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Abstract

Finding “good” cycles in graphs is a problem of great interest in graph theory as
well as in locational analysis. We show that the center and median problems are NP
hard in general graphs. This result holds both for the variable cardinality case (i.e.
all cycles of the graph are considered) and the fixed cardinality case (i.e. only cycles
with a given cardinality p are feasible). Hence it is of interest to investigate special
cases where the problem is solvable in polynomial time.

In grid graphs, the variable cardinality case is, for instance, trivially solvable if
the shape of the cycle can be chosen freely.

If the shape is fixed to be a rectangle one can analyse rectangles in grid graphs
with, in sequence, fixed dimension, fixed cardinality, and variable cardinality. In all
cases a complete characterization of the optimal cycles and closed form expressions
of the optimal objective values are given, yielding polynomial time algorithms for all
cases of center rectangle problems.

Finally, it is shown that center cycles can be chosen as rectangles for small cardin-
alities such that the center cycle problem in grid graphs is in these cases completely
solved.
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1 Introduction

Let G = (V,F) denote a simple, connected, undirected graph with vertex set V with
|V| = n, and edge set E. (For the graph theoretic notation and terminology used in this
paper, see, for instance, Foulds [7].) An edge between u and v is denoted by [u,v|. The
distance between vertices = and y, denoted by d(z,y), is defined to be the length of a
shortest path in GG between vertices = and y, expressed as the number of edges.

The eccentricity of vertex z, denoted by e(x), is defined to be

e(z) = maxd(z,y),
and z is called a center of G iff e(x) = min,cy e(v).
The center (vertex) problem finds a vertex in the graph G minimizing e(x).

In this paper the previous vertex problem is extended to subsets of vertices. For any subset
UCV,and any x € V, let
d(z,U) = mind(z, u).

uelU
The eccentricity of U is defined as
e(U) = maxd(z,U).

zeV

If the vertex set of any (simple) cycle C' in G is denoted by V(C), then e(C) := e(V(())
is called the eccentricity of cycle C.

Definition 1 Corresponding to the vertex center problem we define the
(CC) cycle-center problem : min {e(C) : C cycle}

If in addition the number |E(C)| of edges which equals the number |V (C')| of vertices in
the cycle is fixed we obtain the

(p—CC) p-cycle-center problem : min {e(C) : C cycle with |E(C)| = p}

Finding cycle-centers in a graph is a problem which was posed in a graph theoretic context
by Buckley and Harary [3]. In location theory this problem is under discussion for a long
time. In the covering salesman problem (see Current and Schilling [4]) the aim is to find
a tour visiting ¢ of the n nodes of a given network such that the tour lies within a given
distance from the non-tour nodes and such that the length of the tour is minimized. In a
similar type of problem, the same authors [5] and Akinc and Srikanth [1] are looking for a
tour with just one node in each of several disjoint regions minimizing the length of the tour
and the access of the customers to the designated node in their region. Applications of
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such problems include newspaper delivery (see Jacobsen and Madson [9]) or optimization
of postal services (Labbe and Laporte [10]). An overview on the location of extensive
facilities in networks (paths, trees, and cycles) is given by Mesa and Boffey [12].

In the plane the problem of finding a cycle close to a given point set has been investigated
extensively, too. The classical case is the Traveling Salesman Problem in the plane, which
is NP-hard (see Garey and Johnson [8]) or the geometric covering salesman problem in
which the maximal distance from the cycle to the point set is restricted (see e.g., Arkin
and Hassin [2]). It is also interesting to look for planar cycles with special shape. Here
the main emphasis is on the location of circles (i.e. the determination of center point and
diameter of the circle). These problems are non-differentiable and non-convex and are
therefore mathematically difficult to tackle. Circle location problems have applications in
production processes, as, for instance, discussed by Ventura and Yeralan [16, 19]. If the
objective is to minimize the maximum distance to the given point set the center cycle
problem in the plane is also called out-of-roundness problem. Le and Lee [11] show that
the center of an optimal circle can be found by investigating the intersection points of
the closest and farthest point Voronoi diagram. Heuristic approaches for finding a center
circle can be found in Drezner, Steiner and Wesolowsky [6]. The circle location problem
and some related problems have been discussed by Witzgall [17]. Spéth [14, 15] deals with
circle and ellipse location problems minimizing the sum of squared distances to a given
point set. The location of a circle minimizing the sum of distances to a given point set
seems to be an open problem so far. First models of this problem can be found in Schobel
[13].

In this short note we will first establish that CC and p-CC are NP hard in general graphs
and that CC is trivially solvable in grid graphs. In the third section we investigate p-CC
for the case where the cycle to be found in a given grid graph is a rectangle. By first
fixing the dimensions of the rectangle, then its circumference, one finally can solve this
problem without fixing any data of the rectangle by identifying optimal rectangles and
their objective function values with closed-form expressions. A justification for considering
the special case of rectangles is given in Section 4 which concludes the paper.

2 Basic Results

The complexity status of the problems introduced in the previous section is easily determ-
ined.

Theorem 2.1 The problems (CC) and (p — CC) are in general graphs NP-hard.

Proof: Obviously, e(C) = 0 if and ounly if G contains a Hamiltonian cycle. Hence (CC)
is NP-hard. Since any polynomial algorithm for (p — C'C') applied to p = 1,...,|V| would
solve (C'C') the same is true for (p — CC).



In this note the p—cycle-center problem is investigated on grid graphs G = G, xy, With
node and edge set

V o= {ij:0<i<ng, 0<j<ng, i,j integer}and
E = {[ig,kl] : {|i — k|, |7 — {|} = {0,1}}, respectively.
U’
2
1
1 2 3 n

Figure 1: A grid graph of dimension n; X ny. Throughout we assume n; > na.

If at least one of ny,ny (ny,ne > 1) is odd, G, xn, contains a Hamiltonian cycle, e.g. the
one shown in Figure 2.

Figure 2: A Hamiltonian cycle in Gsy3.

If, on the other hand, both n; and ny are even, G = G, xn, contains no Hamiltonian cycle.
This follows from the fact that G is bipartite (partition G according to the diagonals, see
Figure 3) such that all cycles in G have an even number of edges. But G has (n;+1)-(na+1),
i.e. an odd number, of nodes, such that G can, indeed, not contain a Hamiltonian cycle.
We thus get

Theorem 2.2 The cycle-center problem (without cardinality constraints) is trivially solv-
able in grid graphs G, xn, -
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Figure 3: The nodes of Ggx2 can be partitioned into V; (circled nodes) and Vo = V \ V4, showing that
Glgx2 is bipartite.

Proof: If n; or ny is odd, we have shown that G = G,,, xn, contains a Hamiltonian cycle
C' such that e(C') = 0 and C solves (CC) .

If ny and ny are both even, G contains no Hamiltonian cycle, such that e(C') > 1 for all
cycles C'in GG. But we can easily construct a cycle containing all but one node such that
e(C) =1, (see Figure 4). Hence this cycle solves (C'C).

Figure 4: Cycle C in Gyx4 with e(C) =1 and Y., i, d(v,C) = 1.

veV
The same arguments hold, if we consider the median-cycle problem and the p-median-
cycle problem instead of the corresponding center-cycle problems (CC) and (p-CC). In
these problems the distances of all nodes of a given graph to the cycle C are added up
instead of just taking the maximum of these distances (see Figure 4).

Corollary 2.3 The median-cycle and the p-median-cycle problem are both NP-hard in
general graphs and trivially solvable in grid graphs.

It should be noted that in order to solve cycle problems in grid graphs using Theorem 2.2
and Corollary 2.3 it is crucial that one is free in choosing the shape of the cycle. This is in
general not the case. In the following section we will therefore discuss the situation that
the shape of C is restricted to a rectangle. In addition to being a challenging problem for
its only sake this is also a useful intermediate step in solving the general cycle problem
(see Section 4).



3 Cycle-Center Problems with Rectangular Cycles

In this section we consider only cycles of rectangular form within G,,x,, = G. Such
cycles are completely characterized by choosing one of the corner points, say the lower left
corner point LL = lily with 0 < [; < n;,1 = 1,2, and its breadth m; and height my with
0 <m; <mny, i=1,2. Consequently, we denote such a cycle by C(LL,my, my) if we want
to emphasize its location and size (see Figure 5)

UL UR

LL LR

Figure 5: Rectangular cycle C(LL,my,mg) = C(11,3,2) with corner points LL = [;l3 = 11 (lower left),
LR =41 = (l1+mq)l2 (lower right), UL = 13 = I;(I2+m2) (upper left), and UR = 43 = (I1+m1)(l2+mz)
(upper right).

In this section we will in sequence minimize e(C(LL,mq,msy)) where
1. my and my are given (fixed shape),
2. the cardinality p = 2(m; + mg) is given (fixed circumference), and
3. neither my, mo nor p is fixed.

Using the denotations int C := {ij € V. : [; < i <li+mq, ls < j <ly+ my}, out
C:=V\int C, emt(C) := maxye int ¢ A(C,y), and eout(C) = maxye out ¢ d(C,y) we can
rewrite the eccentricity of C as

e(C) = max{en:(C), eout(C)}. (1)

This reformulation will be used in the following subsections extensively.

3.1 Rectangular cycles with fixed shape

In this subsection m; and my are given and we solve miny ey e(C(LL, my,ms)). Obviously,
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for all C' = C(LL,my,my) - independent of LL. (Here and in the following |z] is the
largest integer smaller than or equal to z. Correspondingly, [z] is the smallest integer
larger than or equal to z.)

In order to analyze e,,;(C) for some given cycle C = C(LL,my, my) we first observe
that for any y € out C there exists one of the corner nodes z € {0,X,Y,Z} with
0=00,X =n10,Y = nyno, Z = Ongy such that

d(C.y) < d(C,x) (3)
This is illustrated in Figure 6, where the following inequalities hold.
For ye TUIIUVIII, d(C,y) < d(C,0) = d(LL,0)
for ye I[TUIIITUIV, d(C,y) < d(C,X) = d(LR,X)
for ye IVUVUVI, d(C,y) < d(C,Y) = d(UR)Y)
for ye VIUVIIUVIII, d(C,y) < d(C,Z) = d(UL,Z)
7 Y
Vi1 VI \Y
VIIT v
I 11 11
0 X

Figure 6: Mlustration of Inequality 3 with C' = (22, 5, 2).
Hence

eout(C) = max _d(C,y) = max d(C, )

y€ out C z€{0, XY, Z}

= max {d(LL,0), d(UL,Z), d(LR,X), d{UR.Y)}.

Without loss of generality, we may assume that



ll Z ny — (ll +m1)
and (4)
lo > ng — (lo + my)

(if this is not the case, denotations can be switched appropriately). Hence

d(0,0) = l1+l2znl—(l1+m1)+l2:d(C,X)
d(C,O) = l1+lg Z’I’Ll —(ll+m1)+n2—(l2+m2) :d(C,Y)
d(0,0) = l1+lgZl1+n2—(l2+m2):d(C,Z).

such that e, (C) = d(C, O).
Obviously, (4) is equivalent to

l1 > =(n1 —my)
and (5)

lo > =(ng —my)

such that we choose

-
and (6)

-

in order to find C' = C(LL,my, my) with minimal value e,,,(C).

Summarizing (1), (2) and (6) we obtain the following result which has already been observed
by Yamagouchi, Foulds and Lamb [18].

Theorem 3.1 Given my,mg with 0 < m; < n;, i = 1,2. Then the problem

min e(C(LL, mi,my))

has the optimal objective value
i ([grm] [gmab [50 =] + [0 = ]} g
max 4 min 2m1 s 2m2 s 5 nq mq 5 N9 mo .
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An optimal cycle C(LL, my,ms) is defined by its lower left corner point LL = lyly with
z F( )] = 1,2
i = |5\ — MYy t=14
2

If all optimal rectangles are required the wlog assumption (4) is relaxed to find 1, 2 or 4
optimal rectangles (depending on whether n; — my and ny — my are even or odd) for the
case where e(C') = €y (C).

If e(C) = €;,4(C) all C with

o]+ [l {3

are optimal.

3.2 Rectangular cycles with fixed circumference

Compared with the previous subsection we allow now more freedom in choosing the shape
of the rectangular cycle C' = C(LL,my,mz). Instead of fixing m; and my we fix the
circumference p = 2my + 2my or equivalently M = my + my. We thus solve

min  e(C(LL,my,my))

such that LLeV (8)
my+mo =M
O<m; <n;, 1=1,2
m; € /4
By Theorem 3.1 we can always assume that the lower-left corner point LL = [ily of

C' = C(LL,my,ms) satisfies condition (6). Since mg = M — my, Problem (8) only deals
with finding an optimal m with respect to a given M.

Proposition 3.2 Given integers my and M such that 0 < my < ny andmy < M < ni+ns.
Then for any rectangle with breadth my and circumference M satisfying condition(6)

%(nl +ny— M) if mi+ne—M and ni—mqy are even
eout(C) = %(nl +ng—M+1) if ni+ng—M isodd 9)
%(nl +no—M+2) if ni+ng—M iseven and ny—my s odd
holds.
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Proof: Due to mg = M —my and (ny —my) + (ng — M +my) = ny +ny — M we can
compute ¢, (C') for any rectangle satisfying condition(6) using the following case analysis.

Case 1 : If ny + ny — M is odd then exactly one of ny — my or ng — M + m; is odd, i.e.
1
eout(C) = 5(n1 +ng — M + 1)

Case 2 : If ny +ny — M is even, then

Case 2a:  m;—my even implies no— M +my even and hence e,,(C) = %(nl +ng—M)
Case 2b:  ny—my odd implies ng—M+m; odd and hence e, (C) = %(nl +no—M+2)

|

It should be noted that Proposition 3.2 holds for all my, ms with M = m; + my such that
we can choose m; minimizing (see (2))

) 1 1
éint(c) = min { bmlJ , b(M — ml)J } )
e For M < ny this is done by constructing a rectangle such that

my =M —1 and thus my =1
or mi =M —2 and thus my =2

In the former case e;,;(C') = 0 while in the latter case e;,;(C) = 1. In both cases
eint(C) < eni(C), and we can choose my such that ey, (C) is as small as possible,
i.e. 6(0) = [%(nl + ng — M)—|

e If M > n; we choose
mq = ny and thus my = M — ny

to obtain

ene(C) = |50 = )

(recall the general assumption n; > ny), and
1
eout(C) = [5 (n1 4+ ng — M)—‘

such that in this case

e(C) = ma | E(nl =), E(M -}

11



In summary, we obtain

Theorem 3.3 An optimal cycle C = C(LL,my,ms) with fized circumference p = 2M =

2(my + my) is given by

(nl,M—nl) ’Lf M > ng

(ml,mg) = (M - ]_, 1) ’Lf M S T
and ]
LL = Ul where 1; = b (n;

Its objective value is

e(C) = {

|2+ — M)

max{%(nl +ng — M)W , E(M —nl)J} if M > ny.

and n; — M odd

and ny — M even

(10)

3.3 Rectangular cycles without constraints

In this section we neither fix m; and my nor M = m; +my. Thus M is in Problem (8) vari-
able. Using the results of Sections 3.1 and 3.2 we know that e(C') = max{e,:(C), €in:(C)}
is computed by (11). A function depending on M is shown in Figure 7

. o

- erioennn

. oo

. e ——

. S

. U A S

| .

I I I g I Y A T g 1 I I I I ?
1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16

Figure 7: ¢(C) as upper envelope of €,,,:(C) (o) and e, (C) (o) for a grid graph with ny = 9 and ny = 7.

Obviously, its minimum taken over M € {2,...,n; + ny} is attained where e,,; (C) and
eint (C) intersect each other. Depending on n; and ny the intersecting parts of the two
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functions is a point or a horizontal piece of length 1 or 2. But in all cases we obtain that
the minimum is attained for M = n; + [%W

We have thus proved:

Theorem 3.4 The cycle-center problem in grid graphs G, xn, with respect to rectangular
cycles is obtained by C = (LL,my,my) given as follows: The circumference of C' is p =
QM* with M* = nq + [%W, my and my with my +mgq = M* are given by (10) and LL = 1113
is given by (6).

4 Conclusion and Extension

In this note we have shown that the problem of finding optimal center rectangles in grid
graphs can be solved by closed form expressions. This is true if the shape of the rectangle
is fixed, if its circumference is fixed, or if the best overall rectangle is required. At the
beginning of the paper it was established that the center cycle problem in general graphs
is NP hard and trivially solvable in grid graphs without fixing the cardinality. In order to
resolve the complexity issue for general cycles in grid graphs the special case of optimal
rectangles is an important intermediate stage.

The interrelation between the general cycle and rectangle problem in grid graphs is cur-
rently not yet fully understood, but the following result indicates that the results for the
rectangle problem are useful in solving the more general cycle problem

Theorem 4.1 Let p be the cardinality of a cycle in the grid graph G, xn, such that 2 <
L < M* where M* is taken from Theorem 3.4. Then there is always an optimal center
cycle which is a rectangle and which can be calculated according to Theorem 3.5.

Proof: Suppose C* is an optimal center cycle which is not a rectangle with cardinality p
and objective value e* = e(c*). Due to the definition of the eccentricity there exist nodes
ag, ax,ay,ay in C* such that

d(a;,i) <e* i=0,X,Y, 7

Consider the smallest rectangle R = R(ag, ax,ay,az) containing ag, ax, ay,az. Clearly,

e(R) < max{d(a;,1):i=0,X,Y, Z} <e* and |R| < |C"|
Moreover, if R,; denotes the center rectangular cycle with respect to fixed circumference
2M, we know from Subsection 3.3 that e(R,s) is a non-increasing function in M for 1 <
M < M*. Consequently,
e(Rz) <e(R) <e" =e(C)

such that C* can be replaced by the rectangle Rg.
O

The question of optimal center cycles in grid graphs with cardinality p > 2M™ is currently
under research and will be published shortly together with results on the median problem.
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