j,2,

where

P>e,j,1 = Pe
(∣∣∣ 1√

n

n∑
i=1

XijX
>
i (β∗ − β̂ 2√

n
γ′)ei 1(|ei| > log n)

∣∣∣ > an
√
γ′

4n1/4

)

P>e,j,2 = Pe
(∣∣∣ 1√

n

n∑
i=1

XijX
>
i (β∗ − β̂ 2√

n
γ′)E[ei 1(|ei| > log n)]

∣∣∣ > an
√
γ′

4n1/4

)
.

Since the variables ei are standard normal, it holds that

P>e,j,1 ≤ P
(
|ei| > log n for some 1 ≤ i ≤ n

)
≤

n∑
i=1

P
(
|ei| > log n

)
≤ 2n√

2π log n
exp

(
−(log n)2

2

)
≤ Cn−K (S.15)

for any n > 1, where K > 0 can be chosen as large as desired. Moreover, with the help of
condition (C2) and (S.12), we get that

P>e,j,2 ≤ Pe
( n∑
i=1

|Xij |
∣∣∣∣X>i (β∗ − β̂ 2√

n
γ′)

√
n

∣∣∣∣E[|ei|1(|ei| > log n)] >
an
√
γ′

4n1/4

)

≤ Pe
(
CX

2
√
γ′‖β∗‖1
n1/4

n∑
i=1

E[|ei|1(|ei| > log n)] >
an
√
γ′

4n1/4

)

≤ Pe
( n∑
i=1

E[|ei|1(|ei| > log n)] >
B(log n)2

8CX

)
= 0 (S.16)

for n large enough, where the last equality follows from the fact that for any c > 1,

n∑
i=1

E[|ei|1(|ei| > log n)] ≤
n∑
i=1

E
[
|ei| exp(c|ei|)
exp(c log n)

1(|ei| > log n)

]
≤ nE[|ei| exp(c|ei|)]

exp(c log n)
= o(1).

Combining (S.15) and (S.16), we can conclude that P>e,j ≤ Cn−K , where K can be picked
as large as desired.

Proof of Lemma A.3

The proof is based on standard concentration and maximal inequalities. According to the
Gaussian concentration inequality stated in Theorem 7.1 of Ledoux (2001) (see also Lemma
7 in Chernozhukov et al. (2015)), it holds that

P
(

max
1≤j≤p

∣∣Gj/σj∣∣ ≥ E
[

max
1≤j≤p

∣∣Gj/σj∣∣]+
√

2 log(n ∨ p)
)
≤ 1

n ∨ p
, (S.17)

where we use the notation σ2
j = E[G2

j ]. Combining (S.17) with the maximal inequality

E[max1≤j≤p |Gj/σj |] ≤
√

2 log(2p) (see e.g. Proposition 1.1.3 in Talagrand (2003)) and
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multiplying each term inside the probability of (S.17) with CG = CXCσ yields

P
(
CG max

1≤j≤p

∣∣Gj/σj∣∣ ≥ CG[√2 log(2p) +
√

2 log(n ∨ p)
])
≤ 1

n ∨ p
. (S.18)

Since σj ≤ CG for any j, it holds that CG max1≤j≤p |Gj/σj | ≥ max1≤j≤p |Gj |. Plugging this
into (S.18), we arrive at

P
(

max
1≤j≤p

|Gj | ≥ CG
[√

2 log(2p) +
√

2 log(n ∨ p)
])
≤ 1

n ∨ p
,

which implies that γGα ≤ CG[
√

2 log(2p) +
√

2 log(n ∨ p)] for any α > 1/(n ∨ p).

Proof of Lemma A.7

The proof is by contradiction. Suppose that P(max1≤j≤p Vj ≤ γVα ) > 1 − α, in particular,
P(max1≤j≤p Vj ≤ γVα ) = 1− α+ η with some η > 0. By Lemma A.4,

sup
t∈R

P
(∣∣∣ max

1≤j≤p
Vj − t

∣∣∣ ≤ δ) ≤ b(δ) := Cδ
√

1 ∨ log(p/δ)

for any δ > 0, which implies that

P
(

max
1≤j≤p

Vj ≤ γVα − δ
)

= P
(

max
1≤j≤p

Vj ≤ γVα
)
− P

(
γVα − δ < max

1≤j≤p
Vj ≤ γVα

)
≥ P

(
max

1≤j≤p
Vj ≤ γVα

)
− sup

t∈R
P
(∣∣∣ max

1≤j≤p
Vj − t

∣∣∣ ≤ δ)
≥ 1− α+ η − b(δ).

Since b(δ)→ 0 as δ → 0, we can find a specific δ > 0 with b(δ) < η. For this specific δ, we
get that P(max1≤j≤p Vj ≤ γVα − δ) > 1− α, which contradicts the definition of the quantile
γVα according to which γVα = inf{q : P(max1≤j≤p Vj ≤ q) ≥ 1− α}.

Proof of Proposition A.11

We first have a closer look at the statistic Π∗B := ‖(PXB)>u‖∞/
√
n. Without loss of

generality, we let A = {1, . . . , pA} and B = {pA + 1, . . . , pA + pB} with pA + pB = p,
and we write Xi,A = (Xi1, . . . , XipA)> to shorten notation. Moreover, we define ψ̂jk =

n−1
∑n

i=1XijXik and set ψ̂j,A = (ψ̂j1, . . . , ψ̂jpA)> ∈ RpA along with Ψ̂A = (ψ̂jk : 1 ≤
j, k ≤ pA) ∈ RpA×pA . Similarly, we let ψjk = E[XijXik], ψj,A = (ψj1, . . . , ψjpA)> and
ΨA = (ψjk : 1 ≤ j, k ≤ pA). With this notation, the statistic Π∗B = ‖(PXB)>u‖∞/

√
n =

‖(PXB)>Pε‖∞/
√
n = ‖(PXB)>ε‖∞/

√
n can be rewritten as Π∗B = maxj∈B |W ∗j,B|, where

W ∗j,B =
1√
n

n∑
i=1

Ẑijεi with Ẑij = Xij − ψ̂>j,AΨ̂−1
A Xi,A,

and W ∗B = (W ∗j,B : j ∈ B) is the vector with the elements W ∗j,B. In contrast to Xi, the

random vectors Ẑi = (Ẑij : j ∈ B) are not independent across i in general. In order to deal
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with this complication, we introduce the auxiliary statistic Π∗∗B = maxj∈B |W ∗∗j,B|, where
W ∗∗B = (W ∗∗j,B : j ∈ B) and

W ∗∗j,B =
1√
n

n∑
i=1

Zijεi with Zij = Xij − ψ>j,AΨ−1
A Xi,A.

The random vectors Zi = (Zij : j ∈ B) have the following properties: (i) Unlike Ẑi,
they are independent across i. (ii) Since |Xij | ≤ CX by (C2) and ΨA is positive definite
by assumption, |Zij | ≤ CZ < ∞ with a constant CZ that depends only on the model
parameters Θ′. (iii) Since Zij can be expressed as Zij = Xij−X>i,Aϑ(j) with ϑ(j) introduced

before the formulation of Proposition 7, it holds that E[Z2
ij ] ≥ c2

Z > 0 with c2
Z = cϑ. We

denote the (1−α)-quantile of Π∗∗B by γ∗∗α,B. In the course of the proof, we will establish that
γ∗∗α,B is close to the quantile γ∗α,B of the statistic Π∗B in a suitable sense.

In addition to the above quantities, we introduce some auxiliary statistics that parallel
those defined in the proof of Theorem 1. To start with, let Π̂B(γ, e) = maxj∈B |Ŵj,B(γ, e)|,
where ŴB(γ, e) = (Ŵj,B(γ, e) : j ∈ B) with

Ŵj,B(γ, e) =
1√
n

n∑
i=1

Ẑij û 2√
n
γ,iei,

and let π̂α,B(γ) be the (1 − α)-quantile of Π̂B(γ, e) conditionally on X and ε. With this
notation, the estimator γ̂α,B can be expressed as

γ̂α,B = inf
{
γ > 0 : π̂α,B(γ′) ≤ γ′ for all γ′ ≥ γ

}
.

Moreover, let ΠG
B = maxj∈B |Gj |, where GB = (Gj : j ∈ B) is a Gaussian random vector

with E[GB] = E[W ∗∗B ] = 0 and E[GBG
>
B] = E[W ∗∗B (W ∗∗B )>], and let γGα,B denote the (1−α)-

quantile of ΠG
B. Finally, define the statistic ΠB(e) = maxj∈B |Wj,B(e)|, where WB(e) =

(Wj,B(e) : j ∈ B) with

Wj,B(e) =
1√
n

n∑
i=1

Zijεiei,

and let γα,B be the (1− α)-quantile of ΠB(e) conditionally on X and ε.

We next define some expressions which play a similar role as the quantity ∆ in the proof
of Theorem 1. In particular, we let ∆1 = ‖n−1

∑n
i=1Xi,Aεi‖2 along with

∆2 = max
j∈A

∣∣∣∣ 1n
n∑
i=1

{
X2
ijε

2
i − E[X2

ijε
2
i ]
}∣∣∣∣

∆3 = max
1≤j,k≤p

∣∣∣∣ 1n
n∑
i=1

{
XijXik − E[XijXik]

}∣∣∣∣
∆4 = max

j,k∈B

∣∣∣∣ 1n
n∑
i=1

{
ZijZikε

2
i − E[ZijZikε

2
i ]
}∣∣∣∣.
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Applying Markov’s inequality, we obtain that

P
(
∆1 > n−

1
2

+ρ
)
≤ Cn−2ρ (S.19)

P
(
∆2 > n−

1
2

+ρ
)
≤ Cn−2ρ, (S.20)

where we choose ρ to be a fixed constant with ρ ∈ (0, 1/2) and C depends only on Θ′.
Moreover, noticing that |Zij | ≤ CZ < ∞ and E[Z2

ij ] ≥ c2
Z > 0 under the conditions

of Proposition 7, the same arguments as for Lemma A.1 yield the following: there exist
positive constants C, D and K depending only on Θ′ such that

P
(
∆3 > D

√
log(n ∨ p)/n

)
≤ Cn−K (S.21)

P
(
∆4 > D

√
log(n ∨ p)/n

)
≤ Cn−K . (S.22)

Taken together, (S.19)–(S.22) imply that the event

A′n :=
{

(∆1 ∨∆2) ≤ n−
1
2

+ρ and (∆3 ∨∆4) ≤ D
√

log(n ∨ p)/n
}

occurs with probability at least 1−O(n−K ∨ n−2ρ).

With the above notation at hand, we now turn to the proof of Proposition A.11. In a
first step, we show that the quantiles of the statistic Π∗B are close to those of the auxiliary
statistic Π∗∗B in the following sense: there exist positive constants C and K depending only
on Θ′ such that

γ∗α+ζn,B ≤ γ
∗∗
α,B ≤ γ∗α−ζn,B

γ∗∗α+ζn,B ≤ γ
∗
α,B ≤ γ∗∗α−ζn,B

(S.23)

for any α ∈ (ζn, 1 − ζn) with ζn = Cn−K . The proof of (S.23) is postponed until the
arguments for Proposition A.11 are complete. In the second step, we relate the quantiles
γ∗∗α,B of Π∗∗B to the quantiles γα,B of ΠB(e). Arguments completely analogous to those for
Proposition A.10 yield the following: there exist positive constants C and K depending
only on Θ′ such that on the event A′n,

γα+ξ′n,B ≤ γ
∗∗
α,B ≤ γα−ξ′n,B

γ∗∗α+ξ′n,B
≤ γα,B ≤ γ∗∗α−ξ′n,B

(S.24)

for any α ∈ (ξ′n, 1− ξ′n) with ξ′n = Cn−K . In the third step, we relate the auxiliary statistic
ΠB(e) to the criterion function Π̂B(γ, e), which underlies the estimator γ̂α,B. Straightfor-
ward calculations show that

Π̂B(γ, e)

{
≤ ΠB(e) +RB(γ, e)

≥ ΠB(e)−RB(γ, e),
(S.25)
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where RB(γ, e) = RB,1(γ, e) +RB,2(e) +RB,3(e) with

RB,1(γ, e) = max
j∈B

∣∣∣∣ 1√
n

n∑
i=1

Ẑij
{
PXB

(
β∗B − β̂B, 2√

n
γ

)}
i
ei

∣∣∣∣
RB,2(e) = max

j∈B

∣∣∣∣ 1√
n

n∑
i=1

(Ẑij − Zij)εiei
∣∣∣∣

RB,3(e) = max
j∈B

∣∣∣∣ 1√
n

n∑
i=1

Ẑij(εi − ui)ei
∣∣∣∣.

The terms RB,1(γ, e), RB,2(e) and RB,3(e) have the following properties: on the event
S′γ ∩ A′n,

Pe
(
RB,1(γ′, e) >

D(log n)2
√
‖β∗B‖1γ′

n1/4

)
≤ Cn−K (S.26)

for every γ′ ≥ γ, where the constants C, D and K depend only on Θ′. Moreover, on the
event A′n,

Pe
(
RB,2(e) >

D log1/2(n ∨ p)
n1/2−ρ

)
≤ Cn−2ρ (S.27)

Pe
(
RB,3(e) >

D log(n ∨ p)
n1/2−ρ

)
≤ Cn−K , (S.28)

where ρ ∈ (0, 1/2) has been introduced in (S.19)–(S.20) and the constants C, D and K
depend only on Θ′. The proofs of (S.26)–(S.28) are provided below. With (S.23)–(S.28)
in place, we can now use the same arguments as in the proof of Theorem 1 (with minor
adjustments) to obtain that γ∗α+ν′n,B

≤ γ̂α,B ≤ γ∗α−ν′n,B on the event S ′γ∗
α+ν′n,B

∩ A′n.

Proof of (S.23) We prove that

sup
t∈R

∣∣P(Π∗∗B ≤ t)− P(ΠG
B ≤ t)

∣∣ ≤ Cn−K (S.29)

sup
t∈R

∣∣P(Π∗B ≤ t)− P(ΠG
B ≤ t)

∣∣ ≤ Cn−K , (S.30)

where C and K depend only on Θ′. Applying the same arguments as in the proof of
Proposition A.9 to the statements (S.29) and (S.30) yields that

γ∗∗α+Cn−K ,B ≤ γ
G
α,B ≤ γ∗∗α−Cn−K ,B

γGα+Cn−K ,B ≤ γ
∗∗
α,B ≤ γGα−Cn−K ,B

and
γ∗α+Cn−K ,B ≤ γ

G
α,B ≤ γ∗α−Cn−K ,B

γGα+Cn−K ,B ≤ γ
∗
α,B ≤ γGα−Cn−K ,B,

from which (S.23) follows immediately.
It remains to prove (S.29) and (S.30). (S.29) is a direct consequence of Lemma A.6, since

0 < c2
σc

2
Z ≤ n−1

∑n
i=1 E[(Zijεi)

2] ≤ C2
σC

2
Z <∞ and maxk=1,2{n−1

∑n
i=1 E[|Zijεi|2+k/Ck]}+

E[{maxj∈B |Zijεi|/C}4] ≤ 4 for C large enough, where we have used (C3) and the fact that
|Zij | ≤ CZ < ∞ and E[Z2

ij ] ≥ c2
Z > 0 under the conditions of Proposition 7. For the proof

of (S.30), it suffices to show that

sup
t∈R

∣∣P(Π∗B ≤ t)− P(Π∗∗B ≤ t)
∣∣ ≤ Cn−K (S.31)

10
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with C and K depending only on Θ′, since by (S.29),

sup
t∈R

∣∣P(Π∗B ≤ t)− P(ΠG
B ≤ t)

∣∣ ≤ sup
t∈R

∣∣P(Π∗B ≤ t)− P(Π∗∗B ≤ t)
∣∣

+ sup
t∈R

∣∣P(Π∗∗B ≤ t)− P(ΠG
B ≤ t)

∣∣
≤ sup

t∈R

∣∣P(Π∗B ≤ t)− P(Π∗∗B ≤ t)
∣∣+ Cn−K .

To prove (S.31), we fix a constant d ∈ (0, 1/2) and let cn = Dnd
√

log(n ∨ p)/n, where
D is a sufficiently large constant that depends only on Θ′. In the case that P(Π∗B ≤ t) ≥
P(Π∗∗B ≤ t), the difference P(Π∗B ≤ t)− P(Π∗∗B ≤ t) can be bounded as follows:

P(Π∗B ≤ t)− P(Π∗∗B ≤ t)
= P(Π∗∗B ≤ t+ Π∗∗B −Π∗B, |Π∗∗B −Π∗B| ≤ cn)

+ P(Π∗∗B ≤ t+ Π∗∗B −Π∗B, |Π∗∗B −Π∗B| > cn)− P(Π∗∗B ≤ t)
≤ P(Π∗∗B ≤ t+ cn)− P(Π∗∗B ≤ t) + P(|Π∗∗B −Π∗B| > cn)

≤
∣∣P(Π∗∗B ≤ t+ cn)− P(ΠG

B ≤ t+ cn)
∣∣+
∣∣P(Π∗∗B ≤ t)− P(ΠG

B ≤ t)
∣∣

+
∣∣P(ΠG

B ≤ t+ cn)− P(ΠG
B ≤ t)

∣∣+ P(|Π∗∗B −Π∗B| > cn)

≤
∣∣P(Π∗∗B ≤ t+ cn)− P(ΠG

B ≤ t+ cn)
∣∣+
∣∣P(Π∗∗B ≤ t)− P(ΠG

B ≤ t)
∣∣

+ P(|ΠG
B − t| ≤ cn) + P(|Π∗∗B −Π∗B| > cn). (S.32)

For the case that P(Π∗B ≤ t) < P(Π∗∗B ≤ t), we similarly get that

P(Π∗∗B ≤ t)− P(Π∗B ≤ t)
≤
∣∣P(Π∗∗B ≤ t)− P(ΠG

B ≤ t)
∣∣+
∣∣P(Π∗∗B ≤ t− cn)− P(ΠG

B ≤ t− cn)
∣∣

+ P(|ΠG
B − t| ≤ cn) + P(|Π∗∗B −Π∗B| > cn). (S.33)

(S.32) and (S.33) immediately yield that

sup
t∈R

∣∣P(Π∗B ≤ t)− P(Π∗∗B ≤ t)
∣∣ ≤ 2 sup

t∈R

∣∣P(Π∗∗B ≤ t)− P(ΠG
B ≤ t)

∣∣
+ sup

t∈R
P(|ΠG

B − t| ≤ cn)

+ P(|Π∗∗B −Π∗B| > cn).

Since supt∈R |P(Π∗∗B ≤ t) − P(ΠG
B ≤ t)| ≤ Cn−K by (S.29) and supt∈R P(|ΠG

B − t| ≤ cn) ≤
Cn−K by Lemma A.4, we further get that

sup
t∈R

∣∣P(Π∗B ≤ t)− P(Π∗∗B ≤ t)
∣∣ ≤ P(|Π∗∗B −Π∗B| > cn) + Cn−K ,

where C and K depend only on Θ′. To complete the proof of (S.31), we thus need to show
that

P(|Π∗∗B −Π∗B| > cn) ≤ Cn−K (S.34)

11
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with C and K depending only on Θ′. To do so, we bound the term |Π∗∗B −Π∗B| by

|Π∗∗B −Π∗B| ≤ max
j∈B

∣∣∣∣ 1√
n

n∑
i=1

(Ẑij − Zij)εi
∣∣∣∣

= max
j∈B

∣∣∣∣{ψ>j,AΨ−1
A − ψ̂

>
j,AΨ̂−1

A }
1√
n

n∑
i=1

Xi,Aεi

∣∣∣∣
≤
{

max
j∈B
‖ψj,A − ψ̂j,A‖2‖Ψ−1

A ‖2

+ max
j∈B
‖ψ̂j,A‖2‖Ψ−1

A − Ψ̂−1
A ‖2

}∥∥∥ 1√
n

n∑
i=1

Xi,Aεi

∥∥∥
2
. (S.35)

From (S.21), it immediately follows that

P
(

max
j∈B
‖ψj,A − ψ̂j,A‖2 > D

√
log(n ∨ p)/n

)
≤ Cn−K (S.36)

P
(
‖ΨA − Ψ̂A‖2 > D

√
log(n ∨ p)/n

)
≤ Cn−K (S.37)

with C, D and K depending only on Θ′. Moreover, it holds that

P
(
‖Ψ−1

A − Ψ̂−1
A ‖2 > D

√
log(n ∨ p)/n

)
≤ Cn−K , (S.38)

which is a consequence of (S.37) and the fact that

‖Q−1 −R−1‖2 ≤
‖R−1‖22‖R−Q‖2

1− ‖R−Q‖2‖R−1‖2
(S.39)

for every pair of invertible matrices Q and R that are close enough such that ‖R −
Q‖2‖R−1‖2 < 1. Finally, a simple application of Markov’s inequality yields that

P
(∥∥∥ 1√

n

n∑
i=1

Xi,Aεi

∥∥∥
2
> nd

)
≤ Cn−2d, (S.40)

where C depends only on Θ′. The statement (S.34) follows upon applying the results (S.36)–
(S.38) and (S.40) to the bound (S.35).

Proof of (S.26) To start with, we bound RB,1(γ, e) by

RB,1(γ, e) ≤
{

1 +
√
pA max

j∈B
‖ψ̂>j,AΨ̂−1

A ‖2
}

× max
1≤j≤p

∣∣∣∣ 1√
n

n∑
i=1

Xij

{
PXB

(
β∗B − β̂B, 2√

n
γ

)}
i
ei

∣∣∣∣. (S.41)

The same arguments as in the proof of Lemma A.2 yield that on the event S′γ ,

Pe
(

max
1≤j≤p

∣∣∣∣ 1√
n

n∑
i=1

Xij

{
PXB

(
β∗B − β̂B, 2√

n
γ′
)}

i
ei

∣∣∣∣
>
D(log n)2

√
‖β∗B‖1γ′

n1/4

)
≤ Cn−K (S.42)

12
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for every γ′ ≥ γ, where C, D and K depend only on Θ′. Moreover, on the event A′n,

max
j∈B
‖ψ̂j,A − ψj,A‖2 ≤ C

√
log(n ∨ p)/n (S.43)

‖Ψ̂A −ΨA‖2 ≤ C
√

log(n ∨ p)/n (S.44)

‖Ψ̂−1
A −Ψ−1

A ‖2 ≤ C
√

log(n ∨ p)/n, (S.45)

where C is a sufficiently large constant that depends only on Θ′, and (S.45) is a simple
consequence of (S.44) and (S.39). To complete the proof, we apply (S.42)–(S.45) to the
bound (S.41), taking into account that ‖Ψ−1

A ‖2 ≤ C <∞ and maxj∈B ‖ψj,A‖2 ≤ C <∞.

Proof of (S.27) We have the bound

RB,2(e) ≤ max
j∈B

∥∥ψ̂>j,AΨ̂−1
A − ψ

>
j,AΨ−1

A

∥∥
2

∥∥∥ 1√
n

n∑
i=1

Xi,Aεiei

∥∥∥
2
. (S.46)

On the event A′n,

Pe
(∣∣∣ 1√

n

n∑
i=1

Xijεiei

∣∣∣ > nρ
)
≤ n−2ρ

{ 1

n

n∑
i=1

X2
ijε

2
i

}
≤ n−2ρ

{
E[X2

ijε
2
i ] + ∆2

}
≤ n−2ρ

{
C2
XC

2
σ + n−

1
2

+ρ
}

for every j ∈ A, which implies that Pe(‖n−1/2
∑n

i=1Xi,Aεiei‖2 > nρ) ≤ Cn−2ρ with C de-
pending only on Θ′. To complete the proof, we apply this, (S.43)–(S.45) and the fact that
‖Ψ−1

A ‖2 ≤ C <∞ and maxj∈B ‖ψj,A‖2 ≤ C <∞ to the bound (S.46).

Proof of (S.28) Let dn = D log(n ∨ p)/n1/2−ρ and define

e≤i = ei 1(|ei| ≤ log n)− E[ei 1(|ei| ≤ log n)]

e>i = ei 1(|ei| > log n)− E[ei 1(|ei| > log n)].

It holds that

Pe
(
RB,3(e) > dn

)
≤
∑
j∈B

Pe
(∣∣∣ 1√

n

n∑
i=1

Ẑij(εi − ui)ei
∣∣∣ > dn

)
≤
∑
j∈B

{
P≤e,j + P>e,j

}
, (S.47)

where

P≤e,j = Pe
(∣∣∣ 1√

n

n∑
i=1

Ẑij(εi − ui)e≤i
∣∣∣ > dn

2

)

P>e,j = Pe
(∣∣∣ 1√

n

n∑
i=1

Ẑij(εi − ui)e>i
∣∣∣ > dn

2

)
.

13
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We first analyze the term P≤e,j . With the help of (S.43)–(S.45), we obtain that on the
event A′n,

|Ẑij | = |Xij − ψ̂>j,AΨ̂−1
A Xi,A| ≤ {1 + ‖ψ̂j,A‖2‖Ψ̂−1

A ‖2
√
pA}CX ≤ C

|εi − ui| =
∣∣{XA(X>AXA)−1X>Aε}i

∣∣ =

∣∣∣∣X>i,AΨ̂−1
A

{ 1

n

n∑
`=1

X`,Aε`

}∣∣∣∣
≤ √pACX‖Ψ̂−1

A ‖2
∥∥∥ 1

n

n∑
`=1

X`,Aε`

∥∥∥
2
≤ C

n1/2−ρ ,

which implies that |Ẑij(εi − ui)e≤i | ≤ C log n/n1/2−ρ. Using Markov’s inequality, P≤e,j can
be bounded by

P≤e,j ≤ Ee exp

(
µ
∣∣∣ 1√
n

n∑
i=1

Ẑij(εi − ui)e≤i
∣∣∣)/ exp

(µdn
2

)
≤
{
Ee exp

(
µ√
n

n∑
i=1

Ẑij(εi − ui)e≤i

)

+ Ee exp

(
− µ√

n

n∑
i=1

Ẑij(εi − ui)e≤i

)}/
exp

(µdn
2

)
, (S.48)

where we choose µ = cµn
1/2−ρ with cµ > 0 so small that µ|Ẑij(εi−ui)e≤i |/

√
n ≤ 1/2. Since

exp(x) ≤ 1 + x+ x2 for |x| ≤ 1/2, we further get that

Ee exp

(
± µ√

n

n∑
i=1

Ẑij(εi − ui)e≤i

)
=

n∏
i=1

Ee exp

(
±
µẐij(εi − ui)e≤i√

n

)

≤
n∏
i=1

{
1 +

µ2Ẑ2
ij(εi − ui)2E(e≤i )2

n

}

≤
n∏
i=1

exp

(
µ2Ẑ2

ij(εi − ui)2E(e≤i )2

n

)

= exp

(
µ2

n

n∑
i=1

Ẑ2
ij(εi − ui)2E(e≤i )2

)
≤ exp(c)

with a sufficiently large constant c that depends only on Θ′. Plugging this into (S.48) yields
that

P≤e,j ≤ 2 exp
(
c− cµD log(n ∨ p)

2

)
≤ Cn−K , (S.49)

where K can be made as large as desired.
We next have a closer look at the term P>e,j . Since maxj∈B |

∑n
i=1 Ẑij(εi − ui)| =

‖(PXB)>(ε− Pε)‖∞ = 0, it holds that

1√
n

n∑
i=1

Ẑij(εi − ui)e>i =
1√
n

n∑
i=1

Ẑij(εi − ui)ei 1(|ei| > log n),

14
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and thus, as already proven in (S.15),

P>e,j ≤ Pe
(
|ei| > log n for some 1 ≤ i ≤ n

)
≤ Cn−K , (S.50)

where K can be made as large as desired. To complete the proof, we insert equations (S.49)
and (S.50) into (S.47) and invoke condition (C4).

Proof of Equation (10)

Let G1, . . . , Gp be independent normal random variables with E[Gj ] = 0 for all j and
suppose w.l.o.g. that E[G2

j ] = 1 for all j. By Lemma A.7,

P
(

max
1≤j≤p

|Gj | ≤ γGα
)

= 1− α. (S.51)

Moreover, standard arguments from classic extreme value theory show that

P
(

max
1≤j≤p

|Gj | ≤
x

ap
+ bp

)
→ e−2e−x

as p → ∞ with ap =
√

2 log p and bp =
√

2 log p − {log log p + log(4π)}/{2
√

2 log p}, which
in particular implies that for any fixed δ > 0,

P
(

max
1≤j≤p

|Gj | ≤
xα±δ
ap

+ bp

)
→ 1− {α± δ} (S.52)

with xα±δ = − log(− log(1 − {α ± δ})/2). From (S.51) and (S.52), it follows that for any
null sequence of positive numbers ηp,

xα+δ

ap
+ bp ≤ γGα+ηp ≤ γ

G
α−ηp ≤

xα−δ
ap

+ bp

for p sufficiently large. We thus arrive at

|γGα−ηp − γ
G
α+ηp | ≤

xα−δ − xα+δ√
2 log p

≤ C√
2 log p

with some sufficiently large constant C.

15



Lederer and Vogt

S.2. Robustness Checks

Choice of α for Tuning Parameter Calibration

Our estimates of the quantiles of the effective noise can be used for different tasks, with
inference and tuning parameter calibration as two examples. In inference, the choice of
α is determined by the significance level. In tuning parameter calibration, in contrast, α
can be chosen freely. In what follows, we examine how our tuning parameter calibration is
influenced by the choice of α. To do so, we repeat the simulation exercises from Section 5.2
(with κ = 0.25) for three different values of α, namely α = 0.01, 0.05, 0.1. Choosing α in the
range between 0.01 and 0.1 in practice is sensible for the following reasons: The constraint
α ≤ 0.1 makes sure that the finite sample guarantees for tuning parameter calibration
from Section 4.1 hold with reasonably high probability (≈ 90% or higher). The constraint
α ≥ 0.01, on the other hand, ensures that the bias of the lasso does not get overly strong.
We thus restrict attention to α ∈ [0.01, 0.1], which is also the range of typical significance
levels in testing.

Figure S.1 reports the results for the Hamming loss. The grey-shaded area in each
panel depicts the histogram of the Hamming distances ∆H(β̂, β∗) that are produced by our
estimator β̂ over the N = 1000 simulation runs when α is set to 0.05, the red line depicts
the histogram for α = 0.01, and the blue line the histogram for α = 0.1. In addition,
the histogram of the cross-validated estimator is shown as a dotted line. Notice that the
grey-shaded histograms in Figure S.1 are the same as those in Figure 3a. Figures S.2–S.4
present the results for the `1-, `∞- and prediction loss in an analogous way. Inspecting the
plots, we conclude that the precise choice of α only has a minor effect on tuning parameter
calibration with our method.
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Figure S.1: Histograms of the Hamming loss for different values of α.
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Figure S.2: Histograms of the `1-loss for different values of α.
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Figure S.3: Histograms of the `∞-loss for different values of α.
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Figure S.4: Histograms of the prediction loss for different values of α.
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Different Distributions of the Noise and the Design

In this section, we investigate how our simulation results are influenced by the distribution
of the noise εi and the design Xi. In order to do so, we repeat the simulation exercises from
Sections 5.1–5.3 with non-normal noise variables εi and design vectors Xi. Specifically,
we sample εi independently from a t-distribution with d degrees of freedom and variance
normalized to 1. Moreover, Xi is drawn from a multivariate t-distribution with the same
number of degrees of freedom, where the covariance matrix is the same as in Section 5 (in
particular, it is given by (1− κ)I + κE with κ = 0.25). We consider three different choices
of d, namely d ∈ {5, 10, 30}. For small d, the t-distribution differs substantially from the
standard normal law, having much heavier tails. (Note in particular that d = 5 is the
smallest integer for which the t-distribution has θ > 4 moments as required by condition
(C3).) As d increases, the t-distribution becomes less heavy-tailed and more akin to a
standard normal law.

We start with the simulations from Section 5.1, which concern the approximation quality
of our estimator λ̂α. To see how the quality of λ̂α depends on the distribution of the noise
and the design, we reproduce Figure 2 for the case of t-distributed errors and design vectors
with d ∈ {5, 10, 30}. The results are reported in Figure S.5. As can be seen, the precision of
our estimator diminishes somewhat as d gets smaller. Nevertheless, even for the case d = 5,
we obtain quite precise results.

We now turn to the simulations on tuning parameter calibration from Section 5.2. We
reproduce Figures 3a, 4, 5 and 6, which correspond to the four different losses under con-
sideration, for the case of t-distributed noise terms and design vectors with d ∈ {5, 10, 30}.
The results are presented in Figures S.6–S.9. The format is the same as in Figures 3a, 4,
5 and 6: the grey-shaded areas correspond to the histograms produced by our estimator,
the black lines correspond to the histograms of the oracle method, and the dotted lines
correspond to the histograms of the cross-validated lasso. In all of the considered cases,
the histograms of our estimator are extremely close to those of the oracle. Moreover, the
histograms are very similar to those of Figures 3a, 4, 5 and 6 for the Gaussian case.

We finally revisit the inference results from Section 5.3. As before, we repeat the simu-
lations with t-distributed noise and design vectors for d ∈ {5, 10, 30}. The results are given
in Tables S.1–S.3. For all considered values of d, the size of the test under the null is close
to the target α. Moreover, the power of the test is comparable to that in the Gaussian case,
even though it gets a bit lower for smaller d.

To summarize, the results demonstrate that our method does not require normally
distributed noise and design, which supports our general theory in the main part of the
paper.
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(a) histograms for t-distributed noise and design with d = 5
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(b) histograms for t-distributed noise and design with d = 10
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Figure S.5: Histograms of the estimates λ̂α for t-distributed noise variables and design vec-
tors with d ∈ {5, 10, 30}.
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(b) histograms for t-distributed noise and design with d = 10
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(c) histograms for t-distributed noise and design with d = 30

Figure S.6: Histograms of the Hamming loss for t-distributed noise variables and design
vectors with d ∈ {5, 10, 30}.
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(b) histograms for t-distributed noise and design with d = 10
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(c) histograms for t-distributed noise and design with d = 30

Figure S.7: Histograms of the `1-loss for t-distributed noise variables and design vectors
with d ∈ {5, 10, 30}.
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(a) histograms for t-distributed noise and design with d = 5

(n, p) = (500, 250)

0.05 0.15 0.25 0.35

0
40

80
12

0

L∞ loss

# 
si

m
ul

at
io

ns

(n, p) = (500, 500)

0.05 0.15 0.25 0.35

0
40

80
12

0

L∞ loss

# 
si

m
ul

at
io

ns

(n, p) = (500, 1000)

0.05 0.15 0.25 0.35

0
40

80
12

0

L∞ loss

# 
si

m
ul

at
io

ns

(b) histograms for t-distributed noise and design with d = 10
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Figure S.8: Histograms of the `∞-loss for t-distributed noise variables and design vectors
with d ∈ {5, 10, 30}.
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(a) histograms for t-distributed noise and design with d = 5
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(b) histograms for t-distributed noise and design with d = 10
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(c) histograms for t-distributed noise and design with d = 30

Figure S.9: Histograms of the prediction loss for t-distributed noise variables and design
vectors with d ∈ {5, 10, 30}.
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(a) empirical size under H0 : β∗ = 0

feasible test oracle test
α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1

(n, p) = (500, 250) 0.011 0.033 0.080 0.009 0.058 0.105
(n, p) = (500, 500) 0.009 0.036 0.078 0.013 0.054 0.094
(n, p) = (500, 1000) 0.007 0.028 0.067 0.018 0.061 0.095

(b) empirical power under the alternative with SNR = 0.1

feasible test oracle test
α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1

(n, p) = (500, 250) 0.092 0.220 0.346 0.060 0.247 0.360
(n, p) = (500, 500) 0.100 0.247 0.401 0.107 0.298 0.419
(n, p) = (500, 1000) 0.085 0.223 0.365 0.139 0.309 0.397

(c) empirical power under the alternative with SNR = 0.2

feasible test oracle test
α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1

(n, p) = (500, 250) 0.471 0.741 0.856 0.602 0.836 0.917
(n, p) = (500, 500) 0.510 0.762 0.874 0.617 0.865 0.929
(n, p) = (500, 1000) 0.453 0.725 0.852 0.656 0.843 0.908

Table S.1: Empirical size under the null and power against different alternatives for t-
distributed noise variables and design vectors with d = 5.
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(a) empirical size under H0 : β∗ = 0

feasible test oracle test
α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1

(n, p) = (500, 250) 0.012 0.054 0.087 0.011 0.045 0.095
(n, p) = (500, 500) 0.012 0.047 0.100 0.004 0.053 0.102
(n, p) = (500, 1000) 0.005 0.033 0.080 0.005 0.041 0.084

(b) empirical power under the alternative with SNR = 0.1

feasible test oracle test
α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1

(n, p) = (500, 250) 0.111 0.260 0.403 0.109 0.279 0.399
(n, p) = (500, 500) 0.119 0.270 0.393 0.096 0.297 0.418
(n, p) = (500, 1000) 0.106 0.247 0.374 0.088 0.262 0.376

(c) empirical power under the alternative with SNR = 0.2

feasible test oracle test
α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1

(n, p) = (500, 250) 0.607 0.822 0.922 0.649 0.860 0.938
(n, p) = (500, 500) 0.578 0.790 0.891 0.592 0.832 0.910
(n, p) = (500, 1000) 0.556 0.806 0.895 0.567 0.851 0.909

Table S.2: Empirical size under the null and power against different alternatives for t-
distributed noise variables and design vectors with d = 10.
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(a) empirical size under H0 : β∗ = 0

feasible test oracle test
α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1

(n, p) = (500, 250) 0.012 0.057 0.111 0.007 0.056 0.105
(n, p) = (500, 500) 0.019 0.057 0.099 0.012 0.070 0.115
(n, p) = (500, 1000) 0.011 0.044 0.082 0.004 0.055 0.101

(b) empirical power under the alternative with SNR = 0.1

feasible test oracle test
α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1

(n, p) = (500, 250) 0.120 0.275 0.421 0.113 0.288 0.417
(n, p) = (500, 500) 0.130 0.278 0.391 0.129 0.335 0.437
(n, p) = (500, 1000) 0.140 0.287 0.407 0.119 0.327 0.446

(c) empirical power under the alternative with SNR = 0.2

feasible test oracle test
α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1

(n, p) = (500, 250) 0.629 0.824 0.908 0.653 0.855 0.922
(n, p) = (500, 500) 0.605 0.823 0.905 0.660 0.892 0.935
(n, p) = (500, 1000) 0.619 0.831 0.906 0.620 0.854 0.935

Table S.3: Empirical size under the null and power against different alternatives for t-
distributed noise variables and design vectors with d = 30.
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Choice of L and M

When implementing our method, we need to choose the number of bootstrap iterations
L as well as the grid size M for computing the lasso estimates. We have experimented
with different choices of L and M and found that they have little effect on the simulation
results. To illustrate this, we consider the same simulation setting as in Section 5.1 and
produce N = 1000 estimates of λ̂α for different choices of (L,M). In addition to the choice
(L,M) = (100, 100) which is used in Section 5, we consider the choices (L,M) = (200, 200)
and (L,M) = (300, 300). Figure S.10 reports the results. In each panel, the grey-shaded
area is the histogram of the N = 1000 estimates of λ̂α for the choice (L,M) = (100, 100),
the blue line is the histogram for (L,M) = (200, 200), and the red line is the histogram for
(L,M) = (300, 300). As one can see, the histograms are very similar across the different
choices of (L,M), which suggests that the precise choice of L and M has little effect on our
method.
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Figure S.10: Histograms of the estimates λ̂α for different choices of (L,M).
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