average_pool
functionkeras.ops.average_pool(
inputs, pool_size, strides=None, padding="valid", data_format=None
)
Average pooling operation.
Arguments
inputs
has shape
(batch_size,) + inputs_spatial_shape + (num_channels,)
if
data_format="channels_last"
, or
(batch_size, num_channels) + inputs_spatial_shape
if
data_format="channels_first"
. Pooling happens over the spatial
dimensions only.len(inputs_spatial_shape)
, specifying the size of the pooling
window for each spatial dimension of the input tensor. If
pool_size
is int, then every spatial dimension shares the same
pool_size
.len(inputs_spatial_shape)
. The stride of the sliding window for
each spatial dimension of the input tensor. If strides
is int,
then every spatial dimension shares the same strides
."valid"
or "same"
. "valid"
means no
padding is applied, and "same"
results in padding evenly to the
left/right or up/down of the input such that output has the
same height/width dimension as the input when strides=1
."channels_last"
or "channels_first"
.
data_format
determines the ordering of the dimensions in the
inputs. If data_format="channels_last"
, inputs
is of shape
(batch_size, ..., channels)
while if
data_format="channels_first"
, inputs
is of shape
(batch_size, channels, ...)
.Returns
A tensor of rank N+2, the result of the average pooling operation.
batch_normalization
functionkeras.ops.batch_normalization(
x, mean, variance, axis, offset=None, scale=None, epsilon=0.001
)
Normalizes x
by mean
and variance
.
This op is typically used by the batch normalization step in a neural network. It normalizes the input tensor along the given axis.
Arguments
axis
dimension of the
input thensor.axis
dimension
of the input tensor.axis
dimension of
the input tensor. If not None
, offset
is added to the normalized
tensor. Defaults to None
.axis
dimension of the
input tensor. If not None
, the normalized tensor is multiplied by
scale
. Defaults to None
.Returns
The normalized tensor.
Example
>>> x = keras.ops.convert_to_tensor(
... [[0.1, 0.2, 0.3], [0.4, 0.5, 0.6], [0.7, 0.8, 0.9]]
... )
>>> keras.ops.batch_normalization(
... x,
... mean=[0.4, 0.5, 0.6],
... variance=[0.67, 0.67, 0.67],
... axis=-1
... )
array([[-3.6624e-01, -3.6624e-01, -3.6624e-01],
[-4.6445e-09, 0.0000e+00, -1.8578e-08],
[ 3.6624e-01, 3.6624e-01, 3.6624e-01]])
binary_crossentropy
functionkeras.ops.binary_crossentropy(target, output, from_logits=False)
Computes binary cross-entropy loss between target and output tensor.
The binary cross-entropy loss is commonly used in binary classification tasks where each input sample belongs to one of the two classes. It measures the dissimilarity between the target and output probabilities or logits.
Arguments
output
tensor.target
tensor.output
is a tensor of logits or
probabilities.
Set it to True
if output
represents logits; otherwise,
set it to False
if output
represents probabilities.
Defaults to False
.Returns
target
and output
.Example
>>> target = keras.ops.convert_to_tensor([0, 1, 1, 0])
>>> output = keras.ops.convert_to_tensor([0.1, 0.9, 0.8, 0.2])
>>> binary_crossentropy(target, output)
array([0.10536054 0.10536054 0.22314355 0.22314355],
shape=(4,), dtype=float32)
categorical_crossentropy
functionkeras.ops.categorical_crossentropy(target, output, from_logits=False, axis=-1)
Computes categorical cross-entropy loss between target and output tensor.
The categorical cross-entropy loss is commonly used in multi-class classification tasks where each input sample can belong to one of multiple classes. It measures the dissimilarity between the target and output probabilities or logits.
Arguments
output
tensor
except for the last dimension.target
tensor except for the last dimension.output
is a tensor of logits or
probabilities.
Set it to True
if output
represents logits; otherwise,
set it to False
if output
represents probabilities.
Defaults to False
.-1
, which corresponds to the last dimension of
the tensors.Returns
target
and output
.Example
>>> target = keras.ops.convert_to_tensor(
... [[1, 0, 0],
... [0, 1, 0],
... [0, 0, 1]])
>>> output = keras.ops.convert_to_tensor(
... [[0.9, 0.05, 0.05],
... [0.1, 0.8, 0.1],
... [0.2, 0.3, 0.5]])
>>> categorical_crossentropy(target, output)
array([0.10536054 0.22314355 0.6931472 ], shape=(3,), dtype=float32)
conv
functionkeras.ops.conv(
inputs, kernel, strides=1, padding="valid", data_format=None, dilation_rate=1
)
General N-D convolution.
This ops supports 1D, 2D and 3D convolution.
Arguments
inputs
has shape
(batch_size,) + inputs_spatial_shape + (num_channels,)
if
data_format="channels_last"
, or
(batch_size, num_channels) + inputs_spatial_shape
if
data_format="channels_first"
.kernel
has shape
(kernel_spatial_shape, num_input_channels, num_output_channels)
.
num_input_channels
should match the number of channels in
inputs
.len(inputs_spatial_shape)
,
specifying the strides of the convolution along each spatial
dimension. If strides
is int, then every spatial dimension shares
the same strides
."valid"
or "same"
. "valid"
means no
padding is applied, and "same"
results in padding evenly to the
left/right or up/down of the input such that output has the
same height/width dimension as the input when strides=1
."channels_last"
or "channels_first"
.
data_format
determines the ordering of the dimensions in the
inputs. If data_format="channels_last"
, inputs
is of shape
(batch_size, ..., channels)
while if
data_format="channels_first"
, inputs
is of shape
(batch_size, channels, ...)
.len(inputs_spatial_shape)
,
specifying the dilation rate to use for dilated convolution. If
dilation_rate
is int, then every spatial dimension shares
the same dilation_rate
.Returns
A tensor of rank N+2, the result of the conv operation.
conv_transpose
functionkeras.ops.conv_transpose(
inputs,
kernel,
strides,
padding="valid",
output_padding=None,
data_format=None,
dilation_rate=1,
)
General N-D convolution transpose.
Also known as de-convolution. This ops supports 1D, 2D and 3D convolution.
Arguments
inputs
has shape
(batch_size,) + inputs_spatial_shape + (num_channels,)
if
data_format="channels_last"
, or
(batch_size, num_channels) + inputs_spatial_shape
if
data_format="channels_first"
.kernel
has shape
[kernel_spatial_shape, num_output_channels, num_input_channels],
num_input_channels
should match the number of channels in
inputs
.len(inputs_spatial_shape)
,
specifying the strides of the convolution along each spatial
dimension. If strides
is int, then every spatial dimension shares
the same strides
."valid"
or "same"
. "valid"
means no
padding is applied, and "same"
results in padding evenly to the
left/right or up/down of the input such that output has the
same height/width dimension as the input when strides=1
.len(inputs_spatial_shape)
,
specifying the amount of padding along the height and width of
the output tensor. Can be a single integer to specify the same
value for all spatial dimensions. The amount of output padding
along a given dimension must be lower than the stride along that
same dimension. If set to None
(default), the output shape is
inferred."channels_last"
or "channels_first"
.
data_format
determines the ordering of the dimensions in the
inputs. If data_format="channels_last"
, inputs
is of shape
(batch_size, ..., channels)
while if
data_format="channels_first"
, inputs
is of shape
(batch_size, channels, ...)
.len(inputs_spatial_shape)
,
specifying the dilation rate to use for dilated convolution. If
dilation_rate
is int, then every spatial dimension shares
the same dilation_rate
.Returns
A tensor of rank N+2, the result of the conv operation.
ctc_decode
functionkeras.ops.ctc_decode(
inputs,
sequence_lengths,
strategy="greedy",
beam_width=100,
top_paths=1,
merge_repeated=True,
mask_index=0,
)
Decodes the output of a CTC model.
Arguments
(batch_size, max_length, num_classes)
containing the logits (the output of the model).
They should not be normalized via softmax.(batch_size,)
containing the
sequence lengths for the batch."greedy"
and "beam_search"
.True
.0
.Returns
strategy="greedy"
, the shape is (1, batch_size, max_length)
. If
strategy="beam_search"
, the shape is
(top_paths, batch_size, max_length)
. Note that: -1
indicates the
blank label.strategy="greedy"
, a tensor of shape (batch_size, 1)
representing the negative of the sum of the probability logits for
each sequence. If strategy="beam_seatch"
, a tensor of shape
(batch_size, top_paths)
representing the log probability for each
sequence.ctc_loss
functionkeras.ops.ctc_loss(target, output, target_length, output_length, mask_index=0)
CTC (Connectionist Temporal Classification) loss.
Arguments
(batch_size, max_length)
containing
the true labels in integer format.(batch_size, max_length, num_classes)
containing logits (the output of your model).(batch_size,)
containing the
true label lengths.(batch_size,)
containing the
output lengths.0
.depthwise_conv
functionkeras.ops.depthwise_conv(
inputs, kernel, strides=1, padding="valid", data_format=None, dilation_rate=1
)
General N-D depthwise convolution.
This ops supports 1D and 2D depthwise convolution.
Arguments
inputs
has shape
(batch_size,) + inputs_spatial_shape + (num_channels,)
if
data_format="channels_last"
, or
(batch_size, num_channels) + inputs_spatial_shape
if
data_format="channels_first"
.kernel
has shape
[kernel_spatial_shape, num_input_channels, num_channels_multiplier],
num_input_channels
should match the number of channels in
inputs
.len(inputs_spatial_shape)
,
specifying the strides of the convolution along each spatial
dimension. If strides
is int, then every spatial dimension shares
the same strides
."valid"
or "same"
. "valid"
means no
padding is applied, and "same"
results in padding evenly to the
left/right or up/down of the input such that output has the
same height/width dimension as the input when strides=1
."channels_last"
or "channels_first"
.
data_format
determines the ordering of the dimensions in the
inputs. If data_format="channels_last"
, inputs
is of shape
(batch_size, ..., channels)
while if
data_format="channels_first"
, inputs
is of shape
(batch_size, channels, ...)
.len(inputs_spatial_shape)
,
specifying the dilation rate to use for dilated convolution. If
dilation_rate
is int, then every spatial dimension shares
the same dilation_rate
.Returns
A tensor of rank N+2, the result of the depthwise conv operation.
dot_product_attention
functionkeras.ops.dot_product_attention(
query, key, value, bias=None, mask=None, scale=None, is_causal=False
)
Scaled dot product attention function.
Computes the attention function on Q (query
), K (key
), and V(value
):
attention(Q, K, V) = softmax(Q * K / sqrt(d)) * V
. If we define logits
as the output of Q * K
and the probs
as the output of softmax
.
Throughout this function, we utilize the following notation to represent the
shape of array:
- B: batch size
- S: length of the key/value
- T: length of the query
- N: number of attention heads
- H: dimensions of each attention head
- K: number of key/value heads
- G: number of groups, which equals to N // K
Arguments
(B, T, N, H)
.(B, S, K, H)
. When K
equals
N
, multi-headed attention (MHA) is performed. Otherwise, grouped
query attention (GQA) is performed if N
is a multiple of K
. and
multi-query attention (MQA) is performed if K==1
(a special case
of GQA).key
.(B, N, T, S)
.True
indicates the element should take part in
attention. For an additive mask, users should pass it to bias. The
shape must be broadcastable to (B, N, T, S)
.None
, the scale will be set
to 1.0 / sqrt(H)
.Returns
An array of the attention output with the same shape of query
.
Example
>>> query = keras.random.normal((2, 4, 8, 16))
>>> key = keras.random.normal((2, 6, 8, 16))
>>> value = keras.random.normal((2, 6, 8, 16))
>>> keras.ops.nn.dot_product_attention(query, key, value).shape
(2, 4, 8, 16)
elu
functionkeras.ops.elu(x, alpha=1.0)
Exponential Linear Unit activation function.
It is defined as:
f(x) = alpha * (exp(x) - 1.) for x < 0
, f(x) = x for x >= 0
.
Arguments
1.0
.Returns
A tensor with the same shape as x
.
Example
>>> x = np.array([-1., 0., 1.])
>>> x_elu = keras.ops.elu(x)
>>> print(x_elu)
array([-0.63212055, 0., 1.], shape=(3,), dtype=float64)
gelu
functionkeras.ops.gelu(x, approximate=True)
Gaussian Error Linear Unit (GELU) activation function.
If approximate
is True
, it is defined as:
f(x) = 0.5 * x * (1 + tanh(sqrt(2 / pi) * (x + 0.044715 * x^3)))
Or if approximate
is False
, it is defined as:
f(x) = x * P(X <= x) = 0.5 * x * (1 + erf(x / sqrt(2)))
,
where P(X) ~ N(0, 1)
.
Arguments
True
.Returns
A tensor with the same shape as x
.
Example
>>> x = np.array([-1., 0., 1.])
>>> x_gelu = keras.ops.gelu(x)
>>> print(x_gelu)
array([-0.15865525, 0., 0.84134475], shape=(3,), dtype=float64)
hard_sigmoid
functionkeras.ops.hard_sigmoid(x)
Hard sigmoid activation function.
It is defined as:
0 if x < -2.5
, 1 if x > 2.5
, (0.2 * x) + 0.5 if -2.5 <= x <= 2.5
.
Arguments
Returns
A tensor with the same shape as x
.
Example
>>> x = np.array([-1., 0., 1.])
>>> x_hard_sigmoid = keras.ops.hard_sigmoid(x)
>>> print(x_hard_sigmoid)
array([0.3, 0.5, 0.7], shape=(3,), dtype=float64)
leaky_relu
functionkeras.ops.leaky_relu(x, negative_slope=0.2)
Leaky version of a Rectified Linear Unit activation function.
It allows a small gradient when the unit is not active, it is defined as:
f(x) = alpha * x for x < 0
or f(x) = x for x >= 0
.
Arguments
0.2
.Returns
A tensor with the same shape as x
.
Example
>>> x = np.array([-1., 0., 1.])
>>> x_leaky_relu = keras.ops.leaky_relu(x)
>>> print(x_leaky_relu)
array([-0.2, 0. , 1. ], shape=(3,), dtype=float64)
log_sigmoid
functionkeras.ops.log_sigmoid(x)
Logarithm of the sigmoid activation function.
It is defined as f(x) = log(1 / (1 + exp(-x)))
.
Arguments
Returns
A tensor with the same shape as x
.
Example
>>> x = keras.ops.convert_to_tensor([-0.541391, 0.0, 0.50, 5.0])
>>> keras.ops.log_sigmoid(x)
array([-1.0000418, -0.6931472, -0.474077, -0.00671535], dtype=float32)
log_softmax
functionkeras.ops.log_softmax(x, axis=-1)
Log-softmax activation function.
It is defined as:
f(x) = x - max(x) - log(sum(exp(x - max(x))))
Arguments
-1
.Returns
A tensor with the same shape as x
.
Example
>>> x = np.array([-1., 0., 1.])
>>> x_log_softmax = keras.ops.log_softmax(x)
>>> print(x_log_softmax)
array([-2.40760596, -1.40760596, -0.40760596], shape=(3,), dtype=float64)
max_pool
functionkeras.ops.max_pool(
inputs, pool_size, strides=None, padding="valid", data_format=None
)
Max pooling operation.
Arguments
inputs
has shape
(batch_size,) + inputs_spatial_shape + (num_channels,)
if
data_format="channels_last"
, or
(batch_size, num_channels) + inputs_spatial_shape
if
data_format="channels_first"
. Pooling happens over the spatial
dimensions only.len(inputs_spatial_shape)
, specifying the size of the pooling
window for each spatial dimension of the input tensor. If
pool_size
is int, then every spatial dimension shares the same
pool_size
.len(inputs_spatial_shape)
. The stride of the sliding window for
each spatial dimension of the input tensor. If strides
is int,
then every spatial dimension shares the same strides
."valid"
or "same"
. "valid"
means no
padding is applied, and "same"
results in padding evenly to the
left/right or up/down of the input such that output has the
same height/width dimension as the input when strides=1
."channels_last"
or "channels_first"
.
data_format
determines the ordering of the dimensions in the
inputs. If data_format="channels_last"
, inputs
is of shape
(batch_size, ..., channels)
while if
data_format="channels_first"
, inputs
is of shape
(batch_size, channels, ...)
.Returns
A tensor of rank N+2, the result of the max pooling operation.
moments
functionkeras.ops.moments(x, axes, keepdims=False, synchronized=False)
Calculates the mean and variance of x
.
The mean and variance are calculated by aggregating the contents of x
across axes
. If x
is 1-D and axes = [0]
this is just the mean and
variance of a vector.
Arguments
True
, the axes which are reduced are left
in the result as dimensions with size one.True
, synchronizes the global batch statistics (mean and
variance) across all devices at each training step in a
distributed training strategy. If False
, each replica uses its own
local batch statistics.Returns
A tuple containing two tensors - mean and variance.
Example
>>> x = keras.ops.convert_to_tensor([0, 1, 2, 3, 100], dtype="float32")
>>> keras.ops.moments(x, axes=[0])
(array(21.2, dtype=float32), array(1553.3601, dtype=float32))
multi_hot
functionkeras.ops.multi_hot(
inputs, num_classes=None, axis=-1, dtype=None, sparse=False, **kwargs
)
Encodes integer labels as multi-hot vectors.
This function encodes integer labels as multi-hot vectors, where each label is mapped to a binary value in the resulting vector.
Arguments
-1
, which corresponds to the last dimension.Returns
Example
>>> data = keras.ops.convert_to_tensor([0, 4])
>>> keras.ops.multi_hot(data, num_classes=5)
array([1.0, 0.0, 0.0, 0.0, 1.0], dtype=float32)
normalize
functionkeras.ops.normalize(x, axis=-1, order=2, epsilon=None)
Normalizes x
over the specified axis.
It is defined as: normalize(x) = x / max(norm(x), epsilon)
.
Arguments
backend.epsilon()
.Returns
The normalized array.
Example
>>> x = keras.ops.convert_to_tensor([[1, 2, 3], [4, 5, 6]])
>>> x_norm = keras.ops.math.normalize(x)
>>> print(x_norm)
array([[0.26726124 0.5345225 0.8017837 ]
[0.45584232 0.5698029 0.68376344]], shape=(2, 3), dtype=float32)
one_hot
functionkeras.ops.one_hot(x, num_classes, axis=-1, dtype=None, sparse=False)
Converts integer tensor x
into a one-hot tensor.
The one-hot encoding is a representation where each integer value is
converted into a binary vector with a length equal to num_classes
,
and the index corresponding to the integer value is marked as 1, while
all other indices are marked as 0.
Arguments
-1
represents the last axis. Defaults to -1
.Returns
x
except for the specified axis
dimension, which will have
a length of num_classes
. The dtype of the output tensor
is determined by dtype
or the default data type of the backend.Example
>>> x = keras.ops.convert_to_tensor([1, 3, 2, 0])
>>> one_hot(x, num_classes=4)
array([[0. 1. 0. 0.]
[0. 0. 0. 1.]
[0. 0. 1. 0.]
[1. 0. 0. 0.]], shape=(4, 4), dtype=float32)
psnr
functionkeras.ops.psnr(x1, x2, max_val)
Peak Signal-to-Noise Ratio (PSNR) function.
This function computes the Peak Signal-to-Noise Ratio between two signals,
x1
and x2
. PSNR is a measure of the quality of a reconstructed signal.
The higher the PSNR, the closer the reconstructed signal is to the original
signal. Note that it can become negative when the signal power is
smaller that the noise power.
Arguments
x1
.Returns
x1
and x2
.Examples
>>> x1 = keras.random.normal((2, 4, 4, 3))
>>> x2 = keras.random.normal((2, 4, 4, 3))
>>> max_val = 1.0
>>> keras.ops.nn.psnr(x1, x2, max_val)
-3.1697404
relu
functionkeras.ops.relu(x)
Rectified linear unit activation function.
It is defined as f(x) = max(0, x)
.
Arguments
Returns
A tensor with the same shape as x
.
Example
>>> x1 = keras.ops.convert_to_tensor([-1.0, 0.0, 1.0, 0.2])
>>> keras.ops.relu(x1)
array([0.0, 0.0, 1.0, 0.2], dtype=float32)
relu6
functionkeras.ops.relu6(x)
Rectified linear unit activation function with upper bound of 6.
It is defined as f(x) = np.clip(x, 0, 6)
.
Arguments
Returns
A tensor with the same shape as x
.
Example
>>> x = keras.ops.convert_to_tensor([-3.0, -2.0, 0.1, 0.2, 6.0, 8.0])
>>> keras.ops.relu6(x)
array([0.0, 0.0, 0.1, 0.2, 6.0, 6.0], dtype=float32)
selu
functionkeras.ops.selu(x)
Scaled Exponential Linear Unit (SELU) activation function.
It is defined as:
f(x) = scale * alpha * (exp(x) - 1.) for x < 0
,
f(x) = scale * x for x >= 0
.
Arguments
Returns
A tensor with the same shape as x
.
Example
>>> x = np.array([-1., 0., 1.])
>>> x_selu = keras.ops.selu(x)
>>> print(x_selu)
array([-1.11133055, 0., 1.05070098], shape=(3,), dtype=float64)
separable_conv
functionkeras.ops.separable_conv(
inputs,
depthwise_kernel,
pointwise_kernel,
strides=1,
padding="valid",
data_format=None,
dilation_rate=1,
)
General N-D separable convolution.
This ops supports 1D and 2D separable convolution. separable_conv
is
a depthwise conv followed by a pointwise conv.
Arguments
inputs
has shape
(batch_size,) + inputs_spatial_shape + (num_channels,)
if
data_format="channels_last"
, or
(batch_size, num_channels) + inputs_spatial_shape
if
data_format="channels_first"
.depthwise_kernel
has shape
[kernel_spatial_shape, num_input_channels, num_channels_multiplier],
num_input_channels
should match the number of channels in
inputs
.pointwise_kernel
has shape
(*ones_like(kernel_spatial_shape),
num_input_channels * num_channels_multiplier, num_output_channels)
.len(inputs_spatial_shape)
,
specifying the strides of the convolution along each spatial
dimension. If strides
is int, then every spatial dimension shares
the same strides
."valid"
or "same"
. "valid"
means no
padding is applied, and "same"
results in padding evenly to the
left/right or up/down of the input such that output has the
same height/width dimension as the input when strides=1
."channels_last"
or "channels_first"
.
data_format
determines the ordering of the dimensions in the
inputs. If data_format="channels_last"
, inputs
is of shape
(batch_size, ..., channels)
while if
data_format="channels_first"
, inputs
is of shape
(batch_size, channels, ...)
.len(inputs_spatial_shape)
,
specifying the dilation rate to use for dilated convolution. If
dilation_rate
is int, then every spatial dimension shares
the same dilation_rate
.Returns
A tensor of rank N+2, the result of the depthwise conv operation.
sigmoid
functionkeras.ops.sigmoid(x)
Sigmoid activation function.
It is defined as f(x) = 1 / (1 + exp(-x))
.
Arguments
Returns
A tensor with the same shape as x
.
Example
>>> x = keras.ops.convert_to_tensor([-6.0, 1.0, 0.0, 1.0, 6.0])
>>> keras.ops.sigmoid(x)
array([0.00247262, 0.7310586, 0.5, 0.7310586, 0.9975274], dtype=float32)
silu
functionkeras.ops.silu(x)
Sigmoid Linear Unit (SiLU) activation function, also known as Swish.
The SiLU activation function is computed by the sigmoid function multiplied
by its input. It is defined as f(x) = x * sigmoid(x)
.
Arguments
Returns
A tensor with the same shape as x
.
Example
>>> x = keras.ops.convert_to_tensor([-6.0, 1.0, 0.0, 1.0, 6.0])
>>> keras.ops.sigmoid(x)
array([0.00247262, 0.7310586, 0.5, 0.7310586, 0.9975274], dtype=float32)
>>> keras.ops.silu(x)
array([-0.0148357, 0.7310586, 0.0, 0.7310586, 5.9851646], dtype=float32)
hard_silu
functionkeras.ops.hard_silu(x)
Hard SiLU activation function, also known as Hard Swish.
It is defined as:
0
if if x < -3
x
if x > 3
x * (x + 3) / 6
if -3 <= x <= 3
It's a faster, piecewise linear approximation of the silu activation.
Arguments
Returns
A tensor with the same shape as x
.
Example
>>> x = keras.ops.convert_to_tensor([-3.0, -1.0, 0.0, 1.0, 3.0])
>>> keras.ops.hard_silu(x)
array([-0.0, -0.3333333, 0.0, 0.6666667, 3.0], shape=(5,), dtype=float32)
softmax
functionkeras.ops.softmax(x, axis=-1)
Softmax activation function.
The elements of the output vector lie within the range (0, 1)
, and their
total sum is exactly 1 (excluding the floating point rounding error).
Each vector is processed independently. The axis
argument specifies the
axis along which the function is applied within the input.
It is defined as:
f(x) = exp(x) / sum(exp(x))
Arguments
Returns
A tensor with the same shape as x
.
Example
>>> x = np.array([-1., 0., 1.])
>>> x_softmax = keras.ops.softmax(x)
>>> print(x_softmax)
array([0.09003057, 0.24472847, 0.66524096], shape=(3,), dtype=float64)
softplus
functionkeras.ops.softplus(x)
Softplus activation function.
It is defined as f(x) = log(exp(x) + 1)
, where log
is the natural
logarithm and exp
is the exponential function.
Arguments
Returns
A tensor with the same shape as x
.
Example
>>> x = keras.ops.convert_to_tensor([-0.555, 0.0, 0.555])
>>> keras.ops.softplus(x)
array([0.45366603, 0.6931472, 1.008666], dtype=float32)
softsign
functionkeras.ops.softsign(x)
Softsign activation function.
It is defined as f(x) = x / (abs(x) + 1)
.
Arguments
Returns
A tensor with the same shape as x
.
Example
>>> x = keras.ops.convert_to_tensor([-0.100, -10.0, 1.0, 0.0, 100.0])
>>> keras.ops.softsign(x)
Array([-0.09090909, -0.90909094, 0.5, 0.0, 0.990099], dtype=float32)
sparse_categorical_crossentropy
functionkeras.ops.sparse_categorical_crossentropy(target, output, from_logits=False, axis=-1)
Computes sparse categorical cross-entropy loss.
The sparse categorical cross-entropy loss is similar to categorical cross-entropy, but it is used when the target tensor contains integer class labels instead of one-hot encoded vectors. It measures the dissimilarity between the target and output probabilities or logits.
Arguments
output
tensor except for the last dimension.target
tensor except
for the last dimension.output
is a tensor of logits
or probabilities.
Set it to True
if output
represents logits; otherwise,
set it to False
if output
represents probabilities.
Defaults to False
.-1
, which corresponds to the last dimension
of the tensors.Returns
target
and output
.Example
>>> target = keras.ops.convert_to_tensor([0, 1, 2], dtype=int32)
>>> output = keras.ops.convert_to_tensor(
... [[0.9, 0.05, 0.05],
... [0.1, 0.8, 0.1],
... [0.2, 0.3, 0.5]])
>>> sparse_categorical_crossentropy(target, output)
array([0.10536056 0.22314355 0.6931472 ], shape=(3,), dtype=float32)
silu
functionkeras.ops.swish(x)
Sigmoid Linear Unit (SiLU) activation function, also known as Swish.
The SiLU activation function is computed by the sigmoid function multiplied
by its input. It is defined as f(x) = x * sigmoid(x)
.
Arguments
Returns
A tensor with the same shape as x
.
Example
>>> x = keras.ops.convert_to_tensor([-6.0, 1.0, 0.0, 1.0, 6.0])
>>> keras.ops.sigmoid(x)
array([0.00247262, 0.7310586, 0.5, 0.7310586, 0.9975274], dtype=float32)
>>> keras.ops.silu(x)
array([-0.0148357, 0.7310586, 0.0, 0.7310586, 5.9851646], dtype=float32)
hard_silu
functionkeras.ops.hard_swish(x)
Hard SiLU activation function, also known as Hard Swish.
It is defined as:
0
if if x < -3
x
if x > 3
x * (x + 3) / 6
if -3 <= x <= 3
It's a faster, piecewise linear approximation of the silu activation.
Arguments
Returns
A tensor with the same shape as x
.
Example
>>> x = keras.ops.convert_to_tensor([-3.0, -1.0, 0.0, 1.0, 3.0])
>>> keras.ops.hard_silu(x)
array([-0.0, -0.3333333, 0.0, 0.6666667, 3.0], shape=(5,), dtype=float32)