Persistent pursuit-evasion: the case of the preoccupied pursuer
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Abstract— We consider a visibility-based pursuit-
evasion problem in which a single robot with an
omnidirectional but unreliable sensor moving through
an environment must systematically search that envi-
ronment to detect an unpredictably moving target.
A common assumption in visibility-based pursuit-
evasion is that the sensors used to detect the evader
are perfectly reliable. That is, any evader that moves
within view of the pursuer for any interval of time will
be detected. This assumption is problematic because,
when implemented on real sensor systems, such plans
cannot account for the possibility of short-term false
negative errors in evader detection. This paper ad-
dresses this limitation by introducing a model based
on the idea of pessimal unoccluded distance to reason
about the degree of plausibility that the evader may be
concealed within each occluded region. We describe a
decomposition of the environment that fully charac-
terizes the opportune moment for an evader to take
advantage of sensor error. Furthermore, we present
a complete algorithm that solves the active problem
of planning a search for a pursuer which maximizes
the distance that the evader must travel through the
pursuer robot’s sensor footprint.

I. INTRODUCTION

Pursuit-evasion games are a family of problems in-
volving two groups of agents, pursuers and evaders. The
pursuers’ goal is to locate all of the evaders by systemat-
ically searching the environment. The evaders’ goal is to
remain undetected by the pursuers. Though these games
are reminiscent of the children’s games of tag, cops-
and-robbers, and hide-and-seek, they also have practical
applications for search-and-rescue [6], [28], surveillance
[1], [19], and missile-guidance systems [9], [23].

Current solutions to many pursuit-evasion problems
have several drawbacks that are frequently encountered
in practical scenarios. In particular, many of the plans
generated by existing solutions are not robust to sensor
error. These solutions assume that the sensors used to
detect evaders are perfectly reliable. This assumption is
problematic because, when implemented on real sensor
systems, such plans cannot account for the possibility of
short-term false negative errors in evader detection.

One of the major advantages of existing solutions to
pursuit-evasion problems for errorless sensors is their
ability to generate a winning strategy for the pursuer or
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pursuers, or to determine that no such strategy exists [7],
[27]. A naive approach to overcoming false negative errors
in this context is simply to “Try again”—to repeatedly
execute the plan generated by one of the preexisting
solutions. Assuming that false negatives are distributed
independently, such a plan would eventually succeed
in locating the evaders. The downfall of this approach
centers around the underutilization of information gained
during previous executions. Presently, these solutions
lack the ability to incorporate the information gained
from one execution cycle to form more effective plans
for successive iterations.

This paper considers a geometric formulation of the
pursuit-evasion problem that incorporates potential sen-
sor error. The idea is to model the possibility of sensor
failures by measuring the worst-case distance that an
evader would have to travel under the pursuer’s sensor
footprint to remain undetected. This approach sidesteps
the probabilistic modeling burden found in graph-based
formulations of the pursuit-evasion problem [12] as well
as the more general study of optimal search [30], and is
applicable to any environment representation in which
distance between non-visible regions can be computed.

Rather than having a fixed termination time, the
resulting paths define a pursuer position for any time
t € [0, 00). We call such paths persistent pursuit-evasion
paths because they guarantee that the pursuer will be
within a line-of-sight of the evader infinitely often.

After a brief tour of related research in Section II, this
paper makes several novel contributions.

1) Section III formally defines the persistent pursuit-
evasion problem, introducing the notion of the pes-
simal unoccluded distance of a pursuer path.

2) Section IV describes a passive algorithm for com-
puting the pessimal unoccluded distance of a given
pursuer path. The algorithm is based on a new kind
of planar decomposition we call the jump decomposi-
tion, which enables updates to be performed at only
finitely many points along the pursuer’s path.

3) Section V shows how to use this passive algorithm
to generate pursuer paths that drive the pessimal
unoccluded distance arbitrarily high. This active
algorithm is based on a forward search through the
jump decomposition.

4) Section VI describes an evaluation of both the pas-
sive and active algorithms in simulation.

We close by discussing future research (Section VII).



II. RELATED WORK

This work can be viewed as an intertwining between
pursuit-evasion problems, optimal search, and persistent
monitoring and surveillance problems.

A. Pursuit-Evasion

The first visibility-based pursuit-evasion problem [31]
was proposed as an extension of the watchman route
problem [2] and is a geometric formulation of the tra-
ditional graph-based pursuit-evasion problem [21], [22].
Research on the visibility-based pursuit-evasion problem
has produced numerous results for both the single pur-
suer and multiple pursuer variants of the problem.

For the single pursuer visibility-based pursuit-evasion
problem, a complete solution [7], a randomized solu-
tion [8], and an optimal shortest path solution [28] have
been found.

The capture condition for the general visibility-based
pursuit-evasion problem is defined as having an evader
lie within the pursuer’s capture region. There has been
substantial research focused on how the visibility-based
pursuit-evasion problem changes when a robot has dif-
ferent capture regions. The k-searcher is a pursuer with
k visibility beams [31], the oo-searcher is a pursuer with
omni-directional field of view [7], and the ¢-searcher is
a pursuer whose field of view [5] is limited to an angle
¢ € (0,2m]. Note that all of these approaches consider
evaders with unbounded speed.

Others have studied scenarios in which there are addi-
tional constraints, such as the case of a curved environ-
ment [15], an unknown environment [25], a maximum
bounded speed for the evader [33], or constraints on the
pursuer similar to those of a typical bug algorithm [24].

As a result of the problem complexity [29], there
is a wide range of literature with differing techniques
attempting to solve the multi-robot visibility-based
pursuit-evasion problem. Some recent results involve us-
ing some of the pursuers as stationary sentinels while
other pursuers continue with the search [13]. Another
approach involves maintaining complete coverage of the
frontier [4]. There are other variants of the pursuit-
evasion problem where the pursuers are teams of un-
manned aerial vehicles [11].

B. Optimal Search

Optimal search [30] utilizes a Bayesian approach for
maintaining a target distribution and uses that informa-
tion for guiding the planning of optimal search paths.
The essential idea from optimal search that translates to
our pursuit-evasion domain is that a search would em-
phasize those areas of the environment with the highest
probability of containing a target. Optimal search algo-
rithms then allow for the prediction of the no-detection
likelihood which is the probability that the target will
remain undetected at a given instant of the search.

Yu and LaValle [35] present a mechanism for maintain-
ing a distribution of hidden targets during a search in the

Fig. 1. An illustration of our motion model for the evader that
occurs when a pursuer (red circle) causes the evader (green triangle)
to “jump” (travel under the pursuer’s sensing region) from one
shadow to the another.

presence of probabilistic uncertainty that can be gener-
alized from the more general target tracking case to into
the pursuit-evasion domain. Extending this framework
which provides passive update rules to the active problem
of generating a pursuer search path is made increasingly
difficult because of the complexity involved in generating
a general probability model that accurately reflects the
evader behavior. The problem becomes tenable once
some assumptions as to the behavior of the evaders are
known [27].

Our approach can avoid filtering entirely by reasoning
about the most pessimistic eventuality where an evader
can decide to exploit an instantaneous sensing error to
prolong its capture. The intuition is that it will become
increasingly unlikely that an evader will continue to take
full advantage of any sensing failure.

C. Persistent Monitoring and Surveillance

Persistent monitoring and surveillance tasks require a
tracker or team of trackers to perform their monitor-
ing/surveillance task in perpetuity. This idea has been
extended to graphs where policies are planned for an
agent or team of agents tasked with patrolling nodes to
intercept an attacker [10], [16]. The “perpetuity” aspect
makes these problems well-suited to be carried out by
a robot or robot team [18]. Visibility-based monitoring
problems commonly occur in many applications such
as security and surveillance [32], infrastructure inspec-
tion [20], and environmental monitoring [26]. The in-
creased availability of mobile robots capable of perform-
ing these tasks has led to heightened interest [14], [17],
[34] in recent years.

III. PROBLEM STATEMENT

This section formalizes the visibility-based pursuit-
evasion problem considered in this paper. We begin by
describing the model used to represent the environment,
evader, and pursuer (Section ITI-A) and then discuss the
criterion that must be satisfied to classify the pursuer’s
motion as a persistent pursuit strategy (Section III-B).

A. Representing the Environment, Pursuer, and FEvader

The environment is a polygonal free-space, defined as
a simply-connected closed and bounded set W C R?,
with a polygonal boundary 0W composed of n vertices.
A pursuer moves to locate the evader. We assume
that the pursuer knows W. Therefore, from a given start



position, the pursuer’s motions can be described by a
continuous function p : [0,00) — W, so that p(t) € W
denotes the position the pursuer at time ¢ > 0. The
function p is called a motion strategy for the pursuer.

The pursuer carries a sensor that can detect the
evader. The sensor is omnidirectional and has unlimited
range, but cannot see through obstacles. For any point
g € W, let V(q) denote the visibility region at point
q, which consists of the set of all points in W that are
visible from point ¢. That is, V(¢) contains every point
that can be connected to ¢ by a line segment in W. Note
that V(q) is a closed set.

For any g € W, consider the boundary of V(g). The
edges of this boundary are either along W or belong
to an occlusion ray. An occlusion ray is a ray starting
at the point r extending in direction (r — ¢), denoted
ray(r,r — q).

Informally, an occlusion ray originating at point ¢ is
a ray that acts as a boundary separating a visible and
non-visible portions of W.

The evader is modeled as a point that can trans-
late within the environment. Let e(t) € W denote the
position of the evader at time ¢ > 0. The path e is
a continuous function e : [0,00) — W, in which the
evader is capable of moving arbitrarily fast (i.e. a finite,
unbounded speed) within W. The evader trajectory e is
unknown to the pursuer. Without loss of generality we
assume that there is a single omniscient evader.

We assume that the time spent by the evader in the
pursuer’s visibility region is negligible. That is, when the
evader enters the pursuer’s visibility region, we assume
that the evader moves immediately to some other loca-
tion outside of V(p(t)). We refer to this behavior as a
jump, with the intuition that if the evader is detected,
it will immediately ‘jump’ beyond the pursuer’s visibility
region. Figure 1 illustrates this behavior. Since the evader
has unbounded velocity, we treat the time for this motion
as negligible and consider only the distance traveled by
the evader within the pursuer’s visibility region.

Definition 1: For given pursuer and evader trajectories
p and e and a given finite time ¢, the total distance
travelled by the evader through the pursuer’s visibility
region up to time t is referred to as the unoccluded
distance, denoted ud(p, e, t).

The intuition is that the unoccluded distance measures
the amount of travel within V(p(¢)) that the evader
makes. As this value increases, the pursuer has an in-
creased opportunity to detect the evader.

Definition 2: For a given pursuer trajectory p and
a finite time ¢ we define the pessimal unoccluded
distance for that pursuer trajectory at that time as the
worst-case unoccluded distance over all evader trajecto-
ries:

pud(p, t) = minud(p, e, ). (1)

Fig. 2. An environment with a pursuer (red circle) and six shadows
(filled path-connected regions).

B. Persistent Search Strategies

The pursuer’s goal is to drive pud(p, t) arbitrarily high
as t increases.

Definition 3: A pursuer trajectory p is called persis-
tent if, for any d € [0, 00), there exists some ¢ for which
pud(p,t) > d.

The intuition is that a persistent strategy is one in
which the evader is forced to cross through the pursuer’s
sensor footprint repeatedly as time passes.

IV. Passive PUD UPDATES

This section considers the passive problem of comput-
ing the pessimal unoccluded distance given a pursuer
path p, an evader path e, and a finite time horizon ¢t.
We first give a formal definition for the areas of the
environment hidden from the pursuer, called shadows
(Section IV-A). We then describe a specialized decompo-
sition of the environment that identifies, along the given
pursuer path, a finite locus of points at which this update
rule must be applied (Section IV-B). We then present a
method for updating the unoccluded distance based on
potential evader jumps (Section IV-C).

A. Shadows and Spuds

The key difficulty in locating the evader is that the
pursuer cannot, in general, see the entire environment at
once. This section contains some definitions for describ-
ing and reasoning about the portion of the environment
that is not visible to the pursuer at any particular time.

Definition 4: The portion of the environment not visi-
ble to the pursuer at time ¢ is called the shadow region
S(t), defined as

S(t) =W - V(p(t)

Note that the shadow region may contain zero or
more nonempty path-connected components, as seen in
Figure 2.

Definition 5: A shadow is a maximal path-connected

component of the shadow region.
A shadow is often referenced by the environment reflex
vertex that induces the occlusion ray that serves as the
shared boundary between the pursuer’s visibility region
and the corresponding shadow. This reflex vertex is
henceforth referred to as the anchor of the shadow. The
intuition is that a shadow can potentially change as the
occlusion ray rotates around its anchor, but will remain
anchored that a particular vertex.



Notice that S(¢) is the union of the shadows at time
t. The important idea is that, except for the negligible
time intervals during which it is visible to the pursuer,
the evader is always contained in exactly one shadow,
within which it can move freely.

For our pursuit-evasion problem, the crucial piece of
information about each shadow at each time is the worst-
case unoccluded distance the evader could achieve for
a path currently within that shadow. We can assign a
nonnegative real number label to each shadow which
corresponds to this distance.

Definition 6: For an individual shadow s;, a pursuer
path p, and a time ¢, the shadow pessimal unoccluded
distance, abbreviated spud, is defined as

spud(p, s;,t) = argmin ud(p, e, t), (2)
e€P(s:)
in which P(s;) denotes the set of all evader paths e :
[0,¢] = W for which e(t) € s;.

Using this worst-case reasoning, we can completely
represent the pursuer’s progress in searching for the
evader by the pursuer’s current position and the current
collection of spuds.

Lemma 1: For any pursuer trajectory p and any time
t, we have

pud(p,t) = n;in spud(p, s;, t),
in which the minimum is over all shadows at time ¢.
Proof: Follows directly from Equations 1 and 2. ®

The pursuer’s goal is to increase each of the spuds
in order to increase the overall pessimal unoccluded
distance. The intuition is that an evader that behaves
according to the motion model described in Section ITI-
A will be hiding in exactly one of the shadows, though
the identity of the exact shadow concealing the evader is
unknown to the pursuer. By reasoning about the mini-
mum spud, the pursuer can compute the overall pessimal
unoccluded distance value achieved by its movements.

B. Jump decomposition: Sufficient sets of jump locations

This section analyzes the locations at which the evader
may jump from one shadow to another. Specifically, we
describe a decomposition of W into a finite collection
of polygonal cells, called the jump decomposition, and
show that it is sufficient to consider evader jumps only
when the pursuer crosses a cell boundary in the jump
decomposition, or when the pursuer changes direction.
The jump decomposition is a refinement of the visibility
cell decomposition used by Guibas, Latombe, LaValle,
Lin, and Motwani [7], inserting additional cell divisions
to account for local minima in the distance that the
evader would need to jump.

Definition 7: The jump decomposition (Figure 3) is
formed by extending three types of rays.

1) Obstacle edges are extended in either direction, or
both directions if possible. These rays originate at
the reflex vertices of the environment and extend
into the interior of W (Figure 3, green rays).

Fig. 3.  Jump decomposition between two environment vertices
illustrating the three types of rays used to partition the environ-
ment.

- — — —=bitangent

Fig. 4. A scenario where only one pair of rays corresponding to
Item 3 of our jump decomposition exists. The other pair consists of
rays who are immediately in collision with the environment, thus
they can be safely discarded.

2) Pairs of mutually visible environment vertices are
extended outwards only if both directions are free
along the bitangent line through the pair of points
(Figure 3, red rays).

3) Rays are extended outwards from pairs of mutually
visible environment reflex vertices, orthogonal to the
line segment connecting the vertices. On either side
of the line connecting the vertices, these rays are
extended only if both rays on that side have nonzero
length (Figure 4). The start points of these rays
correspond to the projection of the vertices onto
the inflection ray (Item 1) of the partnering vertex
(Figure 3, blue rays).

This decomposition is valuable because its cell divi-
sions show the opportune locations for the evader to
jump from one shadow to another. The next lemma
makes this idea more precise.

Lemma 2: For any positive real number a, any piece-
wise linear pursuer path p, and any time ¢, if there exists
an evader path e for which ud(p,e,t) = a, then there
also exists an evader path e’ with ud(p,e’,t) < a, in
which e’ jumps between shadows only when the pursuer
crosses between regions of the decomposition, or when
the pursuer changes direction.

Proof: Construct €’ as identical to e, except that any
jumps made by e are delayed, if necessary, until a com-
binatorial change occurs in the shadow set, or until the
shortest path between some set of shadows reaches a local
minimum along the pursuer’s path. Clearly ud(p,€’,t) <
ud(p, e, t), since the same jumps are made by €’ and e,
possibly with smaller unoccluded distances for each. It
remains to show that e’ jumps only when the pursuer
crosses between cells in the jump decomposition or when
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Fig. 5. Scenario where an obstacle inhibits the evader from directly
jumping along the projection of an anchor to an occlusion ray. Note
that if an obstacle crosses the bitangent between a; and ag then
the jump point reverts to the anchors.

the pursuer changes direction.

It is well known that combinatorial changes to the set
of shadows occur only when the pursuer is on an edge in
the visibility cell decomposition. The jump decomposi-
tion includes these edges as Items 1 and 2 in Definition 7.

Finally, we identify the locations at which local minima
of the distance between a pair of shadows s; and so, with
anchor vertices a; and as respectively, can occur. The
intuition is that the shortest path between any pair of
shadows occurs either between the shadows’ anchors, or
between one anchor and a non-anchor point along the
opposite occlusion ray.

Let ¢; denote the line passing through a,, perpendicu-
lar to line passing through a; and as. Similarly, ¢5 passes
through as and is parallel to /1. For the distance between
these two shadows, there are three cases, depending on
the location of p(t) relative to ¢; and /5.

1) If p(t) is between ¢; and fq, or if a; is not visible
from as (Figure 5), then the jump distance between
s1 and s9 is the shortest path in W from a; to as.
Note that this only applies for pursuer positions at
which s; and sq exist, which occurs when p(t) is on
the appropriate side of the Item 1 ray extensions
from a; and as. See Figure 6.

2) If p(t) is not between ¢; and ¢5, and p(¢) is closer
to ¢5 than ¢;, then the jump distance between s;
and s is the length of the shortest path in W from
ay to ray(ag,p(t) — a2). Moreover, for any linear
path segment within this region, this distance varies
monotonically. See Figure 7.

3) Finally, if p(¢) is not between ¢; and ¢35, and p(t)
is closer to ¢; than /5, the same argument applies
mutatis mutandis.

Note that, within each of these cases, the jump dis-
tance between two shadows cannot reach a local min-
imum, unless the pursuer changes direction. Moreover,
the jump decomposition includes edges separating these
three cases from one another.

Therefore, ¢/ jumps only when the pursuer changes
direction or crosses to a new cell in the jump decom-
position. [ |

C. Spud updates

The intuition of Lemma 2 is that, to maintain the
pessimal unoccluded distance pud(p,t) as the pursuer

\ \
\ .p(t) Y

Fig. 6. Illustration of the instance where the shortest distance
between two shadows occurs at the anchors. Notice, that the ray
on ¢2 does not begin at as. This occurs because of the inflection
(dashed green ray) coming from aq, if the pursuer moves beyond
the inflection then shadow s; will disappear.

® (1)

Fig. 7. Illustration of the scenario where the shortest distance
between two shadows passes through an anchor and an occlusion
ray. Notice, that since p(t) is not between ¢1 and ¢2, and p(t) is
closer to ¢2, the jump occurs from the occlusion ray at az to the
anchor vertex aj.

moves, we can update the spuds a finite number of times,
only when the pursuer changes directions or crosses a cell
boundary of the jump decomposition.

To accomplish this, we compute the jump decompo-
sition as a doubly-connected edge list [3], and associate
with each interior half-edge h, a possibly empty set of
jumps

J(h) = {Ssrc; = Stgtys---» Ssrem — Stgtm ;
that may occur when the pursuer crosses that half-edge.
For example, for a half-edge h corresponding to the
disappearance of a shadow s, we include elements in
J(h) representing jumps from s to each other shadow in
S(t). If h instead corresponds to the appearance of a new
shadow in a region that was previously fully visible, we
initialize the spud of that shadow to oo (indicating that,
without a jump, the evader cannot be in that region), and
include elements in J(h) representing jumps to the new
shadow from each other shadow. Likewise, we associate
with each interior face f a possibly empty set of jumps

J(f) = {Ssrcl —7 Stgtys -+ Ssrem 7 Stgtm}
that may occur when the pursuer changes direction
within f. These are jumps between precisely the pairs of
shadows for which Cases 2 or 3 in the proof of Lemma 2
apply.

In either case—crossing to a new cell in the jump
decomposition, or changing direction within the interior
one of its faces—we update the spuds by seeding a queue
@ with the associated jumps and executing Algorithm 1.
This algorithm accounts for the possibility of multiple



Algorithm 1 UPDATE_ SPUDS(p(t), J)

Input: A pursuer position p(t)

Input: A set of plausible jumps J

Input: Initial spuds spud(p, s;,t) for each shadow
Output: Updated spud values.

Q@ + queue initialized with the jumps in J
while @ is not empty do
(Ssrc = stgt) <= Q. pop()
if SPUd(p7 Ssrc) + diSt(Ssrcy stgt) < SPUd(p7 Stgt) then
spud(p, Stgt) — Spud(P, Ssrc) + diSt(Ssrc, Stgt)
for each shadow s at time ¢ do
‘ Q. insert(stgt — )
end for
end if
end while

jumps in rapid succession using a Dijkstra-like propaga-
tion of the spuds.

V. GENERATING PERSISTENT PURSUIT STRATEGIES

In this section, we describe our algorithm for actively
computing a persistent pursuer strategy for a given envi-
ronment. Since the strategy should continue indefinitely,
we describe the algorithm as coroutine that periodically
emits segments of the strategy to be executed by the
robot’s lower-level control system. The underlying struc-
ture of our algorithm is a forward search on the region
graph induced by the jump decomposition. It computes
a sequence of successive regions that correspond to areas
of the environment that the pursuer can visit to drive
the pessimal unoccluded distance arbitrarily high.

A. Forward search

The algorithm works using a variation on the standard
forward search. It maintains a priority queue @ of search
nodes, each containing the following information:

o A finite-length path p : [0,7] — W representing
a partial plan for the pursuer, up through time T,
ending at the centroid of one of the interior faces of
the jump decomposition.

o A reference to the face in the jump decomposition
containing p(7).

o The value spud(p, s;, T) for each shadow s;, achieved
by p, computing using the passive algorithm from
Section IV.

The algorithm maintains a target pessimal unoccluded
distance T, and searches for a path whose pessimal
unoccluded distance is strictly greater than 7. Initially,
7 is set to 0.

The priority queue @ is ordered based on the length
T of pursuer’s path. We initialize () with a single search
node, in which 7' = 0, p(0) is at the pursuer’s initial state,
and spud(p, s;,0) = 0 for every shadow. These initial
spuds correspond to the assumption that the pursuer
does not have any a priori information on the location
of the evader.

At each iteration, the algorithm selects from @ the
node (p,T,spud) with the smallest T' value. It expands
this node by appending to p path segments that travel to

each neighboring interior face in the jump decomposition,
updating the spuds using Algorithm 1. If those new nodes
pass the validity test described below, they are inserted
into Q.

The search continues in this manner until one of two

conditions is satisfied.

1) If @ becomes empty, the algorithm has determined
that no persistent pursuer strategy exists, and ter-
minates accordingly.

2) If a node (p,T,spud) has pud(p,T) > 7, we have
found a path segment that increases the pessimal
unoccluded distance above the target 7. When this
occurs, we emit that path p to be executed, increase
7 to pud(p,T), and clear Q. The algorithm then
resumes normally by generating the successors of the
node (p, T,spud). In particular, the spuds achieved
by p persist as the algorithm computes the next path
segment to emit.

This process continues indefinitely, generating the infi-
nite path p, one segment at a time.

B. Pruning

Prior to adding a new search node (p,T,spud) to the
forward search queue @, we perform a pruning operation
to ensure that our search is making progress towards
a solution by avoiding search nodes for which better
alternatives have already been found.

Definition 8: A search node (p,T,spud) is domi-
nated by another search node (p’, T, spud’) if

1) both p(T) and p'(T”) reside in the same face of the
jump decomposition, and
2) for every shadow s;—Note that both p(T") and p'(T")
induce the same set of shadows—we have
spud'(p’, s;, ') < spud(p,s;,T).
The intuition is that if a node is dominated by another
node, any future expansions that originate from the
dominated node will be inferior to those generated by
the dominating node.

The algorithm maintains a list of non-dominated
search nodes for each interior face of the jump decomposi-
tion. We call a search node wvalid if it is not dominated by
any node in the corresponding list. Each time we generate
a new search node, we compare it with the existing list,
and discard the new node if any existing nodes dominate
it. If the node is valid, insert it into the list, and scan the
list to delete any nodes dominated by the new one.

VI. EXPERIMENTS

We have implemented the algorithm presented in Sec-
tion V. This section presents several experiments to
evaluate the performance of the algorithm.

As a basis to for comparison, we show not only our so-
lution (denoted as SKO in Figures 8, 9, and 10) but also
make a slight alteration to the algorithm presented by
Guibas, Latombe, LaValle, Lin, and Motwani (hereafter,
GI?M) that is known to be complete for the case with
no sensor error. The original GI?M algorithm generates



a path, starting from an initial position and ending
elsewhere that guarantees that all of the evaders are
captured. To apply this solution in the present context,
we augment this solution by appending an additional
path segment that returns to the initial position, and
repeating this circuit indefinitely. The resulting path is
a persistent pursuer strategy.

We performed simulations on three environments. For
each one, we plot the pessimal unoccluded distance
as a function of the distance traveled by the pursuer,
measured in the abstract distance units employed by our
custom simulator. In these plots, larger values indicate
superior performance, corresponding paths that force the
evader to jump longer distances.

Figure 8 shows a simple proof-of-concept environment.
This case was chosen to illustrate the importance of the
initial position to the GI?M algorithm. The pursuer’s
start location was near the top-left corner of the en-
vironment. The GI?M circuit requires additional travel
to return to that area of the environment, whereas the
path generated by our algorithm oscillates between left-
of-center and right-of-center.

The environment in Figure 9 is an example from the
literature [7]. This environment is known to require the
pursuer to clear the corners of the environment using one
of two different sequences:

1) Clear the right portion of the environment, followed
by the top left portion, before finally clearing the
bottom left portion.

2) Similarly, the pursuer can perform those clearing
motions in reverse: bottom left, top left, right, to
clear the environment.

We selected the center hallway connecting the left and
right portions of the environment as the start point. Once
again our algorithm outperformed the GI*M path.

The environment in Figure 10 illustrates the effect
that poor short term planning has on the global unoc-
cluded distance. Due to the many branching hallways
found in this environment, the pursuer must be careful
determining the order in which these branches are ex-
plored.

VII. CONCLUSION

This paper described a novel approach to the visibility-
based pursuit-evasion problem when dealing with sensing
uncertainty due to potential false negative errors in the
sensors used to detect the evader. Rather than modeling
these errors probabilistically, we instead reasoned about
the pessimal unoccluded distance, which is the worst-case
distance that an evader would have to travel under the
pursuer’s sensor footprint. Our algorithm is designed to
generate persistent pursuer paths that drive this value
arbitrarily high. To that end, this paper made several
novel contributions. We presented the jump decomposi-
tion which can be used in conjunction with a pursuer
path to identify a finite number of instances where the
evader’s optimal motion might cross into the pursuer’s
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Fig. 8. A simple environment in the shape of a pentomino, inset
in a plot of the pessimal unoccluded distance achieved by our
algorithm and GIPM, as a function the pursuer’s distance traveled
in that environment.
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Fig. 9. The “H” environment from [7] inset in a plot of the pessimal
unoccluded distance achieved by our algorithm and GI?M, as a
function the pursuer’s distance traveled in that environment.

sensing area. We then described an algorithm for the ac-
tive problem of computing a persistent pursuer strategy.
Our algorithm periodically emits partial plans that when
appended together form a persistent pursuer strategy.

There are a number of diverse extensions that could
be applied to this work. The planner employed in this
work produced feasible pursuer paths capable of driving
the unoccluded distance arbitrary high. However, these
paths are not optimal in the sense of minimizing the
pursuer’s travel. The cells of the jump decomposition in
which the unoccluded distance changes as a function of
the angle formed by the pursuer and an anchor point (as
the pursuer rotates about the anchor) are particularly
troublesome. Another potential line for future work con-
siders the multirobot formulation of the problem where
a planner would coordinate the motions for a team of
pursuers. The remaining avenue for future work considers
the problem from the evader’s perspective rather than
the pursuer’s. The authors envision a scenario where a
deployable robot has a diminishing energy source. Ques-
tions that pertain to the evader such as “What strategy
could the evader employ to maximize its unoccluded
distance while remaining within its energy bound?” are
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Fig.
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10. An environment with some locations that have many

simultaneous shadows, inset in a plot of the pessimal unoccluded
distance achieved by our algorithm and GI?M, as a function the
pursuer’s distance traveled in that environment.

of particular interest.
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