NN ops

[source]

average_pool function

keras.ops.average_pool(
    inputs, pool_size, strides=None, padding="valid", data_format=None
)

Average pooling operation.

Arguments

  • inputs: Tensor of rank N+2. inputs has shape (batch_size,) + inputs_spatial_shape + (num_channels,) if data_format="channels_last", or (batch_size, num_channels) + inputs_spatial_shape if data_format="channels_first". Pooling happens over the spatial dimensions only.
  • pool_size: int or tuple/list of integers of size len(inputs_spatial_shape), specifying the size of the pooling window for each spatial dimension of the input tensor. If pool_size is int, then every spatial dimension shares the same pool_size.
  • strides: int or tuple/list of integers of size len(inputs_spatial_shape). The stride of the sliding window for each spatial dimension of the input tensor. If strides is int, then every spatial dimension shares the same strides.
  • padding: string, either "valid" or "same". "valid" means no padding is applied, and "same" results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input when strides=1.
  • data_format: A string, either "channels_last" or "channels_first". data_format determines the ordering of the dimensions in the inputs. If data_format="channels_last", inputs is of shape (batch_size, ..., channels) while if data_format="channels_first", inputs is of shape (batch_size, channels, ...).

Returns

A tensor of rank N+2, the result of the average pooling operation.


[source]

batch_normalization function

keras.ops.batch_normalization(
    x, mean, variance, axis, offset=None, scale=None, epsilon=0.001
)

Normalizes x by mean and variance.

This op is typically used by the batch normalization step in a neural network. It normalizes the input tensor along the given axis.

Arguments

  • x: Input tensor.
  • mean: A mean vector of the same length as the axis dimension of the input thensor.
  • variance: A variance vector of the same length as the axis dimension of the input tensor.
  • axis: Integer, the axis that should be normalized.
  • offset: An offset vector of the same length as the axis dimension of the input tensor. If not None, offset is added to the normalized tensor. Defaults to None.
  • scale: A scale vector of the same length as the axis dimension of the input tensor. If not None, the normalized tensor is multiplied by scale. Defaults to None.
  • epsilon: Small float added to variance to avoid dividing by zero. Defaults to 1e-3.

Returns

The normalized tensor.

Example

>>> x = keras.ops.convert_to_tensor(
...     [[0.1, 0.2, 0.3], [0.4, 0.5, 0.6], [0.7, 0.8, 0.9]]
... )
>>> keras.ops.batch_normalization(
...     x,
...     mean=[0.4, 0.5, 0.6],
...     variance=[0.67, 0.67, 0.67],
...     axis=-1
... )
array([[-3.6624e-01, -3.6624e-01, -3.6624e-01],
       [-4.6445e-09,  0.0000e+00, -1.8578e-08],
       [ 3.6624e-01,  3.6624e-01,  3.6624e-01]])

[source]

binary_crossentropy function

keras.ops.binary_crossentropy(target, output, from_logits=False)

Computes binary cross-entropy loss between target and output tensor.

The binary cross-entropy loss is commonly used in binary classification tasks where each input sample belongs to one of the two classes. It measures the dissimilarity between the target and output probabilities or logits.

Arguments

  • target: The target tensor representing the true binary labels. Its shape should match the shape of the output tensor.
  • output: The output tensor representing the predicted probabilities or logits. Its shape should match the shape of the target tensor.
  • from_logits: (optional) Whether output is a tensor of logits or probabilities. Set it to True if output represents logits; otherwise, set it to False if output represents probabilities. Defaults to False.

Returns

  • Integer tensor: The computed binary cross-entropy loss between target and output.

Example

>>> target = keras.ops.convert_to_tensor([0, 1, 1, 0])
>>> output = keras.ops.convert_to_tensor([0.1, 0.9, 0.8, 0.2])
>>> binary_crossentropy(target, output)
array([0.10536054 0.10536054 0.22314355 0.22314355],
      shape=(4,), dtype=float32)

[source]

categorical_crossentropy function

keras.ops.categorical_crossentropy(target, output, from_logits=False, axis=-1)

Computes categorical cross-entropy loss between target and output tensor.

The categorical cross-entropy loss is commonly used in multi-class classification tasks where each input sample can belong to one of multiple classes. It measures the dissimilarity between the target and output probabilities or logits.

Arguments

  • target: The target tensor representing the true categorical labels. Its shape should match the shape of the output tensor except for the last dimension.
  • output: The output tensor representing the predicted probabilities or logits. Its shape should match the shape of the target tensor except for the last dimension.
  • from_logits: (optional) Whether output is a tensor of logits or probabilities. Set it to True if output represents logits; otherwise, set it to False if output represents probabilities. Defaults to False.
  • axis: (optional) The axis along which the categorical cross-entropy is computed. Defaults to -1, which corresponds to the last dimension of the tensors.

Returns

  • Integer tensor: The computed categorical cross-entropy loss between target and output.

Example

>>> target = keras.ops.convert_to_tensor(
... [[1, 0, 0],
...  [0, 1, 0],
...  [0, 0, 1]])
>>> output = keras.ops.convert_to_tensor(
... [[0.9, 0.05, 0.05],
...  [0.1, 0.8, 0.1],
...  [0.2, 0.3, 0.5]])
>>> categorical_crossentropy(target, output)
array([0.10536054 0.22314355 0.6931472 ], shape=(3,), dtype=float32)

[source]

conv function

keras.ops.conv(
    inputs, kernel, strides=1, padding="valid", data_format=None, dilation_rate=1
)

General N-D convolution.

This ops supports 1D, 2D and 3D convolution.

Arguments

  • inputs: Tensor of rank N+2. inputs has shape (batch_size,) + inputs_spatial_shape + (num_channels,) if data_format="channels_last", or (batch_size, num_channels) + inputs_spatial_shape if data_format="channels_first".
  • kernel: Tensor of rank N+2. kernel has shape (kernel_spatial_shape, num_input_channels, num_output_channels). num_input_channels should match the number of channels in inputs.
  • strides: int or int tuple/list of len(inputs_spatial_shape), specifying the strides of the convolution along each spatial dimension. If strides is int, then every spatial dimension shares the same strides.
  • padding: string, either "valid" or "same". "valid" means no padding is applied, and "same" results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input when strides=1.
  • data_format: A string, either "channels_last" or "channels_first". data_format determines the ordering of the dimensions in the inputs. If data_format="channels_last", inputs is of shape (batch_size, ..., channels) while if data_format="channels_first", inputs is of shape (batch_size, channels, ...).
  • dilation_rate: int or int tuple/list of len(inputs_spatial_shape), specifying the dilation rate to use for dilated convolution. If dilation_rate is int, then every spatial dimension shares the same dilation_rate.

Returns

A tensor of rank N+2, the result of the conv operation.


[source]

conv_transpose function

keras.ops.conv_transpose(
    inputs,
    kernel,
    strides,
    padding="valid",
    output_padding=None,
    data_format=None,
    dilation_rate=1,
)

General N-D convolution transpose.

Also known as de-convolution. This ops supports 1D, 2D and 3D convolution.

Arguments

  • inputs: Tensor of rank N+2. inputs has shape (batch_size,) + inputs_spatial_shape + (num_channels,) if data_format="channels_last", or (batch_size, num_channels) + inputs_spatial_shape if data_format="channels_first".
  • kernel: Tensor of rank N+2. kernel has shape [kernel_spatial_shape, num_output_channels, num_input_channels], num_input_channels should match the number of channels in inputs.
  • strides: int or int tuple/list of len(inputs_spatial_shape), specifying the strides of the convolution along each spatial dimension. If strides is int, then every spatial dimension shares the same strides.
  • padding: string, either "valid" or "same". "valid" means no padding is applied, and "same" results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input when strides=1.
  • output_padding: int or int tuple/list of len(inputs_spatial_shape), specifying the amount of padding along the height and width of the output tensor. Can be a single integer to specify the same value for all spatial dimensions. The amount of output padding along a given dimension must be lower than the stride along that same dimension. If set to None (default), the output shape is inferred.
  • data_format: A string, either "channels_last" or "channels_first". data_format determines the ordering of the dimensions in the inputs. If data_format="channels_last", inputs is of shape (batch_size, ..., channels) while if data_format="channels_first", inputs is of shape (batch_size, channels, ...).
  • dilation_rate: int or int tuple/list of len(inputs_spatial_shape), specifying the dilation rate to use for dilated convolution. If dilation_rate is int, then every spatial dimension shares the same dilation_rate.

Returns

A tensor of rank N+2, the result of the conv operation.


[source]

ctc_decode function

keras.ops.ctc_decode(
    inputs,
    sequence_lengths,
    strategy="greedy",
    beam_width=100,
    top_paths=1,
    merge_repeated=True,
    mask_index=0,
)

Decodes the output of a CTC model.

Arguments

  • inputs: A tensor of shape (batch_size, max_length, num_classes) containing the logits (the output of the model). They should not be normalized via softmax.
  • sequence_lengths: A tensor of shape (batch_size,) containing the sequence lengths for the batch.
  • strategy: A string for the decoding strategy. Supported values are "greedy" and "beam_search".
  • beam_width: An integer scalar beam width used in beam search. Defaults to 100.
  • top_paths: An integer scalar, the number of top paths to return. Defaults to 1.
  • merge_repeated: A boolean scalar, whether to merge repeated labels in the output. Defaults to True.
  • mask_index: An integer scalar, the index of the mask character in the vocabulary. Defaults to 0.

Returns

  • A tuple containing:
  • The tensor representing the list of decoded sequences. If strategy="greedy", the shape is (1, batch_size, max_length). If strategy="beam_search", the shape is (top_paths, batch_size, max_length). Note that: -1 indicates the blank label.
  • If strategy="greedy", a tensor of shape (batch_size, 1) representing the negative of the sum of the probability logits for each sequence. If strategy="beam_seatch", a tensor of shape (batch_size, top_paths) representing the log probability for each sequence.

[source]

ctc_loss function

keras.ops.ctc_loss(target, output, target_length, output_length, mask_index=0)

CTC (Connectionist Temporal Classification) loss.

Arguments

  • target: A tensor of shape (batch_size, max_length) containing the true labels in integer format.
  • output: A tensor of shape (batch_size, max_length, num_classes) containing logits (the output of your model).
  • target_length: A tensor of shape (batch_size,) containing the true label lengths.
  • output_length: A tensor of shape (batch_size,) containing the output lengths.
  • mask_index: The index of the mask character in the vocabulary. Defaults to 0.

[source]

depthwise_conv function

keras.ops.depthwise_conv(
    inputs, kernel, strides=1, padding="valid", data_format=None, dilation_rate=1
)

General N-D depthwise convolution.

This ops supports 1D and 2D depthwise convolution.

Arguments

  • inputs: Tensor of rank N+2. inputs has shape (batch_size,) + inputs_spatial_shape + (num_channels,) if data_format="channels_last", or (batch_size, num_channels) + inputs_spatial_shape if data_format="channels_first".
  • kernel: Tensor of rank N+2. kernel has shape [kernel_spatial_shape, num_input_channels, num_channels_multiplier], num_input_channels should match the number of channels in inputs.
  • strides: int or int tuple/list of len(inputs_spatial_shape), specifying the strides of the convolution along each spatial dimension. If strides is int, then every spatial dimension shares the same strides.
  • padding: string, either "valid" or "same". "valid" means no padding is applied, and "same" results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input when strides=1.
  • data_format: A string, either "channels_last" or "channels_first". data_format determines the ordering of the dimensions in the inputs. If data_format="channels_last", inputs is of shape (batch_size, ..., channels) while if data_format="channels_first", inputs is of shape (batch_size, channels, ...).
  • dilation_rate: int or int tuple/list of len(inputs_spatial_shape), specifying the dilation rate to use for dilated convolution. If dilation_rate is int, then every spatial dimension shares the same dilation_rate.

Returns

A tensor of rank N+2, the result of the depthwise conv operation.


[source]

dot_product_attention function

keras.ops.dot_product_attention(
    query, key, value, bias=None, mask=None, scale=None, is_causal=False
)

Scaled dot product attention function.

Computes the attention function on Q (query), K (key), and V(value): attention(Q, K, V) = softmax(Q * K / sqrt(d)) * V. If we define logits as the output of Q * K and the probs as the output of softmax.

Throughout this function, we utilize the following notation to represent the shape of array: - B: batch size - S: length of the key/value - T: length of the query - N: number of attention heads - H: dimensions of each attention head - K: number of key/value heads - G: number of groups, which equals to N // K

Arguments

  • query: The query array with the shape of (B, T, N, H).
  • key: The key array with the shape of (B, S, K, H). When K equals N, multi-headed attention (MHA) is performed. Otherwise, grouped query attention (GQA) is performed if N is a multiple of K. and multi-query attention (MQA) is performed if K==1 (a special case of GQA).
  • value: The value array with the same shape of key.
  • bias: Optional bias array to be added to logits. The shape must be broadcastable to (B, N, T, S).
  • mask: Optional mask array used to filter out logits. It is a boolean mask where True indicates the element should take part in attention. For an additive mask, users should pass it to bias. The shape must be broadcastable to (B, N, T, S).
  • scale: Optional scale for the logits. If None, the scale will be set to 1.0 / sqrt(H).
  • is_causal: Whether to apply causal mask.

Returns

An array of the attention output with the same shape of query.

Example

>>> query = keras.random.normal((2, 4, 8, 16))
>>> key = keras.random.normal((2, 6, 8, 16))
>>> value = keras.random.normal((2, 6, 8, 16))
>>> keras.ops.nn.dot_product_attention(query, key, value).shape
(2, 4, 8, 16)

[source]

elu function

keras.ops.elu(x, alpha=1.0)

Exponential Linear Unit activation function.

It is defined as:

f(x) = alpha * (exp(x) - 1.) for x < 0, f(x) = x for x >= 0.

Arguments

  • x: Input tensor.
  • alpha: A scalar, slope of positive section. Defaults to 1.0.

Returns

A tensor with the same shape as x.

Example

>>> x = np.array([-1., 0., 1.])
>>> x_elu = keras.ops.elu(x)
>>> print(x_elu)
array([-0.63212055, 0., 1.], shape=(3,), dtype=float64)

[source]

gelu function

keras.ops.gelu(x, approximate=True)

Gaussian Error Linear Unit (GELU) activation function.

If approximate is True, it is defined as: f(x) = 0.5 * x * (1 + tanh(sqrt(2 / pi) * (x + 0.044715 * x^3)))

Or if approximate is False, it is defined as: f(x) = x * P(X <= x) = 0.5 * x * (1 + erf(x / sqrt(2))), where P(X) ~ N(0, 1).

Arguments

  • x: Input tensor.
  • approximate: Approximate version of GELU activation. Defaults to True.

Returns

A tensor with the same shape as x.

Example

>>> x = np.array([-1., 0., 1.])
>>> x_gelu = keras.ops.gelu(x)
>>> print(x_gelu)
array([-0.15865525, 0., 0.84134475], shape=(3,), dtype=float64)

[source]

hard_sigmoid function

keras.ops.hard_sigmoid(x)

Hard sigmoid activation function.

It is defined as:

0 if x < -2.5, 1 if x > 2.5, (0.2 * x) + 0.5 if -2.5 <= x <= 2.5.

Arguments

  • x: Input tensor.

Returns

A tensor with the same shape as x.

Example

>>> x = np.array([-1., 0., 1.])
>>> x_hard_sigmoid = keras.ops.hard_sigmoid(x)
>>> print(x_hard_sigmoid)
array([0.3, 0.5, 0.7], shape=(3,), dtype=float64)

[source]

leaky_relu function

keras.ops.leaky_relu(x, negative_slope=0.2)

Leaky version of a Rectified Linear Unit activation function.

It allows a small gradient when the unit is not active, it is defined as:

f(x) = alpha * x for x < 0 or f(x) = x for x >= 0.

Arguments

  • x: Input tensor.
  • negative_slope: Slope of the activation function at x < 0. Defaults to 0.2.

Returns

A tensor with the same shape as x.

Example

>>> x = np.array([-1., 0., 1.])
>>> x_leaky_relu = keras.ops.leaky_relu(x)
>>> print(x_leaky_relu)
array([-0.2,  0. ,  1. ], shape=(3,), dtype=float64)

[source]

log_sigmoid function

keras.ops.log_sigmoid(x)

Logarithm of the sigmoid activation function.

It is defined as f(x) = log(1 / (1 + exp(-x))).

Arguments

  • x: Input tensor.

Returns

A tensor with the same shape as x.

Example

>>> x = keras.ops.convert_to_tensor([-0.541391, 0.0, 0.50, 5.0])
>>> keras.ops.log_sigmoid(x)
array([-1.0000418, -0.6931472, -0.474077, -0.00671535], dtype=float32)

[source]

log_softmax function

keras.ops.log_softmax(x, axis=-1)

Log-softmax activation function.

It is defined as: f(x) = x - max(x) - log(sum(exp(x - max(x))))

Arguments

  • x: Input tensor.
  • axis: Integer, axis along which the log-softmax is applied. Defaults to -1.

Returns

A tensor with the same shape as x.

Example

>>> x = np.array([-1., 0., 1.])
>>> x_log_softmax = keras.ops.log_softmax(x)
>>> print(x_log_softmax)
array([-2.40760596, -1.40760596, -0.40760596], shape=(3,), dtype=float64)

[source]

max_pool function

keras.ops.max_pool(
    inputs, pool_size, strides=None, padding="valid", data_format=None
)

Max pooling operation.

Arguments

  • inputs: Tensor of rank N+2. inputs has shape (batch_size,) + inputs_spatial_shape + (num_channels,) if data_format="channels_last", or (batch_size, num_channels) + inputs_spatial_shape if data_format="channels_first". Pooling happens over the spatial dimensions only.
  • pool_size: int or tuple/list of integers of size len(inputs_spatial_shape), specifying the size of the pooling window for each spatial dimension of the input tensor. If pool_size is int, then every spatial dimension shares the same pool_size.
  • strides: int or tuple/list of integers of size len(inputs_spatial_shape). The stride of the sliding window for each spatial dimension of the input tensor. If strides is int, then every spatial dimension shares the same strides.
  • padding: string, either "valid" or "same". "valid" means no padding is applied, and "same" results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input when strides=1.
  • data_format: A string, either "channels_last" or "channels_first". data_format determines the ordering of the dimensions in the inputs. If data_format="channels_last", inputs is of shape (batch_size, ..., channels) while if data_format="channels_first", inputs is of shape (batch_size, channels, ...).

Returns

A tensor of rank N+2, the result of the max pooling operation.


[source]

moments function

keras.ops.moments(x, axes, keepdims=False, synchronized=False)

Calculates the mean and variance of x.

The mean and variance are calculated by aggregating the contents of x across axes. If x is 1-D and axes = [0] this is just the mean and variance of a vector.

Arguments

  • x: Input tensor.
  • axes: A list of axes which to compute mean and variance.
  • keepdims: If this is set to True, the axes which are reduced are left in the result as dimensions with size one.
  • synchronized: Only applicable with the TensorFlow backend. If True, synchronizes the global batch statistics (mean and variance) across all devices at each training step in a distributed training strategy. If False, each replica uses its own local batch statistics.

Returns

A tuple containing two tensors - mean and variance.

Example

>>> x = keras.ops.convert_to_tensor([0, 1, 2, 3, 100], dtype="float32")
>>> keras.ops.moments(x, axes=[0])
(array(21.2, dtype=float32), array(1553.3601, dtype=float32))

[source]

multi_hot function

keras.ops.multi_hot(
    inputs, num_classes=None, axis=-1, dtype=None, sparse=False, **kwargs
)

Encodes integer labels as multi-hot vectors.

This function encodes integer labels as multi-hot vectors, where each label is mapped to a binary value in the resulting vector.

Arguments

  • inputs: Tensor of integer labels to be converted to multi-hot vectors.
  • num_classes: Integer, the total number of unique classes.
  • axis: (optional) Axis along which the multi-hot encoding should be added. Defaults to -1, which corresponds to the last dimension.
  • dtype: (optional) The data type of the resulting tensor. Default is backend's float type.
  • sparse: Whether to return a sparse tensor; for backends that support sparse tensors.

Returns

  • Tensor: The multi-hot encoded tensor.

Example

>>> data = keras.ops.convert_to_tensor([0, 4])
>>> keras.ops.multi_hot(data, num_classes=5)
array([1.0, 0.0, 0.0, 0.0, 1.0], dtype=float32)

[source]

normalize function

keras.ops.normalize(x, axis=-1, order=2, epsilon=None)

Normalizes x over the specified axis.

It is defined as: normalize(x) = x / max(norm(x), epsilon).

Arguments

  • x: Input tensor.
  • axis: The axis or axes along which to perform normalization. Default to -1.
  • order: The exponent value in the norm formulation. Defaults to 2.
  • epsilon: A lower bound value for the norm. Defaults to backend.epsilon().

Returns

The normalized array.

Example

>>> x = keras.ops.convert_to_tensor([[1, 2, 3], [4, 5, 6]])
>>> x_norm = keras.ops.math.normalize(x)
>>> print(x_norm)
array([[0.26726124 0.5345225  0.8017837 ]
       [0.45584232 0.5698029  0.68376344]], shape=(2, 3), dtype=float32)

[source]

one_hot function

keras.ops.one_hot(x, num_classes, axis=-1, dtype=None, sparse=False)

Converts integer tensor x into a one-hot tensor.

The one-hot encoding is a representation where each integer value is converted into a binary vector with a length equal to num_classes, and the index corresponding to the integer value is marked as 1, while all other indices are marked as 0.

Arguments

  • x: Integer tensor to be encoded. The shape can be arbitrary, but the dtype should be integer.
  • num_classes: Number of classes for the one-hot encoding.
  • axis: Axis along which the encoding is performed. -1 represents the last axis. Defaults to -1.
  • dtype: (Optional) Data type of the output tensor. If not provided, it defaults to the default data type of the backend.
  • sparse: Whether to return a sparse tensor; for backends that support sparse tensors.

Returns

  • Integer tensor: One-hot encoded tensor with the same shape as x except for the specified axis dimension, which will have a length of num_classes. The dtype of the output tensor is determined by dtype or the default data type of the backend.

Example

>>> x = keras.ops.convert_to_tensor([1, 3, 2, 0])
>>> one_hot(x, num_classes=4)
array([[0. 1. 0. 0.]
       [0. 0. 0. 1.]
       [0. 0. 1. 0.]
       [1. 0. 0. 0.]], shape=(4, 4), dtype=float32)

[source]

psnr function

keras.ops.psnr(x1, x2, max_val)

Peak Signal-to-Noise Ratio (PSNR) function.

This function computes the Peak Signal-to-Noise Ratio between two signals, x1 and x2. PSNR is a measure of the quality of a reconstructed signal. The higher the PSNR, the closer the reconstructed signal is to the original signal. Note that it can become negative when the signal power is smaller that the noise power.

Arguments

  • x1: The first input signal.
  • x2: The second input signal. Must have the same shape as x1.
  • max_val: The maximum possible value in the signals.

Returns

  • float: The PSNR value between x1 and x2.

Examples

>>> x1 = keras.random.normal((2, 4, 4, 3))
>>> x2 = keras.random.normal((2, 4, 4, 3))
>>> max_val = 1.0
>>> keras.ops.nn.psnr(x1, x2, max_val)
-3.1697404

[source]

relu function

keras.ops.relu(x)

Rectified linear unit activation function.

It is defined as f(x) = max(0, x).

Arguments

  • x: Input tensor.

Returns

A tensor with the same shape as x.

Example

>>> x1 = keras.ops.convert_to_tensor([-1.0, 0.0, 1.0, 0.2])
>>> keras.ops.relu(x1)
array([0.0, 0.0, 1.0, 0.2], dtype=float32)

[source]

relu6 function

keras.ops.relu6(x)

Rectified linear unit activation function with upper bound of 6.

It is defined as f(x) = np.clip(x, 0, 6).

Arguments

  • x: Input tensor.

Returns

A tensor with the same shape as x.

Example

>>> x = keras.ops.convert_to_tensor([-3.0, -2.0, 0.1, 0.2, 6.0, 8.0])
>>> keras.ops.relu6(x)
array([0.0, 0.0, 0.1, 0.2, 6.0, 6.0], dtype=float32)

[source]

selu function

keras.ops.selu(x)

Scaled Exponential Linear Unit (SELU) activation function.

It is defined as:

f(x) = scale * alpha * (exp(x) - 1.) for x < 0, f(x) = scale * x for x >= 0.

Arguments

  • x: Input tensor.

Returns

A tensor with the same shape as x.

Example

>>> x = np.array([-1., 0., 1.])
>>> x_selu = keras.ops.selu(x)
>>> print(x_selu)
array([-1.11133055, 0., 1.05070098], shape=(3,), dtype=float64)

[source]

separable_conv function

keras.ops.separable_conv(
    inputs,
    depthwise_kernel,
    pointwise_kernel,
    strides=1,
    padding="valid",
    data_format=None,
    dilation_rate=1,
)

General N-D separable convolution.

This ops supports 1D and 2D separable convolution. separable_conv is a depthwise conv followed by a pointwise conv.

Arguments

  • inputs: Tensor of rank N+2. inputs has shape (batch_size,) + inputs_spatial_shape + (num_channels,) if data_format="channels_last", or (batch_size, num_channels) + inputs_spatial_shape if data_format="channels_first".
  • depthwise_kernel: Tensor of rank N+2. depthwise_kernel has shape [kernel_spatial_shape, num_input_channels, num_channels_multiplier], num_input_channels should match the number of channels in inputs.
  • pointwise_kernel: Tensor of rank N+2. pointwise_kernel has shape (*ones_like(kernel_spatial_shape), num_input_channels * num_channels_multiplier, num_output_channels).
  • strides: int or int tuple/list of len(inputs_spatial_shape), specifying the strides of the convolution along each spatial dimension. If strides is int, then every spatial dimension shares the same strides.
  • padding: string, either "valid" or "same". "valid" means no padding is applied, and "same" results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input when strides=1.
  • data_format: A string, either "channels_last" or "channels_first". data_format determines the ordering of the dimensions in the inputs. If data_format="channels_last", inputs is of shape (batch_size, ..., channels) while if data_format="channels_first", inputs is of shape (batch_size, channels, ...).
  • dilation_rate: int or int tuple/list of len(inputs_spatial_shape), specifying the dilation rate to use for dilated convolution. If dilation_rate is int, then every spatial dimension shares the same dilation_rate.

Returns

A tensor of rank N+2, the result of the depthwise conv operation.


[source]

sigmoid function

keras.ops.sigmoid(x)

Sigmoid activation function.

It is defined as f(x) = 1 / (1 + exp(-x)).

Arguments

  • x: Input tensor.

Returns

A tensor with the same shape as x.

Example

>>> x = keras.ops.convert_to_tensor([-6.0, 1.0, 0.0, 1.0, 6.0])
>>> keras.ops.sigmoid(x)
array([0.00247262, 0.7310586, 0.5, 0.7310586, 0.9975274], dtype=float32)

[source]

silu function

keras.ops.silu(x)

Sigmoid Linear Unit (SiLU) activation function, also known as Swish.

The SiLU activation function is computed by the sigmoid function multiplied by its input. It is defined as f(x) = x * sigmoid(x).

Arguments

  • x: Input tensor.

Returns

A tensor with the same shape as x.

Example

>>> x = keras.ops.convert_to_tensor([-6.0, 1.0, 0.0, 1.0, 6.0])
>>> keras.ops.sigmoid(x)
array([0.00247262, 0.7310586, 0.5, 0.7310586, 0.9975274], dtype=float32)
>>> keras.ops.silu(x)
array([-0.0148357, 0.7310586, 0.0, 0.7310586, 5.9851646], dtype=float32)

[source]

hard_silu function

keras.ops.hard_silu(x)

Hard SiLU activation function, also known as Hard Swish.

It is defined as:

  • 0 if if x < -3
  • x if x > 3
  • x * (x + 3) / 6 if -3 <= x <= 3

It's a faster, piecewise linear approximation of the silu activation.

Arguments

  • x: Input tensor.

Returns

A tensor with the same shape as x.

Example

>>> x = keras.ops.convert_to_tensor([-3.0, -1.0, 0.0, 1.0, 3.0])
>>> keras.ops.hard_silu(x)
array([-0.0, -0.3333333, 0.0, 0.6666667, 3.0], shape=(5,), dtype=float32)

[source]

softmax function

keras.ops.softmax(x, axis=-1)

Softmax activation function.

The elements of the output vector lie within the range (0, 1), and their total sum is exactly 1 (excluding the floating point rounding error).

Each vector is processed independently. The axis argument specifies the axis along which the function is applied within the input.

It is defined as: f(x) = exp(x) / sum(exp(x))

Arguments

  • x: Input tensor.
  • axis: Integer, axis along which the softmax is applied.

Returns

A tensor with the same shape as x.

Example

>>> x = np.array([-1., 0., 1.])
>>> x_softmax = keras.ops.softmax(x)
>>> print(x_softmax)
array([0.09003057, 0.24472847, 0.66524096], shape=(3,), dtype=float64)

[source]

softplus function

keras.ops.softplus(x)

Softplus activation function.

It is defined as f(x) = log(exp(x) + 1), where log is the natural logarithm and exp is the exponential function.

Arguments

  • x: Input tensor.

Returns

A tensor with the same shape as x.

Example

>>> x = keras.ops.convert_to_tensor([-0.555, 0.0, 0.555])
>>> keras.ops.softplus(x)
array([0.45366603, 0.6931472, 1.008666], dtype=float32)

[source]

softsign function

keras.ops.softsign(x)

Softsign activation function.

It is defined as f(x) = x / (abs(x) + 1).

Arguments

  • x: Input tensor.

Returns

A tensor with the same shape as x.

Example

>>> x = keras.ops.convert_to_tensor([-0.100, -10.0, 1.0, 0.0, 100.0])
>>> keras.ops.softsign(x)
Array([-0.09090909, -0.90909094, 0.5, 0.0, 0.990099], dtype=float32)

[source]

sparse_categorical_crossentropy function

keras.ops.sparse_categorical_crossentropy(target, output, from_logits=False, axis=-1)

Computes sparse categorical cross-entropy loss.

The sparse categorical cross-entropy loss is similar to categorical cross-entropy, but it is used when the target tensor contains integer class labels instead of one-hot encoded vectors. It measures the dissimilarity between the target and output probabilities or logits.

Arguments

  • target: The target tensor representing the true class labels as integers. Its shape should match the shape of the output tensor except for the last dimension.
  • output: The output tensor representing the predicted probabilities or logits. Its shape should match the shape of the target tensor except for the last dimension.
  • from_logits: (optional) Whether output is a tensor of logits or probabilities. Set it to True if output represents logits; otherwise, set it to False if output represents probabilities. Defaults to False.
  • axis: (optional) The axis along which the sparse categorical cross-entropy is computed. Defaults to -1, which corresponds to the last dimension of the tensors.

Returns

  • Integer tensor: The computed sparse categorical cross-entropy loss between target and output.

Example

>>> target = keras.ops.convert_to_tensor([0, 1, 2], dtype=int32)
>>> output = keras.ops.convert_to_tensor(
... [[0.9, 0.05, 0.05],
...  [0.1, 0.8, 0.1],
...  [0.2, 0.3, 0.5]])
>>> sparse_categorical_crossentropy(target, output)
array([0.10536056 0.22314355 0.6931472 ], shape=(3,), dtype=float32)

[source]

silu function

keras.ops.swish(x)

Sigmoid Linear Unit (SiLU) activation function, also known as Swish.

The SiLU activation function is computed by the sigmoid function multiplied by its input. It is defined as f(x) = x * sigmoid(x).

Arguments

  • x: Input tensor.

Returns

A tensor with the same shape as x.

Example

>>> x = keras.ops.convert_to_tensor([-6.0, 1.0, 0.0, 1.0, 6.0])
>>> keras.ops.sigmoid(x)
array([0.00247262, 0.7310586, 0.5, 0.7310586, 0.9975274], dtype=float32)
>>> keras.ops.silu(x)
array([-0.0148357, 0.7310586, 0.0, 0.7310586, 5.9851646], dtype=float32)

[source]

hard_silu function

keras.ops.hard_swish(x)

Hard SiLU activation function, also known as Hard Swish.

It is defined as:

  • 0 if if x < -3
  • x if x > 3
  • x * (x + 3) / 6 if -3 <= x <= 3

It's a faster, piecewise linear approximation of the silu activation.

Arguments

  • x: Input tensor.

Returns

A tensor with the same shape as x.

Example

>>> x = keras.ops.convert_to_tensor([-3.0, -1.0, 0.0, 1.0, 3.0])
>>> keras.ops.hard_silu(x)
array([-0.0, -0.3333333, 0.0, 0.6666667, 3.0], shape=(5,), dtype=float32)