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ABSTRACT
In our earlier work, we presented a translation of attack-defence

trees (ADTrees) to extended asynchronous multi-agent systems. We

now introduce a general reduction scheme applicable to tree topolo-

gies, and in particular to ADTrees. It exploits the layered structure

of a tree by avoiding unnecessary interleavings between nodes at

different depths. We prove the soundness of this new method and

show that it can be effectively used alongside existing techniques.

NOTE: the paper previously published in Proc. of ICECCS’19 [29].

KEYWORDS
Attack-defence trees; multi-agent systems; state space reduction

1 INTRODUCTION
While the translation of ADTrees to multi-agent systems [4] already

embedded reduced patterns resembling partial order reduction [14,

28, 32], they are not sufficient to combat state space explosion. In

this paper, we define layered reduction, fully compatible with the

previous scheme. We begin by recalling the formalism of ADTrees,

then introduce Guarded Update Systems and identify key properties

of tree synchronisation topologies. The layer-based reduction is

defined next, followed by experimental evalutation and conclusions.

2 ATTACK-DEFENCE TREES
Attack-defence trees (ADTrees, [6, 19, 20]) extend the well-known

formalism of attack trees [10, 18, 21, 25, 27, 30] to allow for repre-

senting security scenarios as an interplay between attacking and

defending parties. The root nodes of ADTrees correspond to the

main goal (e.g., steal treasure), their children to sub-goals (e.g., enter

the vault undetected), and the leaves to specific actions (e.g., bribe

guards). For ADTrees, attributes [6, 8, 10, 25] are numeric properties

of nodes that allow for quantitative analyses (e.g., cost, time, or

probability), and conditions are Boolean functions over attributes

serving as constraints for node operations (e.g., the heist succeeds

only if thieves get away within given time).

ADTrees remain extensively studied [9, 12, 22] and have been im-

plemented in analysis frameworks based on, among others, Timed
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Automata [13, 26], Petri Nets [11], I/O-IMCs [5, 23], Bayesian Net-

works [15], and stochastic games [7, 16]. The parametric analysis of

[3] is adapted to ADTrees using extended asynchronous semantics

[4] from [17], allowing to synthesise values of attributes that yield
the effectiveness of an attack/defence in a multi-agent setting.

3 GUARDED UPDATE SYSTEMS
We recall a compositional, executable semantics for ADTrees [4], in

terms of their translation into networks of Guarded Update Systems

(GUSs), i.e. automata with variables and guarded transitions.

Definition 3.1 (GUS). Let Vars be a finite set of integer variables.
A GUS is a 4-tupleM = ⟨S, s0,→,Acts⟩, where:

(1) S is a finite set of states and s0 ∈ S the initial state;

(2) → ⊆ S × Acts × G × U × S is a transition relation, where:

(a) G is a set of guards, i.e. boolean formulae over atoms t ∼ 0,

s.t. t is a linear term over Vars and ∼∈ {≤,=, ≥};

(b) U is a set of updates, i.e. sets of assignments of type vj :=

f (v0, . . . , vk ), where ∀0≤i≤kvi ∈ Vars, vj ∈ Vars and f is

a function whose domain and codomain are compatible

with the domains of its arguments and target; it is assumed

that each variable is assigned at most once per update;

(c) Acts is a finite set of action names;

Vals denotes the set of all functions ω : Vars → N, i.e. valuations
of Vars. By u(ω) ∈ Vals we denote the valuation s.t. for vj ∈ Vars
we have u(ω)(vj ) = f (ω(v0), . . . ,ω(vk )) if f (v0, . . . , vk ) ∈ u and

u(ω)(vj ) = ω(vj ) otherwise. By g(ω) we mean the boolean value of

the expression obtained after valuating the variables in д with ω.

We denote (s, act, g, u, s′) ∈ → by s
g,act
−−−−→

u
s′ and acts(M) by Acts.

Definition 3.2 (Concrete Semantics of GUS). LetM be a GUS

and ω0 ∈ Vals an initial valuation of Vars. By the concrete semantics
of M over ω0

, we mean a tuple CS(M,ω0) = ⟨CS,w0,→⟩, where:

(1) CS = S × Vals is the set of concrete states;
(2) w0 = (s0,ω0);

(3) → ⊆ CS × Acts × CS is the transition relation s.t. (s,ω)
act
−−→

(s′,ω ′) iff s
g,act
−−−−→

u
s′ where g(ω) is true and ω ′ = u(ω), for

some guard g and update u.

A run ρ = t0act0t1act1 . . . is an infinite sequence of alternating

concrete states and transitions s.t. for all i ∈ Nwe have ti
acti
−−−→ ti+1.

By Runs(M, t) we denote the set of all runs starting from t ∈ CS.
We write Runs(M) when the starting state is assumed to be initial.

Definition 3.3 (Asynchronous Product). For i ∈ {1..k} let Mi =

⟨Si , s0

i ,→i ,Actsi ⟩ be a GUS. The asynchronous product ofMi is

the GUSM1 | | . . . | |Mk = ⟨S1× . . .×Sk , (s01, . . . , s
0

k ),→,
⋃

Actsi ⟩
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with the transition rule defined in the usual way, i.e., the component

transitions labeled with the same action are synchronized while

the component transitions labeled with actions that are not in the

alphabets of the other components occur on their own [29].

Definition 3.4 (Synchronisation Topology). The synchronisation
topology induced by a GUS G = | |ni=0

Mi is the undirected graph

SG(G) = ⟨{Mi | i = 0 . . .n}, E⟩, where (Mi ,Mj ) ∈ E iff i , j
and Actsi ∩ Actsj , ∅.

Given an ADTree T with a set of nodes {Ai | i = 0 . . .n}, a GUS

Mi is associated with each Ai . The associated topology SG(T )

is defined by replacing each node Ai withMi . The attributes and

conditions of Ai are modelled by variables and guards in Mi . Vari-

ables are updated during the synchronisation between a child and

its parent node, mimicking how the values of the attributes are

actually used. Note that the topology induced by T is a tree.

4 PROPERTIES OF TREE TOPOLOGIES
We now consider GUS G = | |ni=0

Mi with a tree synchronisation

topology. Under certain assumptions, it can be exploited to obtain

a reachability-preserving reduction of the system. We now give the

notions necessary to define these assumptions.

LetMN ,MC be a node and one of its children, respectively. If along

each run ρ ∈ Runs(G) after executing an action act ∈ ActsN \ActsC
no action from ActsN ∩ ActsC appears, then MC precedes MN
(denoted by MC ↪→ MN ).

A synchronisation tree SG(G) is root-directed if for each nodeMN
and any of its childrenMC we haveMC ↪→ MN .

A root-directed synchronisation tree SG(G) is update-separable if
for each v ∈ Vars:

(1) v is updated in at most one componentMv ;

(2) v is tested only in guards of the ancestors of Mv in SG(G).

In what follows, we will manipulate subtrees of tree topologies.

The subtree of SG(G) rooted in Mi is the tree ⇓Mi containing

Mi and all its descendants. Let ρ = t0act0t1act1 . . . be a run in

Runs(G) andMi be a node of SG(G). The projection of ρ on ⇓Mi ,

denoted by ρ⇓Mi , is obtained by:

(1) retaining in each concrete state tj , j ∈ N only its projection

(states and variables) on ⇓Mi ;

(2) keeping only the transitions in the nodes of ⇓Mi .

Any actions not in the subtree are safely removed from the projected

run, as their projected source and target states are identical.

Lemma 4.1. Let SG(G) be a root-directed, update-separable tree.
Let Mi be a node and ρ ∈ Runs(G). Then, ρ⇓Mi is a prefix of some
run ρ ′ ∈ Runs(⇓Mi ).

Lemma 4.2. Synchronisation topologies of ADTrees are root-directed
and update-separable.

5 LAYERED REDUCTION FOR TREES
In the layered reduction, we consider specifically the last synchro-

nisation of nodeMN with one of its childrenMC , before any other

action inMN . Let #child (MN ) be the number of children ofMN .

Definition 5.1 (Last synchronisations with children). By the last

synchronisations ofMN with its children we mean the transitions

(denoted by lst), that are synchronising transitions ofMN and one

of its children MCj , such that there are states si , si+1, si+2 and

another transition t ofMN which does not synchronise with any

transition of its children MCj , with si lst si+1 t si+2. The set of

these transitions is denoted by LstC (MN ).

Dealing with a single depth Let us fix a depth d > 0 of the

tree SG(G). We add a fresh variable vd , initialised with 0, that

counts the total number of synchronisations between the nodes at

depth d and the nodes at depth d + 1. We modify each nodeMN at

depth d by adding to the update u of any transition in LstC (MN ) a

new element vd := vd + #child (MN ). It is a way for node MN to

notify it has performed all synchronisations with its children. The

total number of the children of the nodes at depth d is #child (d) =
#child (MN1

) + . . . + #child (MNk ) where {MN1
, . . . ,MNk } are all

the nodes at depth d in SG(G).

In the next step of the construction we also modify each nodeMN
at depth d by extending the guard g of each transition t of MN
which does not synchronise with any transition of the children of

MN to g ∧ (vd = #child (d)). This prevents any action at depth d to

occur before all synchronisations with the children are finished.

Dealing with the entire tree In order to obtain the layered re-

duction of SG(G), denoted by SGlr (G), the above transformation

is performed for each depth 0 < d < height of SG(G).

Proposition 5.2. Let SG(G) be a root-directed, update-separable
tree. A good (bad) final state s is reachable in SG(G) iff it is reachable
in SGlr (G).

6 EXPERIMENTS
Experimental evaluation, performed on a 2.7 GHz Intel Core i7,

with 16 GB of memory, using IMITATOR (www.imitator.fr, [2]), a

model-checker for Parametric Timed Automata [1], was based on

case studies modelling real-world security scenarios [4, 10, 24, 25,

31, 33] as well as a scalable, generated ADTree
1
. The effectiveness of

layered reduction, especially when applied in conjunction with our

previous pattern-based scheme, is clear. It significantly improves the

results achieved by the latter alone, leading to state space reduction

of well over 90% in many cases. We refer the reader to [29] for

extensive experimental results and discussion.

7 CONCLUSION
We defined Guarded Update Systems, which are automata manipu-

lating variables and proposed to exploit the characteristics of those

that exhibit a tree structure to further contain state space explosion

by avoiding some unnecessary interleavings. This approach directly

applies to ADTrees, can be combined with our previous pattern-

based reduction, and extensive experiments proved its efficiency.

We believe that the approach applies not only to tree topologies

but also to directed acyclic graphs (DAGs), and thus to models from

other application domains such as workflows.

This layered reduction opens several avenues of further research

e.g., compositional analysis and parallel model checking of systems

with tree topologies, as well as reasoning about the assignment of

agents to ADTree nodes to analyse possible coalitions in attacks

and/or defences.

1
See http://lipn.univ-paris13.fr/~petrucci/ICECCS19_imitator_files.zip.

www.imitator.fr
http://lipn.univ-paris13.fr/~petrucci/ICECCS19_imitator_files.zip
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