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Abstract

This paper focuses on learning rate analysis of Nyström regularization with sequential sub-
sampling for τ -mixing time series. Using a recently developed Banach-valued Bernstein
inequality for τ -mixing sequences and an integral operator approach based on second-
order decomposition, we succeed in deriving almost optimal learning rates of Nyström
regularization with sequential sub-sampling for τ -mixing time series. A series of numerical
experiments are carried out to verify our theoretical results, showing the excellent learning
performance of Nyström regularization with sequential sub-sampling in learning massive
time series data. All these results extend the applicable range of Nyström regularization
from i.i.d. samples to non-i.i.d. sequences.

Keywords: Time series forecasting, Sub-sampling, Nyström regularization, τ -mixing
process.

1. Introduction

Time series is one of the most common data types abounding almost every aspect of
human life (Fu, 2011), including clinical medicine, finance data, speech recognition, motion

∗. Z. Sun and M. Dai contribute equally and are co-first authors of the paper
†. Corresponding author

c©2022 Zirui Sun, Mingwei Dai, Yao Wang and Shao-Bo Lin.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v23/21-1341.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v23/21-1341.html


Sun, Dai, Wang and Lin

capture data, traffic data, music recognition and video data. Besides the time-dependent
nature, time series in recent years exhibit additional massiveness and hard-to-model prop-
erties, making the existing models such as autoregressive models, linear dynamical systems
and hidden Markov models no more efficient (Rakthanmanon et al., 2012). In the time series
forecasting community, the massiveness means a sequence over a long period of time while
the hard-to-model property refers to the situation that the data structure is too complex
to be captured by using the traditional models. It is thus highly desired to develop scalable
learning algorithms of high quality to tackle massive time series that are not generated by
simple parametric models.

One of the most productive solutions to tackle hard-to-model time series data is the
nonparametric approach (Meir, 2000), which aims at finding the intrinsic nature of time
series without imposing any structural restrictions on the models. Neural networks (Hagan
et al., 1997) and kernel methods (Shawe-Taylor and Cristianini, 2004) are two popular
nonparametric schemes in time series forecasting. In particular, it was shown in (Modha
and Masry, 1996; Mondha, 1998; Xu and Chen, 2008; Steinwart and Christmann, 2009) that
neural networks and kernel methods are memory-universal and possess good generalization
performances, provided the time series satisfy the well known α-mixing condition (Doukhan,
1994). The problem is, however, that these existing methods require huge computations,
which dampens users’ enthusiasms heavily and pushes them to utilize other simple but
scalable approaches, especially when the data size is huge.

This paper aims to derive a scalable kernel-based learning algorithm to tackle massive
and hard-to-model time series data. Our study is motivated by three important observa-
tions. At first, the dependent nature of time series data enhances the dependence among
columns of the kernel matrix, making its effective rank1 much smaller than that of indepen-
dent and identically distributed (i.i.d.) data (see Figure 2 below for detailed descriptions).
Then, numerous studies showed that the dependence of time series data can be maintained
via kernelization, i.e., columns of the kernel matrix and input data possess the same mixing
property (Bradley, 2005). For example, it can be found in (Bradley, 2005; Sun and Lin,
2021) that the so-called α-mixing condition (Rosenblatt., 1956) is unchanged via kerneliza-
tion. At last, Nyström regularization (Williams and Seeger, 2000), a special type of learning
with sub-sampling that randomly sketches a few columns from the kernel matrix to build up
the estimator, has been widely used for i.i.d. data. Nyström regularization (Williams and
Seeger, 2000) successfully reduces the computational burden of kernel methods without los-
ing their generalization performance (Rudi et al., 2015; Kriukova et al., 2017), provided the
number of sketched columns is larger than the effective rank of the kernel matrix. Taking
these interesting observations into accounts, we devote to utilizing Nyström regularization
for kernel ridge regression (KRR) (Gittens and Mahoney, 2016) to yield a novel scalable
learning strategy for time series.

Different from the classical Nyström regularization for i.i.d. data, Nyström regulariza-
tion for time series requires strict orders of selected columns to reflect the time-dependent na-
ture, making the widely used sub-sampling schemes including the plain Nyström (Williams
and Seeger, 2000), leverage score approach (Gittens and Mahoney, 2016) and random sketch-
ing (Yang et al., 2017) no more available. Therefore, suitable sub-sampling strategies are

1. The effective rank in this paper denotes the number of eigenvalues that are larger than a specific threshold.
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needed to equip Nyström regularization to tackle time series. This raises two challenges: (i)
designing an exclusive sub-sampling mechanism available to time series and (ii) providing
theoretical guarantees for the corresponding Nyström regularization approach.

As kernelization maintains the mixing property of time series data, we employ a simple
but effective sub-sampling strategy for the first challenge, via selecting continuous columns
in the kernel matrix to guarantee the order. As a result, the selected columns possess sim-
ilar mixing property as the time series. We call such a sub-sampling strategy as Nyström
regularization with sequential sub-sampling. There are mainly two advantages of sequential
sub-sampling. One is its user-friendly nature, making the sub-sampling easy to be imple-
mented. The other is that the mixing property of selected columns plays a crucial role in
providing theoretical guarantees for the corresponding Nyström regularization.

For the second challenge, it should be noted that prior approaches for theoretical guar-
antees for learning with time series data require quantifying the dependence of time series
via some mixing conditions, including α-mixing (Modha and Masry, 1996), β-mixing (Yu,
1994) and φ-mixing (Billingsley, 1968). However, most of learning rates established in (Yu,
1994; Xu and Chen, 2008; Steinwart and Christmann, 2009; Sun and Wu, 2010; Alquier
and Wintenberger, 2012; Alquier et al., 2013; Hang and Steinwart, 2017) concerning the
corresponding mixing data are sub-optimal, since the dependence among data reduces the
effective samples and then makes the Bernstein-type inequality established in (Yu, 1994;
Modha and Masry, 1996) for dependent data a little bit worse than the classical Bernstein
inequality for i.i.d. data. Therefore, to provide optimal theoretical guarantees for Nyström
regularization with sequential sub-sampling, it is necessary to develop a novel analysis ap-
proach such as the integral operator approach in (Sun and Wu, 2010; Sun and Lin, 2021).
Fortunately, for the well known τ -mixing sequences, (Blanchard and Zadorozhnyi, 2019)
have derived almost optimal learning rates for KRR via establishing a novel integral oper-
ator approach. Noting further that τ -mixing is somewhat weaker than α-mixing (Dedecker
and Prieur, 2004), we borrow the idea from (Blanchard and Zadorozhnyi, 2019) to derive
almost optimal learning rates of Nyström regularization for τ -mixing time series.

Our main contributions can be summarized in the following three aspects:

• Methodology: To tackle massive and hard-to-model time series, we propose a novel
Nyström regularization with sequential sub-sampling based on kernel methods. The sequen-
tial sub-sampling mechanism succeeds in maintaining the mixing property of time series and
the Nyström regularization significantly reduces the computational burden of kernel meth-
ods. Meanwhile, compared with i.i.d. data, the dependence nature of time series results
in smaller effective rank of kernel matrix and thus requires smaller sub-sampling ratio2 in
Nyström regularization.

• Theory: Utilizing a recently developed Banach-valued Bernstein inequality for τ -
mixing sequences (Blanchard and Zadorozhnyi, 2019), a projection-based error decompo-
sition approach in (Rudi et al., 2015) and the second-order decomposition approach for
integral operator (Guo et al., 2017), we derive almost optimal learning rates of Nyström
regularization with sequential sub-sampling for τ -mixing time series. In particular, we show
that, with a small sub-sampling ratio, Nyström regularization with sequential sub-sampling
performs the same as KRR, provided the τ -mixing coefficients of time series decay expo-

2. The sub-sampling ratio in this paper means the ratio between the number of selected columns in kernel
matrix and size of data.
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nentially. This is the first result, to the best of our knowledge, to show almost optimal
learning rates for learning non-i.i.d. data with the sub-sampling strategy.
• Experiments: Our theoretical assertions were verified by numerous toy simulations

and three real-world data experiments including the BITCOIN (BTC) data, WTI data and
Western Australia Weather data. Our experimental results show that Nyström regular-
ization with sequential sub-sampling is effective and efficient to reduce the computational
burden of KRR without scarifying its excellent learning performance, provided the sampling
ratio is larger than a specific value. Furthermore, we find that Nyström regularization with
sequential sub-sampling is a feasible noise-extractor in the sense that it can quantify the ran-
dom noise in time series. All these results show that Nyström regularization with sequential
sub-sampling is a scalable and feasible strategy to tackle massive and hard-to-model time
series.

The remainder of this paper is organized as follows. In Section 2, we introduce some
basic properties of time series and τ -mixing sequences, and then propose the Nyström reg-
ularization with sequential sub-sampling for time series. In Section 3, we study theoretical
behaviors of Nyström regularization via presenting its almost optimal learning rates. In
Section 4, we compare our results with some related literature and present some discus-
sions. In Section 5, extensive experimental studies are carried out to verify our theoretical
assertions. In the last section, we present proofs for the main results.

2. Time Series Forecasting via Nyström Regularization

In this section, we introduce time series forecasting problems and then propose the
Nyström regularization with sequential sub-sampling.

2.1 Time series forecasting

We are interested in a standard time series forecasting setting where the learner receives
data of the form D := Dn := {zt}nt=1 = {(xt, yt)}nt=1 with xt ∈ X , yt ∈ Y and zt ∈ Z :=
X × Y. The aim is to learn a function fn : X → Y such that fn(xn+1) can predict yn+1

well. The following are three widely used time series forecasting models.
• Non-parametric auto-regression: Let d ∈ N be the memory size. Assume X = Yd and

there is an f0 : X → Y such that

xt = f0(xt−1, . . . , xt−d) + εt, (1)

where {εt}nt=1 are independent of x0.
• Non-parametric ARX(Autoregressive Exogenous): Let d ∈ N be the memory size.

Assume X = Yd+d′ for some d′ ∈ N. Let {ξt}nt=1 with ξt ∈ Y be a set of auxiliary variants.
Assume that there is an f0 : X → Y such that xt, t = 1, . . . , n are generated via

xt = f0(xt−1, . . . , xt−d, ξt, . . . , ξt−d′+1) + εt, (2)

where {εt}nt=1 are independent of x0.
• Nonlinear processes: Let d ∈ N be the memory size. Assume X = Yd and there is an

f0 : X → Y such that
xt = f0(xt−1, . . . , xt−d; εt),
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Figure 1: The decomposition of time series.

where {εt}nt=1 are independent of x0.
More interesting examples of time series forecasting can be found in the monograph

(Doukhan, 1994; Fan and Yao, 2008), in which the following boundedness assumption is
standard.

Assumption 1 Assume Y = [−M,M ] and X = [−M,M ]d, where M < ∞ is a positive
constant.

Although the above boundedness assumption is widely used for i.i.d. data (Gyorfi et al.,
2002; Cucker and Zhou, 2007; Steinwart and Christmann, 2008), it seems a little bit strict
for time series since this assumption excludes numerous models like the non-parameteric
auto-regression models with Gaussian noise. We highlight that the reasons why adopted
such an assumption are two folds. From the implementation side, the gathered time series
data are always finitely many and the corresponding outputs are bounded in practice. From
the theoretical side, our main tool for analysis is a Banach-valued Bernstein inequality for τ -
mixing sequences established in (Blanchard and Zadorozhnyi, 2019), where the boundedness
assumption is required. It would be interesting to generalize Assumption 1 to the sub-
Gaussian assumption (unbounded samples) and derive corresponding generalization error
bounds for different learning algorithms, just as (Caponnetto and DeVito, 2007; Rudi et
al., 2015) did for i.i.d. data. We leave it in a future study since some novel and non-trivial
concentration inequalities for time series data are required for this purpose.

Due to the dependence nature of the time series, it is not a good choice to formulate
time series forecasting problem into the standard regression setting for i.i.d. data (Gyorfi et
al., 2002). Instead, as shown in Figure 1, a general time series forecasting problem can be
divided into searching a deterministic relation between successive samples and describing
a random part that is mainly caused by the random noise. Taking non-parametric auto-
regression for example, the deterministic part refers to find a good estimate, fD, of f0 in
(1) and the random part depends on the distribution of the noise {εt}nt=1. Once fD is good
enough, then it can be regarded as a noise-extractor in the sense that yt − f0(xt) is near to
εt and then the distribution of noise of time series data can be estimated.

2.2 τ-mixing sequences

It is well known that some restrictions on the dependence are necessary to establish sat-
isfactory generalization error bounds for time series data. The α-mixing (or strong mixing)
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condition (Modha and Masry, 1996) is one of the most popular restriction to quantify the
dependence among time series and is much weaker than the so-called β-mixing condition
(Yu, 1994) and φ-mixing condition (Billingsley, 1968). For two σ-fields J and K, define the
α-mixing (or strong mixing) coefficient as

α(J ,K) := sup
A∈J ,B∈K

|P (A ∩B)− P (A)P (B)|. (3)

Denote by Mi,j the σ-filed generated by random variables zi:j := (zi, zi+1, . . . , zj). The
α-mixing condition is defined as follows.

Definition 1 A set of random sequence {zi}∞i=1 is said to satisfy the α-mixing condition
(or strong mixing condition) if

αj := sup
k≥1

α(M1,k,Mk+j,∞)→ 0, as j →∞. (4)

We refer the readers to (Doukhan, 1994) for more details and examples for α-mixing
sequences. Unfortunately, the α-mixing condition presented in Definition 1 is still a little
bit strong, excluding some simple Markov chains and causal linear processes as follows:
• Markov chains with Bernoulli distribution: Let

xt =
1

2
(xt−1 + εt) (5)

where {εt}nt=1 are i.i.d. drawn according to the Bernoulli distribution B(1/2) and are inde-
pendent of x0. It was proved in (Andrews, 1984) that αj = 1/2 for any j.
• Causal linear process: Let (ξj)j∈Z be a sequence of i.i.d. random variables with values

in R. Define the time series {xt}t∈N with

xt =
∞∑
j=0

ajξt−j , (6)

where aj = 2−j−1. If ξ0 is drawn from B(1/2), then it can be found in (Dedecker and Prieur,
2004, P.871) that αj = 1/4 for any j.

Noting this dilemma, (Dedecker and Prieur, 2004, 2005) proposed a slightly weaker
τ -mixing condition. Let CLip be the set of bounded Lipschitz functions over X . Consider

CLip(f) := ‖f‖Lip(X ) := sup

{
|f(x)− f(x′)|
‖x− x′‖2

∣∣x, x′ ∈ X , x 6= x′
}
,

where ‖~a‖2 denotes the Euclidean norm of the vector ~a. It is easy to see that CLip is a
semi-norm. Let (Ω,M1,i, P ) be a probability space, where Ω is a sample space, M1,i is a
σ-algebra of measurable subsets of Ω, and P is a probability measure on M1,i. Denote by
Lp(P ) := Lp(Ω,M1,i, P ) the space of p-integrable functions endowed with norm ‖f‖Lp(P ) :=

‖f‖Lp(Ω,M1,i,P ) := (
∫

Ω |f |
pd(P ))

1
p . We also consider a norm of CLip of the form

‖g‖CLip := ‖g‖L∞(X ) + CLip(g).

Let C1 be the “semi-ball” of functions g ∈ CLip such that CLip(g) ≤ 1. Then the τ -mixing
sequences can be defined as follows.

6



Nyström Regularization for Time Series Forecasting

Definition 2 The τ -mixing coefficients are defined by

τj := sup{E(ηg(zi+j))− E(η)E(g(zi+j))|i ∈ N,
η is M1,i-measurable and ‖η‖L1(P ) ≤ 1, g ∈ C1}. (7)

We say that the sequence {zi}∞i=1 is τ -mixing if limj→∞ τj = 0. In particular, if there are
some constants b0 > 0, c0 ≥ 0, γ0 > 0 such that

τj ≤ c0 exp(−(b0j)
γ0), ∀ j ≥ 1, (8)

then {zt}∞t=1 is said to be geometrically τ -mixing. If there are some constants c1 > 0, γ1 > 0
such that

τj ≤ c1j
−γ1 , ∀ j ≥ 1, (9)

then {zt}∞t=1 is said to be algebraic τ -mixing.
It can be found in (Dedecker and Prieur, 2004) that the Markov chain with Bernoulli

distribution (5) and causal linear process (6) are geometrically τ -mixing, showing that τ -
mixing is essentially different from α-mixing. Some basic properties of τ -mixing sequences
were derived in (Dedecker and Prieur, 2004, 2005), among which the following four proper-
ties are important for our analysis.

Property 1 If {zt}∞t=1 is τ -mixing with coefficient τj, then for arbitrary i, k ∈ N, {zt}i+kt=i

is τ -mixing with coefficient τj.

Property 2 If {zt}∞t=1 is τ -mixing with coefficient τj and h ∈ CLip with Liptchiz constant
Ch, then {h(zt)}∞t=1 is τ -mixing with coefficient Chτj.

Property 3 If {zt}∞t=1 is τ -mixing with coefficient τj, then for arbitrary k, ` ∈ N, {zk+t(`+1)}∞t=1

is τ -mixing with coefficient c′τj, where c′ is a constant satisfying 0 < c′ ≤ 1.

Property 4 If {zt}∞t=1 is α-mixing, then {zt}∞t=1 is τ -mixing.

Property 1 and Property 2 can be deduced from the definition directly and play crucial
roles in developing Nyström Regularization for τ -mixing series. Property 3 can also be
deduced from the definition. More precisely, if {zt}∞t=1 is τ -mixing with coefficient τj , then
the τ -mixing coefficient of {zk+t(`+1)}∞t=1 for any k, ` ∈ N is smaller than τj and approaching
0 when j →∞. Property 4 established in (Dedecker and Prieur, 2004, Lemma 7) shows that
the τ -mixing condition is weaker than the α-mixing condition. We highlight that Property
4 only implies τj ≤ g(αj) for some monotonously increasing function g rather than τj ≤ αj .

2.3 Nyström regularization

Let D := Dn := {zt}nt=1 = {(xt, yt)}nt=1 with xt ∈ X = [−M,M ]d and yt ∈ Y =
[−M,M ] and K(·, ·) be a Mercer kernel and (HK , ‖ · ‖K) be the corresponding reproducing
kernel Hilbert space (RKHS). Kernel ridge regression (KRR) (Evgeniou et al., 2000), given
a regularization parameter λ > 0, is defined by

fD,λ = arg min
f∈HK

{
1

n

n∑
t=1

(f(xt)− yt)2 + λ‖f‖2K

}
. (10)
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It is easy to check that the complexities in storage and training of KRR are O(n2) and
O(n3), respectively. As a result, KRR is difficult to tackle massive time series, although
it is one of the most popular learning algorithms in the past two decades. Sub-sampling
(Gittens and Mahoney, 2016) is a preferable way to reduce the computational burden of
KRR.

For any subset Dm := {z̃i}mi=1 := {(x̃i, ỹi)}mi=1 of D , define

HDm :=

{
m∑
i=1

aiKx̃i : ai ∈ R

}
. (11)

where Kx := K(x, ·). Nyström regularization with sub-samples Dm is then defined by

fD,Dm,λ := arg min
f∈HDm

1

n

n∑
t=1

(f(xt)− yt)2 + λ‖f‖2K . (12)

Direct computation (Rudi et al., 2015) yields

fD,Dm,λ(·) =
m∑
i=1

αiKx̃i(·), (13)

where
α = (α1, . . . , αm)T = (KT

nmKnm + λnKmm)†KT
nmyD, (14)

A† and AT denote the Moore-Penrose pseudo-inverse and transpose of a matrix A respec-
tively, (Kn,m)t,i = K(xt, x̃i), (Kmm)k,i = K(x̃k, x̃i) and yD = (y1, . . . , yn)T . In this way,
it requires O(nm) and O(nm2) complexities in storage and training respectively to derive
a Nyström regularization estimator. If the sub-sampling ratio, i.e. m/n, is small, then
Nyström regularization significantly reduces the computational burden of KRR.

Though theoretical behaviors of Nyström regularization have been rigorously verified
for i.i.d. data in (Rudi et al., 2015), it remains open whether Nyström regularization is
applicable for time series forecasting and is theoretically sound. Noting further that the
basic idea of Nyström regularization (Williams and Seeger, 2000) is that the effective rank of
kernel matrix is much smaller than the size of data and sub-sampling aims to find principal
component of the kernel matrix, we show the applicability of sub-sampling for time series
by comparing eigenvalues of the kernel matrices generated from time series and i.i.d. data
respectively. In order to avoid the influence of the kernel functions on the calculation of
eigenvalues, we choose two different types of kernel functions. As shown in Figure 2, we see
that s2 is always less than s1 (s1 and s2 represent the number of eigenvalues larger than a
fixed value of i.i.d. data and time series respectively), implying that it is easier to retain
the main information after sub-sampling time series. That is, time series data allow lower
sub-sampling ratio to maintain the spectrum information of kernel matrix than i.i.d. data.
Therefore, we claim that time series may be more suitable than i.i.d. data for sub-sampling
methods.

2.4 Nyström regularization with sequential sub-sampling

Different from i.i.d. data, time series exhibit additional difficulty in designing the sub-
sampling strategy due to their non-i.i.d. nature. In particular, it is unknown whether the
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Figure 2: Eigenvalues of kernel matrix. Data are generated with xt = 0.5 sin(xt−1) + εt
(the blue line) and f(x) = 0.5 sin(x) + ε (the red line) where εt, ε ∼ B(1/2). The
number of samples is 3000 and we draw the largest 100 eigenvalues. The left
figure and right figure are the eigenvalues under different kernel functions, which
are Wendland kernel (27) below and Gaussian kernel with σ = 0.5 respectively.

selected columns satisfy certain mixing conditions. For this purpose, we propose a concept
of sequential sub-sampling to guarantee the τ mixing property of sub-sampling.

Definition 3 Let m ∈ N and m ≤ n. Randomly select j ∈ [1, n −m + 1] according to the
uniform distribution. The set D∗j := Dj,m := {zj , . . . , zj+m−1} := {z̃i}mi=1 is then defined to
be a sequential sub-sampling of size m for D.

The idea of sequential sub-sampling is not difficult to be implemented and is close to
the blockboostrap for time series proposed in (Lahiri, 1999), which focused on sampling the
sequence in time order to ensure the dependency among successive samples. It should be
mentioned that there is a slight difference between our proposed sequential sub-sampling
and the blockboostrap approach in the sense that the block blockboostrap is to resample
the observation information in blocks to make a statistical estimate of the distribution
characteristics of the population while our sub-sampling scheme devotes to sampling one by
one in each sub-sampling stage and is for the purpose of maintaining the mixing property.

Due to Property 1, the τ -mixing property of D implies the τ mixing property of D∗j . To
facilitate the analysis, we also need the following assumption on the kernel.

Assumption 2 Assume κ := supx∈X
√
K(x, x) ≤ 1 and there exists a K > 0 such that

max
{∣∣∣∂K(x,x′)

∂x

∣∣∣ , ∣∣∣∂K(x,x′)
∂x′

∣∣∣} ≤ K.
Assumption 2 is mild. In particular, the boundedness assumption κ ≤ 1 is satisfied for

any continuous kernels with scaling. The restriction on the partial derivatives can also be
satisfied for any smooth kernels. It is easy to check that almost all widely used kernels
such as the Gaussian kernel, Wendland kernel, Sobolev kernel and multi-quadratic kernel
(Steinwart and Christmann, 2008) satisfy Assumption 2. Based on Assumption 2 and
Property 2, we obtain the following property directly (Blanchard and Zadorozhnyi, 2019).

9
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Property 5 Under Assumption 2, if {zt}nt=1 is τ -mixing and {z̃i}mi=1 is a sequential sub-
sampling of {zt}nt=1, then {Kz̃i}mi=1 is Banach-valued τ -mixing.

Property 5 plays an important role in guaranteeing the feasibility of sequential sub-
sampling. With the proposed sequential sub-sampling scheme, we can develop an exclusive
Nyström regularization for time series by using D∗j in Definition 3 to take place of Dm in
(12). The framework of Nyström regularization with sequential sub-sampling is given in
Algorithm 1.

Algorithm 1: Nyström regularization with sequential sub-sampling

Input: Given D := {zt}nt=1 = {(xt, yt)}nt=1, Kernel K(·, ·), regularization parameter
λ, sub-sampling size m.

Output: f̂D,D∗j ,λ(x).

1 // Sequential sub-sampling
2 D∗j := {zj , . . . , zj+m−1} := {z̃i}mi=1 ←Sub-sampling (m, {zt}nt=1);

3 // Calculate kernel Knm, Kmm

4 (Knm)ti ← K(xt, x̃i) for all t = {1, · · · , n}, i = {1, · · · ,m};
5 (Kmm)ki ← K(x̃k, x̃i) for all k = {1, · · · ,m}, i = {1, · · · ,m};
6 // Calculate α

7 α← (KT
nmKnm + λnKmm)†KT

nmyD;

8 return f̂D,D∗j ,λ(x)←
∑m

i=1 αi ·K(x̃i, x).

As shown in Algorithm 1, there are two parameters, m and λ, to be tuned. It should
be mentioned that λ is a model parameter that balances the bias and variance of the
Nyström regularization, while m is an algorithmic parameter that reflects the trade-off
between computational burden and prediction accuracy. Our analysis below will show that
for appropriately selected λ, the learning performance of Nyström regularization is not
sensitive to m, provided m is not extremely small. This shows the feasibility and efficiency
of utilizing sub-sampling to tackle time series data. Practically, to reduce the computational
burden, it is preferable to set m =

√
n and then choose λ according to the well-known hold-

out scheme (Gyorfi et al., 2002, Chap.7). Besides these two explicit parameters, there are
also two hidden parameters in Algorithm 1, the sub-sampling location (j in Definition 3)
and sub-sampling interval (` in Property 3) in Algorithm 1. Our theoretical analysis and
numerical results below will show that different sub-sampling strategies do not affect the
learning performance of Nyström regularization with sequential sub-sampling very much,
provided the τ -mixing property of the selected columns is guaranteed.

3. Theoretical Behaviors

In this section, we present our main results on analyzing learning performances of
Nyström regularization with sequential sub-sampling for τ -mixing time series.

10
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3.1 Setup and Assumptions

Our analysis is carried out in a standard random setting (Alquier and Wintenberger,
2012; Alquier et al., 2013), where D = {zt}nt=1 is assumed to be drawn according to a joint
distribution

ρ1:n := ρ1(·)× ρ2(·|z1)× · · · × ρn(·|z1:n−1)

and z1:k = {zt}kt=1. The only difference is that our analysis is built upon the following
identical distribution assumption of ρ1:n rather than the widely used stationary condition.

Assumption 3 Assume

ρ1(·) =

∫
Z
ρ1:2(z1, ·)dρ(z1) = · · · =

∫
Z
· · ·
∫
Z
ρ1:n(z1, · · · , zn−1, ·)dρ(z1, . . . zn−1),

that is, the marginal distribution ρt is independent of t.

It should be mentioned that Assumption 3 can be regarded as the same marginal dis-
tribution restriction of ρ1:n and is essentially weaker than the strict (or weak) stationarity
(Sun and Lin, 2021) in the sense that strict (or weak) stationarity requires the same joint
distribution (or covariance) and Assumption 3 only requires the same marginal distribution.

With the help of Assumption 3, we can describe our theoretical framework as follows.
Denote

ρ(·) = ρ1(·) =

∫
Z
ρ1:2(z1, ·)dρ(z1) = · · · =

∫
Z
· · ·
∫
Z
ρ1:n(z1, · · · , zn−1, ·)dρ(z1, . . . , zn−1).

Noting zt = (xt, yt), we can write ρ = ρX × ρ(y|x), where ρX denotes the marginal distri-
bution of ρ and ρ(y|x) denotes the conditional distribution of ρ induced at x ∈ X . Our aim
is then to find a function f to minimize the generalization error

∫
Z(f(x)− y)2dρ, which is

minimized by the well-known regression function(Cucker and Zhou, 2007)

fρ(x) =

∫
Y
ydρ(y|x), x ∈ X .

Let L2
ρ
X

be the Hilbert space of ρX square integrable functions on X , endowed with the

norm ‖ · ‖ρ. Our purpose is then to bound∫
Z

(f(x)− y)2dρ−
∫
Z

(fρ(x)− y)2dρ = ‖f − fρ‖2ρ,

which makes the time series forecasting problem similar as the standard least-squares regres-
sion setting in (Gyorfi et al., 2002). The only difference is that the independent assumption
of samples is replaced by the following τ -mixing assumption.

Assumption 4 D = {zt}nt=1 is a τ -mixing sequence with mixing coefficient τj.

The mixing condition is a standard assumption to describe the dependence of time
series (Doukhan, 1994; Bradley, 2005; Alquier and Wintenberger, 2012; Alquier et al., 2013),
among which β-mixing (Yu, 1994) and α-mixing (Modha and Masry, 1996) are widely used.
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It can be obtained from Property 4 that there are numerous time series satisfying the τ -
mixing condition, including the causal linear processes, functional autoregressive processes,
and Markov kernel associated to expanding maps (Dedecker and Prieur, 2004, 2005).

Our next assumption is to quantify the regularity of fρ. For this purpose, we introduce
the well known integral operator associated with the Mercer kernel K. Define LK on HK
(or L2

ρX
) by

LK(f) =

∫
X
Kxf(x)dρX , f ∈ HK (or f ∈ L2

ρX
).

It is easy to check that LK is a compact and positive operator. Denote further LrK by the
r-th power of LK : L2

ρX
→ L2

ρX
. We are now in position to write the following assumption.

Assumption 5 There exists an r > 0 such that

fρ = LrK(hρ), for some hρ ∈ L2
ρX
. (15)

Let {(σ`, φ`)}∞`=1 be the normalized eigen-pairs of LK with σ1 ≥ σ2 ≥ · · · ≥ 0. The
Mercer expansion (Aronszajn, 1950) shows

K(x, x′) =

∞∑
`=1

φ`(x)φ`(x
′) =

∞∑
`=1

σ`
φ`(x)
√
σ`

φ`(x
′)

√
σ`

Then (15) is equivalent to

fρ = LrKhρ =

∞∑
`=1

σ
r−1/2
` 〈hρ, φ`/

√
σ`〉ρφ`. (16)

That is, the index r in Assumption 5 determines the smoothness of fρ. In particular, (15)
with r = 1/2 implies fρ ∈ HK and (15) with r = 0 yields fρ ∈ L2

ρX
. Generally speaking,

the larger value of r is, the smoother the function fρ is.
Our final assumption is to quantify the capacity of the RKHS HK via the effective

dimension N (λ) (Zhang, 2005), which is defined to be the trace of the operator (LK +
λI)−1LK , that is,

N (λ) = Tr((λI + LK)−1LK), λ > 0.

To obtain explicit learning rates for algorithm, we give an assumption on the decaying rate
of the effective dimension as follow.

Assumption 6 There exists some s ∈ (0, 1] such that

N (λ) ≤ C0λ
−s, (17)

where C0 ≥ 1 is a constant independent of λ.

Condition (17) with s = 1 is always satisfied by taking C0 = Tr(LK) ≤ κ2. For
0 < s < 1, let

LK =
∞∑
`=1

λ`〈·, φ`〉Kφ`

12
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be the spectral decomposition. Assumption 6 is proved in (Fischer, 2020) to be equivalent to
the widely used eigenvalue decaying assumption in the literature (Caponnetto and DeVito,
2007; Zhang et al., 2015).

In summary, there are totally six assumptions in our analysis, among which Assumptions
2 and 6 concern properties of the kernel K, Assumptions 1, 3 and 5 refer to properties of
the distribution ρ and Assumption 4 describes the mixing property of time series. There
are numerous time series satisfying the above assumptions. Taking the one-dimensional
non-parametric auto-regression for example, assume that z0 is drawn from the invariant
distribution and

zt = f0(zt−1) + εt, (18)

where {εt}∞t=1 are independent of z0 and drawn according to the uniform distribution on
[−a, a] for some a > 0 so that E[εt] = 0, and f0 ∈ HK with K a Sobolev kernel. In this
way, it is easy to check that f0 is uniformly bounded. Then it follows from (Chen and Shen,
1998, Proposition 1) that the time series generated by (18) satisfies Assumptions 1-6.

3.2 Learning rate analysis

By the aid of above assumptions, we are in a position to present our main results. Our
first result is the Nyström regularization with sequential sub-sampling given in Algorithm
1 for geometrically τ -mixing time series.

Theorem 4 Let 0 < δ ≤ 1/2 and D∗j be a sequential sub-sampling of size m for D with

j ∈ [1, n −m + 1]. Under Assumptions 1-6 with 1
2 ≤ r ≤ 1 and 0 < s ≤ 1, if (8) holds,

λ ∼
(

n
(logn)1/γ0

)1/(2r+s)
and

m ≥ n
s+1
2r+s (logm)1/γ0(log n)

− s+1
(2r+s)γ0 , (19)

then for any j ∈ [1, n−m+ 1], with confidence 1− δ, there holds

‖fD,D∗j ,λ − fρ‖ρ ≤ C
∗n−

r
2r+s (1 + log n)

r
(2r+s)γ0 log4 2

δ
, (20)

where C∗ is a constant independent of m,n, j or δ.

If the samples in D are i.i.d. drawn, the optimal learning rates for KRR fD,λ, defined
by (10), have been established in (Caponnetto and DeVito, 2007) in the sense that there
exists a distribution ρ∗ satisfying Assumptions 1, 2, 5 and 6 such that with high probability,

‖fρ∗ − fD,λ‖ρ∗ ≥ C∗1n
− r

2r+s

for some constant C∗1 > 0 independent of n. Noting that i.i.d. samples always satisfy
Assumptions 3 and 4, the derived error estimate in (20) is optimal up to a logarithmic
factor. Therefore, up to a logarithmic factor, the derived learning rate cannot be essentially
improved. Furthermore, it should be mentioned that Theorem 4 is an extension of (Rudi
et al., 2015, Theorem 1), where optimal learning rates of plain Nyström regularization for
i.i.d. samples are deduced, since Theorem 4 with γ0 → ∞ coincides with (Rudi et al.,
2015, Theorem 1). In particular, settingM1:n as the set of distributions ρ1:n = {ρ1, . . . , ρn}
satisfying Assumptions 1-6, we can get the following corollary directly.
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Corollary 5 Let D∗j be a sequential sub-sampling of size m for D with any j ∈ [1, n−m+1].

If (8), (19) hold, and λ ∼
(

n
(logn)1/γ0

)1/(2r+s)
, then for any j ∈ [1, n−m+ 1], there holds

C∗1n
− 2r

2r+s ≤ sup
ρ1:n∈M1:n

E[‖fD,D∗j ,λ − fρ‖
2
ρn ] ≤ C∗2n

− 2r
2r+s (1 + log(n))

2r
(2r+s)γ0 ,

where C∗2 is a constant independent of m,n, j.

Corollary 5 shows that up to a logarithmic factor, the proposed Nyström regularization
with sequential sub-sampling achieve the optimal learning rates for numerous distributions.
In our next corollary, we show that such excellent learning performance of Algorithm 1 is
stable to the sub-sampling interval.

Corollary 6 Let 0 < δ ≤ 1/2 and D∗j,k be a sequential sub-sampling of interval length
k ∈ N and size m for D with j ∈ [1, n− km+ 1], D∗j,k = {xj , xj+(k+1), . . . , xj+(m−1)(k+1)}.

Under Assumptions 1-6 with 1
2 ≤ r ≤ 1 and 0 < s ≤ 1, if (8) holds, λ ∼

(
n

(logn)1/γ0

)1/(2r+s)

and
m ≥ n

s+1
2r+s (logm)1/γ0(log n)

− s+1
(2r+s)γ0 , (21)

then for any j ∈ [1, n− km+ 1], with confidence 1− δ, there holds

‖fD,D∗j,k,λ − fρ‖ρ ≤ C
∗′n−

r
2r+s (1 + log(n))

r
(2r+s)γ0 log4 2

δ
, (22)

where C∗′ is a constant independent of m,n, j, k or δ.

Corollary 6 can be deduced from Theorem 4 and Property 3 directly. It follows from
the above corollary that the learning rates of the learning performance of the proposed
Nyström regularization with sequential sub-sampling is theoretically not sensitive to the
interval length k. In this way, we can set k = 1 in practice.

Besides the starting position j and interval length k, there are another two more impor-
tant tunable parameters, m and λ, in Nyström regularization. Theoretically speaking (Rudi
et al., 2015), the regularization parameter λ is introduced to balance the bias and variance,
while the sub-sampling size m is involved to balance computational cost and generaliza-
tion error. The problem is, however, that such an ideal assertion neglects the interaction
between parameters. A relation among the generalization error, m and λ is exhibited in
Figure 3, where the interaction of λ,m is exhibited in affecting the generalization error of
the algorithm. As shown in Figure 3, for an arbitrary fixed λ ≥ 0, the sub-sampling size
m can also be utilized to balance the bias and variance, just as (Lin et al., 2021) did. In
our theorem, we do not consider the interaction between λ and m, and only use λ for the
bias-variance trade-off purpose. Under this circumstance, our derived generalization error
in (20) is non-increasing with respect to m.

Finally, we should highlight that the restriction on m in (19) is a bit strict, which makes
Theorem 4 trivial for r = 1/2 in the sense that m should be not smaller than n. The main
reason for this is due to that we adopt the integral algorithm operator based on second
order decomposition for operator difference (Lin et al., 2017) in our proof. We believe
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Figure 3: Relation among λ,m and generalization error (the data is generated by (25) below
with εt ∼ U(−0.7, 0.7). The regularization parameter λ is selected from [2.5 ×
10−3 : 2.5 × 10−4 : 7.5 × 10−3] and sub-sampling ratios are selected from [0.01 :
0.01 : 0.1])

it can be relaxed by using the approach developed by Lin et al. (2020) that estimated
the operator difference by using some operator concentration inequalities. Furthermore,
compared with our numerical results in Section 5 in which an extremely small m (such as
m = 6 for n = 4000) is sufficient for yielding a comparable generalization error with KRR,
our theoretical result in (19) is too pessimistic. The main reason for such an inconsistency
is that our theory holds for all distributions satisfying Assumptions 1-6, which is indeed a
worst case analysis, while our numerical results only focus on some specific distributions.

Theorem 4 established learning rate analysis for geometrically τ -mixing time series,
which is an extension of analysis for the classical i.i.d. samples (Rudi et al., 2015). In
our next theorem, we prove that similar results also hold for Nyström regularization with
sequential sub-sampling for algebraic τ -mixing time series.

Theorem 7 Let 0 < δ ≤ 1/2 and D∗j be a sequential sub-sampling of size m for D with

j ∈ [1, n −m + 1]. Under Assumptions 1-6 with 1
2 ≤ r ≤ 1 and 0 < s ≤ 1, if (9) holds,

λ = n
− 2γ1

2γ1(2r+s)+2r+1 and

m ≥ n
2γ1(s+1)+2

2γ1(2r+s)+2r+1 , (23)

then for any j ∈ [1, n−m+ 1] with confidence 1− δ, there holds

‖fD,D∗j ,λ − fρ‖ρ ≤ Ĉn
− 2γ1r

2γ1(2r+s)+2r+1 log4 2

δ
, (24)

where Ĉ is a constant independent of m,n, j or δ.
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As γ1 →∞, meaning that D consists of i.i.d. samples, (24) becomes

‖fD,D∗j ,λ − fρ‖ρ ≤ Ĉn
− r

2r+s log4 2

δ
,

which is the optimal learning rates for KRR. This shows that (24) is a reasonable extension
of the classical results for KRR (Caponnetto and DeVito, 2007) and Nyström regularization
(Rudi et al., 2015) for i.i.d. samples. It should be mentioned that for γ1 <∞, the derived
learning rate is always worse than that for i.i.d. samples. The main reason is that the
dependence nature of samples sometimes reduces the effective samples, just as (Yu, 1994)
did for β-mixing sequences and (Modha and Masry, 1996) did for α-mixing sequences. It
should be mentioned that similar corollary as Corollary 6 also holds for algebraic τ -mixing
time series by combining Theorem 7 and Property 3 to show the stability of Nyström
regularization with respect to the interval length. We remove it for the sake of brevity.

4. Related Work

In this section, we present some related work to highlight the novelty of our results. For
this purpose, we divide our presentation into three parts: related work on scalable kernel
methods for i.i.d. samples, related work on learning rates analysis of kernel methods for
non-i.i.d. samples and related work on scalable kernel methods for non-i.i.d. samples.

4.1 Scalable kernel methods for massive data

Along with the development of data mining, data of massive size are collected for
the learning purpose. Scalable learning algorithms that can tackle these massive data
are highly desired in the community of machine learning and numerous scalable schemes
including the distributed learning (Zhang et al., 2015; Shi, 2019), localized SVM (Meister
and Steinwart, 2016; Thomann et al., 2017) and learning with sub-sampling (Williams and
Seeger, 2000; Gittens and Mahoney, 2016) were developed to equip kernel methods to reduce
their computational burden. For example, learning with sub-sampling firstly selects centers
of kernel with small size either in a random manner or by computing some leverage scores in
a data dependent way, and then deduces the final estimator based on the selected centers.
The feasibility of these scalable variants have been rigorously verified in (Zhang et al., 2015;
Rudi et al., 2015; Meister and Steinwart, 2016; Yang et al., 2017; Lin et al., 2017; Wang et
al., 2021), provided the samples are i.i.d. drawn.

The most related work on Nyström regularization for i.i.d. samples is (Rudi et al.,
2015), in which learning rates of Nyström regularization with both plain sub-sampling and
leverage scores were derived. Our results can be regarded as an extension of the interesting
work (Rudi et al., 2015) from i.i.d. samples to τ -mixing time series. It should be mentioned
that there are mainly three differences between our work and (Rudi et al., 2015), although
some important tools (Lemmas 12 and 13 below) for proofs are borrowed from (Rudi et al.,
2015). At first, we are interested in developing Nyström regularization for time series, which
requires totally different sub-sampling mechanism. In particular, we propose a method using
sequential sub-sampling approach to equip Nyström regularization to guarantee the mixing
property of the selected columns of kernel matrix. Due to the non-i.i.d. nature of time series,
the well developed integral operator approach in (Caponnetto and DeVito, 2007; Lin et al.,
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2017; Guo et al., 2017) for i.i.d. samples is unavailable. We then turn to utilizing a Banach-
valued Bernstein inequality established in a recent work (Blanchard and Zadorozhnyi, 2019)
for τ -mixing sequences to derive tight bounds for differences between integral operators and
their empirical counterparts. Finally, besides establishing almost optimal learning rates for
the developed Nyström regularization, we numerically find that learning with sub-sampling
is more suitable for time series than i.i.d. samples in the sense that the former requires
smaller sub-sampling ratio than the latter due to the dependent nature of samples. In fact,
our toy simulations and real data show that a sub-sampling ratio not larger than 0.05 is
good enough to maintain the learning performance of KRR for time series, illustrating that
Nyström regularization is practically feasible and efficient for massive time series.

4.2 Learning performance of kernel methods for weak dependent samples

It is impossible to quantify the learning rates of kernel methods for time series without
presenting any restrictions on the dependence among samples (Chen and Shen, 1998), an
extreme case of which is that all samples in the data set are identical. Therefore, some
mixing properties (Doukhan, 1994) concerning the weak dependence among samples should
be imposed to time series. α-mixing (Modha and Masry, 1996), β-mixing (Yu, 1994) and
τ -mixing (Dedecker and Prieur, 2004) are three most widely used conditions in learning
theory.

Based on the well developed Bernstein-type inequality for β-mixing sequences (Yu,
1994), α-mixing sequences (Modha and Masry, 1996), and τ -mixing sequences (Hang and
Steinwart, 2017), learning rates of kernel methods for α-mixing, β-mixing and τ -mixing se-
quences have been established in (Alquier and Wintenberger, 2012; McDonald et al., 2017),
(Xu and Chen, 2008; Steinwart and Christmann, 2009) and (Dedecker and Prieur, 2005;
Hang and Steinwart, 2017), respectively. Unfortunately, most of the derived learning rates
for non-i.i.d. data are worse than those for i.i.d. samples. This is mainly due to the de-
pendence of mixing sequences, which reduces the number of valid samples and makes the
established Bernstein-type inequality not so tight as that for i.i.d. samples. It is worth
mentioning that (Alquier et al., 2013, Theorem 6) provided the optimal rates for φ-mixing
time series by using a sharp version of Bernstein inequality for φ-mixing series (Samson and
Paul-Marie, 2000). However, φ-mixing is much more restrictive than τ -mixing.

The interesting work (Sun and Wu, 2010), to the best of our knowledge, is the first
result to derive learning rates for non-i.i.d. data via using the integral operator approach
rather than Bernstein-type inequalities. As a result, the learning rates of KRR for α-
mixing sequences can achieve the optimal learning rates for i.i.d. samples, provided the
α-mixing sequences decay sufficiently fast and s = 1 in Assumption 6. This provides
a springboard to study the learning performance of kernel methods for non-i.i.d. data,
although the approach developed in (Sun and Wu, 2010) cannot be extended for the general
case 0 < s ≤ 1 directly. Recently, (Blanchard and Zadorozhnyi, 2019) established a Banach-
valued Bernstein inequality for τ -mixing sequences and developed a novel integral operator
approach to deduce almost optimal learning rates for kernel-based spectral algorithms,
provided the τ -mixing coefficients decay sufficiently fast. Compared with (Blanchard and
Zadorozhnyi, 2019), there are two novelties in our work. From the theoretical side, we
consider scalable variant of KRR to reduce its computational burden, while the analysis in

17



Sun, Dai, Wang and Lin

(Blanchard and Zadorozhnyi, 2019) is for KRR. As a result, our results require novel proof
skills including the projection strategy for sub-sampling. In a word, our proof skills can be
regarded as a combination of (Rudi et al., 2015) for projection strategy, (Guo et al., 2017)
for second-order decomposition of operator differences and (Blanchard and Zadorozhnyi,
2019) for Banach-valued Bernstein inequality. From the numerical side, we conduct both
toy simulations and three real time-series forecasting experiments to verify our theoretical
findings, but (Blanchard and Zadorozhnyi, 2019) is only in a theoretical flavor. It should
highlight that the numerical experiments in this paper are important in the sense that they
reveal the low sub-sampling ratio in Nyström regularization for time series and imply that
Nyström regularization can be used as a noise-extractor in practice.

4.3 Scalable kernel methods for massive time series

There are numerous learning approaches developed to tackle massive time series, in-
cluding scalable bootstrap (Laptev et al., 2012), sketching (Indyk et al., 2000), and fast
approximation correlation (Mueen et al., 2010). Though these approaches have been veri-
fied to be feasible in practice, there lack solid theoretical results to demonstrate the running
mechanism and reasonability, making these methods sensitive to data.

In our recent work (Sun and Lin, 2021), we propose a distributed kernel ridge regression
(DKRR) to handle massive α-mixing time series. Using some covariance inequalities for
α-mixing sequences, Sun and Lin (2021) successfully derived almost optimal learning rates
for DKRR under similar assumptions as this paper. There are mainly four differences
between (Sun and Lin, 2021) and this paper. Firstly, we focus on Nyström regularization
while (Sun and Lin, 2021) devoted to distributed learning. It should be noted that there are
totally different scalable variants of KRR. In particular, our numerical results show that the
proposed Nyström regularization for time series admits extremely small sub-sampling ratio
while the numerical results in (Sun and Lin, 2021) showed that DKRR is infeasible if the
number of samples in local machines is too small. Secondly, we are interested in τ -mixing
time series, which can be regarded as an extension of α-mixing time series in (Sun and Lin,
2021). The direct consequence is that the covariance inequality for α-mixing sequences is
unavailable to τ -mixing sequence and novel integral operator approach is required. Thirdly,
our results are described in probability while the results in (Sun and Lin, 2021) are in the
framework of expectation. It should be mentioned that learning rate analysis in probability
is usually stronger than that in expectation in the sense that it is easy to derive an error
estimate in expectation based on error in probability, just as our Corollary 5 shows, but
not vice-verse. At last, our analysis holds for Assumptions 5 and 6 with all 1

2 ≤ r ≤ 1 and
0 < s ≤ 1, while the analysis in (Sun and Lin, 2021) imposed an additional 2r + s ≥ 1 in
deriving the learning rates.

In summary, Nyström regularization with sequential sub-sampling is a novel scalable
learning approach to tackle massive time series data. Different from the widely used dis-
tributed learning schemes, our approach admits small sub-sampling ratio, possesses slightly
better theoretical behavior and can be used without advanced computing resources. We
conclude this section with three important remarks.

Remark 8 As the Nyström regularization proposed in Algorithm 1 requires to uniformly
sample the starting point, it requires to first memorize all time series, which makes it difficult
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to design an incremental version of the algorithm, just as Rudi et al. (2015) did for i.i.d.
data. It would be interesting and valuable to develop an incremental version of Algorithm
1 such that the algorithm can make prediction on the fly without keeping in memory all the
previous points. The main difficulty to do this, in our opinions, lies in an ordered rank-
one Cholesky updates (Rudi et al., 2015) for time series in practice and some novel error
decomposition to quantify the rule of incremental implementation in theory. We will keep
in studying this interesting topic in future.

Remark 9 In this paper, the squares loss is employed in our algorithm for the regression
purpose. It is natural to arise the question: is our methodology also available for other
loss functions? From the algorithmic side, it is not difficult to design a similar Nyström
regularization with sequential sub-sampling for general loss by replacing the squares loss in
(12) with some convex and Lipschitz functions. However, from the theoretical side, our proof
skills depend heavily on the integral operator approach, which requires that the corresponding
optimization problem like (12) can be analytically displayed. In this way, our approach is
not available to general loss in the sense that we cannot provide similar theoretical assertions
as those for the squares loss.

Remark 10 As discussed above, under Assumption 5 with 1/2 ≤ r ≤ 1, the main idea of
our proof is a combination of approaches in (Rudi et al., 2015) for Nyström regularization,
(Guo et al., 2017) for integral operator approach and (Blanchard and Zadorozhnyi, 2019)
for bounds of operator differences. We believe that our analysis framework is also available
to the out-of RKHS setting, i.e., Assumption 5 with 0 < r < 1/2 by noticing the approaches
in (Lu et al., 2019). In a word, although our proof skill is not totally novel, it is important
for analyzing Nyström regularization for time series.

5. Simulation Studies

In this section, we conduct both toy simulations and three real world time series fore-
casting experiments to verify our theoretical statements and show the excellent learning
performance of Nyström regularization with sequential sub-sampling. Our numerical ex-
periments were carried out in Matlab R2018b with Intel(R) Xeon(R) Gold 6248R CPU
@3.00GHz 2.99GHz, Windows 10. The code is available at https://github.com/zirsun/
Nystrom.git.

5.1 Toy simulations

In this part, we carry out four simulations to verify the theoretical statements. The
first simulation is to study the relationship between the sub-sampling ratio and test error
(measured by RMSE: rooted mean squared error) to demonstrate the power of Nyström
regularization for long time series. The second simulation focuses on illustrating the effec-
tiveness of the proposed sequential sub-sampling by showing that the learning performance
of Nyström regularization is independent of the sampling position or sampling interval.
The third simulation aims to verify Theorem 4 and Theorem 7 via showing the relationship
between test error and the number of the training samples. The last one is to exhibit the
capability of the Nyström regularization with sequential sub-sampling as a noise-extractor.
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In all simulations, we consider two time series: nonlinear model (25) with εt the indepen-
dent noise satisfying εt ∼ U(−0.7, 0.7) (here U(a, b) represents the uniform distribution on
(a, b)), and Markov chains with Bernoulli distribution (26), where {εt}Tt=1 are i.i.d. drawn
from the Bernoulli distribution B(1/2) and are independent of x0. It should be mentioned
that the time series generated by (25) is an α-mixing sequence (Alquier et al., 2013) while
that generated by (26) is a τ -mixing sequence but not an α-mixing sequence (Dedecker and
Prieur, 2005).

Mechanism 1(M1) : xt = 0.5 sin(xt−1) + εt, (25)

Mechanism 2(M2) : xt =
1

2
(xt−1 + εt), (26)

We adopt a widely used Wendland kernel (Chang et al., 2017) as follow:

K(x, x′) =

{
(1− ‖x− x′‖2)4(4‖x− x′‖2 + 1) if 0 < ‖x− x′‖2 ≤ 1

0 if ‖x− x′‖2 > 1.
(27)

It is easy to check that K(t) is three times differentiable.

Let N and Ntest be the number of training samples and test points respectively. We
generate (N +Ntest + 1) samples via (25) or (26). The training samples are: {xt, xt+1}Nt=1

with x0 drawn randomly according to U(0, 1). Meanwhile, we construct the test set:
{xt, xt+1 − εt}N+Ntest

t=N+1 for (25) and {xt, xt+1 − 0.5εt}N+Ntest
t=N+1 for (26). In order to make

a more faithful evaluation, we are concerned with one-step prediction, that is, the predic-
tion of kth test sample is built upon N + (k − 1) samples, where k is an integer and varies
in the range [1, Ntest]. Since our purpose in all simulations is to verify the theoretical
assertions, we use the test set directly to select parameters.

Simulation 1: In this simulation, we aim at studying the relation between learning
performance of Nyström regularization and sub-sampling ratio. As shown in our theoretical
results in Section 3, the sub-sampling ratio controls not only the generalization performance
of the proposed algorithm but also the computational complexities and memory require-
ments.

The number of training samples N and test samples Ntest are 2000 and 50, respectively.
We repeat the experiments 5 times to obtain the average RMSE. The regularization param-
eters λ are selected from [5 × 10−4 : 5 × 10−4 : 0.01] (the first value is the lower bound of
range, the second value is the step size, and the third one is the upper bound of the range)
and [5× 10−4 : 5× 10−5 : 0.001] via grid search for M1 and M2 respectively. Our numerical
results are reported in Figure 4.

From Figure 4, we find three interesting phenomena: 1) for both M1 and M2, the gener-
alization capability does not decrease with respect to the sub-sampling ratio, which verifies
our theoretical results in Theorem 4 in the sense that if m is larger than a specific value, then
Nyström regularization with sequential sub-sampling reaches the optimal learning rates of
KRR; 2) there exists a lower bound of sub-sampling ratio (e.g., about 0.05 for both M1 and
M2), smaller than which, Nyström regularization with sequential sub-sampling degrades
the learning performance of KRR dramatically. Noting that the complexity of training for
Nyström regularization with sequential sub-sampling is O(nm2), this reflects the dilemma
in selecting m. From the computational side, it is desired to select m as small as possible.
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Figure 4: Relation between generalization error and sub-sampling ratio

However, too small m inevitably leads to bad generalization capability; 3) it should be high-
lighted that the lower bound of sub-sampling ratio to guarantee the learning performance
of Nyström regularization is extremely small (about 0.05) with which it is safe to set m to
be not so small. In particular, for 2000 samples, Nyström regularization with m ≥ 100 is
good enough to yield an estimator of high quality. It should be mentioned that the effective
sub-sampling ratio for time series is much less than that for i.i.d. sampling (Rudi et al.,
2015). The main reason, as shown in Figure 2, is that the dependence nature of samples
enhances the dependence among columns in the kernel matrix. As a result, the effective
rank of kernel matrix of time series is smaller than that of i.i.d. samples.

Simulation 2: In this simulation, we pursue the role of sub-sampling strategy. As
shown in Theorem 4, the learning performance of Nyström regularization is independent of
the position of sub-sampling. It is thus urgent to verify such an independence. Additionally,
we also show the role of sampling intervals in Nyström regularization via comparing the pro-
posed sequentially sub-sampling set D∗j in Definition 3 with D∗j,k := {xj , xj+(k+1), xj+2(k+1),
. . . , xj+(m−1)(k+1)}.

The number of training samples N is fixed as N = 2000, 10000, and the sub-sampling
ratio is fixed as 0.01, which means that the sub-sampling size is fixed at 20, 100, respectively.
To test on sub-sampling at arbitrary positions, we sub-sample the first 20 (or 100) samples,
the middle 20 (or 100) samples and the last 20 (or 100) samples of the training data
sequence respectively. Meanwhile,we choose different sub-sampling intervals with k varying
in {5, 10, 15, 20, 50, 100}. The algorithm is employed to predict 5 testing samples and the
experiments are repeated 20 times. The regularization parameter λ is set as:

• For M1 with 2000 training samples, the λ is selected from [5× 10−4 : 5× 10−4 : 0.01];

• For M1 with 10000 training samples, the λ is selected from [5×10−5 : 1×10−4 : 0.001];

• For M2 with 2000 training samples, the λ is selected from [5×10−4 : 5×10−5 : 0.001];

• For M2 with 10000 training samples, the λ is selected from [1 × 10−4 : 2 × 10−5 :
4× 10−4];
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(c) M2 with 2000 data
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(d) M2 with 10000 data

Figure 5: Role of sub-sampling mechanisms in Nyström regularization

Our numerical results are shown in Figure 5, where “Last”, “Middle” and “First” mean
j = N − m + 1, j = N/2 and j = 1 respectively, while “Intv.a” means k = a for a =
5, 10, 15, 20, 50, 100 in D∗j,k. For N = 2000, though the mean of RMSE is almost the same
for all sub-sampling mechanisms, as shown in Figure 5 (a) and (c), the generalization
capability of Nyström regularization changes slightly with respect to different sub-sampling
mechanism in each trivial. The reason is that for N = 2000, there are only 20 columns
selected to build up the estimators. When the number of samples increases, for the same
sub-sampling ratio, the number of selected columns also increases. Then, it can be found
in Figure 5 (b) and (d) that the generalization capability of Nyström regularization is
independent of the sub-sampling mechanism. All the numerical results above show that the
proposed sequential sub-sampling strategy is a good choice in practice.

Simulation 3: In this simulation, we study the relation between the generalization ca-
pability and number of samples to verify Theorem 4 and Theorem 7. We build the Nyström
regularization estimator on data sets of size varying in {2000, 5000, 10000, 20000, 50000}
and fix the number of testing samples as 10. We consider Nyström regularization with four
sub-sampling ratios: 0.002, 0.005, 0.01 and 0.5. The regularization parameter λ is selected

22



Nyström Regularization for Time Series Forecasting

from [2 × 10−4 : 2 × 10−4 : 0.004] and [1 × 10−4 : 1 × 10−5 : 2 × 10−4] for M1 and M2,
respectively. The experimental results can be found in Figure 6.
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Figure 6: The relation between generalization error and number of samples

Figure 6 exhibits two findings for the proposed Nyström regularization. The one is that
RMSE decreases with respect to the number of samples. This partly verifies Theorem 4
and Theorem 7, since our theoretical analysis is for the worst case. It is difficult for KRR
to get a similar curve as Figure 6 since KRR requires O(N3) computational complexity
and thus needs at least O(1014) floating computations for 50000 training samples, which
requires advanced computational sources. The other is that Nyström regularization with
different sub-sampling ratios perform similarly, provided the number of samples is larger
than a specific value. Taking M2 for example, four sub-sampling ratios perform almost
the same when N ≥ 10000. The main reason is that, for small size training data, too
small sampling ratio results in extremely small hypothesis space and then degrades the
generalization capability of KRR. Both findings verify our theoretical assertions and show
the efficiency of the sequential sub-sampling scheme.

Simulation 4: In previous simulations, the performance of Nyström regularization were
tested on clean test data. However, in real-world time series forecasting, it is impossible to
neglect the noise, making the machine learning estimator always lag behind the real-world
time series (Chen and Shen, 1998). As shown in Figure 1, a real-world time series can be
divided into a deterministic part to quantify the relation between samples in successive time
and a random part to describe the uncertainty of time series. Our theorems and simulations
showed that Nyström regularization is capable of discovering the deterministic part of time
series, but similar as all existing machine learning approaches, it is difficult to catch the
random part of time series. This makes our approach not so good for time series with large
random noise. However, since the deterministic part of time series is well approximated
by the proposed Nyström regularization, we can use the derived estimator to be a noise-
extractor to pursue the distribution of the random noise of time series. In this simulation,
we focus on the performance of Nyström regularization in extracting the random noise.

For this purpose, we generated three time series according to (25), with εt i.i.d. drawn
from B(0.5), U [−0.2, 0.2] and N (0, 0.12), respectively. In this simulation, we set the number
of training samples N as 2000, λ = 0.005 and the sub-sampling ratio as 0.01. The number
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Table 1: Parameters of statistical bar

Fig.7(d)
(−∞,−1), [−1,−0.8), [−0.8,−0.6), [−0.6,−0.4), [−0.4,−0.2), [−0.2, 0),

[0, 0.2), [0.2, 0.4), [0.4, 0.6), [0.6, 0.8), [0.8, 1), [1,∞)

Fig.8(d)
(−∞,−1), [−1,−0.8), [−0.8,−0.6), [−0.6,−0.4), [−0.4,−0.2), [−0.2, 0), [0, 0.2),

[0.2, 0.4), [0.4, 0.6), [0.6, 0.8), [0.8, 1), [1, 1.2), [1.2,∞)

Fig.9(d) (−∞,−0.3), [−0.3,−0.2), [−0.2,−0.1), [−0.1, 0), [0, 0.1), [0.1, 0.2), [0.2, 0.3), [0.3,∞)

of test samples is 2000 (statistical bar), else 50. Our simulation results can be found in
Figure 7, Figure 8 and Figure 9, respectively. For sake of clarity, the division intervals of
the statistical bars in panel (d) of Figures 7,8,9 are shown in Table 1.
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Figure 7: Noise extractor for Nyström regularization (εt ∼ B(0.5)).

It can be found in panel (a) of Figures 7,8,9 that the proposed Nyström regularization
with sub-sampling ratio 0.01 can precisely catch the deterministic part of the time series,
i.e., yielding an estimator that can approximate xt = 0.5 sin(xt−1) very well, even though
the training samples are contaminated by different noises. However, panel (b) of Figures
7,8,9 show that the proposed algorithm is incapable of catching the random noise, making
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Figure 8: Noise extractor for Nyström regularization (εt ∼ U [−0.2, 0.2]).

the derived estimator lag heavily behind the real time series. In panel (c) of Figures 7,8,9, we
compare the real noise with xt+1− fD,D∗j ,λ(xt) to regard Nyström regularization as a noise-
extractor. It is exhibited that using Nyström regularization is easy to mimic the random
noise part of the time series. From panel (d) of Figures 7,8,9, we find that the distribution
of the extracted noise via Nyström regularization is similar to the real noise. All these
findings yield the following two conclusions: 1) Nyström regularization with sequential sub-
sampling can successfully capture the trend information (deterministic part) of time series.
2) Nyström regularization with sequential sub-sampling has strong ability to extract the
noise of data (not only the value but also the distribution). Although the noise-extractor
property of Nyström regularization seems trivial in toy simulation, it is extremely important
in real-world time series forecasting, where the deterministic part and random noise part
cannot be divided as those in the toy simulations.
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Figure 9: Noise extractor for Nyström regularization (εt ∼ N (0, 0.12)).

5.2 Real world applications

In this part, we apply the proposed Nyström regularization with sequential sub-sampling
to three real-world time series forecasting data, WTI data, BTC data and Western Australia
Weather data, to show its learning performance.

WTI data: In the industrial society, oil almost dominates the production of the whole
industry. Oil and additional industries account for a high proportion in the national econ-
omy. A deep understanding of the international crude oil price fluctuation mechanism and
improving the accuracy of international crude oil price forecasts are of great significance
to economic development, enterprise production operations and investment. WTI (West-
ern Texas Intermediate) Spot Prices from EIA U.S. (Energy Information Administration)
is suitable for refining gasoline, diesel, thermal fuel oil and aircraft fuel, etc., and can in-
crease the output value of refineries. WTI is an important part of the international energy
pricing system and has become the benchmark for global crude oil pricing. Meanwhile,
WTI has become one of the two most market-oriented crude oils in the world. The data
(https://datahub.io/core/oil-prices) is daily recorded and from January 2, 1986 to August
31, 2020. Since it is difficult to check the smoothness of the regression function, we use a
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less-smoothed kernel function

K(x, x′) = 1 + min(x, x′)

in real-world data experiments.

0 20 40 60 80 100 120 140 160 180 200

Lag

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

S
a

m
p

le
 A

u
to

c
o

rr
e

la
ti
o

n

Sample Autocorrelation Function

(a) ACF

0 10 20 30 40 50 60 70 80 90 100
t

17

18

19

20

21

22

23

24

25

Real Trend
Prediction

(b) forecasting

0 10 20 30 40 50 60 70 80 90 100
-1

-0.5

0

0.5

1

1.5

predicted noise

(c) noise-extractor

-1.5 -1 -0.5 0 0.5 1 1.5
0

0.05

0.1

0.15

0.2

0.25

(d) statistical bar

Figure 10: Nyström regularization on WTI data

Before demonstrating the availability of Nyström regularization to WTI data, we present
the autocorrelation function (ACF) of the time series to verify their mixing property, just
as Figure 10 (a) purports to show. Although it is difficult to numerically compute the τ -
mixing coefficient of WTI data, Figure 10 (a) implies that the dependence decreases when
the difference of time increases. We employ Nyström regularization on WTI data with the
size of samples and regularization parameters as:

• Forecasting: The number of training samples: 4000, test samples: 100, sampling ratio
is 0.1, λ = 1

1000 .

• Statistical bar: The number of training samples: 3000, test samples: 500, sampling
ratio is 0.1, λ = 4

3000 .

• Noise-extractor: The number of training samples: 3000, test samples: 100, sampling
ratio is 0.1, λ = 4

3000 .
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The experimental results are reported in Figure 10.
There are three interesting findings illustrated by Figure 10: 1) It can be found in

Figure 10 (b) that the proposed Nyström regularization can roughly mimic the trend of
WTI data within a relatively small prediction error. However, due to the existence of noise,
the predictor lags slightly behind the real time series, making the proposed algorithm a bit
wise-after-the-event; 2) As discussed in toy simulations, Nyström regularization can be used
as a noise-extractor in practice. According to this property, we extract the noise of WTI
data in Figure 10 (b). Furthermore, Figure 10 (d) shows that the random noise part of
WTI data obeys the normal distribution; 3) Comparing Figure 10 (b) and Figure 10 (c), it
is obvious that the random noise part is far smaller than the deterministic part, exhibiting
a noise/signal ratio to be less than 1/15, showing that exploiting the deterministic part of
WTI data is important in practice. All these demonstrated the excellent performance of
Nyström regularization in WTI data forecasting.

BITCOIN(BTC) data: Bitcoin (BTC) is a decentralized digital currency that can
be transformed from user to user on a peer-to-peer BTC network by using the blockchain
technique. After its release in 2009, its price increases from about 3$ to 60000$ in 2021.
Such a surge in price attracts more and more investors’ attention. In particular, there are
more than 10 million active accounts in October, 2021. The problem is that, however, the
price of BTC changes dramatically even for every minute, although the trends of price are
roughly increasing. Therefore, it is highly desired to forecast the real trend of price of BTC.

The BTC data collected via “https://www.kaggle.com/prasoonkottarathil/btcinusd”
record the price of BTC from September 17, 2014 to April 9, 2020 within each minute.
Therefore, there are at least 500000 samples in the data set and the classical kernel meth-
ods and neural networks fail to tackle this massive time series. In this part, we focus on
applying the proposed Nyström regularization on BTC data to mimic the trend of price
and extract the noise. The data and parameters of Nyström regularization are described as
follows:

• Forecasting: the number of training samples: 500000, test samples: 100, sampling
ratio is 0.001, λ = 1

500000 .

• Noise-extractor: the number of training samples: 20000, test samples: 100, sampling
ratio is 0.001, λ = 1

20000 .

• Statistical bar: the number of training samples: 20000, test samples: 3000, sampling
ratio is 0.001, λ = 1

20000 .

The numerical results are shown in Figure 11. As shown in Figure 11 (a), the time
series concerning BTC price exhibits certain mixing property in the sense that the ACF
curve decreases with respect to the difference of time. Like WTI data, it can be found in
Figure 11 (b) that the trends predicted by Nyström regularization can approximate the real
trend within a relative small error, although there also exists a bit delay in prediction. As
discussed above, the reason of delay is the existence of random noise that can be learned by
BTC data. We then conduct our experiment on pursuing the distribution of such random
noise. Figure 11 (c) and (d) show that the random noise part of BTC data behaves roughly
as a normal distribution with standard deviation smaller than 30$. In summary, even with
extremely small sub-sampling ratio (about 0.001), Nyström regularization can still predict
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Figure 11: Nyström regularization for BTC min data

the trend well and is capable of describing the distribution of noise for Bitcoin price. All
these show the power of the suggested Nyström regularization with sequential sub-sampling
in forecasting time series and extracting its noise information.

Western Australia Weather data: Weather forecasting can predict the meteoro-
logical changes in a certain period of time, such as when low temperature or drought will
occur, so that effective measures can be taken to prevent and reduce disasters. And the
weather forecast also helps in other areas of life, such as municipal transportation and travel
planning.

Western Australia Weather data (https://www.kaggle.com /datasets/sveneschlbeck/west-
australia-weather-1944-2016) record Western Australia’s daily average temperatures from
June 3, 1944 to December 31, 2016. In this part, We focus on applying the proposed
Nyström regularization to weather data to predict daily average temperature. The data
and parameters are described as follows:

• Forecasting: the number of training samples: 26400, test samples: 100, sampling ratio
is 0.01, λ = 1

2640 .
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• Noise-extractor: the number of training samples: 20000, test samples: 100, sampling
ratio is 0.01, λ = 1

2000 .

• Statistical bar: the number of training samples: 20000, test samples: 500, sampling
ratio is 0.01, λ = 1

2000 .
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Figure 12: Nyström regularization for Western Australia Weather data

The numerical results are shown in Figure 12. Similar to previous experimental results.
As shown in Figure 12 (a), the daily temperature series exhibits some mixing property.
Based on this, we show the predictive ability of the Nyström regularization for temperature
data, which can be found in Figure 12 (b) that the predicted trend can approximate the
true trend within a small error. Figure 12 (c) and (d) show that the random noise part of
the temperature data approximately follows a normal distribution. In summary, Nyström
regularization with sequential sub-sampling can predict temperature trends well and can
capture the information of noise.
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6. Proofs

We divide our proof into four steps: error decomposition, error estimates based on operator
differences, estimate for operator differences and final error analysis.

6.1 Error decomposition

We conduct our analysis in the popular integral operator approach developed in (Smale
and Zhou, 2007; Rudi et al., 2015; Lin et al., 2017). Let SD : HK → Rn be the sampling
operator (Smale and Zhou, 2007) defined by

SDf := (〈f,Kx〉K)(x,y)∈D = (f(x))(x,y)∈D. (28)

Its scaled adjoint STD : Rn → HK is given by

STDc :=
1

n

n∑
i=1

ciKxi , c := (c1, c2, . . . , cn)T ∈ Rn.

Define

LK,Df := STDSDf =
1

n

∑
(x,y)∈D

f(x)Kx.

Denote by Dm an arbitrary sequential sub-sampling of D with cardinality m. Let PDm
be the projection from HK to HDm , where HDm is defined by (11). Then for arbitrary
v > 0, there holds

(I − PDm)v = I − PDm . (29)

Let SD : HDm → Rn be the sampling operator defined by (28) such that the range of its
adjoint operator STD is exactly HDm . Let UΣV T be the SVD of SD. Then we have

V T
DmVDm = I, VDmV

T
Dm = PDm . (30)

Write
gDm,λ(LK,D) := VDm(V T

DmLK,DVDm + λI)−1V T
Dm . (31)

Then it can be found in (Rudi et al., 2015) that

fD,Dm,λ = gDm,λ(LK,D)STDyD. (32)

Therefore, (12) is similar as the spectral-type algorithms (Lo Gerfo et al., 2008). Under
this circumstance, the property of gDm,λ(LK,D) plays a crucial role in bounding the gener-
alization error of fD,Dm,λ. For an arbitrary bounded linear operator B, it follows from (30)
and (31) that

gDm,λ(LK,D)(LK,D + λI)VDmBV
T
Dm = VDmBV

T
Dm . (33)

Inserting B = (V T
Dm

LK,DVDm + λI)−1 into (33), we obtain

‖(LK,D + λI)1/2gDm,λ(LK,D)(LK,D + λI)1/2‖2

= ‖(LK,D + λI)1/2gDm,λ(LK,D)(LK,D + λI)gDm,λ(LK,D)(LK,D + λI)1/2‖
= ‖(LK,D + λI)1/2gDm,λ(LK,D)(LK,D + λI)1/2‖,

31



Sun, Dai, Wang and Lin

which yields
‖(LK,D + λI)1/2gDm,λ(LK,D)(LK,D + λI)1/2‖ = 1, (34)

where ‖ · ‖ denotes the operator norm.
Define

f∗D,Dm,λ := gDm,λ(LK,D)LK,Dfρ

be the noise-free version of fD,Dm,λ. The triangle inequality shows

‖fD,Dm,λ − fρ‖ρ ≤ ‖fD,Dm,λ − f∗D,Dm,λ‖ρ + ‖f∗D,Dm,λ − fρ‖ρ. (35)

Since ‖fD,Dm,λ − f∗D,Dm,λ‖ρ describes the noise of samples, it is named as the sample error
in (Rudi et al., 2015). From (31), we get

‖f∗D,Dm,λ − fρ‖ρ ≤ ‖(gDm,λ(LK,D)LK,D − I)(I − PDm)fρ‖ρ
+ ‖(gDm,λ(LK,D)LK,D − I)PDmfρ‖ρ.

It is easy to see that the second term in the righthand side of the above estimate is similar
as the classical approximation error (Guo et al., 2017). The first term involves an additional
term I−PDm to show the limitation of sub-sampling and thus is named as the computational
error in (Rudi et al., 2015). Plugging the above inequality into (35), we derive the following
error decomposition.

Lemma 11 Let fD,Dm,λ be defined by (12), we have

‖fD,Dm,λ − fρ‖ρ ≤ A(D,λ,m) + S(D,λ,m) + C(D,λ,m), (36)

where

A(D,λ,m) = ‖(gDm,λ(LK,D)LK,D − I)PDmfρ‖ρ,
S(D,λ,m) = ‖fD,Dm,λ − f∗D,Dm,λ‖ρ,
C(D,λ,m) = ‖(gDm,λ(LK,D)LK,D − I)(I − PDm)fρ‖ρ

are called the approximation error, sample error and computational error, respectively.

6.2 Error estimates based on operator differences

In this part, we quantify ‖fD,Dm,λ − fρ‖ρ via differences between operators LK,D and LK
and functions STDyD and LK,Dfρ. In particular, we use the products of operators

QD,λ :=
∥∥(LK + λI)(LK,D + λI)−1

∥∥ ,
Q∗D,λ :=

∥∥(LK + λI)−1(LK,D + λI)
∥∥ ,

and the difference of operators

RD,λ :=
∥∥∥(LK + λI)−1/2(LK,D − LK)

∥∥∥
to quantify the similarity of LK and LK,D, while utilize

PD,λ :=
∥∥∥(LK + λI)−1/2(LK,Dfρ − STDyD)

∥∥∥
K
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to quantify the difference between LK,Dfρ and STDyD. Our main tools are the following
two lemmas that can be found in (Rudi et al., 2015, Proposition 3) and (Rudi et al., 2015,
Proposition 6), respectively.

Lemma 12 Let H, K , F be three separable Hilbert spaces. Let Z : H → K be a bounded
linear operator and P be a projection operator on H such that rangeP = rangeZT . Then
for any bounded linear operator F : F → H and any λ > 0 we have

‖(I − P )F‖ ≤ λ1/2‖(ZTZ + λI)−1/2F‖.

Lemma 13 Let H,K be two separable Hilbert spaces, A : H → H be a positive linear
operator, V : H → K be a partial isometry and B : K → K be a bounded operator. Then for
all 0 ≤ r∗, s∗ ≤ 1/2, there holds

‖Ar∗V BV TAs
∗‖ ≤ ‖(V TAV )r

∗
B(V TAV )s

∗‖.

With the help of above lemmas and the important properties of gDm,λ in (33) and (34),
we derive the following error estimate for ‖fD,Dm,λ − fρ‖ρ.

Proposition 14 If (15) holds with 1/2 ≤ r ≤ 1, then we have

‖fD,Dm,λ − fρ‖ρ ≤ QD,λPD,λ + λrQrD,λ‖hρ‖ρ

+ (Q
1
2
D,λ(Q∗D,λ)

1
2 + 1)λrQrDm,λ‖hρ‖ρ. (37)

Proof According to (36), it suffices to bound A(D,λ,m),S(D,λ,m), C(D,λ,m) respec-
tively. We at first use (33) and (34) to bound S(D,λ,m). Due to the well known Codes
inequality (Bathis, 1997)

‖AuBu‖ ≤ ‖AB‖u, 0 < u ≤ 1 (38)

for arbitrary positive operators A,B, we have

‖(LK + λI)1/2(LK,D + λI)−1/2‖ ≤ Q1/2
D,λ. (39)

Then, it follows from (34) and ‖f‖ρ = ‖L1/2
K f‖K for any f ∈ L2

ρX
that

S(D,λ,m) = ‖gDm,λ(LK,D)(STDyD − LK,Dfρ)‖ρ
= ‖L1/2

K gDm,λ(LK,D)(STDyD − LK,Dfρ)‖K
≤ ‖(LK + λI)1/2(LK,D + λI)−1/2‖2‖(LK,D + λI)1/2gDm,λ(LK,D)(LK,D + λI)1/2‖
× ‖(LK + λI)−1/2(STDyD − LK,Dfρ)‖K
≤ QD,λPD,λ. (40)

We then turn to bounding A(D,λ,m). It follows from (33) with B = I that

PDm = gDm,λ(LK,D)(LK,D + λI)PDm ,
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which together with the definition of A(D,λ,m)

A(D,λ,m) = λ‖gDm,λ(LK,D)PDmfρ‖ρ

Since LK,D is a positive operator, we have ‖(V T
Dm

(LK,D + λI)VDm)r−1‖ ≤ λr−1 for r ≤ 1.
Noting further (30) and (38), we get from Lemma 13 with A = (LK,D + λI), V = VDm ,
B = (V T

Dm
LK,DVDm + λI)−1, r∗ = 1/2 and s∗ = r − 1/2 that

A(D,λ,m) ≤ λ‖L1/2
K gDm,λ(LK,D)VDmV

T
DmL

r−1/2
K ‖‖hρ‖ρ

≤ λQrD,λ‖hρ‖ρ‖(LK,D + λI)1/2gDm,λ(LK,D)VDmV
T
Dm(LK,D + λI)r−1/2‖

≤ λQrD,λ
∥∥(V T

Dm(LK,D + λI)VDm)1/2(V T
Dm(LK,D + λI)VDm)−1

(V T
Dm(LK,D + λI)VDm)r−1/2

∥∥‖hρ‖ρ
≤ λQrD,λ‖(V T

Dm(LK,D + λI)VDm)r−1‖‖hρ‖ρ
≤ λrQrD,λ‖hρ‖ρ. (41)

Finally, we aim at bounding C(D,λ,m). Due to Lemma 12 and (39), we have

‖(I − PDm)(LK + λI)1/2‖
≤ λ1/2‖(LK,Dm + λI)−1/2(LK + λI)1/2‖ ≤ λ1/2Q1/2

Dm,λ
.

Then, it follows from (38), (34) and (29) with τ = 2r that

C(D,λ,m) ≤ ‖L1/2
K gDm,λ(LK,D)LK,D(I − PDm)L

r−1/2
K ‖‖hρ‖ρ

+ ‖L1/2
K (I − PDm)L

r−1/2
K ‖‖hρ‖ρ

≤ Q1/2
D,λ(Q∗D,λ)1/2‖(LK,D + λI)1/2gDm,λ(LK,D)(LK,D + λI)1/2‖

× ‖(LK + λI)1/2(I − PDm)2rL
r−1/2
K ‖‖hρ‖ρ

+ ‖(LK + λI)1/2(I − PDm)2rL
r−1/2
K ‖‖hρ‖ρ

≤
(
Q1/2
D,λ(Q∗D,λ)1/2 + 1

)
‖hρ‖ρ‖(LK + λI)1/2(I − PDm)‖‖(I − PDm)2r−1L

r−1/2
K ‖

≤
(
Q1/2
D,λ(Q∗D,λ)1/2 + 1

)
‖hρ‖ρλrQrDm,λ. (42)

Inserting (41), (40) and (42) into (36), we get (37). This finishes the proof of Proposition
14.

6.3 Bounds for operator differences

In this part, we focus on deriving tight bounds for QD,λ, Q∗D,λ and PD,λ when D is a τ -
mixing sequences. Our main tool is the Bernstein-type inequality for Banach-valued sums
in (Blanchard and Zadorozhnyi, 2019) and the second-order decomposition for operator
differences in (Lin et al., 2017; Guo et al., 2017). Under Assumptions 2 and 4, define

nγ :=

{ n
2(1∨log(c∗1n))1/γ0

, if D satisfies(8),

(c∗2λN (λ))
1

2γ1+1n
2γ1

2γ1+1 , if D satisfies(9),
(43)
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where

c∗1 := c0b0 max{K, 3(1 +KM)/(2M)},
c∗2 := 2−2γ1 (min{1.5M/(1 +KM), 1/(2K)}/c1)2 .

The following lemma can be found in (Blanchard and Zadorozhnyi, 2019, Lemma 4.1).

Lemma 15 Let 0 < δ ≤ 1/2. Under Assumptions 1 and 2, then

PD,λ ≤ 42MB(nγ , λ) log
2

δ
, (44)

RD,λ ≤ 42B(nγ , λ) log
2

δ
, (45)

hold simultaneously with confidence 1− δ, where

B(nγ , λ) :=

√
N (λ)
√
nγ

+
1

nγ
√
λ
. (46)

Then, we use Lemma 15 and approaches in (Guo et al., 2017) to bound operator products
QD,λ and Q∗D,λ.

Lemma 16 Let 0 < δ ≤ 1/2. Under Assumptions 1 and 2, then

QD,λ ≤ 3528λ−1B2(nγ , λ) log2 2

δ
+ 2, (47)

Q∗D,λ ≤ 42λ−1/2B(nγ , λ) log
2

δ
+ 1, (48)

hold with confidence 1− δ.

Proof For invertible positive operators A,B, we have

A−1B = (A−1 −B−1)B + I = A−1(B −A) + I (49)

= (A−1 −B−1)(B −A) +B−1(B −A) + I

= A−1(B −A)B−1(B −A) +B−1(B −A) + I. (50)

We first use (49) with A = (LK +λI) and B = (LK,D +λI) to bound Q∗D,λ. It follows from
(45) that with confidence 1− δ, that holds

Q∗D,λ = ‖(LK + λI)−1(LK,D − LK)‖+ 1 ≤ λ−1/2RD,λ + 1

≤ 42λ−1/2B(nγ , λ) log
2

δ
+ 1.

Therefore (48) holds. Then, due to (50) with A = (LK,D + λI) and B = (LK + λI), we
have from (45) again that with confidence 1− δ, there holds

QD,λ ≤ ‖(LK,D + λI)−1(LK − LK,D)(LK + λI)−1(LK − LK,D)‖
+ ‖(LK + λI)−1(LK − LK,D)‖+ 1

≤ λ−1‖(LK + λI)−1/2(LK − LK,D)‖2 + λ−1/2‖(LK + λI)−1/2(LK − LK,D)‖+ 1

≤ 2(λ−1R2
D,λ + 1) ≤ 3528λ−1B2(nγ , λ) log2 2

δ
+ 2.

This completes the proof of Lemma 16.

35



Sun, Dai, Wang and Lin

6.4 Error analysis

Based on Lemma 15, Lemma 16 and Proposition 14, we are in a position to prove main
results in Section 3. To this end, we present a more general theorem as follows.

Theorem 17 Let 0 < δ ≤ 1/2. Under Assumptions 2-5 with 1
2 ≤ r ≤ 1, for any j ∈

[1, n−m+ 1], with confidence 1− δ, there holds

‖fD,Dm,λ − fρ‖ρ ≤ C̄(λ−1B2(nγ , λ) + 1)
(
B(nγ , λ) + B2r(mγ , λ) + λr

)
log4 2

δ
, (51)

where

mγ :=

{ m
2(1∨log(c∗1m))1/γ0

, if D satisfies(8),

(c∗2λN (λ))
1

2γ1+1m
2γ1

2γ1+1 , if D satisfies(9),
(52)

and C̄ is a constant independent of m,n, λ, j or δ.

Proof Due to Lemma 15 and Lemma 16, we have from (a+b)u ≤ 2u(au+bu) for a, b, u ≥ 0
that

PD,λQD,λ ≤ C1B(nγ , λ)(422λ−1B2(nγ , λ) + 1) log3 2

δ
,

Q
1
2
D,λ(Q∗D,λ)

1
2 ≤ 2(42λ−1/2B(nγ , λ) + 1)3/2 log2 2

δ
,

QrD,λ ≤ (3528rλ−rB2r(nγ , λ) log2r 2

δ
+ 2r)2r,

QrDm,λ ≤ (3528rλ−rB2r(mγ , λ) log2r 2

δ
+ 2r)2r,

where C1 := 84M . Plugging the above estimates into (37), we have

‖fD,Dm,λ − fρ‖ρ ≤ C1B(nγ , λ)(422λ−1B2(nγ , λ) + 1) log3 2

δ

+ λr‖hρ‖ρ
(

3528rλ−rB2r(nγ , λ) log2r 2

δ
+ 2r

)
2r,

+ λr‖hρ‖ρ
(

3528rλ−rB2r(mγ , λ) log2r 2

δ
+ 2r

)
2r

×
(

2(42λ−1/2B(nγ , λ) + 1)3/2 log2 2

δ
+ 1

)
.

Due to (46), we have B(`, λ) is monotonously decreasing with respect to `. Therefore, (43)
and (52) yield B(nγ , λ) ≤ B(mγ , λ). Inserting it into the above estimate, we obtain from
1/2 ≤ r ≤ 1 that

‖fD,Dm,λ − fρ‖ρ ≤ C1B(nγ , λ)(422λ−1B2(nγ , λ) + 1) log3 2

δ

+ λr‖hρ‖ρ
(

3528rλ−rB2r(mγ , λ) log2r 2

δ
+ 2r

)(
2(42B(nγ , λ)λ−1/2 + 1)3/2 log2 2

δ
+2

)
2r

≤ C2(B(nγ , λ)λ−1/2 + 1)3/2 + 1)
(
B(nγ , λ) + B2r(mγ , λ) + λr

)
log4 2

δ
,
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where C2 := max{1764C1, 7056r × 545‖hρ‖ρ}. This completes the proof of Theorem 17 with
C̄ = C2.

With the help of Theorem 17, we can prove our main results easily.

Proof [Proof of Theorem 4] Since λ = n
− 1

2r+s
γ , it follows from (46) and Assumption 4 with

0 < s ≤ 1 and 1/2 ≤ r ≤ 1 that

B(nγ , λ) ≤
√
N (λ)
√
nγ

+
1

nγ
√
λ
≤ (
√
C0 + 1)n

− r
2r+s

γ

and

B(mγ , λ) ≤
√
N (λ)
√
mγ

+
1

mγ

√
λ
≤
√
C0n

s
4r+2s
γ m

− 1
2

γ +m−1
γ n

1
4r+2s
γ .

But Assumption 2 holds with τj satisfying (8), which together with (43) and (52) yields

B(nγ , λ) ≤ C3n
− r

2r+s (1 + log(n))
r

(2r+s)γ0 , (53)

where C3 := (
√
C0 + 1)(2 + 2 log c1)r/(2r+s). Furthermore, (19) implies mγ ≥ C4n

s+1
2r+s
γ with

C4 := (2 + 2 log c1)
1−2r

(2r+s)γ0 . Then, we have

B2r(mγ , λ) ≤ C5n
− r

2r+s (1 + log(n))
r

(2r+s)γ0 , (54)

where C5 := C−r4 C3. Since r > 1/2, there is a constant C7 > 0 depending only on r, s, γ0

and C5 such that

n(1−2r)/2(2r+s)(1 + log(n))
2r−1

2(2r+s)γ0 ≤ C7.

Then, plugging (53) and (54) into (51), we obtain that with confidence 1− δ, there holds

‖fD,Dm,λ − fρ‖ρ ≤ C∗n
− r

2r+s (1 + log(n))
r

(2r+s)γ0 log4 2

δ
,

where C∗ := C̄(C3C7 + 1)
3
2 (C3 + C5 + 1). This completes the proof of Theorem 4.

Proof [Proof of Theorem 7] Due to Assumption 4, (9), (43) and (52) yield

nγ ≤ C8λ
1−s

2γ1+1n
2γ1

2γ1+1 , and mγ ≤ C8λ
1−s

2γ1+1m
2γ1

2γ1+1 ,

where C8 := (c2C0)
1

2γ1+1 . Then (46), (23) and λ = n
− 2γ1

2γ1(2r+s)+2r+1 shows

B(nγ , λ) ≤ C0
1/2C

−1/2
8 λ

− 2sγ1+1
4γ1+2 n

− γ1
2γ1+1 + C−1

8 λ
− 2γ1−2s+3

4γ1+2 n
− 2γ1

2γ1+1

≤ (C0
1/2C

−1/2
8 + C−1

8 )n
− 2γ1r

2γ1(2r+s)+2r+1 ,
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and

B(mγ , λ) ≤ C0
1/2C

−1/2
8 λ

− 2sγ1+1
4γ1+2 m

− γ1
2γ1+1 + C−1

8 λ
− 2γ1−2s+3

4γ1+2 m
− 2γ1

2γ1+1

≤ (C0
1/2C

−1/2
8 + C−1

8 )n
− γ1

2γ1(2r+s)+2r+1 .

Inserting the above two estimates into (51), we obtain that

‖fD,Dm,λ − fρ‖ρ ≤ Ĉn
− 2γ1r

2γ1(2r+s)+2r+1 log4 2

δ

holds with confidence 1 − δ, where Ĉ := 2C2(C0
1/2C

−1/2
8 + C−1

8 + 1)3. This completes the
proof of Theorem 7.
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