Bufferless NoCs with Scheduled Deflection Routing

Chen Chen, Zirui Tao, Joshua San Miguel
Department of Electrical and Computer Engineering
University of Wisconsin—-Madison, WI, USA
Email: {cchen532, ztao23, jsanmiguel } @wisc.edu

Abstract—Bufferless networks-on-chip (NoCs) with deflection
routing are a promising approach for saving area and power
in the communication fabric of many-core processors. How-
ever, deflection routing imposes fundamental limitations on the
number of input and outports per router, which compromises
the NoCs’ ability to adapt to permanent link failures due to
wearout. The susceptibility to wearout of modern NoCs has
increased due to deeper sub-micro CMOS process technology. In
this paper, we propose scheduled deflections for bufferless NoCs
(SchedNoC), a framework that prolongs the lifetime of bufferless
NoCs via strategic time-multiplexing of links, which allows links
to fail arbitrarily while ensuring correct network operation. We
show that SchedNoC can increase the NoCs’ lifetime by 62.5%—
71.8% at only 4%-15% performance degradation compared to
conventional deflection routing.

I. INTRODUCTION

Modern packet-switched networks-on-chip (NoCs) require
expensive buffering to provide high-performance, high-
bandwidth packet transactions. However, these buffers incur
substantial hardware overhead [1] and compromise the area
and power efficiency of today’s chip multi-processors (CMPs).
Promising Approach: Bufferless NoCs. Bufferless NoCs
(e.g., BLESS [2]) have shown to be a promising solution for
scalable interconnect area and power. The idea is to keep
packets in constant motion and remove the buffers in the
routers. In this way, bufferless NoCs avoid storing packets by
forcing them to leave the router immediately after deciding
which way they need to go. However, multiple incoming
packets may vie for the same outport of a router during
route computation. Bufferless NoCs apply the principle of
deflection routing to pick one winner packet and deflect oth-
ers to different non-preferred outports, potentially misrouting
them. Prior work on BLESS [2] demonstrates 40% energy
reduction while maintaining high performance for applications
with moderate network utilization. Thus bufferless NoCs with
deflection routing can prove to be a scalable low-cost solution
for future many-core processors.

Challenge 1: Deflection Routing Constraints Unfortunately,
deflection routing imposes strict design requirements, namely
port number constraint, on the network topology in order
to operate correctly. It requires that every router have at
least as many outports available for all of its incoming
packets. In other words, the number of inports must never
exceed the number of outports in any router. This restriction
makes bufferless NoCs difficult to use for irregular topology.
But more importantly, as in the focus of this paper, this
limitation compromises the bufferless NoCs’ ability to adapt to
arbitrary link failures due to wearout in electronic components,

degrading the effective lifetime of NoCs (and potentially the
lifetime of the entire CMP).

Challenge 2: Wearout and Lifetime of NoCs Today’s
CMPs have become more vulnerable to wearout due to higher
transistor density and deeper CMOS process technology. From
the perspective of the interconnect, this implies that perma-
nent link failures are becoming non-trivial and far more fre-
quent [3]. These link failures do not necessarily immediately
compromise the functionality of the CMP, because systems
can usually accommodate redundant cores. But the more
permanent link failures that occur, the higher the likelihood
of causing NoCs to be disconnected, thus making some cores,
memory and I/O devices inaccessible eventually [4]. We define
that a NoC reaches the end of its lifetime when there exists at
least one router that can neither send to nor receive packets
from at least one other router. As will be discussed in detail in
Section II, prior strategies for tolerating faulty links are often
too conservative, particularly with bufferless NoCs, and thus
struggle to extend the lifetime of systems.

Solution: Scheduled Deflections. In this paper, we propose
Scheduled Deflections for Networks-on-Chip (SchedNoC), a
bufferless NoC architecture that employs scheduled deflection
routing to enable continuous, correct execution of the buffer-
less NoC even in the presence of permanent link failures
due to wearout. SchedNoC enables a Unidirectional Link
Disconnection (ULD) strategy that overcomes the port number
constraint (Challenge 1) by dynamically multiplexing packets
via time slices so that the number of outports can safely be
less than the number of inports in any router and all incoming
packets can always find available outports to traverse. This
subsequently addresses Challenge 2 because we can now allow
links to fail arbitrarily with much less concern of the correct
operation of the bufferless NoC.

Contributions. Our work contributes the following:

« Introduces the concept of scheduled deflections for buffer-
less NoCs to greatly improve resilience to wearout.

e Proposes SchedNoC, a bufferless NoC architecture that
allocates time slices on non-faulty links to avoid conflicts
when the number of outports is not sufficient given the
number of inports. This makes the interconnect robust
to permanent link failures and makes bufferless NoCs a
viable option for irregular topologies.

o Presents two allocation algorithms for deriving time
slices, Multi-Ring and Even-Odd, which allow Sched-
NoC to maximize network lifetime. Our evaluation of
SchedNoC with our Multi-Ring algorithm demonstrates
71.8% increased lifetime at modest 15% performance cost
compared to conventional bufferless NoCs with 10-30%

L

Bidirectional Unidirectional

Fig. 1. 2x2 Mesh with 4 faults, comparing BLD and ULD

area and power overhead. With Even-Odd, SchedNoC
increases lifetime by 62.5% with very low performance
degradation (4%) and overhead (less than 1%).

II. MOTIVATION

Link Wearout and NoC Lifetime. The lifetime and resiliency
to wearout of NoCs are increasingly important concerns.
Though prior works [3], [5] provide mechanisms for handling
faulty links in NoCs, they are fundamentally too conservative
and do not consider the side-effect on lifetime, employing
what we refer to as a bidirectional link disconnection (BLD)
strategy. In BLD mechanisms, when a link fails, the system
disconnects both the faulty unidirectional link as well as
the unidirectional link going in the opposing direction even
though the opposing link may not be faulty. This is often
meant to keep the hardware simple, because an imbalance in
the direction of links makes routing and flow control non-
trivial. More importantly, as explained in Section I, BLD is
necessary for bufferless NoCs so as to not violate port number
constraints. Though the BLD strategy ensures correctness, it
is fundamentally too conservative and can quickly degrade the
lifetime of a NoC.

Ideally, we would prefer a unidirectional link disconnec-
tion (ULD) strategy instead, where only the faulty links are
disconnected. This maximizes NoC’s lifetime to its theoretical
limit. A brief example is shown in Fig. 1, where employing
BLD for failed links results in an unusable NoC, and thus the
NoC reaches the end of its lifetime, because some routers are
no longer able to send or receive packets from some other
routers; i.e., the network becomes disconnected. On the other
hand, employing ULD is able to retain network connectivity
despite many faulty links.

Degradation in NoC Lifetime due to BLD. We characterize
the amount of NoC lifetime wasted due to BLD. Specifically,
we show how many links must fail (on average) before a
NoC reaches the end of its lifetime, comparing BLD and ULD
strategies. Fig. 2 shows the results of our characterization for
varying sizes of 2D meshes. For each topology, we iteratively
increase the number of faulty links, disconnecting links in
a uniform random fashion. We run 1000 experiments per
iteration. The figure shows how many links needed to fail such
that in 90% of the 1000 experiments, the NoC reached the
end of its lifetime (i.e., became disconnected and unusable).
For example, using BLD, more than 900 experiments with
53 faulty links on the 10x 10 mesh lead to unusable NoCs,
whereas with ULD, the same topology can withstand up to 88
faulty links, which implies 66% longer lifetime when using
ULD. On average, across the varying topologies, we find

Max Faulty Links
@
3

4644

3536
27

283

20 .
2 1616 12 B 7
87, 9 I ;
o Ime. W IR /
33 Y SIS GRS MY

e

7 75

68 ”

57 53 s
a4

5
8 o9 410 g1t

Topology Size

Fig. 2. Number of links that must fail such that the NoC reaches the end of
its lifetime

that employing the novel ULD approach prolongs lifetime by
71.8% on average compared to conventional BLD.

III. SCHEDNOC CONCEPT

We introduce the Scheduled Deflection Network-on-
Chip (SchedNoC), a framework to build resilient bufferless
NoC. SchedNoC enables ULD for handling wearout in buffer-
less NoCs, overcoming their port number constraints, and
significantly prolonging network lifetime.

The key concept is that SchedNoC allocates time slices
on each link, effectively time-multiplexing the possible turns
between links. Each link can only transfer packets when the
clock hits its preassigned time slice period. Consider the exam-
ple in Fig. 3a. This bufferless router has three input ports and
two output ports, which violates the port number constraint.
In order to operate correctly, a conventional bufferless NoC
would need to drop packets, which would be expensive to
support, requiring control networks for acknowledgments and
additional buffers at the endpoints (thus making the NoC
no longer bufferless). However, through careful time slice
allocation on each link, SchedNoC is able to overcome this
constraint. In Fig. 3b and 3c, SchedNoC allocates time slice
“0” and “1” on two different pairs of input ports. When the
clock hits time slice “0”, only the pair of ports allocated
with “0” can transfer packets, and similarly for time slice
“1”. Thus, at each clock cycle, no more than two incoming
packets can arrive at this router simultaneously, and they can
always find available output ports to turn towards. Takeaway:
SchedNoC guarantees that the number of available input ports
is dynamically not greater than the number of available output
ports at any clock cycle, even though the presence of faulty
links introduces the violation of the port number constraint.

The time-multiplexed allocation of links is global. We
assume that all routers in a NoC share the same global clock,
which is the common case in modern packet-switched NoCs.
The global clock is broken down into short periods of cycles
called system time slices (syslices). The ports with allocated
time slices equal to the current value of the syslice will be
time-multiplexed as available by routers. The range of syslices
is defined as the total number of distinct time slices (TTS)
across the entire NoC. In Fig. 3, there are three different time
slices: “0,1,2”. Therefore, the TTS is three in this case, and

(a)

Fig. 3. SchedNoC concept of allocating time slices on a router with three
input ports and two output ports

the clock will be split into three periods. Thus the syslice will
update in round-robin order as “0,1,2,0,1,2...” throughout the
lifetime of the NoC.

The cycle duration between syslices is determined by the
per-hop latency, including link traversal delay. If the per-hop
latency is assumed to be two clock cycles (e.g., one cycle in
router pipeline and one cycle traversing the link), the syslice
will update every two clock cycles.

IV. SCHEDNOC ALGORITHM CONCEPT
A. Algorithm Design Goals

The goal of our SchedNoC algorithm is to allocate time
slices on active (non-faulty) links to ensure correct bufferless
operation. An ideal allocation algorithm should maximize
the lifetime of the NoC and minimize area overhead, power
overhead and performance degradation.

Lifetime. We assume that the upperbound of a NoC lifetime
is equivalent to what its lifetime would be had it strictly
employed the ULD strategy (i.e., only faulty links are ever
disconnected). Technically, an allocation algorithm is allowed
to logically disconnect extra non-faulty links upon a fault,
similar to BLD. Disabling non-faulty links can be seen as
simply not allocating any time slices for these links, so that
their availability will not be time-multiplexed. The Even-
Odd algorithm that we introduce in Section V is an example
approach that requires logically disconnecting additional non-
faulty links.

Area and Power. SchedNoC routers require tiny buffers to
store time slices on each non-faulty link. Intuitively, the main
area and power overhead are from these buffers. In order to
reduce buffer size, allocation algorithms need to minimize
TTS, which is the number of distinct time slices required to
guarantee correct system operation because in our SchedNoC
router microarchitecture, time slice allocations are stored in a
bitvector, whose size is proportional to TTS. A more detailed
microarchitecture description is provided in Section VI, and
the area and power evaluations are provided in Section VII.
Performance. To minimize the performance degradation com-
pared to conventional bufferless NoCs, allocation algorithms
need to maximize the average throughput. Because SchedNoC
dynamically time-multiplexes the availability of links, the
throughput of each link can be seen as the number of time
slices allocated on it divided by TTS. For example, in Fig. 3,
the TTS is three; Because the right input port is allocated only
one time slice, this means that every three cycles, this link can
only transfer one packet. Therefore, the throughput of this link
is 33%. The upperbound of throughput is 1, which means a

link is allocated with all time slices and can transfer packets
at any time. An algorithm that employs BLD can generally
achieve the upperbound, because it guarantees that the number
of available input ports is always equal to the number of
available output ports. A SchedNoC algorithm generally trades
off throughput with area and power because with a small TTS,
deallocating one time slice from a link has more significant
impact on throughput.

B. Algorithm Design Principles

The effect of time-multiplexing each link propagates
throughout the NoC topology. Thus, the SchedNoC allocation
algorithm can be expressed as a graph problem. We assume
that a network in its lifetime is one where all routers are able to
send and receive packets from all other routers. If at least one
router becomes disconnected and can no longer communicate
with at least one other router, then the NoC is unusable and has
reached the end of its lifetime. In this paper, the algorithms are
developed for the NoC that is still in its lifetime. We follow
two key principles in designing our SchedNoC algorithms:

o The total number of input ports in a router with the same
time slice must be no greater than the total number of
output ports with the same successive time slice.

« Time slices should be allocated at the granularity of rings
of non-faulty links.

1) Time slices constraint: SchedNoC overcomes the port
number constraint by dynamically time-multiplexing the avail-
ability of links, allowing the number of input ports to physi-
cally exceed the number of output ports in a router. However,
to do so, at each cycle, SchedNoC still needs to ensure that the
number of available input ports does not exceed the number
of available output ports, so that incoming packets can always
find available output ports on which to exit. This requirement
introduces a new constraint of SchedNoC, called time slices
constraint, that means the total number of input ports with
the same time slice must be less than or equal to the total
number of output ports with the same successive time slice.
The successive time slice on output ports means the time
slice at the input ports plus I. Note that when the time slice
value accumulates up to TTS, it resets back to 0. To simplify
our implementations, we design our algorithms such that the
number of input ports with the same time slice is exactly equal
to the number of output ports with the same successive time
slice.

2) Follow rings to allocate time slices: Because bufferless
NoCs employ deflection routing, packets must leave each
router right after finishing the transaction process at the router,
and keep hopping among routers until they arrive at their
destination. We recognize that for any connected network, the
set of all non-faulty links can be decomposed into multiple
rings, because any router can send to or receive packets from
all other routers. SchedNoC can follow decomposed rings to
allocate time slices on links. Within a ring, the number of input
ports always equals the number of output ports, which obeys
the time slice constraint; thus allocating time slices along rings

can guarantee any incoming packets can always find available
output ports at any router.

Each decomposed ring is not required to cover all routers
nor all non-faulty links in the network, but the final combina-
tion of rings must do so. Multiple rings may contain the same
routers, which we refer to as interaction routers. Because the
destination of a packet may not be located at a router within
the current ring, the packet must eventually switch to another
ring via these interaction routers. A packet may need to hop
along multiple rings to get to its destination.

To simplify design complexity, we impose the rule that all
decomposed rings have a size (in links) that is proportional
to the TTS of the network. For example, a size-2 ring and a
size-4 ring can both accommodate a TTS of 2. This makes it
simpler for packets to traverse through interaction routers and
switch rings when needed.

2 5416 S+17
3 S+13 ~ S+12

1 ses| s+14 3| |3 sl fseas
0 : S+l 22

0 S+4 2, T s

.
3 1 n S+5 47 s+ TR LY
S+6 519)

2 425 s424

(a) Time slices allocation following
four rings

(b) The first size-26 ring
Fig. 4. Ring allocation strategy

Consider the example topology in Fig. 4a. It can be decom-
posed into four rings each of size 4, with the TTS set to 4.
Allocated time slices following them guarantees the number
of available output ports at each router are always equal to
the number of available input ports at any time. Packets can
change ring tracks at interaction routers to arrive at different
destinations. In this example, there is only one interaction
router in the middle. All packets can arrive at this interaction
router when syslice is in period “3” and change their ring track
when syslice is in period “0”.

V. PROPOSED SCHEDNOC ALGORITHMS

In this section, we introduce our proposed algorithms for
allocating time slices to links in SchedNoC. Whenever a link
fails due to wearout, the first step is to verify that the NoC has
not reached the end of its lifetime (i.e., the network topology
is still connected). This verification can be achieved via a
breath-first or depth-first traversal across all routers. Upon a
newly faulty link, SchedNoC invokes its allocation algorithm
to reassign time slices to all non-faulty links. We propose two
allocation algorithms, Multi-Ring and Even-Odd and analyze
them in terms of throughput, TTS and lifetime in Section VII.
Multi-Ring (MR) Algorithm. Our MR algorithm follows
directly from our algorithm design principles discussed in
Section IV-B. The MR algorithm aims to apply ULD directly
and utilizes all non-faulty links. It is designed for all kinds

0 4t stage

0 0,1

0,1

1,0

Fig. 5. Allocating more time slices at the fourth MR stage

of topologies and is divided into four stages. The paths of
a NoC can be decomposed into multiple rings of the same
size. The first stage is to generate one ring with a specific
size, by randomly selecting non-faulty links. To simplify the
algorithm design, we force the first-generated ring to cover
all non-faulty links. Fig. 4b shows a first-generated ring on
a standard 3x3 mesh. The “S” represents the first selected
non-faulty link and “+number” represents the order that other
non-faulty links join the ring. Note that some non-faulty links
may be covered multiple times; e.g., the link allocated with
“S + 10” and “S + 20”. In this case, the size of the ring is 26,
and in the MR algorithm, we set the TTS of a NoC equal to
the size of this ring.

The second stage is to generate a group of rings of the

same size. These rings must be distinct; their tracks must not
be identical. The third stage is to follow rings in this group
one-by-one to allocate time slices. If the new time slices obey
the time slices constraint (Section IV-B), they are retained, and
the ring is deemed eligible. Our algorithm will then follow the
next ring in the group to allocate time slices until all rings in
the group are processed. To maximize the average throughput
of non-faulty links, we employ a fourth stage to allocate even
more time slices on each eligible ring. An example irregular
2x2 mesh is shown in Fig. 5, which can only be decomposed
into one ring. Assuming the TTS of the NoC is 2, the third
stage allocates time slices one round following the ring. At
the fourth stage, the algorithm finds that allocating time slices
one more round following the ring will not violate the time
slices constraint and can improve throughput.
Even-Odd (EO) Algorithm. Unlike MR, our EO algorithm
initially allocates links with all possible time slices and grad-
ually removes time slices on faulty links. The EO algorithm
applies ULD but requires logically disconnecting extra non-
faulty links. Furthermore, the EO algorithm is only designed
for mesh-based topologies; extending to others is left for future
work. In meshes, we observe that the time slices only need to
be either even or odd. Thus, to simplify the algorithm design,
we define the TTS to 2, yielding only time slices “0” and “1”.
The allocation process can be divided into three stages.

The first stage is to convert the current topology of a NoC
to a regular topology, so that the algorithm can allocate all
possible time slices on the links. We define a regular topology
to be one where the number of inports and the number of
outports are equal at all routers, so that each unidirectional
link can only have one another unidirectional link with the
opposing direction. A fully-connected 2D mesh is an example

of a regular topology. By this definition, incoming packets can
always find available outports to transfer, so that the NoC can
keep links available, and in the case of our EO algorithm, we
can allocate all possible time slices on the links.

The second stage is to remove time slices on faulty links,
which includes links that we manually added to make the
topology regular. This removal process needs to abide by the
time slices constraint (Section IV-B). In order to remove a
time slice from a faulty link, the algorithm needs to traverse
along some ring, removing a pair of time slices at each router,
one from an inport and another with the successive slice from
an outport. Because we want to minimize the throughput loss
due to removing time slices, we aim to find the smallest ring
that can be used to remove time slices on a faulty link. For
mesh-based NoCs, the smallest ring is a size-2 ring, which is a
pair of links with opposing directions, and the second smallest
ring is a size-4 ring that connects four routers in a rectangle.
Fig. 6a and Fig. 6b give an example of how a faulty link
(dashed line) follows the two smallest rings to remove time
slices on it. Fig. 6¢c shows a converted regular topology with
one faulty link. Fig. 6d shows the result of our EO algorithm
after removing time slices on this faulty link.

0,1 0,1
-]: 01 1
01| 301" 01| |oa1 0 of o1
& 01 1
0,1 0,1
01 loa1 oaf |01 01 loa o, |01
1 0,1
0,1 0,1

(b) © (@

Fig. 6. An example of removing time slices on a faulty link

In the process of removing time slices, the EO algorithm
may logically disconnect additional non-faulty links. A non-
faulty link can be traversed by rings that belong to multiple
faulty links. Once all of the non-faulty link’s time slices are
removed, the link becomes logically disconnected. Thus the
last stage of our algorithm is to verify that the NoC is still
within its lifetime (i.e., still connected and usable). This can be
simply achieved by iterating through each router and checking
to see if it can still send to and receive packets from all other
routers. Note that the logical disconnection is not permanent
because the link has not physically failed. If a new faulty
link appears, and the NoC must rerun the EO algorithm, these
logically disconnected non-faulty links are reintroduced.

VI. PROPOSED SCHEDNOC ARCHITECTURE

SchedNoC'’s architecture follows from conventional buffer-
less NoCs and introduces very little overhead to the router
microarchitecture. The main difference is when arbitrating
for outports, the allocators now need to check the outports’
availability based on the current syslice. In general, a NoC
employs a routing table to find the outport with the appropriate
path to the destination during route computation. As in prior
approaches for handling faults, when a new faulty link is de-
tected, the routing table must be correspondingly updated [5].

TABLE I
SYSTEM PARAMETERS USED IN OUR SIMULATIONS

4x4 ALPHA cores
MESI

32KB per core, 4-way
128KB per core, 8-way
1-cycle, 128-bit flits
1-cycle pipeline

1GHz

Multiprocessor
Coherence Protocol
Private L1 Cache
Shared L2 Cache
Interconnection Links
Bufferless Router
Frequency

Checking Time Slices. SchedNoC requires a table of allocated
time slices per outport as well as control signals for asserting
the availability of outports. The time-multiplexing process of
links’ availability can be out of the critical path, because when
there is an incoming packet, the route computation process
requires one more cycle to decode the packet’s destination.
Therefore the update process can finish execution one cycle
faster than route computation and pass signals to the crossbar
and the allocator.

Storing Time Slices. Storing the exact values of time slices
may incur high area overhead. Instead, we opt to encode the
time slices via a bitvector per outport. The time slice value
indexes into the bitvector, and the vector size is equal to the
TTS. To check the availability of a link, the current syslice
value is used to index into the bitvector. If the indexed bit is
1, the link is deemed available.

VII. EVALUATION

We evaluate NoC lifetime, performance (synthetic and ap-
plication) and hardware cost (network area and power), using
parameters shown in Table L.

Lifetime. SchedNoC with our MR algorithm is able to
utilize all non-faulty links, extending the NoC lifetime by
the maximum amount (71.8%) over the conventional BLD
approach. The comparison between MR (i.e., ULD), EO and
BLD is shown in Fig. 2. Our EO algorithm has less (though
still significant) lifetime improvement of 62.5% because it
necessitates logically disconnecting some non-faulty links.

Performance. We first compare our two proposed SchedNoC
algorithms analytically. Because SchedNoC dynamically time-
multiplexes the availability of links, we use the allocated rate
between the number of allocated time slices on each link (TS)
and the total number of time slices (TTS) to evaluate the
throughput of a link, computed as: % We can estimate
the average throughput of a NoC by calculating the average
allocated rate across all links. A large TTS requires routers to
consume more power and space to store time slices. Therefore,
a good allocation algorithm should maximize the average
throughput while minimizing the TTS. We use this criterion
to evaluate our proposed MR and EO algorithms. We use a
4x4 irregular mesh with 4, 8 and 12 arbitrary faults as test
cases. We run each algorithm on each test case 1000 times
to calculate the average throughput. The average throughput
of our MR algorithm is found to be around 19%, 19% and
25% for the three test cases, respectively, while the results
of our EO algorithm are 82%, 63% and 89%, respectively.

TABLE II
RESULTS OF EMPIRICAL EVALUATION

Algorithm | Lifetime | Performance Degradation | Area & Power
MR 71.8% 15% 10%
EO 62.5% 4% <1%

Though currently only applicable to mesh-based topologies,
we find that our EO algorithm achieves higher throughput. We
observe that the TTS of a NoC with MR is highly related to the
number of non-faulty links in the NoC because the randomly
generated ring must cover all non-faulty links at least one time.
Thus MR’s scalability is limited by increasing area and power
demands by increasing TTS. However, the TTS of a NoC with
the EO algorithm is consistently ‘“2” regardless of the NoC
size. Therefore, the EO algorithm has better scalability and
lower performance degradation than the MR algorithm, which
is a worthy trade-off for its limited applicability to mesh-based
topologies.

For our empirical evaluations, we use a standard bufferless

NoC, BLESS [2], as our baseline. As test cases, we use 4x4
irregular meshes with 4, 8 and 12 arbitrary faults. The results
of our BLESS baseline are from simulation on a regular
4x4 mesh with no faults. We first measure average packet
latency as functions of injection rate for synthetic uniform
random traffic. The results show that the non-faulty baseline
saturates at 0.20 (packets/cycle/core), while SchedNoC with
MR saturates at 0.06 (p/c/c), and SchedNoC with EO satu-
rates at 0.18 (p/c/c). For application-level performance, we
run full-system simulations of PARSEC benchmarks [6], [7]
on gemS [8] and Garnet2.0 [9]. Compared to the baseline,
SchedNoC with MR maintains only 15% average performance
degradation on our benchmarks while SchedNoC with EO
maintains only 4% performance degradation.
Area and Power. We use DSENT [10] to analyze area and
power consumption. We set Tri-Gate (Multi-Gate) 11nm LVT
process as our electrical technology model. We use regular
4x4, 6x6 and 8x8 mesh as test cases and calculate average
TTS, respectively. Compared to the baseline, the overhead
of SchedNoC (both area and power) with MR is 10%, 18%
and 30%, respectively. We find that the overhead with EO
is negligible (less than 1%) regardless of the mesh size. The
lifetime extension of each algorithm, the average normalized
performance degradation results and area & power overhead
results of 4x4 mesh are shown in Table II.

VIII. RELATED WORK

Prior efforts aim to prolong CMP lifetime proactively. The
relationship between interconnect wearout and router’s work-
load has been analyzed by [4]. They implement architectures
to keep workloads at moderate traffic levels. [11] observes that
reducing the variance of activity can avoid early failures. NBTI
and HCI are two main causes of wearout [12]. Prior works
on fault-tolerant NoCs are often too conservative on dynamic
faulty links [3], [5], [13] and apply the BLD approach. [14]

implements extra hardware to surround a NoC to enable fault
tolerance, which has low scalability at larger NoC sizes.

IX. CONCLUSION

In this paper, we propose scheduled deflections for bufferless
NoCs (SchedNoC), a framework that prolongs the lifetime of
bufferless NoCs. We introduce two novel algorithms, Multi-
Ring (MR) and Even-Odd (EO). Both algorithms are designed
for scheduling packet deflections and allow links to fail arbi-
trarily while ensuring correct network execution. We show that
SchedNoC can increase the NoC lifetime by 62-71.8% at only
4-15% performance degradation compared to conventional
deflection routing.

REFERENCES

[1] Paul Gratz, Changkyu Kim, Robert Mcdonald, Stephen W. Keckler,
Doug Burger, “Implementation and evaluation of on-chip network
architectures,” in 2006 International Conference on Computer Design,
2006.

[2] T. Moscibroda and O. Mutlu, “A case for bufferless routing in on-chip
networks,” ACM SIGARCH Computer Architecture News, vol. 37, no. 3,
pp. 196-207, 2009.

[3] Z.Zhang, A. Greiner, and S. Taktak, “A reconfigurable routing algorithm
for a fault-tolerant 2d-mesh network-on-chip,” in 2008 45th ACM/IEEE
Design Automation Conference, pp. 441-446, IEEE, 2008.

[4] H. Kim, A. Vitkovskiy, P. V. Gratz, and V. Soteriou, “Use it or lose
it: Wear-out and lifetime in future chip multiprocessors,” in 2013
46th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pp. 136-147, 1IEEE, 2013.

[5]1 D. Fick, A. DeOrio, G. Chen, V. Bertacco, D. Sylvester, and D. Blaauw,
“A highly resilient routing algorithm for fault-tolerant nocs,” in Pro-
ceedings of the Conference on Design, Automation and Test in Europe,
pp. 21-26, European Design and Automation Association, 2009.

[6] C.Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark suite:
Characterization and architectural implications,” in Proceedings of the
17th international conference on Parallel architectures and compilation
techniques, pp. 72-81, 2008.

[71 M. Gebhart, J. Hestness, E. Fatehi, P. Gratz, and S. W. Keckler, “Running
parsec 2.1 on m5,” The University of Texas at Austin, Department of
Computer Science, Tech. Rep, 2009.

[8] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, et al., “The gem5
simulator,” ACM SIGARCH Computer Architecture News, vol. 39, no. 2,
pp. 1-7, 2011.

[9] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha, “Garnet: A detailed

on-chip network model inside a full-system simulator,” in Performance

Analysis of Systems and Software, 2009. ISPASS 2009. IEEE Interna-

tional Symposium on, pp. 33—42, IEEE, 2009.

C. Sun, C.-H. O. Chen, G. Kurian, L. Wei, J. Miller, A. Agarwal, L.-S.

Peh, and V. Stojanovic, “Dsent-a tool connecting emerging photonics

with electronics for opto-electronic networks-on-chip modeling,” in

2012 IEEE/ACM Sixth International Symposium on Networks-on-Chip,

pp. 201-210, IEEE, 2012.

W. Song, S. Mukhopadhyay, and S. Yalamanchili, “Architectural reli-

ability: Lifetime reliability characterization and management ofmany-

core processors,” I[EEE Computer Architecture Letters, vol. 14, no. 2,

pp. 103-106, 2014.

F. Oboril and M. B. Tahoori, “Extratime: Modeling and analysis of

wearout due to transistor aging at microarchitecture-level,” in IEEE/IFIP

International Conference on Dependable Systems and Networks (DSN

2012), pp. 1-12, IEEE, 2012.

M. Ebrahimi, M. Daneshtalab, J. Plosila, and F. Mehdipour, “Md:

minimal path-based fault-tolerant routing in on-chip networks,” in 2013

18th Asia and South Pacific Design Automation Conference (ASP-DAC),

pp. 3540, IEEE, 2013.

Y. Kurokawa and M. Fukushi, “Design of an extended 2d mesh network-

on-chip and development of a fault-tolerant routing method,” IET

Computers & Digital Techniques, vol. 13, no. 3, pp. 224-232, 2019.

[10]

[11]

[12]

[13]

[14]

