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Abstract

An essential step in designing a new computer architectutieei careful examination of dif-
ferent design options. It is critical that computer arattiiehave efficient means by which they
may estimate the impact of various design options on theativerachine. This task is compli-
cated by the fact that different programs, and even diffgparts of thesameprogram, may have
distinct behaviors that interact with the hardware in défg ways. Researchers use very detailed
simulators to estimate processor performance, which rsa@ry cycle of an executing program.
Unfortunately, simulating every cycle of a real program tae weeks or months.

To address this problem we have created a tool called SimfP@ihuses data clustering algo-
rithms from machine learning to automatically find repe¢itpatterns in a program’s execution. By
simulating one representative of each repetitive behgatiern, simulation time can be reduced to
minutes instead of weeks for standard benchmark prograittsyery little cost in terms of accu-
racy. We describe this important problem, the data reptasen and preprocessing methods used
by SimPoint, the clustering algorithm at the core of SimBa@nd we evaluate different options for
tuning SimPaint.

Keywords: k-means, random projection, Bayesian information critgergimulation, SimPoint

1. Introduction

Understanding the cycle level behavior of a processor during theigaeof an application is cru-
cial to modern computer architecture research. To gain this understamdgegrchers typically
employ detailed simulators that model each and every cycle of the underlyicigimea Unfortu-

nately, this level of detail comes at the cost of speed. Even on the fagtadators, modeling
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the full execution of a single benchmark can take weeks or months to comgubeteearly all in-
dustry standard benchmarks require the executionsuiite of programs. For example, the SPEC
benchmark suite consists of 26 different programs, requiring the Bzacef a combined total of
approximately 6 trillion instructions. Still worse, architecture researcheesl no simulate each
benchmark over a variety of different architectural configuratiorts gesign options, to find the
set of features that provides an appropriate trade-off betweearpeifice, complexity, area, and
power. The same program binary, with the exact same input, may be rdndusnor thousands of
times to examine how, for example, the effectiveness of a given architezitanges with its cache
size. Researchers need techniques which can reduce the numberhifiermonths required to
estimate the impact of an architectural modification without introducing an eptatdle amount of
error or excessive simulator complexity. We present a method, distribstadsaftware package
called SimPoint, which can meet this need by exploiting the structured way in widahdual
programs change behavior over time.

As a program executes its behavior changes. These changes asmdot, but rather are
often structured as sequences of a small number of recurring bebawibich we ternphases
Identifying this repetitive and structured behavior can be of greatfiiesimce it means we only
need to sample each unique behavior once to create a complete represesitétie® program’s
execution. This is the underlying philosophy of SimPoint (Sherwood et@0.],22002; Perelman
et al., 2003; Biesbrouck et al., 2004; Lau et al., 2004, 2005b). Simkdgltigently chooses a
very small set of samples from an executed program calledlation pointghat, when simulated
and weighted appropriately, provide an accurate picture of the completeatén of the program.
Simulating in detail only these carefully chosen simulation points can save tiagirsulation time
over a random sampling of the program, while still providing the accuraegewto make reliable
decisions based on the outcome of the cycle level simulation.

Before we developed SimPoint, architecture researchers would simua@BBgrams for 300
million instructions from the start of execution, or fast forward 1 billion instians to try to get past
the initialization part of the program. These techniques can result in extes of up to 3736% in
predicting the architecture metrics we wish to measure. SimPoint achievelewesyror rates (2%
average error, 8% maximum error for the results in this paper) and sage/eeduces simulation
time by a factor of 1,500, compared to simply simulating the whole program. Thisagpis now
used by researchers in the architecture community, and companies dotdl d3atil et al., 2004).
This paper shows how repetitive phase behavior can be found ingeneghrough machine learning
and describes how SimPoint automatically finds these phases and picks simpiatits.

The rest of the paper is laid out as follows. First, Section 2 describesmaty of the sim-
ulation methodology in processor architecture research. Section 3 expltenphase behavior
paradigm, and defines terms that are essential in describing the analysisoffelation between
the executing code and performance of a program is described in Sdc¢tanwell as how this
code is represented in vector format to capture program behavidrois&adescribes the machine
learning algorithms used to automatically detect phases using the code vE8etctisn 6 describes
how simulation points are picked from the phases, and the accuracy rgduttin representing
the entire program execution using the simulation points. Section 7 examirsagdars that sig-
nificantly influence the performance of the SimPoint algorithm in terms of acguand run-time.
Section 8 examines prior work in phase analysis that uses machine lea@mgging and future
work is described in Section 9 and our findings are summarized in Section 10.
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2. The Application - Simulation

In this section we explain the tools modern computer architects use to evalsigasdand the
methods we use to evaluate our solutions.

2.1 Background

Processor architecture research quantifies the effectivenessesigmdy executing a program on
a software model of the architecture design called an architecture simutasodifficult to accu-
rately compare studies that provide results for different sets of pryrdo set a standard in the
community, the Standard Performance Evaluation Corporation (SPECxtedwighed to provide a
collection of benchmarks to evaluate processor performance. In thersanreer, the architecture
simulator needs to have a common baseline. SimpleScalar (Burger and A@§#),i4 a cycle
level processor simulator that has become a standard model for arctatextaarch.

2.1.1 SPEC CPU BNCHMARKS

The SPEC CPU2000 benchmark suite has 26 programs, of which 12 ayeriptegrams (primary
execution is of integer instructions) and 14 are floating-point programsgpy execution is of
floating-point instructions). The benchmark suite is chosen to stresscagsar across its many
components in a rigorous manner. Each program in the suite has 3 diffgpears: test train, and
reference which respectively correspond to a short test, a more represertraiiniag, and a full
reference run. The test, train and reference inputs typically executeeasrder of a few million,
a few billion, and hundreds of billions of instructions respectively. Taklesd 2 show all the
SPEC CPU2000 benchmarks, divided into integer and floating-pointareg The tables provide
a high level description of each benchmark, its source language, amdithieer of instructions
executed (in billions) with the reference and test inputs. These programessempiled for the
Alpha Instruction Set Architecture (ISA) with full optimizations. On averate reference inputs
execute for 223 billion instructions. The prograar ser has the maximum instruction count at
546 billion instructions.

SPEC periodically releases a benchmark suite to evaluate current aredduduessors. To keep
up with the ever increasing rate of processor speeds, SPEC has aigfhjfiacreased the duration
of benchmark execution from the previous suite release in 1995 to trentuetease of 2000. This
is because the reference input needs to run long enough to achidig:timviag for the benchmark
run. This means that with current and future speeds that future rele&siee SPEC benchmark
suite will need to execute on the order of trillions of instructions for the esfes inputs.

2.1.2 SMPLESCALAR

SimpleScalar is a program that models the cycle level execution of a procddséies as input a
program-input pair and simulates the execution from beginning to end, winihpuating relevant
statistics for architecture research, such as cycles per instructio)) ¢@éthe miss rates, branch mis-
predictions, and power consumption. SimpleScalar has several modefsdeeant different levels
of execution detail. At the coarsest level of detaiin-fastmodels only the functional execution of
a program at the instruction level. A more detailed lesgh-cachemodels the memory hierarchy
and computes miss rates for those structures. The level of highest dimtadutordey models the
cycle-level out-of-order execution of a super-scalar processigra superset of all the other mod-
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Benchmark Reflength TestLength Language Category
bzip2 143 8.82 C Compression
crafty 191 4.26 C Game Playing: Chess
eon 80 0.09 C++ Computer Visualization
gap 269 1.17 C Group Theory, Interpreter
gcc 46 2.02 C C Programming Language Compiler
gzip 84 3.37 C Compression
mcf 61 0.26 C Combinatorial Optimization
parser 546 4.20 C Word Processing
perlbmk 111 2.0 C PERL Programming Language
twolf 346 0.26 C Place and Route Simulator
vortex 118 9.81 C Object-oriented Database
vpr 84 0.69 C FPGA Circuit placement and routing

Table 1: SPEC CPU2000 Integer Benchmarks (lengths in billions of instrggtion

Benchmark Reflength TestLength Language Category
ammp 326 5.49 C Computational Chemistry
applu 223 0.18 Fortran 77  Parabolic / Elliptic Partial Differential Equations
apsi 347 5.28 Fortran 77  Meteorology: Pollutant Distribution
art 41 1.48 C Image Recognition / Neural Networks
equake 131 1.44 C Seismic Wave Propagation Simulation
facerec 211 4.12 Fortran 90 Image Processing: Face Recognition
fma3d 268 0.00 Fortran 90  Finite-element Crash Simulation
galgel 409 4.34 Fortran 90  Computational Fluid Dynamics
lucas 142 3.71 Fortran 90  Number Theory / Primality Testing
mesa 281 2.88 C 3-D Graphics Library
mgrid 419 16.77 Fortran 77  Multi-grid Solver: 3D Potential Field
sixtrack 470 8.59 Fortran 77  High Energy Nuclear Physics AcceleBsign
swim 225 0.43 Fortran 77  Shallow Water Modeling
wupwise 349 3.63 Fortran 77  Physics / Quantum Chromodynamics

Table 2: SPEC CPU2000 Floating-Point Benchmarks (lengths in billions wiizi®ns)
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| Cache 16k 2-way set-associative, 32 byte blocks, 1 cycle latency
D Cache 16k 4-way set-associative, 32 byte blocks, 2 cycle latency
L2 Cache 1Meg 4-way set-associative, 32 byte blocks, 20 cycle Iatenc

Main Memory | 150 cycle latency

Branch Pred hybrid - 8-bit gshare w/ 8k 2-bit predictors + a 8k bimodalgictor
0O-0-OIssue | out-of-order issue of up to 8 operations per cycle, 128 awmtgrder buffer
Mem Disambig| load/store queue, loads may execute when all prior storeeass are known
Registers 32 integer, 32 floating point

Func Units 8-integer ALU, 4-load/store units, 2-FP adders, 2-intely®JLT/DIV, 2-FP
MULT/DIV

Virtual Mem 8K byte pages, 30 cycle fixed TLB miss latency after earbsuéed instructions
complete

Table 3: Baseline Simulation Model.

els and provides the highest level of execution detail. The architectseaneh community uses
SimpleScalar extensively, and today it is considered a standard arctétsctwlator.

The different models in SimpleScalar each have a stable execution rateasiést modelsim-
fast executes on the order of tens of billion instructions per hour on a 1 GHhineacThe slowest
yet most accurate modedjm-outordey executes on the order of hundreds of million instructions
per hour, which is several orders of magnitude slower than the natigevhee. It would take
months of computation time to simulate the entire SPEC benchmark suitsimitbutorder What
makes matters worse is that researchers need to evaluate many difeeceaale configurations to
measure the effectiveness of a design. This enormous turnaround timsttaly makes simulating
the full benchmark infeasible, and the majority of researchers only simufate undred million
instructions from each benchmark.

2.2 Methodology

For this study, we performed our analysis for the complete set of SPEQ@RLprograms for mul-
tiple inputs using the Alpha binaries from the SimpleScalar website. We collaifttal frequency
vector profiles, described in Section 4, using SimpleScalar. To genarateseline results, we
executed all programs from start to completion using SimpleScalar, gattieeihgrdware metrics.
The baseline microarchitecture model is detailed in Table 3.

To examine the accuracy of our approach we provide results in termslgér€éfiction error
and k-means variance (since SimPoint ukesieans clustering). The CPI prediction error is the
percent difference between CPI predicted using only simulation pointeahay SimPoint and the
baseline (true) CPI of the complete execution of the program Kitheans variance is the sum-of-
squared distances between every clustered point and its closest aéndaris the criteriork-means
optimizes.

3. Defining Phase Behavior

Since phases are a way of describing the recurring behavior of agpnogxecuting over time, we
begin by describing phase analysis with a demonstration of the time-varyivayibe (Sherwood
and Calder, 1999) of two programs from the SPEC 2000 benchmark goiteand gzi p. To

characterize the behavior of these programs we have simulated their coexgetgion from start
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Figure 1: These plots show the relationship between measured perfaf@@k and code usage
for the prograngzi p- gr aphi ¢, and SimPoint’s ability to capture phase information by
only looking at what code is being executed. For each of the three pletsotiizontal
axis represents the execution of the program over time, and each pdtetiplepresents
one 10-million instruction interval. The top plot shows the CPI for the execptiagram.
The middle plot shows the distance of each interval’s basic block vectptaferd in
Section 4) to the “target vector”, which is a basic block vector that repteghe entire
program’s execution. The target vector is a signature of the prograratalb average
behavior, and this plot shows how similar the code of each part of thegois to the
overall behavior of the program, lower meaning more similar. The bottom plws
how SimPoint classifies each interval into one of four phases. The prasstions
correspond to changes in the CPI in the top graph, though SimPoint doeseimetrics
like CPI to classify intervals.

to finish. Each program executes many billions of instructions, and gathérase results took
several machine-months of simulation time. The behavior of each progranowmsn the top
graphs of Figures 1 and 2. Each top graph shows how the CPI ratgeshfor these two programs
over time. CPIl is a commonly used metric in the processor architecture communibgfsuring
processor performance. Each point on the graph represents tiageveP| taken over a window
(we call it an interval) of 10 million executed instructions. These graphs shatwprograms are
fairly complex, changing behaviors frequently.

Note that not only do the behaviors of the programs change over time, tamge on the
largest of time scales, and even at a large scale one can find repedtangdoe. Programs may
have stable behavior for billions of instructions and then change sudderdyldition to CPI, we
have found for the SPEC 95 and 2000 programs that the behavidir @ffthe architecture metrics
(branch prediction, cache misses, etc.) tend to change in unison, thotugbagssarily in the same
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Figure 2: These plots show the relationship between measured perfaf@@il and code usage
for the progranycc- 166, and SimPoint’s ability to capture phase information by only
looking at what code is being executed. For each of the three plots, thmtial axis
represents the execution of the program over time, and each point plepexsents one
10-million instruction interval. The top plot shows the CPI for the executing .
The middle plot shows the distance of each interval’s basic block vector ttatiget
vector”, which is a basic block vector (explained in Section 4) that rejtsshe entire
program’s execution. The target vector is a signature of the prograratalb average
behavior, and this plot shows how similar the code of each part of thegois to the
overall behavior of the program, lower meaning more similar. The bottom plws
how SimPoint classifies each interval into one of eight phases. The ptaasitions
correspond to changes in the CPI in the top graph, though SimPoint doeseimetrics
like CPI to classify intervals.

direction (Sherwood and Calder, 1999; Sherwood et al., 2002). eTtmsesponding changes are
due to underlying changes in program execution.

The underlying methodology used in this work is the ability to automatically identifgethe
underlying program changegthout relying on architectural metricsTo ground our discussion in
a common vocabulary, the following is a list of definitions to describe prodrahavior and its
automated classification.

e Interval — To perform our analysis we break a program’s executioimtopnon-overlapping
intervals of execution. An interval is a section of contiguous execution (a giice) of a
program’s execution. For example, when using an interval size of 100 miligiructions,
the first interval of execution starts at instruction 0 and ends at the 100 miifigruction
executed, the second interval of execution are the instructions 100 millibm 2@0 million
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in the program’s execution, the third interval represents instructions 280Qtanillion, etc.

For the results in this work all intervals are chosen to be the same length, asrackan the
number of instructions committed within an interval. This is usually 1, 10, or 100 million
instructions, as used by Perelman et al. (2003).

e Similarity — A similarity metric measures the similarity in behavior between two intervals of
a program’s execution, and is specific to the representation of thoseaisterv

e Phase — A set of intervals within a program’s execution that all have simiteviar, regard-
lessof temporal adjacency. A phase may be made up of intervals which are tigjoime;
we would call this a phase with a repeating behavior. A “well-formed” pl=srild have
intervals with similar behavior across various architecture metrics (e.g. dabthe misses,
branch misprediction). In this paper we consider the terms ‘cluster’ amakgs to be equiv-
alent.

e Phase Classification — Using machine learning to group intervals from agondigput pair
into phases (clusters) with similar behavior.

4. The Strong Correlation Between Code and Performance

In this section we describe how we identify phase behavior in an archigectdependent fashion.

4.1 Using an Architecture-Independent Metric for Phase Classificgon

To find program phases, we need a notion of how similar are two diffgrans of a program’s
execution. In creating this metric it is advantageous to not rely on hareleesed statistics such as
cache miss rates or performance (i.e. CPl), since using these would tieabesto those statistics
which change depending on the architecture configuration. If suchtistatigere used, the phases
would need to be re-analyzed every time there was a change to some aunchitearameter (either
statically if the size of the cache changed, or dynamically if some policy ckatgmptively). Thisis
not acceptable, since our goal is to find a set of samples that can bearsed an architecture design
space exploration, where many of these parameters may change. #ssatlds, we need a metric
that isindependenof any particular hardware-based statistic, but still relates to the fundamen
changes in behavior like those shown in the top graphs of Figures 1 and 2.

An effective way to design such a metric is to base it on the behavior ofgraroin terms
of the code that is executed over time. We have shown that there is a \amnyg strrelation (Lau
et al., 2005b) between the set of paths executed in a program and theatiyiegvarchitectural
behavior observed. The intuition behind this is that the executed codeniledsrthe behavior of
the program. With this idea it is possible to find the phases in programs oising metric related
to how the code is being exercised (i.e. both what code is touched andftem). @he central idea
behind SimPoint is that it can find the phase behavior shown in the top goéplgures 1 and 2 by
examining only the frequency with which the code parts (e.g., basic blookgxacuted over time.

4.2 Basic Block Vector

The basic block vector (BBV) (Sherwood et al., 2001) is a structurigded to concisely capture
information about how a program is changing behavior over time. A basgkh$oa section of
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code (e.g. a contiguous set of instructions) that is executed from sfamisio with one entry and
one exit. The metric we will use for comparing two time intervals in a program iscas the

differences in the execution frequencies for each basic block exkduténg those two intervals.
The intuition behind this is that the behavior of the program at a given time istljirelated to the

code it is executing during that interval, and basic block vectors prowdeth this information.

A program, when run for any interval of time, will execute each basic béockrtain number
of times. Knowing this information provides a code signature for that interivakecution, and
shows where the application is spending its time in the code. The basic idea kntwahg the
basic block distribution for two different intervals gives two separateagiges which we can then
compare to find out how similar the intervals are to one another. If the sigsadwe similar, then
the two intervals spend about the same amount of time in the same code, andohegece of
those two intervals should be similar.

We represent a basic block vector as a one-dimensional array, witelement in the array
for each static basic block in the program. Each interval in an executgdgonas represented by
one BBV, and at the beginning of each interval, its corresponding BBValizeros. During each
interval, we count the number of times each basic block has been entedegicard that number
into the corresponding element in the vector. This number is weighted by thieerwof instructions
in the basic block, since we want every individual instruction to have tme safluence. Therefore,
each element in the array is the count of how many times its correspondinghbbasichas been
entered during an interval of execution, multiplied by the number of instruetiotihat basic block.
For example, if the 50th basic block has one instruction and is executed 15tiaremterval, then
bbv[50] = 15 for that interval. At the end of an interval’'s execution, wwenmalize the BBV to sum
to 1.

We call the vectors used to guide phase analygguency Vectorsof which basic block vec-
tors are one type. Frequency vectors can represent basic bloekehbedges, or any other type
of program related structure which provides a representative sumrhargrogram’s behavior for
each interval of execution. We recently examined frequency vectatstas other than basic block
vectors for the purpose of phase classification. We have lookedqjaiginey vectors for data, loops,
procedures, register usage, instruction mix, and memory behavior {ledw) 2004). We found that
using register usage vectors, which simply counts for a given intervatuh#er of times each
register is defined and used, provides similar accuracy to using baskcJgors. In addition, us-
ing only loop and procedure branch execution frequencies perfdmustas well as using the full
basic block information. We also found, for SPEC 2000 programs, tkatiog frequency vectors
by including both code and data access patterns into the vectors did novenghassification over
just using code (Lau et al., 2004).

4.3 Basic Block Vector Difference

In order to find patterns in a program we must first have some way of aamgptne similarity
of two basic block vectors. The operation should take two basic block ngeata return a single
number corresponding to how similar (or different) they are.

There are several ways of measuring the similarity of two vectors, suakiag the dot product
between the vectors, finding the Euclidean (2-norm) distance of the ctomgpeector, or Manhattan
(1-norm) distance of the connecting vector. The Euclidean distancesleasshown to be effective
for off-line phase analysis (Sherwood et al., 2002; Perelman et al3)20be SimPoint approach
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we examine in this paper uses Euclidean distance as the metric for compasiodloak vectors,
since it is based ok-means. For on-the-fly phase analysis (e.g. predicting phases dormguta-

tion), the Manhattan distance is more efficiently implemented in hardware. lideasshown to be
useful in previous work in online phase prediction (Sherwood et al.3,208u et al., 2005c).

4.4 Showing the Correlation Between Code Signatures and Performae

For a detailed study showing that there is a strong correlation betweentedemde and real
performance, please see Lau et al. (2005b). The top two graphswERgyive one illustration of
this correlation by showing the time-varying CPI and BBV distance grapkistaeeach other for
gcc- 166. The top graph plots the CPI for each interval executed (at 10M intemgth) showing
how the program’s CPI varies over time. Similarly, the BBV distance graph fado&ach interval
the Manhattan distance of the BBV (code signature) for that interval fremwhole program’s
target vector. The whole program’s target vector is a BBV that comes friewing the whole
program as a single interval. The same information is also providegziqrin the top two graphs
of Figure 1. These graphs show that changes in CPI have corgisgarhanges in code signatures,
which is one indication of strong phase behavior for these applications.

These graphs show a strong correlation between code changes bdda@Gges even for com-
plex programs likeggcc. The graphs fogzi p show that phase behavior can be found even if the
intervals’ CPIs have small variance. This brings up an important poinitatiassifying intervals
based on code similarity rather than based on similarity of CPI or some otluevdrar metric. As-
sume we have two intervals withifferent code signaturasut they have vergimilar CPIsbecause
both of their working sets fit completely in the cache. During a design spaueration search,
as the cache size changes, their CPIs may differ dramatically if one of thdomger fits into the
cache. This is why it is important to perform the phase analysis by compiduengpde signatures
independent of the underlying architecture. We have found that the @B signatures correctly
identify differences like these, which cannot be seen by looking at jesti.

4.5 Basic Block Similarity Matrix

Now that we have methods of comparing program execution intervals, meseathem for finding
phase-based behavior. A phase of program behavior can bedigfigeveral ways. Past definitions
were built around the idea of a phase being a contiguous interval ofigxeauring which a
measured program metric is relatively stable. We extend this notion of a frhastude all similar
sections of execution regardless of temporal adjacency. Thus, a ptegsappear several times in
the execution of a program.

A key observation from this paper is that the phase behavior seen inraggam metric is a
function of the code being executed. Because of this we can use the teongdaetween the basic
block vectors to get an idea of how closely related any other metrics will iveele@ those two
intervals.

To find how all intervals of execution relate to one another we credtasec block similarity
matrix for a program/input pair. The similarity matrix is an upper-triangular n matrix, where
n is the number of intervals in the program’s execution. An entrixat) in the matrix represents
the Manhattan distance between the basic block vector at inteiadi the basic block vector at
intervaly.
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Figures 3 (left and right) and 4 (left) shows the similarity matricegfdp, bzi p, andgcc using
the Manhattan distance. The diagonal of the matrix represents the pregeaetution over time
from start to completion. The darker the points, the more similar the intervalsherdlanhattan
distance is closer to 0), and the lighter they are the more different thethar&éanhattan distance
is closer to the maximum value — which is 2 since each vector is normalized to sym to 1

Consider the points along the matrix diagonal. The top left corner of eaclixrisathe start
of program executiori0,0), and the bottom right is the poirfth — 1,n— 1) (end of execution).
Each interval is perfectly similar to itself, so the points on the diagonal areagdl Gtarting from
a point on the diagonal, you can compare how its corresponding intexteas to its neighbors
forward (backward) in execution by tracing horizontally (vertically)ifr¢hat point. For example,
to compare a given intervalwith the interval atx+ m, start at the poinfx,x) on the matrix and
trace to the right until you readfx, x4+ m).

Let us first examingzi p because it has behaviors that are evident at such a large scale yhat the

are easy to see. An interval taken from 70 billion instructions into executidfigiare 3 (left) is
directly in the middle of a large phase shown by the triangle of dark pointsuhatsd this point.
This means that this interval is very similar to its neighbors both forward ackiNzad in time. We
can also see that the intervals at 50 billion and 90 billion instructions are algsiveilar to the
program behavior at 70 billion instructions. While it may be hard to see in &egpriversion, the
intervals around 70 billion instructions are similar to the intervals around 10 b#li@h30 billion
instructions, and even more similar to those around 50 and 90 billion instructions

Overall, Figure 3 (left) shows that the phase behavior seen in the similaritixrirads up quite
closely with the behavior of the program seen in the top graph of Figurétti 5Warge regions of
self-similar behavior (the first 2 being different from the last 3) eaeiddd by a small region of
self-similar behavior. All of the small self-similar regions are also very similaatch other.

The similarity matrix forbzi p (shown on the right of Figure 3) is very interestingzi p has
complicated behavior, with two large parts to its execution: compression aodgeession. This
can readily be seen in the figure as the large dark triangular and scpiafep. The interesting
thing aboutbzi p is that even within each of these sections of execution there is complexitbehav
This, as will be shown later, makes the behaviobzifp impossible to capture using only one small
contiguous section of execution.

An even more complex case for finding phase behavigcis which is shown on the left of
Figure 4 ( the matrix on the right of that figure will be explained in more detailgatin 5.1.1).
The left matrix shows thajcc does have regular behavior. Even for such a complex program, we
see that there is common code shared between sections of executioas shelntervals around 13
billion instructions and 36 billion instructions. In fact the strong dark diagtima cutting through
the matrix indicates that there is large-scale repetition between the first edeannd half of the
program. By analyzing the graph we can see that code at each intésvaéry similar to interval
(x+23.6B instructions).

5. Automatically Finding Phase Behavior

In this section we describe the algorithms used to automatically detect pattargshesfrequency
vectors described in the previous section.
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Figure 3: Basic block similarity matrix for the programgi p-graphic (shown left) and
bzi p- graphi ¢ (shown right). The diagonal of the matrix represents the program’s exe-
cution from beginning to end, with units in billions of instructions. The darkebints,
the more similar the intervals are (the Manhattan distance is closer to 0), andhtes lig
the points the more different they are (the Manhattan distance is closer to 2).

Figure 4: The original similarity matrix for the progragec- 166 (left), and the similarity matrix
for the projection ofjcc- 166 (right). The figure on the left uses the original basic block
vectors (each of which has over 100,000 dimensions), and uses thHealmndistance
for calculating the difference. The figure on the right uses the sameliatprojected
down to 15 dimensions, and uses the Euclidean distance for calculatingférenlii.
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5.1 Using Clustering for Phase Classification

A primary goal of SimPoint is to have an automated way of extracting phasamatimn from
programs. Data clustering algorithms from unsupervised machine learairggldeen shown to
be very effective at breaking the complete execution of a program irasgshthat have similar
frequency vectors (Sherwood et al., 2002). Because the fregwectors correlate to the overall
performance of the program, grouping intervals based on their fregueattors produces phases
that are similar not only in the distribution of program structures used, Ibotia every other
architecture metric measured, including overall performance.

The goal of clustering is to divide a set of points into clusters such thatgeithin each cluster
are similar to one another (by some metric), and points in different clustedifégrent from one
another. We use the machine learning term ‘cluster’ and the architectorégaieaise’ to express the
same concept.

Thek-means algorithm (MacQueen, 1967) is an efficient and well-known cingtalgorithm,
which we use to split program intervals into phases. Prior to clustering,seeandom linear
projection (Dasgupta, 2000) to reduce the dimension of the input vectars. déwback of the
k-means algorithm is that it requires the number of clusteas an input to the algorithm, but we
do not know beforehand what value is appropriate. To address thigjmthe algorithm for several
values ofk, and then use a penalized likelihood score to guide our final choide fomken to the
extreme, if every interval of execution is given its very own cluster, thamyecluster will have
homogeneous behavior. Our goal is to choose a clustering with a minimum nwibleisters
which still models the program behavior well.

The following steps summarize the SimPoint phase clustering algorithm at a héh le

1. Profile the program by dividing the program’s execution into contiguoigsvals of fixed
length (e.g., 1 million, 10 million, or 100 million instructions). For each interval, coléec
frequency vector tracking the program’s use of some program steugtasic blocks, branch
edges, loops, register usage, etc.). Each frequency vector is nadthatizhat the sum of all
the elements equals 1.

2. Reduce the dimensionality of the frequency vector data to a much smalleenofiiimen-
sions using random linear projection. Using projected data speeds kprteans algorithm
significantly and reduces the memaory requirements by several ordergjaftode while pre-
serving the essential similarity information.

3. Run thek-means clustering algorithm on the projected data with valudsinfthe range
from 1 toK, whereK is a user-prescribed maximum number of phases that can be detected.
Each run ofk-means produces a clustering, which is a partition of the datakiulifferent
phases/clusters. Each runkefeans begins with a random initialization step, which requires
a random seed.

4. To compare and evaluate the different clusters formed for diffécene use the Bayesian
Information Criterion (BIC) as a measure of the “goodness of fit” of atehirsg to a data
set. A high BIC score indicates the clustering is a good fit to the data. Fbrahastering
(ke {1,2,...,K}), the fitness of the clustering is scored using the BIC.

5. The final step is to choose the clustering with a stkallich that its BIC score is nearly as
good as the best observed. The chosen clustering is the final grafpmegrvals into phases.
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The above algorithm groups intervals into phases. This algorithm hasakaxaportant param-
eters: interval length, projected dimension, the maximum number of clustdrsw the BIC is to
be used to select the best clustering, etc. Each must be tuned to creatdeend representative
simulation points using SimPoint. We discuss these parameters in more detail latepiagér.

5.1.1 RANDOM PROJECTION

For this clustering problem, we have to address the problem of high dimafisioMany clustering
algorithms suffer from the so-called “curse of dimensionality,” whichnefe the fact that finding
an optimal clustering is intractable as the number of dimensions increaseprdtem is that ge-
ometric optimizations that give significant speedup in low-dimensional data loéee the opposite
effect in high dimensions (e.¢-d trees for speeding up nearest neighbor queries). For basic block
vectors, the number of dimensions is the number of executed basic blocles pnairam, which
ranges from 2,756 to 102,038 for the SPEC benchmark suite, and cawdrgp the millions for
very large programs. For example, one Microsoft application we studiesisted of over 800,000
basic blocks, which is representative of desktop applications. Anothetigal problem is that the
running time and memory requirementskeieans depend on the dimension of the data, making
the algorithm slow if the dimension grows too large. Also, we observektima¢ans tends to get
stuck easily in sub-optimal solutions if the dimension is too high. This is evidemgdide small
number of iteration&-means requires to converge on high-dimensional data, as we haveeaibse
on this data. The algorithm does not improve much over its initialization.

Two broad methods of reducing the dimension of data are dimension selectiatiraension
reduction. Dimension selection simply removes some of the dimensions, basetheasure of
goodness of each dimension for describing the data. However, this rcam dlvay a lot of infor-
mation in the dimensions which are ignored. Also, in finding a measure to sekfal dimensions
is not as clear for unsupervised learning as for supervised learBimgension reduction reduces
the number of dimensions by creating a new lower-dimensional space angrtijecting each data
point into the new space (where the new space’s dimensions are ngsagberelated to the old
space’s dimensions).

For this work we use random linear projection (Dasgupta, 2000) to e low-dimensional
space into which we orthogonally project the data. This is a simple and fastigee that is very
effective at reducing the number of dimensions while retaining the essefrtiature of the data.
There are two steps to projecting a data set down to a lower-dimensiosarneConsider a data
setX which is represented as a matrixrok d real values, whera is the number of vectors, and
d is the original dimension. We want a low-dimension versidrwhich isn x d’, whered’ is the
projected number of dimensions. To creAtewe do the following:

e Create a projection matriR sized x d’. Fill each entry in the matrix with a random value
chosen uniformly if—1,1].

e Use a matrix multiplication to obtaiK’ = X x P.

The analysis given by Dasgupta (Dasgupta, 2000) shows that whrenraadom linear projec-
tion for clustering data, there are two primary theoretical benefits. Thadfitlsat clusters that are
very eccentric will become more spherical in their low-dimensional reptagen. This is appropri-
ate for thek-means algorithm which searches for spherical clusters. The sectrad mixture of
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k Gaussian clusters can be projected into d{iogk) dimensions while retaining the approximate
level of separation between clusters.

Principal components analysis (PCA) is a widely-used method for dimensthurction based
on directions of high variance. However, performing PCA od-dimensional data set requires
O(d®) operations, which is too expensive for data sets of the size we are edngithere that can
have hundreds of thousands of dimensions. Constructing the randgectmn matrix requires
only O(dd’) time, so it is linear in the original and the new dimension. Dasgupta furthereshow
that there are many simple examples where PCA is not able to reliably r&due#-separated
Gaussian clusters to bela(k) dimensions and keep them well-separated in the low-dimensional
projection. Examining the use of PCA for BBV dimension reduction is paruofigture research.

For our application, we found that 15 dimensions is low enough to be commaHyitractable,
but sufficiently high to discover the different phases of execution witktehing. We found this by
running experiments which are reported in earlier work (Sherwood &0412). These experiments
projected all the data sets we are interested in to a varying number of dimeasidthen recorded
the number of clusters found lkymeans and the BIC. We found that for fewer than 15 dimensions,
the number of clusters found dropped off, but for more than 15 dimessiba number of clusters
found did not increase significantly. Similar results were also found usm@timeans algorithm
to incrementally learik (without using the BIC) by Hamerly and Elkan (2003). Section 7 evaluates
how the choice of dimension affects the accuracy of SimPoint.

Figure 4 shows the similarity matrix fgicc on the left using original BBVs, whereas the simi-
larity matrix on the right shows the same matrix but on the data that has beeatpdojwn to 15
dimensions. For the reduced dimension data we use the Euclidean distanastoerdifferences,
rather than the Manhattan distance used on the original data. Some inforisdtishbecause of
the projection, but overall phase behavior we see in the original data isagilly discernible with
only 15 dimensions. A scatterplot of the progrgmi p projected to 2 dimensions and clustered into
3 clusters usingg-means is shown in Figure 5.

5.1.2 BAYESIAN INFORMATION CRITERION

To compare the different clusterings formed for differknive use the Bayesian Information Crite-
rion, or BIC (Schwarz, 1978), as a measure of the “goodness offfit’ttustering to a data set. The
BIC is an approximation of the probability of the clustering, given the datahhabeen clustered.
Thus, the larger the BIC score, the higher the probability that the clusteeing scored is a “good
fit" to the data being clustered. The BIC formulation we use is appropriateldistering withk-
means, however other formulations of the BIC could also be used for dtrstering models. The
BIC is only one method of choosing a good model from a set of models; otadrods such as the
Akaike information criterion (AIC) (Akaike, 1974), minimum description lenffDL) (Rissanen,
1978), and Monte-carlo cross-validation (MCCV) (Smyth, 1996) may lad¢sappropriate.

There are two parts of the BIC: the likelihood and the penalty. The likelihoadhi®asure of
how well the clustering models the data. For kameans likelihood, each cluster’s model is con-
sidered a spherical Gaussian distribution (which is the assumiptiomans makes). The likelihood
of a cluster is the product of the probabilities of each point in the clustemdby the cluster’s
Gaussian. The likelihood for the whole model is just the product of the liketiedor all clusters.
However, the likelihood tends to increase without bound as more clusteeglded. Therefore the
second term is a penalty that offsets the likelihood growth based on the sardplexity (i.e. the
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Figure 5: This plot shows a two-dimensional projection of the basic bloctovefor the program
gzi p, having 1038 total intervals, and clustered into three clusters lnitteans. The
lines show divisions between the three clusters. Note that SimPoint normaligtep in
more than two dimensions, but this illustrates the fact that that program ibehimes
form natural groups that can be found through data clustering.

number of clusters). The BIC is formulated as
BIC(X,C) = L(X|C) — glog(n)

where£(X|Cy) is the log-likelihood of the clustered daXagiven the clusterin@y havingk clusters,

n = |X| is the number of points in the data, apd= (k— 1) + dk+ 1 = k(d + 1) is the number of
parameters to estimaték — 1) cluster probabilitiesk cluster center estimates which each requires
d mean estimates, and one variance estimate (shared over all clusters).gdikelibood of the
k-means model given the data is

nd k
£L(X|G) = 3 log(2mo?) - z %=+ 3, yfostny/)
|=

=lie

wheren; is the number of points in thgth cluster (son;/n is the estimated prior probability of
clusterj), anda? is the average squared Euclidean distance from each point to its cluster. ce
The termC; represents the set of all indexesothat are members of clustgrX; is theith pointin
data seK, andcj = n_l, Yiec; Xi Is the location of thgth cluster center. The centeyris the maximum

likelihood solution for the cluster’s center. The maximum likelihood estimatoofas

LS gl
d]ZliGZj e
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For the purposes of calculating the BIC, we can substitute this maximum likelgsiodate foig?
into the log-likelihood formulation, to get a simpler version:

k
L(XIC) = —%jlog(znoz)—%j—lenj log(nj/n).
=

The BIC formulation we present basically follows that given by Pelleg andri®12000).

For a given program and inputs, the BIC score is calculated for leatbans clustering, fak
in the range 1 t&K. We then choose the clustering that achieves a BIC score that is close to the
highest BIC score seen. This is explained more in Section 7.

5.2 Clusters and Phase Behavior

The bottom plots in Figures 1 and 2 show the results of running our phadiadiclustering al-
gorithm ongzi p andgcc. These results use an interval length of 10 million instructions and the
maximum number of phaseK)is set to 10. The horizontal axis corresponds to the execution of the
program (in billions of instructions), and each interval is classified to lgelorone of the clusters
(labeled on the vertical axis).

Forgzi p, the program’s execution is partitioned into 4 clusters. Looking at the middtéqslo
comparison, the cluster behavior captured by our algorithm lines up qugelgiwith the behavior
of the program. Clusters 2 and 4 represent the large sections of exewaltich are similar to one
another. Cluster 3 captures the smaller phase that lies in between theselages. Cluster 1
represents the phase transitions between the three dominant phasastefvads in cluster 1 are
grouped into the same phase because they execute a similar combinatior,ofbimth happens to
be part of the code behavior in either cluster 2 or 4 and part of codmutain cluster 3. These
transition points in cluster 1 also correspond to the same intervals that hgeefakes in CPI seen
in the top graph (these spikes are due to increased cache misses faetfioas).

The bottom plot of Figure 2 shows hagec is partitioned into 8 clusters. Comparing this to
the middle and top plots in the same figure, we see that even the more complidsdetbbefgcc
is captured well by SimPoint. The dominant behaviors in the top two graphlsecaaen grouped
together in phases 1, 3, 5,and 7.

6. Choosing Simulation Points from the Phase Classification

After the phase classification algorithm has done its job, intervals with simila asdge will be
grouped together into the same phases (clusters). Then from eaah fi@a$oint chooses one
representative interval that will be simulated in detail to represent thevioeltd the whole phase.
Therefore, by simulatingnly one representative interval per phase, we can extrapolate andecaptur
the behavior of the entire program.

To choose a representative for a cluster, SimPoint picks the intervabthhitsest (Euclidean
distance) to the clusterk-means center. The center can be viewed as a pseudo-interval which
behaves most like the average behavior of the entire phase. Most likedyitheo interval that
exactly matches the center, so SimPoint chooses the closest interval.l§dtedaterval is called
asimulation poinfor that phase (Perelman et al., 2003; Sherwood et al., 2002). Wearapehform
detailed simulation on the set of simulation points.

As part of its output SimPoint also gives a weight for each simulation pointh B&ight is a
fraction: it is the total number of instructions represented by the interval®ialtister from which
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the simulation point was taken divided by the number of instructions in the gmogWith the

weights and the detailed simulation results of each simulation point, we can comyeighded

average for the architecture metric of interest (CPI, cache miss ratefatthle entire program’s
execution.

These simulation points are chosen once for a program/input combinatiandeethey are
chosen based only on how the code is executed, and not based itecince metrics. Therefore,
they only need to be calculated once for a binary/input combination andeaisdd repeatedly
across all of the runs for an architecture design space exploration.

The number of simulation points that SimPoint chooses has a direct effebeaimulation
time that will be required for those points. The maximum number of cluskerslong with the
interval length, represents the maximum amount of simulation time that will be de¥édeen fixed
length intervals are use¢K xinterval length) is a limit on the number of simulated instructions.

SimPoint allows users to trade off simulation time with accuracy. Researcharshitecture
tend to want to keep simulation time to below a fixed humber of instructions (e.g.mn80&n)
for a run. If this is a goal, we find that an interval length of 10 million instructiarnth K = 30
provides very good accuracy (as we show in this paper) with reakosiatulation time (220 million
instructions on average). If even more accuracy is desired, theaat#og the interval length to 1
million and settingk = 300 performs well for the SPEC 2000 programs, as does sétirg,/n
(wheren is the number of clustered intervals). Empirically we discovered that as #mulgrity
becomes finer, the number of phases discovered increases at aearrdite. The upper bound
defined by this square-root heuristic works well for the SPEC bendtenar

The length of the interval chosen by users of SimPoint depends uporsiimeitation infras-
tructure and how much they want to deal with warmup. Warmup is the proéaésisializing the
simulator’s state (caches, branch predictor, etc.) at the start of a simyatigrso that it is the same
as if we simulated from the beginning of the program to that point. For maryramus, using a
long interval length (e.g., more than 100 million instructions) will make warmup ces®ary. This
is the approach used by Intel’s PinPoint for simulation (Patil et al., 2004¢y Bimulate intervals
of length 300-500 million instructions so they do not have to worry about impléngewarmup in
their simulation infrastructure. With such long intervals the architecture stagcare warmed up
sufficiently during the beginning of the interval’'s execution to provide eateusimulation results.
In comparison, short interval lengths can be used, but this requivasghen approach for warming
up the architecture state. One way to do this is with an architecture checkpbicl, stores the po-
tential contents of the major architecture components at the start of the simylaitndiiBiesbrouck
et al., 2005). This can significantly reduce warmup time, since warmup ¢t®os$isist reading the
checkpoint from a file and using it to initialize the architecture structures.

6.1 Accuracy of SimPoint

We now show the accuracy of using SimPoint for the complete SPEC 20@btenk suite and
their reference inputs. Figure 6 shows the simulation accuracy results 8sirPoint (and other
methods) for the SPEC 2000 programs when compared to the complete exedutie programs.
For these results we use an interval length of 100 million instructions and limituheer of
simulation points to no more than 10. With the above parameters SimPoint findsesghayzi p,
and 8 forgcc. As described above, one simulation point is chosen for each clustélissoeans
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Figure 6: Simulation accuracy for the SPEC 2000 benchmark suite whiemmparg detailed simu-
lation for several hundred million instructions compared to simulating the entiuérn
of the program. Results are shown for simulating from the start of the amgrexecu-
tion, for fast-forwarding 1 billion instructions before simulating, and for gssimPoint
to choose at most ten 100-million-instruction intervals to simulate. The resuksianen
as percent error of predicted IPC, which is how much the estimated IP§ 8simPoint
is different from the complete execution of the program. IPC is the invdr€#bt The
median and maximum results are for the complete SPEC 2000 benchmarks.

that a total of 400 million instructions were simulated dar p. The results show that this results in
only a 4% error in performance estimation i p.

For these results, we compare this estimated IPC using SimPoint to the bas€linB@(In-
structions Per Cycle) is the inverse of CPI, and often used instead oivfu#H describing perfor-
mance. The baseline was gathered from spending months of simulation time totsithalantire
execution of each SPEC program. The results in Figure 6 compare SimPlaw tarchitecture re-
searchers use to choose where to simulate before SimPoint. The firsgtexivas to just simulate
the first N million instructions of a benchmark’s execution. The second tgelrwas to blindly
skip the first billion instructions of execution to get past the initialization of tlmgmam’s execu-
tion, and then simulate for N million instructions. The results show that simulatimg fihe start
of execution, for the exact same number of instructions as simulated with SithResnlts in a
median error of 58%. If instead, we fast forwarded for 1 billion instrutiand then simulate for
the same number of instructions as chosen by SimPoint, we see a median 23%dPCGNhen
using SimPoint to create multiple simulation points we have a median IPC error oN2#é.that
the maximum error seen for the prior techniques are significant for th&€ $fP&ggrams, but it is
very reasonable (only 8%) for SimPoint.

6.2 Relative Error During Design Space Exploration

The absolute error of a program/input run on one hardware confignris not as important as
tracking the change in metrics across different architecture confignsatidiere is a lot of discus-
sion and research into getting lower simulation error rates. But what oftest discussed is that a
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Figure 7: This plot shows the true and estimated IPC and cache miss rai@sdiffierent architec-
ture configurations for the progragac. The lefty-axis is for the IPC and the riglgtaxis
is for the cache miss rates for the L1 data cache and unified L2 cachdtda®e shown
for the complete execution of the configuration and when using SimPoint.

low error rate for a single configuration is not as important as achievinggtme relative error rates
across the design space search and having them all biased in the sattierdire

We now examine how SimPoint tracks the relative change in hardware metracssaseveral
different architecture configurations. To examine the independenttesafimulation points from
the underlying architecture, we used the simulation points for the SimPoinithlgowith an in-
terval length of 1 million instructions and the maximufset to 300. For the program/input runs
examined, we performed full program simulations while varying the memonatuiey, and for
every run we used the same set of simulation points when calculating the SireBtiimates. We
varied the configurations and the latencies of the L1 and L2 caches@tbéedby Perelman et al.
(2003).

Figure 7 shows the results across 19 different architecture cortfignsdorgcc- 166. The left
y-axis represents the performance in Instructions Per Cycle (IPC) anebtkis represents different
memory configurations from the baseline architecture. The yightiis shows the miss rates for the
data cache and unified L2 cache, and the L2 miss rate is a local miss ragadhanetric, two lines
are shown: “True” for the true metric from tlewmpletedetailed simulation, and the “SP” for the
estimated metric using our simulation points. For the results, the configurations giaxis are
sorted by the IPC of the full run.

This figure shows that the simulation points, which are chosen by only loatirmpde us-
age, can be used across different architecture configurations toanekeate architecture design
trade-off decisions and comparisons. The simulation points are able taliewoiative changes in
performance metrics between configurations. This means we are able tthaakene decision be-
tween two architectures, in terms of which one is better, using SimPoint asrtimate simulation
of the program. One interesting observation is that although the simulatidisrgsm SimPoint
have a bias in its predictions, this bias is consistent across the diffenefij@tions for a given
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program/input. This is true for both IPC and cache miss rates. We believeasen for the bias is
that SimPoint chooses the most representative interval from each pinalsatervals that represent
phase change boundaries are less likely to be fully represented #watosen simulation points.

7. Clustering Analysis

In this section we describe the primary parameters that have influenceno8ihd?oint and thé-
means algorithm behave. We first focus on how we achieve a reasonableg time fork-means,
and then examine how to search okéo find a good clustering. For the experiments in this section,
we use basic block vectors with 100 million instruction intervals. Where it ispetified, we also
usek = 30 clusters and 15 projected dimensions.

7.1 Methods for Reducing the Run-Time ok-Means

Even though SimPoint only needs to be run once per binary/input combinatostill want a fast
clustering algorithm that produces accurate simulation points. To addeeggttime of SimPoint,
we first look at the three parts which affect most the running time of a singl®frk-means. The
three parts are the number of intervals to cluster, the dimension of the inteewatsclustered, and
the number of iterations it takes to perform a clustering.

We first examine how the number of intervals affects the running time of the Sntredgorithm.
Figure 8 shows the time (in seconds) for running SimPoint on different etsvdf intervals as we
vary the number of clusters. For this experiment, the clustered vecta@retemly generated from
uniformly random noise in 15 dimensions. We use random data in theseragpés because it does
not bias these results based on a particular benchmark and it givesrethepasults across a wide
range of parameter settings. But more importantly, prior theoretical workdbyk et al. (1999)
suggests that it is most difficult to accelerate (i.e. make more efficient usmgefric reasoning)
clustering algorithms on data without structure, such as uniformly randden d@ais is supported
by experiments by Moore (2000) and Elkan (2003). So these experiftentsa comparable set
of challenging results for the per-iteration run-time of SimPoint. The numbiéerations will vary
depending on the structure of the data, however. For example, kisireans to cluster data from
very well-separated clusters is likely to converge in a low number of iteratigmite clusters which
overlap are likely to require more iterations.

The first graph shows that for 100,000 vectors kre128, it took about 3.5 minutes for Sim-
Point 3.0 to perform the clustering. It is clear that the number of vectostesied and the value
of k both have a large effect on the run-time of SimPoint. The run-time changeslirveith the
number of clusters and the number of vectors, as expected. Also, veeedhat the time per basic
operation actually goes down &sncreases. This is due to a simple optimization capedtial
distance searcfiMcNames, 2000; Cheng et al., 1984) that allows the algorithm to avoidlatia
the full distance from a point (interval) to every cluster center in the fiegt efk-means. The goal
of this step is to find the closest cluster center to the point, so that the interyaberassigned to
that center. To find this closest center, a simple loop searches for theraester with the min-
imum squared Euclidean distance. The squared distance calculation susegsidined dimension
difference between the point and the cluster center over all dimensiohde ¥éarching for the
minimum squared distance from a point to all centers, partial distancehskeeps the smallest
squared distance seen thus far. When calculating the distance to arenter, @ may find that
the intermediate squared distance result (after processing some of thesidins s larger than the
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Figure 8: These plots show how varying the number of vectors and duafects the amount of
time required to cluster with SimPoint 3.0. For this experiment we generatedmijfo
random data in 15 dimensions. The first plot shows total time, the seconshols the
time normalized by the number of iterations performed, and the third plot shevtisria
normalized by the number of basic operations performed. Both the numbectofs and
the number of clusters have a linear influence on the run-timleroéans. The bottom
plot shows a decreasing trend due to optimizatiorisiimeans which are more beneficial
for largerk.

smallest squared distance seen to a different center. If this is the caskstdnce we are calculat-
ing cannot be minimal, so the current calculation is stopped short of calautagnentire squared
distance over all of the dimensions. This optimization does not change trextmss of the al-
gorithm. Partial distance search is most beneficial when there are matgrg)usince the more
centers there are, the more it is likely that there will be a close center thafieaa good lower

bound for the partial search. Partial distance search is also usefighrdimensional data, since
work is saved when computing per-dimension differences, and the morasions there are the
more computations can potentially be avoided.
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Program| # Vecsx # B.B. | SP3-All | SP3-BinS
gce-166| 4692x 102038 9 min 3.5min
crafty | 19189x 16970| 84 min| 10.7 min

Table 4: This table shows the running times (in minutes) by SimPoint 3.0 withouy béiary
search (SP3-All) and SimPoint 3.0 using binary search (SP3-BinS). SitmRomn
searching for the best clustering frdml to 100, uses 5 random seeds keaind projects
the vectors to 15 dimensions. The second column shows how many vedldiseasize of
the vector (static basic blocks) the programs have.

7.1.1 NUMBER OFINTERVALS AND SUB-SAMPLING

Each iteration of th&-means algorithm has a run-time that is linear in the number of clusters, the
number of intervals, and the dimensionality. However, skiggeans is an iterative algorithm, many
iterations may be required to reach convergence. We already founmimark (Sherwood et al.,
2002), and revisit in Section 7.1.2 that we can reduce the number of dimemgiam to 15 and still
maintain SimPoint’s accuracy. Therefore, the main influence on executionam&mPoint is the
number of intervals.

To show this effect, Table 4 shows the SimPoint running timegfar- 166 andcrafty-ref,
which shows the lower and upper limits for the number of intervals and basik &xtors seen in
SPEC 2000 with an interval length of 10 million instructions. The second amtl¢blumns show
the number of intervals and original number of dimensions for each basik k&ctor. The last
two columns show the time it took to execute SimPoint 3.0 searching for the bettratg from
k=1 to 100, with 5 random initializations (seeds) jpefThe fourth column shows the time it took
to run SimPoint when searching over klland the last column shows clustering time when using
the new binary search described in Section 7.2.3. The results show tredsimg the number of
intervals by 4 times increased the running time of SimPoint around 10 times. Jiiesralso show
that the number of intervals clustered has a large impact on the running tini@Bb®t, since it
can take many iterations to converge, which is the caserfafrt y. We used 15 dimensions during
clustering for these results.

The effect of the number of intervals on the running time of SimPoint beconitesatwhen
using very small interval lengths like 1 million instructions or fewer, which caaie millions of
intervals to cluster. To speed the execution of SimPoint on these very lgnges,jinve sub-sample
the set of intervals that will be clustered, and kimeans on only this sample. To sample with
SimPoint, the user specifies the number of desired interval samples, arfittieoint chooses that
many intervals (without replacement). The probability of each interval befiogen is proportional
to the weight of its interval (the number of dynamically executed instructiorepitesents). For
vectors which all represent the same interval length (as we consider ipahéy), this weight
is uniform. If vectors represent non-uniform interval lengths (calladable-length intervals, or
VLIs), then each vector's weight is proportional to its interval length.sM@marize our work with
variable length intervals in Section 9.

Sampling is common in clustering for data sets which are too large to fit in main meFamy-(
strom et al., 2000; Provost and Kolluri, 1999). After clustering the dettaa@mple, we have a set of
clusters with centers found lymeans. SimPoint then makes a single pass through the unclustered
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intervals and assigns each interval to the cluster that has the nearest(centroid) to that interval.
This then represents the final clustering from which the simulation point$asen. We originally
examined using sub-sampling for variable length intervals (VLI) in Lau gf2805a). When us-
ing VLIs we had millions of intervals, and had to sub-sample 10,000 to 100,@8tvats for the
clustering to achieve a reasonable running time for SimPoint, while still provieing accurate
simulation points.

The experiments shown in Figure 9 show the effects of sub-samplingsaatdbe SPEC 2000
benchmarks using an interval length of 10 million instructions, 30 clusteds,1&rprojected di-
mensions. Results are shown for creating the initial clustering using sujpliag with only 1/8,
1/4, 1/2, and all of the execution intervals in each program, as desctiloed.aThe first two plots
show the effects of sub-sampling on the CPI errors lanteans variance, both of which degrade
gracefully when smaller samples are used. The average SPEC INT (jraedeSPEC FP (floating
point) average results are shown. It is standard to break the results @st® tilvo groupings for
architecture results. The CPI error is computed in the following manner:

|True CPI- SimPoint Estimated CPI
True CPI '

The averag&-means variance is the average squared distance between evegnfregector
and its closest cluster center. Lower variances are better. Wherasyliisg, we still report the
variance based on every vector (not just the sub-sampled ones)relfiige kmeans variance
reported in the experiments is measured on a per-input basis as the rag&-oh#ans variance for
clustering on a sample to that of clustering on the whole input.

As shown in the second graph of Figure 9, sub-sampling a programaceselcmeans to find
a slightly less representative clustering, which results in highmeans variance on average. Note
that thek-means variance for these experiments are reported on all the inputsyamb just the
sampled ones. Even so, when sub-sampling, we found in some casesdhatréduce thé-
means variance and/or CPI error (compared to using all the vectorgude sub-sampling can
remove outliers in the data set thameans may be trying to fit. This is a benefit noted in the work
of Fayyad et al. (1998) when they use subsampling to initialize iterative dlugt@gorithms.

It is interesting to note the difference between floating point and integ@raums, as shown
in the first two plots. The results shown in the first plot show we can capheréehavior of the
SPEC floating point programs more easily, that is, without using all the ofidata. In addition,
the second plot suggests that SPEC floating point programs are alsateasister than the SPEC
INT, as we can do quite well (in terms &fmeans variance) even with only small samples. This
suggests that they have more regular or uniform code usage pattennsitéger programs. The
third plot shows the effect of the number of vectors on the running time of &mPThis plot
shows the time required to cluster all of the benchmark/input combinations @in@® tub-sampled
versions. In addition, we have fit a logarithmic curve with least-square fodimts to give a rough
idea of the growth of the run-time. Note that two different data sets with the samber of vectors
may require different amounts of time to cluster due to the numbkfoéans iterations required
for the clustering to converge.

CPI Error=

7.1.2 NUMBER OF DIMENSIONS AND RANDOM PROJECTION

Along with the number of vectors, the other most influential aspect in théngriime ofk-means
is the number of dimensions of the data. Figure 10 shows the effect ofjictgetme number of pro-
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Figure 9: These three plots show how sub-sampling before clusteriagtathe CPI errorsk-
means variance, and the run-time of SimPoint. The first plot shows the avémRlg
error across the integer and floating-point SPEC benchmarks. Taedsplot shows the
averagek-means clustering variance relative to clustering with all the vectors. The las
plot shows a scatter plot of the run-time to cluster the full benchmarks dndasupled
versions, and a logarithmic curve fit with least squares.

jected dimensions on both the CPI error (left) and the run-time of SimPoint)rigor this exper-

iment, we varied the number of projected dimensions from 1 to 100. As the mwh8enensions

increases, the time to cluster the vectors increases linearly, as expédgehore interesting that
the run-time also increases for very low dimensions. This is because the amemmore “crowded”
and the clusters are less well-separated-seeans requires more iterations to converge.

If we use too few dimensions, the data does not retain sufficient informiaticlister the data
well. This is reflected by the fact that the CPI errors increase rapidlydoy low dimensions.
However, we can see that at 15 dimensions, the SimPoint default, the R are quite low,
and using a higher number of dimensions does not improve them significanthgduires more
computation. Using too many dimensions is also a problem in light of the well-kriouwnse of
dimensionality” (Bellman, 1961), which implies that as the number of dimensiomsases, the
number of vectors that would be required to densely populate that spawe gxponentially. This
means that using a higher dimension makes it more likely that a clustering algavithconverge
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Figure 10: These two plots show the effects of changing the number jeicped dimensions when
using SimPoint. The default number of projected dimensions SimPoint usesbsitl5
here we show results for 1 to 100 dimensions. The left plot shows thage/€PI error,
and the right plot shows the average time relative to 100 dimensions. Bothapéots
averaged over all the SPEC 2000 benchmarks, for a fixe@®0 clusters.

to a poor solution, since the input space is not very densely filled. Tdrergt is wise to choose a
dimension that is low enough to alldwmeans to find a good clustering, but not so low that critical
information is lost. We find that 15 dimensions works well in these regards.

7.1.3 NUMBER OF ITERATIONS NEEDED

The final aspect we examine for affecting the running time oktngeans algorithm is the number

of iterations it takes for a run to converge. We provide this analysis to ilkedypical requirements

of running SimPoint on a set of benchmarks, and because finding a fipbt-bound on the number

of iterations required bi-means is an open problem (Dasgupta, 2003), we must rely on evidence
to show us what to expect.

The k-means algorithm iterates either until it hits a user-specified maximum numberaf ite
tions, or until it reaches convergence. In SimPoint, the default limit is 108tibers, but this can
easily be changed. More iterations may be required, especially if the nwhbgervals is very
large compared to the number of clusters. The interaction between the namervals and the
number of iterations required is the reason for the large SimPoint running dincedf t y-r ef in
Table 4.

For our results, we observed that only 1.1% of all runs on all SPEC Beé@6hmarks reach
100 iterations. This experiment was with 10-million instruction intervies30, 15 dimensions,
and with 10 random initializations é¢means. Figure 11 shows the number of iterations required
for all runs in this experiment. Out of all of the SPEC program and input doations run, only
crafty-ref, gzi p- program perl brk-splitmil had runs that had not converged by 100 iter-
ations. The longest-running clusterings for these programs reachedrgence in 160, 126, and
101 iterations, respectively. If desired, SimPoint can alwayskroreans to convergence (with no
iteration limit).
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Figure 11: This plot shows the number of iterations required for 10 ragkd initializations of
each benchmark, with 10 million instruction length intervéls,30, and 15 dimensions.
Note that only three program/inputs had a total of 5 runs that required mamnettile
default limit of 100 iterations, and these all converge within 160 iterationssst le

7.2 Searching for a Smalk with a Good Clustering

We suggest setting the maximum number of cluskees appropriate for the maximum amount of
simulation time a user will tolerate for a single simulation. SimPoint uses three teelsrtmaearch
over the possible clusterings, which we describe here. The goal is togigkt@ smallk so that the
number of simulation points is also small, thereby reducing the simulation time required

7.2.1 ETTING THE BIC PERCENTAGE

As we examine several clusterings and valuel, afe need to have a method for choosing the best
clustering. The Bayesian Information Criterion (BIC) (Pelleg and Mo20€0) gives a score of the
how well a clustering represents the data it clustered. However, weohaeeved that the BIC score
often increases as the number of clusters increase. Thus choosiriggtegiog with the highest
BIC score can lead to often selecting the clustering with the most clustersefoies we look at
the range of BIC scores, and select the score which attains some hagmfaaye of this range. The
SimPoint default BIC threshold is 90%. When the BIC rises and then levieds kfincreases, this
method chooses a clustering with the fewest clusters that is near the maxir@walBé. Choosing

a lower BIC threshold would prefer fewer clusters, but at the risk af é&gurate simulation.

Figure 12 shows the effect of changing the BIC threshold on both thee@® (left) and the
number of simulation points chosen (right). These experiments are for bsiagy search (ex-
plained in Section 7.2.3) witd = 30, 15 dimensions, and 5 random seeds. BIC thresholds of 70%,
80%, 90% and 100% are examined. As the BIC threshold decreasesethg@number of simu-
lation points decreases, and similarly the average CPI error increasése 0% BIC threshold,
perl brk-splitmail has the maximum CPI error in the SPEC suite. This anomaly is an artifact
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Figure 12: These plots show how the CPI error and number of simulatiotsptiasen are affected
by varying the BIC threshold. Bars labeled “max-1" show the seconce$trgalue
observed.

of the low threshold. Since higher BIC scores point to better clusteringigetter error rates, we
recommend the BIC threshold to be set at 90%.

7.2.2 \ARYING THE NUMBER OF RANDOM SEEDS, AND K-MEANS INITIALIZATION

Thek-means clustering algorithm starts from a randomized initialization, which egjairandom
seed. Because of this, runnikgneans multiple times can produce very different results depending
on the initializations, s&-means can sometimes converge to a locally-good solution that is poor
compared to the best clustering on the same data for that number of clistersfore, conventional
wisdom suggests that it is good to rikiimeans several times using a different randomized starting
point each time, and take the best clustering observed, based knrtbans variance or the BIC.
SimPoint does this, using different random seeds to initidtireeans each time. Based on our
experience, we have found that using 5 random seeds works well.

SimPoint allows users to provide their olrmeans initialization, or it will choose an initial-
ization based on one of two methods: sampling and furthest-first (Gon8@%; Hochbaum and
Shmoys, 1985). The sampling method chodseandom locations for the initial cluster centers
from the input data without replacement. The furthest-first method ceamseinput point at ran-
dom, and then repeatedly chooses a point that is furthest away frone alrady-chosen points,
until k points are chosen. This has the tendency to spread the initially chosen qaiaieng the
convex hull of the input space, and subsequently chosen points in thielinte

Figure 13 shows the effect on CPI error of using two diffedlenteans initialization methods
(furthest-first and sampling) along with different numbers of inikigheans seeds. These experi-
ments are for using binary search wikh= 30, 15 dimensions, and a BIC threshold of 90%. When
multiple seeds are used, SimPoint rkaseans multiple times with different starting conditions
and takes the best result.

Based on these results we see that sampling outperforms furthegtfiiestns initialization.
This can be attributed to the data we are clustering, which can have a larggenof outlying
points, which furthest-first initialization pays special attention to. The fgtthiest method is likely
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Figure 13: This plot shows the average and maximum CPI errors for batplsxg and furthest-
first k-means initializations, and using 1, 5, or 10 different random seedseTesults
are over the SPEC 2000 benchmark suite for 10-million instruction vectbrdinien-
sions, and = 30.

to pick those anomaly points as initial centers since they are the furthest ppautls It is also
beneficial to try multiple seed initializations in order to avoid a locally minimal solutiohe T
results in Figure 13 shows that 5 seed initializations should be sufficientimdigood clusterings.

7.2.3 BNARY SEARCH FORPICKING k

SimPoint 3.0 makes it much faster to find the best clustering and simulation pairggpfogram
trace over earlier versions. Since the BIC score generally increskésaeases, SimPoint 3.0 uses
this knowledge to perform a binary search for the lke$tor example, if the maximurkdesired is
100, with earlier versions of SimPoint one might search in incrementslof£s, 10,15, ...,90, 100,
requiring 20 clusterings. With the binary search method, we can ignore fags of the set of
possiblek values and examine only about 7 clusterings.

The binary search method first clusters 3 timesk at1, k = K, andk = (K +1)/2. It then
proceeds to divide the search space and cluster again based on tlsed®#S observed for each
clustering and the user-specified BIC threshold. Thus the binarytsesthod requires the user
only to specify the maximum number of clusté&tsand performs at most Ig¢K) clusterings.

Figure 14 shows the comparison between the new binary search methdubwing the best
clustering, and the old method, which searched ovek @dllues in the same range. The top graph
shows the CPI error for each program, and the bottom graph showartiigen of simulation points
(clusters) chosen. These experiments are for using binary searciKwitB0, 15 dimensions, 5
random seeds, and a BIC threshold of 90%. Exhaustive searairmsr§lightly better than binary
search, since it searches kllvalues. Using the binary search, it possible that it will not find a
clustering with as few clusters as found by the exhaustive search. ®tieus in the bottom graph
of Figure 14, where the exhaustive search picked 19 simulation pointseoagge, and binary search
chose 22 simulation points on average. In terms of CPI error rates, thegavis about the same
across the SPEC programs between exhaustive and binary searchll tR&t the binary search
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Figure 14: These plots show the CPI error and number of simulation pointecHor two dif-
ferent ways of searching for the best clustering. The first metho@hwkas used in
SimPoint 2.0, searches over klbetween 1 and 30, and chooses the smallest clustering
that achieves the BIC threshold of 90%. The second method is the biremghser
K = 30, which examines at most 5 clusterings.

method operates many times faster than the brute force search methodulseé foa some timing
results).

As we can see from the graphs in Figure 14, SimPoint is able to achieve aCEb%ror rate
averaged across all SPEC 2000 benchmarks, with a maximum erroruwfdaé86. These results
require an average simulation time of about 220 million instructions per proffaanthe binary
search method). These error rates are sufficiently low to make desiggiodesc and the simulation
time is small enough to do large-scale design space explorations.
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8. Related Machine Learning Work on Phase Analysis

SimPoint is the first research to apply machine learning technigu@&éns, dimension reduction,
BIC) to the problem of program phase analysis and workload perfarenprediction. Recently
two other clustering techniques have been examined for SimPoint, which #reamual cluster-
ing (Sanghai et al., 2005) and regression trees (Annavaram et @dl). 28either of these perform
better than SimPoint witk-means clustering.

Sanghai et al. (2005) proposed utilizing mixtures of multinomials trained by Edugier pro-
gram intervals. Unlike &-means cluster, the multinomial is a probability model that explicitly
models each dimension. Multinomials are used frequently in machine learnimgoideling and
clustering text documents, which are high-dimensional and sparse, mecthdilkdata we see in
program analysis using basic block vectors. Sanghai et al. used aenittonultinomial models to
cluster the program data, and formulated a version of the BIC that appliesltmomial models.
They also considered dimension reduction via a different constructicandbm linear projection.
Their random linear projection is based on a sparse matrix where eaeéhmalube 0 or 1 (rather
than real-valued). This is similar to what Achlioptas (2001) proposedfaiabase-friendly” projec-
tions. Following on their proposed model, we have done a full comparisomuttinomial mixtures
with k-means (Hamerly et al., 2006), and we found #zateans performs better for program phase
analysis, but that multinomials have some benefits. We summarize that worktiorS&c

Annavaram et al. (2004) employed a regression tree clustering algddtpradict performance
for database applications and SPEC2000. Code signatures weratgenirough periodic sam-
pling with a tool called VTune that samples the hardware counters. In additcod®signatures,
the CPI for each interval of execution was sampled. This is a necess@mmeter in the regression
tree algorithm. The code signatures are divided into two groups basee splihthat would min-
imize the variance in the CPI for the corresponding execution intervalssegubntly, each new
group is split again based on the same criteria and this is repeated rebuesitil no more splits
can be made. To reduce complexity, up to 50 splits were applied on the datavg@am et al.,
2004). To determine the number of clusters to be used from the data, svalatation step is
applied with reserved CPI data that was not used in the splitting process.

The regression tree method may be effective in reducing the variandel e¥iin clusters, but
the need for CPI in computing clusters is a drawback. Itis computationalgnsiyge to compute the
CPI for the entire execution of a program via simulation. In addition, the Li€#bdata from one
architecture configuration to form clusters would bind that clustering tg#rditular configuration.
A different architecture configuration which may produce differenit\v@Ries would not necessarily
fit under the former clustering formation; thus the method is not architectdepéndent. Thé-
Means approach employed in SimPoint uses only the code signatures tofistars, which results
in an architecture independent representation that is applicable acnogsamdigurations as shown
in Section 6.

9. Current Directions
In this section we describe some of our current and future directiorghfse analysis.

373



HAMERLY, PERELMAN, LAU, CALDER AND SHERWOOD

9.1 Matching Simulation Points to Code Boundaries

With the original SimPoint approach, representatives selected for simubkgomentified by dy-
namic instruction count using fixed length intervals. For example, SimPoint niahdeuser to
start detailed simulation when 5,000,000 instructions have executed, arjdsttbpfore 6,000,000
instructions have executed, using an interval size of 1,000,000 instruclibrssties the simulation
points to that specific binary, but the idea of SimPoint should be applicatdssdifferent compila-
tions of the same source code. The same phase behavior should amegh prerhaps with different
code patterns. If we can identify these behaviors and map them back touttve £ode level, then
we could use the same phase analysis for a program compiled for diféenepiler optimizations
or even architectures with different instruction sets. This will allow us toréma the exact same
set of simulation points across different compilations of the same souree cod

To address this, we propose breaking the program’s execution upeadure call and loop
boundaries instead of breaking up the program’s execution using firgthléntervals. Programs
exhibit patterns of repetitive behavior, and these patterns are largelpguwocedure call and loop-
ing behavior. Our software phase marker approach (Lau et al., 206¢ts recurring call chains
and looping patterns and identifies the source code instructions to whichdhegpond. We then
mark specific procedure calls and loop branches, so that when thay d@eng execution, they
will indicate the end of one code signature (interval boundary) and thiecdtanother. Therefore,
instead of using fixed-length intervals with some fixed number of instructiotesyals are defined
by procedure and loop boundaries. This resultgariable Length Intervalg§VLIs) of execution.

To support VLIs, we had to modify the SimPoint software to allow sub-samggBimge we
may be dealing with a huge number of intervals), and clustering with variabigHentervals (Lau
et al., 2005a), where the weights of each interval are taken into coasateduring thek-means
clustering. An interesting machine-learning result of clustering variabigtteintervals is how we
modified the likelihood calculated for the BIC to allow it to consider the length oheaterval.
Because we view longer intervals as more important than shorter ones gfiteoldd should reflect
this. Therefore, we reformulate the likelihood we present in this paperdp®priate for variable-
length intervals. When the interval length is uniform, the modified BIC gives#mee answer as
the BIC presented in this paper.

The accuracy and simulation time results for software phase markers with &fel similar
to fixed-length-interval SimPoint. Therefore the main advantage of theephasker approach is
portability of the phase analysis across compilations and architecturesiotnyork (Lau et al.,
2005a), we also showed that there is a clear hierarchy of phaseitweshdvom fine-grained to
coarse-grained depending upon the interval sizes used, and thélidisuse research to be done
to determine how to pick the correct granularity for the target use of theephraalysis.

9.2 Multinomial Clustering

Recently, Sanghai et al. (2005) proposed using a mixture of multinomial I;nadea clustering
model for phase analysis, as described in Section 8. Their reseasch pr@liminary study; we
have performed a more complete set of experiments comparing multinomial itigstéth EM to
thek-means algorithm, as applied to phase analysis (Hamerly et al., 2006).

We found that multinomial clustering does not improve ufemeans clustering in terms of
performance prediction, despite the fact that basic block vectors sebenamatural fit to multi-
nomials. We also showed a comparison between different projection mathodsjunction with
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multinomial clustering, and alternative methods of choosing the sample to simalatefch clus-
ter. Further, we verified Sanghai et al.'s claim that the number of dimesseguired to get good
results using multinomial clustering may be much higher than the 15 dimensionseweitbs-
means. Following their work, we used up to 100 projected dimensions to fiatkdhg results that
work well for phase analysis with this approach.

We also found that EM clustering is much slower tikameans. The hard assignmenkaheans
enables optimizations like partial distance search described in Section #.forBM clustering,
its soft assignment requires that we cannot stop short on examiningimeyglons, so it cannot
benefit from such optimizations. This together with the increase in number ohdiare required
by multinomials makes multinomial EM clustering much slower tkaneans. Even if we use the
same number of dimensions to randomly project to, we still find that EM clustefimmiltinomials
is roughly 10 times slower thatiimeans.

We did find that there are some benefits to using multinomials. One benefit is thetamial
clustering tends to choose fewer clusters on average (according @scBie formulated for multi-
nomial mixtures), resulting in lower simulation times. Another benefit is that the [gMithm uses
soft assignment, unlike the hard assignmerit-afeans. This allows us to derive a metric of clus-
ter “purity”. The idea is that if many vectors have high membership in multiple clstieen the
clustering is more impure than if each vector (interval) belongs mostly to onlypbtine clusters.
This purity score allows us to see if multinomial clustering is a good solution fartécplar data
set, and gives us a metric for deciding whether to apply multinomial clustering ity score
is high enough, ok-means otherwise. We found that this combined approach provides a solutio
which picks fewer simulation points compared with using dalyeans, and gets lower prediction
errors than using only multinomial clustering.

10. Summary

Understanding the cycle level behavior of a processor running dicaggn is crucial to modern
computer architecture research, and gaining this understanding caonbeefficiently by judi-
ciously applying detailed cycle level simulation to only a few simulation points. Ryetarg only
one or a few carefully chosen samples for each of the small number afioes found in real pro-
grams, the cost of simulation can be reduced to a reasonable level whideinghvery accurate
performance estimates.

The main idea behind SimPoint is the realization that programs typically only exhileil
unique behaviors which are interleaved with one another through time. &ydithese behaviors
and then determining the relative importance of each one, we can maintaintugthlavel picture
of the program’s execution and at the same time quantify the cycle level ititerdoetween the
application and the architecture. The key to being able to find these phaseffitient and robust
manner is the development of a metric that can detect the underlying shiftsagram’s execution
that result in the changes in observed behavior. In this paper we fsessed one such method of
guantifying executed code similarity, and use it to find program phasesghrhe application of
unsupervised learning techniques.

The methods described in this paper are distributed as part of SimPoiatnfReret al., 2003;
Sherwood et al., 2002). SimPoint automates the process of picking simulaiits psing an off-
line phase classification algorithm basedlemeans clustering, which significantly reduces the
amount of simulation time required. Selecting and simulating only a handiatedfigently picked
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sections of the full program provides an accurate picture of the completaiton of a program,
which gives a highly accurate estimate of performance. The SimPoint sefoea be downloaded
at:

http://wm. cse. ucsd. edu/ users/ cal der/ si npoi nt/

For the industry-standard SPEC programs, SimPoint has less than a@%ager(2% on av-
erage) for the results in this paper, and is 1,500 times faster on averageettiarming simulation
for the complete program’s execution. Because of this time savings anchagcaur approach is
currently used by architecture researchers and industry comparge®#til et al. (2004) at Intel)
to guide their architecture design exploration.

Acknowledgments

We would like to thank the anonymous reviewers for providing helpful faekton this paper.
This work was funded in part by NSF grant No. CCF-0342522, N&hRtgdo. CCF-0311710,a UC
MICRO grant, and a grant from Intel and Microsoft.

References

D. Achlioptas. Database-friendly random projections. P@DS '01: Proceedings of the twentieth ACM
SIGMOD-SIGACT-SIGART symposium on Principles of databBgstemspages 274-281, New York,
NY, USA, 2001. ACM Press. ISBN 1-58113-361-8.

H. Akaike. A new look at the statistical model identificatidEEE Transactions on Automatic Contrdl9:
716-723, 1974.

M. Annavaram, R. Rakvic, M. Polito, J. Bouguet, R. Hanking] 8. Davies. The fuzzy correlation between
code and performance predictability. Imernational Symposium on Microarchitectuf2ecember 2004.

R. E. Bellman.Adaptive Control Processefrinceton University Press, 1961.

M. Van Biesbrouck, L. Eeckhout, and B. Calder. Efficient sangpstartup for uniprocessor and simultaneous
multithreading simulation. linternational Conference on High Performance Embeddetiifectures and
Compilers November 2005.

M. Van Biesbrouck, T. Sherwood, and B. Calder. A co-phaseimti guide simultaneous multithreading
simulation. InIEEE International Symposium on Performance Analysis sfe®ys and Softwardlarch
2004.

D. C. Burger and T. M. Austin. The SimpleScalar tool set, i@r2.0. Technical Report CS-TR-97-1342,
University of Wisconsin, Madison, June 1997.

D. Cheng, A. Gersho, B. Ramamurthi, and Y. Shoham. Fastsedgorithms for vector quantization and
pattern matching.Proceedings of the IEEE International Conference on AdosisSpeech, and Signal
Processingpages 9.11.1-9.11.4, 1984.

S. Dasgupta. Experiments with random projectionUhcertainty in Artificial Intelligence: Proceedings of
the Sixteenth Conference (UAI-200pages 143-151, 2000.

S. Dasgupta. How fast lsmeans? IlCOLT, page 735, 2003.

376



USING MACHINE LEARNING TO GUIDE ARCHITECTURESIMULATION

C. Elkan. Using the triangle inequality to accelerat@means. INCML, pages 147-153, 2003.

F. Farnstrom, J. Lewis, and C. Elkan. Scalability for clusggalgorithms revisitedSIGKDD Explor. News].
2(1):51-57, 2000.

U. Fayyad, C. Reina, and P. Bradley. Initialization of itera refinement clustering algorithms. Rro-
ceedings of the 4th International Conference on KnowledgedYery and Data Mining (KDDQ)pages
194-198. AAAI Press, 1998.

T. Gonzalez. Clustering to minimize the maximum interaustistance Theoretical Computer Sciences:
293-306, 1985.

G. Hamerly and C. Elkan. Learning thkeén k-means. ImMdvances in NIPS003.

G. Hamerly, E. Perelman, and B. Calder. Comparing multiebemdk-means clustering for SimPoint. In
Proceedings of the 2006 IEEE International Symposium ofoReaance Analysis of Systems and Software
2006.

D. Hochbaum and D. Shmoys. A best possible heuristic fokibenter problemMathematics of Operations
Research10(2):180-184, 1985.

P. Indyk, A. Amir, A. Efrat, and H H. Samet. Efficient algornitis and regular data structures for dilation,
location and proximity problems. IRroceedings of the Annual Symposium on Foundations of Cempu
Sciencepages 160-170, 1999.

J. Lau, E. Perelman, and B. Calder. Selecting software phmeskers with code structure analysis. In
Proceedings of the International Symposium on Code Geparahd OptimizationMarch 2006.

J. Lau, E. Perelman, G. Hamerly, T. Sherwood, and B. Caldextivistion for variable length intervals and
hierarchical phase behavior. IBEEE International Symposium on Performance Analysis efeys and
Software March 2005a.

J. Lau, J. Sampson, E. Perelman, G. Hamerly, and B. Caldersffbng correlation between code signatures
and performance. [FEEE International Symposium on Performance Analysis steé®ys and Software
March 2005b.

J. Lau, S. Schoenmackers, and B. Calder. Structures foepmtassification. INEEE International Sympo-
sium on Performance Analysis of Systems and SoftWwéaech 2004.

J. Lau, S. Schoenmackers, and B. Calder. Transition phassifitation and prediction. Ihlth International
Symposium on High Performance Computer Architectiaedruary 2005c.

J. MacQueen. Some methods for classification and analysiatiivariate observations. In L. M. LeCam
and J. Neyman, editor&roceedings of the Fifth Berkeley Symposium on Mathema$iistics and
Probability, volume 1, pages 281-297, Berkeley, CA, 1967. Universit@alffornia Press.

J. McNames. Rotated partial distance search for fasteovguotintization encodindEEE Signal Processing
Letters 7(9), 2000.

A. Moore. The anchors hierarchy: Using the triangle ineip&b survive high-dimensional data. Pro-
ceedings of the Twelfth Conference on Uncertainty in Aiifintelligence pages 397-405. AAAI Press,
2000.

H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and A. Kanidhi. Pinpointing representative portions
of large Intel Itanium programs with dynamic instrumerdati In International Symposium on Microar-
chitecture December 2004.

377



HAMERLY, PERELMAN, LAU, CALDER AND SHERWOOD

D. Pelleg and A. MooreX-means: Extending-means with efficient estimation of the number of clusters.
In Proceedings of the 17th International Conf. on Machine Inéag, pages 727—734, 2000.

E. Perelman, G. Hamerly, and B. Calder. Picking statidjicallid and early simulation points. limterna-
tional Conference on Parallel Architectures and CompdatiTechniquesSeptember 2003.

F. J. Provost and V. Kolluri. A survey of methods for scalinginductive algorithms.Data Mining and
Knowledge Discovery3(2):131-169, 1999.

J. Rissanen. Modeling by shortest data descriptfartomatica 14:465-471, 1978.

K. Sanghai, T. Su, J. Dy, and D. Kaeli. A multinomial clusterimodel for fast simulation of computer
architecture designs. KDD, pages 808-813, 2005.

G. Schwarz. Estimating the dimension of a moddie Annnals of Statistic6(2):461-464, 1978.

T. Sherwood and B. Calder. Time varying behavior of prograifechnical Report UCSD-CS99-630, UC
San Diego, August 1999.

T. Sherwood, E. Perelman, and B. Calder. Basic block digioh analysis to find periodic behavior and
simulation points in applications. Imternational Conference on Parallel Architectures andnglation
TechnigquesSeptember 2001.

T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Autmalft characterizing large scale program
behavior. In10th International Conference on Architectural SupportPeogramming October 2002.

T. Sherwood, S. Sair, and B. Calder. Phase tracking andgpieuli In30th Annual International Symposium
on Computer Architecturelune 2003.

P. Smyth. Clustering using Monte Carlo cross-validationPtoceedings of the Second International Con-
ference on Knowledge Discovery and Data MiniAgigust 1996.

378



