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Abstract

An essential step in designing a new computer architecture is the careful examination of dif-
ferent design options. It is critical that computer architects have efficient means by which they
may estimate the impact of various design options on the overall machine. This task is compli-
cated by the fact that different programs, and even different parts of thesameprogram, may have
distinct behaviors that interact with the hardware in different ways. Researchers use very detailed
simulators to estimate processor performance, which models every cycle of an executing program.
Unfortunately, simulating every cycle of a real program cantake weeks or months.

To address this problem we have created a tool called SimPoint that uses data clustering algo-
rithms from machine learning to automatically find repetitive patterns in a program’s execution. By
simulating one representative of each repetitive behaviorpattern, simulation time can be reduced to
minutes instead of weeks for standard benchmark programs, with very little cost in terms of accu-
racy. We describe this important problem, the data representation and preprocessing methods used
by SimPoint, the clustering algorithm at the core of SimPoint, and we evaluate different options for
tuning SimPoint.

Keywords: k-means, random projection, Bayesian information criterion, simulation, SimPoint

1. Introduction

Understanding the cycle level behavior of a processor during the execution of an application is cru-
cial to modern computer architecture research. To gain this understanding, researchers typically
employ detailed simulators that model each and every cycle of the underlying machine. Unfortu-
nately, this level of detail comes at the cost of speed. Even on the fastestsimulators, modeling
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the full execution of a single benchmark can take weeks or months to complete,and nearly all in-
dustry standard benchmarks require the execution of asuiteof programs. For example, the SPEC
benchmark suite consists of 26 different programs, requiring the execution of a combined total of
approximately 6 trillion instructions. Still worse, architecture researchers need to simulate each
benchmark over a variety of different architectural configurations and design options, to find the
set of features that provides an appropriate trade-off between performance, complexity, area, and
power. The same program binary, with the exact same input, may be run hundreds or thousands of
times to examine how, for example, the effectiveness of a given architecture changes with its cache
size. Researchers need techniques which can reduce the number of machine-months required to
estimate the impact of an architectural modification without introducing an unacceptable amount of
error or excessive simulator complexity. We present a method, distributed as a software package
called SimPoint, which can meet this need by exploiting the structured way in whichindividual
programs change behavior over time.

As a program executes its behavior changes. These changes are notrandom, but rather are
often structured as sequences of a small number of recurring behaviors, which we termphases.
Identifying this repetitive and structured behavior can be of great benefit, since it means we only
need to sample each unique behavior once to create a complete representation of the program’s
execution. This is the underlying philosophy of SimPoint (Sherwood et al., 2001, 2002; Perelman
et al., 2003; Biesbrouck et al., 2004; Lau et al., 2004, 2005b). SimPointintelligently chooses a
very small set of samples from an executed program calledsimulation pointsthat, when simulated
and weighted appropriately, provide an accurate picture of the complete execution of the program.
Simulating in detail only these carefully chosen simulation points can save hoursof simulation time
over a random sampling of the program, while still providing the accuracy needed to make reliable
decisions based on the outcome of the cycle level simulation.

Before we developed SimPoint, architecture researchers would simulate SPEC programs for 300
million instructions from the start of execution, or fast forward 1 billion instructions to try to get past
the initialization part of the program. These techniques can result in error rates of up to 3736% in
predicting the architecture metrics we wish to measure. SimPoint achieves verylow error rates (2%
average error, 8% maximum error for the results in this paper) and on average reduces simulation
time by a factor of 1,500, compared to simply simulating the whole program. This approach is now
used by researchers in the architecture community, and companies such asIntel (Patil et al., 2004).
This paper shows how repetitive phase behavior can be found in programs through machine learning
and describes how SimPoint automatically finds these phases and picks simulation points.

The rest of the paper is laid out as follows. First, Section 2 describes a summary of the sim-
ulation methodology in processor architecture research. Section 3 explains the phase behavior
paradigm, and defines terms that are essential in describing the analysis. The correlation between
the executing code and performance of a program is described in Section4, as well as how this
code is represented in vector format to capture program behavior. Section 5 describes the machine
learning algorithms used to automatically detect phases using the code vectors. Section 6 describes
how simulation points are picked from the phases, and the accuracy resulting from representing
the entire program execution using the simulation points. Section 7 examines parameters that sig-
nificantly influence the performance of the SimPoint algorithm in terms of accuracy and run-time.
Section 8 examines prior work in phase analysis that uses machine learning.Ongoing and future
work is described in Section 9 and our findings are summarized in Section 10.
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2. The Application - Simulation

In this section we explain the tools modern computer architects use to evaluate designs and the
methods we use to evaluate our solutions.

2.1 Background

Processor architecture research quantifies the effectiveness of a design by executing a program on
a software model of the architecture design called an architecture simulator.It is difficult to accu-
rately compare studies that provide results for different sets of programs. To set a standard in the
community, the Standard Performance Evaluation Corporation (SPEC) was established to provide a
collection of benchmarks to evaluate processor performance. In the samemanner, the architecture
simulator needs to have a common baseline. SimpleScalar (Burger and Austin, 1997) is a cycle
level processor simulator that has become a standard model for architecture research.

2.1.1 SPEC CPU BENCHMARKS

The SPEC CPU2000 benchmark suite has 26 programs, of which 12 are integer programs (primary
execution is of integer instructions) and 14 are floating-point programs (primary execution is of
floating-point instructions). The benchmark suite is chosen to stress a processor across its many
components in a rigorous manner. Each program in the suite has 3 different inputs: test, train, and
reference, which respectively correspond to a short test, a more representativetraining, and a full
reference run. The test, train and reference inputs typically execute onthe order of a few million,
a few billion, and hundreds of billions of instructions respectively. Tables1 and 2 show all the
SPEC CPU2000 benchmarks, divided into integer and floating-point programs. The tables provide
a high level description of each benchmark, its source language, and thenumber of instructions
executed (in billions) with the reference and test inputs. These programs were compiled for the
Alpha Instruction Set Architecture (ISA) with full optimizations. On average, the reference inputs
execute for 223 billion instructions. The programparser has the maximum instruction count at
546 billion instructions.

SPEC periodically releases a benchmark suite to evaluate current and future processors. To keep
up with the ever increasing rate of processor speeds, SPEC has significantly increased the duration
of benchmark execution from the previous suite release in 1995 to the current release of 2000. This
is because the reference input needs to run long enough to achieve a valid timing for the benchmark
run. This means that with current and future speeds that future releases of the SPEC benchmark
suite will need to execute on the order of trillions of instructions for the reference inputs.

2.1.2 SIMPLESCALAR

SimpleScalar is a program that models the cycle level execution of a processor. It takes as input a
program-input pair and simulates the execution from beginning to end, while computing relevant
statistics for architecture research, such as cycles per instruction (CPI), cache miss rates, branch mis-
predictions, and power consumption. SimpleScalar has several models to represent different levels
of execution detail. At the coarsest level of detail,sim-fastmodels only the functional execution of
a program at the instruction level. A more detailed level,sim-cache, models the memory hierarchy
and computes miss rates for those structures. The level of highest detail,sim-outorder, models the
cycle-level out-of-order execution of a super-scalar processor.It is a superset of all the other mod-
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Benchmark Ref Length Test Length Language Category
bzip2 143 8.82 C Compression
crafty 191 4.26 C Game Playing: Chess
eon 80 0.09 C++ Computer Visualization
gap 269 1.17 C Group Theory, Interpreter
gcc 46 2.02 C C Programming Language Compiler
gzip 84 3.37 C Compression
mcf 61 0.26 C Combinatorial Optimization

parser 546 4.20 C Word Processing
perlbmk 111 2.0 C PERL Programming Language

twolf 346 0.26 C Place and Route Simulator
vortex 118 9.81 C Object-oriented Database

vpr 84 0.69 C FPGA Circuit placement and routing

Table 1: SPEC CPU2000 Integer Benchmarks (lengths in billions of instructions)

Benchmark Ref Length Test Length Language Category
ammp 326 5.49 C Computational Chemistry
applu 223 0.18 Fortran 77 Parabolic / Elliptic Partial Differential Equations
apsi 347 5.28 Fortran 77 Meteorology: Pollutant Distribution
art 41 1.48 C Image Recognition / Neural Networks

equake 131 1.44 C Seismic Wave Propagation Simulation
facerec 211 4.12 Fortran 90 Image Processing: Face Recognition
fma3d 268 0.00 Fortran 90 Finite-element Crash Simulation
galgel 409 4.34 Fortran 90 Computational Fluid Dynamics
lucas 142 3.71 Fortran 90 Number Theory / Primality Testing
mesa 281 2.88 C 3-D Graphics Library
mgrid 419 16.77 Fortran 77 Multi-grid Solver: 3D Potential Field

sixtrack 470 8.59 Fortran 77 High Energy Nuclear Physics AcceleratorDesign
swim 225 0.43 Fortran 77 Shallow Water Modeling

wupwise 349 3.63 Fortran 77 Physics / Quantum Chromodynamics

Table 2: SPEC CPU2000 Floating-Point Benchmarks (lengths in billions of instructions)
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I Cache 16k 2-way set-associative, 32 byte blocks, 1 cycle latency
D Cache 16k 4-way set-associative, 32 byte blocks, 2 cycle latency
L2 Cache 1Meg 4-way set-associative, 32 byte blocks, 20 cycle latency
Main Memory 150 cycle latency
Branch Pred hybrid - 8-bit gshare w/ 8k 2-bit predictors + a 8k bimodal predictor
O-O-O Issue out-of-order issue of up to 8 operations per cycle, 128 entryre-order buffer
Mem Disambig load/store queue, loads may execute when all prior store addresses are known
Registers 32 integer, 32 floating point
Func Units 8-integer ALU, 4-load/store units, 2-FP adders, 2-integerMULT/DIV, 2-FP

MULT/DIV
Virtual Mem 8K byte pages, 30 cycle fixed TLB miss latency after earlier-issued instructions

complete

Table 3: Baseline Simulation Model.

els and provides the highest level of execution detail. The architecture research community uses
SimpleScalar extensively, and today it is considered a standard architecture simulator.

The different models in SimpleScalar each have a stable execution rate. Thefastest model,sim-
fast, executes on the order of tens of billion instructions per hour on a 1 GHz machine. The slowest
yet most accurate model,sim-outorder, executes on the order of hundreds of million instructions
per hour, which is several orders of magnitude slower than the native hardware. It would take
months of computation time to simulate the entire SPEC benchmark suite withsim-outorder. What
makes matters worse is that researchers need to evaluate many different hardware configurations to
measure the effectiveness of a design. This enormous turnaround time for a study makes simulating
the full benchmark infeasible, and the majority of researchers only simulate afew hundred million
instructions from each benchmark.

2.2 Methodology

For this study, we performed our analysis for the complete set of SPEC CPU2000 programs for mul-
tiple inputs using the Alpha binaries from the SimpleScalar website. We collect allof the frequency
vector profiles, described in Section 4, using SimpleScalar. To generate our baseline results, we
executed all programs from start to completion using SimpleScalar, gatheringthe hardware metrics.
The baseline microarchitecture model is detailed in Table 3.

To examine the accuracy of our approach we provide results in terms of CPI prediction error
andk-means variance (since SimPoint usesk-means clustering). The CPI prediction error is the
percent difference between CPI predicted using only simulation points chosen by SimPoint and the
baseline (true) CPI of the complete execution of the program. Thek-means variance is the sum-of-
squared distances between every clustered point and its closest center, which is the criterionk-means
optimizes.

3. Defining Phase Behavior

Since phases are a way of describing the recurring behavior of a program executing over time, we
begin by describing phase analysis with a demonstration of the time-varying behavior (Sherwood
and Calder, 1999) of two programs from the SPEC 2000 benchmark suite,gcc and gzip. To
characterize the behavior of these programs we have simulated their completeexecution from start
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Figure 1: These plots show the relationship between measured performance (CPI) and code usage
for the programgzip-graphic, and SimPoint’s ability to capture phase information by
only looking at what code is being executed. For each of the three plots, the horizontal
axis represents the execution of the program over time, and each point plotted represents
one 10-million instruction interval. The top plot shows the CPI for the executingprogram.
The middle plot shows the distance of each interval’s basic block vector (explained in
Section 4) to the “target vector”, which is a basic block vector that represents the entire
program’s execution. The target vector is a signature of the program’s overall average
behavior, and this plot shows how similar the code of each part of the program is to the
overall behavior of the program, lower meaning more similar. The bottom plot shows
how SimPoint classifies each interval into one of four phases. The phasetransitions
correspond to changes in the CPI in the top graph, though SimPoint does not use metrics
like CPI to classify intervals.

to finish. Each program executes many billions of instructions, and gathering these results took
several machine-months of simulation time. The behavior of each program is shown in the top
graphs of Figures 1 and 2. Each top graph shows how the CPI rate changes for these two programs
over time. CPI is a commonly used metric in the processor architecture community for measuring
processor performance. Each point on the graph represents the average CPI taken over a window
(we call it an interval) of 10 million executed instructions. These graphs showthat programs are
fairly complex, changing behaviors frequently.

Note that not only do the behaviors of the programs change over time, they change on the
largest of time scales, and even at a large scale one can find repeating behaviors. Programs may
have stable behavior for billions of instructions and then change suddenly. In addition to CPI, we
have found for the SPEC 95 and 2000 programs that the behavior ofall of the architecture metrics
(branch prediction, cache misses, etc.) tend to change in unison, though not necessarily in the same
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Figure 2: These plots show the relationship between measured performance (CPI) and code usage
for the programgcc-166, and SimPoint’s ability to capture phase information by only
looking at what code is being executed. For each of the three plots, the horizontal axis
represents the execution of the program over time, and each point plotted represents one
10-million instruction interval. The top plot shows the CPI for the executing program.
The middle plot shows the distance of each interval’s basic block vector to the“target
vector”, which is a basic block vector (explained in Section 4) that represents the entire
program’s execution. The target vector is a signature of the program’s overall average
behavior, and this plot shows how similar the code of each part of the program is to the
overall behavior of the program, lower meaning more similar. The bottom plot shows
how SimPoint classifies each interval into one of eight phases. The phasetransitions
correspond to changes in the CPI in the top graph, though SimPoint does not use metrics
like CPI to classify intervals.

direction (Sherwood and Calder, 1999; Sherwood et al., 2002). These corresponding changes are
due to underlying changes in program execution.

The underlying methodology used in this work is the ability to automatically identify these
underlying program changeswithout relying on architectural metrics. To ground our discussion in
a common vocabulary, the following is a list of definitions to describe programbehavior and its
automated classification.

• Interval – To perform our analysis we break a program’s execution upinto non-overlapping
intervals of execution. An interval is a section of contiguous execution (a timeslice) of a
program’s execution. For example, when using an interval size of 100 millioninstructions,
the first interval of execution starts at instruction 0 and ends at the 100 millioninstruction
executed, the second interval of execution are the instructions 100 million upto 200 million
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in the program’s execution, the third interval represents instructions 200 to300 million, etc.
For the results in this work all intervals are chosen to be the same length, as measured in the
number of instructions committed within an interval. This is usually 1, 10, or 100 million
instructions, as used by Perelman et al. (2003).

• Similarity – A similarity metric measures the similarity in behavior between two intervals of
a program’s execution, and is specific to the representation of those intervals.

• Phase – A set of intervals within a program’s execution that all have similar behavior,regard-
lessof temporal adjacency. A phase may be made up of intervals which are disjoint in time;
we would call this a phase with a repeating behavior. A “well-formed” phaseshould have
intervals with similar behavior across various architecture metrics (e.g. CPI,cache misses,
branch misprediction). In this paper we consider the terms ‘cluster’ and ‘phase’ to be equiv-
alent.

• Phase Classification – Using machine learning to group intervals from a program/input pair
into phases (clusters) with similar behavior.

4. The Strong Correlation Between Code and Performance

In this section we describe how we identify phase behavior in an architecture independent fashion.

4.1 Using an Architecture-Independent Metric for Phase Classification

To find program phases, we need a notion of how similar are two differentparts of a program’s
execution. In creating this metric it is advantageous to not rely on hardware-based statistics such as
cache miss rates or performance (i.e. CPI), since using these would tie the phases to those statistics
which change depending on the architecture configuration. If such statistics were used, the phases
would need to be re-analyzed every time there was a change to some architectural parameter (either
statically if the size of the cache changed, or dynamically if some policy changes adaptively). This is
not acceptable, since our goal is to find a set of samples that can be usedacross an architecture design
space exploration, where many of these parameters may change. To address this, we need a metric
that is independentof any particular hardware-based statistic, but still relates to the fundamental
changes in behavior like those shown in the top graphs of Figures 1 and 2.

An effective way to design such a metric is to base it on the behavior of a program in terms
of the code that is executed over time. We have shown that there is a very strong correlation (Lau
et al., 2005b) between the set of paths executed in a program and the time-varying architectural
behavior observed. The intuition behind this is that the executed code determines the behavior of
the program. With this idea it is possible to find the phases in programs usingonly a metric related
to how the code is being exercised (i.e. both what code is touched and how often). The central idea
behind SimPoint is that it can find the phase behavior shown in the top graphsof Figures 1 and 2 by
examining only the frequency with which the code parts (e.g., basic blocks) are executed over time.

4.2 Basic Block Vector

The basic block vector (BBV) (Sherwood et al., 2001) is a structure designed to concisely capture
information about how a program is changing behavior over time. A basic block is a section of
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code (e.g. a contiguous set of instructions) that is executed from start tofinish with one entry and
one exit. The metric we will use for comparing two time intervals in a program is based on the
differences in the execution frequencies for each basic block executed during those two intervals.
The intuition behind this is that the behavior of the program at a given time is directly related to the
code it is executing during that interval, and basic block vectors provide us with this information.

A program, when run for any interval of time, will execute each basic blocka certain number
of times. Knowing this information provides a code signature for that intervalof execution, and
shows where the application is spending its time in the code. The basic idea is thatknowing the
basic block distribution for two different intervals gives two separate signatures which we can then
compare to find out how similar the intervals are to one another. If the signatures are similar, then
the two intervals spend about the same amount of time in the same code, and the performance of
those two intervals should be similar.

We represent a basic block vector as a one-dimensional array, with oneelement in the array
for each static basic block in the program. Each interval in an executed program is represented by
one BBV, and at the beginning of each interval, its corresponding BBV has all zeros. During each
interval, we count the number of times each basic block has been entered, and record that number
into the corresponding element in the vector. This number is weighted by the number of instructions
in the basic block, since we want every individual instruction to have the same influence. Therefore,
each element in the array is the count of how many times its corresponding basicblock has been
entered during an interval of execution, multiplied by the number of instructions in that basic block.
For example, if the 50th basic block has one instruction and is executed 15 timesin an interval, then
bbv[50] = 15 for that interval. At the end of an interval’s execution, we normalize the BBV to sum
to 1.

We call the vectors used to guide phase analysisFrequency Vectors, of which basic block vec-
tors are one type. Frequency vectors can represent basic blocks, branch edges, or any other type
of program related structure which provides a representative summary of a program’s behavior for
each interval of execution. We recently examined frequency vector structures other than basic block
vectors for the purpose of phase classification. We have looked at frequency vectors for data, loops,
procedures, register usage, instruction mix, and memory behavior (Lau et al., 2004). We found that
using register usage vectors, which simply counts for a given interval thenumber of times each
register is defined and used, provides similar accuracy to using basic block vectors. In addition, us-
ing only loop and procedure branch execution frequencies performs almost as well as using the full
basic block information. We also found, for SPEC 2000 programs, that creating frequency vectors
by including both code and data access patterns into the vectors did not improve classification over
just using code (Lau et al., 2004).

4.3 Basic Block Vector Difference

In order to find patterns in a program we must first have some way of comparing the similarity
of two basic block vectors. The operation should take two basic block vectors and return a single
number corresponding to how similar (or different) they are.

There are several ways of measuring the similarity of two vectors, such astaking the dot product
between the vectors, finding the Euclidean (2-norm) distance of the connecting vector, or Manhattan
(1-norm) distance of the connecting vector. The Euclidean distance has been shown to be effective
for off-line phase analysis (Sherwood et al., 2002; Perelman et al., 2003). The SimPoint approach
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we examine in this paper uses Euclidean distance as the metric for comparing basic block vectors,
since it is based onk-means. For on-the-fly phase analysis (e.g. predicting phases during computa-
tion), the Manhattan distance is more efficiently implemented in hardware. It hasbeen shown to be
useful in previous work in online phase prediction (Sherwood et al., 2003; Lau et al., 2005c).

4.4 Showing the Correlation Between Code Signatures and Performance

For a detailed study showing that there is a strong correlation between executed code and real
performance, please see Lau et al. (2005b). The top two graphs of Figure 2 give one illustration of
this correlation by showing the time-varying CPI and BBV distance graphs next to each other for
gcc-166. The top graph plots the CPI for each interval executed (at 10M intervallength) showing
how the program’s CPI varies over time. Similarly, the BBV distance graph plotsfor each interval
the Manhattan distance of the BBV (code signature) for that interval fromthe whole program’s
target vector. The whole program’s target vector is a BBV that comes from viewing the whole
program as a single interval. The same information is also provided forgzip in the top two graphs
of Figure 1. These graphs show that changes in CPI have corresponding changes in code signatures,
which is one indication of strong phase behavior for these applications.

These graphs show a strong correlation between code changes and CPI changes even for com-
plex programs likegcc. The graphs forgzip show that phase behavior can be found even if the
intervals’ CPIs have small variance. This brings up an important point about classifying intervals
based on code similarity rather than based on similarity of CPI or some other hardware metric. As-
sume we have two intervals withdifferent code signaturesbut they have verysimilar CPIsbecause
both of their working sets fit completely in the cache. During a design space exploration search,
as the cache size changes, their CPIs may differ dramatically if one of them no longer fits into the
cache. This is why it is important to perform the phase analysis by comparingthe code signatures
independent of the underlying architecture. We have found that the BBVcode signatures correctly
identify differences like these, which cannot be seen by looking at just the CPI.

4.5 Basic Block Similarity Matrix

Now that we have methods of comparing program execution intervals, we can use them for finding
phase-based behavior. A phase of program behavior can be defined in several ways. Past definitions
were built around the idea of a phase being a contiguous interval of execution during which a
measured program metric is relatively stable. We extend this notion of a phaseto include all similar
sections of execution regardless of temporal adjacency. Thus, a phase may appear several times in
the execution of a program.

A key observation from this paper is that the phase behavior seen in any program metric is a
function of the code being executed. Because of this we can use the comparison between the basic
block vectors to get an idea of how closely related any other metrics will be between those two
intervals.

To find how all intervals of execution relate to one another we create abasic block similarity
matrix for a program/input pair. The similarity matrix is an upper-triangularn×n matrix, where
n is the number of intervals in the program’s execution. An entry at(x,y) in the matrix represents
the Manhattan distance between the basic block vector at intervalx and the basic block vector at
intervaly.
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Figures 3 (left and right) and 4 (left) shows the similarity matrices forgzip, bzip, andgcc using
the Manhattan distance. The diagonal of the matrix represents the program’s execution over time
from start to completion. The darker the points, the more similar the intervals are(the Manhattan
distance is closer to 0), and the lighter they are the more different they are (the Manhattan distance
is closer to the maximum value — which is 2 since each vector is normalized to sum to 1).

Consider the points along the matrix diagonal. The top left corner of each matrix is the start
of program execution(0,0), and the bottom right is the point(n− 1,n− 1) (end of execution).
Each interval is perfectly similar to itself, so the points on the diagonal are all dark. Starting from
a point on the diagonal, you can compare how its corresponding interval relates to its neighbors
forward (backward) in execution by tracing horizontally (vertically) from that point. For example,
to compare a given intervalx with the interval atx+ m, start at the point(x,x) on the matrix and
trace to the right until you reach(x,x+m).

Let us first examinegzip because it has behaviors that are evident at such a large scale that they
are easy to see. An interval taken from 70 billion instructions into execution inFigure 3 (left) is
directly in the middle of a large phase shown by the triangle of dark points that surround this point.
This means that this interval is very similar to its neighbors both forward and backward in time. We
can also see that the intervals at 50 billion and 90 billion instructions are also very similar to the
program behavior at 70 billion instructions. While it may be hard to see in a printed version, the
intervals around 70 billion instructions are similar to the intervals around 10 billionand 30 billion
instructions, and even more similar to those around 50 and 90 billion instructions.

Overall, Figure 3 (left) shows that the phase behavior seen in the similarity matrix lines up quite
closely with the behavior of the program seen in the top graph of Figure 1, with 5 large regions of
self-similar behavior (the first 2 being different from the last 3) each divided by a small region of
self-similar behavior. All of the small self-similar regions are also very similar toeach other.

The similarity matrix forbzip (shown on the right of Figure 3) is very interesting.Bzip has
complicated behavior, with two large parts to its execution: compression and decompression. This
can readily be seen in the figure as the large dark triangular and square patches. The interesting
thing aboutbzip is that even within each of these sections of execution there is complex behavior.
This, as will be shown later, makes the behavior ofbzip impossible to capture using only one small
contiguous section of execution.

An even more complex case for finding phase behavior isgcc, which is shown on the left of
Figure 4 ( the matrix on the right of that figure will be explained in more detail in Section 5.1.1).
The left matrix shows thatgcc does have regular behavior. Even for such a complex program, we
see that there is common code shared between sections of execution, suchas the intervals around 13
billion instructions and 36 billion instructions. In fact the strong dark diagonal line cutting through
the matrix indicates that there is large-scale repetition between the first half and second half of the
program. By analyzing the graph we can see that code at each intervalx is very similar to interval
(x+23.6B instructions).

5. Automatically Finding Phase Behavior

In this section we describe the algorithms used to automatically detect patterns using the frequency
vectors described in the previous section.

353



HAMERLY, PERELMAN, LAU , CALDER AND SHERWOOD

0
B

2
0
B

4
0
B

6
0
B

8
0
B

1
0
0
B

0
B

5
0
B

1
0
0
B

Figure 3: Basic block similarity matrix for the programsgzip-graphic (shown left) and
bzip-graphic (shown right). The diagonal of the matrix represents the program’s exe-
cution from beginning to end, with units in billions of instructions. The darker the points,
the more similar the intervals are (the Manhattan distance is closer to 0), and the lighter
the points the more different they are (the Manhattan distance is closer to 2).

0
B

1
0
B

2
0
B

3
0
B

4
0
B

0
B

1
0
B

2
0
B

3
0
B

4
0
B

Figure 4: The original similarity matrix for the programgcc-166 (left), and the similarity matrix
for the projection ofgcc-166 (right). The figure on the left uses the original basic block
vectors (each of which has over 100,000 dimensions), and uses the Manhattan distance
for calculating the difference. The figure on the right uses the same data,but projected
down to 15 dimensions, and uses the Euclidean distance for calculating the difference.
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5.1 Using Clustering for Phase Classification

A primary goal of SimPoint is to have an automated way of extracting phase information from
programs. Data clustering algorithms from unsupervised machine learning have been shown to
be very effective at breaking the complete execution of a program into phases that have similar
frequency vectors (Sherwood et al., 2002). Because the frequency vectors correlate to the overall
performance of the program, grouping intervals based on their frequency vectors produces phases
that are similar not only in the distribution of program structures used, but also in every other
architecture metric measured, including overall performance.

The goal of clustering is to divide a set of points into clusters such that points within each cluster
are similar to one another (by some metric), and points in different clusters are different from one
another. We use the machine learning term ‘cluster’ and the architecture term ‘phase’ to express the
same concept.

Thek-means algorithm (MacQueen, 1967) is an efficient and well-known clustering algorithm,
which we use to split program intervals into phases. Prior to clustering, we use random linear
projection (Dasgupta, 2000) to reduce the dimension of the input vectors. One drawback of the
k-means algorithm is that it requires the number of clustersk as an input to the algorithm, but we
do not know beforehand what value is appropriate. To address this, we run the algorithm for several
values ofk, and then use a penalized likelihood score to guide our final choice fork. Taken to the
extreme, if every interval of execution is given its very own cluster, then every cluster will have
homogeneous behavior. Our goal is to choose a clustering with a minimum number of clusters
which still models the program behavior well.

The following steps summarize the SimPoint phase clustering algorithm at a high level.

1. Profile the program by dividing the program’s execution into contiguousintervals of fixed
length (e.g., 1 million, 10 million, or 100 million instructions). For each interval, collect a
frequency vector tracking the program’s use of some program structure (basic blocks, branch
edges, loops, register usage, etc.). Each frequency vector is normalized so that the sum of all
the elements equals 1.

2. Reduce the dimensionality of the frequency vector data to a much smaller number of dimen-
sions using random linear projection. Using projected data speeds up thek-means algorithm
significantly and reduces the memory requirements by several orders of magnitude while pre-
serving the essential similarity information.

3. Run thek-means clustering algorithm on the projected data with values ofk in the range
from 1 toK, whereK is a user-prescribed maximum number of phases that can be detected.
Each run ofk-means produces a clustering, which is a partition of the data intok different
phases/clusters. Each run ofk-means begins with a random initialization step, which requires
a random seed.

4. To compare and evaluate the different clusters formed for differentk, we use the Bayesian
Information Criterion (BIC) as a measure of the “goodness of fit” of a clustering to a data
set. A high BIC score indicates the clustering is a good fit to the data. For each clustering
(k∈ {1,2, . . . ,K}), the fitness of the clustering is scored using the BIC.

5. The final step is to choose the clustering with a smallk such that its BIC score is nearly as
good as the best observed. The chosen clustering is the final groupingof intervals into phases.
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The above algorithm groups intervals into phases. This algorithm has several important param-
eters: interval length, projected dimension, the maximum number of clustersK, how the BIC is to
be used to select the best clustering, etc. Each must be tuned to create accurate and representative
simulation points using SimPoint. We discuss these parameters in more detail later in this paper.

5.1.1 RANDOM PROJECTION

For this clustering problem, we have to address the problem of high dimensionality. Many clustering
algorithms suffer from the so-called “curse of dimensionality,” which refers to the fact that finding
an optimal clustering is intractable as the number of dimensions increases. Oneproblem is that ge-
ometric optimizations that give significant speedup in low-dimensional data often have the opposite
effect in high dimensions (e.g.k-d trees for speeding up nearest neighbor queries). For basic block
vectors, the number of dimensions is the number of executed basic blocks in the program, which
ranges from 2,756 to 102,038 for the SPEC benchmark suite, and could grow into the millions for
very large programs. For example, one Microsoft application we studied consisted of over 800,000
basic blocks, which is representative of desktop applications. Another practical problem is that the
running time and memory requirements ofk-means depend on the dimension of the data, making
the algorithm slow if the dimension grows too large. Also, we observe thatk-means tends to get
stuck easily in sub-optimal solutions if the dimension is too high. This is evidencedby the small
number of iterationsk-means requires to converge on high-dimensional data, as we have observed
on this data. The algorithm does not improve much over its initialization.

Two broad methods of reducing the dimension of data are dimension selection and dimension
reduction. Dimension selection simply removes some of the dimensions, based ona measure of
goodness of each dimension for describing the data. However, this can throw away a lot of infor-
mation in the dimensions which are ignored. Also, in finding a measure to select useful dimensions
is not as clear for unsupervised learning as for supervised learning.Dimension reduction reduces
the number of dimensions by creating a new lower-dimensional space and then projecting each data
point into the new space (where the new space’s dimensions are not necessarily related to the old
space’s dimensions).

For this work we use random linear projection (Dasgupta, 2000) to createa new low-dimensional
space into which we orthogonally project the data. This is a simple and fast technique that is very
effective at reducing the number of dimensions while retaining the essentialstructure of the data.
There are two steps to projecting a data set down to a lower-dimensional version. Consider a data
setX which is represented as a matrix ofn×d real values, wheren is the number of vectors, and
d is the original dimension. We want a low-dimension versionX′ which isn×d′, whered′ is the
projected number of dimensions. To createX′, we do the following:

• Create a projection matrixP sized×d′. Fill each entry in the matrix with a random value
chosen uniformly in[−1,1].

• Use a matrix multiplication to obtainX′ = X×P.

The analysis given by Dasgupta (Dasgupta, 2000) shows that when using random linear projec-
tion for clustering data, there are two primary theoretical benefits. The first is that clusters that are
very eccentric will become more spherical in their low-dimensional representation. This is appropri-
ate for thek-means algorithm which searches for spherical clusters. The second isthat a mixture of
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k Gaussian clusters can be projected into onlyO(logk) dimensions while retaining the approximate
level of separation between clusters.

Principal components analysis (PCA) is a widely-used method for dimension reduction based
on directions of high variance. However, performing PCA on ad-dimensional data set requires
O(d3) operations, which is too expensive for data sets of the size we are considering here that can
have hundreds of thousands of dimensions. Constructing the random projection matrix requires
only O(dd′) time, so it is linear in the original and the new dimension. Dasgupta further showed
that there are many simple examples where PCA is not able to reliably reducek well-separated
Gaussian clusters to belowΩ(k) dimensions and keep them well-separated in the low-dimensional
projection. Examining the use of PCA for BBV dimension reduction is part of our future research.

For our application, we found that 15 dimensions is low enough to be computationally tractable,
but sufficiently high to discover the different phases of execution with clustering. We found this by
running experiments which are reported in earlier work (Sherwood et al.,2002). These experiments
projected all the data sets we are interested in to a varying number of dimensions and then recorded
the number of clusters found byk-means and the BIC. We found that for fewer than 15 dimensions,
the number of clusters found dropped off, but for more than 15 dimensions, the number of clusters
found did not increase significantly. Similar results were also found using the G-means algorithm
to incrementally learnk (without using the BIC) by Hamerly and Elkan (2003). Section 7 evaluates
how the choice of dimension affects the accuracy of SimPoint.

Figure 4 shows the similarity matrix forgcc on the left using original BBVs, whereas the simi-
larity matrix on the right shows the same matrix but on the data that has been projected down to 15
dimensions. For the reduced dimension data we use the Euclidean distance to measure differences,
rather than the Manhattan distance used on the original data. Some informationis lost because of
the projection, but overall phase behavior we see in the original data is stilleasily discernible with
only 15 dimensions. A scatterplot of the programgzip projected to 2 dimensions and clustered into
3 clusters usingk-means is shown in Figure 5.

5.1.2 BAYESIAN INFORMATION CRITERION

To compare the different clusterings formed for differentk, we use the Bayesian Information Crite-
rion, or BIC (Schwarz, 1978), as a measure of the “goodness of fit” of a clustering to a data set. The
BIC is an approximation of the probability of the clustering, given the data thathas been clustered.
Thus, the larger the BIC score, the higher the probability that the clusteringbeing scored is a “good
fit” to the data being clustered. The BIC formulation we use is appropriate forclustering withk-
means, however other formulations of the BIC could also be used for otherclustering models. The
BIC is only one method of choosing a good model from a set of models; othermethods such as the
Akaike information criterion (AIC) (Akaike, 1974), minimum description length(MDL) (Rissanen,
1978), and Monte-carlo cross-validation (MCCV) (Smyth, 1996) may alsobe appropriate.

There are two parts of the BIC: the likelihood and the penalty. The likelihood isa measure of
how well the clustering models the data. For thek-means likelihood, each cluster’s model is con-
sidered a spherical Gaussian distribution (which is the assumptionk-means makes). The likelihood
of a cluster is the product of the probabilities of each point in the cluster given by the cluster’s
Gaussian. The likelihood for the whole model is just the product of the likelihoods for all clusters.
However, the likelihood tends to increase without bound as more clusters are added. Therefore the
second term is a penalty that offsets the likelihood growth based on the modelcomplexity (i.e. the
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Figure 5: This plot shows a two-dimensional projection of the basic block vectors for the program
gzip, having 1038 total intervals, and clustered into three clusters withk-means. The
lines show divisions between the three clusters. Note that SimPoint normally operates in
more than two dimensions, but this illustrates the fact that that program behavior does
form natural groups that can be found through data clustering.

number of clusters). The BIC is formulated as

BIC(X,Ck) = L(X|Ck)−
p
2

log(n)

whereL(X|Ck) is the log-likelihood of the clustered dataX given the clusteringCk havingk clusters,
n = |X| is the number of points in the data, andp = (k−1)+ dk+ 1 = k(d+ 1) is the number of
parameters to estimate:(k−1) cluster probabilities,k cluster center estimates which each requires
d mean estimates, and one variance estimate (shared over all clusters). The log-likelihood of the
k-means model given the data is

L(X|Ck) = −nd
2

log(2πσ2)− 1
2σ2

k

∑
j=1

∑
i∈Cj

||Xi −c j ||2 +
k

∑
j=1

n j log(n j/n)

wheren j is the number of points in thejth cluster (son j/n is the estimated prior probability of
cluster j), andσ2 is the average squared Euclidean distance from each point to its cluster center.
The termCj represents the set of all indexes ofX that are members of clusterj, Xi is theith point in
data setX, andc j =

1
n j

∑i∈Cj
Xi is the location of thejth cluster center. The centerc j is the maximum

likelihood solution for the cluster’s center. The maximum likelihood estimator forσ2 is

σ̂2 =
1
nd

k

∑
j=1

∑
i∈Cj

||Xi −c j ||2.
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For the purposes of calculating the BIC, we can substitute this maximum likelihoodestimate forσ2

into the log-likelihood formulation, to get a simpler version:

L(X|Ck) = −nd
2

log(2πσ2)− nd
2

+
k

∑
j=1

n j log(n j/n).

The BIC formulation we present basically follows that given by Pelleg and Moore (2000).
For a given program and inputs, the BIC score is calculated for eachk-means clustering, forK

in the range 1 toK. We then choose the clustering that achieves a BIC score that is close to the
highest BIC score seen. This is explained more in Section 7.

5.2 Clusters and Phase Behavior

The bottom plots in Figures 1 and 2 show the results of running our phase-finding clustering al-
gorithm ongzip andgcc. These results use an interval length of 10 million instructions and the
maximum number of phases (K) is set to 10. The horizontal axis corresponds to the execution of the
program (in billions of instructions), and each interval is classified to belong to one of the clusters
(labeled on the vertical axis).

For gzip, the program’s execution is partitioned into 4 clusters. Looking at the middle plot for
comparison, the cluster behavior captured by our algorithm lines up quite closely with the behavior
of the program. Clusters 2 and 4 represent the large sections of execution which are similar to one
another. Cluster 3 captures the smaller phase that lies in between these larger phases. Cluster 1
represents the phase transitions between the three dominant phases. Theintervals in cluster 1 are
grouped into the same phase because they execute a similar combination of code, which happens to
be part of the code behavior in either cluster 2 or 4 and part of code executed in cluster 3. These
transition points in cluster 1 also correspond to the same intervals that have large spikes in CPI seen
in the top graph (these spikes are due to increased cache misses for thoseregions).

The bottom plot of Figure 2 shows howgcc is partitioned into 8 clusters. Comparing this to
the middle and top plots in the same figure, we see that even the more complicated behavior ofgcc
is captured well by SimPoint. The dominant behaviors in the top two graphs canbe seen grouped
together in phases 1, 3, 5,and 7.

6. Choosing Simulation Points from the Phase Classification

After the phase classification algorithm has done its job, intervals with similar code usage will be
grouped together into the same phases (clusters). Then from each phase, SimPoint chooses one
representative interval that will be simulated in detail to represent the behavior of the whole phase.
Therefore, by simulatingonlyone representative interval per phase, we can extrapolate and capture
the behavior of the entire program.

To choose a representative for a cluster, SimPoint picks the interval thatis closest (Euclidean
distance) to the cluster’sk-means center. The center can be viewed as a pseudo-interval which
behaves most like the average behavior of the entire phase. Most likely there is no interval that
exactly matches the center, so SimPoint chooses the closest interval. The selected interval is called
asimulation pointfor that phase (Perelman et al., 2003; Sherwood et al., 2002). We can then perform
detailed simulation on the set of simulation points.

As part of its output SimPoint also gives a weight for each simulation point. Each weight is a
fraction: it is the total number of instructions represented by the intervals in the cluster from which
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the simulation point was taken divided by the number of instructions in the program. With the
weights and the detailed simulation results of each simulation point, we can compute aweighted
average for the architecture metric of interest (CPI, cache miss rate, etc.)for the entire program’s
execution.

These simulation points are chosen once for a program/input combination because they are
chosen based only on how the code is executed, and not based on architecture metrics. Therefore,
they only need to be calculated once for a binary/input combination and can be used repeatedly
across all of the runs for an architecture design space exploration.

The number of simulation points that SimPoint chooses has a direct effect onthe simulation
time that will be required for those points. The maximum number of clusters,K, along with the
interval length, represents the maximum amount of simulation time that will be needed. When fixed
length intervals are used,(K ∗ interval length) is a limit on the number of simulated instructions.

SimPoint allows users to trade off simulation time with accuracy. Researchers inarchitecture
tend to want to keep simulation time to below a fixed number of instructions (e.g., 300million)
for a run. If this is a goal, we find that an interval length of 10 million instructions with K = 30
provides very good accuracy (as we show in this paper) with reasonable simulation time (220 million
instructions on average). If even more accuracy is desired, then decreasing the interval length to 1
million and settingK = 300 performs well for the SPEC 2000 programs, as does settingK =

√
n

(wheren is the number of clustered intervals). Empirically we discovered that as the granularity
becomes finer, the number of phases discovered increases at a sub-linear rate. The upper bound
defined by this square-root heuristic works well for the SPEC benchmarks.

The length of the interval chosen by users of SimPoint depends upon theirsimulation infras-
tructure and how much they want to deal with warmup. Warmup is the process of initializing the
simulator’s state (caches, branch predictor, etc.) at the start of a simulationpoint so that it is the same
as if we simulated from the beginning of the program to that point. For many programs, using a
long interval length (e.g., more than 100 million instructions) will make warmup unnecessary. This
is the approach used by Intel’s PinPoint for simulation (Patil et al., 2004). They simulate intervals
of length 300-500 million instructions so they do not have to worry about implementing warmup in
their simulation infrastructure. With such long intervals the architecture structures are warmed up
sufficiently during the beginning of the interval’s execution to provide accurate simulation results.
In comparison, short interval lengths can be used, but this requires having an approach for warming
up the architecture state. One way to do this is with an architecture checkpoint,which stores the po-
tential contents of the major architecture components at the start of the simulationpoint (Biesbrouck
et al., 2005). This can significantly reduce warmup time, since warmup consists of just reading the
checkpoint from a file and using it to initialize the architecture structures.

6.1 Accuracy of SimPoint

We now show the accuracy of using SimPoint for the complete SPEC 2000 benchmark suite and
their reference inputs. Figure 6 shows the simulation accuracy results using SimPoint (and other
methods) for the SPEC 2000 programs when compared to the complete execution of the programs.
For these results we use an interval length of 100 million instructions and limit the number of
simulation points to no more than 10. With the above parameters SimPoint finds 4 phases forgzip,
and 8 forgcc. As described above, one simulation point is chosen for each cluster, sothis means
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Figure 6: Simulation accuracy for the SPEC 2000 benchmark suite when performing detailed simu-
lation for several hundred million instructions compared to simulating the entire execution
of the program. Results are shown for simulating from the start of the program’s execu-
tion, for fast-forwarding 1 billion instructions before simulating, and for using SimPoint
to choose at most ten 100-million-instruction intervals to simulate. The results areshown
as percent error of predicted IPC, which is how much the estimated IPC using SimPoint
is different from the complete execution of the program. IPC is the inverse of CPI. The
median and maximum results are for the complete SPEC 2000 benchmarks.

that a total of 400 million instructions were simulated forgzip. The results show that this results in
only a 4% error in performance estimation forgzip.

For these results, we compare this estimated IPC using SimPoint to the baseline IPC. IPC (In-
structions Per Cycle) is the inverse of CPI, and often used instead of CPIwhen describing perfor-
mance. The baseline was gathered from spending months of simulation time to simulate the entire
execution of each SPEC program. The results in Figure 6 compare SimPoint tohow architecture re-
searchers use to choose where to simulate before SimPoint. The first technique was to just simulate
the first N million instructions of a benchmark’s execution. The second technique was to blindly
skip the first billion instructions of execution to get past the initialization of the program’s execu-
tion, and then simulate for N million instructions. The results show that simulating from the start
of execution, for the exact same number of instructions as simulated with SimPoint, results in a
median error of 58%. If instead, we fast forwarded for 1 billion instructions and then simulate for
the same number of instructions as chosen by SimPoint, we see a median 23% IPCerror. When
using SimPoint to create multiple simulation points we have a median IPC error of 2%.Note that
the maximum error seen for the prior techniques are significant for the SPEC programs, but it is
very reasonable (only 8%) for SimPoint.

6.2 Relative Error During Design Space Exploration

The absolute error of a program/input run on one hardware configuration is not as important as
tracking the change in metrics across different architecture configurations. There is a lot of discus-
sion and research into getting lower simulation error rates. But what often isnot discussed is that a
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Figure 7: This plot shows the true and estimated IPC and cache miss rates for19 different architec-
ture configurations for the programgcc. The lefty-axis is for the IPC and the righty-axis
is for the cache miss rates for the L1 data cache and unified L2 cache. Results are shown
for the complete execution of the configuration and when using SimPoint.

low error rate for a single configuration is not as important as achieving thesame relative error rates
across the design space search and having them all biased in the same direction.

We now examine how SimPoint tracks the relative change in hardware metrics across several
different architecture configurations. To examine the independence ofthe simulation points from
the underlying architecture, we used the simulation points for the SimPoint algorithm with an in-
terval length of 1 million instructions and the maximumK set to 300. For the program/input runs
examined, we performed full program simulations while varying the memory hierarchy, and for
every run we used the same set of simulation points when calculating the SimPointestimates. We
varied the configurations and the latencies of the L1 and L2 caches as described by Perelman et al.
(2003).

Figure 7 shows the results across 19 different architecture configurations forgcc-166. The left
y-axis represents the performance in Instructions Per Cycle (IPC) and thex-axis represents different
memory configurations from the baseline architecture. The righty-axis shows the miss rates for the
data cache and unified L2 cache, and the L2 miss rate is a local miss rate. Foreach metric, two lines
are shown: “True” for the true metric from thecompletedetailed simulation, and the “SP” for the
estimated metric using our simulation points. For the results, the configurations on the x-axis are
sorted by the IPC of the full run.

This figure shows that the simulation points, which are chosen by only lookingat code us-
age, can be used across different architecture configurations to makeaccurate architecture design
trade-off decisions and comparisons. The simulation points are able to trackthe relative changes in
performance metrics between configurations. This means we are able to makethe same decision be-
tween two architectures, in terms of which one is better, using SimPoint as the complete simulation
of the program. One interesting observation is that although the simulation results from SimPoint
have a bias in its predictions, this bias is consistent across the different configurations for a given
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program/input. This is true for both IPC and cache miss rates. We believe onereason for the bias is
that SimPoint chooses the most representative interval from each phase, and intervals that represent
phase change boundaries are less likely to be fully represented acrossthe chosen simulation points.

7. Clustering Analysis

In this section we describe the primary parameters that have influence on how SimPoint and thek-
means algorithm behave. We first focus on how we achieve a reasonablerunning time fork-means,
and then examine how to search overk to find a good clustering. For the experiments in this section,
we use basic block vectors with 100 million instruction intervals. Where it is not specified, we also
usek = 30 clusters and 15 projected dimensions.

7.1 Methods for Reducing the Run-Time ofk-Means

Even though SimPoint only needs to be run once per binary/input combination, we still want a fast
clustering algorithm that produces accurate simulation points. To address the run-time of SimPoint,
we first look at the three parts which affect most the running time of a single run of k-means. The
three parts are the number of intervals to cluster, the dimension of the intervalsbeing clustered, and
the number of iterations it takes to perform a clustering.

We first examine how the number of intervals affects the running time of the SimPoint algorithm.
Figure 8 shows the time (in seconds) for running SimPoint on different numbers of intervals as we
vary the number of clusters. For this experiment, the clustered vectors arerandomly generated from
uniformly random noise in 15 dimensions. We use random data in these experiments because it does
not bias these results based on a particular benchmark and it gives comparable results across a wide
range of parameter settings. But more importantly, prior theoretical work byIndyk et al. (1999)
suggests that it is most difficult to accelerate (i.e. make more efficient using geometric reasoning)
clustering algorithms on data without structure, such as uniformly random data. This is supported
by experiments by Moore (2000) and Elkan (2003). So these experimentsform a comparable set
of challenging results for the per-iteration run-time of SimPoint. The number ofiterations will vary
depending on the structure of the data, however. For example, usingk-means to cluster data from
very well-separated clusters is likely to converge in a low number of iterations, while clusters which
overlap are likely to require more iterations.

The first graph shows that for 100,000 vectors andk = 128, it took about 3.5 minutes for Sim-
Point 3.0 to perform the clustering. It is clear that the number of vectors clustered and the value
of k both have a large effect on the run-time of SimPoint. The run-time changes linearly with the
number of clusters and the number of vectors, as expected. Also, we cansee that the time per basic
operation actually goes down ask increases. This is due to a simple optimization calledpartial
distance search(McNames, 2000; Cheng et al., 1984) that allows the algorithm to avoid calculating
the full distance from a point (interval) to every cluster center in the first step ofk-means. The goal
of this step is to find the closest cluster center to the point, so that the interval may be assigned to
that center. To find this closest center, a simple loop searches for the cluster center with the min-
imum squared Euclidean distance. The squared distance calculation sums thesquared dimension
difference between the point and the cluster center over all dimensions. While searching for the
minimum squared distance from a point to all centers, partial distance search keeps the smallest
squared distance seen thus far. When calculating the distance to another center, it may find that
the intermediate squared distance result (after processing some of the dimensions) is larger than the
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Figure 8: These plots show how varying the number of vectors and clusters affects the amount of
time required to cluster with SimPoint 3.0. For this experiment we generated uniformly
random data in 15 dimensions. The first plot shows total time, the second plotshows the
time normalized by the number of iterations performed, and the third plot shows the time
normalized by the number of basic operations performed. Both the number ofvectors and
the number of clusters have a linear influence on the run-time ofk-means. The bottom
plot shows a decreasing trend due to optimizations ink-means which are more beneficial
for largerk.

smallest squared distance seen to a different center. If this is the case, the distance we are calculat-
ing cannot be minimal, so the current calculation is stopped short of calculating the entire squared
distance over all of the dimensions. This optimization does not change the correctness of the al-
gorithm. Partial distance search is most beneficial when there are many clusters, since the more
centers there are, the more it is likely that there will be a close center that cangive a good lower
bound for the partial search. Partial distance search is also useful in high dimensional data, since
work is saved when computing per-dimension differences, and the more dimensions there are the
more computations can potentially be avoided.
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Program # Vecs× # B.B. SP3-All SP3-BinS
gcc-166 4692× 102038 9 min 3.5 min

crafty 19189× 16970 84 min 10.7 min

Table 4: This table shows the running times (in minutes) by SimPoint 3.0 without using binary
search (SP3-All) and SimPoint 3.0 using binary search (SP3-BinS). SimPoint is run
searching for the best clustering fromk=1 to 100, uses 5 random seeds perk, and projects
the vectors to 15 dimensions. The second column shows how many vectors and the size of
the vector (static basic blocks) the programs have.

7.1.1 NUMBER OF INTERVALS AND SUB-SAMPLING

Each iteration of thek-means algorithm has a run-time that is linear in the number of clusters, the
number of intervals, and the dimensionality. However, sincek-means is an iterative algorithm, many
iterations may be required to reach convergence. We already found in prior work (Sherwood et al.,
2002), and revisit in Section 7.1.2 that we can reduce the number of dimensions down to 15 and still
maintain SimPoint’s accuracy. Therefore, the main influence on execution time for SimPoint is the
number of intervals.

To show this effect, Table 4 shows the SimPoint running time forgcc-166 andcrafty-ref,
which shows the lower and upper limits for the number of intervals and basic block vectors seen in
SPEC 2000 with an interval length of 10 million instructions. The second and third columns show
the number of intervals and original number of dimensions for each basic block vector. The last
two columns show the time it took to execute SimPoint 3.0 searching for the best clustering from
k=1 to 100, with 5 random initializations (seeds) perk. The fourth column shows the time it took
to run SimPoint when searching over allk, and the last column shows clustering time when using
the new binary search described in Section 7.2.3. The results show that increasing the number of
intervals by 4 times increased the running time of SimPoint around 10 times. The results also show
that the number of intervals clustered has a large impact on the running time of SimPoint, since it
can take many iterations to converge, which is the case forcrafty. We used 15 dimensions during
clustering for these results.

The effect of the number of intervals on the running time of SimPoint becomes critical when
using very small interval lengths like 1 million instructions or fewer, which can create millions of
intervals to cluster. To speed the execution of SimPoint on these very large inputs, we sub-sample
the set of intervals that will be clustered, and runk-means on only this sample. To sample with
SimPoint, the user specifies the number of desired interval samples, and thenSimPoint chooses that
many intervals (without replacement). The probability of each interval beingchosen is proportional
to the weight of its interval (the number of dynamically executed instructions it represents). For
vectors which all represent the same interval length (as we consider in thispaper), this weight
is uniform. If vectors represent non-uniform interval lengths (called variable-length intervals, or
VLIs), then each vector’s weight is proportional to its interval length. Wesummarize our work with
variable length intervals in Section 9.

Sampling is common in clustering for data sets which are too large to fit in main memory (Farn-
strom et al., 2000; Provost and Kolluri, 1999). After clustering the data set sample, we have a set of
clusters with centers found byk-means. SimPoint then makes a single pass through the unclustered
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intervals and assigns each interval to the cluster that has the nearest center (centroid) to that interval.
This then represents the final clustering from which the simulation points are chosen. We originally
examined using sub-sampling for variable length intervals (VLI) in Lau et al.(2005a). When us-
ing VLIs we had millions of intervals, and had to sub-sample 10,000 to 100,000 intervals for the
clustering to achieve a reasonable running time for SimPoint, while still providingvery accurate
simulation points.

The experiments shown in Figure 9 show the effects of sub-sampling across all the SPEC 2000
benchmarks using an interval length of 10 million instructions, 30 clusters, and 15 projected di-
mensions. Results are shown for creating the initial clustering using sub-sampling with only 1/8,
1/4, 1/2, and all of the execution intervals in each program, as described above. The first two plots
show the effects of sub-sampling on the CPI errors andk-means variance, both of which degrade
gracefully when smaller samples are used. The average SPEC INT (integer) and SPEC FP (floating
point) average results are shown. It is standard to break the results into these two groupings for
architecture results. The CPI error is computed in the following manner:

CPI Error=
|True CPI−SimPoint Estimated CPI|

True CPI
.

The averagek-means variance is the average squared distance between every frequency vector
and its closest cluster center. Lower variances are better. When sub-sampling, we still report the
variance based on every vector (not just the sub-sampled ones). Therelative k-means variance
reported in the experiments is measured on a per-input basis as the ratio of thek-means variance for
clustering on a sample to that of clustering on the whole input.

As shown in the second graph of Figure 9, sub-sampling a program can causek-means to find
a slightly less representative clustering, which results in higherk-means variance on average. Note
that thek-means variance for these experiments are reported on all the input vectors, not just the
sampled ones. Even so, when sub-sampling, we found in some cases that itcan reduce thek-
means variance and/or CPI error (compared to using all the vectors), because sub-sampling can
remove outliers in the data set thatk-means may be trying to fit. This is a benefit noted in the work
of Fayyad et al. (1998) when they use subsampling to initialize iterative clustering algorithms.

It is interesting to note the difference between floating point and integer programs, as shown
in the first two plots. The results shown in the first plot show we can capturethe behavior of the
SPEC floating point programs more easily, that is, without using all the original data. In addition,
the second plot suggests that SPEC floating point programs are also easier to cluster than the SPEC
INT, as we can do quite well (in terms ofk-means variance) even with only small samples. This
suggests that they have more regular or uniform code usage patterns than integer programs. The
third plot shows the effect of the number of vectors on the running time of SimPoint. This plot
shows the time required to cluster all of the benchmark/input combinations and their 3 sub-sampled
versions. In addition, we have fit a logarithmic curve with least-squares to the points to give a rough
idea of the growth of the run-time. Note that two different data sets with the samenumber of vectors
may require different amounts of time to cluster due to the number ofk-means iterations required
for the clustering to converge.

7.1.2 NUMBER OF DIMENSIONS AND RANDOM PROJECTION

Along with the number of vectors, the other most influential aspect in the running time ofk-means
is the number of dimensions of the data. Figure 10 shows the effect of changing the number of pro-
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Figure 9: These three plots show how sub-sampling before clustering affects the CPI errors,k-
means variance, and the run-time of SimPoint. The first plot shows the average CPI
error across the integer and floating-point SPEC benchmarks. The second plot shows the
averagek-means clustering variance relative to clustering with all the vectors. The last
plot shows a scatter plot of the run-time to cluster the full benchmarks and sub-sampled
versions, and a logarithmic curve fit with least squares.

jected dimensions on both the CPI error (left) and the run-time of SimPoint (right). For this exper-
iment, we varied the number of projected dimensions from 1 to 100. As the number of dimensions
increases, the time to cluster the vectors increases linearly, as expected. It is more interesting that
the run-time also increases for very low dimensions. This is because the points are more “crowded”
and the clusters are less well-separated, sok-means requires more iterations to converge.

If we use too few dimensions, the data does not retain sufficient informationto cluster the data
well. This is reflected by the fact that the CPI errors increase rapidly forvery low dimensions.
However, we can see that at 15 dimensions, the SimPoint default, the CPI errors are quite low,
and using a higher number of dimensions does not improve them significantly but requires more
computation. Using too many dimensions is also a problem in light of the well-known“curse of
dimensionality” (Bellman, 1961), which implies that as the number of dimensions increases, the
number of vectors that would be required to densely populate that space grows exponentially. This
means that using a higher dimension makes it more likely that a clustering algorithmwill converge
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Figure 10: These two plots show the effects of changing the number of projected dimensions when
using SimPoint. The default number of projected dimensions SimPoint uses is 15, but
here we show results for 1 to 100 dimensions. The left plot shows the average CPI error,
and the right plot shows the average time relative to 100 dimensions. Both plotsare
averaged over all the SPEC 2000 benchmarks, for a fixedk = 30 clusters.

to a poor solution, since the input space is not very densely filled. Therefore, it is wise to choose a
dimension that is low enough to allowk-means to find a good clustering, but not so low that critical
information is lost. We find that 15 dimensions works well in these regards.

7.1.3 NUMBER OF ITERATIONS NEEDED

The final aspect we examine for affecting the running time of thek-means algorithm is the number
of iterations it takes for a run to converge. We provide this analysis to illustrate typical requirements
of running SimPoint on a set of benchmarks, and because finding a tight upper-bound on the number
of iterations required byk-means is an open problem (Dasgupta, 2003), we must rely on evidence
to show us what to expect.

The k-means algorithm iterates either until it hits a user-specified maximum number of itera-
tions, or until it reaches convergence. In SimPoint, the default limit is 100 iterations, but this can
easily be changed. More iterations may be required, especially if the numberof intervals is very
large compared to the number of clusters. The interaction between the numberof intervals and the
number of iterations required is the reason for the large SimPoint running time for crafty-ref in
Table 4.

For our results, we observed that only 1.1% of all runs on all SPEC 2000benchmarks reach
100 iterations. This experiment was with 10-million instruction intervals,k=30, 15 dimensions,
and with 10 random initializations ofk-means. Figure 11 shows the number of iterations required
for all runs in this experiment. Out of all of the SPEC program and input combinations run, only
crafty-ref, gzip-program, perlbmk-splitmail had runs that had not converged by 100 iter-
ations. The longest-running clusterings for these programs reached convergence in 160, 126, and
101 iterations, respectively. If desired, SimPoint can always runk-means to convergence (with no
iteration limit).
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Figure 11: This plot shows the number of iterations required for 10 randomized initializations of
each benchmark, with 10 million instruction length intervals,k = 30, and 15 dimensions.
Note that only three program/inputs had a total of 5 runs that required more than the
default limit of 100 iterations, and these all converge within 160 iterations or less.

7.2 Searching for a Smallk with a Good Clustering

We suggest setting the maximum number of clustersK as appropriate for the maximum amount of
simulation time a user will tolerate for a single simulation. SimPoint uses three techniques to search
over the possible clusterings, which we describe here. The goal is to try topick a smallk so that the
number of simulation points is also small, thereby reducing the simulation time required.

7.2.1 SETTING THE BIC PERCENTAGE

As we examine several clusterings and values ofk, we need to have a method for choosing the best
clustering. The Bayesian Information Criterion (BIC) (Pelleg and Moore,2000) gives a score of the
how well a clustering represents the data it clustered. However, we haveobserved that the BIC score
often increases as the number of clusters increase. Thus choosing the clustering with the highest
BIC score can lead to often selecting the clustering with the most clusters. Therefore, we look at
the range of BIC scores, and select the score which attains some high percentage of this range. The
SimPoint default BIC threshold is 90%. When the BIC rises and then levels off ask increases, this
method chooses a clustering with the fewest clusters that is near the maximum BIC value. Choosing
a lower BIC threshold would prefer fewer clusters, but at the risk of less accurate simulation.

Figure 12 shows the effect of changing the BIC threshold on both the CPIerror (left) and the
number of simulation points chosen (right). These experiments are for usingbinary search (ex-
plained in Section 7.2.3) withK = 30, 15 dimensions, and 5 random seeds. BIC thresholds of 70%,
80%, 90% and 100% are examined. As the BIC threshold decreases, the average number of simu-
lation points decreases, and similarly the average CPI error increases. At the 70% BIC threshold,
perlbmk-splitmail has the maximum CPI error in the SPEC suite. This anomaly is an artifact
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Figure 12: These plots show how the CPI error and number of simulation points chosen are affected
by varying the BIC threshold. Bars labeled “max-1” show the second largest value
observed.

of the low threshold. Since higher BIC scores point to better clusterings and better error rates, we
recommend the BIC threshold to be set at 90%.

7.2.2 VARYING THE NUMBER OF RANDOM SEEDS, AND k-MEANS INITIALIZATION

Thek-means clustering algorithm starts from a randomized initialization, which requires a random
seed. Because of this, runningk-means multiple times can produce very different results depending
on the initializations, sok-means can sometimes converge to a locally-good solution that is poor
compared to the best clustering on the same data for that number of clusters.Therefore, conventional
wisdom suggests that it is good to runk-means several times using a different randomized starting
point each time, and take the best clustering observed, based on thek-means variance or the BIC.
SimPoint does this, using different random seeds to initializek-means each time. Based on our
experience, we have found that using 5 random seeds works well.

SimPoint allows users to provide their ownk-means initialization, or it will choose an initial-
ization based on one of two methods: sampling and furthest-first (Gonzalez, 1985; Hochbaum and
Shmoys, 1985). The sampling method choosesk random locations for the initial cluster centers
from the input data without replacement. The furthest-first method chooses one input point at ran-
dom, and then repeatedly chooses a point that is furthest away from all the already-chosen points,
until k points are chosen. This has the tendency to spread the initially chosen pointsout along the
convex hull of the input space, and subsequently chosen points in the interior.

Figure 13 shows the effect on CPI error of using two differentk-means initialization methods
(furthest-first and sampling) along with different numbers of initialk-means seeds. These experi-
ments are for using binary search withK = 30, 15 dimensions, and a BIC threshold of 90%. When
multiple seeds are used, SimPoint runsk-means multiple times with different starting conditions
and takes the best result.

Based on these results we see that sampling outperforms furthest-firstk-means initialization.
This can be attributed to the data we are clustering, which can have a large number of outlying
points, which furthest-first initialization pays special attention to. The furthest-first method is likely
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Figure 13: This plot shows the average and maximum CPI errors for both sampling and furthest-
first k-means initializations, and using 1, 5, or 10 different random seeds. These results
are over the SPEC 2000 benchmark suite for 10-million instruction vectors, 15 dimen-
sions, andk = 30.

to pick those anomaly points as initial centers since they are the furthest pointsapart. It is also
beneficial to try multiple seed initializations in order to avoid a locally minimal solution. The
results in Figure 13 shows that 5 seed initializations should be sufficient in finding good clusterings.

7.2.3 BINARY SEARCH FORPICKING k

SimPoint 3.0 makes it much faster to find the best clustering and simulation points for a program
trace over earlier versions. Since the BIC score generally increases ask increases, SimPoint 3.0 uses
this knowledge to perform a binary search for the bestk. For example, if the maximumk desired is
100, with earlier versions of SimPoint one might search in increments of 5:k= 5,10,15, . . . ,90,100,
requiring 20 clusterings. With the binary search method, we can ignore large parts of the set of
possiblek values and examine only about 7 clusterings.

The binary search method first clusters 3 times: atk = 1, k = K, andk = (K + 1)/2. It then
proceeds to divide the search space and cluster again based on the BICscores observed for each
clustering and the user-specified BIC threshold. Thus the binary search method requires the user
only to specify the maximum number of clustersK, and performs at most log2(K) clusterings.

Figure 14 shows the comparison between the new binary search method forchoosing the best
clustering, and the old method, which searched over allk values in the same range. The top graph
shows the CPI error for each program, and the bottom graph shows the number of simulation points
(clusters) chosen. These experiments are for using binary search withK = 30, 15 dimensions, 5
random seeds, and a BIC threshold of 90%. Exhaustive search performs slightly better than binary
search, since it searches allk values. Using the binary search, it possible that it will not find a
clustering with as few clusters as found by the exhaustive search. This isshown in the bottom graph
of Figure 14, where the exhaustive search picked 19 simulation points on average, and binary search
chose 22 simulation points on average. In terms of CPI error rates, the average is about the same
across the SPEC programs between exhaustive and binary search. Recall that the binary search
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Figure 14: These plots show the CPI error and number of simulation points chosen for two dif-
ferent ways of searching for the best clustering. The first method, which was used in
SimPoint 2.0, searches over allk between 1 and 30, and chooses the smallest clustering
that achieves the BIC threshold of 90%. The second method is the binary search for
K = 30, which examines at most 5 clusterings.

method operates many times faster than the brute force search method (see Table 4 for some timing
results).

As we can see from the graphs in Figure 14, SimPoint is able to achieve a 1.5%CPI error rate
averaged across all SPEC 2000 benchmarks, with a maximum error of around 6%. These results
require an average simulation time of about 220 million instructions per program(for the binary
search method). These error rates are sufficiently low to make design decisions, and the simulation
time is small enough to do large-scale design space explorations.
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8. Related Machine Learning Work on Phase Analysis

SimPoint is the first research to apply machine learning techniques (k-means, dimension reduction,
BIC) to the problem of program phase analysis and workload performance prediction. Recently
two other clustering techniques have been examined for SimPoint, which are multinomial cluster-
ing (Sanghai et al., 2005) and regression trees (Annavaram et al., 2004). Neither of these perform
better than SimPoint withk-means clustering.

Sanghai et al. (2005) proposed utilizing mixtures of multinomials trained by EM tocluster pro-
gram intervals. Unlike ak-means cluster, the multinomial is a probability model that explicitly
models each dimension. Multinomials are used frequently in machine learning formodeling and
clustering text documents, which are high-dimensional and sparse, much like the data we see in
program analysis using basic block vectors. Sanghai et al. used a mixture of multinomial models to
cluster the program data, and formulated a version of the BIC that applies tomultinomial models.
They also considered dimension reduction via a different construction ofrandom linear projection.
Their random linear projection is based on a sparse matrix where each value may be 0 or 1 (rather
than real-valued). This is similar to what Achlioptas (2001) proposed for “database-friendly” projec-
tions. Following on their proposed model, we have done a full comparison ofmultinomial mixtures
with k-means (Hamerly et al., 2006), and we found thatk-means performs better for program phase
analysis, but that multinomials have some benefits. We summarize that work in Section 9.

Annavaram et al. (2004) employed a regression tree clustering algorithmto predict performance
for database applications and SPEC2000. Code signatures were generated through periodic sam-
pling with a tool called VTune that samples the hardware counters. In addition tocode signatures,
the CPI for each interval of execution was sampled. This is a necessary parameter in the regression
tree algorithm. The code signatures are divided into two groups based on the split that would min-
imize the variance in the CPI for the corresponding execution intervals. Subsequently, each new
group is split again based on the same criteria and this is repeated recursively until no more splits
can be made. To reduce complexity, up to 50 splits were applied on the data (Annavaram et al.,
2004). To determine the number of clusters to be used from the data, a cross-validation step is
applied with reserved CPI data that was not used in the splitting process.

The regression tree method may be effective in reducing the variance of CPI within clusters, but
the need for CPI in computing clusters is a drawback. It is computationally expensive to compute the
CPI for the entire execution of a program via simulation. In addition, the use of CPI data from one
architecture configuration to form clusters would bind that clustering to thatparticular configuration.
A different architecture configuration which may produce different CPI values would not necessarily
fit under the former clustering formation; thus the method is not architecture independent. Thek-
Means approach employed in SimPoint uses only the code signatures to formclusters, which results
in an architecture independent representation that is applicable across many configurations as shown
in Section 6.

9. Current Directions

In this section we describe some of our current and future directions forphase analysis.
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9.1 Matching Simulation Points to Code Boundaries

With the original SimPoint approach, representatives selected for simulationare identified by dy-
namic instruction count using fixed length intervals. For example, SimPoint may tell the user to
start detailed simulation when 5,000,000 instructions have executed, and stopjust before 6,000,000
instructions have executed, using an interval size of 1,000,000 instructions. This ties the simulation
points to that specific binary, but the idea of SimPoint should be applicable across different compila-
tions of the same source code. The same phase behavior should occur, though perhaps with different
code patterns. If we can identify these behaviors and map them back to the source code level, then
we could use the same phase analysis for a program compiled for different compiler optimizations
or even architectures with different instruction sets. This will allow us to examine the exact same
set of simulation points across different compilations of the same source code.

To address this, we propose breaking the program’s execution up at procedure call and loop
boundaries instead of breaking up the program’s execution using fixed length intervals. Programs
exhibit patterns of repetitive behavior, and these patterns are largely due to procedure call and loop-
ing behavior. Our software phase marker approach (Lau et al., 2006)detects recurring call chains
and looping patterns and identifies the source code instructions to which theycorrespond. We then
mark specific procedure calls and loop branches, so that when they occur during execution, they
will indicate the end of one code signature (interval boundary) and the start of another. Therefore,
instead of using fixed-length intervals with some fixed number of instructions,intervals are defined
by procedure and loop boundaries. This results inVariable Length Intervals(VLIs) of execution.

To support VLIs, we had to modify the SimPoint software to allow sub-sampling(since we
may be dealing with a huge number of intervals), and clustering with variable-length intervals (Lau
et al., 2005a), where the weights of each interval are taken into consideration during thek-means
clustering. An interesting machine-learning result of clustering variable-length intervals is how we
modified the likelihood calculated for the BIC to allow it to consider the length of each interval.
Because we view longer intervals as more important than shorter ones, the likelihood should reflect
this. Therefore, we reformulate the likelihood we present in this paper to beappropriate for variable-
length intervals. When the interval length is uniform, the modified BIC gives thesame answer as
the BIC presented in this paper.

The accuracy and simulation time results for software phase markers with VLIs are similar
to fixed-length-interval SimPoint. Therefore the main advantage of the phase marker approach is
portability of the phase analysis across compilations and architectures. In prior work (Lau et al.,
2005a), we also showed that there is a clear hierarchy of phase behaviors, from fine-grained to
coarse-grained depending upon the interval sizes used, and there is still future research to be done
to determine how to pick the correct granularity for the target use of the phase analysis.

9.2 Multinomial Clustering

Recently, Sanghai et al. (2005) proposed using a mixture of multinomial models as a clustering
model for phase analysis, as described in Section 8. Their research was a preliminary study; we
have performed a more complete set of experiments comparing multinomial clustering with EM to
thek-means algorithm, as applied to phase analysis (Hamerly et al., 2006).

We found that multinomial clustering does not improve uponk-means clustering in terms of
performance prediction, despite the fact that basic block vectors seem tobe a natural fit to multi-
nomials. We also showed a comparison between different projection methodsin conjunction with
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multinomial clustering, and alternative methods of choosing the sample to simulate from each clus-
ter. Further, we verified Sanghai et al.’s claim that the number of dimensions required to get good
results using multinomial clustering may be much higher than the 15 dimensions we use with k-
means. Following their work, we used up to 100 projected dimensions to find clustering results that
work well for phase analysis with this approach.

We also found that EM clustering is much slower thank-means. The hard assignment ofk-means
enables optimizations like partial distance search described in Section 7.1. But for EM clustering,
its soft assignment requires that we cannot stop short on examining any dimensions, so it cannot
benefit from such optimizations. This together with the increase in number of dimensions required
by multinomials makes multinomial EM clustering much slower thank-means. Even if we use the
same number of dimensions to randomly project to, we still find that EM clusteringof multinomials
is roughly 10 times slower thank-means.

We did find that there are some benefits to using multinomials. One benefit is that multinomial
clustering tends to choose fewer clusters on average (according to a BIC score formulated for multi-
nomial mixtures), resulting in lower simulation times. Another benefit is that the EM algorithm uses
soft assignment, unlike the hard assignment ofk-means. This allows us to derive a metric of clus-
ter “purity”. The idea is that if many vectors have high membership in multiple clusters, then the
clustering is more impure than if each vector (interval) belongs mostly to only oneof the clusters.
This purity score allows us to see if multinomial clustering is a good solution for a particular data
set, and gives us a metric for deciding whether to apply multinomial clustering if the purity score
is high enough, ork-means otherwise. We found that this combined approach provides a solution
which picks fewer simulation points compared with using onlyk-means, and gets lower prediction
errors than using only multinomial clustering.

10. Summary

Understanding the cycle level behavior of a processor running an application is crucial to modern
computer architecture research, and gaining this understanding can be done efficiently by judi-
ciously applying detailed cycle level simulation to only a few simulation points. By targeting only
one or a few carefully chosen samples for each of the small number of behaviors found in real pro-
grams, the cost of simulation can be reduced to a reasonable level while achieving very accurate
performance estimates.

The main idea behind SimPoint is the realization that programs typically only exhibita few
unique behaviors which are interleaved with one another through time. By finding these behaviors
and then determining the relative importance of each one, we can maintain both ahigh level picture
of the program’s execution and at the same time quantify the cycle level interaction between the
application and the architecture. The key to being able to find these phases ina efficient and robust
manner is the development of a metric that can detect the underlying shifts in a program’s execution
that result in the changes in observed behavior. In this paper we have discussed one such method of
quantifying executed code similarity, and use it to find program phases through the application of
unsupervised learning techniques.

The methods described in this paper are distributed as part of SimPoint (Perelman et al., 2003;
Sherwood et al., 2002). SimPoint automates the process of picking simulation points using an off-
line phase classification algorithm based onk-means clustering, which significantly reduces the
amount of simulation time required. Selecting and simulating only a handful ofintelligentlypicked
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sections of the full program provides an accurate picture of the complete execution of a program,
which gives a highly accurate estimate of performance. The SimPoint software can be downloaded
at:

http://www.cse.ucsd.edu/users/calder/simpoint/
For the industry-standard SPEC programs, SimPoint has less than a 6% error rate (2% on av-

erage) for the results in this paper, and is 1,500 times faster on average than performing simulation
for the complete program’s execution. Because of this time savings and accuracy, our approach is
currently used by architecture researchers and industry companies (e.g. Patil et al. (2004) at Intel)
to guide their architecture design exploration.
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