
Probabilistic Logic Programming for Natural
Language Processing

Fabrizio Riguzzi, Evelina Lamma, Marco Alberti, Elena Bellodi,
Riccardo Zese, Giuseppe Cota

Dipartimento di Matematica e Informatica
Dipartimento di Ingegneria
Università di Ferrara, Italy

[fabrizio.riguzzi,marco.alberti,elena.bellodi,riccardo.zese,
giuseppe.cota,evelina.lamma]@unife.it

URANIA 2016

F. Riguzzi et al. (UNIFE) URANIA 2016 1 / 20

Outline

1 Probabilistic Logic Programming

2 Natural Language Processing
Probabilistic Context-Free Grammars
Probabilistic Left Corner Grammars
Hidden Markov Models

3 Conclusions and Future Work

F. Riguzzi et al. (UNIFE) URANIA 2016 2 / 20

Probabilistic Logic Programming

Outline

1 Probabilistic Logic Programming

2 Natural Language Processing
Probabilistic Context-Free Grammars
Probabilistic Left Corner Grammars
Hidden Markov Models

3 Conclusions and Future Work

F. Riguzzi et al. (UNIFE) URANIA 2016 3 / 20

Probabilistic Logic Programming

Idea

Probabilistic Programming (PP) [Pfeiffer, 2016] has recently
emerged as a useful tool for building complex probabilistic models
and for performing inference and learning on them
Probabilistic Logic Programming (PLP) is PP based on Logic
Programming, that allows to model domains characterized by
complex and uncertain relationships among domain entities
Often a problem description is given in human (natural) language:
the set of techniques developed to find automatic ways to
understand a text goes under the name of Natural Language
Processing (NLP)
We applied Probabilistic Logic Programming to NLP in
scenarios such as Probabilistic Context Free Grammars,
Probabilistic Left Corner Grammars and Hidden Markov Models
We used our web application for PLP called cplint on SWISH

F. Riguzzi et al. (UNIFE) URANIA 2016 4 / 20

Probabilistic Logic Programming

Probabilistic Logic Programming (PLP) Languages
under the Distribution Semantics

A widespread approach proposed in Logic Programming is the
Distribution Semantics [Sato, 1995]
A probabilistic logic program defines a probability distribution over
normal logic programs (called possible worlds)
The distribution is extended to a joint distribution over worlds and
interpretations (or queries) and the probability of a query is
obtained from this distribution
These languages differ in the way they define the distribution over
logic programs

Examples:
Stochastic Logic Programs [Dantsin, 1991]
Probabilistic Horn Abduction, Independent Choice Logic (ICL) [Poole 1993, 1997]
PRISM [Sato and Kameya, 1997]
Logic Programs with Annotated Disjunctions (LPADs)[Vennekens et al., 2004]
ProbLog [De Raedt et al., 2007]

F. Riguzzi et al. (UNIFE) URANIA 2016 5 / 20

Probabilistic Logic Programming

Logic Programs with Annotated Disjunctions (LPADs)

Example: encoding of the result of tossing a coin, on the base of
the fact that it is biased or not

C1 = heads(Coin) : 0.5; tails(Coin) : 0.5← toss(Coin),¬biased(Coin).
C2 = heads(Coin) : 0.6; tails(Coin) : 0.4← toss(Coin), biased(Coin).
C3 = fair(coin) : 0.9; biased(coin) : 0.1.
C4 = toss(coin) : 1.

C1: a fair coin lands on heads or on tails with probability 0.5
C2: a biased coin lands on heads with probability 0.6 or on tails with 0.4
C3: a certain coin coin has a probability of 0.9 of being fair and of 0.1 of being biased

C4: coin is certainly tossed

Distributions over the head of the formulas
Worlds built by selecting only one atom from the head of every
grounding of each rule→ the LPAD has 2 · 2 · 2 = 8 possible
worlds.

F. Riguzzi et al. (UNIFE) URANIA 2016 6 / 20

Probabilistic Logic Programming

Reasoning Tasks

Inference: computing the probability of a query given the model
(the probabilistic logic program) and, possibly, some evidence
Learning

Parameter learning: we know the structural part of the model (the
logic formulas) but not the numeric part (parameters or weights, i.e.
the probabilities)→ learning parameters from data

Structure learning→ we want to learn both the structure and the
parameters of the model from data

F. Riguzzi et al. (UNIFE) URANIA 2016 7 / 20

Probabilistic Logic Programming

cplint on SWISH

Web application allowing the user to write Logic Programs with
Annotated Disjunctions and performing inference or learning with
just a web browser: http://cplint.lamping.unife.it
cplint is a suite of programs for reasoning on LPADs
SWISH is a web framework for logic programming based on some
packages of SWI-Prolog

the Pengine library allows to create remote Prolog engines that
evaluate the queries and return answers for them

F. Riguzzi et al. (UNIFE) URANIA 2016 8 / 20

Probabilistic Logic Programming

Inference example in cplint on SWISH

F. Riguzzi et al. (UNIFE) URANIA 2016 9 / 20

Natural Language Processing

Outline

1 Probabilistic Logic Programming

2 Natural Language Processing
Probabilistic Context-Free Grammars
Probabilistic Left Corner Grammars
Hidden Markov Models

3 Conclusions and Future Work

F. Riguzzi et al. (UNIFE) URANIA 2016 10 / 20

Natural Language Processing Probabilistic Context-Free Grammars

Probabilistic Context-Free Grammars

A Probabilistic Context-Free Grammar (PCFG) consists of:

1 A context-free grammar G = (N,Σ, I,R) where

N is a finite set of non-terminal symbols,
Σ is a finite set of terminal symbols,
I ∈ N is a distinguished start symbol,
R is a finite set of rules of the form X → Y1, . . . ,Yn, where X ∈ N
and Yi ∈ (N ∪ Σ)

2 A parameter θ for each rule α→ β ∈ R. Therefore we have
probabilistic rules of the form θ : α→ β

F. Riguzzi et al. (UNIFE) URANIA 2016 11 / 20

Natural Language Processing Probabilistic Context-Free Grammars

Encoding of a PCFG in PLP

PCFG = {0.2 : S → aS, 0.2 : S → bS, 0.3 : S → a, 0.3 : S → b}
{S} = N, {a, b} = Σ
pcfg(L):- pcfg([’S’],[],_Der,L,[]).
→ L is accepted if it can be derived from the start symbol S and an empty string
of previous terminals.

pcfg([A|R],Der0,Der,L0,L2):- rule(A,Der0,RHS),
pcfg(RHS,[rule(A,RHS)|Der0],Der1,L0,L1),
pcfg(R,Der1,Der,L1,L2).

→ if there is a rule for A (i.e. it is a non-terminal), expand A using the rule and
continue with the rest of the list.

pcfg([A|R],Der0,Der,[A|L1],L2):- \+ rule(A,_,_),
pcfg(R,Der0,Der,L1,L2).

→ if A is a terminal, move it to the output string.

pcfg([],Der,Der,L,L).
rule(’S’,Der,[a,’S’]):0.2; rule(’S’,Der,[b,’S’]):0.2;
rule(’S’,Der,[a]):0.3; rule(’S’,Der,[b]):0.3.

→ encodes the rules of the grammar.

F. Riguzzi et al. (UNIFE) URANIA 2016 12 / 20

Natural Language Processing Probabilistic Context-Free Grammars

Inference on a PCFG in cplint on SWISH

What is the probability that the string abaa belongs to the
language?
Submit to cplint on SWISH
(http://cplint.lamping.unife.it/example/inference/pcfg.pl) the query
?-prob(pcfg([a,b,a,a]),Prob).

Prob = 0.0024

F. Riguzzi et al. (UNIFE) URANIA 2016 13 / 20

Natural Language Processing Probabilistic Left Corner Grammars

Probabilistic Left Corner Grammars (PLCG)

PLCGs set probabilities not during the expansion of non-terminals but
during 3 elementary operations in bottom-up parsing, i.e. shift, attach
and project. As a result they define a different class of distributions
than PCFGs.

Given the rules
S->SS
S->a
S->b

where {S} = N and {a,b} = Σ

and the LPAD
plc(Ws) :- g_call([’S’],Ws,[],[],_Der).
g_call([],L,L,Der,Der).
g_call([G|R], [G|L],L2,Der0,Der) :- % shift

terminal(G),
g_call(R,L,L2,Der0,Der).

g_call([G|R], [Wd|L] ,L2,Der0,Der) :-
\+ terminal(G), first(G,Der0,Wd),
lc_call(G,Wd,L,L1,[first(G,Wd)|Der0],Der1),
g_call(R,L1,L2,Der1,Der).

F. Riguzzi et al. (UNIFE) URANIA 2016 14 / 20

Natural Language Processing Probabilistic Left Corner Grammars

Probabilistic Left Corner Grammars (PLCG)
lc_call(G,B,L,L1,Der0,Der) :- % attach
lc(G,B,Der0,rule(G, [B|RHS2])),
attach_or_project(G,Der0,attach),
g_call(RHS2,L,L1,[lc(G,B,rule(G, [B|RHS2])),attach|Der0],Der).

lc_call(G,B,L,L2,Der0,Der) :- % project
lc(G,B,Der0,rule(A, [B|RHS2])),
attach_or_project(G,Der0,project),
g_call(RHS2,L,L1,[lc(G,B,rule(A, [B|RHS2])),project|Der0],Der1),
lc_call(G,A,L1,L2,Der1,Der).

lc_call(G,B,L,L2,Der0,Der) :- \+ lc(G,B,Der0,rule(G,[B|_])),
lc(G,B,Der0,rule(A, [B|RHS2])),

g_call(RHS2,L,L1,[lc(G,B,rule(A, [B|RHS2]))|Der0],Der1),
lc_call(G,A,L1,L2,Der1,Der).

attach_or_project(A,Der,Op) :- lc(A,A,Der,_), attach(A,Der,Op).
attach_or_project(A,Der,attach) :- \+ lc(A,A,Der,_).
lc(’S’,’S’,_Der,rule(’S’,[’S’,’S’])).
lc(’S’,a,_Der,rule(’S’,[a])).
lc(’S’,b,_Der,rule(’S’,[b])).
first(’S’,Der,a):0.5; first(’S’,Der,b):0.5.
attach(’S’,Der,attach):0.5; attach(’S’,Der,project):0.5.
terminal(a). terminal(b).

the probability (with approximate inference by Monte Carlo sampling)
that the string ab is generated by the grammar can be computed with the
query ?-mc prob(plc([a,b]),P). in cplint on SWISH
P ∼ 0.031

F. Riguzzi et al. (UNIFE) URANIA 2016 15 / 20

Natural Language Processing Hidden Markov Models

Hidden Markov Models (HMM)

Hidden Markov Models for part-of-speech tagging: words can be
considered as output symbols and a sentence the sequence of
output symbols emitted by an HMM
States represent parts of speech and the symbols emitted by
the states are words
The assumption is that a word depends probabilistically on just its
own part of speech (i.e. its tag) which in turn depends on the part
of speech of the preceding word (or on the start state in case
there is no preceding word)
Two kinds of probabilities:

transition probabilities: from one state to another
output probabilities: 1 in our program (for every state there is only
one possible output)

F. Riguzzi et al. (UNIFE) URANIA 2016 16 / 20

Natural Language Processing Hidden Markov Models

Encoding of HMM in PLP

hmm(O):-hmm(_,O).
→ O is an output sequence if there is a state sequence S such that hmm(S,O) holds.
hmm(S,O):- trans(start,Q0,[]),hmm(Q0,[],S0,O),reverse(S0,S).
→ O is an output sequence and S a state sequence if the chain starts at state start
and ends generating state sequence S and output sequence O.
hmm(Q,S0,S,[L|O]):-trans(Q,Q1,S0),out(L,Q,S0),hmm(Q1,[Q|S0],S,O).
→ an HMM in state Q goes in state Q1, emits the word L and continues the chain.
hmm(_,S,S,[]).
→ an HMM in any state terminates the sequence without emitting any symbol.

trans(start,det,_):0.30); trans(start,aux,_):0.20; trans(start,v,_):0.10;
trans(start,n,_):0.10; trans(start,pron,_):0.30.

trans(det,det,_):0.20; trans(det,aux,_):0.01; trans(det,v,_):0.01;
trans(det,n,_):0.77; trans(det,pron,_):0.01.

trans(aux,det,_):0.18; trans(aux,aux,_):0.10; trans(aux,v,_):0.50;
trans(aux,n,_):0.01; trans(aux,pron,_):0.21.

out(a,det,_). out(can,aux,_). out(can,v,_).
out(can,n,_). out(he,pron,_).

F. Riguzzi et al. (UNIFE) URANIA 2016 17 / 20

Natural Language Processing Hidden Markov Models

Inference on a HMM in cplint on SWISH

Which is the most frequent state sequence for the sentence he
can can a can?
It corresponds to the most frequent part-of-speech tagging for that
sentence, that should be [pron, aux, v, det, n]
Submit to cplint on SWISH
(http://cplint.lamping.unife.it/example/inference/hmmpos.pl) the
query
mc_sample_arg(hmm(S,[he,can,can,a,can]),100,S,O).

F. Riguzzi et al. (UNIFE) URANIA 2016 18 / 20

Natural Language Processing Hidden Markov Models

Inference on a HMM in cplint on SWISH

F. Riguzzi et al. (UNIFE) URANIA 2016 19 / 20

Conclusions and Future Work

Conclusions and Future Work

Conclusions
PCFGs, PLCGs and HMMs are some of the most widely used
models in NLP. In this paper we show that is possible to represent
these models with Probabilistic Logic Programs

Future Work
We are currently considering a version of probabilistic Definite
Clause Grammars, where the probability distribution is defined on
the possible non-terminals with the same expansion, rather than on
the possible expansions of a non-terminal. This extension could be
mapped naturally on LPADs, and could be applied to probabilistic
parsing of ambiguous grammars

F. Riguzzi et al. (UNIFE) URANIA 2016 20 / 20

	Probabilistic Logic Programming
	Natural Language Processing
	Probabilistic Context-Free Grammars
	Probabilistic Left Corner Grammars
	Hidden Markov Models

	Conclusions and Future Work

