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Abstract

Manifold embedding algorithms map high-dimensional data down to coordinates in a
much lower-dimensional space. One of the aims of dimension reduction is to find intrinsic
coordinates that describe the data manifold. The coordinates returned by the embedding
algorithm are abstract, and finding their physical or domain-related meaning is not formalized
and often left to domain experts. This paper studies the problem of recovering the meaning
of the new low-dimensional representation in an automatic, principled fashion. We propose
a method to explain embedding coordinates of a manifold as non-linear compositions of
functions from a user-defined dictionary. We show that this problem can be set up as
a sparse linear Group Lasso recovery problem, find sufficient recovery conditions, and
demonstrate its effectiveness on data.

Keywords: dimension reduction, manifold learning, functional regression, gradient, group
lasso

1. Introduction

Manifold learning (ML) algorithms, also known as embedding or unsupervised learning
algorithms, map data from high or infinite-dimensional spaces to coordinates of a much lower-
dimensional space. In the sciences, one of the motivating goals of dimension reduction is the
discovery of descriptors of the data generating process. Linear dimension reduction algorithms
like principal component analysis (PCA) and non-linear algorithms such as diffusion maps
(Coifman and Lafon, 2006) are used in applications from genomics to astronomy to uncover
the variables describing large-scale properties of the interrogated system.

For example, in chemistry, a common problem is to discover so-called collective coordinates
describing the evolution of molecular configurations at long time scales, which correspond
to macroscopically interesting transformations of the molecule, and can explain some of its
properties (Clementi et al., 2000; Noé and Clementi, 2017). The molecular configuration is
represented by the 3Na vector of spatial locations of the Na atoms comprising the molecule.
A molecular dynamics (MD) simulation produces a sample of molecular configurations;
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the distribution of this sample describes the molecule’s behavior in the given experimental
conditions. It has been shown empirically that manifolds approximate these high-dimensional
distributions (Dsilva et al., 2013). Figure 1a shows the toluene molecule, consisting of Na = 15
atoms, and 1d shows the mapping of an MD simulated trajectory into m = 2 dimensions
(the embedding coordinates) by a manifold learning algorithm. Visual inspection shows that
this configuration space is well-approximated by a one-dimensional manifold parametrized
by a geometric quantity, the torsion g1 of the methyl bond, which is the angle formed by
the planes inscribing the first three and last three atoms of the orange lines joining four
atoms in Figure 1d. Thus, g1 is a collective coordinate which explains the large scale data
manifold by the rotation of the CH3 methyl group relative to the plane of the other carbon
atoms, filtered out from the faster modes of vibration by the manifold learning algorithm.
Similarly, as shown in Figures 1e, 1h 1f, and 1i, the large scale geometry of the ethanol and
malonaldehyde MD data is explained by two torsion angles each.

In this example, while the embedding algorithm was able to uncover the manifold
structure of the data, finding the physical meaning of the manifold coordinates was done by
visual inspection. In general, a scientist scans through many torsions and other functions of
the configuration, in order to find ones that can be identified with the abstract coordinates
output by a PCA or ML algorithm. Manual inspection of such denoised coordinates for
correspondences with features of interest is pervasive in a variety of scientific fields (Chen
et al., 2016; Herring et al., 2018; Banville et al., 2019). The goal of this paper is to put this
process on a formal basis and to devise a method for automating this identification, thus
removing the time consuming visual inspections from the shoulders of the scientist. We
introduce a method to automate association of the meaningless abstract coordinates output
by an embedding algorithm with functions of the data that are meaningful or interesting in
the domain of the problem.

In our paradigm, the scientist has a dictionary G of functions to be considered as possible
manifold coordinates. For the examples in Figure 1, G could be a set of candidate torsions.
In other applications like single-cell genomics or astronomy, data are measurements in
high-dimensional feature spaces such as gene counts, or spectra of stars and galaxies. The
dictionary G then could consist of functions like cell-type specific signatures for the former,
or element-specific spectral signatures for the latter (Blanton and Bershady, 2017; McQueen
et al., 2016; Zhang et al., 2020).

We assume that the data lie on a low-dimensional, smooth manifold M and that some
embedding algorithm maps the data to coordinates denoted by φ1, . . . φm. We propose an
algorithm, ManifoldLasso, that replaces the abstract data-driven coordinates φ with an
“equivalent” set of coordinates consisting of functions g1, . . . gs from G. Since our dictionary
G is constructed using functions with physical meaning, this new set of coordinates may be
considered to explain the manifold structure M of the data.

To keep the approach as general as possible, we do not rely on a particular embedding
algorithm, making only the minimal assumption that it produces a smooth embedding. We
also do not assume a parametric relationship between the embedding and the functions in
the dictionary G. We only assume that the mapping between the data manifold and the
functions is sufficiently smooth.

The next section defines the problem formally, and Section 3 presents the necessary
background in manifold estimation. Section 4 develops our ManifoldLasso method.
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(a) Toluene (b) Ethanol (c) Malonaldehyde

(d) (e) (f)

(g) Torsion example (h) (i)

Figure 1: Manifold coordinates with physical meaning in molecular dynamics (MD) simulations.
1a-1c Diagrams of the toluene (C7H8), ethanol (C2H5OH), and malonaldehyde (C3H4O2)
molecules, with the carbon (C) atoms in grey, the oxygen (O) atoms in red, and the
hydrogen (H) atoms in white. Bonds defining important torsions gj are marked in orange
and blue (see Section 7 for more details). The bond torsion is the angle of the planes
inscribing the first three and last three atoms on the line (1g). 1d Embedding of the
configurations of toluene into m = 2 dimensions, showing a manifold of d = 1. The color
corresponds to the values of the orange torsion g1. 1e, 1h Embedding of the configurations
of the ethanol in m = 3 dimensions, showing a manifold of dimension d = 2, respectively
colored by the blue and orange torsions in Figure 1b. 1f, 1i. Embedding of the configurations
of malonaldehyde in m = 3 dimensions, showing a manifold of dimension d = 2, respectively
colored by the blue and orange torsions in Figure 1c.

The relationship to previous work is discussed in Section 5. Section 6 presents theoretical
recovery results, Section 7 presents experiments, and Section 8 concludes the paper. The
Appendices present additional information including details about the functional dictionaries
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used, adaptions necessary to make our method work in the rotation and translation invariant
molecular configuration space, and a useful adaptation to our main algorithm for when
support recovery conditions are violated.

2. Problem Formulation, Assumptions and Challenges

We make a number of standard manifold learning assumptions. Observed data D = {ξi ∈
RD : i ∈ 1 . . . n} are sampled i.i.d. from a smooth manifold 1 M of intrinsic dimension d
embedded in a feature space RD by the inclusion map. In this paper, we will call smooth any
function or manifold of class at least C4. We assume that the intrinsic dimension d of M is
known; for example, by having been estimated previously by the method in Kleindessner and
von Luxburg (2015). The manifold M is a Riemannian manifold with Riemannian metric
inherited from the ambient space RD. Furthermore, we assume the existence of a smooth
embedding map φ :M→ φ(M) ⊂ Rm, where typically m << D. That is, φ restricted to
M is a diffeomorphism onto its image, and φ(M) is a submanifold of Rm. We call the
coordinates φ(ξi) in this m dimensional ambient space the embedding coordinates φ1:m. In
practice, the mapping of the data D onto φ(D) represents the output of an embedding
algorithm, and we only have access to M and φ via D and its image φ(D).

As mentioned in the previous section, we are given a dictionary of user-defined and
domain-related smooth functions G = {g1, . . . gp, with gj : U ⊆ RD → R}, where U is an open
set containing M. We assume that φ(x) = h(gj1(x), . . . gjs(x)), where h : O ⊆ Rs → Rm is
a smooth function of s variables, defined on a open subset of Rs containing the ranges of
gj1 , . . . gjs . Let S = {j1, . . . js}, and gS = [gj1(x), . . . gjs(x)]T . We call this set the functional
support or explanation. In differential geometric terms, gS is strongly related to finding
coordinate systems, charts and parameterizations ofM. For example, in the toluene example,
the functions in G are all the torsions in the molecule, s = 1, and gS = g1 is a chart for the
1-dimensional manifold traced by the configurations. Hence, it is natural to associate s = d.

Since the map φ given by the embedding algorithm is determined only up to diffeomor-
phism, the map h cannot be uniquely determined, and it can therefore be overly restrictive
to assume a parametric form for h. Hence, this paper aims to find the support set S while
circumventing the estimation of h. Indeterminacies w.r.t. the support S itself are also
possible. For instance, the support S may not be unique whenever the relationship g1 = t(g2)
holds for two functions in G and for t a smooth monotonic function. In Section 6 we give
conditions under which S can be recovered uniquely; intuitively, they consist of functional
independencies between the functions in G. For instance, it is sufficient to assume that that
the dictionary G is a functionally independent set, i.e., there is no g ∈ G that can be obtained
as a smooth function of other functions in G.

3. Manifold Learning and Intrinsic Geometry

Our method relies on statistical estimators of several geometric quantities. One of the
most important is the embedding map φ. In addition to the embedding map itself, we also

1. The reader is referred to Lee (2003) for the definitions of the differential geometric terms used in this
paper.
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estimate the tangent spaces ofM and φ(M). This will allow us to perform support recovery
on the differential level. These estimation tasks are accomplished as follows.

3.1 The Neighborhood Graph and Kernel Matrix

The neighborhood graph is a data structure that encodes topological information about
the dataset. It associates to each data point ξi ∈ D its set of neighbors Ni = {i′ ∈
[n],with ||ξi′ − ξi|| ≤ rN}, where rN is a neighborhood radius parameter. The neighborhood
relation is symmetric, and determines an undirected graph with nodes represented by the
data points ξ1:n. We denote |Ni| by ki.

This graph is used in construction of the local position matrices Ξi = [ξi′ : i′ ∈ Ni] ∈
Rki×D, local embedding coordinate matrices Φi = [φ(ξi′) : i′ ∈ Ni] ∈ Rki×m, and the kernel
matrix K ∈ Rn×n whose elements are

Ki,i′ =

{
exp

(
− ||ξi−ξi′ ||

2

ε2N

)
if i′ ∈ Ni ;

0 otherwise.
(1)

This matrix encodes geometric information about the dataset, and so is of crucial importance;
K is sparse, with sparsity structure induced by the neighborhood graph. Typically, the radius
rN and the bandwidth parameter εN are related by rN = cεN with c a small constant greater
than 1. This value ensures that the entries in K that are zeroed out are small. Rows of the
kernel matrix K will be denoted Ki,Ni to emphasize that when a particular row is passed to
an algorithm, only ki values need to be passed. Next, we show how the neighborhood graph,
local position matrices, and kernel matrix are used in manifold estimation algorithms.

3.2 The Renormalized Graph Laplacian

The neighborhood graph and kernel matrix play essential roles in estimation of the renor-
malized graph Laplacian, also known as the sample Laplacian, or diffusion maps Laplacian L.
This estimator, constructed by the Laplacian algorithm, converges to the manifold Laplace
operator ∆M; This estimator is unbiased w.r.t. the sampling density on M (Hein et al.,
2005; Coifman and Lafon, 2006; Hein et al., 2007; Ting et al., 2010). L is a sparse matrix; its
i-th row contains non-zero values only for i′ ∈ Ni. Thus, as for K, elements and rows of this
matrix will be denoted by Li,i′ and Li,Ni , respectively, and the sparsity pattern of L is given
by the neighborhood graph. Construction of this neighborhood graph is the computational
bottleneck of this algorithm; performed naively, constructing the neighborhood graph can
have O(n2) run time, but algorithms that pre-process the data can reduce the computational
cost (Bernhardsson, 2015).

We use the m principal eigenvectors of L (or alternatively, of the matrix L̃ of Algorithm
Laplacian) corresponding to its smallest non-zero eigenvalues as embedding coordinates.
This embedding is known as the diffusion map (Coifman and Lafon, 2006) or the Laplacian
eigenmap (Belkin and Niyogi, 2002) of D. Although any algorithm which asymptotically
generates a smooth embedding is acceptable for our general support recovery method, use of
the eigenfunctions of the Laplacian as manifold embedding coordinates has special relevance
to quantum systems (Heller, 1983; Zelditch, 2006; Landsman, 2007; Sogge, 2014).
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Laplacian (neighborhoods Ni:n, local data Ξ1:n, bandwidth εN )

1: Compute kernel matrix K using (1)
2: Compute normalization weights wi ←

∑
i′∈Ni Ki,i′ , i = 1, . . . n, W ← diag(wi i = 1 : n)

3: Normalize L̃ ← W−1KW−1

4: Compute renormalization weights w̃i ←
∑

i′∈Ni L̃i,i′ , i = 1, . . . n, W̃ = diag(w̃i i = 1 : n)

5: Renormalize L ← 4
ε2N

(W̃−1L̃− In)

6: Output Kernel matrix K, Laplacian L, [optionally w̃1:n]

3.3 Estimating Tangent Spaces in the Ambient Space RD

The differential quantities associated with φ and G that are used in our support estimation
approach are computed w.r.t. the tangent bundle of M. Since M is a submanifold of RD,
the tangent space at data point ξi, denoted TξiM is representable by an orthogonal basis
matrix Ti ∈ RD×d. The estimation of this matrix by weighted local principal component
analysis (Chen et al., 2013) is described in the LocalPCA algorithm. For this algorithm
and others we denote by SVD(X, d) an algorithm as outputting V,Λ, where Λ and V are
the largest d eigenvalues and corresponding d orthonormal eigenvectors, of symmetric matrix
X, respectively. Denote a column vector of ones of length k by 1k.

LocalPCA (local data Ξi, kernel row Ki,Ni , intrinsic dimension d)

1: Compute normalization weights wi ←
∑

i′∈Ni Ki,i′

2: Compute weighted mean ξ̄i ← 1
wi
Ki,NiΞi

3: Compute weighted local differences

Zi ← diag(K
1/2
i,Ni)(Ξi − 1ki ξ̄i)

4: Compute Ti,Λ← SVD(ZTi Zi, d)
5: Output Ti

3.4 The Pushforward Riemannian Metric

Geometric quantities such as angles and lengths of vectors in the tangent bundle TM and
distances along curves in M are captured by Riemannian geometry. Recall our assumption
that (M, id) is a Riemannian manifold, with the metric id induced from RD. With this we
associate to φ(M) a Riemannian metric g which preserves the geometry of (M, id). This
metric, called the pushforward metric, is defined by

〈u, v〉g = 〈Dφ−1(ξ)u,Dφ−1(ξ)v〉 for all u, v ∈ Tφ(ξ)φ(M). (2)

In the above, D denotes the differential operator, Dφ−1(ξ) the pull-back operator that maps
vectors from Tφ(ξ)φ(M) to TξM, and 〈, 〉 the Euclidean scalar product.

For each φ(ξi), the pushforward Riemannian metric expressed in the coordinates of Rm
is a symmetric, semi-positive definite m×m matrix Gi of rank d. The scalar product 〈u, v〉g
takes the form uTGiv. The matrices Gi can be estimated by the algorithm RMetric of
Perraul-Joncas and Meila (2013). The algorithm uses only local information, and thus
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can be run efficiently using the Laplacian, the neighborhood graph, and local embedding
coordinate matrices. In the next section, we will use the output of this algorithm to estimate
the differential Dφ.

RMetric (Laplacian row Li,Ni , local embedding coordinates Φi, intrinsic dimension d)

1: Compute centered local embedding coordinates
Φ̃i = Φi − 1kiφ(ξi)

T

2: Form matrix Hi by
Hi ← [Hi,k,k′ ]k,k′∈1:m with Hi,k,k′ =

∑
i′∈Ni Li,i′Φ̃i,i′,kΦ̃i,i′,k′ for k, k′ = 1 : m.

3: Compute Vi,Λi ← SVD(Hi, d)
4: Gi ← ViΛ

−1
i V T

i .
5: Output Gi, optionally Vi,Λi

4. The ManifoldLasso Algorithm

The main idea of our approach is to exploit the well-known mathematical fact that, for any
differentiable functions f, g, h, when f = h ◦ g, the differentials Df,Dh,Dg at any point are
in the linear relationship Df = DhDg. Since, given coordinate functions φ1:m and dictionary
functions g1:p on a smooth manifold M, our goal is to recover a subset gS of g1:p such that
φ1:m = h ◦ gS without knowing h, we propose to recover the subset gS by solving a set of
dependent linear sparse recovery problems, one for each data point. This linear relationship
Dφ = DhDgS will be written in terms of gradients gradM φ1:m and gradM g1:p. This section
describes how to obtain the relevant gradients and solve the resulting optimization problem
corresponding to sparse recovery.

4.1 Algorithm Overview

The ManifoldLasso algorithm, the main algorithm of this paper, implements this idea. It
takes as input data D sampled from an unknown manifold M, a dictionary G of functions
defined on M (or alternatively on an open subset of the ambient space RD that contains
M), and an embedding φ(D) in Rm. The output of ManifoldLasso is a set S of indices
in G, representing the functions in G that explain M.

The first part of the algorithm contains preparatory steps for geometric analysis covered
in Section 3. Steps 1 and 2 construct the neighborhood graph and the Laplacian matrix
used for manifold learning and tangent space estimation.

The second part of ManifoldLasso calculates the necessary gradients; this comprises
Steps 9–11. In Step 9, we estimate orthogonal bases of tangent subspaces by the Lo-
calPCA algorithm described in Section 3. The gradients of the dictionary w.r.t. the
manifold are then obtained as columns of the d× p matrix Xi in Steps 5, 6, and 10. These
operations are described in detail in Section 4.3. In Step 11, the gradients at ξi of the
coordinates φ1:m, also w.r.t. M, are calculated as columns of the d×m matrix Yi by the
PullBackDPhi algorithm described in Section 4.4.

In the last part of ManifoldLasso, Step 14 finds the support S by solving the sparse
regression. A GroupLasso algorithm is called to perform the sparse regression of the
manifold coordinates’ gradients Y1:n on the gradients of the dictionary functions, represented
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by X1:n. The indices of those dictionary functions whose β coefficients are not identically
null represent the support set suppβ. This is described in Section 4.5. Scaling of functions
is addressed through normalization in Steps 6 and 13; this procedure is described in more
detail in Section 4.7.

There are several optional steps and substitutions in our algorithm. An embedding can
be computed in Step 3, or input separately by the user - we denote this step generically as
EmbeddingAlg. Finally, although we explicitly describe tangent space estimation methods
of both TξiM and Tφ(ξi)φ(M) in our algorithms, other approaches to estimate them may be
used.

ManifoldLasso (DatasetD, dictionary G, embedding coordinates φ(D), intrinsic dimension
d, kernel bandwidth εN , neighborhood cutoff size rN , regularization parameter λ)

1: Construct Ni for i = 1 : n; i′ ∈ Ni iff ||ξi′ − ξi|| ≤ rN , and local data matrices Ξ1:n

2: Construct kernel matrix and Laplacian K,L ←Laplacian(N1:n,Ξ1:n, εN )
3: [Optionally compute embedding: φ(ξ1:n)←EmbeddingAlg(D,N1:n,m, . . .)]
4: for j = 1, 2, . . . p do
5: Compute ∇ξgj(ξi) for i = 1, . . . n
6: Compute ζ2

j by (11) and normalize ∇ξgj(ξi)← (1/ζj)∇ξgj(ξi) for i = 1, . . . n
7: end for
8: for i = 1, 2, . . . n do
9: Compute basis TMi ←LocalPCA(Ξi,Ki,Ni , d)

10: Project Xi ← (TMi )T∇ξg1:p

11: Compute Yi ←PullBackDPhi(Ξi,Φi, T
M
i , Li,Ni , d)

12: end for
13: Compute ζ2

k ←
1
n

∑n
i=1 ‖yik‖2 (i.e., (10)), for k = 1, . . .m and

normalize Yi ← Yi diag{1/ζ1:m}, for i = 1, . . . n.
14: β ← GroupLasso(X1:n, Y1:n, λ)
15: Output S = suppβ

4.2 Gradients and Coordinate Systems

Our algorithm regresses the gradients of the embedding coordinate functions against the
gradients of the dictionary functions. Both sets of gradients are with respect to the manifold
M, and so this requires calculating or estimating various gradients in the same d-dimensional
coordinate system. This and the following two sections explain these procedures.

First, note that by assumption we have two Euclidean spaces RD and Rm, in which
manifoldsM and φ(M) of dimension d are embedded. Denote gradients w.r.t. the Euclidean
coordinate systems in RD and Rm by ∇ξ and ∇φ, respectively. Since our interest is in
functions on manifolds, we also define the gradient of a function on a manifold M. The
gradient of f at ξ, on a Riemannian manifold (M,g), denoted gradM f(ξ) ∈ TξM, is defined
by the identity

〈gradM f(ξ), u〉g = Df(ξ)u for any u ∈ TξM. (3)

At each data point ξi, we fix bases TMi in TξiM and T φi in Tφ(ξi)φ(M). Gradients expressed in
these coordinate systems are denoted by gradTMi ,g and grad

Tφi ,g
respectively. For a manifold
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M which is a submanifold of RD, we denote by gradTMi
(ξ) the value of gradTMi ,id(ξ) w.r.t.

the identity metric id inherited from RD, and by 〈, 〉 the Euclidean scalar product.
Note that in coordinates, gradM f depends on the metric g, but at the same time, this

definition shows that gradM f as a linear operator on TξiM is invariant to the metric; it is
just the first order derivative reflecting how f changes along the manifold. Hence, the left
hand side must also be invariant to the metric. It follows that Df(ξ)u = uT gradTMi

(ξi) for

any u ∈ TξM, and, furthermore, that gradTMi ,g = G−1
i gradTMi

for any other Riemannian
metric g.

4.3 Calculating the Gradients of the Dictionary Functions

Our goal is to obtain Xi, the matrix defined by

Xi = [gradTMi
gj(ξi)]j=1:p ∈ Rd×p. (4)

Let gj be a function in the dictionary G. By definition, for any basis TMi ∈ RD×d of TξiM,

gradTMi
gj(ξi) = (TMi )T∇ξgj(ξi).

In other words, gradTMi
gj is the projection of ∇ξgj on the basis TMi . These bases of TξiM,

for every i, are estimated by LocalPCA as described in Section 3. The gradients ∇ξgj(ξi)
are known analytically, by assumption. We thus construct matrices Xi, for i = 1, . . . n, with
p columns representing the gradients of the p dictionary functions as Xi = (TMi )T∇ξg1:p, as
in Step 10 of Algorithm ManifoldLasso. Now we turn to obtaining the manifold gradients
of the coordinate functions φk in the same coordinate system.

4.4 Estimating the Coordinate Gradients by Pull-back

Since φ is implicitly determined by a manifold embedding algorithm, the gradients of φk
are often not analytically available, and φk is known only through its values at the data
points. We therefore introduce an estimator of these gradients based on the notion of vector
pull-back between tangent spaces. Instead of estimating gradients naively from differences
φk(ξi) − φk(ξi′) between neighboring points, we first estimate their values in Tφ(ξi)φ(M),

where they have a simple expression, then pull them back in the coordinate system TMi .
This estimation method is novel, and of some independent interest. A schematic of this
approach is given in Figure 2.

The PullBackDPhi Algorithm takes as inputs the local neighborhoods Ξi, Φi of point
ξi in the original and embedding spaces, respectively, the basis TMi of TξiM, and the row of
the Laplacian matrix corresponding to i, Li,Ni . From this local information, the algorithm
first computes the tangent space Tφ(ξi)φ(M), then obtains the gradients of the coordinate
functions φ in this space by projection, and finally pulls back these gradients in the coordinate
system given by TMi by solving a least squares regression.

4.4.1 The Tangent Space Tφ(ξi)φ(M)

When m = d, this space is trivially equal to Rd, so the problem is interesting in the case
m > d. If the embedding induced by φ were an isometry, the estimation of Tφ(ξi)φ(M) could
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be performed by LocalPCA, and the subsequent pull-back could be done as described in
Luo et al. (2009). Here we do not assume that φ is isometric.

The method we introduce uses the push-forward Riemannian metric g, expressed as
Gi in the coordinates φ at ξi, to estimate the Tφ(ξi)φ(M). By definition, the theoretical
rank of Gi equals d and the d principal eigenvectors of Gi represent an orthonormal basis of
Tφ(ξi)φ(M). Gi and its decomposition are estimated by the RMetric algorithm described

in Section 3. We denote this basis T φi ∈ Rm×d.

4.4.2 The Gradient gradφ(M) φk

Trivially, the gradients of φ1:m in the embedding space Rm, are equal to the m basis vectors
of Rm, i.e., ∇φφ1:m = Im. Therefore gradφ(M) φk, expressed in the basis T φi , given by the
top d the eigenvectors of Gi, is equal to the projection of the corresponding basis vector
onto the tangent subspace Tφ(ξi)φ(M). In matrix form we have

[grad
Tφi
φk(ξi)]

m
k=1 = (T φi )T Im.

4.4.3 Pulling Back gradφ(M) φ into TξM

In order to bring these gradients into the same coordinate system as our dictionary functions,
we define the following matrices, with ProjT v denoting the Euclidean projection of vector v
onto subspace T .

Yi = [yik]
m
k=1 = [gradTMi

φk(ξi)]
m
k=1 ∈ Rd×m,

Ai =
[
ProjTξiM

(ξi′ − ξi)
]
i′∈Ni

∈ Rd×ki ,

and

Bi = [φ(ξi′)− φ(ξi)]i′∈Ni ∈ Rm×ki , B̃i =
[
ProjTφ(ξi)φ(M) [φ(ξi′)− φ(ξi)]

]
i′∈Ni

, ∈ Rd×ki .

The columns of Ai and Yi are vectors in TξiM, the columns of Bi are in Rm and the columns
of B̃i are in Tφ(ξi)φ(M). These vectors are shown schematically in Figure 2. Note that when

m = d, Bi = B̃i.

The key property that enables our estimator of Yi is that the columns of Ai and B̃i
are in correspondence, because they represent (approximately) the same vectors in two
different coordinate systems, namely the logarithmic maps of point i′ in M and φ(M) with
respect to point i. The accuracy of this approximation is shown in Appendix A. The idea of
the algorithm is then to use this correspondence in order to pull back the gradient of the
coordinate function φk into the coordinates TMi .

Specifically, since Dφk, the differential of φk : M → R, as a linear functional on the
tangent bundle TM is invariant to coordinate system, we calculate its value on the columns
of B̃i in the coordinate system given by φ itself, and equate these values with gradTMi

φk

applied to the columns of Ai, an expression in the coordinates TMi . By (3) and Appendix
A, we have that

(gradTMi
φk(ξi))

TAi = (grad
Tφi
φk(ξi))

T B̃i + o(rN ).

10



Manifold Coordinates with Physical Meaning

In coordinates, Ai = (TMi )T (ΞTi − ξi1Tki) and B̃i = (T φi )T (ΦT
i −φ(ξi)1

T
ki

). These matrices are
computed by Steps 2 and 3 of Algorithm PullBackDPhi, while Yi contains the gradients
we want to estimate. The error term comes from approximating the logarithmic map
applied to points ξi′ and φ(ξi′) for i′ ∈ Ni with the columns of Ai and B̃i. Recalling that
Yi = [gradTMi

φk(ξi)]k=1:m we obtain

Y T
i Ai = [(T φi )T Im]T (T φi )TBi + o(rN ). (5)

We solve this linear system in the least squares sense

Yi = arg min
Y ∈Rd×m

‖ATi Y −BT
i T

φ
i (T φi )T ‖2 (6)

to obtain

Yi = A†iB
T
i T

φ
i (T φi )T . (7)

This solution is effectively the regression of the columns of BiT
φ
i (T φi )T on the columns of Ai

at each data point ξi. We call estimator (7) the pullback gradient estimator because of its
implicit invocation of the notion of vector pullback.

To see this a different way, note that by equation (2), for any function f : φ(M)→ R,

〈Dφ−1u,Dφ−1 gradφ(M) f〉 = 〈u, gradφ(M) f〉g, for all u ∈ Tφ(ξi)φ(M)

where g is the push-forward metric associated with φ. Using this fact, and the invariance of
gradient to metric, we have that, for any w ∈ TξiM, Dφ−1 gradφ(M) f = gradM(f ◦ φ) for

any smooth function f : φ(M)→ R. The above claims give us 〈Dφ−1u, gradM(f ◦ φ)〉 =

〈u, gradφ(M) f〉 where u ∈ Tφ(ξi)φ(M) is an arbitrary tangent vector. In coordinates T φi and

TMi , we can write this equivalence as

〈Dφ−1u, gradTMi
(f ◦ φ)〉 = 〈u, grad

Tφi
f〉.

If we then replace values of (T φi )T ek, (TMi )T (ξi′−ξi) and (T φi )T (φ(ξi′)−φ(ξi)) for grad
Tφi
φk,

Dφ−1u and Du, respectively, we obtain (5).

PullBackDPhi local data Ξi, local embedding coordinates Φi, basis TMi (Optional: T φi
or Laplacian row Li,Ni , intrinsic dimension d)

1: Compute pushforward metric eigendecomposition T φi , Gi ← RMetric(Li,Ni ,Φi, d).
2: Compute Bi ← (ΦT

i − φ(ξi)1
T
ki

)

3: Compute Ai ← (TMi )T (ΞTi − ξi1Tki)
4: Calculate Yi ← A†iB

T
i T

φ
i (T φi )T by solving linear system (6)

5: Output Yi

11
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Figure 2: Left: M with a tangent subspace at ξi, ξi′ − ξi (in black, dotted), the projection
ProjTξiM

(ξi′ − ξi) (in red), and the manifold gradient gradM φ1(ξi) of the first embedding

coordinate φ1 (in black). Right: φ(M) and tangent subspace at φ(ξi), with φ(ξi′)−φ(ξi) (in
black, dotted), ProjTφ(ξi)φ(M)(φ(ξi′)−φ(ξi)) (in red) and the manifold gradient gradφ(M) φ1

(in black). Ai,i′ is the (approximate) mapping of Bi,i′ through Dφ−1(ξi), as in (2). The
gradient gradφ(M) φ1 is the the projection of the first unit vector onto Tφ(ξi)φ(M).

4.5 The GroupLasso Formulation

With the estimated gradients, we are now ready to resolve the functional support problem.
Recall that Xi defined in (4) contains the gradients of the dictionary functions gj , and that
yik ∈ Rd, the k-th column of Yi, represents the coordinates of gradM φk(ξi) in the chosen
basis of TξiM. Further, given our assumption that φ = h ◦ gS , let hk be the k-th component
of the vector valued function h, and denote

βijk =
∂hk
∂gj

(gj(ξi)), β = [βijk]
n,m,p
i,k,j=1,

βj = vec(βijk, i = 1 : n, k = 1 : m) ∈ Rmn, βik = vec(βijk, j = 1 : p) ∈ Rp.

Then since gradM φk = gradM(hk ◦ gS) , for any point ξi and any v ∈ TξiM it holds from
chain rule that

〈gradM(hk ◦ gS)(ξi), v〉g = D(hk ◦ gS)(ξi)v

= Dhk(gS(ξi)[DgS(ξi)(v)]

= Dhk(gS(ξi))〈gradM gS(ξi), v〉g (8)

Note that both inner product and Dhk(gS(ξi)) are linear mappings, we conclude that
gradM φk = Dhk(gS(ξi)) gradM gS(ξ). In coordinates, we have

yik =

p∑
j=1

βijkxij = Xiβik for all i = 1 : n, and k = 1 : m.

In the above regression of Y1:n on X1:n, βik is the set of regression coefficients of yik onto Xi.
If there is some h such that φ = h ◦ gS , then the non-zero βijk coefficients are estimates of

12
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∂h
∂gj

for j ∈ S. Further, βj represents the vector of regression coefficients corresponding to

the effect of function gj ; therefore, the zero βj vectors indicate that j 6∈ S. Hence, in each
βik, only |S| elements are non-zero.

The key characteristic of the functional support that we leverage is that the same set S of
coefficients will be non-zero for all i and k. Since finding this set S ⊂ [p] is underdetermined,
we use a sparsity inducing regularization that simultaneously zeros out entire βj vectors.
Thus, our problem can be naturally expressed as a group lasso (Yuan and Lin, 2006), with p
groups of size mn, consisting of the β1:p groups of coefficients of gradM g1:p. To solve it we
minimize the following objective function w.r.t. β:

Jλ(β) =
1

2

n∑
i=1

m∑
k=1

||yik −Xiβik||2 +
λ√
mn

p∑
j=1

||βj ||. (9)

The first term of the objective is the least squares loss of regressing Y1:n onto X1:n. The
second is a regularization term, which penalizes each group βj by its Euclidean norm. This
encourages most βj groups to be identically 0. The normalization of the regularization
coefficient λ by the group size mn follows Yuan and Lin (2006) takes into account that
the least squares loss also grows proportionally to mn. The use of group lasso for sparse
functional regression was introduced in Meila et al. (2018).

Note that Jλ(β) is convex in β and invariant to the change of basis Ti. Let T̃i = TiΓ
be a different basis, with Γ ∈ Rd×d a unitary matrix. Then, ỹik = ΓT yik, X̃i = ΓTXi, and
||ỹik − X̃iβik||2 = ||yik −Xiβik||2 for any βik ∈ Rp.

4.6 Computation

The first two steps of ManifoldLasso are construction of the neighborhood graph and
estimation of the Laplacian L. As shown in Section 3, L is a sparse matrix, hence RMet-
ric can be run efficiently by only passing values corresponding to one neighborhood at
a time. Therefore, the computational cost may be significantly reduced by fast nearest
neighbor approximation based on random projections and trees (Bernhardsson, 2015). Note
that in our examples and experiments, diffusion maps is our chosen embedding algorithm,
so the neighborhoods and Laplacian are already available, though in general this is not the
case. The second part of the algorithm estimates the gradients and constructs matrices
Y1:n, X1:n. The gradient estimation runtime, with Cholesky decomposition-based solvers, is
O(qd2 +nd3) where q =

∑n
i=1 ki is the number of edges in the neighborhood graph. The last

major step is a call to the GroupLasso solver, which estimates the support S of φ. The
computation time of each iteration in GroupLasso is O(nmpd). Note that when using a
standard group lasso solver, the computation time is O(n2m2pd) due to the block-diagonal
structure of the problem implicit in flattening the n by p by d covariate tensor. We therefore
use our own implementation of accelerated proximal gradient descent to solve this problem
(Boyd and Vandenberghe, 2004; Jas et al., 2020; Beck and Teboulle, 2009). Finally, for large
data sets, we perform the ’for’ loop over a subset I ⊂ [n] of the original data while retaining
the geometric information from the full data set. This replaces the n in the computation
time with the smaller factor n′ = |I|.

13
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4.7 Normalization

As with many sparse regression methods, normalization is necessary to balance the relative
influence of dictionary elements and embeddings coordinates. Multiplying gj by a non-zero
constant and dividing its corresponding βj by the same constant leaves the reconstruction
error of all y’s invariant, but affects the norm ||βj ||. Therefore, the relative scaling of the
dictionary functions gj can influence the recovered support S, by favoring the dictionary
functions whose columns have larger norm. A similar effect is present if a particular
embedding coordinate φk is rescaled by a constant. For example, multiplying a certain φk
by a number close to zero will cause the penalty accrued by learned coefficients for that
coordinate to be smaller than for the other coefficients, and for that φk to dominate support
recovery.

We therefore normalize all gradTMi
φ1:m and gradTMi

g1:p as follows. Denote f a function
onM, which can be either a coordinate function or a dictionary function. When f is defined
on M, but not outside M, we calculate the normalizing constant

ζ2 =
1

n

n∑
i=1

‖ gradTMi
f(ξi)||2 , (10)

then we set f ← f/ζ. The above ζ is the finite sample version of ‖ gradT f‖L2(M), integrated
w.r.t. the data density on M. We apply this normalization to coordinate functions φk,
but it could also be applied to functions gj when they are defined only on M. A similar
approach was used in Haufe et al. (2009).

When function f is defined on a neighborhood around M in RD, we compute the
normalizing constant with respect to ∇ξf . That is,

ζ2 =
1

n

n∑
i=1

‖∇ξf(ξi)‖2. (11)

Then, once again, we set f ← f/ζ. We apply this normalization to our dictionary functions
gj . This favors dictionary functions whose gradients are nearly tangent to the manifold M,
and penalizes the gj ’s which have large gradient components perpendicular to M.

4.8 Tuning

Tuning parameters are often selected by cross-validation in Lasso-type problems. However,
in our setting, the recovered support generally span the tangent space, and as discussed in
Section 6, we are theoretically motivated to identify a size d support. Since the cardinality
of the support decreases as the tuning parameter λ is increased, we base our choice of λ
on matching the cardinality of the support to d. Sufficient conditions for this estimation
strategy are given in Section 6. To identify this λ, which we call λ0, we perform a simple
binary search over λ in the range [0, λmax] where λmax, the theoretical maximum λ value, is
λmax = maxj(

∑n
i=1

∑m
k=1(gradTMi

gj(ξi))
T (gradTMi

φm(ξi)))
1/2.

4.9 Variants and Extensions

The ManifoldLasso algorithm presented here can be extended in several interesting
ways. First, our current approach explains the embedding coordinates φ produced by a
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particular embedding algorithm. However, the same approach can be used to directly explain
the tangent subspace of M, independently of any embedding. Second, one could set up
GroupLasso problems that explain a single coordinate function. In general, manifold
coordinates may not have individual meaning, so it will not always be possible to find a
good explanation for a single φk. However, Figure 1 shows that for the ethanol molecule,
whose manifold is a torus, there exists a canonical association of certain coordinates to
particular torsions. Third, one could apply the same group lasso machinery to gradients in
the coordinates of the ambient space. Finally, metric properties may be used in order to
distinguish between various valid explanations.

It is well-established in the support recovery and sparse coding literature (Chen et al.,
1998; Hesterberg et al., 2008; Breheny and Huang, 2011; Lederer and Müller, 2015; Hastie and
Tibshirani, 2015) that at large λ, shrinkage can cause problems including variable selection
inconsistency; and furthermore that intermediate λ values can have desirable properties as a
variable pruning rather than selection step. Therefore, we also exhibit a combination of the
group lasso formulation (9) with group sparse basis pursuit (Qu et al., 2018). The so-called
basis pursuit problems (Chen et al., 1998), intimately related to regularized regression, are
discussed in more detail in Appendix E. In the case of ManifoldLasso, the corresponding
basis pursuit problem is

arg min
β:s=d

p∑
j=1

‖βj‖s.t. gradTMi
φk(ξi) =

p∑
j=1

βijk gradTMi
gj(ξi) for all i = 1 : n, and k = 1 : m.

(12)
This problem is evidently not tractable, as it involves searching over all d-sets of dictionary
functions. We suggest, following Hesterberg et al. (2008), to initially use an intermediate λ
values in ManifoldLasso in order to prune the dictionary to a smaller size. Subsequently,
we solve problem (12) with the pruned dictionary.

5. Related Work

We draw a firm distinction between our approach and purely non-parametric methods
that attempt to learn a parameterization of M. For example, the early works of Saul and
Roweis (2003) and Teh and Roweis (2002) (and references therein) propose parametrizing
the manifold by finite mixtures of local linear models, aligned so as to provides global
coordinates, in a way reminiscent of Local Tangent Space Alignment (Zhang and Zha,
2004). Another idea is to use d eigenfunctions of the Laplace-Beltrami operator ∆M as a
parametrization of M. Hence, the Diffusion Maps coordinates could be considered such a
parametrization (Coifman and Lafon, 2006; Coifman et al., 2005; Gear, 2012). However, these
are not in and of themselves interpretable, and it is not clear how many such coordinates
are needed (Chen and Meilă, 2019). In Mohammed and Narayanan (2017), it was shown
that principal curves and surfaces can provide an approximate manifold parametrization.
These methods can often be used as embedding algorithms in our approach, but make no
attempts at synergizing with an interpretable dictionary. Dsilva et al. (2018) tackle the
related problem of choosing among the infinitely many Laplacian eigenfunctions d which
provide a d-dimensional parametrization of the manifold. Their approach is to solve a
sequence of Local Linear Embedding (Roweis and Saul, 2000) problems, each aiming to
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represent an eigenfunction as a combination of the preceding ones. Similarly, Chen and Meilă
(2019) is another method for reducing the number of ”covarying” eigenfunctions. However,
these methods fail to provide physical meaning for the selected functions.

Our work differs from the above entirely non-parametric methods in two key ways: (1) the
explanations we obtain are endowed with the meaning of the domain specific dictionaries, (2)
less obviously, descriptors like principal curves or Laplacian eigenfunctions are generally still
non-parametric (i.e exist in infinite dimensional function spaces), while the parameterizations
by dictionaries we obtain (e.g., the torsions) are in finite dimensional spaces. This distinction
is mirrored in comparison with the many so-called dictionary learning methods in which a
low-dimensional transformation is learned simultaneously with its inverse. We note that our
method is not dictionary learning per se, but rather sparse coding, in which the dictionary
is given (Szabó et al., 2011).

The symbolic regression methods of Brunton et al. (2016), Rudy et al. (2019), and
Champion et al. (2019) for estimating governing laws of dynamical systems are perhaps
most similar to this work. These methods use sparse regression with respect to a dictionary
and the idea of differential composition. Their goal is to identify the functional equations of
non-linear dynamical systems by regressing the time derivatives of the state variables on a
subset of functions in the dictionary selected using a sparsity inducing penalty. This provides
a natural interpretability. However, although these methods can loosely be considered
univariate analogs, they do not consider the multidimensional data-manifold, and their
synergies with dimension-reduction algorithms are developed in separate directions.

With respect to sparse regression, the seminal Group Lasso paper of Yuan and Lin (2006)
and support recovery analyses of Elyaderani et al. (2017); Wainwright (2009) are central to
our approach. However, our use of replicates in experiments is reminiscent of the Stability
Selection method of Meinshausen and Bühlmann (2010). Such methods address instabilities
of the variable selection, in particular, when restrictive theoretical conditions are violated
(Zhao and Yu, 2006; Huan Xu et al., 2012). The empirically-based two-stage OLS-hybrid
approach we elucidate in Appendix E for resolving this issue is based on ideas in Efron et al.
(2004); Meinshausen (2007); Hesterberg et al. (2008). Some attractive alternate approaches
to this problem that we do not pursue are the use of non-convex penalties such as SCAD
(Fan and Li, 2001; Breheny and Huang, 2011) and weighted data points in the Adaptive
Lasso (Zou, 2006). We note the method of Haufe et al. (2009), which applies group lasso to
analyze sparse decomposition of vectors fields, albeit in a different setting.

As for our method, gradient estimation on manifolds is typically derived from the
perspective of local linear regression and tangent space estimation (Mukherjee and Zhou,
2006; Aswani et al., 2011). However, as in Luo et al. (2009), we make explicit the logarithmic
map by estimating and projecting upon the tangent space of φ(M), and our estimates of this
tangent space are made using the pushforward metric of Perraul-Joncas and Meila (2013).

The role of our work with in the molecular dynamics literature is particularly relevant
to enhanced sampling methods (Rohrdanz et al., 2011, 2013; Fiorin et al., 2013; Fleming
et al., 2016). In these methods, exploration of the molecular state space is accelerated
through biasing of simulation towards directions of large scale variation, which are typically
identified through visual inspection. Note that this method is practically useful despite the
need to perform initial simulations in order to identify collective coordinates. More recently,
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reinforcement-learning type syntheses of these ideas have been applied (Wang et al., 2019;
Pant et al., 2020; Sidky et al., 2020; Buenfil et al., 2021).

Although in this paper the dictionary consists of functions with physical meaning, our
general principle of finding parametric geometrically-motivated approximations of learned
representations is relevant to a range of machine learning contexts. Examining functions
in embedding coordinates is quite typical in genomics (Amir et al., 2013), and much
deep learning work also makes use of explicit traversal of a latent space (Lin et al., 2020;
Shukla et al., 2018). It is also known in a range of settings that learned gradients provide
interpretable (Adebayo et al., 2018) or otherwise statistically-useful information (Wu et al.,
2010; Constantine et al., 2014; Yang, 2020). Our approach relies on the classical weighted
local PCA method for tangent space estimation (Joncas et al., 2017; Aamari and Levrard,
2019). Improvement of this estimator in the presence of noise is an active area of research
(Puchkin and Spokoiny, 2022).

6. Theoretical Results

We investigate the conditions under which f = h ◦ gS can be represented over a dictionary
G that contains gS . Not surprisingly, we will show that these are functional independency
conditions on the dictionary. Subsequently, we prove recovery conditions in the finite sample
case.

6.1 Functional Dependency

We first study when a set of functions on an open subset U ⊂ Rd can be almost smoothly
represented with a subset of functionally independent functions. The following lemma
implies that if a set of non-full-rank smooth functions has a constant rank in a neighborhood,
then locally we can choose a subset of these functions such that the other functions can be
smoothly represented by them. This is a direct result from the constant rank theorem.

Lemma 1 (Remark 2 after Zorich (2004) Theorem 2 in Section 8.6.2) Let f : U →
Rm be a mapping defined in an open neighborhood U ⊂ Rd of a point x? ∈ Rd. Suppose
f ∈ C`, the rank of the mapping f is k at every point in U , and k < m. Moreover, assume
that the principal minor of order k of the matrix Df is not zero at x?. Then in some
neighborhood Ux? ⊂ U there exist m− k C` functions gi, i = k + 1, · · · ,m such that for any
x = (x1, · · · , xd) ∈ U(x?),

fi(x1, x2, · · · , xd) = gi(f1(x1, x2, · · · , xd), f2(x1, x2, · · · , xd), · · · , fk(x1, x2, · · · , xd)). (13)

Applying this lemma we can construct a local representation of a subset in gS . Partitions
of unity enable us to expand the above lemma from local to global. Mathematically, a smooth
partition of unity subordinate to {Uα} is an indexed family (ψα)α∈A of smooth functions
ψα :M→ R with the following properties:

(i) 0 ≤ ψα(ξ) for all α ∈ A and all ξ ∈M;

(ii) supp ψα ⊂ Uα for each α ∈ A;
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(iii) Every ξ ∈M has a neighborhood that intersects supp ψα for only finitely many values
of α;

(iv)
∑

α∈A ψα(ξ) = 1 for all ξ ∈M.

Lemma 2 (Lee (2003) Theorem 2.23) Suppose thatM is a smooth manifold, and {Uα}α∈A
is any indexed open cover of M. Then there exists a smooth partition of unity subordinate
to {Uα}.

Now we state our main results.

Theorem 3 Assume G = {gi}pi=1 is the dictionary where g1:p are C` functions in an
open set U ⊂ Rd. For a subset S ⊂ [p], let gS is defined as {gi : i ∈ S}. Consider
S′ ⊂ [p], S′ 6= S, |S′| < d such that rankDgS′ = |S′| at a point. Suppose that ` ≥ d+ 1. Then
there exists a function τ : R|S′| → R|S| that is almost everywhere C` on the range of gS′,
w.r.t. Lebesgue measure on R|S′|, such that gS = τ ◦ gS′ if

rank

(
DgS
DgS′

)
= rankDgS′ on ; , (14)

holds globally. If τ is smooth everywhere on the range of gS′, then (14) holds globally.

Proof First, we show the existence of τ . We claim that it suffices to prove the existence
of function composition on the set where rankDgS′ = |S′|. Consider U = U1 ∪ U2, where
U1 := {x : rankDgS′ = |S′|}, and U2 = U − U1. U1 is not empty by the assumption. Note
that we can select an |S′|×|S′| submatrix AS′,ξ in DgS′ and detAS′,ξ is a continuous function
(and thus nonzero) in a neighborhood. This shows that U1 is a nonempty open set. Locally,
gS′ is a diffeomorphism to its image; therefore gS′(U1) contains an interior point, and thus
has positive measure in R|S′|. From Sard’s theorem (Lee, 2003), we know that the range of
gS′(U2) is of Lebesgue measure zero in R|S′|. Therefore it suffices to show that there exists a
τ ∈ C` on gS′(U1). To simplify the notation we use U to denote U1 in the following proof.
By definition of U , we know that gS′ is a diffeomorphism between U and gS′(U). So the
inverse g−1

S′ is well defined and C`. Also denote s = |S| and s′ = |S′|. Let

gS′tS(ξ) =

(
gS′(ξ)
gS(ξ)

)
,

and use DgS′tS to denote the l.h.s. matrix in (14). Here t means disjoint union. To be
specific, we use gji to denote the i−th function in the collection [gS′ ; gS ]. When the rank
of DgStS′ equals the rank of DgS′ , Lemma 1 implies that there exists some neighborhood

Ux ∈ Rd of x and C` functions τ ix : R|S′| → R, i = s′ + 1, s′ + 2, · · · , s′ + s such that

gji(ξ) = τ ix(gj1(ξ), · · · , gjs′ (ξ)) = τ ix(gS′(ξ)), for i = s′ + 1, s′ + 2, · · · , s′ + s, ξ ∈ Ux.

Here we should notice that τ ix is defined only on gS′(Ux). Since this holds for every x ∈ U ,
we can find an open cover {Ux} of the original open set U . Since each open set in Rd is a
manifold, the result of partition of unity in Lemma 2 holds, namely that U admits a smooth
partition of unity subordinate to the cover {Ux}. We denote this partition of unity by ψx(·).
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Hence we can define

τ i(y) =
∑
x∈U

ψx(g−1
S′ (y))τ ix(y), y ∈ gS′(U).

where τ i is a function mapping from gS′(U) → R. For each fixed x ∈ U , the function
y → ψx(g−1

S′ (y))τ ix(y) for y ∈ gS′(U) is C`. According to the properties of partition of
unity, in a local neighborhood of each point, this is a summation of finitely many smooth
functions. Then this τ i will be a C` function on gS′(U). Also, by 1 =

∑
x ψx(ξ), it holds

that τ i(gS′(ξ)) = gji(ξ) for any i = s′ + 1, · · · , s′ + s.
Therefore, globally in U we have

giStS′(ξ) = τ i(g1(ξ), · · · , gs′(ξ)), for i = s′ + 1, s′ + 2, · · · , s′ + s, ξ ∈ U.

Now we prove the reverse implication. If rankDgStS′ > rankDgS′ , then there is j ∈ S,
so that Dgj 6∈ rowspanDgS′ . Pick ξ0 ∈ U such that Dgj(ξ

0) 6= 0; such an ξ0 must exist
because otherwise it will be in rowspanDgS′ . By the theorem’s assumption, DgS = DτDgS′ .
Therefore, (DgS)T is in rowspan(DgS′)

T for any ξ. However, this is impossible at ξ0.
This theorem essentially gives a condition for the existence of the explanation. Further,

if S is the set found by ManifoldLasso, then checking that there is no subset satisfying
the rank condition implies that the explanation is unique in the dictionary. We say that a
set of functions gS on a metric space X is C` (smooth) functionally dependent at ξ if there
is a subset S′ ⊂ S, S′ 6= S, a function τ : R|S′| → R|S| and a neighborhood U around ξ such
that

(i) gS = τ ◦ gS′ on U ;

(ii) τ is C` (smooth) globally on gS′(U) ⊂ R|S′|;

(iii) y − τ(yS′) 6≡ 0 on any neighborhood O(gS(ξ)) ⊂ R|S|. Here y = (y1, · · · , y|S|) ∈
R|S|, yS′ = (yi)i∈S′ ∈ R|S′|.

The condition (iii) here eliminates the possibility of a trivial τ . S is functionally independent
if it is nowhere functionally dependent. Based on Theorem 3, we formulate the rank condition
below as a necessary and sufficient condition of functional independence.

Corollary 4 (Functional Independence) Suppose M is a d−dimensional smooth man-
ifold and gS :M→ Rd are d C` functions. Suppose gS(M) has a positive measure in Rd.
Then they are functionally independent on M iff rankDgS(ξ) is d everywhere on M except
for a closed subset W ⊂M with no interior point.

Proof First we show that the rank condition implies functional independence. Suppose gS
is functionally dependent. Then by definition we have that gS = τ ◦ gS′ on a neighborhood
for some S′ with |S′| < |S| = d. Then on this neighborhood rankDgS ≤ rankDgS′ ≤
d− 1. This contradicts the assumption. On the other hand, suppose DgS is functionally
independent. We claim that for any ξ′ ∈ V0, rankDgS(ξ′) ≥ rankDgS(ξ): For any ξ there is
a rankDgS × rankDgS non-degenerate submatrix of DgS(ξ) whose determinant is non-zero.
Therefore, by the smoothness of gS , there exists a neighborhood V0 such that this submatrix
of the Jacobian is invertible in this neighborhood and the claim holds.
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We therefore start from a point ξ where rankDgS = d − 1. Select functions that are
full rank at this point, and denote them by gS′ . There is a neighborhood V1 of ξ with
rank gS′(ξ) = d − 1. If rankDgS = d − 1 holds on some neighborhood V2 of ξ, then after
selecting a chart (U,ϕ) containing V1 ∩ V0, we have that

rank

(
DgS ◦ ϕ−1

DgS′ ◦ ϕ−1

)
= rankDgS′ ◦ ϕ−1

holds on V2 ∩ V1 ∩ V0. Thus, Theorem 3 implies that gS cannot be functionally independent
(consider a composition with ϕ). Therefore, the set {x : rankDgS = d−1} has empty interior
in M. Similarly, in every neighborhood Vk of any point where 0 ≤ rankDgS = k < d− 1,
there must be a point such that rankDgS = k + 1. Then in every neighborhood Vk+1 ∩ Vk
of this new point there must be a point such that rankDgS = k + 2. By induction,
there must be a point in Vk such that rankDgS = d. Therefore we conclude that the
set W = {ξ : rankDgS ≤ d − 1} contains no interior point. Also, it is closed because
{ξ : rankDgS = d} is open.

Theorem 5 Let G and gS be defined as before. M is a smooth manifold with dimension
d embedded in RD. Suppose that ψ :M ⊂ RD → Rm is also an embedding of M and has
a decomposition ψ(ξ) = h ◦ gS(ξ) for every ξ ∈M where h is smooth. If the dictionary gS
contains d functions denoted by gS′, that are smooth functionally independent on M, then
there exists a h̃ such that ψ = h̃ ◦ gS′ on every ξ ∈M. Here, the function h̃ is smooth almost
everywhere in the range of gS′.

Proof Consider the set U = {x : rankDgS′ = d}. It is an open subset of the manifold
M and therefore a smooth manifold. For each point x ∈ U , select a local chart (V, ϕ) such
that V ⊂ U . With the same argument in the proof of Corollary 4, we know that there
exists a smooth functions τx on V such that gS = τ ◦ gS′ holds on V. Also, since V is an
open neighborhood, we conclude that the measure of gS′(U) ≥ gS′(V ) should be strictly
positive. Therefore the partition of unity technique used in the proof of Theorem 3 can show
that there exists a function τ on U that is smooth over gS′(U) such that gS = τ ◦ gS′ holds
globally on U . We can define τ on M\ U to be anything, and Sard’s theorem implies that
gS′(U) would be a measure zero set in Rd. Finally, we just write h̃ = h ◦ τ

The assumptions of these theorems are reasonable. Even though any smooth map
f :M→ Rd on a compact manifold M must have at least one singular point, Theorem 3
will still hold almost everywhere as long as gS is smooth almost everywhere. The existence
of such functions gS with rank d almost everywhere is guaranteed by the fact that a single
coordinate chart can cover any compact manifold except for a set of measure zero, known
as the cut-locus of the chart (Sheng, 2009; Bishop, 2013). One can, for example, find one
function explaining the whole circle S1 embedded in R2 except one point. Thus, these
theoretical results should be considered conditions on the dictionary, rather than the manifold
itself.

6.2 Discussion of Practical Recovery from Samples

In a finite sample setting, Theorem 3 states that S and S′ are equivalent explanations for
f whenever (14) holds on open sets around the sample points. In this situation, it is very
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likely to find many subsets S′ ⊂ [p] of cardinality d that are full rank in neighborhoods of
all data points. Still assuming that all gradients are exact, for all such S′ the first term of
Jλ(β) in (9) will be zero; in other words there will be many equivalent explanations of φ
in G. However, one can define a subset S as the expected minimizer in (12), or in a purely
oracle sense. For our theoretical analyses, we thus fix a subset S and regard it as the true
support throughout this section.

The tendency of ManifoldLasso to select a support with a low value of
∑p

j=1 ‖βj‖ is
reasonable, and even desirable because, according to Obozinski et al. (2011), a particular
group S will be recovered by Group Lasso methods, if (i) it is close to perpendicular to
the linear subspace generated by all other groups, and (ii) group features in S are close to
orthogonal matrix. The first condition will be discussed later in this section. As for condition
(ii), we note that if a set S′ is not full rank on M, the Jacobian DgS′ will be ill-conditioned
at the data near the critical points, which will result in very large βji values. Hence, such
a subset will be heavily penalized. Moreover, features gj which vary much in a direction
normal to M will have, due to the gradient normalization, smaller values for gradTMi

gj ;
therefore their βj coefficients will be large relatively to the coefficients of functions that vary
within M.

We now analyze the situation when gradTMi
gj and gradTMi

φk are estimated with noise,
showing that it is qualitatively similar to noiseless case. Specifically, we provide recovery
guarantees for the (GroupLasso) problem that highlight the influence of the aforementioned
factors, as well as of condition (i). The guarantees are deteriministic, but they depend on
the noise sample variance, hence they can lead to statistical guarantees holding w.h.p. in
the usual way. For simplicity, we analyze support recovery for m = 1, hence for a single
dependent variable y. Namely we assume that that the data y1:n ∈ Rd satisfy

yi =

p∑
j=1

β∗ijxij + εi for i = 1 : n , (15)

and we rewrite the GroupLasso problem as

min
β

1
2

n∑
i=1

||yi −Xiβi||22 + λ
√
n

p∑
j=1

||βj ||, (16)

according to the notations of equation (9) with the index k dropped. A first theorem deals
with support recovery, proving that all coefficients outside the support are zeroed out, under
conditions that depend only on the dictionary, the fixed support S, and the noise. The
second result completes the previous with error bounds on the estimates β̂j , assuming an
additional condition on the magnitude of the true βj coefficients. Since these coefficients are
partial derivatives w.r.t. the dictionary functions, the condition implies that the dependence
on each function must be strong enough to allow the accurate estimation of the partial
derivatives.

We introduce the following quantities. The incoherence of G is defined as

µ = max
i=1:n,j∈[p],j′∈S,j 6=j′

|xTijxij′ |
‖xij‖‖xij′‖

.
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This definition differs in two ways from the standard definition of incoherence as maxi maxj,j′∈[p] |xTijxij′ |.
First, here we do not make the common assumption that the columns of the GroupLasso de-
sign matrix are norm 1 (details to be found in the proof of Theorem 7). Rather, the recovery
result we pursue assumes the normalizations in Section 4.7; hence to preserve a measure
of incoherence independent of the column norms, we must rescale by ‖xij‖‖xij′‖. Second,
because we condition on the set S, it is not necessary to require that the gradients outside
the support S be incoherent.

We further consider the internal collinearity of the support S as follows. Let

Σi =
[
xTijxij′

]
j,j′∈S and Σ = diag{Σ1:n}.

Lemma 6

‖Σ−1
i ‖ ≤

1

(minj∈S ‖xij‖2)[1− (s− 1)µ]
for all i = 1 : n.

Proof It is easy to see that

Σi = diag{‖xij‖j∈S}Σ̃i diag{‖xij‖j∈S} with Σ̃i =

[
xTijxij′

‖xij‖‖xij′‖

]
i,j∈S

.

By the Gershgorin Theorem, since all the off-diagonal elements of Σ̃i are bounded in absolute
value by µ, the minimum eigenvalue of Σ̃i is bounded below by 1 − (s − 1)µ. When this
quantity is positive, then the maximum eigenvalue of Σ̃−1

i is

‖Σ̃−1
i ‖ ≤

1

1− (s− 1)µ
= ν.

A smaller ν means that the xij gradients are closer to being orthogonal at each datapoint i.
Furthermore, ‖Σ−1

i ‖ ≤ ‖Σ̃
−1
i ‖‖ diag{‖xij‖−1

j∈S}‖2 ≤
ν

minj∈S ‖xij‖2 .

Finally, the noise level σ is defined by

max
i=1:n

||εi||2 = dσ2.

Theorem 7 (Support recovery) Assume that equation (15) holds, and that
∑n

i=1 ||xij ||2 =

γ2
j for all j = 1 : p. Let γmax = maxj 6∈S γj, κS = maxi=1:n

maxj∈S ‖xij‖
minj∈S ‖xij‖ . Denote by β̄ the

solution of (16) for some λ > 0. If 1− (s− 1)µ > 0 and

γmax

(
µ

1− (s− 1)µ

κS
minni=1 minj′∈S ‖xij′‖

+
σ
√
d

λ
√
n

)
≤ ; , (17)

then β̄ij = 0 for j 6∈ S and all i = 1, . . . n.
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Proof We structure equation (15) in the form

y = ¯̄Xβ̄∗ + ε̄ with y = [yi]i=1:n ∈ Rnd, β̄ = [βi]i=1:n ∈ Rnp,

X̃ij ∈ Rnd is obtained from xij by padding with zeros for the entries not in the i-th segment,
¯̄X = [[X̃ij ]j=1:p]i=1:n ∈ Rnd×np, and ¯̄Xj = [X̃ij ]i=1:n ∈ Rnd×n collects the columns of ¯̄X that

correspond to the j-th dictionary entry. Note that

X̃T
ijX̃ij′ = xTijxij′ and X̃T

ijX̃i′j′ = 0 whenever i 6= i′.

The proof is by the primal dual witness method, following Elyaderani et al. (2017); Obozinski
et al. (2011). It can be shown Elyaderani et al. (2017); Wainwright (2009) that β̄ is a
solution to (GroupLasso) iff, for all j = 1 : p,

¯̄XT
j

¯̄X(β̄ − β̄∗)− ¯̄XT
j ε̄+ λzj = 0 ∈ Rn with zj =

βj
||βj ||

if βj 6= 0 and ||zj || < 1 otherwise.

(18)
The matrix ¯̄XT

j
¯̄X is a diagonal matrix with n blocks of size 1× p, hence the first term in

(18) becomes
[xTijXi(β̄i: − β̄∗i:)]i=1:n ∈ Rn.

Similarly ¯̄XT
j ε̄ = [xTijεi]i=1:n ∈ Rn.

We now consider the solution β̂ to problem (16) under the additional constraint that
βij′ = 0 for j′ 6∈ S. In other words, β̂ is the solution we would obtain if S was known. Let ẑ
be the optimal dual variable for this problem, and let ẑS = [ẑj ]j∈S .

We will now complete ẑS to a z ∈ Rnp so that the pair (β̂, z) satisfies (18). If we succeed,
then we will have proved that β̂ is the solution to the original GroupLasso problem, and
in particular that the support of β̂ is included in S. For simplicity we denote λ′ = λ

√
n.

From (18) we obtain values for zj when j 6∈ S.

zj =
−1

λ′
¯̄XT
j

[
¯̄XT (β̂ − β̄∗)− ε̄

]
. (19)

At the same time, if we consider all j ∈ S, we obtain from (18) that ¯̄XS = [ ¯̄Xj ]j∈S (here the
vectors βS , βS∗ and all other vectors are size ns, with entries sorted by j, then by i).

¯̄XT
S

¯̄XS(β̂S − β∗S)− ¯̄XT
S ε̄+ λ′ẑS = 0. (20)

Solving for β̂S − β∗S in (20), we obtain

β̂S − β∗S = ( ¯̄XT
S

¯̄XS)−1
(

¯̄XT
S ε̄− λ′ẑS

)
= Σ−1

(
¯̄XT
S ε̄− λ′ẑS

)
.

After replacing the above in (19) we have

zj =
−1

λ′
¯̄XT
j

[
¯̄XSΣ−1 ¯̄XT

Sw − ¯̄XSΣ−1λ′ẑS − ε̄
]

= ¯̄XT
j

¯̄XSΣ−1ẑS +
1

λ′
¯̄XT
j (I − ¯̄XSΣ−1 ¯̄XT

S )ε̄.

Finally, by noting that Π = I − ¯̄XSΣ−1 ¯̄XT
S is the projection operator on the subspace

span( ¯̄XS)⊥, we obtain that

zj = ( ¯̄XT
j

¯̄XS)Σ−1ẑS +
1

λ′
¯̄XT
j Πε̄, for j 6∈ S. (21)
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We must show that ||zj || < 1 for j 6∈ S. To bound the first term, we note that ¯̄XT
j

¯̄XS is
n× ns, block diagonal, with blocks of size 1× s, and with all non-zero entries bounded in
absolute value by µ. Hence, for any vector v = [vi]i=1:n ∈ Rns,

|| ¯̄XT
j

¯̄XSv||2 = ||[(xTijxiS)vi]i=1:n||2 ≤
n∑
i=1

||(xTijxiS)vi||2 ≤
n∑
i=1

‖(xTijxiS)‖2‖vi‖2. (22)

In our case vi = Σ−1
i ẑiS , hence by by Lemma 6

‖vi‖ ≤ ||Σ−1
i ||||ẑiS || ≤ ν

1

minj′∈S ‖xij′‖2
. (23)

On the other hand,

‖xTijxiS‖2 =
∑
j′∈S

(xTijxij′)
2 ≤

∑
j′∈S

µ‖xij‖2‖xij′‖2 ≤ µmax
j′∈S

(‖xij′‖2)‖xij‖2. (24)

Bounds (23) and (24) together with equation (22) yield

( ¯̄XT
j

¯̄XS)Σ−1ẑS ≤ nu2µ2
n∑
i=1

‖xij‖2 max
j′∈S

(‖xij′‖2)
1

(minj′∈S ‖xij′‖2)2

≤ ν2µ2κ2
S

n∑
i=1

‖xij‖2
1

minj′∈S ‖xij′‖2

≤ ν2µ2κ2
S

1

minni=1 minj′∈S ‖xij′‖2
n∑
i=1

‖xij‖2

= ν2µ2κ2
S

1

minni=1 minj′∈S ‖xij′‖2
γ2
j . (25)

To bound the second term, we note that Π is a block diagonal matrix, Π = diag{Π1:n},
with Πi = Id − xTiSΣ−1

i xiS . Hence, the norm squared of this term is bounded above by∑n
i=1 ||Πiεi||2||xij ||2/(λ′)2 ≤

∑n
i=1 ||εi||2||xij ||2/(λ′)2 ≤ dσ2/(λ′)2

∑n
i=1 ||xij ||2 = (dσ2/(λ′)2)γ2

j .
Replacing these bounds in (21) we obtain that

||zj || ≤ || ¯̄XT
j

¯̄XSΣ−1ẑS ||+ ||
1

λ′
¯̄XT
j Πε̄|| ≤

(
µνκS

minni=1 minj′∈S ‖xij′‖
+
σ
√
d

λ′

)
γj for any j 6∈ S.

(26)

The first term inside the parenthesis relates to the properties of the support S. The
factor µ

1−(s−1)µ measures the near-orthogonality of the gradients in S, while the factors

(minni=1 minj′∈S ‖xij′‖)−1 and κS measure the conditioning of S with respect to the gradient
norms. They are optimal when all gradients in S are bounded away from 0, and when their
sizes are relatively equal. The second term depends on the noise amplitude, and can be
made arbitrarily small by increasing the regularization coefficient λ.

We now consider the recovery of all the non-zero coefficients, which will complete the
exact support recovery proof. From the result below, we shall see that having non-zero β̂j

24



Manifold Coordinates with Physical Meaning

for a j ∈ S requires that the original βj is large enough w.r.t. noise level and condition
numbers of the problem. This conflicts with the requirement that βj is small, suggesting
one possible way that the GroupLasso recovery may fail, namely that the smallest of the
non-zero βj ’s may be “regularized out” before all the nuisance β̂j are.

Corollary 8 Assume that equation (16) and condition (17) hold. Let κ = µ
1−(s−1)µ

κS
minni=1 minj′∈S ‖xij′‖

and γS = ‖ ¯̄XS‖. Denote by β̂ the solution to problem (16) for some λ > 0. If (1)

λ = c γmaxσ
√
d

1−κγmax , c > 1, and (2) ||β∗j || > σ
√
d(γmax + γS) + λ(1 +

√
s) for all j ∈ S, then the

support S is recovered exactly and

||β̂j−β∗j || < σ
√
d(γmax+γS)+λ(1+

√
s) = σ

√
dγmax

[
1 + γS/γmax + c

1 +
√
s

1− κγmax

]
for all j ∈ S.

(27)

Proof of Corollary 8 According to Theorem 7, β̂j = 0 for j 6∈ S. It remains to prove
the error bound for j ∈ S. According to Lemma V.2 of Elyaderani et al. (2017), for any
j ∈ S,

||β̂j − β∗j || ≤ || ¯̄XT
j ε̄||+ || ¯̄XT

S ε̄||+ λ(1 +
√
s)

≤ (|| ¯̄Xj ||+ || ¯̄XS ||)||ε̄||+ λ(1 +
√
s)

≤ σ
√
d(γmax + γS) + λ(1 +

√
s)

= σ
√
dγmax

[
1 + γS/γmax + c

1 +
√
s

1− κγmax

]
.

Hence, if ||β∗j || is greater than the r.h.s. of the above, β̂j 6= 0 and the support is recovered
exactly.

In equation (27), the factor σ
√
d represents the noise amplitude, while γmax bounds

the amplitude of the nuisance covariates ¯̄Xj outside of S. A smaller γmax means that the
contribution of these nuisance covariates will be smaller. The term γS bounds the collinearity
of the noise with the true support covariates. The last term measures the bias introduced in
β̂j by the regularization; note that λ itself depends on the noise amplitude σ

√
d.

Recall from Sections 4.5 and 4.7 that γj represents the finite sample estimate of the L2

norm of gradTMi
gj . When the dictionary functions gj are defined onM, but not outsideM,

then gradTMi
gj is normalized by equation (10) and consequently γj =

√
n for all j. If first

the gradients ∇ξgj are computed and then normalized in ambient space RD by (11) after
projection on the tangent bundle TM, then γj ≤

√
n. Thus, by explicitly considering the

variability in the norms of ‖xij‖ for j 6∈ S, we see that features gj whose gradient ∇ξgj is
not tangent to the manifold are easier to rule out. Regarding scaling of the l.h.s. of equation

(17), it is easy to see that the term σ
√
dγmax

λ
√
n

is O(1) w.r.t. n; the first term κγmax is invariant

to any rescaling of the ¯̄X by a scalar.

7. Experiments

We demonstrate the ability of ManifoldLasso to identify explanations of manifolds and
their embedding coordinates in both toy and scientific manifold learning problems. Section
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7.1 describes the general experimental procedure, while Section 7.2 describes some specific
adjustments to this protocol necessary for analyzing molecular dynamics (MD) data. Sections
7.3.1–7.4 describe our experimental results. 2

Dataset n Na D d εN m n′ p ω

SwissRoll 10000 NA 49 2 .18 2 100 51 1
RigidEthanol 10000 9 50 2 3.5 3 100 12 25

Ethanol 50000 9 50 2 3.5 3 100 12 25
Malonaldehyde 50000 9 50 2 3.5 3 100 12 25
Toluene 50000 16 50 1 1.9 2 100 30 25

Ethanol 50000 9 50 2 3.5 3 100 756 25
Malonaldehyde 50000 9 50 2 3.5 3 100 756 25

Table 1: Summary of experiments. SwissRoll and RigidEthanol are toy data, while Toluene,
Ethanol, and Malonaldehyde are from quantum molecular dynamics simulations by
Chmiela et al. (2017). The columns list the following experimental parameters: n is the
sample size for manifold embedding, Na is the number of atoms in the molecule, D is the
dimension of ξ, d is the intrinsic dimension, εN is the kernel bandwidth, m is the embedding
dimension, n′ is the size of the subsample used for ManifoldLasso, p is the dictionary
size, and ω is the number of independent repetitions of ManifoldLasso. More details are
in Section 7.1

7.1 Experimental Setup

For all of the following experiments, the data consist of n data points in D dimensions, as well
an embedding φ1:m(D). We assume access to the manifold dimension d, a kernel bandwidth
εN used in the estimation of the tangent spaces, and p dictionary functions. Except where
otherwise specified, m and εM are used in the preliminary step of generating embeddings
φ1:m using the diffusion maps algorithm as EmbeddingAlg. ManifoldLasso is applied
to a uniformly random subset of size n′ = |I| and this process is repeated ω number
of times. These parameters are passed to the Laplacian, LocalPCA, RMetric, and
PullBackDPhi algorithms, and are summarized in Table 1. The regularization parameter
λ ranges over [0, λmax] as described in Section 4.8.

7.2 Molecular Dynamics Data

The method of MD simulations is one of the principal tools in the study of molecular systems.
Such simulations provide detailed information on the fluctuations and conformational
changes of the system, and are now routinely used to investigate the structure, dynamics
and thermodynamics of biological macromolecules and their complexes. In such simulations,
the positions of atoms within a molecule are sampled as they proceed through time from
some initial conditions according to interatomic effects. The distribution of this sample
describes the molecule’s behavior in the given experimental conditions. It has been shown
empirically that manifolds approximate these high-dimensional distributions (Dsilva et al.,

2. Code to run experiments is available at https://github.com/sjkoelle/montlake.
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2013). Accordingly, application of manifold learning to find the collective coordinates has
achieved great success (Das et al., 2006; Tribello et al., 2012; Noé and Clementi, 2017;
Sidky et al., 2020). Even though the vector of atomic coordinates can take any value, due
to interatomic interactions, the relative positions of atoms within the molecule lie near a
low-dimensional slow manifold. Performing manifold learning on these data separates the
conformational changes, modeled by the manifold, from the fluctuations represented by the
“noise” around the manifold.

7.2.1 Representing molecular configurations

Our MD data are quantum-simulations from Chmiela et al. (2017). The raw data consists of
X,Y, Z coordinates for each of the Na atoms of the chosen molecule. For a single observation,
we denote these by ri ∈ R3Na . The first step in our data analysis pipeline is to featurize
the configuration in a way that is invariant to rotation and translation. In the present
experiments, we follow Chen et al. (2019) and represent a molecular configuration as a vector

ai ∈ R3(Na3 ) of the planar angles formed by triplets of atoms. We then perform an SVD
on this featurization, and project the data onto the top D = 50 singular vectors to remove
linear redundancies; we denote the new data points by ξ1:n. The EmbeddingAlg and
LocalPCA algorithms work directly with ξ in dimension D. Other possible representations
such as applying a Procrustes transform to each configuration to align it with the first one
give similar results, and no matter which low level representation we choose, large-scale
conformational changes are described by the relative rotations of groups of atoms - the bond
torsions illustrated in Figure 1 (Chen et al., 2019).

7.2.2 Dictionaries for MD Data

Therefore, in the RigidEthanol, Ethanol, Malonaldehyde, and Toluene MD datasets,
we construct dictionaries consisting of bond torsions. We then apply ManifoldLasso to
select combinations of these higher-level torsion features that explain the manifold in the
lower-level planar angle feature space. Given an ordered 4-tuple of atoms ABCD, the
torsion gABCD is the angle of the planes defined by the locations of ABC and BCD. Note
that gABCD ≡ gDBCA ≡ gDCBA ≡ gACBD. Any torsion g is expressible in closed form as
functions of the planar angles feature vector a. In particular, a torsion gABCD is a function
of the angles of the triangles inscribing atoms ABC, ABD, ACD, and BCD. We compute
the gradients of the torsions by automatic differentiation (Paszke et al., 2019).

One cannot use the obtained gradients directly in ManifoldLasso, since the angular
features overparameterize the molecular shape space ΣNa

3 (Addicoat and Collins, 2010;
Kendall, 1989) of dimension D′ = 3Na − 7, and off-manifold gradients are therefore not
well-defined. For example, whether one chooses to use triangles ABC, ABD, and ACD,
or ABC, ABD, and BCD to compute gABCD has no effect on the value of gABCD, but
changes the value of its partial derivatives in RD. We therefore project the gradients on the
tangent bundle of the shape space as it is embedded in RD. Details are given in Appendix
B. It is on these gradients that we perform the normalization as described in Section 4.6.
Remaining specifics of our MD data analytics pipeline are in Appendix C.

27



Koelle, Zhang, Meilă and Chen

7.3 Synthetic Data Results

As a prelude to real MD data, we demonstrate the workings of ManifoldLasso in controlled
settings by applying it to the well known SwissRoll dataset, as well as a simple non-
dynamical simulation of a rigidly-rotating ethanol molecule.

7.3.1 ManifoldLasso on SwissRoll

We use the SwissRoll dataset to demonstrate that ManifoldLasso is invariant to the
choice of embedding algorithm. This consists of points sampled from a two dimensional
rectangle and rolled up along one of the two axes, then randomly rotated in D = 49
dimensions. The dictionary G consists of {g1, g2}, the two rectilinear coordinates, as well
as gj+2 = ξj , for j = 1, . . . 49, the coordinates of the feature space. We learn the manifold
using three techniques: local tangent space alignment, diffusion maps, and isomap, shown in
Figures 3c, 3e and 3g. For comparison, we also analyze the “trivial embedding” φInternal1 = g1,
φInternal2 = g2 (Figure 3a). These rectilinear coordinates are colored in red and blue, and
show clear associations with the other embedding coordinates.

Applying ManifoldLasso to the embeddings identifies the set S = {g1, g2} as the
manifold explanation, and identifies the association of the recovered support with individual
embedding coordinates φ1:2. By visual inspection of Figures 3a, 3c, 3e, and 3g, we see that all
embedding algorithms recover the original manifold, although the embeddings φIso, φDM , . . .
are not isometric (this is particularly noticeable with diffusion maps), and sign changes are
possible. Figures 3b, 3d, 3f and 3h demonstrate that ManifoldLasso recovers the two
manifold-specific coordinate functions in each case, while the coefficients β3:51 decay rapidly
to 0 with λ. Furthermore, each of g1 and g2 is always mapped to the correct embedding
coordinate. The regularization paths are virtually identical for all embeddings, even though
the embeddings are not isometric.

7.3.2 ManifoldLasso on a Rigid Ethanol Skeleton

We validate our analytics pipeline for MD data by analyzing a rigid simulation of the ethanol
molecule. We construct an ethanol skeleton composed of the atoms shown in Figure 4a. We
then sample as we rotate the atoms around the C-C and C-O bonds. In contrast with the
MD trajectories, which are simulated according to quantum dynamics, these two angles
are distributed uniformly over a grid. We call the resultant dataset RigidEthanol. As
expected given our two a priori known degrees of freedom, Figures 4b and 4c show that the
estimated manifold is a two-dimensional surface with a torus topology parameterized by
bond torsions g1 and g2 similar to that observed for the MD Ethanol in Figure 1.

The dictionary consists of the twelve torsions implicitly defined by the bond diagram3

in Figure 4a. All of these torsions circumscribe one of the central C-C and C-O bonds.
Counting permutations of peripheral hydrogens, we can see that there are 9 of the former,
and 3 of the latter, which we denote g1,1:9 and g2,1:3 in Figure 4d. Hence, any pair {g1,l, g2,l′}
with l ∈ {1 : 9}, l′ ∈ {1 : 3} is a correct coordinate system for this manifold. This is
shown in Figure 4d by the incoherences µjj′ , i.e., mean pairwise cosines of the dictionary

3. These are all 4-tuples of atoms connected by a path in the figure, modulo the natural equivalence relation
on torsions previously described.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3: Results for SwissRoll embedded using a variety of manifold learning algorithms. Figure
3a shows the data mapped w.r.t. the edges of the rectangle colored by g1 in red and g2
in blue. Figures 3c, 3e, and 3g display embeddings of SwissRoll generated by several
different manifold learning methods, colored by the rectilinear coordinates in red and blue.
Figures 3b, 3d, 3f, and 3h display the regularization paths of ManifoldLasso for these
embeddings. The combined norms ‖βj‖ used in ManifoldLasso are given on the left,
and the norms for the individual embedding coordinates ‖βjk‖ on the right.
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(a) (b) (c)

(d) (e) (f)

Figure 4: Results of ManifoldLasso for RigidEthanol. Figure 4a shows the simplified dynamics
of our rigid molecular simulation. Atoms in the rigid ethanol skeleton are articulated
around the C-O and C-C bonds by a torus of rotations. Figure 4b shows the learned
torus, colored by C-C torsion g1 from Figure 1. Figure 4c shows the same torus, colored
by the C-O torsion g2 from Figure 1. Figure 4d displays the incoherences, i.e., pairwise
collinearities of dictionary gradients; C-C torsions functionally dependent on g1 are in
orange, C-O torsions functionally dependent on g2 are in blue. Figure 4e shows combined
regularization paths ‖βj‖ vs. λ for a single replicate. The tuning parameter at which
|S| = d is indicated by the vertical black line. The chord diagram in Figure 4f represents
the frequency of selecting each pair of torsions in replicate experiments. The frequencies
with which individual torsions are selected are given by the sizes of the perimeter dots
corresponding to each dictionary element, while the frequencies with which pairs of torsions
are selected are given by the line widths connecting the dots.

functions, where the index j ranges over the 12 dictionary functions. Comparing the
row and column labels of Figure 4d with Figure 4a shows that the collinearities of these
gradients clearly cluster by central bond. Thus, we expect ManifoldLasso to recover one
torsion from each group. Indeed, in the regularization path of an individual replicate of
ManifoldLasso shown in Figure 4e, collinear torsions are killed off, and a representative
torsion is selected from each group. Finally, Figure 4f shows that ManifoldLasso selects
such orthogonal pairs in 25 out of 25 random replicates of the n′ points.
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7.4 Molecular Dynamics Results

In the same manner, we use ManifoldLasso to identify torsions that govern the dynamics
of the molecules in Figure 1. From the machine learning point of view, MD data from
well-studied molecules are an excellent testbed: the manifold hypothesis is believed to
hold approximately, there is sufficient data to learn a manifold, and the ground truth is
available and can validate our algorithms. Moreover, MD data are challenging problems
for manifold learning. Appendix D displays Toluene, Malonaldehyde, and Ethanol in
the ξ representation, showing high amplitude noise outside the manifold; indeed, MD data
has multiscale structure and the “noise” is non-uniformly distributed and highly correlated
in the RD space. Since the gradients of the dictionary functions are calculated analytically
from the ξ coordinates, and the data does not lie exactly on M, the values of gradTMi

gj
will necessarily be noisy as well. From a scientific point of view, high quality MD data are
expensive to generate, taking weeks or months of supercomputer time (Bowers et al., 2006;
Fiorin et al., 2013). Fast automated analysis of these data by identification of collective
coordinates serves both in the scientific understanding of the data and in acceleration
sampling methods (Rohrdanz et al., 2013). Moreover, every new simulation represents a
new manifold, and a new manifold explanation problem.

We first show that ManifoldLasso can distinguish groups that correspond to the
chemical bonds in Figure 1, as would typically be done by a scientist using prior domain
knowledge. Next, we repeat the analysis with no prior knowledge. That is, we include all
distinct 4-tuples of atoms in the dictionary, even those which are not implicitly defined by
the bond diagrams.

7.4.1 Dictionaries Based on Bond Diagrams

Bond diagrams such as the ones in Figure 1 are based on a priori information about molecular
structure garnered from historical work. Building a dictionary based on this structure is
akin to many other methods in the field (Krenn et al., 2020; Xie et al., 2019). As in
the case of RigidEthanol, our dictionaries consist of all equivalence classes of 4-tuples of
atoms implicitly defined by bond diagrams, and the incoherence plots for Ethanol and
Malonaldehyde in Figures 5a and 5d show two groups of highly dependent torsions,
corresponding to the two bonds between heavy atoms in the molecules. We have labelled
these by their central bond. For example, g1 of ethanol is described by 9 functionally
dependent torsions, since each central carbon has three peripheral atoms, while g2 of ethanol
is described by only 3 functionally dependent torsions, since, by the diagram, the oxygen
atom only has one peripheral atom. Therefore, success means recovering a pair of incoherent
torsions out of these dictionaries. For Toluene, the manifold dimension is d = 1 and success
means recovering one of the 6 torsions associated with the peripheral methyl group bond.
For this molecule, there are also p− 6 = 24 torsions that do not explain the data manifold.
These correspond to bonds within the main benzene ring. We apply ManifoldLasso with
these dictionaries to the embeddings shown in Figure 1.

As Figure 5 shows, ManifoldLasso is always able to identify torsions corresponding
to the expected labelled bonds. Figures 5b, 5e, and 5g show combined regularization paths
for single replicates of ManifoldLasso, and Figures 5c, 5f and 5h show frequencies of
support recovery of sets of size d over w = 25 replicates. ManifoldLasso finds that the
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5: Results for MD data with a priori dictionaries given by the bond diagrams in Figure 1. The
three rows correspond to Ethanol, Malonaldehyde, and Toluene, respectively. Figures
5a and 5d display pairwise collinearities of dictionary gradients, colored by bond as in
Figure 1. Toluene, a 1−d manifold, has trivial cosines, and so these are not shown. Figures
5b, 5e, and 5g show combined regularization paths of ‖βj‖ for single replicates. Vertical
black lines indicate the tuning parameter at which |S| = d. Figures 5c, 5f, and 5h show
chord diagrams displaying frequency of support recovery of sets of size d for 25 replicates.
As for RigidEthanol, two-dimensional support recovery frequency is denoted by chord
width, and one-dimensional support recovery frequency is denoted by size of perimeter dot.
Note that blue in toluene corresponds to torsions in the benzene ring.

toroidal Ethanol manifold is explained by pairs of torsions from the C-O and C-C bonds,
while Malonaldehyde is explained by one of each of the two central bonds. Toluene is
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explained by the torsion of the peripheral methyl group. These agree with our domain-expert
validated parameterizations from Figure 1. Torsion association with individual embedding
coordinates is examined in Appendix F.

For all quantum MD experiments, we examine the support recovery condition Theorem
7. We first note that Figures 5a and 5d show that even without foreknowledge of a unique
true support, the incoherence parameter µ must be quite close to 1, since it is a maximum
over set of cosines whose mean is plotted. The empirical distributions of the parameters of
this Theorem across replicates are listed in Appendix F. The high values of the incoherence
parameter µ and otherwise unfavorable empirical support recovery parameters listed in
the table indicate that we cannot expect a unique recovery. However, ManifoldLasso is
still successful in obtaining representative torsions from the desired bonds in Figure 1.
The similarity between these results on real data with challenging noise and variable
sampling density to the result on the synthetic RigidEthanol show the robustness of the
ManifoldLasso method.

7.4.2 Results from Full Dictionary

We test ManifoldLasso in the extreme case when the dictionary consists off all possible
torsions, i.e., all

(
Na
4

)
4-tuples modulo equivalence. For Ethanol and Malonaldehyde we

obtain p = 756 torsions4. Such a large p is challenging for l1 regularized estimation, due to
the bias mentioned Section 4.9 for large λ. Moreover, Figures 6a and 6e show that, besides
the two main groups of collinear torsions, roughly a quarter of the 756 are coherent with
both groups. While we do not necessarily expect ManifoldLasso to succeed, or to be used
in such a way in practice, this experiment tests the robustness of ManifoldLasso to a
situation that is challenging for sparsity inducing regularization.

The results of ManifoldLasso with the full dictionary for Ethanol and Malonalde-
hyde are displayed in Figure 6. For consistency between replications, we choose a priori
the ground truth to be represented by torsions g21,35 and g75,351, which are representative
torsions of g1 and g2 for Ethanol, respectively for Malonaldehyde, depicted in Figure
1. We can evaluate the selected d = 2 functions for coherence with this ground truth.
ManifoldLasso identifies supports with mean incoherences with the true support of
0.66± .54 and .85± .4 for Ethanol and for Malonaldehyde, respectively. Note that when
both selected functions are more coherent with a single element of the true support, we use
the pairwise coherences with higher mean. This is visually apparent from comparing selected
torsions in Figures 6c and 6g with their collinearities in Figures 6d and 6h since the latter
figures also show collinearities of the selected supports with the example functions from the
true support. We can see that the selected support functions are often strongly coherent with
the ground truth functions, regardless of the orthogonality of the selected support, although
for Ethanol in particular, both selected support functions are often strongly coherent with
the same the ground truth function. Thus, we can see that ManifoldLasso performs
preferably on Malonaldehyde.

The results are visualized in Appendix F, which shows the embeddings colored by the
selected torsions. There is a visual correspondence between coherences between torsions

4. We do not analyze Toluene, because for d = 1 the solution is available analytically, making this example
somewhat trivial.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6: Results for MD data with full dictionaries consisting of all possible torsions. The top and
bottom rows show results for Ethanol and Malonaldehyde, respectively. Figures 6a and
6e show mean cosine collinearity of dictionary gradients ordered by heirarchical clustering.
Figures 6b and 6f show examples of combined regularization paths for single replicates that
select relatively orthogonal functions. The tuning parameter at which |S| = d is indicated
by the vertical black lines. Functions are colored if they are selected in any replicate. Figure
6c and 6g shows support recoveries given by ManifoldLasso over different replicates.
Figure 6d and 6h and shows mean cosine collinearity of selected supports. g21,35 and g75,351
are representative torsions from the true support, while the others are selected in any
replicate. Pairs that are selected in any replicate are marked with a green box.

and their colorings of the manifolds learned from Ethanol and Malonaldehyde. For
example, torsions g588 and g604 of ethanol are orthogonal, while g588 and g612 are collinear.
When orthogonal pairs are selected, we capture information that would otherwise need to
be discovered by visual inspection of the embeddings. Moreover, the Malonaldehyde plots
also demonstrate that even for this simple manifold, associating manifold coordinates to
dictionary functions by visual inspection is delicate work. From a chemistry perspective,
orthogonal recovered torsions generally flank pairs of hydrogens of which each is attached
to one of the central atoms in the putatively true bonds. Thus, it makes sense that these
peripheral torsions could geometrically describe the same motion as the putative true support.
We also note that certain selected torsions do not appear to parameterize the manifold. In
these cases, the functional maximizer used to compute λmax in Section 4.8 is predominantly
driven by single outlying data points. Thus, such functions are infrequently selected in
replicates.

Examination of the selected regularization paths in Figures 6b and 6f shows that a small
number of unselected functions persist quite far into the regularization path. Thus, when

34



Manifold Coordinates with Physical Meaning

ManifoldLasso fails to select orthogonal functions, for example due to the documented
support recovery instability and bias at high values of λ for Lasso methods in general
(Meinshausen, 2007; Hesterberg et al., 2008; Huan Xu et al., 2012), we propose a two-stage
variable selection procedure in which a secondary variable selection step is applied after
initial pruning, as in Hesterberg et al. (2008). As described in Appendix E, in the first
stage we heuristically choose λ = λmax/2, which eliminates most dictionary functions. For
example, in the plotted replicate, the number p′ of dictionary elements selected at λmax/2
is about 15 for Ethanol and 8 for Malonaldehyde. In the second stage we perform an
exhaustive search over the remaining dictionary to optimize (12). This simple variation
recovers an explanation with functions that are highly coherent with the ground truth in
all cases - .97± .2 for Ethanol and .96± .08 for Malonaldehyde, and we avoid selecting
pairs of functions that are collinear with the same element of the true support. Inspection
of the colored embeddings for Ethanol in Appendix F also confirms that these conform to
our visual intuition of orthogonally varying torsions. These experiments show that on noisy
large p problems with massive violations of the incoherence conditions, ManifoldLasso,
while sometimes not successful on its own, can robustly prune the dictionary.

8. Conclusion

The approach of ManifoldLasso is to reconstruct the differentials of the manifold co-
ordinates from differentials of functional covariates. It is robust to non-linearity in both
the algorithm and the covariates. It requires functions that are smooth, as well as the
assumption that the data lie near a smooth manifold. We estimate the differentials of
the manifold embedding algorithm, but use differentials of functional covariates that are
available analytically. We demonstrate this approach on molecular dynamics simulations
that generate high-dimensional point clouds sampled from the configuration space of a given
molecule, and for which our functional covariates are bond torsions and the embedding
coordinates display a denoised version of the data. Together, these examples demonstrate the
efficacy of ManifoldLasso for automated explanation of data manifolds. Its limitations
are consistent with the general behavior of l1-regularized methods, and circumventing them
with existing tools appears promising.

Both linear and non-linear dimension reduction methods map data to abstract coordinates,
derived from agnostic, intrinsic data properties, such as the covariance matrix, in the case
of PCA, or the Laplacian, in the case of the diffusion maps algorithm. By regressing
the abstract coordinate functions on a dictionary G of functions of the data that have
meaning in the domain of the problem, we automatically establish relationships between
the learned manifold and domain knowledge. The expert is freed from the tedious work of
visually inspecting each possible function gj with the manifold coordinates; her expertise
is used by specifying covariate functions of the data. The recovered results come with
guarantees which can be partially checked in practice. With the obvious simplifications,
ManifoldLasso could also be used to assign explanations to coordinates obtained by PCA.

Variations of the methods and results presented here could solve a variety of related
problems. For example, suppose that two different experiments produce data sets in the
same ambient space RD and that, from these, we learn manifolds M1 and M2 which are
both 2-tori. Explaining M1,2 with a dictionary G can tell us if the manifolds are “the same”
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from the physics point of view. Moreover, one can seek common or overlapping explanations
from a single dictionary for different data sources. In other words, by explaining manifolds
estimated purely from data with domain-dependent dictionaries, we produce transferable
knowledge, that does not depend on the particularities of the sample, or embedding algorithm,
and that can be communicated between experts in the language of their domain.
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Appendix A. Approximating the Logarithmic Map by Orthogonal
Projection

In this appendix, we illustrate the details of the approximation to logarithmic map by
orthogonal projection in Section 4.4. We assume that M is a submanifold isometrically
embedded in RD. Also M is assumed to be at least C4 and compact and the Riemannian
metric g of M is also C4. The function φ is also assumed to be at least C3.

Let γ(s) be the geodesic pass through a point ξ at s = 0 and a different point ξ′ in M
for some s > 0, where s is the arc length parameter of the geodesic. Then, the logarithmic
map (do Carmo, 1992) of ξ′ w.r.t. to ξ is defined as the vector logξ ξ

′ := sγ′(0) ∈ TξM.

Proposition 9 For all ξ not on the boundary of M and all ξ′ such that ‖ξ′ − ξ‖≤ r for
some r > 0, it holds that

‖ProjTξM(ξ′ − ξ)− logξ ξ
′‖= o(r), ‖ProjTφ(ξ)φ(M)(φ(ξ′)− φ(ξ))− logφ(ξ) φ(ξ′)‖= o(r) .

Proof This proposition follows the results in Appendix B in Coifman and Lafon (2006).
First, from the assumption it follows that the geodesic γ ∈ C3. This is because when the
manifold is at least C4 and the Riemannian metric is also C4, the Christoffel symbol as
smooth functions of the Riemannian metric will be at least C3, Hence the solution of geodesic
equation will be C3 according to standard ODE theory.

Therefore by Taylor expansion, γ(s) = γ(0)+sγ′(0)+ s2

2 γ
(2)(0)+ γ(3)(s̃)

6 s3, where s̃ ∈ (0, s).

Recall that γ(2) is a vector orthogonal to TξM for a geodesic; moreover, when the manifold
M is C3 and compact, the magnitude of γ(3) is uniformly bounded onM. Denote l = logξ ξ

′;
also, denote by u the orthogonal projection ProjTξM(ξ′ − ξ). Note that γ(0) = ξ, γ(s) = ξ′,

so ξ′ − ξ = l +O(s3), i.e., l = ξ′ − ξ +O(s3).
Lemma 7 in Coifman and Lafon (2006) implies ‖u‖2 = s2 + O(r4). Therefore, s2 =

‖u‖2 +O(r4) ≤ ‖ξ − ξ′‖2 +O(r4) ≤ r2 +O(r4) = O(r2). Hence, s3 = O(r3). Now consider

36



Manifold Coordinates with Physical Meaning

l, u and ξ′ − ξ as points in RD. We have that ‖ξ′ − ξ − u‖ ≤ ‖ξ′ − ξ − l‖, and by triangle
inequality, ‖l−u‖ ≤ ‖ξ′− ξ−u‖+ ‖ξ′− ξ− l‖ ≤ 2‖ξ′− ξ− l‖ = o(r). Hence, we have shown
the first part of the desired result.

Now we turn to ProjTφ(ξ)(φ(ξ′)− φ(ξ)). In the pushforward Riemannian metric G, φ(γ)

is the geodesic between φ(ξ) and φ(ξ′) in φ(M). When M is compact, and φ ∈ C3(M),
then φ and the derivatives φ′1:m are uniformly continuous, hence the derivatives of φ(γ)
remain bounded by the derivatives of γ, and ‖φ(ξ′)−φ(ξ)‖ = O(r). Therefore, we can apply
the previous argument to complete the proof.

Appendix B. The Shape Space

Here we define the shape space, and show how to obtain the gradient of a function gj of a
molecular configuration, at a non-singular point, in the tangent bundle of this space.

We define the shape space

ΣNa
3 = R3Na/(E(3)× R+),

where E(3) is the three dimensional Euclidean group composed of rigid rotations and
translations in R3, and R+ is a dilation factor relative to the mean position of the Na

atoms. That is, ΣNa
3 is the space of positions of Na atoms in R3 with equivalences given

by translation, rotation, and dilation. Away from singularities of measure zero, ΣNa
3 is a

Riemannian manifold (Le and Kendall, 1993; Addicoat and Collins, 2010).

Denote the Euclidean coordinates of R3Na by r, and the Euclidean position of each data
point by ri. Recall that we compute ai = a(ri) for i ∈ 1, . . . n, where a is the vector-valued
function

a : R3Na → R3(Na3 )

that computes the angles formed by all triples of atoms in the molecule. This angular
featurization of the data respects the symmetries of the shape space, and embeds the shape
space.

We compute bases for the tangent spaces of ΣNa
3 as follows. For every analyzed point i,

we compute the matrix of partial derivatives, also known as the Wilson B-matrix,

Wi =
∂a

∂r
(ri) ∈ R3Na×R

3(Na3 )
.

Note that Wi is the transpose Jacobian of a. This computation is done using automatic
differentiation. We then calculate the reduced singular value decomposition

Wi = UiΛiV
T
i

where Λi is a diagonal matrix of dimension 3Na − 7, containing the non-zero singular values
of Wi. A deductive explanation for the rank of Wi is that translation, rotation, and dilation
correspond to a total of 7 degrees of freedom. The 3Na − 7 corresponding singular vectors
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in Vi are a basis for the tangent space TiΣNa
3 in R3(Na3 ) (Addicoat and Collins, 2010). Let

ai = a(ri) for i ∈ 1, . . . n. We can then project

grad
ΣNa3

gj(ai) = ViV
T
i ∇agj(ai),

where ∇agj(ai) is obtained with automatic differentiation using a close-form expression for

the dictionary function in the angular coordinates a of R3(Na3 ), and grad
ΣNa3

is the gradient

on the shape manifold in the angular coordinates.
Recall that we apply principal component analysis to the angular features matrix

a1:n ∈ Rn×D. To perform PCA, we use singular value decomposition:

a1:n = MΠNT .

Denote by P the matrix formed with the first D columns of N ; P projects the angular
features into a lower dimension space that reduces redundancy while capturing the vast
majority of the variability. That is,

ξi = aiP, for i = 1, . . . n.

The gradient of gj with respect to coordinates ξ are given by

gradξ gj(ξi) = P T grad
ΣNa3

gj(ai).

We use gradξ gj(ξi) as ∇ξgj(ξi) in ManifoldLasso.

Appendix C. Torsion Computation

For molecular dynamics data, the dictionary G consists of bond torsions g (see Figure 1),
which are computed from planar angles of the faces of the circumscribing triangles. For
example, in Figure 1b, the ordered atom 4-tuple [9, 3, 1, 5] describes a torsion corresponding to
the hydroxyl rotor containing the red oxygen. Their gradients are obtained using automatic
differentiation in PyTorch.

As described in Section 7.2, the association of an ordered atom 4-tuple (A,B,C,D) to a
torsion g(A,B,C,D) (where B and C are central, and A and D distal) is not unique. This
is a separate issue from that of merely collinear torsions, and reflects the basic geometric
properties of the analysis. There is an equivalence

g(A,B,C,D) = g(A,C,B,D) = g(D,C,B,A) = g(D,B,C,A).

For example, if [9, 3, 1, 5] is explicitly included in our dictionary, then [5, 1, 3, 9] is not, since
these are in fact the same function. Thus, each set of 4 atoms defines 6 torsions upon ordering,
since we have

(
4
4

)
ordered 4-tuples, and equivalences of groups of 4. This is understandable

geometrically by the fact that a tetrahedron (the shape defined by 4 points) has 6 edges,
and therefore 6 torsions.

In the first set of experiments of Section 7.4, only torsions involving 3 ordered line
segments in the bond diagrams are included in the dictionaries. In the second set of
experiments, the dictionaries contain all possible torsions (for example, g(4, 5, 6, 7) from
Figure 1b is included in the latter dictionary but not in the former).
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Figure 7: This diagram shows a simplified representation of the neighborhood of a point in the shape
space Σ3

2. Up to rotation, dilation, and translation, the shape of a triangle is determined
by two angles, so we can see that this is a two-dimensional space. The diagram represents
the logarithmic map of a region of Σ3

2, with the red line indicating the logarithmic map of
the subspace of right triangles, in a coordinate system given by α1 and α2, two angles in
the triangle.

Appendix D. Feature Space

In order to demonstrate the multiscale non-i.i.d. noise and non-trivial topology and geometry
of our data ξ in the PCA feature space RD, we display scatterplots of pairs of the top 6
coordinate, i.e., principal components, in this feature space. Note that the manifolds are
relatively thin in comparison to some noise dimensions; in other words the manifold reach is
of the same scale as the noise.
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Figure 8: First 6 coordinates in RD output by PCA for Toluene.

40



Manifold Coordinates with Physical Meaning

Figure 9: First 6 coordinates in RDoutput by PCA for Ethanol.
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Figure 10: First 6 coordinates in RD output by PCA for Malonaldehyde.
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Appendix E. Group Sparse Basis Pursuit

As mentioned in Section 4.9, the combinatorial group sparse basis pursuit problem

arg min
β:s=d

p∑
j=1

‖βj‖s.t. gradφk(ξi) =

p∑
j=1

βijk gradTMi
gj(ξi) for all i = 1 : n, and k = 1 : m

(28)
has a natural relationship to our approach. That is, for each value of λ, there is a corre-
sponding constraint ball of radius ε such the solution of the lasso problem is also the solution
of the

arg min
β

p∑
j=1

‖βj‖s.t.
n∑
i=1

m∑
k=1

‖ gradφk(ξi)−
p∑
j=1

βijk gradTMi
gj(ξi)‖22 < ε.

This is a combinatorial problem without restriction on the cardinality of the selected support.
It can be exactly solved using the convex regularized approach.

This cardinality-unrestricted version of program (28) has several interesting properties
(Candes and Tao, 2007). First, it favors gradients that are orthogonal and evenly varying.
This matches our intuitively notion of what is a “good” explanation and mathematically
corresponds to the notion of isometry. Second, it has a clear but not entirely obvious
relation to the l2 error of our method applied to gradients in RD rather than Rd, in the sense
that dictionary functions which are non-tangent to M will accrue a higher penalty. Third,
expected minimizers of such dual problems are used to define optima for sparse estimation
Meinshausen and Yu (2009). We can thus use the empirical estimate of this minimizer in
the cardinality-restricted setting to provide a useful notion of what is a “good” support
beyond simply having low pairwise collinearity.

Compared with the standard duality, the major distinguishing feature of Manifold-
Lasso is the a priori knowledge of |S|, the cardinality of the desired support. Unfortunately,
we sometimes observe that the shrinkage caused by using a high λ to restrict support size
causes the recovered support to not be close to the sample optimum of (28). Dictionary
functions with large projection (

∑n
i=1

∑m
k=1(gradTMi

gj(ξi))
T (gradTMi

φm(ξi)))
1/2 tend to

appear early the regularization path, regardless of their orthogonality or consistency of
variation. Problems with shrinkage including variable selection inconsistency at large λ, as
well as the desirable properties of an intermediate value, are well-established in the support
recovery and sparse coding literature (Chen et al., 1998; Hesterberg et al., 2008; Breheny
and Huang, 2011; Lederer and Müller, 2015; Hastie and Tibshirani, 2015).

We can empirically adapt our method to respond to this problem while still leveraging
the advantages of the convex algorithm. We follow Hesterberg et al. (2008) in using an
intermediate λ as a variable filtering step prior to variable selection, in our case, using (28).
In this adapted approach, we initially prune the dictionary using ManifoldLasso with an
intermediate λ value. We then run program (28) on the pruned dictionary. Initial selection
of d′ << p using our approach prior to selection of d variables using program (28) is often
more effective in obtaining the empirical result of program (28) than ManifoldLasso on
its own, and is much more computationally feasible than running program (28) on the entire
dictionary. The λ at which these d′ functions are obtained is somewhat arbitrary, since a fully
data-driven approach would require computation of program (28) on the entire dictionary, but
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relatively generic theoretical arguments provide blanket arguments in favor of λ > O(log p)
(Chen et al., 1998). We in general find relatively wide regions of relatively low cardinality,
and substantial improvements in the combinatorial loss with minimal computational burden
at λ = λmax/2. Results for this two-stage method for Ethanol and Malonaldehyde are
displayed in Figure 13.

Appendix F. Supplemental Experiments

We include supplemental experiments showing association of individual embedding coordi-
nates to dictionary functions, orthogonal dictionary function selection using our two-stage
variable pruning method, embeddings colored by selected functions, and calculated theoretical
quantities.

F.1 Coordinate Association in a Priori Dictionaries

We show the association of individual embedding coordinates to dictionary functions in
Ethanol and Malonaldehyde. In contrast to Malonaldehyde, but similar to SwissRoll,
Ethanol has a distinct association of embedding coordinates with dictionary functions. In
particular, φ3 is associated with different torsions from φ1 and φ2. This is clearly evident in
Figure 1. In Malonaldehyde, there is no clear association with embeddings coordinates.
Note that this would also be true for Toluene, as Figure 1 clearly shows a circular manifold
symmetric in φ1 and φ2.
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Figure 11: Combined and coordinate-specific regularization paths in five replicates of Manifold-
Lasso for Ethanol with dictionary given by the bond diagram. There is a clear
association of the blue torsion with φ3, and orange with φ1 and φ2.
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Figure 12: Combined and coordinate-specific regularization paths in five replicates of Manifold-
Lasso for Malonaldehyde with dictionary given by the bond diagram. There is no
clear association of embedding coordinates and covariates.
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F.2 Two-stage Method Results

The two-stage approach obtains highly orthogonal solutions collinear with the true support
at minimal computational cost. Comparison of selected functions with the visualizations in
Appendix F.4 shows a clear correspondence between variable selection using the two-stage
method and visual identification of orthogonal supports based on colored embeddings.

(a) (b) (c)

(d) (e) (f)

Figure 13: Two-stage results for Ethanol and Malonaldehyde, respectively, with dictionaries
given by all possible torsions. Figures 13a and 13d show individual replicates. The
pruning tuning parameter value λmax/2 is represented by the vertical black lines. Colors
are plotted for functions selected by subsequent combinatorial analysis. Figure 13b and
13e shows support recoveries given by subset selection using group lasso at λmax/2 followed
by program (28) over ω = 25 different replications. Figure 13c and 13f show mean cosine
collinearity of selected supports. g21,35 and g35,351 are representative torsions from the
true support, while the others are included if they are selected in any replicate. Pairs
that are selected in any replicate are marked with a green box.
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F.3 Visualizing Functions Selected by ManifoldLasso from Full Dictionaries

We can visualize the selected torsions in the manifold embedding coordinates. The identities
of the selected torsions can be compared with the bond diagrams in Appendix C. We first
visualize the functions selected using ManifoldLasso from Figure 6. Note that certain
functions do not appear to parameterize the manifold.

Figure 14: Ethanol support estimated using ManifoldLasso with full dictionary. Dictionary
function colors should be compared with Figure 6. The four numbers in each subtitle
correspond to the atoms in Figure 1 that inscribe the torsion.
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Figure 15: Malonaldehyde support using using ManifoldLasso with full dictionary. Dictionary
function colors should be compared with Figure 6. The four numbers in each subtitle
correspond to the atoms in Figure 1 that inscribe the torsion.
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F.4 Visualizing Functions Selected by the Two-stage Method from Full
Dictionaries

We also visualize the selected functions from Figure 13. Selected pairs of functions for
Ethanol are more orthogonal than found using ManifoldLasso.

Figure 16: Ethanol support using basis pursuit on superset obtained using ManifoldLasso.
Colors should be compared with Figure 13. The four numbers in each subtitle correspond
to the atoms in Figure 1 that inscribe the torsion.

50



Manifold Coordinates with Physical Meaning

Figure 17: Malonaldehyde support using basis pursuit on superset obtained using Manifold-
Lasso. Colors should be compared with Figure 13. The four numbers in each subtitle
correspond to the atoms in Figure 1 that inscribe the torsion.

F.5 Calculated Theoretical Quantities

We calculate the theoretical quantities µ, γmax, κS , and minni=1 minj′∈S ‖xij‖ over replicates
using the putative true supports from Figure 1.

µ̄ σµ κ̄S σκS γmax σγmax
¯minni=1 minj∈S ||xij || σminni=1 minj∈S ||xij ||

Ethanol (a priori) 1.0− 3.83e-8 5.57e-8 5.83 2.83 46.3 1.6 .154 0.084
Malonaldehyde (a priori) 1.0− 7.83e-8 9.28e-8 1.87 0.18 21.9 0.5 0.282 0.035
Toluene (a priori) 12.4 1.3 .00985 .00939
Ethanol (agnostic) 1.0− 2.30e-11 3.55e-11 5.83 2.83 46.3 1.6 0.154 0.084
Malonaldehyde (agnostic) 1.0− 2.22e-11 4.79e-11 1.87 0.18 21.9 0.5 0.282 0.035

Table 2: Mean and standard deviation of theoretical quantities across replicates.
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