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Abstract

Kernel methods are powerful tools in various data analysis tasks. Yet, in many cases,
their time and space complexity render them impractical for large datasets. Various kernel
approximation methods were proposed to overcome this issue, with the most prominent
method being the Nyström method. In this paper, we derive a perturbation-based kernel
approximation framework building upon results from classical perturbation theory. We
provide an error analysis for this framework, and prove that in fact, it generalizes the
Nyström method and several of its variants. Furthermore, we show that our framework
gives rise to new kernel approximation schemes, that can be tuned to take advantage of the
structure of the approximated kernel matrix. We support our theoretical results numerically
and demonstrate the advantages of our approximation framework on both synthetic and
real-world data.

Keywords: perturbation theory, kernel approximation, kernel-based non-linear dimen-
sionality reduction, Nyström method

1. Introduction

In the last decades, kernel methods became widely used in various data analysis tasks. Two
notable examples that are widely used for machine learning are kernel SVM (Cortes and
Vapnik, 1995) and kernel ridge regression (Saunders et al., 1998). Another common applica-
tion of kernel methods is non-linear dimensionality reduction, where the lower-dimensional
embedding of the data is derived from the eigenvectors of some data-dependent kernel
matrix. Examples of such dimensionality reduction algorithms include Laplacian eigen-
maps (Belkin and Niyogi, 2003), LLE (Roweis and Saul, 2000), Isomap (Balasubramanian
et al., 2002), MDS (Buja et al., 2008), Spectral clustering (Shi and Malik, 2000; Ng et al.,
2002), and more. In all of the aforementioned kernel-based methods, the dimension of the
kernel matrix grows linearly with the number of data points n. This makes kernel-related
algorithms impractical for large n, both in terms of memory and runtime. To overcome this
issue, several methods for kernel approximation were proposed.

The most common form of kernel approximation is low-rank kernel approximation, where
we seek to find a low-rank representation of the kernel matrix. It is known that the best rank-
m approximation of a matrix in the spectral and Frobenius norms is given by truncating
its SVD decomposition. However, since the dimension of the kernel matrix grows with the
number of data points, the computation of the full or even the partial eigendecomposition
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of a large kernel matrix is impractical due to its runtime and space requirements. For
example, algorithms for partial eigendecomposition such as the Lanczos algorithm and
some variants of SVD require O(n2m) floating point operations, where n is the dimension
of the matrix (number of data points) and m is the number of eigenvectors calculated.
Randomized algorithms (Halko et al., 2011a,b) use random projections of the data to reduce
the time complexity of the decomposition to O(n2 logm), which is still impractical for
large n. Moreover, all eigendecomposition algorithms require to store the n × n kernel
matrix either in RAM or on disk.

Since the exact calculation of the low-rank decomposition of a kernel matrix is unfeasible
for large datasets, several approximated methods were proposed. The most prominent low-
rank kernel approximation method is the Nyström method (Williams and Seeger, 2001),
that will be described in detail in the next section. Some variants of the Nyström method
were proposed in literature: the Randomized SVD Nyström method (Li et al., 2014), which
uses efficient randomized eigensolvers that enable it to use more samples in order to improve
performance; the ensemble Nyström method (Kumar et al., 2009), which averages several
Nyström approximations in order to improve accuracy (we note that this is in fact not a
low-rank approximation); the spectral shifted Nyström method (Wang et al., 2014), which
provides superior performance in cases where the spectrum of the matrix decays slowly; and
the modified Nyström method (Wang and Zhang, 2013). The latter usually outperforms the
classical Nyström method, but is impractical for large datasets due to its time and memory
requirements. To alleviate these requirements, Wang and Zhang (2014) suggested a faster
version of the modified Nyström method.

When the approximated kernel is not low-rank, the kernel approximation methods men-
tioned above may result in a poor approximation. More recently, works that use the struc-
ture of the kernel matrix were proposed. For example, the MEKA algorithm (Si et al., 2017)
provides superior kernel approximation for kernels that admit a block-diagonal structure,
and are not necessarily low-rank.

A problem related to low-rank approximation that is relevant to this paper is updating
a known eigendecomposition of a matrix following a “small” perturbation, without calcu-
lating the entire decomposition from scratch. Classical perturbation results (Stewart, 1990;
Byron and Fuller, 2012) exist for a general symmetric perturbation, and will be described
in detail in the next section. Other related works consider perturbations that have some
structure; see for example, Bunch et al. (1978); Mitz et al. (2019) for the case where the
perturbation is of rank one, and Oh and Hu (2018); Brand (2006) for a general low-rank
perturbation. Other approaches of updating a given eigendecomposition include restarting
the power method (Langville and Meyer, 2006) or the inverse iteration algorithm (Tre-
fethen and Bau III, 1997), both require applying the updated matrix several times until
convergence, which may be expensive if the matrix is large.

The contribution of the current paper is threefold. First, we derive eigendecomposition
perturbation formulas accompanied by error bounds for matrices that only part of their
spectrum is known. Second, we use these perturbation formulas to derive a new framework
for kernel approximation. Unlike some of the existing methods, we present explicit error
bounds for the individual approximated eigenvectors rather than only to the kernel approx-
imation. Third, we prove that the Nyström method and its variants are in fact special
cases of our framework. This reveals the essence behind existing Nyström methods, allows
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to analyze their accuracy, and provides means to derive new Nyström-type approximations
that take advantage of the structure of the kernel matrix.

The rest of this paper is organized as follows. In Section 2, we describe classical pertur-
bation results, along with the Nyström method and some of its variants. In Section 3, we
extend the classical perturbation formulas to the case where only part of the spectrum of
the perturbed matrix is known, and derive their error bounds. In Section 4, we use these
formulas to develop a perturbation-based kernel approximation framework. In Section 5,
we prove that our kernel approximation framework generalizes the Nyström method. In
Section 6, we suggest several types of kernesl approximations based on our framework, and
prove that some of them are related to variants of the Nyström method. In Section 7,
we provide numerical results to support our theory and show the advantages of our kernel
approximation framework. In Section 8, we provide some concluding remarks and discuss
future research.

2. Preliminaries

In this section, we describe two methods for approximating the eigendecomposition of a
matrix that are relevant to our work. We first describe the Nyström method in Section 2.1,
and then describe the perturbation method in Section 2.2.

2.1 The Nyström method and its variants

In this section, we describe in detail some of the Nyström-type methods discussed in the
Introduction. We begin with describing the classical Nyström method, continue with some
of its variants that are particularly relevant to our work, and finish by discussing some
results regarding the error bounds of the Nyström method.

2.1.1 The classical Nyström method

Let K ∈ Rn×n be a symmetric positive-definite matrix. We wish to find the k leading
eigenpairs {(λi, ui)}ki=1 of K. The Nyström method (Sun et al., 2015; Williams and Seeger,

2001) finds an approximation {(λ̃i, ũi)}ki=1 to these eigenpairs as follows. First, we select
randomly k columns of K (typically uniformly without replacement). We assume, without
loss of generality, that the columns and rows of K are rearranged so that the first k columns
of K are sampled. Denote by K ′ the k × k upper-left submatrix of K and by C the n× k
matrix consisting of the first k columns of K. Then, we calculate the k eigenpairs of K ′

and denote them by {(λ′i, u′i)}ki=1. Finally, the Nyström method approximates the k leading
eigenvectors of K by

ũi =

√
k

n

1

λ′i
Cu′i, i = 1, . . . , k. (1)

Moreover, the k leading eigenvalues of K are approximated by

λ̃i =
n

k
λ′i, i = 1, . . . , k. (2)
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Finally, the Nyström approximation of K is

K̃nys =

k∑
i=1

λ̃iũ
T
i ũi. (3)

The runtime complexity of the Nyström method (Formula (1)) is O(nk2 + k3).

The Nyström method requires sampling a representative subset of the data and hence
many methods for sampling this subset were proposed, see Kumar et al. (2012); Sun et al.
(2015) and the references therein. Our results derived below are independent of the method-
ology used to obtain the subset of samples, and hence we do not discuss this issue in detail.

2.1.2 Variants of the Nyström method

One generalization of the Nyström method is the Randomized SVD Nyström method (Li
et al., 2014). It introduces a parameter l ≥ k and chooses K ′ to be the l × l top-left
submatrix of K. Then, the k leading eigenpairs of K ′ are calculated via some efficient
randomized SVD method, followed by the use of (1) and (2) for the approximation. This
form of approximation is a generalization of the Nyström method, since choosing l = k is
equivalent to the Nyström method. On the other hand, if we choose l = n, we get the exact
eigenvectors of K. Intuitively, the larger l is, the better the approximation is likely to be,
at the cost of a greater computational complexity. The runtime complexity of this method
is O(nk2 + lk2).

Since the Nyström approximation (3) of the kernel matrix K is a low-rank approxima-
tion, it may provide poor results when K is not low-rank. This might occur, for example,
when the spectrum of K decays slowly. A possible approach to overcome this problem is the
spectrum shifted Nyström method (Wang et al., 2014). This method essentially applies the
classical Nyström method on a shifted kernel matrix, that is, applies the Nyström method
on

Kshift = K − µI, (4)

for some µ ≥ 0. The updated eigenvalues (2) are then shifted-back by µ. If we denote
by K̃shift the kernel approximation obtained by using the shifted Nyström method, it is
shown in Wang et al. (2014) that∥∥∥K − K̃shift

∥∥∥
F
≤
∥∥∥K − K̃nys

∥∥∥
F
.

Alternatively, the kernel K may admit a block-diagonal structure. As demonstrated in Si
et al. (2017), this may happen for some kernel functions when the data consist of several
clusters. In this case, the MEKA algorithm (Si et al., 2017) essentially performs a Nyström
approximation on each cluster of the data. Each such approximation corresponds to a block
on the diagonal of the kernel matrix, and the resulting approximation is block-diagonal.

An approach related to the MEKA algorithm for improving the Nyström approxima-
tion (3) is the ensemble Nyström method (Kumar et al., 2009). The idea behind this method
is to perform q independent Nyström kernel approximations on random subsets of the data,
and then average them. Formally, given q independent Nyström approximations {K̃i}qi=1,

4



A Perturbation-Based Kernel Approximation Framework

the ensemble Nyström approximation is given by

K̃ens =

q∑
i=1

µiK̃i,

for some weights {µi}qi=1. It is suggested in Kumar et al. (2009) to use µi = 1
q for 1 ≤ i ≤ q.

Better error bounds for this method compared to the classical Nyström method are proven
in Kumar et al. (2009).

The difference between the ensemble Nyström method and the MEKA algorithm is that
in the former, the individual Nyström approximations are chosen at random rather than by
clusters, and the resulting approximation is their average rather than their concatenation
in a block-diagonal matrix. We note that in both the ensemble Nyström method and the
MEKA algorithm, the resulting approximation is not low-rank, and is generally of a rank
greater than k.

2.1.3 Error bounds for the Nyström method

The error bounds of the Nyström method and its variants have been of great interest. For
a comprehensive review we refer the readers to Sun et al. (2015), Wang and Zhang (2013)
and Gittens and Mahoney (2013). If we denote by Km the best rank-m approximation of
a kernel matrix K, then all error bounds obtained in the literature are of the forms∥∥∥K − K̃nys

∥∥∥ ≤ α‖K −Km‖ or
∥∥∥K − K̃nys

∥∥∥ ≤‖K −Km‖+ β,

for some α, β ≥ 0, where ‖·‖ is usually the Frobenius norm or the 2-norm. To the best of
our knowledge, no error bounds were obtained for the individual Nyström-approximated
eigenvectors, though such bounds may be of interest when using the Nyström method as
part of a dimensionality reduction algorithm.

2.2 Perturbation of eigenvalues and eigenvectors

Let A′ ∈ Rn×n be a real symmetric positive-definite matrix with distinct eigenvalues {ti}ni=1

and their corresponding orthonormal eigenvectors {vi}ni=1. Assume that t1 > t2 > · · · >
tn. Let E ∈ Rn×n a real symmetric matrix. Consider a perturbation A of A′ given by
A = A′ + E, with the eigenpairs of A denoted by {(si, wi)}ni=1, so that s1 > s2 > · · · >
sm. We wish to find an approximation {(s̃i, w̃i)}ni=1 to the eigenpairs of A. The classical
perturbation solution to this problem (Stewart, 1990; Byron and Fuller, 2012) is as follows.
The approximated eigenvectors of A are given by

w̃i = vi +
n∑

k=1,k 6=i

〈Evi, vk〉
ti − tk

vk +O(‖E‖22), 1 ≤ i ≤ n, (5)

where 〈·, ·〉 is the standard dot product between vectors, and the approximated eigenvalues
of A are given by

s̃i = ti + vTi Evi +O(‖E‖22), 1 ≤ i ≤ n. (6)

We note that the eigenvalues update formula (6) depends only on the eigenvalue we wish
to update and its corresponding eigenvector, whereas the eigenvectors update formula (5)
depends on all eigenvalues and eigenvectors of A′.
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There exist perturbation results for matrices with non-simple eigenvalues (Byron and
Fuller, 2012). However, since non-simple eigenvalues are highly unlikely in data-dependent
matrices, we do not discuss this case and leave it for a future work.

3. Truncating the perturbation formulas

In this section, we consider a variant of the problem presented in Section 2.2, in which only
the m leading eigenpairs {(ti, vi)}mi=1 of the unperturbed matrix A′ are known, and we wish
to approximate the m leading eigenpairs of A. To this end, we introduce a parameter µ ∈ R
whose purpose is to approximate the unknown eigenvalues {ti}ni=m+1 of A′. We denote by

V (m) the n×m matrix consisting of the m leading eigenvectors of A′, and define

ri =
(
I − V (m)V (m)T

)
Evi, (7)

for 1 ≤ i ≤ m.

We derive two approximation formulas based on the classical perturbation formula (5).
These two approximation formulas differ in their order of approximation and in their com-
putational complexity. The first formula, which we refer to as the first-order truncated per-
turbation formula, provides a first-order approximation to the eigenvectors of A, whereas
the second formula, which we refer to as the second-order truncated perturbation formula,
provides a second-order approximation to the eigenvectors of A. We describe these approx-
imations in the following propositions.

Proposition 1 (First-order approximation) Let 1 ≤ i ≤ m. Let µ ∈ R a parameter.
Using the notation of Section 2.2, the first-order approximation to wi is given by

w̃
(1)
i = vi +

m∑
k=1,k 6=i

〈Evi, vk〉
ti − tk

vk +
1

ti − µ
ri, (8)

with an error satisfying

∥∥∥wi − w̃(1)
i

∥∥∥
2
≤
∑n

k=m+1|tk − µ|
|ti − tm+1||ti − µ|

‖E‖2 +O
(
‖E‖22

)
. (9)

Proposition 2 (Second-order approximation) Let 1 ≤ i ≤ m. Let µ ∈ R a parameter.
Using the notation of Section 2.2, the second-order approximation to wi is given by

w̃
(2)
i = vi +

m∑
k=1,k 6=i

〈Evi, vk〉
ti − tk

vk +
1

ti − µ
ri −

µ

(ti − µ)2
ri +

1

(ti − µ)2
A′ri, (10)

with an error satisfying

∥∥∥wi − w̃(2)
i

∥∥∥
2
≤
∑n

k=m+1|tk − µ|
2

|ti − tm+1||ti − µ|2
‖E‖2 +O

(
‖E‖22

)
. (11)
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The proofs of Proposition 1 and Proposition 2 are given in Appendix A and Appendix B,
respectively. We discuss the runtime and memory requirements of formulas (8) and (10) in
Appendix C.

The update formulas (8) and (10) depend on a parameter µ, whose choice is discussed
in Mitz et al. (2019). To be concrete, if A′ is known to be low-rank, we use µ = 0. When
A′ is not low-rank, and especially if its spectrum is known to decay slowly, we follow Mitz
et al. (2019) and suggest to use

µmean =
trace(A′)−

∑m
i=1 ti

n−m
, (12)

which is the mean of the unknown eigenvalues of the perturbed matrix A′. µmean can be
easily computed since the trace of A′ and its m leading eigenvalues are known.

We conclude this section by proving that under a certain assumption on A′, the first-
order truncated perturbation formula (8) and the second-order truncated perturbation for-
mula (10) coincide. Furthermore, in this case, the O

(
‖E‖2

)
term in the error bound of

both approximations cancels out, as stated by the following proposition.

Proposition 3 Let δ ≥ 0 and assume that A′ can be written in the form of a low-rank
matrix plus a spectrum shift, that is A′ = V (m)TV (m)T + δI for some diagonal matrix
T ∈ Rm×m. Then, for µ = δ, the first-order truncated perturbation formula (8) and the
second-order truncated perturbation formula (10) coincide, that is

w̃
(1)
i = w̃

(2)
i ,

and the approximation errors satisfy∥∥∥wi − w̃(1)
i

∥∥∥
2

=
∥∥∥wi − w̃(2)

i

∥∥∥
2

= O
(
‖E‖22

)
,

for all 1 ≤ i ≤ m.

The proof of Proposition 3 is given in Appendix D.

Corollary 4 If A′ is of rank m, and µ = 0 in (8) and (10), then the first-order and second-
order truncated perturbation formulas give rise to the same approximation. The error of
this approximation is O

(
‖E‖22

)
.

4. Perturbation-based kernel approximation framework

In this section, we derive our perturbation-based kernel approximation framework based on
Proposition 1. Let K ∈ Rn×n be a symmetric positive-definite matrix with m distinct lead-
ing eigenpairs that are denoted by {(λi, ui)}mi=1, ordered in descending order. LetKs ∈ Rn×n
be a symmetric matrix consisting of any subset of entries of K, with the rest of its entries
being 0, as illustrated in Figure 1. Our kernel approximation framework approximates the
eigenvectors of K using the eigenvectors of any such Ks, as follows.

Let {(λsi , usi )}mi=1 be the leading eigenpairs of Ks ordered in a descending order, and
assume that λsi are distinct. Let U s(m) ∈ Rn×m be the matrix whose columns are the m
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(a) K. (b) Possible Ks. (c) Another possible Ks.

Figure 1: Illustration of the submatrix Ks. Blank entries indicate 0.

eigenvectors of Ks corresponding to the m largest eigenvalues of Ks, and let µ ≥ 0 be
a parameter. Let 1 ≤ i ≤ m. By the first-order approximation in Proposition 1, the
eigenvector ui is approximated by

ũi = usi +
m∑

k=1,k 6=i

〈(K −Ks)usi , u
s
k〉

λsi − λsk
usk +

1

λsi − µ
(
Im − U s(m)U s(m)T

)
(K −Ks)usi , (13)

with an error satisfying

‖ui − ũi‖2 ≤
∑n

k=m+1

∣∣λsk − µ∣∣∣∣λsi − λsm∣∣∣∣λsi − µ∣∣‖K −Ks‖2 +O
(
‖K −Ks‖22

)
. (14)

Furthermore, by (6), the eigenvalue λi is approximated by

λ̃i = λsi + usTi (K −Ks)usi , (15)

with an error of magnitude
∣∣∣λi − λ̃i∣∣∣ = O(‖K −Ks‖22).

We refer to (13) and (15) as our perturbation approximation for the eigenvectors and
eigenvalues, respectively. Finally, we define our perturbation kernel approximation by

K̃pert =

m∑
i=1

λ̃iũ
T
i ũi. (16)

Note that this framework is quite general, and can be applied to any symmetric sub-
matrix of K. We will propose and discuss several choices for Ks in Section 6.

A kernel approximation framework analogous to (13) that is based on the second-order
approximation in Proposition 2 can also be obtained in a similar way, but is typically
impractical for large n due to its time and space requirements.

5. Equivalence with the Nyström method

In this section, we prove that our perturbation-based kernel approximation framework (13)
is in fact a generalization of the Nyström method described in Section 2.1, by showing that
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the Nyström method arises from our kernel approximation framework by a specific choice
of Ks.

Let K ∈ Rn×n be a kernel matrix, and let m < n. Assume without loss of generality,
that we apply the classical Nystrom method, given in (1) and (2), to the m×m upper-left
submatrix of K, and denote by {(λ̂i, ûi)}mi=1 the resulting approximate eigenpairs of K. The
following proposition states that for a specific choice of the matrix Ks, the perturbation
approximation K̃pert of (16) is exactly the classical Nyström approximation K̃nys of (3).

Proposition 5 Using the above notation, let Ks be the n×n matrix whose top left m×m
submatrix is the top left m ×m submatrix of K, and the rest of its entries are 0. Denote
by {(λsi , usi )}mi=1 the eigenpairs of Ks. Set µ in (13) to be 0, and denote by {(λ̃i, ũi)}mi=1

the perturbation approximation of the eigenpairs {(λsi , usi )}mi=1 of Ks to the eigenpairs of K.
Denote by K ′ the top left m×m submatrix of K and by {(λ′i, u′i)}mi=1 its eigenpairs. Denote
by {(λ̂i, ûi)}mi=1 the Nyström approximation of {(λ′i, u′i)}mi=1 (see (1) and (2)). Then,

ûi =

√
m

n
ũi and λ̂i =

n

m
λ̃i (17)

for all 1 ≤ i ≤ m. In particular,

K̃nys = K̃pert.

The proof of Proposition 5 is given in Appendix E.
Formulating the Nyström method as a perturbation-based approximation using Proposi-

tion 5 enables us to provide an error bound for the Nyström method based on Propositions 1
and 2. Contrary to previous works that only provide error bounds for the approximated
kernel resulting from the Nyström method (3), our error bound is for the individual ap-
proximated eigenvectors, as stated in the following proposition.

Proposition 6 (Error bound for the Nyström method) Using the above notation, the
error induced by the Nyström method satisfies

‖ui − ûi‖2 = O
(
‖K −Ks‖22

)
, 1 ≤ i ≤ m.

The proof follows directly from the equivalence stated in Proposition 5 by noting that
in the Nyström method setting, the requirements of Corollary 4 hold.

6. New kernel approximation schemes based on the perturbation
framework

The perturbation-based kernel approximation framework derived in Section 4 is very flexible,
and allows for various approximations that depend on the choice of the matrix Ks. There
are two main considerations in choosing Ks. First, since calculating the eigendecomposition
of Ks is the most expensive part of the perturbation-based kernel approximation, we wish
to choose a matrix Ks whose eigendecomposition is “easy” to compute. This will make
our framework computationally attractive. Second, we would like to take advantage of the
flexibility of our framework and choose a matrix Ks that “captures” as much of a given
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kernel K as possible (that is, to minimize the ‖K −Ks‖2 term in (13)). This will allow for
better approximation results compared to classical Nyström-type methods.

In this section, we propose several approximation schemes corresponding to different
choices ofKs. Furthermore, we prove that several of the Nystöom method variants described
in Section 2 also arise from our general approximation framework for suitable choices of Ks.
The list below is not by all means comprehensive, and users might come up with different
approximation schemes that are more suitable to their problems’ settings.

6.1 l-block kernel approximation

We define the l-block kernel approximation by choosing the matrix Ks to be the top left
l × l submatrix of K padded with zeros to size n × n (see Figure 2), with l ≥ m being a
parameter. The difference of this approach from the Nyström method is that while we still
calculate m eigenpairs, we do so on a larger block, which “captures” more of K. This comes
at the price of a greater computational cost.

Proposition 7 Using the notation of this section, the eigenpairs calculated by the random-
ized SVD Nyström method (Li et al., 2014) and the l-block kernel approximation method
are equal.

The proof easily follows from the definitions and Proposition 5.

6.2 µ-shifted kernel approximation

We define the µ-shifted kernel approximation by choosing the matrix Ks to be the top left
m×m submatrix of K padded with zeros to size n× n, similarly to the Nyström method
(see Figure 2). The difference from the Nyström method lies in the parameter µ of (13). In
Proposition 5, we used the value of the parameter µ to be µ = 0. This is a reasonable choice
when the kernel matrix K is low-rank, or when its spectrum decays fast. When that is not
the case, it might be beneficial to choose a parameter µ that approximates the unknown
eigenvalues of K. A reasonable choice for µ in such a case is µmean of (12).

We now prove that given a parameter µ ≥ 0, the spectral shifted Nyström method (Wang
et al., 2014) with parameter µ coincides with the perturbation approximation method with
the same µ, as detailed in the following proposition.

Proposition 8 Using the notation of this section, the eigenpairs calculated by the spectrum
shifted Nyström method (Wang et al., 2014) and the µ-shifted approximation method are
equal.

The proof of Proposition 8 is given in Appendix F.

6.3 Block-diagonal kernel approximation

We define the block-diagonal kernel approximation by choosing the matrix Ks to be a
block diagonal matrix (see Figure 2). The block sizes can be arbitrary, but for simplicity
of notation, we choose k blocks of an identical size l ≥ m. For each block, we pad the
block with zeros to obtain an n × n matrix, and calculate its m leading eigenpairs. We
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then approximate the eigenpairs of K using (13). Denote by {(λ̃(j)i , ũ
(j)
i )}mi=1 the extended

eigenpairs of block j, and by K̃j ∈ Rn×n the resulting kernel approximation. To combine

the k approximations {K̃j}kj=1 to an approximation of K, we set

K̃ =
1

k

k∑
i=1

K̃i.

We note that the kernel matrix approximation obtained by this method generally won’t
be low-rank.

Proposition 9 Using the notation of this section, the eigenpairs calculated by the ensemble
Nyström method (Kumar et al., 2009) and the block diagonal kernel approximation method
are equal.

The proof easily follows from the definitions and Proposition 5.

6.4 p-band kernel approximation

We define the p-band kernel approximation by choosing the matrix Ks to be a band matrix
of width p (see Figure 2). This approximation may provide superior results when the
kernel K has most of its energy concentrated along the diagonal. Such a kernel may arise
naturally for sequential data, where adjacent entries are more “similar” to each other. In
such a case, the p-band kernel approximation will capture most of K. Existing Nyström-
type approximations, on the other hand, are not able to do so since they are limited to
block matrices. We demonstrate the advantage of this kernel approximation method in
Section 7.2.1.

6.5 Sparse kernel approximation

We define the sparse kernel approximation by choosing the matrix Ks to be some sparse
submatrix of K, as illustrated in Figure 3. More concretely, in the sparse approximation
framework, we denote by nnz(K) the number of non-zero entries of K, and define Ks by
choosing q · nnz(K) entries of K, for some 0 < q ≤ 1. While this approximation is valid for
any (symmetric) subset of elements of K, motivated by the‖E‖2 term in the error bounds (9)
and (11), we suggest choosing the q · nnz(K) largest entries of K in their absolute value.
We demonstrate the advantage of this kernel approximation method in Section 7.2.2.

7. Numerical examples

In this section, we demonstrate numerically the results obtained in the previous sections.
We start by demonstrating numerically the error bounds derived in Section 3. Then, we
demonstrate the advantages of the kernel approximation methods proposed in Section 6
using both real and synthetic datasets.

The MATLAB code to reproduce the graphs in this section is found in
github.com/roymitz/perturbation kernel approximation.

11
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(a) Ks for l-block kernel ap-
proximation.

(b) Ks for µ-shifted kernel ap-
proximation.

(c) Ks for block diagonal ker-
nel approximation.

(d) Ks for p-band kernel ap-
proximation.

Figure 2: Illustration of the submatrix Ks for each of the discussed kernel approximations.
Blank entries indicate 0.

7.1 Perturbation error bounds

In this section, we demonstrate numerically the behavior of the error bounds (9) and (11)
in Propositions 1 and 2, respectively. In our first example, we demonstrate the predicted

linear dependence of the errors
∥∥∥wi − w̃(1)

i

∥∥∥
2

and
∥∥∥wi − w̃(2)

i

∥∥∥
2

on ‖E‖2. We also show the

quadratic dependence of these errors on ‖E‖2 for a proper choice of µ. To that end, we
generate a random symmetric matrix A′ ∈ R1000×1000 whose 10 leading eigenvalues are
between 1 and 2, and the rest are exactly 0.5. We then generate a random symmetric
matrix E, and normalize it to have a unit spectral norm. Then, for various values of c,
we approximate the 10 leading eigenpairs of Ac = A′ + cE by the first and second-order
approximations (8) and (10) using µ = 0 and µmean. Denote by vc the leading eigenvector of
Ac, and by u1c and u2c its approximations by (8) and (10) using µ = 0, respectively. Denote
by w1

c and w2
c the respective approximations using µmean. For each c, we measure the errors∥∥vc − u1c∥∥2,∥∥vc − u2c∥∥2,∥∥vc − w1

c

∥∥
2

and
∥∥vc − w2

c

∥∥
2
. In Figure 4a, we plot all the log10-errors

versus log10‖cE‖2. As predicted by theory, there is a linear dependence between the error in

12
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(a) Sparse K. (b) Corresponding Ks.

Figure 3: Illustration of a sparse kernel approximation. Blank entries indicate 0.

the eigenvector approximation and the norm of the perturbation matrix when using µ = 0.
Furthermore, we see that when using µmean, both formulas coincide and give rise to the
same second-order approximation, as predicted by Proposition 3.

In our second example, we demonstrate the linear and quadratic dependence of the error
on
∑n

j=m+1

∣∣λj − µ∣∣, that is, on the unknown eigenvalues of the perturbed matrix. For

various values of c ∈ R, we generate matrices A′c ∈ R1000×1000 as follows. Their 10 leading
eigenvalues are between 1 and 2, and are the same for all values of c. The rest of their
eigenvalues are exactly c. Then, we generate a random symmetric matrix E ∈ R1000×1000

and normalize it to have a norm of 10−6. We choose ‖E‖2 to be relatively small, so that
its contribution to the error will not mask the effect of

∑n
j=m+1

∣∣λj − µ∣∣. We approximate
the 10 leading eigenpairs of Ac = A′c + E by the first and second-order approximations (8)
and (10) using µ = 0, and measure the error in the same way as in the previous example.
In Figure 4b, we plot log

∥∥vc − u1c∥∥2 and log
∥∥vc − u2c∥∥2 versus log

∣∣λj − µ∣∣ = log
∣∣λj∣∣ = log c.

As predicted by Propositions 1 and 2, there is a linear dependence between the error in
the eigenvector approximation and c for the first-order approximation, and a quadratic
dependence for the second-order formula. We note that using µmean in this example will
cancel out the

∑n
j=m+1

∣∣λj − µ∣∣ term, since in such a case µmean = c.

7.2 Perturbation-based approximation for synthetic and real data

In this section, we compare the various kernel approximation methods proposed in Section 6
for both synthetic and real data. We demonstrate that the various approximation schemes
perform differently, depending on the structure of the kernel matrix.

As our metric for comparing the performance of the various methods we use the kernel
reconstruction error, i.e., if Km is the best rank-m approximation of the kernel matrix of
the entire data (obtained by SVD), and K̃ is its approximation, we define

err =

∥∥∥Km − K̃
∥∥∥
2

‖Km‖2
.

We note that other metrics we tested performed qualitatively similarly. The metrics we
tested were the principal angle (Knyazev and Zhu, 2012) between the subspace spanned by

13
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log(||cE||)

lo
g
(e

rr
o
r)

1st order (mu = 0)

2nd order (mu = 0)

1st order (mu-mean)

2nd order (mu-mean)

(a) The dependence of the first and
second-order formulas on the perturba-
tion matrix norm ‖E‖2.

log(c)

lo
g

(e
rr

o
r)

1st order

2nd order

(b) The dependence of the first and
second-order formulas on the unknown
eigenvalues of the perturbed matrix∑n

j=m+1

∣∣λj − µ∣∣.
Figure 4: Numerical demonstration of the error terms in the approximations (8) and (10).
(a) log (error) vs. log‖cE‖2. The slope of both curves corresponding to µ = 0 is ≈ 1,
demonstrating the linear dependence of the error terms (9) and (11) on ‖E‖2 for both the
first and second-order approximations. On the other hand, both curves corresponding to
µmean coincide with slope ≈ 2, demonstrating Proposition 3. (b) log (error) vs. log

∣∣λj − µ∣∣.
The slope of the line corresponding to the first-order approximation is ≈ 1, whereas the slope
of the line corresponding to the second-order approximation is ≈ 2, demonstrating the linear
and quadratic dependence of the first and second-order error terms on

∑n
j=m+1

∣∣λj − µ∣∣,
respectively.
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the kernel’s top eigenvectors and the subspace spanned by their approximations, and the

subspace projection error
‖UUT−V V T‖

2

‖UUT‖
2

, where U and V are the ground truth subspace and

its approximation, respectively. The results for all tested metrics are given in Appendix G.

In all the numerical examples to follow, we use µ = 0 for all approximation schemes.
We note that we typically witness a marginal difference between the performance of µ = 0
and µ = µmean for real-world data, as such data are usually close to being low-rank. Thus,
we do not include the µ-shifted kernel approximation in the experiments of this section. We
also set n = 1000 in all experiments. We choose m to be the number of components that
account for 90% of the energy of K, with a maximum value of 5. For the block-diagonal
kernel approximation, we always use two blocks of the same size.

Each experiment is performed as follows. For each kernel type, we generate several
kernels of that type, each with a different kernel parameter (to be explained later for each
example). Then, we approximate each of the kernels using each of the approximation
methods, where in any case the matrix Ks used in the approximation consists of 20% of
the entries of the approximated kernel. For each such kernel approximation, we measure
the approximation error versus the Hoyer score (Hurley and Rickard, 2009) of the kernel
matrix K written as a long vector. The Hoyer score of a vector v ∈ Rn is defined by

Hoyer(v) =

√
n− ‖v‖1‖v‖2√
n− 1

.

The Hoyer score is a number between 0 and 1, with a higher score corresponding to a
sparser vector. We repeat this procedure 20 times for each approximation scheme and
kernel parameter, each time with a different random subset of the data. Finally, we plot
the mean approximation error for each kernel approximation scheme versus the Hoyer score
of the approximated kernel K. We also add to the plot the standard deviation of the error
of each scheme, presented as a shaded plot around the mean.

7.2.1 Kernels concentrated along the diagonal

In this example, we demonstrate the performance of each of the kernel approximation
schemes of Section 6 using kernel matrices whose energy is concentrated along their diagonal.
We build these kernels as follows. We generate a matrix K whose (i, j) and (j, i) entries
are |i− j|−α +X, where X are i.i.d samples from a normal distribution with mean zero and
standard deviation 0.0001. Larger values of α correspond to a more concentrated matrix,
whereas smaller values of α correspond to a more spread matrix.

We execute the experiment described at the beginning of Section 7.2. The results
are presented in Figure 5. We can see that for higher Hoyer scores, which correspond
to sparser matrices that are concentrated along the diagonal, the error graphs of the p-
band and sparse kernel approximation schemes are lower than the error graphs of the other
kernel approximation schemes. We conclude that when the kernel is concentrated along
its diagonal, the p-band kernel approximation and the sparse kernel approximation have
superior performance. The performance of the sparse kernel approximation is comparable
to the performance of the p-band kernel approximation.
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Figure 5: The error of the various kernel approximation schemes for a kernel concentrated
along its diagonal. When the kernel is concentrated along the diagonal, and hence sparser,
the p-band kernel approximation outperforms the other schemes. The performance of the

sparse kernel approximation is comparable to the performance of the p-band kernel
approximation.

7.2.2 Sparse kernels

In this example, we wish to demonstrate the performance of each kernel approximation
scheme using kernel matrices that are sparse. As our kernel matrix, we use the symmetric
normalized graph Laplacian matrix, used in Laplacian eigenmaps dimensionality reduc-
tion (Belkin and Niyogi, 2003). The (i, j) entry of the graph Laplacian matrix is given by

exp(−
∥∥xi − xj∥∥22 /σ), followed by some data-dependant normalization. The reason we use

this kernel is that for small values of σ, this kernel is essentially sparse.

In this subsection, we use real-world datasets taken from the UCI Machine Learning
Repository (Dua and Graff, 2017), as described in Table 1. For each dataset, we repeat
the experiment described in the introduction of Section 7.2 multiple times, each time on a
random subset of 1000 points from the dataset, and for several values of σ, reflecting the
transition between a sparse matrix (small σ) and a dense matrix (large σ). The results
of this experiment are presented in Figure 6. We can see that for higher Hoyer scores,
which correspond to sparser matrices, the error graphs of the sparse kernel approximation
scheme are lower than the error graphs of the other kernel approximation schemes. We
conclude that when the kernel admits a sparse structure (typically, Hoyer score > 0.75),
the sparse kernel approximation scheme has superior performance. For lower Hoyer scores,
however, the kernel is usually no longer sparse and the performance of the sparse kernel
approximation scheme is no longer superior to the other kernel approximation schemes.
We notice that none of the methods performs well for dense matrices, whereas for sparse
matrices, the use of the sparse extension may be the difference between a nearly meaningless
result and an informative one.
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Name Dimension Description

MNIST 784 Each sample is a grey scale image of a handwritten digit
between zero and nine.

Superconductivity 81 Each sample contains 81 features extracted from one of
21263 superconductors.

Poker 10 Each sample is a hand consisting of five playing cards drawn
from a standard deck of 52 cards. Each card is described
using two attributes (suit and rank).

Wine quality 11 Each sample corresponds to a variant of a Portuguese wine,
where the 11 attributes are numerical characteristics of the
wine such as acidity, pH, residual sugar etc.

Table 1: Real-world datasets used.

(a) MNIST (b) Superconductivity

(c) Poker (d) Wine quality

Figure 6: Error of the graph Laplacian approximation for various datasets and kernel
approximation schemes as a function of the approximated kernel Hoyer score. We can see
that for sparse kernels (higher Hoyer score, typically > 0.75), the sparse approximation is

superior.
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8. Summary and future work

In this paper, we propose a kernel approximation framework that is based on perturbation
theory. We prove that this framework is a generalization of the popular Nyström method
and some of its variants. Furthermore, contrary to existing error bounds for the Nyström
method, our framework provides error bounds for the individual eigenvectors. This is useful
when the approximation is used as part of a dimensionality reduction procedure. Our kernel
approximation framework is very flexible, and can thus take advantage of the structure of the
kernel matrix. We demonstrate our theoretical derivations numerically for kernel matrices
that are either sparse or concentrated along their diagonal. Currently, our framework does
not handle kernels with degenerate eigenvalues, nor crossovers between eigenvalues. The
latter might cause a “change of order” of the eigenvectors.

For a future work, one might consider schemes to construct kernel matrices with struc-
ture that can take advantage of our framework. For example, the MEKA algorithm orders
the data in clusters, resulting in a block-diagonal kernel.
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Appendix A. Proof of Proposition 1

Let 1 ≤ i ≤ m. Ignoring the O(‖E‖22) term, we split (5) into the known and unknown terms,
resulting in

w̃i = vi +

m∑
k=1,k 6=i

〈Evi, vk〉
ti − tk

vk +

n∑
k=m+1

〈Evi, vk〉
ti − tk

vk. (18)

As the second term in (18) is unknown, we approximate it by replacing the unknown
eigenvalues with a parameter µ, resulting in

n∑
k=m+1

〈Evi, vk〉
ti − µ

vk =
1

ti − µ

n∑
k=m+1

〈Evi, vk〉vk =
1

ti − µ
(Evi − V (m)V (m)TEvi) =

1

ti − µ
ri,

(19)
where ri is defined in (7). Formula (8) follows by replacing the second term in (18) with
the rightmost term in (19). We denote the approximation error introduced into the approx-
imation (8) by ei, that is

ei =

∥∥∥∥∥∥
n∑

k=m+1

〈Evi, vk〉
ti − tk

vk −
1

ti − µ
ri

∥∥∥∥∥∥
2

.

By using the identity
1

ti − tk
=

1

ti − µ
+

tk − µ
(ti − tk)(ti − µ)

,

we get

ei =

∥∥∥∥∥∥
n∑

k=m+1

tk − µ
(ti − tk)(ti − µ)

〈Evi, vk〉vk

∥∥∥∥∥∥
2

.

By the triangle inequality and the Cauchy-Schwarz inequality we get

ei ≤
n∑

k=m+1

|tk − µ|
|ti − tk||ti − µ|

∣∣〈Evi, vk〉∣∣ ≤ ‖E‖2
|ti − tm+1||ti − µ|

n∑
k=m+1

|tk − µ| .

Recalling that the original perturbation approximation (5) induces an error of O(‖E‖22)
concludes the proof.

Appendix B. Proof of Proposition 2

Let 1 ≤ i ≤ m. Ignoring the O(‖E‖22) term, we split (5) into the known and unknown terms,
resulting in

w̃i = vi +

m∑
k=1,k 6=i

〈Evi, vk〉
ti − tk

vk +

n∑
k=m+1

〈Evi, vk〉
ti − tk

vk. (20)

To obtain (10), we expand the unknown (second) term in (20) by using the identity

1

ti − tk
=

1

ti − µ
+

tk − µ
(ti − µ)2

+
(tk − µ)2

(ti − tk)(ti − µ)2
. (21)
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We note that

n∑
k=m+1

〈Evi, vk〉(tk − µ)vk =
n∑

k=m+1

〈Evi, vk〉tkvk − µ
n∑

k=m+1

〈Evi, vk〉vk (22)

=
n∑

k=m+1

〈Evi, vk〉A′vk − µ
n∑

k=m+1

〈Evi, vk〉vk (23)

= A′ri − µri, (24)

where ri is defined in (7). Using (24) and (19), we get that the unknown term in (20) can
be written as

n∑
k=m+1

〈Evi, vk〉
ti − tk

vk =
1

ti − µ
ri−

µ

(ti − µ)2
ri+

1

(ti − µ)2
A′ri+

n∑
k=m+1

(tk − µ)2

(ti − tk)(ti − µ)2
〈Evi, vk〉vk.

(25)
The second-order formula (10) now follows by discarding the last term in (25). Denoting
the approximation error of equation (10) by ei, we have

ei =

∥∥∥∥∥∥
n∑

k=m+1

〈Evi, vk〉
ti − tk

vk −
(

1

ti − µ
ri −

µ

(ti − µ)2
ri +

1

(ti − µ)2
A′ri

)∥∥∥∥∥∥
2

.

Using (21) and the triangle and the Cauchy-Schwarz inequalities, we obtain

ei =

∥∥∥∥∥∥
n∑

k=m+1

(tk − µ)2

(ti − tk)(ti − µ)2
〈Evi, vk〉vk

∥∥∥∥∥∥
2

≤
n∑

k=m+1

|tk − µ|2

|ti − tk||ti − µ|2
∣∣〈Evi, vk〉∣∣

≤
‖E‖2

|ti − tm+1||ti − µ|2
n∑

k=m+1

|tk − µ|2 .

Recalling that the original perturbation approximation (5) induces an error of O(‖E‖22)
concludes the proof.

Appendix C. Runtime and space complexity

In this section, we discuss the runtime and space complexities of formulas (8) and (10).
We start with the first-order formula (8). The space complexity of the first-order formula
is O(mn), since it needs to store in memory the m leading eignevectors of A′. As of the
runtime of the first-order formula, the computation of ri of (7) involves the calculation
of Evi that requires O(nnz(E)) operations. The result is then multiplied by V (m)T , which
requires O(mn) operations, and then by V (m), which also requires O(mn) operations. Thus,
the total runtime complexity for computing all {ri}mi=1 is O(m · nnz(E) +m2n) operations.
The first-order formula also requires to compute O(m2) terms of the form 〈Evi, vk〉vk for
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1 ≤ i 6= k ≤ m. Each such term requires O(nnz(E) + n) operations, resulting in a total
of O(m2 · nnz(E) + m2n) operations for all eigenvectors. We conclude that evaluating the
first-order formula requires a total of O(m2 · nnz(E) +m2n) operations.

The analysis of the second-order formula (10) is similar, except that it requires also to
store A′, which requires O(nnz(A′)) memory, and to compute A′ri, which requires additional
O(m · nnz(A′)) operations. We conclude that evaluating the second-order formula requires
a total of O(m2 · nnz(E) +m · nnz(A′) +m2n) operations.

Appendix D. Proof of Proposition 3

Let i ∈ {1, . . . ,m}. Since µ = δ, we get that if A′ri = δri then the last two terms in (10)
cancel out and (10) reduces to the first-order formula (8). Thus, in order to prove that

w
(1)
i = w

(2)
i , it is sufficient to prove that under the settings of the proposition A′ri = δri.

Indeed,

A′ri = A′
(
I − V (m)V (m)T

)
Evi =

(
V (m)TV (m)T + δI

)(
I − V (m)V (m)T

)
Evi

=
(
V (m)TV (m)T − V (m)TV (m)T + δI − δV (m)V (m)T

)
Evi

= δ
(
I − V (m)V (m)T

)
Evi = δri.

For the error, we note that the n−m unknown eigenvalues of a matrix A′ of the form
A′ = V (m)TV (m)T + δI are exactly δ, and thus, when choosing µ = δ, the first term in (9)
and (11) cancels out and we are left with only the O(‖E‖22) term.

Appendix E. Proof of Proposition 5

Let i ∈ {1, . . . ,m}. By (13), for µ = 0

ũi = usi +

m∑
k=1,k 6=i

((K −Ks)usi , u
s
k)

λsi − λsk
usk +

1

λsi

(
I − U s(m)U s(m)T

)
(K −Ks)usi , (26)

and by (15),
λ̃i = λsi + usTi (K −Ks)usi . (27)

We first prove that ûi =
√

m
n ũi (see (17)). We start by simplifying (26) based on the

specific choice of Ks. We make the following observations. First, we note that for all
i = 1, . . . ,m, the last n−m entries of usi are 0, and the top left m×m submatrix of K−Ks

is 0. This implies that the first m entries of (K −Ks)usi are 0, and so 〈(K −Ks)usi , u
s
k〉 = 0

for all 1 ≤ i, k ≤ m. A direct consequence of the latter is that U s(m)U s(m)T (K −Ks)usi = 0
for all 1 ≤ i ≤ m. Thus, (26) reduces to

ũi = usi +
1

λsi
(K −Ks)usi . (28)

Next, we note that the first term in (28), usi , is non-zero only on its first m entries, whereas
the second term, 1

λsi
(K −Ks)usi is non-zero only on its last n−m entries. This means that
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the first m entries of ũi are exactly the first m entries usi , and the last n−m entries of ũi
are equal to the last n−m entries of 1

λsi
(K −Ks)usi . We start by proving the equivalence

between the first m entries of ũi and ûi. Let 1 ≤ p ≤ m. Denote by Ap→ the p’th row of a
matrix A. Denote by C the n×m matrix consisting of the first m columns of K. We note
that for the Nyström method (see (1))

ûi,p =

√
m

n

1

λ′i
Cp→u

′
i =

√
m

n

1

λ′i
K ′p→u

′
i =

√
m

n

1

λ′i
λ′iu
′
i,p =

√
m

n
u′i,p.

Thus, the first m entries of the approximated vector in the Nyström method are merely a
re-scaling of the vector u′i by

√
m
n . Since Ks is equal to K ′ padded with zeros, we get that

the first m entries of usi are exactly u′i. Thus, we conclude that the first m entries of ûi and√
m
n ũi are identical.
Next, we prove the equivalence between the last n−m entries of ũi and ûi. Let m+ 1 ≤

p ≤ n. We have for the Nyström method (see (1))

ûi,p =

√
m

n

1

λ′i
Cp→u

′
i, (29)

and for the perturbation approximation, by using (28), and since the last n−m entries of
usi are 0,

ũi,p =
1

λsi
(K −Ks)p→u

s
i =

1

λsi
(Kp→u

s
i − 0) =

1

λsi
Cp→u

′
i, (30)

where the last equality follows since (as explained above) the first m entries of usi are
exactly u′i. Finally, since λ′i = λsi for 1 ≤ i ≤ m, we conclude by (29) and (30) that
ûi,p =

√
m
n ũi,p for m + 1 ≤ p ≤ n, that is, the last n −m entries of ûi and

√
m
n ũi are also

identical.
We now prove the equivalence of the eigenvalues. By the same arguments as above, we

note that for all 1 ≤ i ≤ m, usTi (K − Ks)usi = 0. Thus, by (27) we have λ̃i = λsi and
consequently, using (2),

λ̂i =
n

m
λ′i =

n

m
λsi =

n

m
λ̃i,

as required.

Appendix F. Proof of Proposition 8

Denote by Ks
shift ∈ Rn×n the top left m×m submatrix of Kshift (see (4)) padded with zeros.

By the equivalence of the Nyström method and the perturbation approximation proved
in Proposition 5, the spectral shifted Nyström method is equivalent to the perturbation
approximation of Ks

shift using µ = 0. Thus, it suffices to prove that the perturbation
approximation of the eigenpairs of Ks

shift to the eigenpairs of Kshift with µ = 0 equals to
the perturbation approximation of the eigenpairs of Ks to the eigenpairs of K with µ = δ.

Let the top m eigenpairs of Ks be {(λsi , usi ))}mi=1. It follows that the top m eigenpairs of
Ks

shift are {(λsi − δ, usi ))}mi=1. Let 1 ≤ i ≤ m. By (28), the perturbation approximation (13)
of the eigenvectors of Ks

shift to eigenvectors of Kshift with µ = 0 reduces to

ũi = usi +
1

λi − δ − 0
(Kshift −Ks

shift)u
s
i ,
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whereas the perturbation approximation of the eigenvectors of Ks to eigenvectors of K with
µ = δ reduces to

ûi = usi +
1

λi − δ
(K −Ks)usi .

But since the last n −m entries of usi are 0, and the entries of Kshift −Ks
shift are equal to

those of K −Ks except for the last n−m diagonal elements, we have that

(Kshift −Ks
shift)u

s
i = (K −Ks)usi , (31)

and we conclude that ũi = ûi.

For the eigenvalues, the perturbation approximation of the eigenvalues of Ks
shift to the

eigenvalues of Kshift (see (15)) yields

λ̃i = (λsi − δ) + usi (Kshift −Ks
shift)u

s
i .

We note that by (15), (31) and by the proof of this section for the eigenvectors, if {(τi, vi)}mi=1

are the approximated eigenpairs of a matrix A, then {(τi + δ, vi)}mi=1 are the approximated
eigenpairs of the matrix Ashift = A+ δI. Thus, in order to recover the approximation of the
eigenvalues of K, we need to shift the approximated eigenvalues {λ̃i}mi=1 back by δ, yielding

λ̃′i = λsi + usi (Kshift −Ks
shift)u

s
i .

On the other hand, the perturbation approximation of Ks yields

λ̂i = λsi + usi (K −Ks)usi .

By (31), we have that λ̃′i = λ̂i.

Appendix G. Performance of various error metrics

In this section, we provide the results of Section 7.2.2 for the MNIST and wine datasets for
three different error measures, demonstrating that the performance of our approximation
scheme is qualitatively similar in various reasonable error metrics. The results are presented
in Figure 7 and in Figure 8 for the MNIST and wine datasets respectively.

(a) Reconstruction error (b) Subspace projection error (c) Principle angle

Figure 7: Approximation error for the MNIST dataset in various error metrics.
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(a) Reconstruction error (b) Subspace projection error (c) Principle angle

Figure 8: Approximation error for the wine dataset in various error metrics.
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