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Preface

Scientific research is almost exclusively published in unstructured text formats, which
are not readily machine-readable. While technological approaches can help to get this
flood of scientific information and new knowledge under control, the development of
such technologies is very complex in practice and hinders the creation of infrastructures
and systems to track research and assist the scientific community with applications such
as dedicated scientific search engines and recommender systems. The 1st Workshop on
Natural Scientific Language Processing and Research Knowledge Graphs (NSLP 2024)
aimed to bring together researchers working on the processing, analysis, transformation
and making-use-of scientific language and research knowledge graphs including all
relevant sub-topics. NSLP 2024 was held as a full-day workshop co-located with the
Extended Semantic Web Conference (ESWC 2024) in Hersonissos, Greece, on 27 May
2024.1

In addition to the opportunity to submit papers covering original research that fits the
workshop’s topics of interest, the event also offered two shared tasks: Field of Research
Classification of Scholarly Publications (FoRC) and Software Mention Detection in
Scholarly Publications (SOMD). Participants could sign up for one or both shared tasks
and also for one or more of the respective (sub-)tasks. Automated evaluations of submit-
ted systems were carried out through the platform Codalab. This proceedings volume
contains several short papers that report on submitted systems and also overview papers
that report on the two shared tasks on a general level. We will attempt to organise similar
shared tasks in future editions of this workshop.

With NSLP 2024 as the first edition of what is intended to be a workshop series,
we were very happy about a total of 26 submissions out of which 21 papers were
accepted (81%) after a thorough, double-blind peer-review process with three reviews
per submission. The NSLP 2024 workshop consisted of paper and poster presentations
(including overviews of the results of the two shared tasks and shared task contributions)
as well as two invited keynotes, given by Natalia Manola (OpenAIRE, Greece) and
Francesco Osborne (Open University, UK).

We would like to thank the ESWC 2024 organisers and overall workshop chairs
for accepting our workshop proposal. We would also like to extend our gratitude to the
keynote speakers for their insightful talks. Thanks are also due to the members of the
ProgrammeCommittee for reviewing the paper submissions under rather tight deadlines.
Finally, we would like to thank Raia Abu Ahmad and Ekaterina Borisova for setting up
and maintaining the workshop website.

This workshop was organised under the umbrella of the project NFDI for Data
Science and Artificial Intelligence (NFDI4DS), which is part of the wider German NFDI

1 https://nfdi4ds.github.io/nslp2024/
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initative (National Research Data Infrastructure). Without the financial support of this
project, neither the workshop nor this proceedings volume would have been possible.

May 2024 Georg Rehm
Stefan Dietze

Sonja Schimmler
Frank Krüger



Organization

Organizing Committee and Program Committee Chairs

Georg Rehm Deutsches Forschungszentrum für Künstliche
Intelligenz (DFKI), Germany

Stefan Dietze GESIS Leibniz Institut für
Sozialwissenschaften & Heinrich Heine
University Düsseldorf, Germany

Sonja Schimmler Technical University of Berlin & Fraunhofer
FOKUS, Germany

Frank Krüger Wismar University of Applied Sciences, Germany

Program Committee

Rana Abdullah Universität Hamburg, Germany
Raia Abu Ahmad Deutsches Forschungszentrum für Künstliche

Intelligenz (DFKI), Germany
Marcel R. Ackermann Schloss Dagstuhl – Leibniz Center for

Informatics (LZI), Germany
Mathieu d’Aquin Université de Lorraine, France
Ekaterina Borisova Deutsches Forschungszentrum für Künstliche

Intelligenz (DFKI), Germany
Davide Buscaldi LIPN, CNRS, University Paris 13, France
Catherine Faron Université Côte d’Azur, France
Daniel Garijo Universidad Politécnica de Madrid, Spain
Paul Groth University of Amsterdam, Netherlands
Robert Jäschke Humboldt-Universität zu Berlin, Germany
Pedro Ortiz Suarez Common Crawl Foundation, USA
Wolfgang Otto GESIS Leibniz Institut für Sozialwissenschaften,

Germany
Haris Papageorgiou R. C. Athena, Greece
Simone Ponzetto University of Mannheim, Germany
Diego Reforgiato Recupero University of Cagliari, Italy
Philipp Schaer TH Köln, Germany
Jennifer D’Souza TIB Leibniz-Informationszentrum Technik und

Naturwissenschaften, Germany



viii Organization

Tilahun Taffa Universität Hamburg, Germany
Atsuhiro Takasu University of Tokyo, Japan
Ricardo Usbeck Leuphana University, Germany

Shared Tasks Committee

Georg Rehm Deutsches Forschungszentrum für Künstliche
Intelligenz (DFKI), Germany

Raia Abu Ahmad Deutsches Forschungszentrum für Künstliche
Intelligenz (DFKI), Germany

Ekaterina Borisova Deutsches Forschungszentrum für Künstliche
Intelligenz (DFKI), Germany

Stefan Dietze GESIS Leibniz Institut für
Sozialwissenschaften & Heinrich Heine
University Düsseldorf, Germany

Saurav Karmarkar GESIS Leibniz Institut für Sozialwissenschaften,
Germany

Frank Krüger Wismar University of Applied Sciences, Germany

Sponsor

The NSLP 2024 workshop and this proceedings volume were financially supported by
the consortium NFDI for Data Science and Artificial Intelligence (NFDI4DS) as part
of the non-profit association National Research Data Infrastructure (NFDI e. V.). The
consortium is funded by the Federal Republic of Germany and its states through the
German Research Foundation (DFG) project NFDI4DS (no. 460234259).

https://www.nfdi4datascience.de

https://www.nfdi4datascience.de


Contents

Scholarly Information Processing

Scholarly Question Answering Using Large Language Models
in the NFDI4DataScience Gateway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Hamed Babaei Giglou, Tilahun Abedissa Taffa, Rana Abdullah,
Aida Usmanova, Ricardo Usbeck, Jennifer D’Souza, and Sören Auer

Cite-worthiness Detection on Social Media: A Preliminary Study . . . . . . . . . . . . . 19
Salim Hafid, Wassim Ammar, Sandra Bringay, and Konstantin Todorov

Towards a Novel Classification of Table Types in Scholarly Publications . . . . . . 31
Jilin He, Ekaterina Borisova, and Georg Rehm

OCR Cleaning of Scientific Texts with LLMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Gábor Madarász, Noémi Ligeti-Nagy, András Holl, and Tamás Váradi

Identifying and Leveraging Research Software

RTaC: A Generalized Framework for Tooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Nisarg Bhavsar, Abhinav Thakur, Amrit Lal Singh, and Ashish Patwa

Scientific Software Citation Intent Classification Using Large Language
Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Ana-Maria Istrate, Joshua Fisher, Xinyu Yang, Kara Moraw, Kai Li,
Donghui Li, and Martin Klein

RepoFromPaper: An Approach to Extract Software Code Implementations
from Scientific Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Aleksandar Stankovski and Daniel Garijo

Automated Extraction of Research Software Installation Instructions
from README Files: An Initial Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Carlos Utrilla Guerrero, Oscar Corcho, and Daniel Garijo

A Technical/Scientific Document Management Platform . . . . . . . . . . . . . . . . . . . . 134
Melissa Lemos, Grettel M. García, Yenier T. Izquierdo, Cleber Oliveira,
Jefferson Alves de Sousa, Bernardo Florindo Mortari Rezende,
Bruno Novelli, and Marco A. Casanova



x Contents

Research Knowledge Graphs

The Effect of Knowledge Graph Schema on Classifying Future Research
Suggestions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Dimitrios Alivanistos, Seth van der Bijl, Michael Cochez,
and Frank van Harmelen

Assessing the Overlap of Science Knowledge Graphs: A Quantitative
Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Jenifer Tabita Ciuciu-Kiss and Daniel Garijo

Shared Task: FoRC

FoRC@NSLP2024: Overview and Insights from the Field of Research
Classification Shared Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

Raia Abu Ahmad, Ekaterina Borisova, and Georg Rehm

NRK at FoRC 2024 Subtask I: Exploiting BERT-Based Models
for Multi-class Classification of Scholarly Papers . . . . . . . . . . . . . . . . . . . . . . . . . . 205

Kiet Nguyen Tuan and Thin Dang Van

Advancing Automatic Subject Indexing: Combining Weak Supervision
with Extreme Multi-label Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

Lakshmi Rajendram Bashyam and Ralf Krestel

Single-Label Multi-modal Field of Research Classification . . . . . . . . . . . . . . . . . . 224
Florian Ruosch, Rosni Vasu, Ruijie Wang, Luca Rossetto,
and Abraham Bernstein

Enriched BERT Embeddings for Scholarly Publication Classification . . . . . . . . . 234
Benjamin Wolff, Eva Seidlmayer, and Konrad U. Förstner

Shared Task: SOMD

SOMD@NSLP2024: Overview and Insights from the Software Mention
Detection Shared Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

Frank Krüger, Saurav Karmakar, and Stefan Dietze

Software Mention Recognition with a Three-Stage Framework Based
on BERTology Models at SOMD 2024 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

Thuy Nguyen Thi , Anh Nguyen Viet , Thin Dang Van,
and Ngan Luu-Thuy Nguyen



Contents xi

ABCD Team at SOMD 2024: Software Mention Detection in Scholarly
Publications with Large Language Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

Phi Nguyen Xuan, Quang Tran Minh, and Thin Dang Van

Falcon 7b for Software Mention Detection in Scholarly Documents . . . . . . . . . . . 278
AmeerAli Khan, Qusai Ramadan, Cong Yang, and Zeyd Boukhers

Enhancing Software-Related Information Extraction via Single-Choice
Question Answering with Large Language Models . . . . . . . . . . . . . . . . . . . . . . . . . 289

Wolfgang Otto, Sharmila Upadhyaya, and Stefan Dietze

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307



Scholarly Information Processing
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Abstract. This paper introduces a scholarly Question Answering (QA)
system on top of the NFDI4DataScience Gateway, employing a Retrieval
Augmented Generation-based (RAG) approach. The NFDI4DS Gate-
way, as a foundational framework, offers a unified and intuitive inter-
face for querying various scientific databases using federated search. The
RAG-based scholarly QA, powered by a Large Language Model (LLM),
facilitates dynamic interaction with search results, enhancing filtering
capabilities and fostering a conversational engagement with the Gate-
way search. The effectiveness of both the Gateway and the scholarly QA
system is demonstrated through experimental analysis.

Keywords: Scholarly Question Answering · Federated Search ·
Retrieval Augmented Generation · Large Language Models · NFDI4DS
Gateway

1 Introduction

With recent advances in artificial intelligence (AI), decision-making has grad-
ually shifted from rule-based systems to machine learning and deep learning-
based developments [11]. This paradigm shift has changed how we approach
information retrieval and Question Answering (QA) systems, including Scholarly
QA. Scholarly QA systems answer natural language questions over bibliographic
data sources [2,26]. Notably, scholarly resources appear in different bibliographic

H. Babaei Giglou, T. A. Taffa, R. Abdullah and A. Usmanova—Equal contribution.

c© The Author(s) 2024
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repositories. To narrow down the answer search space - federated search comes
into play. A federated search platform enables one to navigate the vast landscape
of scholarly resources available across multiple databases and repositories [8].
Furthermore, federated search aggregates information from multiple sources to
provide a comprehensive and holistic view of relevant resources. The efficacy
of faceted search in scholarly-based filtering has been well-demonstrated [15],
paving the way for robust systems employing federated search methods.

Adhering to FAIR principles [29] in managing research data, initiatives like
the NFDI4DataScience1 (NFDI4DS) consortium have emerged as a collaborative
endeavor designed to support researchers throughout the entire research data
life cycle, ensuring their practices align with the FAIR principles. The NFDI4DS
Gateway, as a part of the NFDI4DS vision [22], includes a federated search. The
Gateway - a unified and intuitive search interface that enables users to query
various scientific databases such as DBLP, Zenodo, and OpenAlex. The overall
aim of the NFDI4DS Gateway is to design an entry point that categorizes and
summarises multiple search results (such as researchers, publications, machine
learning models, and benchmark results) such that practitioners and researchers
gain a swift overview of existing contributions [27].

Retrieval Augmented Generation (RAG) harnesses the power of advanced
natural language processing (NLP) techniques to improve the quality and rele-
vance of responses to user queries. Integrating Large Language Model (LLM)-
based components is at the core of RAG’s functionality. LLMs are the backbone
of RAG’s response generation process, leveraging extensive training on large text
to understand and generate human-like responses. RAG-based scholarly QA sys-
tems can seamlessly integrate with federated search to improve the process of
filtering and selecting scholarly resources in the context of scholarly research [12].
Therefore, on top of the NFDI Gateway, we built a RAG-based scholarly QA sys-
tem. The RAG retrieval component of the system scans the retrieved resources to
identify the top-N most relevant documents based on the user’s question. After
placing the resources, the scholarly QA uses an LLM (Large Language Model)
to extract correct answers to the user’s questions directly from the selected
documents. By seamlessly integrating the RAG-based scholarly QA with the
Gateway, users can efficiently filter through vast amounts of scholarly content,
enabling more targeted and productive research efforts.

This approach aims to enhance the user experience, fostering more intuitive
and tailored engagement with available information, ultimately contributing to
more effective and nuanced research outcomes. Furthermore, a detailed analysis
of our experiments is framed as two main research questions (RQs).

– RQ1: To what extent does the federated search implemented in the Gateway
achieve optimal performance?

– RQ2: How does integrating the Scholarly QA on top of the Gateway improve
the retrieval of relevant search results?

Our main contributions are twofold:
1 https://www.nfdi4datascience.de/.

https://www.nfdi4datascience.de/
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– the NFDI4DS Gateway analysis and completeness of federated search evalu-
ation through information retrieval metrics.

– A scholarly QA system based on RAG on top of the Gateway.

The source code can be found at https://github.com/semantic-systems/nfdi-
search-engine-chatbot.

2 Related Works

Data management is a multi-step process that involves obtaining, cleaning, and
storing data to allow accurate analysis and produce meaningful results. As an
example of this, the Open Research Knowledge Graph [4,24] is an infrastructure
for the production, curation, publication, and use of FAIR scientific information
with the ultimate goal of providing swift knowledge management within the
scientific domain by the digitalization of scholarly articles in the form of the
knowledge graph. On the other hand, the federated search [30], as they involve
the efficient retrieval of information from multiple data sources, play an essential
role in data management as it helps in optimizing the use of data and deriving
valuable insights from the data. As shown in [3,11] work, the researchers face a
flood of papers that hinders the discovery of necessary knowledge, as a result of
this, [11] trained models to identify challenges and directions across the corpus
by a dedicated search engine.

Federated search [23] serves as a crucial tool for managing data within schol-
arly articles, enabling the retrieval of information from diverse sources through a
search application constructed on top of one or more data sources [8]. A federated
search facilitates information retrieval from multiple scholarly sources, demon-
strating remarkable efficacy across various fields, particularly in scientific data
management. Shokouhi et al. [23] outlined the challenges inherent in federated
search within scholarly domains, delineating three significant hurdles: retriev-
ing relevant documents, identifying suitable collections necessitating knowledge
representation and unifying results from multiple sources. Similarly, Kumar et
al. [10] dived into how federated search helps libraries and other institutions
with a valuable tool to explore various fields and articles. Furthermore, Kirstein
et al. [9] introduced Piveau as a comprehensive open data management solution
grounded in semantic web technologies. Leveraging a spectrum of standards
prevalent in the semantic web, such as RDFs and DCAT, this standardization
via the semantic web overcomes limitations in search capabilities, ensuring supe-
rior quality information retrieval.

The Scholarly QA work in [12] proposes a QA model that extracts question-
related full-text scientific articles using an LLM-based retrieval agent and gen-
erates answers using RAG techniques. [26] has explored Knowledge Graph QA
using an LLM in a few-shot setting for handling bibliographic questions. NLQx-
form [28] introduces a natural language interface for directly querying the DBLP
by automatically translating questions into SPARQL queries. Unlike these Schol-
arly QAs, we introduce RAG-based Scholarly QA.

https://github.com/semantic-systems/nfdi-search-engine-chatbot
https://github.com/semantic-systems/nfdi-search-engine-chatbot
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Fig. 1. A functional view of the NFDI4DS Gateway architecture with scholarly QA
application.

3 Methodological Framework

The NFID4DS Gateway performs a federated search through various data store
APIs. Subsequently, the search results will be indexed into the QA system to
allow users to find acquired information via chat. The architectural representa-
tion of the Gateway with a scholarly QA system is illustrated in Fig. 1.

3.1 The Gateway – Federated Search

The Gateway conducts federated searches across diverse data stores, generating
results that humans can easily interpret. The following key components underpin
its functionality:

1. Keyword search across data stores (API Orchestration).
2. Grouping results using a faceted taxonomy (Mapping and Aggregation).
3. Deduplication of results (Entity Resolution).

In the following, we will delve into each of these components in detail, explaining
their functions and contributions to the overall functionality of the Gateway.

1) API Orchestration. It uses a one-search-box interface to obtain user key-
words, and the search results are expressed in a one-result-list-only manner. It
subsequently employs federated search using ad-hoc based searches through
11 open-source scholarly repositories, i.e., DBLP2, OpenAlex3, CORDIS4,
European Language Grid (ELG)5, GEPRIS6, GESIS7, ORCiD8, RESO-

2 https://dblp.org/.
3 https://openalex.org/.
4 https://cordis.europa.eu/.
5 https://live.european-language-grid.eu/.
6 https://gepris.dfg.de/.
7 https://www.gesis.org/en/home.
8 https://orcid.org/.

https://dblp.org/
https://openalex.org/
https://cordis.europa.eu/
https://live.european-language-grid.eu/
https://gepris.dfg.de/
https://www.gesis.org/en/home
https://orcid.org/
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DATE9, WIKIDATA10, IEEE11, and Zenodo12. Among these repositories,
DBLP, OpenAlex, IEEE, GESIS, RESODATE, WIKIDATA, and Zenodo
provide research resources like publications, datasets, software, etc. GEPRIS
provides Deutsche Forschungsgemeinschaft (DFG) funded projects. Likewise,
CORDIS is a primary source for projects financed by the European Union
(EU) Commission. ELG is a platform that provides multi-lingual, cross-
lingual, and mono-lingual language technologies in the EU. Unlike the others,
ORCiD delivers a unique, persistent, researcher-owned, and controlled digital
identifier that distinguishes researchers uniquely.

2) Mapping and Aggregation. The Gateway interacts with various data
source APIs, including SPARQL endpoints; the retrieved results often have
different structures. For example, while one source refers to an author of a
publication as ‘author’, another refers to them as ‘creator’, and terminology
differences extend to scholarly resources such as datasets, which are referred to
as ‘corpus’ in one source and ‘dataset’ in another, such as Zenodo. To resolve
the naming variations, we have developed a systematic approach based on
customized faceted taxonomy from schema.org13 that harmonizes and aggre-
gates heterogeneous results from API orchestration. This faceted taxonomy
acts as a unifying framework that allows us to map the different terminology
and structures found in other data sources, thereby coherently facilitating the
aggregation and presentation of search results.
The faceted taxonomy based on schema.org is defined to represent different
entities found in data sources. These schema.org classes encompass infor-
mation including organizations, individuals, authors, creative works (arti-
cles, datasets, projects, software applications, learning resources, and media
objects), and their respective attributes. In particular, the Author and Person
classes encapsulate attributes related to individuals who contribute to creative
works, while the Organization class encapsulates attributes specific to organi-
zational entities. In addition, the CreativeWork super class serves as a foun-
dation for various entities, providing common attributes such as abstract,
author, and datePublished inherited by its subclasses. Each class within
schema.org contributes to a structured representation of data entities, facili-
tating organization, interoperability, and standardized data handling within
the Gateway.

3) Entity Resolution. Following the initial mapping of the publications,
researchers, and other resources using the schema.org taxonomy, it becomes
necessary to identify and merge duplicate objects within the results. To
accomplish this task, we leverage the DEDUPE model [6], which employs
machine learning techniques, specifically fuzzy matching, deduplication, and
entity resolution, to handle structured data effectively. Later, the DEDUPE

9 https://resodate.org/.
10 https://www.wikidata.org/.
11 https://www.ieee.org/.
12 https://zenodo.org/.
13 https://schema.org/.

https://resodate.org/
https://www.wikidata.org/
https://www.ieee.org/
https://zenodo.org/
https://schema.org/
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model can be fine-tuned on a custom dataset comprising positive and negative
samples, thus enabling the model to differentiate between genuine duplicates
and distinct entities.
For publication deduplication, the DEDUPE model is trained on a set of
attributes, i.e., Digital Object Identifier (DOI), title, author list, abstract, and
publication date for publication identification by clustering objects based on
similarity scores calculated across attributes. Subsequently, within each clus-
ter, objects that exceed the predefined similarity threshold are merged to
form a unified entity, thus resulting in a set of deduplicated records. Later,
the resulting records are sorted based on relevancy score using BM25Plus.
BM25Plus is a variant of BM25 (Best Match) [20] ranking algorithm, intro-
ducing additional term weighting factors to enhance the ranking.

3.2 Scholarly Question Answering

As shown in Fig. 1, our RAG-based [13] scholarly QA has two components: (i)
a retriever that returns top-K relevant passage to the user’s question and (ii) a
generator LLM that generates a human-like response based on a given context
from the retriever to a user question.

Retriever. The retrieval model uses a user question as a query to explore rele-
vant information from a knowledge base. The knowledge base comprises a set of
documents retrieved per search query through the Gateway. The retriever model
operates in three sequential steps:

1. Step 1: The preprocessing knowledge base of search results to obtain a set
of documents combined textual data by combining the key-value dictionary
per obtained search result.

2. Step 2: The retriever model extracts embeddings for the documents and
indexes them within the knowledge base.

3. Step 3: Given a specific question, the retriever model extracts embeddings
and computes cosine similarity with the knowledge base, thereby retrieving
the top-K appropriate relevant documents to answer the question

We opted for an ensemble retriever model. This ensemble accompanies techniques
such as TF-IDF [21], SVM, and KNN retrievers with the Sentence-BERT [19]
model serving as the foundational framework. Per the user question, the ensem-
ble retriever queries retriever models to obtain their results; next, it ranks them
using each retriever’s weights to obtain the final documents most similar to the
query. In our retriever collection, the SVM is being trained with the query as a
positive class and the rest of the knowledge base documents as negative using
sentence-BERT embeddings; next, based on the positive class probability, the
documents are ranked and obtain top-k items. By integrating diverse retrieval
methodologies, our ensemble model aims to capitalize on the strengths of each
component, thereby enhancing overall retrieval performance. Upon experimenta-
tion, we manually determined the optimal configuration for our ensemble model.
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Based on our observations, we assigned weights of 0.3 to TF-IDF, 0.3 to KNN,
and 0.4 to SVM retrievers by try-and-error analysis.

Generator. As shown in Fig. 1, the generator model uses LLM and retriever
documents and a prompt template to query LLM to generate a human-like
answer to the user questions based on obtained relevant documents from the
retriever model. As observed, LLMs showed a great capability for generating
human-like responses. However, they might hallucinate and forget the discussion
due to the overwhelming information. We provide explicit instructions beside
questions and relevant documents, using a predefined prompt template to avoid
this. The prompt template enables the scholarly QA to query LLM effectively
and answer the user question accurately. The prompt template is described as
follows:

Provide your answers only on the knowledge provided here. Do not use any
outside knowledge.
If you don’t know the answer, say that you don’t know. Don’t try to make up
an answer.
Given the following context, answer the below question:

{context}

Question: {question}
Helpful Answer:

In the prompt template, {context} is the placeholder for retriever model results,
and {question} is the user question. To account for follow-up questions, we have
used conversation buffer memory that keeps track of chat history, consisting of
previous questions and answers within five previous conversations. The follow-
up questions can reference past chat history, e.g., “What is the open research
knowledge graph?” followed by “How to use it?” Such queries challenge direct
retriever similarity-based searches, including ensemble retriever models. We pro-
vided the chat history for LLM in the prompt template by adding the history
questions and answers to the end of retrieval model outputs at {context} place-
holder. As an LLM, we use GPT-3.5 [16] with the LangChain framework [5] for
implementation.

4 Evaluation

4.1 Evaluation Dataset

This section outlines the procedures for constructing the dataset for both the
Gateway and scholarly QA evaluations.
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Constructing Queries for Assessing the Gateway Performance. The
comparison feature of ORKG empowers researchers to construct comprehensive
comparisons [25] among scholarly articles spanning diverse domains. A pivotal
aspect of this feature is the inclusion of human-generated comparisons. In the
evaluation of federated search, we focused on the comparison titles at ORKG,
crafted by the researchers themselves. Consider a scenario where a user aims
to formulate a comparison for “ontology learning from text” and utilizes the
Gateway to gather relevant papers and sources for their study. When a user
queries the title on the Gateway, a user can easily use the documents obtained to
construct an ORKG comparison for “ontology learning from the text” as shown
in https://orkg.org/comparison/R186047. So, comparison titles can be used as
a query to study the Gateway’s performance in finding relevant documents for
researchers.

Through this process, we obtained 1,235 unique comparisons from ORKG as
of February 2nd, 2024, spanning 161 research fields. Among the obtained research
fields, we selected 27 research fields related to AI and data science. Consequently,
we identified 316 comparison topics within 27 research fields that fall into the
AI and data science category for human annotations to curate titles as a query.
Ultimately, we curated a collection of 275 comparison titles for performance
analysis of the Gateway and executed queries on the Gateway as of February
16th, 2024. The remaining 41 comparison titles we found them inappropriate for
querying the Gateway.

Generating Scholarly QA Datasets. We designed a systematic approach
to generate well-suited questions tailored to search results. The questions are
designed to simulate what questions users ask while using the Gateway. We con-
structed the AI-QA dataset using GPT-4 [17] and the Comparison-QA dataset
using ORKG comparisons. For the AI-QA dataset, we employed k-means [7] clus-
tering methodology on retrieved documents per query, enabling us to efficiently
organize the data for generating questions. For search result sets containing
more than 50 entries, we applied a clustering number of 10, and for result sets
with fewer than 50 entries, a clustering number of 5 was considered appropriate.
Search results with less than 5 entries were not included in question generation.
Subsequently, we employed GPT-4-Turbo [17] to generate two appropriate ques-
tions per cluster using a predefined prompt template. The prompt template is
defined as follows:

The task is to generate questions based on the provided information.
Given a list of texts, generate only two questions, no more than two.
Make questions variant.
The questions should imitate what a user might look for in the given doc-
uments.

Return questions as a Python list.

Documents:
{documents}

https://orkg.org/comparison/R186047/


Scholarly Question Answering 11

This approach proves advantageous in generating questions for scholarly QA
evaluation as it relies on documents already recognized for question generation.
However, in the evaluation phase, the retriever model gathers search results
similar to those of the questions, which the LLM later uses to generate answers.
Following the question generation step, we acquired a total of 3,298 questions
across 1,651 clusters for scholarly QA evaluations, where we consider each clus-
tering per question as a ground truth.

Since the ORKG comparison is aimed to allow researchers to compare con-
tributions of different articles based on predefined properties such as “research
problem” or “model”. For Comparision-QA, we used comparison properties as
questions using the following standard template:

In the paper “{paper}”, what is the {property}?
We considered 275 comparison titles to query the Gateway to obtain federated
search results; for the 275 ORKG comparisons comprising 2,395 papers, only 184
were retrieved by the Gateway. So, we used 184 papers and their properties to
construct questions, and values for the property per paper in the comparison were
considered as answers. In the end, a total of 1,354 questions were constructed.

The overview of the datasets is presented in Table 1.

Table 1. Statistics for the number of search queries (Query), number of compari-
son papers (Comparison Papers), number of papers from ORKG comparison that are
being covered in search results (ORKG Coverage), and comparison specific questions
(Comparison-QA).

Query AI-QA Comparison Papers ORKG Coverage Comparison-QA

275 3,298 2,303 184 1,354

4.2 Evaluation Metrics

Gateway Evaluation Metrics. In evaluating the performance of the Gateway,
we employed multiple approaches, primarily focusing on response time, number
of retrieved documents, and relevancy scores. The response time analysis serves
as a critical metric in assessing the efficiency and responsiveness of the Gate-
way. Another key aspect of our evaluation involved analyzing the number of
documents retrieved by the Gateway in response to user queries. This metric
provides valuable information about the comprehensiveness and effectiveness of
the search results generated by the system. To further refine our evaluation, we
calculated relevancy scores per retrieved document similarity to the search query
based on varying thresholds and representations such as sentence-BERT, TF-
IDF, and BM25 [1]. With sentence-BERT sentence embeddings, TF-IDF, and
BM25 scores, we calculated cosine similarity between documents and queries for
all metrics to get relevancy scores.
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Scholarly QA Evaluation Metrics. In AI-QA, we utilized question clusters
as answers, while in comparison-QA, property values were employed as answers.
Subsequently, we assessed performance using n-gram overlap specific metrics
like ROUGE [14] (Recall-Oriented Understudy for Gisting Evaluation) and
BLEU [18] (Bilingual Evaluation Understudy), focusing specifically on ROUGE-
1, ROUGE-L, and BLEU-1 as our evaluation criteria. Because LLMs generate
responses based on their comprehension, they might deviate from the ground
truth text, making evaluation with metrics like ROUGE and BLEU difficult.
Consequently, incorporating similarity scores into the assessment process can
offer further insights into their proficiency in capturing subtle language nuances.
We used the BERTScore – a sentence-BERT average cosine similarity metric
as an evaluation. Furthermore, as the Comparison-QA dataset poses challenges
with answers often appearing within the paper context rather than solely in
abstracts and titles, we opted for the Exact Match score as another evaluation
metric only for this dataset.

4.3 Results

Gateway and Scholarly QA Results. The performance of the Gateway
has been assessed by considering factors such as its response time, the number
of documents retrieved, and the relevance of those documents. The Gateway
performances are reported in Fig. 2 and Fig. 3. The results for scholarly QA
evaluation, employing various metrics, are reported in Table 2. We identified 432
questions without answers for AI-QA, while we obtained 26 questions without
answers for Comparison-QA. This happened due to the input limitation of GPT-
3.5. Hence, we excluded these questions from evaluations.

Table 2. Evaluation results of the scholarly QA using AI-QA and Comparison-QA
datasets, showcasing ROUGE, BLEU, BERTScore, and Exact Match scores for the
RAG-based scholarly QA development.

Dataset ROUGE-1 ROUGE-L BLEU-1 BERTScore Exact Match

AI-QA 4.21 2.92 38.94 36.81 –

Comparison-QA 6.82 6.10 3.10 26.96 13.93

RQ1: [Gateway] To what extent does the federated search imple-
mented in NFDI4DS achieve optimal performance? We address this
question by analyzing the findings presented in Fig. 2 and Fig. 3. Ultimately,
for a search platform, it is essential to retrieve relevant results while maintaining
a fast response time across various queries. The analysis of response time and
retrieved documents status in Fig. 2 for 275 search queries showed that the feder-
ated search is capable of obtaining 123 documents on average within an average
response time of 4.93 seconds. Notably, slow performance is observed in the
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Fig. 2. Gateway retrieved documents distribution is presented in the left figure. The
x-axis represents the number of retrieved documents, and the y-axis the number of
queries. The right figure represents the response time distribution, with the x-axis as
a response time in seconds and the y-axis as the number of queries.

search query of the “Kinect human activity recognition dataset” with approx-
imately 10 s response time and search results of 169 documents. Similarly, for
the “Motion Capture system” search query, we obtained 227 documents within
4.3 s. This shows that depending on different search keywords and how complex
the query is, it may result in sacrificing response time. In general, according
to Fig. 2, the distribution analysis indicated that the number of retrieved docu-
ments follows a normal distribution, while the distribution of response time is
positively skewed. This highlights the significant performance of the Gateway in
terms of response time and document retrieval.

We calculated cosine similarities with three metrics to analyze the retrieved
documents’ relevancy. We set relevancy thresholds to see how many queries with
their corresponding documents are considered very relevant to each other. The
relationship between the relevancy threshold and the number of retrieved doc-
uments is depicted in Fig. 3, indicating a decrease as the threshold increases.
The TF-IDF metric generates the highest similarity scores between documents
and queries, albeit focusing primarily on token frequency rather than semantic
understanding. BM25, an improvement upon TF-IDF, proves particularly effec-
tive for information retrieval tasks, displaying a different score distribution with
numerous low similarity scores. Despite this, BM25 still identifies certain doc-
uments as highly relevant (with similarity above 0.3) for specific queries. Con-
versely, sentence-BERT initially achieves the highest average recall but drops
to zero at a threshold of 0.8. Comparatively, BM25 and sentence-BERT yield
similar results, implying that capturing nuanced semantics may not be crucial
for retrieving relevant articles; instead, identifying standard terms and phrases
appears more pivotal. Evaluating the optimal threshold of 0.3, TF-IDF emerges
as the optimal ranking model. The overall relevancy analysis across different
thresholds indicates that the Gateway effectively retrieves search results based
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Fig. 3. Gateway retrieved documents relevancy w.r.t search query analysis using TF-
IDF, BM25, and sentence-BERT embeddings for similarity measurement and different
thresholds in the range of [0.0, 0.99]

on keyword search but struggles with semantic retrieval. However, setting the
threshold to 0.3 demonstrates approximately 50% semantic similarity among
documents, highlighting the Gateway’s proficiency in identifying relevant docu-
ments from keyword and semantic perspectives.

RQ2: [Scholarly QA] How does integrating the Scholarly QA on top
of the Gateway improve the retrieval of relevant search results?
We address this question by analyzing the results presented in Table 2 for
both automated constructed Comparison-QA and AI-QA datasets. Accord-
ing to the ROUGE-1 metric, unigrams overlap between the developed QA-
generated responses and existing answers. This overlap is more significant for
Comparison-QA (6.82%) than for AI-QA (4.21%). Similarly, when considering
ROUGE-L, which measures the Longest Common Subsequence, the overlap for
Comparison-QA (6.10%) surpasses that of AI-QA (2.92%). However, despite the
QA’s promising BLEU-1 score of 38.94% on the AI-QA dataset, its performance
on the Comparison-QA dataset is lacking. This suggests that the developed QA
responses align more closely with the clustered documents, which are the ground
truth in our AI-QA dataset.

It is essential to note that both the ROUGE and BLEU metrics have limita-
tions when applied to LLM-based generations. This is because LLM-generated
responses may exhibit variations that mimic human-like responses, making it
challenging for these metrics to evaluate their quality accurately. Still, they
show how much of the generated text is similar to ground truth. Nevertheless,
we reported a BERTScore of 36.81% for the AI-QA dataset and 26.96% for the
Comparison-QA dataset. These obtained BERTScore results suggest that the
quality of the scholarly QA’s responses, particularly in terms of semantic simi-
larity to ground truth references, varies significantly between the two datasets.
As mentioned earlier, the variation between the two datasets was expected since
the Comparison-QA mostly extracted humans from the whole body of the paper
rather than only the title and abstract.

We computed the exact match for Comparison-QA, revealing a 13.93% match
between the ground truth and the QA-generated text. This highlights the schol-
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arly QA’s proficiency in recognizing relevant information, mainly when it appears
in the search results. To the best of our knowledge, there is no other baseline
system or scholarly QA system available to which we can compare.

5 Limitations and Future Directions

This section discusses the limitations encountered in the implementation of the
scholarly QA model and outlines potential future directions for addressing these
shortcomings.

Inadequate Availability of Comparison-QA Dataset Answers. The
scholarly QA’s performance is hindered by the frequent unavailability of answers
to the Comparison-QA answers in search results, resulting in suboptimal per-
formance. Addressing this limitation requires an extensive collection of queries
from ORKG comparisons. Another limitation arises from the lack of diversity in
the questions, as the current methodology employs a single template for forming
questions on this dataset.

Suboptimal AI-QA Dataset Generation. The AI-QA dataset, generated
from clustered search results, sometimes yields many documents per cluster.
Thus, an optimal clustering method is necessary to manage the data effectively.
Additionally, soliciting human feedback on the generated questions is crucial for
refining and enhancing the dataset’s quality. In future works, it is helpful to have
a small human-generated dataset to justify the evaluation’s validity further.

Exploring Diverse LLMs. Future research should focus on exploring a more
comprehensive range of LLMs within scholarly QA to study their diversity and
identify more optimal models for scholarly documents. This endeavor necessi-
tates dataset curation tailored explicitly to the Gateway results.

6 Conclusion

In this work, we present an interactive scholarly QA system based on the RAG
approach on top of the NFDI4DataScience Gateway search results, facilitating
user interaction with a wealth of data. Subsequently, we automatically evaluated
both the Gateway and scholarly QA using an automatically constructed dataset.
The analysis indicates that as early prototypes, both the Gateway and QA show
satisfactory performance. However, there is a need for future work to stabilize
both systems and harness data science expertise.
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Abstract. Detecting cite-worthiness in text is seen as the problem of
flagging a missing reference to a scientific result (an article or a dataset)
that should come to support a claim formulated in the text. Previous
work has taken interest in this problem in the context of scientific liter-
ature, motivated by the need to allow for reference recommendation for
researchers and flag missing citations in scientific work. In this prelimi-
nary study, we extend this idea towards the context of social media. As
scientific claims are often made to support various arguments in societal
debates on the Web, it is crucial to flag non-referenced or unsupported
claims that relate to science, as this promises to contribute to improving
the quality of the debates online. We experiment with baseline models,
initially tested on scientific literature, by applying them on the SciTweets
dataset which gathers science-related claims from X. We show that mod-
els trained on scientific papers struggle to detect cite-worthy text from
X, we discuss implications of such results and argue for the necessity to
train models on social media corpora for satisfactory flagging of miss-
ing references on social media. We make our data publicly available to
encourage further research on cite-worthiness detection on social media.

Keywords: Cite-worthiness · Science-related discourse · Social
Media · NLP

1 Introduction

Social media, especially X (ex-Twitter), has become a vital platform for scien-
tific discourse among scholars, but also among non-academic users. Scientists
rely on X as a convenient platform for sharing findings and connecting with
peers [30], while non-scientific users often call upon scientific results or formu-
late science-related claims in order to give more weight to their arguments in
societal debates on various, often controversial topics. For example, discussions
surrounding the recent COVID-19 global pandemics were often fueled by science-
related arguments—verified or not—relating to vaccines efficiency or protection
measures. While a lot of attention has been given to analysing science-related
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claims from scientific literature [23], only recently the natural language process-
ing (NLP) community started taking interest in scientific discourse on social
media and on the Web at large [22]. These recent efforts have been largely
motivated by the observation that scientific discourse is arguably different on
social media as compared to academic literature, where social media users lean-
ing on science in their discourse would often lack rigour, oversimplify or mis-
contextualize scientific findings [21].

A specific problem in that context is that of cite-worthiness detection, seen as
the task of “identifying citing sentences, i.e., sentences which contain a reference
to an external source” in text [1]. In particular, this task can be useful for flag-
ging a missing reference to a scientific result (an article or a dataset) that should
come to support a claim formulated in the text, hence giving credit to the original
author, giving credibility to the claim presented or providing additional insights.
Previous work has taken interest in this problem in the specific context of scien-
tific literature, motivated by the need to allow for reference recommendation for
researchers and to flag missing citations in scientific work [1]. In our work, we
extend this idea towards the context of social media, leveraging the results and
models reported in [1]. While scientific claims are often made to support various
arguments in societal debates on the social Web, the lack of citation standards,
as compared to academic writing, leads to the presence of largely unsupported
science-related claims and mis-contextualized scientific findings, which in turn
leads to a poor quality of the debates online, lacking transparency, credibility
and accuracy, with potentially harmful effects on democratic discourse [15–17].

In [1], several well-known pre-trained language models, such as SciBERT and
Longformers are fine-tuned for the specific task of cite-worthiness detection in
scientific literature and evaluated against a simple logistic regression baseline,
by relying on data tailored for the task.1 In our preliminary study, we follow
the protocol provided by [1], by applying and fine-tuning the same models and
baselines, but in contrast using data coming from X exclusively. Namely, we
rely on the SciTweets dataset [3],2 which gathers human annotated science-
related claims from X, based on the definition of scientific web claims and the
annotation protocol given in [3]. We further preprocess and filter tweets from
SciTweets to map them to the cite-worthiness definition from [1]. We observe
consistent decline across all metrics when evaluating models on X data. This
hints that the inherent difference between academic and social media scientific
discourse [13,14,18] translates to a degraded performance of baseline models on
the downstream task of cite-worthiness detection, calling for specific models that
are capable of taking into consideration the specificity of scientific discourse on
the Web.

In this work, we contribute:

1 https://github.com/copenlu/cite-worth.
2 https://github.com/AI-4-Sci/SciTweets.

https://github.com/copenlu/cite-worth
https://github.com/AI-4-Sci/SciTweets
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1. SCiteTweets, the first publicly available dataset for cite-worthiness detection
on social media, consisting in 415 tweets constructed by preprocessing and
filtering tweets from the SciTweets dataset.3

2. The first empirical evaluation of cite-worthiness detection on social media,
where we observe that performance of models trained on scientific publica-
tions consistently declines when evaluated on data from X.

2 Related Work

The notion of cite-worthiness relates to the notion of check-worthiness, which has
been extensively researched by fact-checking related studies over the years.4 A
sentence is defined as “check-worthy” if it is worth fact-checking (e.g., contains a
verifiable factual claim, is potentially harmful, and is of general interest) [28,29],
whereas a sentence is “cite-worthy” if it contains a reference to an external source
[1]. While check-worthiness detection can help professional fact-checkers detect
which claims to focus on, cite-worthiness detection can be used to flag scientific
results which are presented without references.

Determining whether a (scientific) text lacks and hence requires a citation,
has been one of the challenges in the NLP community. The larger group of
approaches has tackled this problem in the context of scientific publishing, using
corpora constructed from academic articles in specific fields. For example, [24]
use Support Vector Machines on a dataset created from the ACL Anthology
Reference corpus [25], while more advanced approaches [6] measure the perfor-
mance of a Convolutional Recurrent Neural Network on the ACL Arc dataset5 as
well as arXivCS [26] and Scholary Dataset.6 The limitations of these works are
mainly related to domain-specificity, class imbalances, and little to no presence
of data quality analysis. These issues were addressed in [1], where the authors
build and share a curated multi-domain dataset specifically dedicated to the
task of cite-worthiness detection, that is used to evaluate a number of language
models against a logistic regression baseline.

On the social media side, existing work [7] observed that the nature of X
has led to a more lenient way of citing, especially in the scientific field where
discourse is expected to be more formal. The larger amount of work analysing
X data and scientific discourse is generally about the lack of trust in the shared
content [8], more precisely focusing on fact-checking. For example, in [9] the
authors create a manually annotated dataset to identify claims as check-worthy,
while in [10] the authors leverage Large Language Models to build datasets for
identifying misinformation.

3 The data is made publicly available at https://github.com/SalimHFX/
SCiteTweets/.

4 See the CheckThat! Lab editions hosted by the CLEF conferencehttps://checkthat.
gitlab.io/clef2024/task1/.

5 https://paperswithcode.com/dataset/acl-arc-1.
6 https://www.db.soc.i.kyoto-u.ac.jp/∼sugiyama/Dataset2.html.

https://github.com/SalimHFX/SCiteTweets/
https://github.com/SalimHFX/SCiteTweets/
https://checkthat.gitlab.io/clef2024/task1/
https://checkthat.gitlab.io/clef2024/task1/
https://paperswithcode.com/dataset/acl-arc-1
https://www.db.soc.i.kyoto-u.ac.jp/~sugiyama/Dataset2.html
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Studying scientific citation in social media is a relatively novel task. In [11],
the authors suggest that tweets can predict the citation of papers in the biomedi-
cal field, concluding that X citations may be an alternative to traditional ones on
the impact of research findings. Supporting that work, [12] assembles a dataset
relating tweets and citations of arXiv papers. Finally, [3] presents a definition of
scientific web claims and provide a curated dataset of tweets annotated according
to that definition. This dataset, although limited in size, provides hints about
citation tendencies in scientific discourse on X.

In an attempt to provide preliminary insights into this under-researched
problem, we build on the work of [1] by reproducing their experiments on X-
provenance data using the SciTweets dataset from [3] in order to highlight the
shortcomings of state-of-the-art pre-trained models when taken out of the aca-
demic literature context, which in turn hints to the inherent difference of dis-
course on social media as compared to scientific papers.

3 Data

To evaluate cite-worthiness performance on social media, we use the following
two distinct datasets (examples from each dataset are shown in Table 1):

– CiteWorth [1]: To our best knowledge, CiteWorth is the largest dataset
dedicated to cite-worthiness detection from scientific-publication text. It is
extracted from the S2ORC dataset [5] which consists of 81.1M english-
language scientific publications. It is then filtered, where sentences are given
“cite-worthy” labels indicating that they originally contained a citation at
the end of the sentence. The final dataset consists of 1.1M sentences, where
over 375k sentences are labeled as cite-worthy.

– SciTweets [3]: SciTweets is a dataset dedicated to online scientific discourse,
where authors developed a hierarchical definition of science-relatedness and
curated ground-truth data from X. Tweets are categorized into different cat-
egories of science-relatedness depending on whether they contain scientific
knowledge, a reference to scientific knowledge, or are related to scientific
research in general. The final dataset consists of 1,261 human-annotated
tweets. We use the SciTweets dataset to construct SCiteTweets, our dataset
for cite-worthiness detection on X, by mapping SciTweets labels to cite-
worthiness labels. We explain this procedure in detail in Sect. 4.1.

Table 1. Samples from the existing labels in both datasets used in our experiments

Size Labels Examples

CiteWorth 1,181,793 Cite-worthy The success rate of PNA in the literature varies from 79–100%

Non Cite-worthy We compared visual electrophysiology recording of patients with the normal range as
defined in our laboratory

SciTweets 1,261 Scientific knowledge also cancer is virtually incurable bc all cancers are different :)

Reference to scientific knowledge Modeling precision treatment of breast cancer looks great ! http://t.co/4XzfGlwAWn

Related to scientific knowledge Lupus Research Institute Awards $1-Million Grants to Discover What Causes Lupus
http://t.co/aXopNmLyI7

Non science-related These birds won’t stop cherping!

http://t.co/4XzfGlwAWn
http://t.co/aXopNmLyI7
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4 Experiments

4.1 Setting

To evaluate the performance of existing cite-worthiness detection models on a
social media corpus, we run multiple experiments to achieve the following goals:
(1) reproducing the results found by authors of the CiteWorth dataset [1], (2)
applying those models on the SciTweets dataset [3] to evaluate the performance
of existing cite-worthiness detection models on a social media corpus, where we
experiment with training models on the CiteWorth dataset and on the SciTweets
datasets. To reproduce results from the CiteWorth dataset [1], we pick the follow-
ing three models which all have been previously used by the authors: a logistic
regression model, which represents the simplest explainable baseline, a SciB-
ERT model [2] which had the best precision score in the authors’ experiments,
and a Longformer model [4] which achieved the best F1 score in the authors’
experiments. While in their experiments authors used two distinct versions of
Longformer, Longformer-Ctx where they use sequence modeling to embed entire
paragraphs, and Longformer-Solo, where they embed single sentences, in this
paper we opted to use Longformer-Solo (embedding single sentences only), as it
best fits the tweets’ inherently short format.

Prior to conducting the experiments, we needed to further preprocess the
SciTweets dataset in order to ensure a correct mapping between its labels and
the cite-worthiness labels from CiteWorth. While CiteWorth contains sentence
texts and labels pointing to whether the text is cite-worthy or not, SciTweets’
texts are multi-labeled. The first step was to select a label from SciTweets which
can be qualified as equivalent to the cite-worthiness label from CiteWorth. The
structure of the SciTweets multi-labeled dataset is as follows: a tweet is either
science-related or not, if it is science-related, then the tweet is further categorized
as belonging to one or more of the following subcategories: “cat. 1: containing
a scientific claim”, “cat. 2: containing a reference to scientific knowledge”, or
“cat. 3: related to scientific research in general” [3]. The first two categories are
good candidates, as they can both contain cite-worthy text. However category
2 is the most suited since it references an external source of scientific nature,
much like how authors constructed the CiteWorth dataset, where they focused
on sentences that have an indication of a citation which is in essence an exter-
nal scientific reference. Furthermore, we selected the remaining science-related
tweets (categories 1 and 3) as our negative class. By doing so, we ensure that
both our positive and negative classes contain science-related text, and that the
classes only differ in cite-worthiness, thus matching the CiteWorth setup. The
implications of this choice will be discussed further in Sect. 5.

Moreover, we also preprocessed the tweets to match the CiteWorth setup,
where we removed user-handles and URLs from cite-worthy tweets. We also
removed “citation markers” at the end of sentences, as defined by authors of
CiteWorth, where a citation marker is “any text that trivially indicates a citation,
such as the phrase “is shown in””. Authors argue that removing such citation
markers prevents models from learning and using these signals for prediction.
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To do so, we removed excess punctuation and hanging words (“by”, “via”). This
step was possible due to how the Category 2 of SciTweets [3] was constructed,
where the URLs direct to actual scientific articles. We call the resulting dataset
SCiteTweets, which contains tweets extracted from SciTweets that were prepro-
cessed and filtered as described above to match the cite-worthiness definition
from [1]. We show statistics of SCiteTweets in Table 2, and examples of cite-
worthy and non cite-worthy sentences from both datasets in Table 3.

Table 2. Data used for the experiments

Labels CiteWorth SCiteTweets

Cite-worthy 375,388 207

Non Cite-worthy 806,405 208

Table 3. Examples of cite-worthy and non cite-worthy sentences from scientific papers
(CiteWorth) and from tweets (SCiteTweets)

Cite-Worthy Non Cite-Worthy

CiteWorth [1] The known forms of
terrestrial life involve
carbon-based chemistry in
liquid water

We compared visual
electrophysiology recording
of patients with the normal
range as defined in our
laboratory

SCiteTweets Hopes raised for cancer
treatment after experiments
halted tumour growth in
mice

proper preparation prevents
poor performance

We run three distinct experiments, (1) training and evaluating on the Cite-
Worth dataset. This experiment is a direct reproduction of results from Cite-
Worth authors [1]; (2) training on CiteWorth and evaluating on SCiteTweets.
This experiment enables us to evaluate whether models trained on a large amount
of cite-worthy sentences extracted from scientific publications translates to a
good performance on cite-worthy sentences from social media; (3) training and
evaluating on SCiteTweets. This experiment enables us to evaluate whether mod-
els trained on a small amount of social media data translates to a good per-
formance on cite-worthy sentences from social media. For each experiment, we
use three distinct base-models (Logistic Regression, SciBERT, and Longformer),
thus amounting to nine experiments in total. We then evaluate using Precision
(P), Recall (R), and F1-score (F1) for each experiment. For all models we repro-
duce the experimental setting of the CiteWorth paper [1], for transformer-based
models we train models on 3 epochs and follow authors’ settings for all hyperpa-
rameter values such as batch size, learning rate and dropout probability. For the
Logistic Regression model we use a C value of 0.11 following authors. Since the
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amount of social media data we have is limited (See Table 2), we run a 10-fold
cross-validation of SCiteTweets data for experiments (2) and (3). For experiment
(2), the training set is the same in all folds (model is trained on CiteWorth) and
only the evaluation set changes in each fold. For experiment (3), both training
and evaluation sets change in each fold. We follow the same train-test split size
as CiteWorth in each fold. The same seed is used for cross-validating experi-
ments (2) and (3), thus ensuring that models are evaluated on the same test sets
between the two experiments.

Table 4. Experimental results. For each model, three experiments were run, corre-
sponding to experiments (1), (2) and (3) as described in Sect. 4.1

Models Experiments Metrics

Trained Evaluated P R F1

Logistic Regression CiteWorth CiteWorth 46.65 64.85 54.26

CiteWorth SCiteTweets 49.38 47.43 48.83

SCiteTweets SCiteTweets 56.11 57.83 56.95

SciBERT CiteWorth CiteWorth 65.60 52.08 58.06

CiteWorth SCiteTweets 53.29 23.90 32.99

SCiteTweets SCiteTweets 76.91 70.24 73.42

Longformer CiteWorth CiteWorth 56.85 68.03 61.94

CiteWorth SCiteTweets 54.34 23.89 33.18

SCiteTweets SCiteTweets 34.26 19.91 25.18

4.2 Results

We show the results of all experiments in Table 4. For experiments (2) and
(3), the presented scores are averages across 10 folds. The results of experiment
(1) (reproducing CiteWorth results) were satisfactory, as they closely mirrored
the findings outlined in the CiteWorth paper [1]. The results of experiment (2)
(training on CiteWorth and evaluating on SCiteTweets) show a consistent decline
in F1-points across all three models (LR, SciBERT, Longformer) compared to
experiment (1). For the baseline LR model, the decrease is of roughly 5 F1 points.
For the SciBERT model, the decrease is more pronounced, with the Recall and
F1 score halving compared to experiment (1), recording a decrease of over 25
F1 points. And for the Longformer model, the decrease is even more noticeable,
where the model loses close to 30 F1 points when evaluated on tweets compared
to its performance on scientific articles.

Finally, the results of experiment (3) (training and evaluating on
SCiteTweets) showed that most models performed best on tweets when trained
on tweets. More specifically, models perform better on tweets when trained even
on a small amount of tweets (experiment (3)), than when trained on a large
amount of scientific papers (experiment (2)). Moreover, Longformer, the best
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performing model from experiment (1), i.e., the best performing model on scien-
tific papers, is the worst performing model on tweets, having even worse scores
than experiment 2. Finally, the SciBert model outperformed both LR and Long-
former on the tweets dataset.

4.3 Discussion

First, we attribute the performance of the Longformer model on experiment (3)
to the small data size of the tweets data. We hypothesize that further exper-
iments on a larger scale social media dataset would result in the Longformer
model performing best on tweets when trained on tweets, as observed for the
SciBERT and LR models (data size limitations are discussed in Sect. 5). Sec-
ondly, the consistent decline in F1-points across all three models (LR, SciB-
ERT, Longformer) when training on CiteWorth and evaluating on SCiteTweets
(compared to training and evaluating on CiteWorth) may be explained by dif-
ferences in the linguistic structure of scientific text on the Web, where science,
as discussed on the Web, differs in language from traditional scientific text from
scientific papers. Existing literature has shown that scientific text on the Web
uses a specialized language [13,14], while communication studies have shown
that scientific knowledge online is often sensationalized, lacks perspective [18],
and has a tendency to favor conflict [19]. To verify this in our data, we show
word clouds of cite-worthy text from both tweets and scientific papers in Fig. 1.
Cite-worthy sentences from scientific papers show a high usage of terms such as
“may”, “however”, which might indicate a more careful contextualized phras-
ing of scientific results and of the scope in which they are valid. In contrast,
cite-worthy sentences from tweets do not show usage of such terms, which might
indicate a more straightforward and possibly decontextualized phrasing of sci-
entific findings on social media. We leave for future research a more thorough
analysis of linguistic differences between scientific papers text and social media
text with regards to cite-worthiness.

The conclusions from the experiments in this preliminary study are that
transformer-based models fine-tuned on sentences from scientific papers do not
perform satisfactory on tweets for the task of cite-worthiness detection, making
it difficult to correctly identify cite-worthy and check-worthy tweets, a step which
has been stated by professional fact-checkers in a survey [20] as one of the main
challenges and the most useful tasks to automate. In future work, we want to
investigate the usefulness of training transformer-based models on larger social
media corpora, with the goal of enhancing citation detection performance on
social media.

5 Limitations

One limitation of our study is the size of our tweets dataset (SCiteTweets,
extracted from SciTweets [3]). While the experimental results do underline a
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Fig. 1. Word clouds for cite-worthy sentences from tweets (left) and from scientific
papers (right)

clear trend (i.e., that models trained on scientific papers underperform on sci-
entific text from X), our results have to be cemented by further experiments on
larger scale datasets. However, to our best knowledge, the SciTweets dataset we
used is the only currently existing dataset whose labels can be mapped to a cite-
worthiness detection task. Another limitation is the mapping from SciTweets
labels to CiteWorth labels, where we used tweets which contain a reference to
scientific knowledge in order to match the cite-worthiness definition from the
CiteWorth authors [1]. With this definition, we hope to flag tweets where users
missed including references but nonetheless used language showing that there
is such a reference, e.g., the following tweet with no actual reference URL: “I
read a recent study which shows that vaccines are not efficient”. This use-case
is already useful and necessary, as recent literature [27] showed that these so-
called informal references are prominent on X and are shared and engaged with
on social media twice as much as the actual research articles they implicitly
refer to. However, ultimately, we also want to be able to flag tweets where the
reference is missing and where users never meant to include it, e.g., the follow-
ing tweet: “Vaccines are not efficient”. We consider the use-case discussed in
this paper as a necessary first step towards flagging missing references on social
media, and we leave the second use-case to future work.

6 Conclusion

This paper addresses the problem of detecting cite-worthiness in text, seen as
the task of flagging a missing reference to a scientific article that should come to
support a claim formulated in the text. While previous work has mainly taken
interest in this problem from a scientific literature perspective, in our study,
we extend this idea to the social media context. The paper lays ground for
a discussion as of how flagging missing scientific references in claims made on
social media can help improve the quality of societal debates and increase trust in
social media platforms. Our preliminary results show that state of the art models
applied on scientific literature corpora perform less well when let to deal with
claims coming from X/Twitter. This observation opens the way for research into
the development of (a) larger annotated datasets for cite-worthiness detection on
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claims from X and (b) the development of language models tailored for scientific
discourse that could be fine-tuned for that specific task.
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Abstract. Tables are one of the prevalent means of organising and rep-
resenting structured data. They contain a wealth of valuable informa-
tion that is challenging to extract automatically, yet can be leveraged
for downstream tasks such as question answering and knowledge base
construction. Table Type Classification (TTC) is one of the tasks which
contributes to better semantic understanding and extraction of knowl-
edge in tabular data. While multiple classification schemas exist, almost
all of them are focused on web tables. Therefore, these classifications
might overlook certain types which are common in other areas such as
scientific research. This paper addresses this gap by introducing ten novel
TTC taxonomies tailored towards tables used in scholarly publications.
We also evaluate the applicability of taxonomies derived from web tables
to scientific tables. Additionally, we propose a new dataset containing
13,000 annotated table images, called TD4CLTabs. Our results indicate
that both existing and newly proposed taxonomies are suitable and effec-
tive for classifying scientific tables.

Keywords: Table type classification · taxonomy construction · table
understanding

1 Introduction

Tables are used to summarise and present information in a structured manner
across various areas such as business, finance, science, education, and healthcare
[40]. With a growing interest in the field of Table Understanding (TU), several
studies have focused on the automatic extraction of knowledge from tables [3,16,
36,45] and applying it to various tasks, e. g., question answering [5,7,9,20,22,29,
33,43,48,50], knowledge base construction [25,27], table-to-text generation [28],
tabular data augmentation [12,44,45], content extension and completion [21,27],
fact-checking [1,6], and natural language inference [17].

Table Type Classification (TTC) is the TU sub-task aimed to categorise
tables according to a predefined schema based on their layout structure, content
or purpose of use [45]. Classifying tables into specific types helps to uncover
c© The Author(s) 2024
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the semantics of the data they contain, facilitating tasks such as detecting and
filtering layout tables (which do not contain any meaningful data), recognising
table structures, and information extraction [14,15,23,25]. Even though various
TTC schemas exist [4,8,11,25–27,41], most were designed focusing on tabular
structures that exist in web pages, commonly referred to as web tables [26]. As a
consequence, these classifications might overlook certain table features and types,
especially domain specific ones. In particular, they might not be fully applicable
to tables found in scholarly papers. We refer to such tables as scientific tables,
defining them as tabular structures found in (digital) scholarly publications and
labelled as a table by the authors. To the best of our knowledge, there is only
one study by Kruit et al. [25] that proposed a table type taxonomy derived
from scientific tables. No taxonomies based on structural or layout features exist
for the field of scientific publications. The present paper addresses this gap by
developing ten novel taxonomies based on scientific tables. To this end, we collect
a corpus of tables extracted from Computational Linguistics (CL) articles. We
develop various taxonomies based on two well-established classification schemas
and by considering table features identified in previous studies and our own
corpus analysis. We train and evaluate classifiers on the dataset of scientific
tables that we annotated according to the two pre-existing schemas and our
newly proposed taxonomies.

Our contributions can be summarised as follows:

– We construct and release the TD4CLTabs dataset with 13,000 annotated
images of scientific tables extracted from CL articles.

– We propose and evaluate ten novel TTC taxonomies defined based on scien-
tific tables.

– We assess the applicability of taxonomies derived from web tables to scientific
tables.

– We offer a list of table features which are potentially important for TTC.
The list includes attributes considered by previous taxonomies, alongside
those overlooked by these schemas but identified in the literature and in our
TD4CLTabs dataset.

This article is structured as follows: Sect. 2 discusses related work. Section 3
describes our approach to the dataset and taxonomies construction. Sections 4
and 5 present the evaluation results and main findings, respectively. Section 6
outlines limitations. Concluding remarks are provided in Sect. 7.

2 Related Work

Tables are ubiquitous data structures, often stored in relational databases (e. g.,
MySQL, PostgreSQL), spreadsheets (e. g., Microsoft Excel, Google Sheets), web
pages (e. g., Wikipedia), and scientific articles. Tables vary greatly in terms of
their layout structures and content, posing challenges for automatic TU [2,46].
In order to effectively process and extract knowledge from tables, several TTC
schemas have been proposed.
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The existing schemas vary in their complexity, ranging from simple binary
classifications to multi-layer taxonomies. Additionally, most TTC schemas have
been designed based on tables found in web pages. For instance, in the pioneer-
ing work by Wang and Hu [42], web tables were classified into two categories:
genuine, i. e., leaf tables (not containing other tables, lists, images, etc.) and
non-genuine. Later Cafarella et al. [4] distinguished between extremely small
tables, HTML forms, calendars, non-relational (contain low-quality data), and
relational (contain high-quality data) tables. Subsequent studies proposed more
fine-grained classifications by organising table types into hierarchical taxonomies.
Crestan et al. [11] introduced the categories of relational knowledge tables, which
contain relational data, and layout tables, which do not contain any meaningful
data at all. The former class included sub-types defined based on the positioning
of table headers: vertical listing, horizontal listing, matrix, attribute/value, enu-
meration, and calendar. The layout category contained formatting and naviga-
tional tables. Lautert et al. [26] refined this taxonomy by revisiting the relational
knowledge tables class and incorporating types derived from cell features. On the
first layer, relational knowledge tables were categorised as horizontal, vertical,
and matrix. These were subsequently divided into concise (contain merged cells),
nested (contain a table in a cell), splitted (contain repeated labels in headers),
simple and composed multivalued (contain multiple values in a single cell) cate-
gories. Chen and Cafarella [8] devised an alternative TTC taxonomy focusing on
the use-case of web spreadsheets. In contrast to previous studies, this taxonomy
incorporates major classes such as data frame spreadsheets and non-data frame
(flat) spreadsheets, along with their respective sub-categories. More recent stud-
ies have shifted back to single-level classification schemas. Eberius et al. [14]
distinguished between three main table types, namely matrix, horizontal listing,
and vertical listing (see Fig. 6 in Appendix A). Similarly, Lehmberg et al. [27]
also classified tables into three major categories: relational, entity, and matrix.

In contrast to web tables, there is currently only one TTC taxonomy defined
based on scientific tables extracted from Computer Science papers. It was pro-
posed by Kruit et al. [25] for the development of Tab2Know, i.e., a novel end-
to-end system for building a knowledge base from scientific tables. This taxon-
omy consists of four root classes (observation, example, input, other) with their
respective sub-classes and primarily focuses on the narrative role tables play in
scholarly articles rather than their structural characteristics.

As emphasised by Zhang and Balog [45], the established approaches to TTC
were designed for different use-cases. Therefore, it is not surprising that existing
schemas might overlook certain table features. For instance, Shigarov et al. [38,
39] highlighted that current classifications fail to address header and cell-related
characteristics such as header hierarchies, the presence of non-textual content
and diagonally split cells. Additionally, the schemas do not consider the concepts
of complicated tables (i. e., containing spanning cells) and void cells introduced
by Chi et al. [10] and Rolan et al. [35], respectively (see Fig. 7 in Appendix B).

In earlier studies, TTC relied on traditional machine learning algorithms
such as decision trees, support vector machines, and logistic regression [4,11,
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14,25,26,42]. Recent research has shifted towards the adoption of deep learn-
ing techniques such as convolutional neural networks (CNNs), recurrent neu-
ral networks (RNNs), and attention mechanisms for automatic feature extrac-
tion from tables [18,31]. Previous approaches primarily utilised plain-text and
HTML representations of tables. However, not all tables are readily accessi-
ble in a machine-readable format. For instance, scientific tables are commonly
embedded in unstructured PDF documents. Such tables have to be extracted
and transformed into a format suitable for training and testing models. One of
the widely used approaches involves obtaining the image-like representations of
tables from a PDF file [24,25,49] which can either be directly used as model
input or first converted into structured formats like CSV or JSON.

3 Methodology

3.1 Data

To assess the applicability of web tables-based taxonomies to the area of sci-
ence and to construct novel TTC taxonomies, we created a corpus of table
images from scholarly articles in the ACL Anthology.1 We fetched a total of
3,219 papers from the year 2022, chosen as the latest collection of publications
in the readily available ACL Anthology corpus.2 As ACL papers are available
only in PDF, Tab2Know was used to obtain table images. Out of the 3,219 PDF
files, Tab2Know successfully processed 2,687, resulting in a total of 15,292 table
images. Since Tab2Know is designed to locate and extract tables without their
respective captions and titles, these are not present in our corpus.

3.2 Taxonomies Construction

We applied two established schemas based on web tables to the corpus of scien-
tific tables, i. e., the classifications proposed by Eberius et al. [14] and Crestan et
al. [11]. We picked these two taxonomies based on their usage in recent applica-
tions and tasks. We did not consider the taxonomy proposed by Kruit et al. [25]
since it classifies tables based on their narrative role in scientific articles rather
than their layout structure.

In order to determine whether any adjustments are needed in the two tax-
onomies, such as excluding under-represented classes, we examined their presence
and distribution in a sample of 1200 table images from our corpus. The results
are presented in Fig. 1. Eberius et al.’s schema, featuring the classes listing and
matrix, was directly adopted to the TTC task due to their high frequency in
the corpus. The taxonomy by Crestan et al. was adjusted by keeping horizontal
listing, vertical listing, matrix, and enumeration, while disregarding other classes
(e. g., calendar, form, layout tables, etc.) since these could not be observed in

1 https://aclanthology.org.
2 https://github.com/shauryr/ACL-anthology-corpus.

https://aclanthology.org
https://github.com/shauryr/ACL-anthology-corpus
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the sample data. Additionally, all tables of the attribute/value class were clas-
sified as either vertical listing or horizontal listing since they represent specific
instances of these classes [11]. Together with the class other tables, which was
introduced for tables that do not fit any of the pre-defined classes, we refer to the
final two taxonomies as Baseline_I and Baseline_II, respectively. The graphical
illustration of the baseline taxonomies is provided in Fig. 2(a).

Fig. 1. The distribution of table types defined by Crestan et al. [11] and Eberius et
al. [14] in a sample of 1200 table images extracted from the ACL Anthology Corpus.

In addition, ten novel taxonomies were defined by incorporating the table
types from the baseline taxonomies as well as header and cell features. As a
fist step, we determined which classes should be preserved from Baseline_I and
Baseline_II by analysing the results of their preliminary frequency of occurrence
(Fig. 1). Hence, only the matrix and horizontal listing classes were considered
while designing the taxonomies. Vertical listing and enumeration were disre-
garded due to their low frequencies in the dataset. Then, we compiled a list of
table layout features which are neglected by the existing taxonomies but dis-
tinguished by previous studies (see Sect. 2). We further extended the list with
additional features observed during the examination of the 1200 sample tables.
The collected features fall into header and other table attributes and are outlined
in Table 1.

Initially, we constructed the TTC taxonomies by combining the selected table
types and additional header features. We refer to these as Header-Feature Table
Taxonomies (HFTTs) and present them in Figs. 2 (b) and (c). Thus, taking
into account the absence or presence of a header hierarchy, we extended Base-
line_I with the classes flat listing, flat matrix, hierarchical listing, and hierar-
chical matrix classes, and called it HFTT_Novel_I. Then, we incorporated the
positioning of hierarchical headers (HHs) within the classes matrix and horizon-
tal listing into HFTT_Novel_I. For the former, HH might exclusively appear
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Table 1. Header and other features potentially significant for Table Type Classifica-
tion. Attributes identified based on a sample of 1200 tables extracted from ACL papers
are highlighted in italics.

Header Features

– Positioning of headers [11,26]
– Hierarchy of headers [39]
– Varied positioning of hierarchical headers in Matrix
– Presence of diagonally split cells in Matrix [38]
Other Features

– Presence of missing and void cells [35]
– Presence of non-textual content [38]
– Presence of hierarchical rows
– Presence of spanning cells [10,26]
– Presence of other complex cells
– Table splitting [26]

in a column header (CH), row header (RH), or in both. We refer to these three
additional classes as type-1, type-2, type-3 hierarchical matrix. In the case of
horizontal listing, HH may be positioned on the left, right or middle of a table,
potentially with repetitions. We name the resulting taxonomy HFTT_Novel_II.
As can be seen from Fig. 2(b), for HFTT_Novel_III, we further distinguished
between matrix with diagonally split cells at the top-left cell (pseudo matrix )
and without those (regular matrix ). Note that pseudo matrices often bear a
resemblance to listing. For the final HFTT_Novel_IV, we excluded HH and
the three respective HH positioning types related to matrix and pseudo matrix.
Eventually, the ten different taxonomies developed vary in terms of their num-
ber of classes, from 3 to 17. Baseline_I contains the fewest number of categories,
while FFTT_Novel_V includes the highest number.

As outlined in Table 1, HFTT can be extended with other table features
related to cell types and table splitting. Thus, each feature introduces a new
category within each table type across HFTTs. When focusing solely on header
features, the resulting table types are mutually exclusive. For instance, if a table
is categorized as matrix, it cannot simultaneously belong to the listing class.
Similarly, once it falls into the type-1 hierarchical matrix, it cannot be classified
as type-2, type-3 or pseudo matrix. However, when considering both header and
other table features, the resulting table types become inclusive. Thus, matrix
can exhibit features such as spanning cells and being split at the same time,
leading to a new category called split complex matrix. We refer to the refined
HFTTs, containing header features, cell-related attributes, and table splitting,
as Full-Feature Table Taxonomies (FFTTs). Figure 3 shows two examples.
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Fig. 2. The table type taxonomies proposed in this study: Figure (a) depicts two
baseline taxonomies, while (b) and (c) illustrate four newly defined taxonomies. The
colours highlight each taxonomy and its respective classes.

Fig. 3. Examples of scientific tables belonging to the Full-Feature Table Taxonomies.
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3.3 Annotation

To label the corpus of 15,292 table images according to the defined taxonomies,
we run an annotation project. LabelStudio3 was used as the annotation tool and
since there was only one annotator involved, a Master student of Data Science,
no inter-annotator agreement (IAA) score was calculated. To ensure that the
final corpus contains well-structured images, displaying only the complete and
clear layout of tables, we filtered out inappropriate samples while annotating. To
this end, we introduced the class non-table and used the following rules during
the annotation:

– If a table is partially extracted, as if incorrectly cropped, it is not considered
to be a complete table and should be annotated as non-table.

– If a table is fully extracted but labelled as Figure in a paper, it should be
annotated as non-table.

– If a table is fully extracted but there is other information in the image, such
as segments of text, it should be annotated as non-table.

– If a table is fully extracted but an image contains multiple scattered tables,
it is considered as incorrect input and should be annotated as non-table.

As a result, 280 table images belong to the non-table category and were
excluded from the corpus. We also checked the labelled data with respect to
annotation errors. Consequently, 54 images were removed from the corpus.

The final dataset comprises 13,301 annotated scientific table images along
with their respective metadata (image name, image label, image path, and
dataset split). We refer to the final corpus as TD4CLTabs (Type Detection
for Computational Linguistics Tables) dataset.4 As a post-processing step, we
encoded the categorical features with numerical values. Then we divided the
dataset into a training set containing 10,347 table images and a test set com-
prising 2,954 samples.

3.4 Models

Considering recent advances of deep learning in computer vision (CV), alongside
the proven successful application of table images for TU tasks such as table
detection and table structure recognition [30,32,34,37,49], we approach TTC as
an image classification task. In particular, TTC based on HFTTs was tackeled
as a multi-class problem, while classification based on FFTTs was addressed as
a multi-label task.

Two models, ResNet50 [19] and Vision Transformer (Vit) [13], were trained. 5

ResNet50 is a deep CNN model widely utilised in CV tasks, exhibiting efficient
3 https://labelstud.io.
4 https://zenodo.org/records/10972922.
5 The code is available on Software Heritage: https://archive.softwareheritage.org/browse/

directory/1f492fb7db23db3a57484edd196af4fdf7139061/?origin_url=https://github.
com/JilinHe/TD4CLTabs&revision=b549ac21bb59386734457eb6a36b8d358b0a68ee&
snapshot=6b93b959741a8fbfff4f5ebeaf71e8177b81ff6f.

https://labelstud.io
https://zenodo.org/records/10972922
https://archive.softwareheritage.org/browse/directory/1f492fb7db23db3a57484edd196af4fdf7139061/?origin_url=https://github.com/JilinHe/TD4CLTabs&revision=b549ac21bb59386734457eb6a36b8d358b0a68ee&snapshot=6b93b959741a8fbfff4f5ebeaf71e8177b81ff6f
https://archive.softwareheritage.org/browse/directory/1f492fb7db23db3a57484edd196af4fdf7139061/?origin_url=https://github.com/JilinHe/TD4CLTabs&revision=b549ac21bb59386734457eb6a36b8d358b0a68ee&snapshot=6b93b959741a8fbfff4f5ebeaf71e8177b81ff6f
https://archive.softwareheritage.org/browse/directory/1f492fb7db23db3a57484edd196af4fdf7139061/?origin_url=https://github.com/JilinHe/TD4CLTabs&revision=b549ac21bb59386734457eb6a36b8d358b0a68ee&snapshot=6b93b959741a8fbfff4f5ebeaf71e8177b81ff6f
https://archive.softwareheritage.org/browse/directory/1f492fb7db23db3a57484edd196af4fdf7139061/?origin_url=https://github.com/JilinHe/TD4CLTabs&revision=b549ac21bb59386734457eb6a36b8d358b0a68ee&snapshot=6b93b959741a8fbfff4f5ebeaf71e8177b81ff6f
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performance in image classification problems. ViT presents a newer approach
to CV, utilising the Transformer architecture’s unique ability to capture global
image information, outperforming traditional CNN models. We combined pre-
encoded labels from all hierarchy levels into one flat list and fed them as input
into the models along with table images.

ResNet50 was implemented using the Fastai framework.6 For the Vit model,
we utilised the Hugging Face implementation.7 To enhance the robustness and
reliability of the image classification models, cross-validation was applied with
k set to 4. For both models, the batch size was set to 16. The resize dimensions
of (500, 900) and (224, 224) were chosen for ResNet50 and Vit, respectively.
FocalLoss was employed as the loss function for ResNet50, while the default
CrossEntropy was used for Vit. The training process for ResNet50 extended to 30
epochs with early stopping enabled and a patience of 5 epochs. Vit was trained
for 15 epochs with the option to save the best model. Both models utilised
pretrained weights, with ResNet50 set to True and Vit using the ‘google/vit-
base-patch16-224-in21k’ pretrained configuration.

3.5 Evaluation Metrics

To evaluate the performance of the two models on the multi-class classification
task, error rate, precision (weighted), recall (weighted), and F1 score (weighted)
were used. In the case of multi-label classification, hamming loss, macro and
micro F1 scores were utilised.

4 Results

4.1 Dataset Analysis

The table images in our dataset have a wide range of resolutions, spanning from
a minimum of 100×100 pixels to a maximum of either 1200×200 or 1000×1400
pixels. In terms of dimensions, tables average 7.60 rows and 6.68 columns.

The distribution of tables per class within each HFTT is presented in Fig. 4.
As can be seen, with the increase in the number of classes, the degree of data
imbalance also rises. The analysis shows that matrix tables are approximately
15% more common than listings in the dataset. Interestingly, other tables com-
prise less than 5%. Among the matrix tables, those with HHs constitute approx-
imately half of all (49%). Furthermore, the majority of such tables (about 64%)
fall under type-1 hierarchical matrix, i.e., have HHs located in a CH. Matrix
tables with diagonally split cells are quite frequent (about 71%). The least com-
mon across the matrix sub-categories are type-2 hierarchical and type-3 hierar-
chical. In terms of the listing class, horizontal tables are more frequent (about
84% of the total) than vertical and enumeration types. In contrast to hierarchical
matrix tables, the number of hierarchical listings in the dataset is considerably
lower (approx. 8% of all listings).
6 https://www.fast.ai.
7 https://huggingface.co.

https://www.fast.ai
https://huggingface.co
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Fig. 4. The distribution of table types in the baseline and Header-Feature Table Tax-
onomies within the TD4CLTabs dataset. Note that only proportions exceeding 5% are
explicitly labelled with numerical values.

Figure 5 illustrates the distribution of table splitting and cell-related features
incorporated into FFTTs within the TD4CLTabs dataset. The results indicate
the infrequent occurrence of those across the given corpus of scientific tables. The
highest value of about 13% was achieved for the missing and void cells type,
followed by the presence of hierarchical rows (approximately 10%). A limited
number of tables contain cells with non-textual content (about 3%) and other
complex cells (about 2%).

Fig. 5. The distribution of cell types and table splitting across the TD4CLTabs dataset
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4.2 Table Type Classification

Table 2 presents the TTC results across HFTTs. The Vit model outperforms
ResNet50 in all but one case, namely HFTT_Novel_II. We can also see a general
trend of decreasing performance among the models as the number of classes in
the taxonomy increases. The class imbalance indicated in Sect. 4.1 might have
also influenced the predictions. The best F1 value (0.82) was obtained for Vit
based on Baseline_I. This is not surprising since it is a 1-level schema with
the least number of classes and the most balanced data. The second highest
F1 scores (0.78) were achieved by Baseline_II and HFTT_Novel_IV, both of
which contain two additional categories when compared to Baseline_I. Even
though HFTT_Novel_III contains four more categories than HFTT_Novel_II,
the models based on these taxonomies result in very similar results (approx. 1%
difference). The study also shows that HFTT_Novel_IV achieved the highest
scores among the novel taxonomies.

Table 2. Multi-class classification results based on baseline and Header-Feature Table
Taxonomies

Taxonomy ResNet50 Vit
Error Rate Precision Recall F1 Error Rate Precision Recall F1

Baseline_I 0.22 0.78 0.78 0.77 0.17 0.82 0.83 0.82
Baseline_II 0.23 0.76 0.77 0.76 0.21 0.77 0.79 0.78
HFTT_Novel_I 0.26 0.74 0.74 0.73 0.23 0.74 0.77 0.75
HFTT_Novel_II 0.27 0.73 0.73 0.72 0.26 0.72 0.74 0.71
HFTT_Novel_III 0.28 0.73 0.72 0.71 0.27 0.72 0.73 0.72
HFTT_Novel_IV 0.25 0.76 0.75 0.75 0.21 0.78 0.79 0.78

The results for multi-label classification based on FFTTs are provided in
Table 3. In terms of micro F1, the Vit model demonstrates overall better perfor-
mance compared to ResNet50 across all taxonomies, except FFTT_Novel_IV
and FFTT_Novel_V. However, all models exhibit low macro F1 scores, indi-
cating the dataset imbalance. The hamming loss values are also consistently low
across the models (0.05–0.07), suggesting an overall good performance of the
classifiers. Similar to the classification based on HFTTs, we note a trend where
models tend to perform worse on FFTTs with a larger number of classes. Further-
more, the highest score (0.75) for FFTTs is about 7% and 2% lower compared
to those obtained for the baselines and HFTTs, respectively.

To address the problem of class imbalance, we applied the random oversam-
pling technique [47] on novel HFTTs.8 This involved duplicating instances of
the minority classes to align with the majority classes. As shown in Table 4,
oversampling consistently improved F1 scores by 1–5% across the models. The
Vit model based on HFTT_Novel_IV is the only instance where a slight
8 Note that we have not addressed the data imbalance for FFTTs.
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Table 3. Multi-label classification results based on Full-Feature Table Taxonomies.
The threshold is set to 0.5. If the probability of the prediction is greater than 0.5, it as
a positive prediction. Otherwise, it is a negative prediction.

Taxonomy ResNet50 Vit
F1Micro F1Macro Hamming Loss F1Micro F1Macro Hamming Loss

FFTT_Novel_I 0.73 0.54 0.07 0.75 0.38 0.07

FFTT_Novel_II 0.69 0.49 0.06 0.72 0.32 0.06

FFTT_Novel_III 0.70 0.55 0.07 0.71 0.37 0.07

FFTT_Novel_IV 0.69 0.58 0.06 0.68 0.36 0.06

FFTT_Novel_V 0.66 0.53 0.05 0.61 0.25 0.05

FFTT_Novel_VI 0.70 0.54 0.07 0.72 0.47 0.06

decrease in score (by about 2%) is observed. All other evaluation scores also
increased in the majority of HFTT classifiers. Furthermore, comparable results
to ResNet50 with Baseline_I were achieved on ResNet50 with HFTT_Novel_I
and HFTT_Novel_IV. However, despite the overall improvement in model per-
formance, the prediction accuracy for novel taxonomies still remains lower (by
approximately 5%) than that of Baseline_I based on Vit.

Table 4. Multi-class classification results based Header-Feature Table Taxonomies
after applying oversampling

Taxonomy ResNet50 Vit
Error Rate Precision Recall F1 Error Rate Precision Recall F1

HFTT_Novel_I 0.22 0.78 0.78 0.77 0.24 0.77 0.76 0.76
HFTT_Novel_II 0.25 0.75 0.75 0.74 0.24 0.76 0.76 0.76
HFTT_Novel_III 0.24 0.77 0.76 0.75 0.24 0.77 0.77 0.75
HFTT_Novel_IV 0.22 0.78 0.78 0.77 0.24 0.78 0.76 0.76

5 Discussion

The study indicates that matrix and listing tables are the most commonly used
across CL papers. In particular, matrix with hierarchical headers, frequently
found in CHs, matrix with diagonally split cells, and horizontal listings are
prevalent. Hence, these types are worth considering when classifying scientific
tables. In contrast, the findings suggest that incorporating table splitting and
cell features may not be advantageous, as they seem to be relatively uncommon
in scientific tables.

The study further showcased the applicability of the TTC schema by Eberius
et al. to scientific tables. In this sense, Crestan’s et al. taxonomy also proved to
be adaptable after smaller adjustments. The models based on these baseline
schemas demonstrate greater efficiency on TTC than those trained on the newly
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proposed taxonomies. Hence, although the two established classification schemas
were designed for web tables, they are still suitable for scientific tables.

While the experimental results do not demonstrate a clear advantage of the
novel domain-specific taxonomies, they do show the promising outcomes. Among
the newly developed taxonomies, HFTT_Novel_I and HFTT_Novel_VI have
proven to be the most successful. This could potentially be attributed to the
smaller number of categories within those, indicating a lower level of complexity,
compared to other schemas. These taxonomies also achieved efficiency compa-
rable to the results obtained for ResNet50 with the baseline schemas.

6 Limitations

While this study sheds light on devising TTC taxonomies for scientific tables,
it is not without limitations. First, the annotations may be subjective and con-
tain errors due to the involvement of only one annotator. Having at least one
additional annotator and curator, and subsequently validating the results by cal-
culating the IAA score, would be beneficial. Second, the novel taxonomies were
constructed and tested based on scientific tables from CL papers. Thus, the appli-
cability of those to other domains remains an open research question, which we
leave for future work. Third, the study considered only two existing web table
based taxonomies, limiting the analysis to types within them and potentially
neglecting other categories relevant to scientific tables. Finally, the hierarchy of
the taxonomies’ labels was not taken into account in this study. Additionally, to
tackle class imbalance, we considered only oversampling and applied it only to
taxonomies with header features. Future endeavours could incorporate the label
hierarchy in the model training process and focus on annotating more samples
for the minority classes or on utilising other automatic methods for solving class
imbalance (e. g., resampling).

7 Conclusion

In this paper, we developed and evaluated the effectiveness of ten novel TTC
taxonomies tailored for tables found in scholarly publications. Additionally, we
examined the applicability of well-established schemas designed for and based on
web tables to the use-case of scientific tables. The findings reveal that existing
taxonomies are indeed suitable for classifying scientific tables. However, while
established taxonomies demonstrate their efficiency, comparable performance
can also be achieved with two novel domain-specific taxonomies. Finally, our
study indicates that header features are essential for classifying scientific tables,
whereas cell features and table splitting have not shown to provide significant
advantages. The proposed taxonomies can be beneficial for downstream tasks
such as information retrieval from scholarly papers by helping to reduce the
search space, data integration allowing mapping of scientific tables with similar
structures across different datasets, and scientific table structure recognition.
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A Examples of Matrix, Horizontal Listing, and Vertical
Listing Tables

Fig. 6. Examples of web tables falling under the categories within the table
type classification schema by Eberius et al. [14]. The samples are taken from
WDC Web Table Corpus 2015.

B Illustrations of Table Features

Fig. 7. Illustration of a splitting table with spanning cells, diagonally split cells, void
cells, hierarchical headers, and cells with non-textual content.
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Abstract. Correcting Optical Character Recognition (OCR) errors is a
major challenge in preprocessing datasets consisting of legacy PDF files.
In this study, we develop Large Language Models specially finetuned
to correct OCR errors. We experimented with the mT5 model (both
the mT5-small and mT5-large configurations), a Text-to-Text Transfer
Transformer-based machine translation model, for the post-correction
of texts with OCR errors. We compiled a parallel corpus consisting of
text corrupted with OCR errors as well as corresponding clean data.
Our findings suggest that the mT5 model can be successfully applied to
OCR error correction with improving accuracy. The results affirm the
mT5 model as an effective tool for OCR post-correction, with prospects
for achieving greater efficiency in future research.

Keywords: OCR errors · Large Language Models · mT5 model ·
natural scientific language processing

1 Introduction

This paper reports on a collaborative project between the HUN-REN Hungarian
Research Centre for Linguistics (HUN-REN NYTK) and the Library and Infor-
mation Centre of the Hungarian Academy of Sciences (MTA KIK)designed to
make the content of the REAL Repository more easily accessible to researchers
and more easy to curate and enhance for MTA KIK. Prior to embarking on
the data-mining of the texts in the Repository, the files have to be converted to
machine readable raw text format. The paper will focus on techniques to clean
the texts of OCR errors, which is a major challenge in this preprocessing phase.
Our strategy is to compile parallel corpora consisting of sentences with OCR
errors and their correct counterparts, which are used as training date to fine-
tune a large language model so as to enable it to correct badly OCR’ed texts.
The Structure of the paper is as follows: Sect. 2 describes the context and the
motivation for the work, Sect. 3 reviews related work in OCR cleaning, Sect. 4
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elaborates the various datasets used for the training corpus, Sect. 5 contains a
brief description of the training method, Sect. 6 enumerates and discusses the
results and finally, the paper ends with some Conclusions.

2 Motivation

The Library of the Hungarian Academy of Sciences was established in 1826,
and since then it has been serving the members of the Academy and the whole
Hungarian research community. Besides its main collection, the library has a
special collection of manuscripts and rare books, and an Oriental Collection
as well. The digital collections – in the form of an open access repository –
were created in 2008. This repository – named REAL – has diverse holdings,
mirroring the printed collection of the library. Its content is partly based on
an extensive digitisation project and it contains born-digital materials too (e.g.
modern journals within the scope of our library). The third source of material
is the OA mandate of the Academy – researchers supported by the Academy
are mandated to reposit their output in REAL. The diversity of input channels
results in a mixed document content – scanned and born digital, publishers’
PDFs and accepted manuscripts (with an assortment of handwritten documents
and images to top it up).

The original goal of the repository was to supply digital documents for the
researchers. We store PDF documents (most of which have a text layer) and the
inclusion criterion was that they are suitable for the human user. Each document
is checked by a librarian, so some basic document and metadata quality can
be guaranteed. On the other hand, we are aware of the problems of OCR (or
occasionally, the lack of it), the errors and gaps in the meta-data.

The question of language information for the documents is such a problem.
Human users can obviously perceive whether a document is written in a language
that is accessible for them, but we cannot filter search results for language. The
lack of document language information was an early setback for our project.

The REAL Repository contains more than 250 thousand documents, about
a half of which, amounting to one billion words, is suitable for the project.

The Library’s most fundamental goal with this project is to enhance meta-
data (e.g. provide detailed language information). We would also like to improve
the quality of the text layer, correcting errors in the OCR, and provide clean
text layers for search and text mining.

Furthermore, we would like to be able to recognise named entities in the
text. One specific task we would like to accomplish is finding references to other
publications. Similarly, references to grants, large research facilities and software
are also of interest to MTA KIK. (The library operates the national bibliographic
database, a CRIS-like system).

In summary, we would like to improve the data and metadata quality, text-
mine information for scientometric (and other) purposes, and improve the effi-
ciency of search.
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3 Related Work

There is a growing interest in utilizing neural technologies for post-OCR text cor-
rection. One of the few studies specifically addressing the correction of Hungarian
texts using neural technologies is by Laki et al. [3], who explored four distinct
correction experiments: machine translation with the Marian neural machine
translation (NMT) system, fine-tuning a Hungarian BART model for machine
translation, Context-based Character Correction (CCC) combined with machine
translation using the Marian NMT system, and CCC detection with fine-tuning
of Hungarian BART for machine translation.

Another notable work in this area includes research on Sanskrit texts by
Maheshwari et al. [4], who reported a significant improvement in Character
Error Rate (CER) using mT5 (+14.1%) and ByT5 (+23.4%) models. Piotrowski
[5] focused on the application of pre-trained language models for OCR post-
correction, achieving a 4.3% word error rate improvement by fine-tuning mT5
and plT5 models.

Alternative approaches to OCR correction have also been explored. Rigaud et
al. [7] introduced the ICDAR2019 winning OCR correction method CCC, which
combines a convolutional network for detection with a correction mechanism
utilizing a BERT model and a bidirectional LSTM (Long Short Term Memory)
model with an attention mechanism. Schaefer and Neudecker [8] proposed a two-
step approach that includes OCR error detection with a bidirectional LSTM and
subsequent error correction with a sequence-to-sequence translation model. Fur-
thermore, Gupta et al. [2] implemented an unsupervised multi-view post-OCR
error correction technique employing GPT, GPT2, and GPT2XL autoregres-
sive models, benchmarked against a 3-gram model trained on Wikipedia. Lastly,
Amrhein [1] addressed OCR error correction using a character-based NMT app-
roach, showcasing the versatility of neural methods in enhancing OCR accuracy
across various languages and scripts.

4 The Training Data

When creating the training data, we ensured that the model should be able to
identify when to leave the text unchanged by including both error-free and OCR
erroneous sentences, with a distribution of 33.6% error-free to 66.4% erroneous
data. The dataset comprises 1,355,963 sentence pairs, encompassing a total of
51,658,231 words, with an average sentence length of approximately 19 words.
The average Character Error Rate (CER) across the entire training dataset is
12.354%, and the Word Error Rate (WER) is 11.739%, when measured against
the reference data (error-free sentences).

The training data was compiled from several sources, detailed below.

4.1 The “JIM Corpus”

The construction of a parallel training corpus for OCR correction involved
selecting a substantial volume of text available in both electronic (error-free)
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and OCR-processed (erroneous) versions. This selection was manually or semi-
automatically annotated, and then corrected by annotators, leading to the cre-
ation of the “JIM” corpus. The process used the complete works of Jókai and
Mikszáth, two famous Hungarian writers, chosen for their availability in elec-
tronically published formats by the publisher, facilitating a comparison between
non-OCR and OCR-processed texts.

The initial challenge was the consolidation of all works by Jókai and Mikszáth
into individual files, as each author’s works were originally contained in a single
file. By following the order of works listed on the https://szaktars.hu website
and using a script based on the titles, the works were successfully separated
into individual files. This meticulous organization was essential for matching the
texts with their corresponding OCR-processed versions, which included addi-
tional elements like title pages and indexes not present in the digital editions.

Following the separation of works into individual files, the next step was the
construction of a parallel corpus. This involved identifying the OCR-processed
counterparts of each work and mapping them at file level, a task complicated
by the digital edition containing only the text body, whereas the OCR versions
included the complete books. Furthermore, inconsistencies in the availability
and order of texts between the OCR versions and digital editions necessitated
manual file matching. The subsequent segmentation of these works into smaller
units for parallel processing was achieved through sentence-level segmentation
and a novel rolling window segmentation method, addressing various challenges
such as text normalization and word separation issues.

The parallel corpus underwent semi-automatic annotation to identify and
categorize OCR errors, coherence issues, and punctuation differences arising from
variations between editions. This process involved listing and prioritizing differ-
ences between the OCR and silver texts, ensuring that only OCR-related errors
were considered during model evaluation.

Finally, the parallel corpus also underwent further manual correction by four
annotators to address discrepancies caused by different editions, using both the
error-containing OCR output and the error-free digital text for guidance. Correc-
tions were made with reference to the original PDFs to align the digital text with
the version from which the OCR was generated, without strictly adhering to the
PDF layout or typographical errors present in the original. Adjustments included
adding missing sentences from the OCR to the digital text, ignoring word breaks
caused by hyphenation in the OCR that matched the PDF, and not incorpo-
rating hyphenation or page numbers from the PDF into the corrected text. The
principle behind these corrections was to focus on discrepancies between the
OCR text and the corrected version, aiming for textual integrity rather than
slavish adherence to the original PDF formatting, especially regarding spacing
around punctuation and treatment of hyphenation and page numbers.

The final version of the JIM corpus contained 646 478 sentences (OCR-ed
and digital each).

https://szaktars.hu
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4.2 The Datamaker Pipeline

A parallel corpus generated from the REAL repository materials consists of par-
allel sentences extracted using the pdftotext utility (version 0.86.1) from original
texts produced during scanning and OCR-ed texts using Tesseract 5.0. A fully
automatic pipeline processes the texts, arranging the raw texts into a training
data format suitable for T5-based models.

T5 (Text-to-Text Transfer Transformer [6]) is an encoder-decoder model that
converts all NLP problems into a text-to-text format. It is trained using teacher
forcing, which means that for training, we always need an input sequence and
a corresponding target sequence. The input sequence is fed to the model using
input ids. The target sequence is shifted to the right by being prepended with
a start-sequence token and is fed to the decoder using decoder input ids. In
teacher-forcing style, the target sequence is then appended with the EOS (end-
of-sequence) token and corresponds to the labels. However, it’s important to note
that the PAD token is not used as the start-sequence token. Instead, a separate
token (typically designated as a special token like <s> or similar) is used to
signify the start of a sequence. The PAD token is used to fill out sequences for
batching purposes so that all sequences in a batch have the same length.

Phase 1: Rule-Based Preprocessing

– Remove sentence separation using the Hungarian tokenizer Quntoken1.
– Remove newline characters.
– Tokenize sentences using huSpaCy and apply some filtering criteria:

1. Filter sentences based on the number of tokens (8 < token count ≤ 500).
This step is based on the observation that sentences shorten than 8 tokens
usually contain only little information; on the other hand, the maximum
number of tokens is specified as 500 because of the max token value of
the model (512).

2. Filter Languages other than Hungarian (only keep sentences detected as
Hungarian).

3. Exclude sentences containing only digits.
4. Filter sentences with numbers + special character to letter ratio exceeding

0.2.
5. Exclude sentences with words longer than 30 characters.
6. Replace commas within quotes in each sentence – One of the most com-

mon OCR errors in Hungarian is that the quotation mark characters (,,)
are recognised by the OCR software as double commas, so we replace
these by a rule-based approach where necessary.

7. Remove spaces before punctuation.

Phase 2: Sentence Pairing Based on Similarity
We match the original and Tesseract sentences based on similarity calcu-
lated using the NYTK/sentence-transformers-experimental-hubert-hungarian

1 https://github.com/nytud/quntoken).

https://github.com/nytud/quntoken
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Sentence Transformer model, the huSpacy hu core news lg model, and the
Python difflib SequenceMatcher algorithm. Sentences are classified as error-free
if all three similarities equal 1.0. During pairing, only sentences with a specified
threshold similarity value are included in the database, avoiding the inclusion of
sentence pairs with similar meanings but different syntax. This method increased
the database by 451,820 sentence pairs.

4.3 Synthetic Data

In the process of creating the Gold Standard Corpus, Laki et al. [3] conducted a
comprehensive error analysis, identifying 8,593 distinct OCR error types with the
assistance of human annotators. This analysis provided insight into the frequency
of various OCR errors. Using these findings, we developed a tool capable of
generating synthetic corpora of practically unlimited size. This tool simulates
OCR errors by replacing random characters with corresponding OCR erroneous
pairs and by inserting or deleting characters, while throughout keeping to the
observed frequency of OCR errors in the error-free texts of scanned newspapers.
As a result, our training database was augmented with an additional 257,665
lines, significantly improving the diversity and representativeness of our training
data.

Figure 1 shows the proportion of the above data sources in the training
dataset.

Fig. 1. Proportion of the data in the training dataset

4.4 The Gold Standard Corpus

In parallel with the training and testing of the models we also started the devel-
opment of a gold standard corpus, which involved a thorough annotation process
to ensure that the textual data closely mirrored the original PDFs from which it
was derived. This process was rooted in texts extracted from random sections of
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files from the books of two major publishing companies, covering a wide range
of domains. The final corpus contains 100,000 lines, with each line representing
a paragraph from the original text, potentially comprising multiple sentences or
occasionally being an empty line for structural purposes.

In the first phase of annotation, annotators were tasked with comparing the
content of a given PDF to its text (.txt) version created from the PDF, adjusting
the text to match the PDF exactly. This step involved two annotators reviewing
and annotating each file independently to ensure thoroughness. Subsequently,
their outputs were merged to form a single, finalized version of the text. This
rigorous process was guided by key principles designed to retain the original
formatting and errors present in the PDFs, excluding page numbers and ensuring
correct text structuring, such as maintaining paragraph integrity, differentiating
between document sections with double line breaks, and accurately representing
dialogue, content lists, images, tables, and footnotes as per specific guidelines.

The annotation principles emphasized the importance of character-level
fidelity to the PDF content, even preserving typographical errors. Modifications
excluded page numbers and end-of-line hyphenations unless they contributed
to the meaning or structure. Text structuring guidelines were strictly followed,
including spacing around titles and paragraphs, separation of documents within a
volume, and the handling of dialogue units, content lists, images, and tables with
appropriate placeholders. Special characters were replaced with their Unicode
equivalents, and footnotes were tagged accurately, ensuring that they reflected
their placement in the PDF. This detailed approach resulted in a corpus that,
while preserving the essence and layout of the original documents, facilitated
easier handling and processing for research purposes.

5 The Training Method

The training data was randomly partitioned into two sets: 90% for training and
10% for testing. We fine-tuned the google/mt5-large model using the Hug-
gingFace transformers library on a single NVIDIA A100 SXM4 80 GB GPU,
executing the training for a total of 38,137 steps, which corresponds to approx-
imately one epoch. During training, we employed a Linear Warmup strategy
for the learning rate. The model was configured to handle a maximum token
sequence length of 128 for both input and output, with a batch size set to 32.
The fine tuning took 27 h 8 min.

6 Results and Discussion

This section presents the evaluation of our OCR correction model. We assess the
model’s performance using several metrics: Word Error Rate (WER), ROUGE-
L score, and the identification of perfect matches in OCR erroneous sentences.
Additionally, we analyze the model’s capability to differentiate between erro-
neous and non-erroneous sentences. The evaluation was carried out by comparing
the errors identified in the original text with the errors identified by the model
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Fig. 2. Model training performance metrics over iterations. The three plots represent
the changes in evaluation loss, training loss, and learning rate against the number of
steps taken during the training phase of the model.

in relation to the “target” (error-free) sentences. The test database contains a
wide range of texts, from academic works to literature and newspaper articles
(Fig. 2).

6.1 Metric Definitions

Before delving into the results, we define the metrics used for evaluation:

– WER (Word Error Rate): Measures the proportion of incorrect words to the
total words in the reference text, lower values indicate better performance.

– ROUGE-L: Reflects the overlap of n-grams between the system output and
reference texts, with higher scores indicating better quality.

– OCR Erroneous Sentences: Sentences identified by the model as containing
OCR errors.

– Perfect Matches: Instances where the corrected text exactly matches the ref-
erence text.

6.2 The SOTA

Laki et al.’s [3] mT5 scored 0.923515 ROUGE-L on the test set (the same test
set we used for the new model). The overall WER after correction was 0.224.
(from 0.2327 = 0.9% improvement) Out of the 4799 sentences with OCR errors
in the test set, only 198 have a perfect match between the corrected and the
target sentence (4.13%). Their model incorrectly identified 60 out of 1981 non-
erroneous sentences as erroneous, resulting in a false-positive rate of 2.98%.

6.3 Performance Improvement

Our model demonstrates significant improvements in text correction accuracy,
as evidenced by the metrics:

– The overall WER improved from 0.2327 to 0.1814, marking a 5.1% enhance-
ment in the OCR erroneous sentences.

– For the entire test data, the improvement in WER is 0.148, amounting to a
6.5% improvement.
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– The mean ROUGE-L score increased from 0.90 to 0.94 for OCR erroneous
sentences, relative to the reference sentences.

– Out of 4799 OCR erroneous sentence pairs, 1095 were perfect matches after
correction, achieving a 22.82% success rate.

– The model incorrectly identified 59 out of 1981 non-erroneous sentences as
erroneous, resulting in a false-positive rate of 2.97%.

The observed improvements in WER and ROUGE-L scores highlight the
effectiveness of our model in correcting OCR-generated text errors. The signif-
icant percentage of perfect matches further demonstrates the model’s accuracy
in identifying and correcting errors. However, the false-positive rate indicates
a need for refinement in distinguishing between erroneous and non-erroneous
sentences, suggesting an area for future work.

7 Conclusion

In our research aimed at correcting OCR errors, we efficiently employed the mT5
model, leveraging its Text2Text machine translation capabilities. We explored
both mT5-small and mT5-large variants during the model’s fine-tuning process.
The outcomes suggest that the mT5 model is notably efficient in rectifying texts
with OCR errors. We anticipate that improvement in the training dataset and
the use of larger model variants could further improve correction accuracy. Addi-
tionally, we generated synthetic data to emulate OCR errors, thereby enriching
our training dataset. The experimental results affirm the mT5 model’s effective-
ness in OCR error correction, highlighting the potential for achieving superior
performance with ongoing advancements. Our review of relevant literature and
international studies suggests that integrating character-based and sequence-
to-sequence correction techniques could yield higher accuracy and reduce the
likelihood of erroneous corrections. Moreover, the strategic application of Large
Language Models (LLMs) in the detection, correction, and verification phases
presents a promising direction for future research. The insertion of our recently
developed gold standard corpus into the training data could also improve our
results.
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Abstract. In the rapidly evolving domain of Large Language Models
(LLMs), integrating tool usage remains a formidable challenge, particu-
larly when it comes to the dynamic selection and sequencing of tools in
response to complex queries. Addressing this, we introduce Reimagining
Tooling as Coding (RTaC), a groundbreaking framework that transforms
tool usage into a coding paradigm. Inspired by recent advancements [18],
RTaC conceptualizes tools as Python functions within a dual-agent sys-
tem [2], significantly enhancing LLMs’ tool usage efficiency. Our compre-
hensive experiments reveal that RTaC enables coding-based LLMs, such
as DeepSeek and CodeLlama, to achieve and surpass GPT-4 benchmarks
in cost-effectiveness and latency without compromising on handling intri-
cate tool sequencing with conditional and iterative logic. This research
not only sets a new benchmark for tooling efficiency in LLMs but also
opens new avenues for the application of LLMs in complex problem-
solving scenarios, heralding a significant leap forward in the functionality
and versatility of LLMs across diverse domains.

Keywords: Large Language Models (LLMs) · Dual Agent System ·
Python Functions for Tool Integration · Automated Tool Sequencing ·
Advanced LLM Applications · RTaC Framework

1 Introduction

In the evolving landscape of LLMs, their use as reasoning and tooling agents has
garnered substantial attention. LLMs demonstrate the capacity to interpret and
respond to queries by calling tools [11,12], a testament to their advanced lan-
guage comprehension. This capability to integrate tool usage represents a sig-
nificant stride in enhancing the scope and accuracy of LLMs in various applica-
tions. Current state-of-the-art approaches to the tool-usage problem, which uti-
lize GPT-4 (OpenAI) and Claude-2 (Anthropic), demonstrate impressive results
but are closed-source and computationally expensive. Researchers have attempted
to solve this problem by fine-tuning smaller language models [11,12,15]. How-
ever, these models are ineffective at generalizing to new tools when provided in a
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zero-shot manner, referred to as ’dynamic tooling’ from here onwards. The dis-
crepancy between the generalized tool-use capabilities of large models and the
more restricted capabilities of compact models presents the motivation behind our
work - Can we exploit the nature of this task to train small open-source LLMs to
generalize their tool-use abilities while keeping the latency minimal? (Fig. 1).

Fig. 1. Overview of “Reimagining Tooling as Coding” (RTaC)

Addressing these challenges, we propose Reimagining Tooling as Coding
(RTaC), which reconceptualizes tooling as a code-generation task to exploit
the powerful code-comprehension capabilities of LLMs. RTaC provides tools to
be used, in docstring format, to instruct fine-tuned coding-base LLMs. It then
extracts the output in Python-inspired code format and deterministically converts
it to JSON. RTaC promotes docstring reading capability in the LLMs, supporting
tool modification, addition, and deletion. We use RTaC to achieve GPT-4 bench-
mark performance while employing smaller models, such as DeepSeek 1.3B and
CodeLlama 7B LLMs, despite a drastic (300x) reduction in parameter count, as
shown in Sect. 5. We simultaneously achieve significant (5x) cost reduction per
query while matching GPT-4’s latency. Moreover, RTaC supports processing com-
plex conditional and iterative logic, surpassing GPT-4’s capabilities.

2 Related Works

2.1 Dataset and Tooling Benchmarks

Various domain-specific tooling datasets have been proposed like API-Bank
[7], ToolEyes [20], RoT-Bench [21], EasyTool [22] and MetaTool [5]. These are
domain-specific and assess LLMs’ tool usage and tool-identifying abilities.

– API-Bank: Developed from interviews with over 500 users, this benchmark
includes a training set created through a multi-agent approach and a diverse



RTaC: A Generalized Framework for Tooling 63

set of manually annotated dialogues to assess LLMs’ API usage across various
domains and complexities.

– ToolEyes: Features a comprehensive evaluation system with 600+ tools
across 7 scenarios, assessing LLMs on five critical dimensions to expose capa-
bility gaps and generate research insights.

– RoT-Bench: Evaluates LLMs’ ability to accurately select tools, identify
parameters, and fill content in environments ranging from noise-free to highly
variable real-world conditions.

– EasyTool: Addresses issues from inconsistent documentation by creating
standardized tool instructions to improve LLMs’ tool usage proficiency.

– MetaTool: Assesses LLMs’ tool selection awareness and suitability across
various tasks and scenarios, highlighting biases and current limitations.

These benchmarks are domain-specific and unrelated to tool usage as a
function-calling approach. We thereby went on to build our dataset for the task
using a dual agent system and test our approach on it.

2.2 Tooling LLMs

The application of LLMs for tooling is a profound task, and various research,
as mentioned in TALM [10], which uses tools in context to solve different tasks;
LATM [2] showed that LLMs can be used to create and reuse different tools
created by them in order to act as intelligent Agents. Various tooling LLMs
like Tool LLaMA, ToolAlpaca [15], and Gorilla [11] are available and suitable
for use as domain-specific agents. However, they are captivated by the out-of-
domain tool usage capabilities, identifying the correct set of tools and assigning
appropriate arguments to them. Tool Llama is a fine-tuned version of Llama-70B
on the ToolBench Dataset, as mentioned in the paper [12]. The model works well
on general domain tools but fails in context-dependent scenarios that use tools.
ToolAlpaca is a generalized tool LLM that adapts off-domain tools for usage. It
is still hard for the LLM to reason on complex tool ordering scenarios.

Recent approaches have aimed to augment LLMs with the ability to utilize
tools and resources. TALM [10] introduces a framework for integrating tools
with LLMs like T5 via a text-to-text API, enabling generalization to out-of-
distribution inputs solvable with access to tools. It employs a policy-gradient
reinforcement learning algorithm to fine-tune the LLM for tool usage. The
Hugging-GPT system [14] leverages the Hugging Face API to solve AI tasks
using LLMs. Toolformer [13] is an LLM pre-trained on an annotated dataset,
exhibiting prowess in solving complex problems by leveraging external APIs.
However, it is constrained by a fixed set of available tools and the inability to
chain tool usage. Toolformer also implements novel self-supervised augmentation
during training. These approaches demonstrate the potential of enhancing LLMs
with tool utilization capabilities while highlighting challenges such as general-
ization, tool chaining, and scalability to new tools.

Gorilla [11] stands out as a pivotal work that uses the LLAMA-7B model
to accurately extract APIs from repositories like TensorHub, HuggingFace, and
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TorchHub. It significantly outperforms GPT-4 in API functionality accuracy
and reduces hallucination errors, emphasizing enhancing LLMs’ practical utility
over conversational skills. Evaluated on an extensive dataset of 11,000 API pairs,
Gorilla demonstrates commendable retrieval capabilities. However, Its reliance
on machine learning datasets and the necessity for fine-tuning raise questions
about generalizability and adaptability to custom APIs. Complementing Gorilla,
ToolBench [12] is a large-scale benchmark containing over 16,000 high-quality
APIs across 3,451 tools, facilitating robust evaluation of LLMs’ API usage skills.
It employs a 3-stage-construction process, comprehensive API metadata, and
diverse instruction generation. GPT-3.5 searches for valid action sequences using
accurate API responses through multi-round conversations, leveraging a Depth-
First Search Decision Tree (DFSDT) to expand the search space. With its scale,
diversity, realism, and expanded search methodology, ToolBench enables a thor-
ough assessment of LLMs’ capabilities in utilizing APIs to accomplish tasks.

Ultimately, we look at Tool Alpaca, a framework to improve compact lan-
guage models’ generalized tool usage skills. It first constructs a diverse corpus
spanning 50 categories and 426 tools with 3938 usage instances generated via
multi-agent simulation. This corpus is then used to fine-tune compact Vicuna
models, creating ToolAlpaca-7B and 13B. Experiments on unseen simulated and
real-world tools demonstrate that ToolAlpaca models achieve strong general-
ization comparable to large models like GPT-3.5. Tool diversity is shown to
be critical, with performance improving as the variety of tools in the corpus
increases. Overall, ToolAlpaca provides an automated approach using simula-
tion and diversity to instill generalized tool usage abilities in compact models,
enabling them to adapt to new tools.

All these approaches work well, but they depend on the core tools on which
they are trained and fine-tuned. Out-of-domain tool usage is a difficult task for
all of these models.

2.3 Prompting Methods

Prompting is also a significant method to improve the LLM context adherence
capability and can also be used in the region of agentic LLMs. Various prompt-
ing methods, such as Chain-of-Thought [17], Tree-of-Thoughts [19], Graph-of-
Thought [1], Skeleton-of-Thought [9], and Knowledge Graph [3] addition, can
increase a LLM’s overall context understanding capability. One more technique
to look at is multi-tool COT Prompting,

Recent research has proposed several innovative frameworks to improve the
multi-step reasoning capabilities of LLMs by combining chain-of-thought (CoT)
prompting techniques with external tool integration. The “Tree of Thoughts”
(ToT) [19] approach frames problem-solving as a search through a tree struc-
ture, where each node represents a coherent “thought” or intermediate reason-
ing step. ToT allows LLMs to explore multiple reasoning paths, generate and
evaluate candidate thoughts, and direct the exploration using classical search
algorithms like breadth-first and depth-first search. The “Graph of Thoughts”
(GoT) [1] framework represents information as an interconnected graph, with
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vertices denoting individual pieces of information and connections signifying
dependencies between them. This flexible structure enables GoT to integrate
outputs from various reasoning paths, analyze complex thought networks, and
incorporate feedback loops for iterative improvement of LLM outputs.

Furthermore, the MultiTool-CoT [6] framework facilitates LLMs like GPT-
3.5 to leverage multiple tools, such as calculators and knowledge retrievers, by
inserting triggers for tool invocation at appropriate steps within the CoT rea-
soning process. Experiments on numerical and knowledge reasoning datasets
demonstrate that MultiTool-CoT significantly outperforms baselines, achieving
state-of-the-art accuracy by addressing different error types with different tools,
with gains from combining tools exceeding individual tool gains.

These approaches have significantly improved over standard prompting tech-
niques across various tasks, including mathematical reasoning, creative writing,
and knowledge-based problems. However, challenges persist, such as token lim-
itations for CoT prompting and potential errors in LLM-generated reasoning
processes, highlighting the need for further research in this area to unlock the
potential of LLMs in complex problem-solving scenarios fully.

3 Method

3.1 RTaC (Reimagining Tooling as Coding)

RTaC is a novel framework that proposes the conversion of tools into Python
functions with proper arguments and tool descriptions in the form of a Pythonic
tool docstring, which can be appended to the context of the prompt in order
to select and sequence the correct tools, with proper arguments. The paper [18]
inspires the technique, which discusses how we can empower the capabilities of
an LLM using code. The framework involves the creation of the dataset using a
dual agent system that generates query output pairs. These pairs are used for
instruction fine-tuning various Coding base LLMs, which act as tooling agents.
The application of coding-based LLMs helps adhere to various complex condi-
tional and iterative logics in tooling. Our experiments prove that open-source
coding base LLMs are better regarding latency and cost per query than bench-
mark GPT-4. Coding base LLMs concerning normal LLMs perform better due
to their fewer hallucinations and higher context adherence ability.

Dataset Generation. The papers above incorporate data generation as their
primary approach for adapting base LLMs for tool usage. Gorilla introduces
a comprehensive dataset called APIBench by utilizing Self-Instruct [16], which
proposes an automated pipeline to generate large-scale instruction datasets from
a small set of seed tasks. First, human experts provide sample instructions and
API documentation as context. A language model generates new instructions
that plausibly use the APIs, creating instruction-API pairs. A vital benefit of
this approach is that it does not require manual effort to label training data.
Gorilla uses GPT-4 for this data generation.
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The RTaC framework employs distinct datasets to rigorously evaluate its per-
formance. Specifically, the datasets are structured as follows: the Static ToolSet
comprises 800 query-output pairs, the Dynamic ToolSet includes 700 pairs, and
the Conditional/Iterative ToolSet consists of 300 pairs. Additionally, 200 unan-
swerable philosophical queries are incorporated to test the model’s robustness
in handling queries beyond its configured capabilities (Fig. 2).

Fig. 2. Dual agent dataset generation

Although APIBench is built over massive APIs, it does not have multi-tool
scenarios. ToolLLM proposes an innovative data generation strategy supporting
multi-tool interplay-the paper samples API combinations by iterating through
tools and sampling intra-category and intra-collection combinations. GPT-3.5 is
leveraged to generate instructions involving the sampled APIs, and its behavior
is regulated by prompting with documentation, task descriptions, and examples.
Generated APIs are validated against the original sample to filter out hallucina-
tions.

Static ToolSet. The Generation of the static toolset was done using a set of initial
pre-defined tools as shown in AppendixA.3. As shown in the figure, the query
output pairs are generated using an agent fed with different tools. As shown
below, query templates are generated, which are then randomly filled by GPT-
4, and the solution APIs for those are also generated using the GPT-4 Model.
Then, the dataset underwent a thorough human evaluation process, which we
used for instruction fine-tuning.

Dynamic ToolSet. The Dynamic toolset, as the name Dynamic suggests, is not
pre-defined, and they are generated in the correct format using a different agent.
The Dynamic toolset is generated using a procedure when the tools are gener-
ated using one agent. Then, we again used GPT-4 as the agent to generate
query templates, fill those query templates, and get the relevant set of tool APIs
for those queries. These queries then undergo a rigorous human evaluation for
syntactic and logical correctness.

Conditional and Iterative ToolSet. Utilizing various tools with conditional and
iterative logic requires the creation of particular query output pairs where we use
conditional logic like if-else and iterative logic like loops. These kinds of queries
are complex to handle by normal LLMs, and they require fine-tuning and an
innate logic formation ability present in a coding-based LLM. The query output
pair was again generated through GPT-4, and the query templates were filled
out using the agent by random values, and then the response was generated.
Again, these queries went through a robust human evaluation.
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A dataset containing 1800 Query Output pairs was generated with static and
dynamic toolsets, and 200 unanswerable philosophical queries were generated; a
total of 2000 Query Output pairs were named Stage 1 Dataset. Additionally, 100
query output pairs were generated with conditional and iterative logic, and this
was combined with Stage 1 datasets, which were randomly selected to be 500
pool. This dataset was named Stage 2 Dataset. This Whole Dataset was used to
do instruction fine-tuning on various LLMs.

Design Framework. Reimagining tooling as a form of coding in the context
of LLMs forms the cornerstone of our pipeline design. This approach stems
from the observation that tool utilization in LLMs essentially involves execut-
ing function calls, assigning values to arguments, and efficiently linking these
outputs, mirroring the core elements of coding. This conceptual overlap extends
beyond mere theory, as evidenced by the proficiency of Copilot and CodeGen.
Grounded in this insight, we adopt a training strategy that treats the tooling
challenge within the framework of a coding paradigm. Accordingly, we prioritize
fine-tuning LLMs with a foundational background in coding (such as DeepSeek-
1.3B Code-Instruct) instead of those exclusively trained on natural language
processing tasks.

In our paradigm, tool descriptions are conveyed to LLMs in a docstring for-
mat during training, as shown in Fig. 3 (left), emulating standard coding prac-
tices. The expected output format is structured as variable assignments from
API calls (e.g., var x = api call (arguments)), as shown in Fig. 3 (right). This
format offers advantages over direct training on JSON outputs by reducing the
number of output tokens required and circumventing the need for additional
training to correct JSON errors, an issue prevalent in other methods [11,12].

Fig. 3. Sample of tool docstring (left) and output in code format (right)

Conditional and iterative logic is handled by allowing the LLM to generate
outputs in the format of var x = api calls () and incorporate if-else statements
and for-loop constructs. In the parsed JSON object, we introduce a specialized
magic tools - conditional magic with the capability for ’JSON in JSON’ style
argument values, as shown in Fig. 4. Such a format is crucial for managing mul-
tiple chain tools dependent on specific conditions or requiring iterative processes.
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Fig. 4. Sample code output and conversion using ’JSON in JSON’ methodology

Fine Tuning Methods. We propose fine-tuning our LLM using the data gen-
erated by the earlier methodology to achieve both input format comprehension
and output format adherence. This fine-tuning utilizes Stage 1 and 2 datasets
to instill in the LLM docstring comprehension and adherence to our Python-
inspired output format.

Training Pipeline: We follow an instruction fine-tuning-based training approach
wherein we first prepare our dataset in a structure where an “Allowed tools”:
token is introduced, followed by the docstrings for the tools to be used as shown
in Appendix A.2. We train the model on the LORA [4] framework using the
PEFT library under a 4-bit quantization setting through the Bits and Bytes
framework. Training is done in two stages. During the first stage, the model is
trained for five epochs on queries from the Stage 1 Dataset and the docstrings
for the tools in the Problem Statement. The model is further trained for five
epochs using the Stage 2 Dataset, where it sees the docstrings for the tools
in the Problem Statement and the five new tools described above. This short
instruction fine-tuning instills docstring reading capabilities in the LLM and
adherence to our Python-inspired code output format.

Inference: RTaC allows the user to add their own set of dynamic tools. These
tools are appended to the static tools in the prompt under the “Allowed Tools”:
token and then passed to the LLM. Similarly, updating docstrings are passed
under the “Allowed Tools”: token in modifying and deleting already added tools.

3.2 Evaluation Metrics

BLEU score focuses solely on n-gram precision and may not accurately reflect
semantic similarity; hence, it is not an optimal metric for evaluating the
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Fig. 5. RTaC Training Pipeline

performance of our approach. Other metrics, such as the JSON Similarity Score
and the F1-Score, were used to evaluate the final approach (Fig. 5).

JSON Similarity Score: The JSON Similarity Score is a metric used to quan-
tify the degree of similarity between two JSON objects. It measures how closely
the structure and content of two JSON objects align, aiding in data compar-
ison, deduplication, and schema matching. Analyzing key-value pairs, arrays,
and nested structures provides insights into the level of resemblance between
datasets. This score is precious in data integration processes, ensuring consis-
tency and accuracy across disparate sources. Its ability to assess JSON efficiently
facilitates seamless data exchange and interoperability in diverse applications.
We use this to assess the correctness of our generated tool structure.

F1-Score: In our evaluation framework, the F1-Score is calculated based on the
precision (the proportion of relevant instances among the retrieved instances)
and recall (the proportion of relevant instances that were retrieved). The true
positives are defined as the set of tools correctly identified and utilized by the
LLM, while false positives are those incorrectly predicted tools, and false neg-
atives are correct tools that the model failed to identify. This metric is partic-
ularly suited for assessing the accuracy of tool selection and usage in complex
LLM operations.

4 Experiments

We have conducted various experiments on open-source coding base, normal, and
Closed Source LLMs. The experiments ranged from using retrievers to various
prompting methods and fine-tuning approaches on different stage datasets. The
Experiments were done on Google colab, where fine-tuning was done on A-100
GPUs, and inference was done on T4 and A100 GPUs. Within the Regime
of open source LLMs, we experimented with Llama-7b, Zephyr-7b, Codellama-
7b, Codellama-13B, Deepseek-6.7b, Deepseek-1.3B, Toollama, ToolAlpaca. We
also explored closed-source LLMs like GPT-4 and GPT-3.5 for closed-source
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benchmarking. We also compare the approach with a retriever to reduce the
tool selection set.

4.1 Retrievers

Our static API toolset consists of only 9 APIs. Tool retrievers can help decrease
the tool descriptions that need to be passed to the LLM, thereby decreasing
context length and latency. We compare various retrievers like BM25, FAISS,
Ensemble, and DPR. Further, tool retrievers become essential for stability when
our pipeline is applied to bigger toolsets. We experiment with multiple tool
retrievers, considering each API-argument name pair as a new tool.

Table 1. Retriever Results

Method Recall F1-Score Time (ms)

Top-10 Top-15 Top-10 Top-15 Top-10 Top-15

BM25 0.73 0.83 0.41 0.35 47.8 71.8

FAISS 0.83 0.90 0.46 0.37 758 983

Ensemble (BM25 + FAISS) 0.92 0.95 0.41 0.34 954 1110

Dense Passage Retriever 0.70 0.78 0.40 0.32 – –

As shown in Table 1, retrievers do not work very well in identifying the correct
set of tools, and they also fail to identify the appropriate set of arguments for
the tools.

4.2 Closed Source LLMs

Prompting Methods. We experimented with various prompting meth-
ods, which include zero-shot prompting, few-shot prompting, chain-of-thought
prompting, graph-of-thought prompting, tree-of-thought prompting, and knowl-
edge graph-infused prompting and RTaC prompting, which is our flagship
method, in which tools are presented in the form of functions and converted
into docstring to be added in the final prompt for solving the query.

Our Experiments on prompting with open-source LLMs like llama2-7b and
zephyr-7b-beta showed that both the models hallucinate and perform poorly
on our metrics and human evaluation. The JSON similarity score between the
actual output and the predicted output was less than 0.1, and the F1-score was
less than 0.5 in both cases of zero-shot prompting and few-shot prompting for
both the models, which showed that it is not the correct way to evaluate open
source models with closed source models.

4.3 Open Source LLMs

We have performed various experiments on tooling LLMs like Toollama, Tool-
paca, Codellama, Codegen, and Deepseek. Our Experiments range from few-shot
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Table 2. Results - Closed-Source LLMs

Model JSON Similarity Precision Recall F1-Score

GPT-3.5 67.23 82.34 87.32 84.76

GPT-4 Turbo 74.88 88.23 85.45 86.82

GPT-4 Turbo + SoT 75.23 84.52 89.43 86.91

GPT-4 Turbo + GoT 82.32 87.69 90.16 88.91

GPT-4 Turbo + CoT 79.11 88.12 85.84 86.97

GPT-4 Turbo + ToT 80.69 86.52 88.62 87.56

GPT-4 Turbo + KG 80.62 84.32 90.97 87.52

GPT-4 Turbo + RTaC 87.79 92.12 95.81 93.93

prompting to fine-tuning. We present three pipelines for our Problem Statement
that utilize open-source LLMs, incrementally building upon our hypothesis of
“Reimagining Tooling as Coding”. This experimentation helps us arrive at our
proposed pipeline, RTaC and also serves as an ablation study (Table 2).

Few-Shot prompting of Coding-Base LLMs. Using this pipeline, we investigate
our hypothesis around the efficiency of Coding-Base LLMs over normal LLMs.
The LLMs are provided with a prompt similar to that referred to in Sect. 4.1 with
few-shot examples involving both static tool usage (5 examples) and conditional,
iterative tool (3 examples) (Table 3)

Table 3. Results - Few-Shot prompting of Coding-Base LLMs

Dataset Model JSON Similarity Precision Recall F1-Score

Static CodeLlama 7B 68.78 81.25 77.85 79.51

CodeLlama 13B 73.47 82.80 85.45 86.82

DeepSeek 1.3B 60.28 73.33 63.00 67.77

DeepSeek 6.7B 62.02 90.72 61.48 73.29

Dynamic CodeLlama 7B 67.94 78.24 74.97 76.57

CodeLlama 13B 71.12 79.84 85.41 82.53

DeepSeek 1.3B 60.82 65.29 66.53 65.90

DeepSeek 6.7B 63.96 92.10 57.53 70.82

Bonus CodeLlama 7B 56.28 76.43 74.17 75.28

CodeLlama 13B 59.22 78.13 83.91 80.87

DeepSeek 1.3B 47.32 63.49 62.18 62.83

DeepSeek 6.7B 54.87 87.56 59.25 70.68

Discussion: Few-shot prompting on pre-trained LLMs like Llama-2 7B and
Zephyr 7B (results provided in Table 4) is substantially surpassed by CodeLlama
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and DeepSeek, proving our choice for Coding-Base LLMs. However, this pipeline
is plagued by a high context length needed to explain the output formats and
chatbot behavior, which further leads to higher latencies. Output inspection
reveals that while models correctly tend to solve the query, the format is non-
convertible, which is necessary for evaluation.

Table 4. Results - Few-Shot prompting of Llama-2 7B and Zephyr 7B

Dataset Model JSON Similarity Precision Recall F1-Score

Static Llama-2 7B Chat 44.57 40.80 41.95 41.37

Zephyr 7B Chat 50.74 61.58 79.74 69.49

Dynamic Llama-2 7B Chat 37.94 35.18 38.17 36.61

Zephyr 7B Chat 41.12 55.39 47.67 51.24

Tool Memorization with “Add Tool” Token. We build upon ToolLlama style fine-
tuning of LLMs, which fine-tunes LLMs using query-output pairs to include sup-
port for dynamic tooling. To achieve we use the “Added Tools”: token. Dynamic
tools provided at runtime are appended in docstring format after this token, while
the query follows the “Query”: token in the input prompt. To instill an under-
standing of our added tokens, we first generate 50 dynamic tools and queries that
interface with them using the Self-Instruct [16] methodology. As described above,
three hundred such queries-output-toolset tuples, the 100 bonus query-output
pairs, and the Stage 1 Dataset are used for instruction fine-tuning over ten epochs.

Table 5. Results - Tool Memorization with “Add Tool” token

Dataset Model JSON Similarity Precision Recall F1-Score

Static CodeLlama 7B 85.89 92.36 94.31 93.32

ToolApaca 68.45 81.51 73.85 77.49

ToolLlama 69.57 86.22 78.13 81.98

DeepSeek 1.3B 84.68 91.94 94.63 93.27

Dynamic CodeLlama 7B 75.51 85.45 87.51 86.47

ToolApaca 63.47 75.93 72.27 74.05

ToolLlama 66.62 78.24 75.11 76.64

DeepSeek 1.3B 75.83 82.12 81.85 81.98

Bonus CodeLlama 7B 83.91 87.67 91.12 89.36

ToolApaca 67.22 80.33 72.91 76.44

ToolLlama 68.34 84.96 76.19 80.34

DeepSeek 1.3B 81.35 89.11 90.71 89.90

Discussion: As shown in Table 5, Experimentations with this pipeline reveal
training instability. While more extended training makes the model excel in the
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static setting, dynamic tool comprehension and usage take a hit. On the other
hand, enabling dynamic tooling with controlled training length leads to param-
eter and data type hallucinations for the memorized static tools. Memorization
further limits this pipeline’s ability to modify and delete tools. All this motivates
moving to a pipeline with the least tool memorization. Instruction fine-tuning
shows promising adherence to a code output format that is convertible to JSON.

RTaC (Our Proposed Pipeline). Here, we build upon the previous pipeline by
replacing the “Added Tools”: token with the “Allowed Tools”: token and append-
ing docstrings for all tools, both static and those added dynamically at runtime,
after the token. This pipeline avoids tool memorization and instead promotes
docstring comprehension.

In the RTaC framework, the “Allowed Tools”: token is used to specify the
complete set of tools (static, dynamic, and conditional/iterative) that the LLM
can utilize dynamically across different queries. This inclusive approach enables
the model to adapt its tool usage flexibly depending on the query context,
enhancing its applicability and efficiency. Conversely, the “Added Tools”: token
implies a more constrained approach where only dynamic and conditional/itera-
tive tools are specified at runtime, and the static tools are expected to be memo-
rized by the LLM. This distinction between “Allowed” and “Added” fundamen-
tally impacts the model’s performance, with the “Allowed” approach providing
a broader, more versatile toolset that does not require the LLM to memorize
tools, thereby reducing cognitive load and potentially increasing accuracy.

Table 6. Results - RTaC

Dataset Model JSON Similarity Precision Recall F1-Score

Static DeepSeek 1.3B 87.73 94.38 93.28 93.82

CodeGen 2B 87.23 81.33 78.43 78.35

DeepSeek 6.7B 87.79 93.01 95.05 94.01

CodeLlama 7B 89.91 94.19 94.59 94.38

Dynamic DeepSeek 1.3B 81.47 90.67 88.88 89.76

CodeGen 2B 67.43 65.58 65.01 65.29

DeepSeek 6.7B 82.17 92.03 92.16 92.09

CodeLlama 7B 85.57 91.11 93.37 92.22

Modified DeepSeek 1.3B 82.98 91.49 90.14 90.80

CodeGen 2B 63.84 69.79 60.91 65.04

DeepSeek 6.7B 87.61 91.18 91.13 91.15

CodeLlama 7B 86.34 92.77 93.23 92.99

Bonus DeepSeek 1.3B 83.96 91.47 92.01 91.73

CodeGen 2B 55.37 69.79 60.91 65.04

DeepSeek 6.7B 83.17 91.66 93.12 92.38

CodeLlama 7B 86.92 92.22 94.91 93.54
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Discussion: Table 6, shows commendable results on static and dynamic tool-
ing scenarios for RTaC. Further, models under this pipeline gracefully handle
the modification and deletion of static tools. This showcases the models’ ability
to comprehend the given docstrings. While the context length increases over the
previous pipeline due to adding static tool docstring in each prompt, even small
models such as DeepSeek 1.3B perform well under this pipeline, leading to min-
imal latencies. It must also be noted that CodeGen 2B is not a code instruct
model, which explains its poor performance.

5 Results

Our experiments show that RTaC is comparable to GPT-4, not only in terms of
accuracy but also in terms of cost/query and latency. This shows that tooling can
be compared to function calls, which coding-based LLMs can efficiently handle
(Table 7).

Table 7. Final Result and Comparison with GPT-4

Metric GPT-4 RTaC

GPT-4 CodeLlama 7B DeepSeek 1.3B

F-1 Score 86.82 93.93 93.22 93.28

JSON Similarity 74.88 87.79 87.42 85.73

Cost/Query ($) 0.0341 0.0312 0.0086 0.0060

Latency (s) 7.32 6.88 7.56 5.25

# of Parameters 170B 1760B 7B 1.3B

6 Conclusion

This paper introduces the concept of Reimagining Tooling as Coding (RTaC), a
novel approach that reframes tool usage as a coding-related task. Our method
involves fine-tuning LLMs on tool descriptions presented in docstring format.
The desired output is formatted as variable assignments derived from API calls
during training. To achieve this, we employ a unique dual-agent dataset gen-
eration method encompassing tool usage in various scenarios, including static,
dynamic iterative, and conditional settings. By leveraging Coding-Base LLMs,
which are inherently adept at comprehending coding elements, we perform
instruction fine-tuning using this specially curated RTaC dataset. This inno-
vative strategy empowers smaller, open-source Coding-Base LLMs, such as
DeepSeek 1.3B and CodeLlama 7B, to achieve performance comparable to lead-
ing models like GPT-4. This is achieved with significantly reduced computational
requirements and faster response times. RTaC presents a groundbreaking app-
roach to tackling tool-usage challenges with LLMs, paving the way for significant
advancements in LLM applications.
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7 Future Scope

While RTaC demonstrates promising accuracy, there are two critical areas for
improvement: mitigating hallucinations and achieving scalability. This section
highlights potential avenues for future research that could significantly enhance
the framework’s performance.

Query Reformulation Modules: Prior research [8] has established a strong cor-
relation between query quality and model accuracy. This finding aligns with our
observations, where queries formulated to reflect the execution sequence achieve
near-perfect accuracy precisely. This underscores the need for further exploration
into query-optimizing modules. These modules would be designed to reformulate
user queries into a format that the model can process efficiently and accurately.

Tool Retrievers: While docstring comprehension leads to high accuracy on a
limited set of tools, scalability motivates the addition of tool retrievers to the
pipeline. This will empower RTaC to be scaled to massive API sets and outper-
form current state-of-the-art methods like Gorilla and ToolLLaMA, which rely
on tool memorization.

Improvements in Evaluation: The current evaluation metrics in this research
domain, such as JSON Similarity and F1-score, fail to evaluate critical aspects
such as correctness and optimality reliably. We find that string and AST-based
evaluation is not fit for the task of tooling. The same query can often be answered
via multiple sequences of tools, yet they are not scored as such during evaluation.
To overcome this, we have been working on a bash-based toolset that can act as a
deterministic evaluation benchmark for tooling LLMs. Our methodology involves
creating an API set that can be mapped to bash operations on directories and
files. Models’ outputs can now be deterministically evaluated by state-matching
after API call execution (Fig. 6).

Fig. 6. Design for a bash-based deterministic evaluation benchmark
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A Appendix

A.1 JSON Converter

This method is integral to the pipeline, functioning like a compiler. It is designed
to transform model-generated code into a specific JSON format. The script cate-
gorizes the model’s output into two primary types. The first is the General Case,
which adheres to a standard variable assignment format using tool names and
arguments. The second type is the conditional and iterative case, encompass-
ing additional code structures like conditional statements and for-loops. These
structures are used for temporary variable assignments, further expanding the
script’s capability to handle diverse output formats. In processing these outputs,
the script employs several functions. The process tool function is used for the
general case, while iterative and conditional cases are managed by specialized
bonus handlers that also leverage process tool but with modified parameters.
The make tool function checks for the validity of tool and argument names,
ignoring invalid entries. The update arg val function then processes valid argu-
ments. This function is responsible for determining if argument values are lists,
handling them recursively if so, and assessing the validity of each value, includ-
ing scenarios where values are function calls or reference outputs from previous
calls, ensuring comprehensive and accurate JSON conversion (Fig. 7).

Fig. 7. JSON Conversion Pipeline

A.2 Prompt for Section 4.3

Here are the prompts for Sect. 4.3, testing closed and open-source LLMs for tool
usage.
The only code you know to write is of type "var_i = function_call (
function_argument)", where i is the ith variable in use. You never output
anything else other than this format. You follow the sequence of completing
the query religiously. You have a given set of functions and you must use
them to answer the query. You are not allowed to use any other functions.

Here are the allowed functions -
{docstring of the functions}

Here are some sample queries and their respective responses:
{sample_python}

Answer very strictly in the same format shown above. Make sure to mention
type argument wherever relevant when calling works_list. Any missing type
arguments is not acceptable. Don ’t make unnecessary calls to any functions.
When given names , make sure to call search_object_by_name() to get work_ids.
Ensure logical continuity at each step. Ensure that the query is answered
fully. You are not allowed to nest function calls. You are not allowed to
output "python" or any other statement apart from the given format.
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Do not use any other format for output than the one given above. Do not put
any comment in your answer. Anything else other than the format specified is
not acceptable.
Do not define any new helper functions or any other python functions apart
from the ones provided. Do not output any text apart from the final output
code. If you are unable to answer a query , you can output "
Unanswerable_query_error ".

Answer the query: {user query}

Listing 1.1. Few Shot Prompting

Added Tools: {list of all the dynamic tools}

Query: {user query}

Listing 1.2. Tool Memorization Prompting

Allowed Tools: {list of all the tools}

Query: {user query}

Listing 1.3. RTaC Prompting

A.3 Default Tools Used to Generate New Tools

(See Table 8).

Table 8. Default Tools

Tool Description Functionality

works list Returns a list of work items matching the request

summarize objects Summarizes a list of objects. The logic of how to
summarize a particular object type is an internal
implementation detail

prioritize objects Returns a list of objects sorted by priority. The logic of
what constitutes priority for a given object is an internal
implementation detail

add work items to sprint Adds the given work items to the sprint

get sprint id Returns the ID of the current sprint

get similar work items Returns a list of work items that are similar to the given
work item

search object by name Given a search string, returns the id of a matching
object in the system of record. If multiple matches are
found, it returns the one where the confidence is highest

create actionable tasks
from text

Given a text, extracts actionable insights, and creates
tasks for them, which are kind of a work item

who am i Returns the string ID of the current user
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Abstract. Software has emerged as a crucial tool in the current research
ecosystem, frequently referenced in academic papers for its application
in studies or the introduction of new software systems. Despite its preva-
lence, there remains a significant gap in understanding how software is
cited within the scientific literature. In this study, we offer a conceptual
framework for studying software citation intent and explore the use of
large language models, such as BERT-based models, GPT-3.5, and GPT-
4 for this task. We compile a representative software-mention dataset by
merging two existing gold standard software mentions datasets and anno-
tating them to a common citation intent scheme. This new dataset makes
it possible to analyze software citation intent at the sentence level. We
observe that in a fine-tuning setting, large language models can generally
achieve an accuracy of over 80% on software citation intent classifica-
tion on unseen, challenging data. Our research paves the way for future
empirical investigations into the realm of research software, establishing
a foundational framework for exploring this under-examined area.

Keywords: Research software · Citation intent · Large Language
Models

1 Introduction

Research software is a critical instrument in contemporary scientific environ-
ments, as it offers the computational capacity to expand human capacities to
observe and investigate phenomena and acquire new knowledge from the increas-
ing amount of data [19]. As a result, software gradually takes more important
roles in data-driven science [40] and is regarded as a “first-class research object”
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by scientists in a growing list of research domains [6]. During the past decade,
there has been significant progress in the development of research infrastructure
to support the publishing, using, and crediting research software [2,39], which in
turn, supports empirical investigations into the impacts of research software and
their roles in scientific research [27,34]. All these efforts are believed to contribute
to the construction of a more fair and transparent scientific system [14].

Despite this progress, one major gap in existing research is that there is a
lack of a more granular understanding of the links between scientific publications
and research software, i.e., how software is cited in scientific publications. This
question is central to citation context analysis developed from the field of sciento-
metrics, which examines the different types of contexts in citation sentences, such
as sentiment, function, or level of importance of individual citations [43]. This
approach is able to reveal more granular reasons behind citations and impact
and hence contributes to a deeper understanding of how credit and knowledge
flow between publications [9]. On the same page, when this method is applied to
research software, we can also understand not only how many times a software
object is cited in publications, but the reasons why it is cited. This knowledge is
critical for the construction of a new research infrastructure for research software
and evaluation of research software and its developers.

A large number of citation context classification schemes have previously
been proposed, focusing specifically on citations between scientific publications
(Scite [31]). However, we are arguing that these schemes cannot be used to suf-
ficiently understand why software is cited in scientific publications, since there
may be distinct reasons why a software package is cited in a paper. In light of this
topic, very few schemes have been proposed for citations of research software in
scientific publications, with the exceptions of SoftCite [12] and SoMeSci [37]. We
believe it is vital to revitalize existing efforts by (1) developing a new classifica-
tion system for citation intents of research software that builds on existing efforts,
and (2) applying and testing the system on new software mentions datasets.

In this paper, we are presenting our preliminary results, including (1) a new
classification system for software citation intents in full-text scientific publica-
tions and (2) performance assessment of machine learning algorithms, in particu-
lar large language models, for classifying the citation intent of software-mention
sentences. We compile a new dataset that can be used for software citation
intent analysis by aggregating and annotating the SoftCite [12] and SoMeSci [37]
datasets. We evaluate the performance of the machine learning models on a sub-
set from a recent large-scale software name mention dataset published by the
Chan Zuckerberg Initiative (CZI) [22]. More specifically, we are examining the
intent of informal citations to the software. Borrowing previous research [35],
formal and informal citation approaches to mentioning software in scientific pub-
lications are defined as those mentions with and without an official citation to
the software respectively. This project, to our knowledge, is the first effort to
identify and classify contexts of software mentions (or informal software cita-
tions) from full-text publications. It is our hope that our results will improve
existing research infrastructure for empirical studies on research software.
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2 Related Work

2.1 Research Software Studies

Software has become a cornerstone of contemporary scientific systems, due to the
large quantity of data available to researchers and the computational resources
required to analyze such data [10]. Given its elevated importance, it is impor-
tant to treat research software as a “first-class research object” just like research
articles, which requires the support from infrastructure to publish, peer-review,
reuse, and cite software entities [6]. Among these requirements, giving and trac-
ing citations to software is central to the assignment of reward to software devel-
opment activities and promoting researchers’ motivation to develop and publish
software [13].

Software citation is a highly challenging issue in the scholarly communication
system because various empirical studies have found that software is inconsis-
tently cited, if cited at all, in scientific publications [20,28]. In addition, when a
software is cited, there is often a complicated relationship between citations and
software, which makes it very hard to trace how specific software is cited [26].
These findings have inspired recent efforts to develop software citation principles,
especially aligned with the FAIR Principles [2,39].

Despite these progresses to develop a more robust software citation infras-
tructure, it is commonly accepted that information citations to software, or
software mentions, are critical for investigating the links between scientific pub-
lications and software [38]. This approach is reflected in recent efforts to publish
large-scale software name datasets extracted from full-text publications, espe-
cially the CZI dataset that covers close to 4 million open-source scientific publi-
cations [22], as well as some similar datasets [12]. These fresh open datasets will
undoubtedly promote new empirical research on this critical topic to promote
the openness of science, including the present research.

2.2 Citation Intent Classification

Citations have long been regarded as a gold standard to measure one’s impacts
within the scientific system, as they represent one’s intellectual debts to other
authors [24,29]. Based on this normative theory, it is possible to construct a
systematic evaluation system by collecting the citations between all documents,
which is the idea behind the Scientific Citation Index (SCI) as well as many other
scientific evaluation systems [16]. Despite the proven effectiveness (at least to
some text) of using citations to evaluate one’s scientific impacts [4,17], however,
one concern with just focusing on the citation count is that the citation itself
can bear multiple semantic meanings. For example, Bruno Latour, the famous
sociologist of science, made the following argument:

“[Sources] may be cited without being read, that is perfunctorily; or to
support a claim which is exactly the opposite of what its author intended;
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or for technical details so minute that they escaped their author’s atten-
tion; or because of intentions attributed to the authors but not explicitly
stated in the text.” [25]

Such challenges to classic citation analysis method gave rise to a new line
of research that focuses on the symbolic meanings of citations in the full-text
publications, often called citation context and content analysis [8]. In their review
of this topic, Zhang et al. identified a few important aspects of the symbol
that have been analyzed, such as sentiment, function, or level of importance of
individual citations [43].

In addition, a few important classification systems have been proposed to
classify regular citations (especially those citing research articles) during the past
few decades, each with their own categories and considerations. [23,30,31,41].
However, Cohan et al. [7] argue that these classification systems are usually
too fine-grained to allow a meaningful application to software citations. Having
many fine-grained categories successfully captures rare contexts but hinders a
meaningful analysis of the citation impact. More recent efforts, such as Soft-
Cite [12] and SoMeSci [37], are trying to directly address this research problem,
by developing citation context categories dedicated to software entities. How-
ever, both of these efforts are based on and only tested using limited publication
samples. Moreover, the citation context categories are not the same between the
two datasets. As a result, we believe there is still a large gap in this field that can
be addressed by our efforts to apply advanced data science methods to classify
software citation sentences to a common scheme.

3 Methods

We first defined a set of citation intent classes and created mappings for any
existing informal software citation datasets with intention annotations. We then
used the combined dataset to fine-tune multiple language models.

3.1 Citation Intent Classes

We reviewed multiple schemes for citation context and intention that have been
proposed for both regular research publications and software. The respective
schemes are listed in Table 1. Both the ACL-ARC and SciCite were proposed for
the intent classification of research article citations. For their work on the ACL
Anthology Reference Corpus (ARC) [5], Jurgens et al. [23] propose six categories
for citation function, unifying several previously proposed schemes. Their scheme
focuses on how authors align their work to cited publications and maintains a
higher granularity for classifying indirect mentions like background information
or contrasting related works than our scheme does. We found that these kinds
of mentions currently don’t occur with a high enough frequency to warrant fur-
ther splitting these classes. For SciCite, Cohan et al. [7] similarly argue that pre-
vious datasets for citation intent often use too fine-grained schemes. They pro-
pose instead to use only three categories, focusing on direct use and comparison
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of results, and regarding everything else as background information providing
more context.

However, these schemes cannot be directly transferred to software citations.
Unlike research article citations, software can be cited as research software that
has been created as part of the publication. Both the SoftCite [12] and SoMeSci
[37] provide annotations for the intent of software citations and propose software-
specific schemes. Apart from software creation and usage, they both consider
categories related to software publication, namely sharing and deposition.

Table 1. Citation Intent Schemes.

Source Target Categories

ACL-ARC [23] publications Background, Motivation, Uses, Extension,
Comparison or Contrast, Future

SciCite [7] publications Background information, Method, Result
comparison

SoftCite [12] software Created, Used, Shared

SoMeSci [37] software Usage, Mention, Creation, Deposition

For the development of our citation intent scheme, we established the follow-
ing two guiding principles:

1. The scheme should be able to distinguish the most common and relevant
types of citation intent.

2. The scheme should exhibit high inter-annotator agreement so that it can be
consistently applied by a human.

The first principle ensures that the resulting scheme is not too fine-grained,
as this would hinder a meaningful analysis in future empirical research. The
second principle allows multiple annotators to label a potentially large corpus
consistently. Based on the principles and the previously described schemes, we
propose the following three categories in our scheme for informal research soft-
ware citation intent:

– Paper <describes creation of> Software: the paper describes or
acknowledges the creation of a research software entity.

– Paper <describes usage of> Software: the paper describes the use of
research software in any part of the research procedure, for any purpose.

– Paper <describes related software> Software: the paper describes the
research software for any other reasons beyond the first two categories. Note
that throughout the paper, we refer to this category by using “related” and
“mention” interchangeably.

The most relevant distinction in our scheme is that between a sentence in a
publication describing the creation of a piece of software as opposed to one citing
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the usage of software. We make sure not to confound the annotation process or
analysis with any rare labels by instead encapsulating any other mention in the
third category.

Similar to existing efforts, this scheme only considers functional intents, i.e.,
functional reasons for mentioning the software in publications, instead of other
aspects of the intent, such as sentiment and importance [43]. In contrast to the
schemes proposed for SoMeSci and SoftCite, we specifically did not include a
category for sharing or deposition. We believe that distinguishing this citation
intent from creation and usage is not strongly relevant to the evaluation of
impact of software being mentioned in publications, especially considering the
case where sharing software is often strongly related to creating the software in
the first place.

An important attribute of our scheme is that it is designed to be applied
on the sentence level: the evaluation is made based on each sentence where
a software entity is mentioned. Hence, a paper-software pair can have mul-
tiple citation intents if a software entity is mentioned multiple times in the
paper. For creating our datasets, we decided that each sentence could only
be classified into one category. In the case where multiple categories were
applicable, we chose the category carrying more weight in evaluating impact,
where Paper < describes creation of > Software has a larger weight than Paper
<describes usage of> Software, which in turn has a larger weight than Paper
< describes related> Software. Note that since we are considering only one cita-
tion intent per sentence, we are making the assumption that even if multiple
software are mentioned in the same sentence, they are mentioned with the same
intent. In some rare corner cases, such as multiple software being mentioned
in the same sentence with multiple intents, this assumption will not hold true.
Hence, our findings are not applicable in these cases.

3.2 Data

We wanted to re-use existing datasets as much as possible and build on top of
previous work, rather than create new datasets and define new gold standards.
This is why we chose to build on the SoftCite [12] and SoMeSci [37] datasets by
merging them into one representative dataset that can be used for analyzing soft-
ware citation intent. The datasets, for the most part, consist of single sentences
that contain a software mention (informal citation, by means of verbal reference
to software, whereas a formal citation would be by verbal means in conjunction
with an included URI, or an official citation, such as a literature reference) and
their corresponding labels, which vary between the datasets. Consolidating these
similar yet still slightly different datasets was outside the scope of this work.
However, given our decision regarding citation intent classes outlined above, we
had to make a few adjustments to the existing labels in the provided datasets.
We did this through manual curation. Table 2 shows the mappings between our
proposed scheme and software citation intent schemes used in the SoMeSci and
SoftCite datasets. From the SoftCite dataset, we were able to transfer labels
Used and Created directly to our Usage and Creation classes and mapped
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most of the Shared labeled data into Creation. After careful consideration and
debate between multiple annotators, we moved some records that had multiple
labels or no labels at all into our Mention category. For the SoMeSci dataset,
we transferred the Usage, Mention and Creation labels straight to our own
labels. We disregarded entries with a label of Deposition.

Table 2. Mappings to other software citation intent schemes.

Ours SoftCite SoMeSci

Paper <describes creation of> Software Created Creation

Paper <describes usage of> Software Used Usage

Paper <describes related> Software n/a Mention

As part of data curation, we created a pipeline that downloaded all available
full text of papers in the two datasets (SoftCite [12] and SoMeSci [37]) via the
PMC API [42] in order to augment the existing data at the sentence-level with
an expanded citation context of three sentences surrounding the citation: lead-
ing, citing and trailing sentence. After all pre-processing, we ended up with a
single dataset. The final dataset consists of 3188 software citations, each labeled
as Creation, Usage, or Mention, along with the sentence in which the soft-
ware mention occurs (<citing sentence>) and the citation context. The citation
context consists of:

– <leading sentence><citing sentence>< trailing sentence>

Some examples from the combined training dataset can be found in Table 3.
In addition, we augmented the dataset with 1,000 sentences that contained no
citation contexts by sampling randomly from the set of sentences that were not
tagged with a software mention. This data can be used as negative training
examples. The distribution of labels and the number of words in the contexts in
the training dataset used can be seen in Fig. 1.

Fig. 1. Training Dataset Data Distribution
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Table 3. Examples from the training data

Intent type Sentence Full Context

creation We have developed coXpress
as a means of identifying
groups of genes that are
differentially co-expressed

We have developed coXpress as a means
of identifying groups of genes that are
differentially co-expressed. The utility of
coXpress is demonstrated using two publicly
available microarray datasets

usage The resulting trajectories
were analyzed using the
CPPTRAJ module in
AMBERTOOLS 16 [55,56]

To study the dynamic behavior of the
proposed ligand-protein complex, we have
performed in a short production run of 10 ns
using AMBER 14. The resulting
trajectories were analyzed using the
CPPTRAJ module in AMBERTOOLS
16 [55,56]

mention M-Track provides a valuable
and user-friendly interface to
streamline the analysis of
spontaneous grooming in
biomedical research studies

M-Track provides a valuable and
user-friendly interface to streamline the
analysis of spontaneous grooming in
biomedical research studies

unlabeled Developing a new drug is an
evidence-based exercise

Developing a new drug is an
evidence-based exercise

We used the combined dataset of 4,188 sentences to train the language mod-
els. We split the dataset 80/20 for training and testing in order to facilitate a
reasonable comparison between models. We evaluated the models on the test
held-out portion of the data that the model has not seen during training. More-
over, we had an additional dataset of 210 samples curated by Chan Zucker-
berg Initiative. This dataset is a subset of the CZI Software Mentions Dataset
[21] and was manually curated by CZI annotators by reviewing sentences that
contain mentions of software names; the dataset was initially curated using a
more granular intent classification which was subsequently mapped to the intent
classification described above (creation, used, mention). Note that since the
original CZI Software Mentions Dataset was not annotated with intent classifi-
cation classes, this has been done manually by CZI bio-curators after the initial
dataset has been published. Because of the effort required and the size of the
initial dataset, we were only able to use a subset for evaluation. One annota-
tor initially classified the sentences, and an additional annotator resolved any
conflicts at an ulterior time.

3.3 Training Models

We explored finetuning several BERT [11] models, as well as GPT-3.5 [32] and
GPT-4 [33] in various training settings.
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BERT Models. We studied four different BERT models, namely BERT [11],
DistilBERT [36], SciBERT [3] and PubMedBERT [18]. BERT [11] was pre-
trained on BookCorpus [44] and English Wikipedia [15]. It is well suited for
fine-tuning downstream tasks that use a full sentence, e.g. for text classification.
DistilBERT [36] is a smaller and thus a faster BERT model. It was pre-trained on
the same corpus using knowledge distillation with BERT as its teacher. SciBERT
was pre-trained on a corpus of scientific texts from Semantic Scholar [1]. It was
found to outperform BERT on tasks and datasets in the scientific domain. Pub-
MedBERT [18] was in turn trained on biomedical papers, specifically abstracts
from PubMed and full-text articles from PubMedCentral [42]. Hence, it is tai-
lored to tasks in the biomedical domain.

We used the model architecture provided by Hugging Face’s library, applying
fine-tuning to all four models for text classification tasks. This fine-tuning was
consistent across models, employing identical parameters: (epochs=10, learn-
ing rate=2e-5, weight decay=0.01).

GPT-3.5/4. We also investigated GPT-3.5 and GPT-4 in three different learn-
ing settings: zero-shot learning, few-shot learning and fine-tuning. In zero-shot
learning, the model is only given a description of the task before solving the task.
Specifically, we used the system message described in Listing 1.1 to instruct the
model. In few-shot learning, the model receives a similar instruction followed by
a handful of examples for expected interactions between the user and the assis-
tant (i.e. the model). The model is supposed to learn from these few examples
how to generalize on new data. For this, we sampled five examples from each
class (creation, usage, mention, and none) and provided these to the model. The
corresponding prompt is shown in Listing 1.2.

Listing 1.1. Zero-shot prompt. The ‘instruction message‘ sets the assistant’s tone,
behavior or persona.

instruction_message = (

"You�are�a�scientist�trying�to�figure�out�the�citation�"

"intent�behind�software�mentioned�in�sentences�coming�"

"from�research�articles.�"

"Your�four�categories�are:�creation ,�usage ,�mention ,�or�none.�"

"The�definitions�of�the�classes�are:�"

"-�creation:�software�was�created�by�the�authors�of�the�paper"

"-�usage:�software�was�used�in�the�paper�"

"-�mention:�software�was�mentioned�in�the�paper ,�but�not�used ,�"

"nor�created�"

"-�none:�none�of�the�previous�3�categories�apply"

"You�need�to�output�one�category�only."

)

# send instruction as system message to shape the assistant ’s behaviour

zero_shot_messages = [

{

"role": "system",

"content": instruction_message

}

]
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Listing 1.2. Few-shot prompts. When interacting with the OpenAI API, a query
can have one of three different roles: (1) system – where the behavior, tone, or persona,
of the GPT assistant is being defined. We set the behavior of the GPT assistant as
in the ‘instruction message‘ presented in Listing 1.1. The other roles assumed can be
(2) user – which contains the queries presented by the user to the assistant, and (3)
assistant – which gives back the GPT assistant’s response.

# same instruction message as in zero -shot learning

few_shot_messages = [

{

"role": "system",

"content": instruction_message

}

]

# append examples as messages

for example in few_shot_examples["usage"]:

# example for user prompt ( sentence or context)

few_shot_messages += [{"role": "user", "content" : example }]

# example for assistant output (category)

few_shot_messages += [{"role": "assistant", "content" : "usage"}]

# same for "creation", "mention" and "none"

...

Fine-tuning can further improve a model’s performance. Instead of a handful
of examples, a larger training set is provided. We fine-tuned GPT3.5 on the
sentence and full context, using the same dataset as for the BERT models. Both
models were fine-tuned for a total of 5 epochs using the OpenAI API and the
‘gpt-3.5-turbo‘ model. The OpenAI API does not allow much hyper-parameter
tuning besides the number of epochs, so we used the API’s default settings. Since
the model can give back answers that do not fit into one of the provided classes,
we post-process the answers by lowercasing and stripping punctuation marks.

4 Results

We evaluated the models on a 20% test split of the training data (Table 4), as well
as on the additional CZI Validation Dataset (Table 5). The evaluation metrics
used to assess model performance were precision, recall, F1-score, and overall
accuracy, both at the individual label level and for the aggregate performance.
In Table 4 we also attach the metrics reported for classification of intent classes
by SoftCite [12], as well as SoMeSci [37]. These metrics are extracted from the
corresponding papers and are evaluated on different datasets then the ones in this
paper. Note that since the classifiers are not evaluated on the same data or even
trained to predict the same citation intent classes, the results are not necessarily
comparable. Nonetheless, we report the metrics where applicable. For example,
the SoftCite paper [12] only reports the performance of a trained citation intent
classifier for the used and not used categories. Hence, we show the metrics
for the used category, mapping it to our Usage category. For the SoMeSci [37]
dataset, the paper reports metrics for the following classes: Allusion, Usage,
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Creation and Deposition. We map the Allusion to our Mention category,
and the Usage and Creation classes directly. We don’t report the Deposition
metrics, since we have discarded this category in our own scheme.

4.1 Results of BERT Models

As shown in Table 4, all models achieve high scores across the metrics and cate-
gories on the test split. PubMedBERT outperforms the others by a small degree.
As seen in Table 5, on the CZI Validation Dataset, model performance drops
across the board, DistilBERT, however, outperforming the other BERT mod-
els. Considering the moderate sample size of the training dataset, it may imply
that a light architecture such as DistilBERT performs better in this dataset,
achieving a more balanced result, especially when compared with the original
BERT.

For the category-specific results, the classification is related to the availabil-
ity of the labels in the training and validation dataset - all the models perform
best in the Usage label, which is the most frequent in both the training and
validation set, and perform the worst on the Creation label. Notably though,
DistilBERT is the only model to achieve non-zero scores in the Creation cat-
egory across all three metrics, highlighting its unique capability to identify and
classify this particularly challenging category. For the Mention category, the
performance drops for all BERT models, with PubMedBERT outperforming the
other BERT models. The same trend can be observed for the test split in Table 4.
By definition, this category encompasses more varied instances than the other
two, which might be why the models struggle to consistently recognise it. In the
Usage category, SciBERT and PubMedBERT perform the highest.

4.2 Results of GPT-3.5/GPT-4

In general, fine-tuning the model at the sentence level seems to achieve the
best results for the GPT-3.5 model on both the test split and the CZI validation
dataset. The GPT3.5 model fine-tuned on the sentence level achieves the highest
performance on the challenging CZI validation set (P = 0.571, R = 0.531, F1
= 0.545, Accuracy = 0.881) surpassing all BERT models as well. Fine-tuning
GPT-3.5 on the entire context (containing the leading, citing, and trailing sen-
tence) leads to a decrease in performance. This tells us that feeding the entire
context around the sentence is actually not helping the model learn more infor-
mation about the intent on citing the software in the sentence itself. The same
observation holds for both GPT3.5/4 few-shot models. None of the few-shot
and zero-shot approaches for both GPT-3.5 and the GPT-4 models achieved
close to the performance of the fine-tuned models, which means that despite
these models’ generalizable power, they still don’t hold enough information to
be able to classify software citation intent without additional training data. We
observe in general that GPT-4 models tend to outperform GPT-3.5 models both
in zero and few-shot contexts. Notably, however, both GPT-3.5 and GPT-4 few-
shot models generally tend to do worse than the zero-shot models counterparts.
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Table 4. Evaluation of Different Models on the Test Split. We assessed the
overall Precision (P), Recall (R), F1-score (F1), and Accuracy (Acc) across the entire
validation dataset. Additionally, we analyzed the Precision, Recall, and F1-score for
each label within every model. For comparison, we attach the metrics reported for
classification of intent classes by SoftCite [12], as well as SoMeSci [37]. These metrics
are extracted from the corresponding papers and are evaluated on different datasets
than the ones in this paper.

Model Training Methodology Overall Creation Mention Usage Unlabeled

P R F1 Acc P R F1 P R F1 P R F1 P R F1

BERT Fine-tuning 0.866 0.859 0.862 0.903 0.90 0.87 0.88 0.71 0.69 0.70 0.93 0.94 0.94 0.92 0.94 0.93

DistilBERT Fine-tuning 0.823 0.826 0.824 0.884 0.86 0.81 0.84 0.59 0.62 0.61 0.95 0.93 0.94 0.90 0.95 0.92

SciBERT Fine-tuning 0.85 0.846 0.846 0.906 0.89 0.77 0.82 0.63 0.68 0.65 0.96 0.95 0.95 0.93 0.99 0.96

PubMedBERT Fine-tuning 0.867 0.891 0.88 0.919 0.88 0.88 0.88 0.69 0.78 0.73 0.97 0.93 0.95 0.94 0.97 0.96

GPT-3.5 Zero-Shot 0.7 0.608 0.627 0.717 0.77 0.46 0.57 0.24 0.47 0.32 0.84 0.86 0.85 0.96 0.65 0.77

Few-Shot (sentence) 0.617 0.556 0.54 0.612 0.81 0.46 0.59 0.28 0.24 0.26 0.93 0.57 0.71 0.45 0.95 0.61

Few-Shot (context) 0.546 0.512 0.463 0.5 0.72 0.57 0.64 0.21 0.15 0.17 0.88 0.35 0.5 0.38 0.98 0.55

Fine-tuning (sentence) 0.839 0.867 0.851 0.9 0.8 0.91 0.85 0.65 0.69 0.67 0.97 0.93 0.95 0.94 0.93 0.94

Fine-tuning (context) 0.766 0.808 0.783 0.857 0.66 0.88 0.76 0.49 0.52 0.51 0.96 0.88 0.92 0.95 0.95 0.95

GPT-4 Zero-Shot 0.684 0.662 0.664 0.815 0.73 0.70 0.71 0.26 0.11 0.15 0.83 0.96 0.89 0.92 0.88 0.90

Few-Shot (sentence) 0.746 0.736 0.738 0.839 0.74 0.62 0.67 0.46 0.44 0.45 0.93 0.91 0.92 0.86 0.97 0.91

Few-Shot (context) 0.716 0.73 0.716 0.832 0.68 0.82 0.74 0.43 0.26 0.33 0.92 0.91 0.92 0.83 0.93 0.87

SoftCite BidGRU x 10 – – – – – – – – – – 0.965 0.992 0.979 – – –

SciBERT – – – – – – – – – – 0.956 0.995 0.975 – – –

SoMeSci Bi-LSTM-CRF (Test) – – – – 0.87 0.51 0.64 0.68 0.18 0.29 0.77 0.84 0.8 – – –

Bi-LSTM-CRF (Devel) – – – – 0.97 0.5 0.66 0.68 0.28 0.4 0.78 0.8 0.79 – – –

We haven’t investigated in detail why that might happen, but it is an inter-
esting observation to note that for this task, learning from a few examples is
detrimental, whereas learning from a lot (i.e. finetuning) is helpful.

Inspecting per-class performance, we observe that, similarly to BERT mod-
els, GPT models tend to do very well on predicting Usage and Unlabeled
labels, achieving precision, recall and F1 score >0.9 for both test splits and CZI
Validation Dataset and struggle the most with predicting the Mention class.
This makes sense given that any software will be, after all, mentioned in the
paper. While we instruct the model to predict this label if none of the Usage or
Creation might apply, it is still ambiguous. Some examples of model mistakes
on the CZI Validation dataset can be seen in Table 6.

5 Data and Code Availability Statement

Training scripts are available on our GitHub repository: https://github.com/
karacolada/SoftwareImpactHackathon2023 SoftwareCitationIntent. BERT fine-
tuning scripts can be found under BERT finetuning and all the GPT scripys,
including zero-shot, few-shot and fine-tuning under GPT models. The merged
dataset, together with training, validation and test splits, as well as GPT-3.5
formatted data and the CZI Validation Dataset can also be found under the
data folder, together with extra documentation and a README file.

https://github.com/karacolada/SoftwareImpactHackathon2023_SoftwareCitationIntent
https://github.com/karacolada/SoftwareImpactHackathon2023_SoftwareCitationIntent
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Table 5. Evaluation of Different Models on the CZI Validation Dataset.
We assessed the overall Precision (P), Recall (R), F1-score (F1), and Accuracy (Acc)
across the entire validation dataset. Additionally, we analyzed the Precision, Recall,
and F1-score for each label within every model.

Model Training Methodology Overall Creation Mention Usage

P R F1 Acc P R F1 P R F1 P R F1

BERT Fine-tuning 0.323 0.368 0.335 0.771 0.00 0.00 0.00 0.15 0.29 0.20 0.94 0.85 0.90

DistilBERT Fine-tuning 0.481 0.412 0.443 0.801 0.71 0.50 0.59 0.29 0.26 0.27 0.94 0.88 0.91

SciBERT Fine-tuning 0.302 0.308 0.306 0.80 0.00 0.00 0.00 0.27 0.35 0.30 0.95 0.90 0.92

PubMedBERT Fine-tuning 0.319 0.392 0.342 0.81 0.00 0.00 0.00 0.28 0.39 0.33 0.94 0.91 0.93

GPT-3.5 Zero-Shot 0.464 0.511 0.478 0.8 0.55 0.6 0.57 0.35 0.61 0.44 0.96 0.84 0.89

Few-Shot (sentence) 0.525 0.291 0.373 0.457 0.5 0.3 0.37 0.6 0.39 0.47 1.00 0.47 0.64

Few-Shot (context) 0.454 0.195 0.269 0.338 0.5 0.2 0.29 0.33 0.22 0.26 0.98 0.36 0.53

Fine-tuning (sentence) 0.571 0.531 0.545 0.881 0.71 0.5 0.59 0.59 0.7 0.64 0.98 0.93 0.95

Fine-tuning (context) 0.553 0.503 0.509 0.819 0.83 0.5 0.62 0.41 0.65 0.5 0.97 0.86 0.91

GPT-4 Zero-Shot 0.473 0.544 0.495 0.8 0.58 0.70 0.64 0.35 0.65 0.45 0.96 0.82 0.89

Few-Shot (sentence) 0.473 0.385 0.421 0.614 0.7 0.7 0.7 0.21 0.17 0.19 0.98 0.67 0.79

Few-Shot (context) 0.399 0.206 0.269 0.471 0.5 0.2 0.29 0.11 0.09 0.1 0.99 0.54 0.7

Table 6. Examples of mistakes the GPT3.5 model fine-tuned at the sentence level
makes on the CZI Validation dataset

Sentence True Label Predicted
Label

Very recently, one research group applied Mask R-CNN
on cervix segmentation tasks, the obtained (Dice, IoU)
score is (0.8711, 0.765) on “Kaggle Dataset” as reported
in [26]

mention usage

Identifying major effect QTL underlying single or
multiple traits in various populations determines the
successful use of QTL through MAS [8]

mention none

In Fig. 11, p miss of SVM-SMP is nearly equal to 0,
which is much better than SVM-LA

usage none

FVA can be set up in COBRA toolbox using the
function fluxVariability()

usage mention

6 Discussion

The determination of software citation intent requires a system to not only iden-
tify the entity but understand the semantic relationships provided by the context
around the entity. In this study, we focused on the latter part of said system,
by investigating which model types can effectively learn the intent of authors by
their reporting of software. Prior work done by the SoftCite [12] and SoMeSci [37]
groups offered valuable datasets that were combined and normalized to a simple
scheme. This corpus allowed for the fine-tuning and experimentation of various
flavors of BERT, GPT-3.5 and GPT-4 models. Our intuition was that these mod-
els would be able to accurately characterize these intents. One interesting finding
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Fig. 2. GPT-3.5 fine-tuned Comparison of True and Predicted Labels Distributions.

Y axis represents the counts, and X axis the label categories. pred gpt3.5 true

was that including the full context in classification seemed to hurt model per-
formance. This insensitivity towards extra contextual clues indicates that intent
can typically be determined in close proximity to the mention of the software
entity. Further text analysis may elucidate exactly what type of language is char-
acteristic of each intent class. A quick word frequency count in sentences that
are of the “creation” class identify “software”, “available”, “http”, “developed”,
and “source” as the most common. A more proper analysis for all intent types
to identify word patterns could improve the classification system (Fig. 2).

To test the full breadth of capabilities of the GPT models, we employed
various experiments including zero-shot, few-shot and fine-tuned approaches.
None of the few-shot and zero-shot approaches for both GPT-3.5 and the
GPT-4 models achieved performance comparable to the fine-tuned models, which
means that software citation intent classification is not a task that these models
can do out of the box, without additional training. Adding example cases to the
prompts in a few-shot setting yielded a decrease in both precision and recall over
the evaluation sets compared to the zero-shot setting. Beyond this preliminary
work, future experiments will have to test different versions of prompts to further
probe this unexpected behavior, as prompt engineering was not an extensive part
of this work. Fine-tuning the GPT-3.5 model generated results comparable to the
BERT models. We did not experiment with fine-tuning a GPT-4 model because
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this process is closed to the general public at the moment of paper publication,
but we would expect that a GPT-4 fine-tuned model would achieve even higher
performance. The easiest category to predict was Usage, followed by Creation.
The Mention category was the hardest for models to learn to predict well, which
makes sense given that software falling in the other classes can automatically
fall under this category as well. While trained on different intent categories and
data, our best models surpass the metrics reported by SoftCite and SoMeSci
on the Creation and Mention categories and are comparable for the Usage
category.

Fine-tuned models generally exhibited high performance on the test set. How-
ever, despite our best efforts to identify and resolve systematic differences in the
CZI validation set from our test set, models were not able to achieve similar
performance. The only competitive performance can be observed using the fine-
tuned GPT-3.5 model. Given this is a challenging dataset coming from a different
distribution than the training data, this speaks to the power of the GPT family
of models to generalize and find nuance in ambiguous text, compared to BERT
models. Further experiments necessitate a proper quality and error analysis of
the validation set.

7 Conclusion

In conclusion, this preliminary work presents a new system for the classification
of software citation intent in scholarly research and insights into the use of large
language models for classifying scientific software citation intent. Building on
prior work in this research space, we offer an aggregated and normalized corpus
that can be used to train and evaluate the performance of machine learning mod-
els tasked on the classification of mentions, usage, and creation of software in
text. We present, to the best of our knowledge, the first study on using large lan-
guage models on predicting software citation intent. The identification of these
entities contributes to the link between research software and scientific publica-
tions. We believe this work establishes a foundational framework for exploring
the under-examined area of studying scientific software citation intent.
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Appendix

(See Figs. 3, 4 and 5).

Fig. 3. GPT-3.5/GPT-4 few-shot Comparison of True and Predicted Labels Distri-
butions for few-shot GPT-3.5/GPT-4 models, trained both on the sentence and the full

context. Y axis represents the counts, and X axis the label categories. pred gpt3.5/4

true
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Fig. 4. GPT-3.5/GPT-4 zero-shot Comparison of True and Predicted Labels Dis-
tributions for zero-shot GPT-3.5/GPT-4 models. Y axis represents the counts, and X

axis the label categories. pred gpt3.5/4 true

Fig. 5. Performance of GPT-3.5 and GPT-4 models on the test split and
the CZI validation dataset. Blue bars correspond to Precision, red bars to Recall
and green bars to the F1 score. First row corresponds to results on the test split of the
training data (0.2 of the training data. Second row corresponds to the CZI validation
dataset. The first column shows overall model performance, aggregating the labels
in a macro fashion. Each subsequent column represents model performance for that
particular intent class. Note that we do not have any ’unlabeled’ sentences in the CZI
validation dataset, which is why all metrics will be 0.
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Abstract. An increasing amount of scientists link to their research soft-
ware code implementations in their academic publications in order to
support the reusability of their results. However, research papers usually
contain many code links (e.g., from reused tools or existing compet-
ing efforts) making it challenging to automatically establish clear links
between papers and their corresponding implementations. This paper
presents RepoFromPaper, an approach for automatically extracting the
main code implementation associated with a research paper, based on the
context in which that link is mentioned. Our approach uses fine-tuned
language models to retrieve the top candidate sentences where a code
implementation may be found, and uses custom heuristics to link candi-
date sentences back to their corresponding URL (footnote, reference or
full-text mention). We evaluated RepoFromPaper on 150 research papers,
obtaining an F1 score of 0.94. We also run our approach on nearly 1800
papers from the CS.AI Arxiv category, discovering 604 paper-repository
links and making them available to the community.

Keywords: Information extraction · Research Software · Software
repository · Open Science

1 Introduction

Research Software, i.e., the source code files, algorithms, scripts, computational
workflows and executables that were created during the research process [2] is
becoming recognized as a first class citizen in scientific curricula.1 In order to
support the results described in academic publications, scientists often include a
link to a code repository (e.g., GitHub, Gitlab) with their technical implemen-
tations details.

While efforts have been made by the scientific community to establish princi-
ples [16] and formats for software citation [5], detecting the code repository link
associated with a publication has two main challenges. First, authors often cite
research software inconsistently, employing diverse formats and locations such as

1 https://sfdora.org/read/.

c© The Author(s) 2024
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full-text repository mentions (cases where the link is written in the paragraphs),
footnotes, or references to refer to a software component [8]. Second, a publi-
cation may contain several code repository links (from tools that are reused, or
competing with the proposed approach) making it challenging to automatically
detect the right code implementation.

This paper introduces a methodology designed to address these challenges by
automatically extracting the software implementation repository link associated
with a research paper, based on the context in which the link is mentioned. The
core contributions of our work include:

1. Training and validation datasets of labeled sentences designed to fine-
tune and evaluate our approach [17]. The training dataset includes 61 research
papers related to software engineering available on the PapersWithCode2

platform. The validation dataset includes 150 software engineering research
articles extracted from Arxiv. Both datasets encompass various types of
implementation mention sentences to cover the diverse ways authors refer-
ence the implementation repository.

2. RepoFromPaper3, a tool to automatically extract the code implementation
repository from a research paper, including PDF-to-Text conversion, sentence
extraction, sentence classification and link search, as well as three fine-tuned
models.

3. The results of the application of our approach on nearly 1800 Arxiv research
papers, capturing links between research papers and their software implemen-
tations [20].

The rest of the paper is structured as follows. Section 2 describes related work
efforts, while Sect. 3 describes the steps followed by RepoFromPaper to detect
implementation links. Section 4 describes the metrics used in our evaluation and
Sect. 5 presents our assessment results on 150 papers. Next, Sect. 6 describes how
we applied our results to nearly 1800 papers, Sect. 7 discusses the limitations of
our approach and Sect. 8 concludes the paper.

2 Related Work

The landscape of research papers mentioning software is vast and continually
expanding. Platforms such as PapersWithCode actively promote the citation
and linking of software source code in research papers. The FORCE11 Soft-
ware Citation Working Group4 has put forth software citation principles [15],
and efforts from Katz et al. have analysed software citation implementation
challenges [9], software citation in theory and practice [10], as well as provided a
software citation guide [11] for researchers. These initiatives highlight the impor-
tance of proper software citation in research.

2 https://paperswithcode.com/.
3 https://github.com/StankovskiA/RepoFromPaper.
4 https://force11.org/group/software-citation-working-group/.

https://paperswithcode.com/
https://github.com/StankovskiA/RepoFromPaper
https://force11.org/group/software-citation-working-group/
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Researchers have taken on the challenge of automatically detecting software
mention intent, as exemplified by the work available on GitHub5 which uses data
from SoftCite (Du et al., 2021) [6] and SoMeSci (Schindler et al., 2020) [14]. Their
focus is on classifying software mentions based on intent, categorizing them into
“Creation” (i.e., a tool is proposed in a paper), “Usage” (i.e., a tool is used in
a publication to conduct research), and “Related” (i.e., a tool is mentioned as
a related competitive effort). While this work shares similarities with ours, they
aim to detect software tool mentions and understand their intent. Instead, our
objective is to identify the repository code implementations associated with a
research publication.

Lin et al. [12] present a methodology for automatically extracting software
source code URLs, reporting a high model accuracy of 0.939. However, their
approach has three limitations. First, their methodology does not consider URLs
in references. Second, their approach relies on GROBID,6 a PDF parser that
structures nicely the contents of a paper, but may overlook footnotes. Third,
their reliance on a regex search for sentences containing URLs may overlook
indirect mentions, such as those within references or footnotes.

Finally, our previous work7 [7] focuses on identifying bi-directional URL men-
tions between a paper and a repository, i.e., papers which mention a source
code repository, and the repository reciprocates by mentioning the paper. While
this approach holds the potential for high precision, it falls short in capturing
unidirectional repository mentions (i.e., those publications that refer to a code
repository but without a link back to that paper), which we aim to address in
this work.

3 RepoFromPaper: Methodology

Our approach consists of six steps. Figure 1 provides an overview of the data flow
within the pipeline, starting with an input PDF file and concluding with either
the discovery of a relevant code implementation link or an empty response. We
elaborate on each step of the pipeline below, providing insights into the rationale,
processes, and integration of essential components within our methodology.

3.1 PDF-to-Text Conversion

We start with the conversion of PDFs of research papers into text using the
Apache Tika PDF reader8, known for its speed and accurate extraction of
text. This initial step enables subsequent text-based processing, facilitating the
application of heuristic rules for sentence extraction and input into the models
for identifying repository implementation mentions. Although alternatives like
5 https://github.com/karacolada/SoftwareImpactHackathon2023 SoftwareCitation

Intent.
6 https://github.com/kermitt2/grobid/.
7 https://github.com/SoftwareUnderstanding/RSEF.
8 https://github.com/chrismattmann/tika-python.

https://github.com/karacolada/SoftwareImpactHackathon2023_SoftwareCitationIntent
https://github.com/karacolada/SoftwareImpactHackathon2023_SoftwareCitationIntent
https://github.com/kermitt2/grobid/
https://github.com/SoftwareUnderstanding/RSEF
https://github.com/chrismattmann/tika-python
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Fig. 1. RepoFromPaper Methodology Flowchart

GROBID are available, we selected Apache Tika due to its robust performance
in handling various PDF formats, processing speed, and accurate representation
of footnote content, which is a critical factor in our methodology. The source
code for our package, including the integration with Apache Tika, is available
online under an MIT license9, providing transparency and reproducibility for
our approach.

9 https://github.com/StankovskiA/RepoFromPaper.

https://github.com/StankovskiA/RepoFromPaper
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3.2 Sentence Extraction

The Sentence Extraction phase preprocesses the input PDF text and extracts
complete sentences for subsequent analysis. Within this phase, various functions
contribute significantly to refining and organizing the PDF text, effectively seg-
menting it into well-formatted sentences (e.g., removing end-of-line dashes) each
ready for input into the fine-tuned models to classify them. The decision to
extract sentences instead of paragraphs is driven by our findings that paragraphs
introduce significant noise, while sentence-level extraction enhances model learn-
ing by focusing on key information.

Text cleaning is crucial for ensuring uniformity and clarity in the extracted
sentences. This involves removing newline characters, word breaks, extra white
space, and inconsistencies in links. Additionally, we extract reference number
- reference text pairs, as well as footnote number - footnote text pairs if the
footnote text is a link. This approach enables us to utilize this information
effectively in the subsequent link search step.

Due to the diverse formats and layouts of research papers, sentences are fre-
quently split across multiple lines, possibly spanning different pages and encoun-
tering footnotes in between, oftentimes including hyphenation at the end of lines
as a line break. To address this issue, we consolidate fragmented sentences by
considering factors such as sentence beginning and ending, new line characters
and white spaces, and hyphenation, ensuring the formation of cohesive and com-
plete sentences from fragmented text.

3.3 Sentence Classification

In this section, we delve into the process of classifying sentences extracted from
research papers in order to identify implementation links. The classification is
performed using fine-tuned BERT, SciBERT and RoBERTa models, chosen for
their effectiveness in processing textual data.

Training Data and Fine-Tuning. We approach the problem of distinguishing
between implementation mentions sentences and non-implementation sentences
as a text classification problem, more specifically a sentence classification prob-
lem. Based on the context of the sentence, we aim to assess whether it is propos-
ing an implementation of the paper. For this purpose, we assembled a training
corpus [17] consisting of sentences extracted from 61 research papers related to
software engineering sourced from the PapersWithCode platform. These sen-
tences encompass various ways of mentioning repositories that authors tend to
use, including full-text mentions, footnotes, and references. Each sentence in
the corpus was annotated with a binary label indicating whether it mentions
an implementation repository (1) or not (0). This annotation process involved
one annotator initially labeling the sentences, followed by a review by another
annotator. Any conflicts about the annotations were resolved through discus-
sion until agreement was reached, particularly regarding whether to include an
implementation mention if it was lacking clear context.
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The models were fine-tuned using a binary sequence classification setup,
where the objective was to classify sentences as either implementation men-
tions or non-implementation sentences. We employed the ‘bert-base-uncased’
model for BERT [4], ‘allenai/scibert scivocab uncased’ for SciBERT [1] and
the ‘roberta-base’ model for RoBERTa [13], initializing them with pre-trained
weights. The fine-tuned BERT10, SciBERT11 and RoBERTa12 models are avail-
able on the HuggingFace platform.13

3.4 Sentence Ranking

Using our fine tuned models, we classify all the sentences available in an input
publication. The models then predict the probability of each sentence belong-
ing to the class of implementation or non-implementation sentences. Based on
these probabilities, the sentences are ranked, allowing us to identify the sentences
which are most likely to contain implementation mentions. We then retrieve the
five sentences with the highest probability as candidates to find implementation
links. Our rationale for selecting the top five sentences is that, while the model
predicts the probability of each sentence belonging to class 1, we observed that
the correct proposal sentence may not consistently have the highest probability.
To mitigate this, we opt for a more inclusive strategy, extracting the top five
sentences based on their probability scores. This increased the chances of cap-
turing the correct proposal sentence from 80% to 94%, accounting for potential
variations in model predictions.

3.5 Repository Link Search

The final step of our methodology aims to link the top ranked sentences with
the corresponding link containing the code implementation. We divide this step
in two stages:

1. Repository link search in top sentences: We use regular expressions to
retrieve any code repository links (GitHub, GitLab) that may be found within
the candidate sentence itself. As described in Howison & Bullard (2015) [8],
inline references are among the common practices for citing software in pub-
lications. The rationale behind this step is to establish a direct connection
between the predicted proposal sentences and their corresponding reposito-
ries. By searching for links within the sentences with the highest probability
of being implementation mentions, we aim to streamline the extraction pro-
cess and efficiently link research papers to their associated repositories. If
multiple repository links are present in the top-ranked sentences, we return
the first identified link.

10 https://huggingface.co/oeg/BERT-Repository-Proposal.
11 https://huggingface.co/oeg/SciBERT-Repository-Proposal.
12 https://huggingface.co/oeg/RoBERTa-Repository-Proposal.
13 https://huggingface.co/.

https://huggingface.co/oeg/BERT-Repository-Proposal
https://huggingface.co/oeg/SciBERT-Repository-Proposal
https://huggingface.co/oeg/RoBERTa-Repository-Proposal
https://huggingface.co/
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2. Repository link search in footnotes and references: This step aims to
broaden the search scope by examining the sentences that may contain rel-
evant numbers or special characters representing footnote or reference num-
bers. These characters are indicative of footnote or reference numbers com-
monly associated with research papers. The order of appearance of these
numbers is retained to prioritize classified sentences with higher probability.
Once potential footnote or reference numbers are identified, our methodol-
ogy proceeds to search for candidate sentences containing these numbers. To
maximize the chances of finding the correct sentence, we consider both the
original appearance of the numbers and variations with or without brackets,
particularly when reference numbers are enclosed in brackets.

4 Evaluation Methods

To assess the performance of our methodology, we employ two main evaluation
methods, each providing valuable insights into the effectiveness of our approach.

4.1 Mean Reciprocal Rank (MRR)

Mean Reciprocal Rank (MRR) [3] serves as a key evaluation metric for gauging
the individual performance of the fine-tuned models. MRR is calculated based
on the position of the correct proposal sentence within the list of the top five
highest ranked sentences. This metric offers an understanding of how well the
models rank the correct proposal sentence relative to other potential candidates.
A higher MRR indicates better model performance in isolating and prioritizing
the most relevant sentences.

The formula for Mean Reciprocal Rank is given by:

MRR =
1
N

N∑

i=1

1
ranki

(1)

where N is the number of instances, and ranki is the position of the correct
proposal sentence in the ranked list for the ith instance.

4.2 Precision, Recall, and F1 Score

To comprehensively evaluate the overall performance of RepoFromPaper, we
employ precision, recall, and F1 score metrics. These metrics are calculated based
on the following definitions:

– True Positive (TP): The pipeline returns a correct repository implemen-
tation link for the target paper.

– False Positive (FP): The pipeline returns an incorrect repository imple-
mentation link for the target paper.

– False Negative (FN): The pipeline fails to identify any repository imple-
mentation link, but one is present.
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– True Negative (TN): The model finds no repository implementation link,
and there is no link present in the paper.

Precision measures the accuracy of the identified repository links, recall
assesses the ability of the methodology to capture all relevant links, and the
F1 score provides a balanced evaluation considering both precision and recall.

4.3 Training and Testing Corpora

In the training corpus for our models, we included 75 implementation sentences
and approximately 2500 non-implementation sentences from 61 research papers
sourced from the PapersWithCode platform. To evaluate the performance of
our method, we assembled a separate evaluation corpus [19] consisting of 150
software engineering research papers obtained from Arxiv.org. These papers were
carefully selected to ensure heterogeneity and avoid repetitiveness, representing a
diverse range of implementation mention styles, authored by various authors. We
manually tagged these papers to create a validation set specifically for evaluating
our methodology. Importantly, none of the papers included in this validation
set were used for training the models, ensuring the integrity of our evaluation
process.

We utilized the entire text contents of these papers in our evaluation pro-
cess. To ensure merit and diversity of repository implementation types, both
the training corpus and evaluation set are consisted of papers that encompass
the three main mention types: “Full-text” (i.e., inline URLs), “Footnote” and
“Reference” mentions. Figure 2 shows the number of mention types present in
the training and evaluation set, which follow a similar distribution.

Figure 3 shows the frequency distribution of repository links found in the
papers. This distribution sheds light on the challenges associated with auto-
matically identifying and extracting the correct implementation repository links
from research papers, as a nearly half of the papers have two or more code links.

Finally, papers that only used hyperlinks to link the implementation repos-
itories were excluded from the set as the link text was not present in the PDF
text.

5 Results

Table 1 describes the results obtained from the evaluation of our methodology
using the Fine-Tuned BERT, SciBERT, and RoBERTa models over our test
set. Our results present an accurate identification of implementation mentions
within research papers (0.94 F1), indicating the efficacy of employing fine-tuned
language models. The SciBERT model exhibits superior learning capabilities,
as reflected in its elevated precision, recall, and F1 score. This implies a more
sophisticated grasp of implementation mentions. The model’s enhanced perfor-
mance is in line with its advanced architecture, emphasizing the significance of
employing state-of-the-art language models for intricate tasks.
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Fig. 2. Distribution of implementation links and their style (within the full text, as a
footnote or in a reference) in training and testing corpora

Table 1. Evaluation results for the fine-tuned models

Model Precision Recall F1 Score MRR

BERT 0.864 0.871 0.867 0.55

RoBERTa 0.942 0.929 0.936 0.753

SciBERT 0.944 0.95 0.947 0.85

These results provide insights into the performance of the fine-tuned mod-
els, as well as the overall methodology, in identifying implementation mentions
within the extracted sentences. To better understand the significance of the
results, we compare our results in the test set against a baseline method achieved
by selecting the most frequent code repository (using a regular expression) in
a publication (the first code repository is returned if all code links appear just
once).

The comparison between the regex baseline and our best performing model
can be seen in Table 2. Our method outperforms the baseline by achieving 15%
higher precision and 6% increase in F1 Score, while having a 5% lower recall.
We consider this an adequate trade off for the problem at hand.
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Fig. 3. Number of code repository links in training and test papers

Table 2. Comparison with baseline performance

Model Precision Recall F1 Score

Regex Baseline 0.793 1 0.88

SciBERT 0.944 0.95 0.947

6 A Corpus of Papers and Their Corresponding
Implementations

We packaged our method into RepoFromPaper14 [21] and applied it on nearly
1800 research papers submitted in the years 2022 and 2023 found on the Artificial
Intelligence section on Arxiv.org.15 We applied our method both with the fine-
tuned RoBERTa and SciBERT models over the papers. The leading performance
of the SciBERT model approach was once again confirmed as it led to detec-
tion and extraction of 604 implementation repository links, while the RoBERTa
model approach detected 585. We make the outcomes of this application of our
method public [20].

Finally, we compared our approach using the SciBERT model against a
method that detects bi-directional links between papers and code repositories [7]
on 150 research papers from the Software Engineering category on Arxiv.org16.
These 150 articles were selected randomly, from the year 2023 (selected papers
may or may not include a code implementation link). In summary, the number

14 RepoFromPaper is available at https://github.com/StankovskiA/RepoFromPaper.
15 https://arxiv.org/list/cs.AI/recent.
16 https://arxiv.org/list/cs.SE/recent.

https://github.com/StankovskiA/RepoFromPaper
https://arxiv.org/list/cs.AI/recent
https://arxiv.org/list/cs.SE/recent


110 A. Stankovski and D. Garijo

of implementation links found only by the bi-directional approach was 4, the
number of implementation links found only by RepoFromPaper was 41 and the
number of implementation links found by both approaches was 16. In 89 publi-
cations none of the approaches found an implementation link. The results of the
comparison are available online [18].

Our findings show that our approach is able to extract 25% more imple-
mentation repository links when compared to the bi-directional approach. Fur-
thermore, we observe an expected overlap in the extracted links between both
approaches, i.e., both approaches successfully extract the same implementation
link. However, we also observe unique links extracted by each method. The rea-
son for this divergence is twofold. On the one hand, while our approach is able
to detect uni-directional links between a research paper and a repository, the
bi-directional approach requires the repository to also point back to the paper,
therefore missing these links. On the other hand, the bi-directional approach
is able to return multiple confirmed links (many authors separate code imple-
mentation and evaluation results in different repositories) whereas our approach
currently returns only one implementation repository link. The ability of both
approaches to detect unique links suggests that they can complement each other,
aiming to extract as many correct implementation repository links from the
research paper as possible.

7 Discussion

Our approach produces high evaluation results, presents several limitations.
Firstly, the model training dataset was limited to the 75 implementation men-
tion sentences present in 61 research papers, which may restrict its ability to
generalize in other domains. Additionally, when the proposal link was not found
in the top-ranked sentences, our methodology searched for footnote or reference
mentions, but the abundance of numbers in some sentences introduced potential
noise. Moreover, the order of sentences containing footnote/reference numbers
posed complexity, occasionally leading to false positive links. Another limita-
tion is that our methodology currently returns only one implementation link,
even when multiple correct links may exist in a publication. Our approach also
does not extract links embedded as hyperlinks, defined in tables or present in
metadata. Despite these challenges and limitations, our methodology demon-
strates robust performance by effectively detecting and extracting implementa-
tion repository links from PDFs of research papers, irrespective of their formats
or the diverse ways in which implementation repositories are mentioned.

8 Conclusions and Future Work

In this paper we introduced RepoFromPaper, a methodology and tool for the
automatic extraction of implementation repository links from research papers.
Our evaluation demonstrates promising results, showcasing the efficacy of using
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fine-tuned language models. The achieved precision, recall, and F1 scores, par-
ticularly with the SciBERT model, signify a considerable success in identifying
implementation mentions within research papers.

However, while our approach has shown good performance, there remain
areas for improvement, particularly in the pre-processing step of converting
PDFs to text. Enhancements in this phase may lead to more accurate sentence
extraction, reducing noise and further refining the pipeline’s effectiveness.

Moving forward, there are several avenues for future work and improvements.
First, expanding the training dataset and fine-tuning the models with a more
extensive range of proposal mention variations may enhance their ability to
recognize diverse ways of mentioning repositories. Second, investigating more
advanced PDF-to-Text conversion techniques may contribute to better sentence
extraction, overcoming challenges posed by varied PDF formats. Finally, apply-
ing our method on research papers from different domains will help us general-
izing our approach, gaining better insights into the current practices regarding
code and data repository mentions in disciplines other than Computer Science,
ranging from Astronomy to Geology or Computational Biology.
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Abstract. Research Software code projects are typically described with
a README files, which often contains the steps to set up, test and
run the code contained in them. Installation instructions are written
in a human-readable manner and therefore are difficult to interpret by
intelligent assistants designed to help other researchers setting up a
code repository. In this paper we explore this gap by assessing whether
Large Language Models (LLMs) are able to extract installation instruc-
tion plans from README files. In particular, we define a methodol-
ogy to extract alternate installation plans, an evaluation framework to
assess the effectiveness of each result and an initial quantitative eval-
uation based on state of the art LLM models (llama-2-70b-chat and
Mixtral-8x7b-Instruct-v0.1). Our results show that while LLMs are
a promising approach for finding installation instructions, they present
important limitations when these instructions are not sequential or
mandatory.

Keywords: Research/Scientific Knowledge Graphs · Natural Scientific
Language Processing · Information Extraction

1 Introduction

Research Software [5] is becoming increasingly recognized as a means to support
the results described in scientific publications. Researchers typically document
their software project in code repositories, using README files (i.e., readme.md)
with instructions on how to install, setup and run their software tools. However,
software documentation is usually described in natural language, which makes
it challenging to automatically verify whether the installation steps required to
make the software project work are accurate or not. While seemingly arbitrary, it
can be challenging for researchers to follow instructions from different document
standards and make sure they work harmonically and consistently.
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In this work we aim to address these issues by exploring and assessing the
abilities of state of the art Large Language Models (LLMs) to extract installation
methods (Plans) and their corresponding instructions (Steps) from README
files. LLMs such as GPT-4 [21] and MISTRAL [12] have been firmly established
as state of the art approaches in various natural scientific language processing
(NSLP) tasks related to knowledge extraction from human-like scientific sources
such as software documentation from public sharing code hosting services. LLMs
have also shown promise in following instructions [26] and learning to use tools
[25]. However, existing research in the field is still quite novel.

Our goal in this work is twofold: given a README file, we aim to 1) detect all
the available Plans (e.g., installation methods for different platforms or operative
systems) and, 2) for each Plan, detect what steps are required to install a software
project, as annotated by the authors. Our contributions1 include:

1. PlanStep, a methodology to extract structured installation instructions from
README files;

2. An evaluation framework to assess the ability of LLMs to capture installation
instructions, both in terms of Plans and Steps;

3. An annotated corpus of 33 research software projects with their respective
installation plans and steps.

We implement our approach by following our methodology to evaluate two
state of the art LLMs (LLaMA-2 [31] and (MIXTRAL [12]) on both installation
instruction tasks with our corpus of annotated projects.

The reminder of the paper is structured as follows. Section 2 discusses rel-
evant efforts to ours, while Sect. 3 describes our approach. Section 4 describes
our experimental setup and early results, Sect. 5 addresses our limitations and
Sect. 6 concludes the paper.

2 Related Work

The goal of extracting relevant information from scientific software documenta-
tion forms the foundation of complex knowledge extraction with Natural Lan-
guage Processing (NLP) models, all of which use machine-learning-based (ML)
approaches as basic building blocks [10].

Extracting action sequences from public platforms (e.g. Github, StackOver-
flow) or README files is an instance of a complex planning tasks class of prob-
lems. Remarkably, the field of automated software engineering has rapidly devel-
oped novel approaches using LLMs on important problems, for instance, inte-
grating tool documentation [23], detecting action sequence from manuals [18],
testing software [39], traceability and generating software specifications [42].

LLMs such as GPT-4 and others follow an architecture using encoder-decoder
structure [37], and have been shown to perform well on simple-plans extraction

1 The code and corpus are publicly available at: https://github.com/carlosug/
READMEtoP-PLAN/ [44].

https://github.com/carlosug/READMEtoP-PLAN/
https://github.com/carlosug/READMEtoP-PLAN/
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and procedure mining [24], as well as mining to support scientific material discov-
ery [2,38]. The fundamental constraint of multi-step reasoning abilities, however,
remains [19,33,34].

In the Knowledge Extraction (KE) field, foundational work builds on general-
propose metadata extractor and domain-specific have been successfully applied
in a variety of tasks including scientific mentions [6], software metadata extrac-
tion [17,32], and scientific knowledge graph creation [15]. The automated plan-
ning community has also continued to push the boundaries of approaches that
learn how to extract plans [20] and action sequences from text in domain-specific
[4,8,13], and general domains (i.e., [18,35]). Recently, [22,43] and [26] have made
an impressive advance in the feasibility of connecting LLMs with massive APIs
documentation. However, in most cases installation instructions, specifically for
plans and steps are absent from the corresponding studies.

Recent work [9,11] has achieved significant improvements in multi-step
extraction tasks by using different prompt strategies [34,36]. In these prompt
strategies, the number of operations required to extract entities or events from
text grows. This makes it more difficult to learn semantics between the inputs
as the instructions are not self-actionable, especially when several steps are
involved. Early approaches also discussed the missing descriptions in generated
plans [30], and composed learning a mapping from natural language instructions
to sequences of actions for planning proposes [27]. In this experiment, this is
reduced to a number of formal definitions, albeit at cost of reduced effective
resolution due to natural language problem, an effect we plan to counteract with
improved prompt variations using formal representation [7,18] as described in
Sect. 3.6.

To the best of our knowledge, this is the first approach relying entirely on
LLMs to extract installation instructions from research software documentation.
We focus on eliciting multi-step reasoning by LLMs in a zero-shot configuration.
We ask LLMs to extract both the installation plans and step instructions, effec-
tively decomposing the complex task of installing research software into two
kinds of sub-problems: 1) extraction of installation methods to capture various
ways of installing research software as Plan(s) from unstructured documenta-
tion, and 2) extraction of installation instructions to identify sequential actions
for each method as Step(s) (i.e., Step(s) per Plan).

3 PlanStep: Extracting Installation Instructions
from README Files

In this section we present PlanStep, our proposed approach designed to address
limitations briefly outlined in Sect. 2. First, we describe the core goal and problem
we attempt to solve. Next, we describe the PlanStep architecture and building
blocks. Finally, we describe the data generation and corpus.
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3.1 Classical Planning: Software Installation Instructions

The central objective of planning tasks for an intelligent assistant is to
autonomously detect the sequence of steps to execute in order to accomplish
a task. In classical planning domain, this procedure relies on a formal represen-
tation of the planning domain and the problem instance, encompassing actions,
and their desired goals [9].

In our case, a problem instance within the installation instruction activity
is illustrated in Fig. 1. This instance features research software with two alter-
nate plans for installation available in the README: "Install from pip" and
"Install from source". Each plan is defined fairly briefly, but detailed in the
corresponding headers of the markdown file. Subsequently, installation steps out-
lining the requirements for the setup and execution, are displayed. For instance,
the Plan 1 (categorised as "Package Manager") includes Steps contains three
steps (or actions). Plan 2, classified as “Source”, involves one step. If we ask an
intelligent assistant to autonomously decide on what sequence of steps to execute
this software, we might use an LLM to mine its documentation and break down
the installation objective into smaller sub-tasks: first detecting the requirements,
then identifying the plan available, and finally execute the necessary commands.
Many installation procedures may not need planning. For example, the "Package
Manager" plan usually entails a one-step with code block, showing exactly what
others need to type into their install software from a command line. However, in
complex installation plans such as "from Container" (i.e., Docker compose-up,
create virtual environments, configure public keys, etc.,..) planning allows the
assistant to decide dynamically what steps to take. If we want an assistant to
consider a software component and install it following its instructions, the task
may be decomposed into different steps: 1) detect alternate plans which are
available as installation methods and, 2) for each installation method, detect its
corresponding sequence of steps.

3.2 PlanStep Methodology

Consistency in the extracted installation methods across different software ver-
sions is key for researchers to accurately reproduce experiments, regardless of
when and how to access a README file. Therefore, our method aims to consis-
tently connect human-readable instructions to installation Plans and Steps.

PlanStep receives as input the entire README file, and aims to extract
action sequences from text in natural language, representing tasks with two
distinct levels of granularity: 1) alternate installation methods (e.g., installation
instructions for a separate operative system, installation instructions from source
code, etc.), and 2) for each installation method, the sequence of steps associated
with it.

Figure 2 depicts the methodology we followed for developing PlanStep, which
comprises five stages: the first stage is to collect a set of research software for
our study. Second, for each software component in the corpus, we retrieve the
link for the code repository, if present, and extract the installation instruction
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Fig. 1. An example of our experimental approach for PlanStep. A research software
project includes two installation methods: a simple installation plan i.e. Package Man-
ager and a complex one (i.e. Source). Each installation method has a different number
of steps and configuration details.

text from its README file. Then, we inspect the original README and repre-
sent the alternate installation plans for each README in a structured format.
Afterwards, for each entry, we prompt Large Language Models in order to detect
plans and their corresponding steps. Finally, we design an evaluation framework
to assess the quality of our results.

We limit ourselves to tasks that can be characterized as research software
installation activities and involve a reasonable or necessary order of steps to be
executed, such as manually setting up a software project component, installing
additional libraries using package managers, running from isolated containers,
or building from source.

Fig. 2. Overview of the methodology followed to collect research software and design
an evaluation framework to assess PlanStep
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3.3 PlanStep Corpus Creation

To systematically evaluate LLM performance on extracting installation plans
with steps across varying setups, complexity, and domains, we started by select-
ing a corpus of research papers with their code2 implementations from diverse
Machine Learning (ML) areas and across different task categories. For this eval-
uation, we excluded, however, papers with no link to their public repository
available on Github or Gitlab.

All annotations were made by the authors of this paper separately, and sub-
sequently compared until consensus was achieved. We discussed each entry to
determine the final set of steps and plans for each research software. Very rarely,
agreement on specific properties remained elusive even after evaluation, and
these cases were manually resolved through additional discussion. In summary,
our corpus has 33 fully active and maintained open-source research software
projects.

3.4 Ground Truth Extraction for PlanStep

The 33 research software projects in our corpus were selected as study subjects.
In a manual co-annotation process, we tasked annotators with identifying both
the installation plans and steps associated with each project’s README. The
installation plans varied in complexity and description style, with some, like from
pip typically comprising a single-sentence step (excluding requirements), while
others, such as ‘from source,’ included multiple steps, considering various user
environments and requirements. Additionally, we defined specific properties for
each plan type, taking into account technology-specific support, such as package
repositories like npm or PyPI. Further elaboration on these definitions is provided
below:

A. Plan: represents the concept of an installation method available in a
README, which is composed of steps, that must be executed in a given order.
For instance, a “Source” is an instance of a Plan concept. A README can
include one or multiple Plans in the installation instructions section. A brief
explanation of the plans and examples is provided in Table 1.

B. Step: represents the concept of a planned action as part of a ‘Plan’
to be executed sequentially. It may consist of either a single action or a
group of actions. We define a ‘Step’ based on the original README text,
where consecutive actions mentioned together are annotated as one step. For
instance, Listing 1.1 illustrates this concept with a simple JSON example. In the
example, the authors’ original text describes the first step (Step1) as ‘Clone
this repository and install requirements,’ which encompasses two dis-
tinct actions: ‘Clone this repository’ and ‘install requirements.‘. The
2 We made use of Paper with Code platform: https://paperswithcode.com/ as it links

together articles with software repository.

https://paperswithcode.com/
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Table 1. Definition of plan types and examples found in our corpus

Plan Type Short definition Examples

Binary Installing by directly downloading
and running precompiled files

GitHub releases

Container Installing by packaging software
components and its dependencies
using containerization

Docker, Podman,
Singularity

Package Manager Downloading and installing from
official repositories

Conda, Homebrew, Pip,
npm

Source Installing by manually compiling
original code into machine-readable
binaries

Clone from repository,
create virtual environment

second step (Step2) simply involves one action ‘iRun the container with
docker - compose’

1 {
2 "id": "4",
3 "name": "utiasASRL/steam_icp",
4 "url": "https ://raw.githubusercontent.com/utiasASRL/steam_icp/master/README.

md",
5 "plans": [
6 {
7 "type": "Container",
8 "steps": [
9 {

10 "text": "Clone this repository and install requirements.",
11 "seq_order": 1,
12 "is_optional": false
13 },
14 {
15 "text": "Run the container with docker -compose",
16 "seq_order": 2,
17 "is_optional": false
18 }
19 ],
20 "README_instructions": "## Installation Clone this repository and its

submodules .[....]"
21 }

Listing 1.1. JSON snippet showing Step 1 including two actions (Steps) “clone” and
“install”

We manually examined cases where annotators disagreed. For example,
significant confusion arose from overly complicated instructions detected in
README files, particularly in cases where installation instructions were
included in the markdown subheadings, such as #Step1: Download the
files, followed by a paragraph like Step1: Download the files with the
following commands. We resolved these conflicts by removing the content of
these subheadings and providing detailed annotations for the subsequent para-
graph.

Next, we faced challenges when describing plan types and steps across sup-
ported technologies. For instance, while instructions for the package manager
plan typically involve running pip install, the TorchCP library offered alterna-
tive installation methods like the TestPyPI server. To resolve this, we created a
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distinct plan named “package manager” and specified TestPyPI as the associated
technology property.

Lastly, conflicts emerged concerning the inclusion of installation require-
ments. Some cases listed requirements within the installation instructions, while
others deposited them in a separate section, traditionally before the installation
instruction content begins. We decided to include these software requirements
specifications only when they were part of the installation instruction section
content.

3.5 Distribution of the Installation Instructions of README Files

Table 2 shows descriptive statistics of the selected research software projects
based on our annotations. We reported four distinct installation Plans: binary,
source, package manager and container. Notably, over half of our corpus
exclusively relied on the “source” method for installing research software via
README files. While “from source” was the most prevalent standalone method
(66%), container and package manager plans were observed in only two and
one cases, respectively. As anticipated, the “binary” method was not reported
at all, indicating its rarity on open source general repositories such as Github.
Unsurprisingly, the most popular research software tools e.g., tensorflow or
langchain incorporated the instructions to install with package manager, typ-
ically consisting of up to two steps. The Plans vary widely in their number of
steps. For example, “simple” Plans e.g., Package Manager and Container con-
sists of 2–3 steps, while “complex” featured 10 (see Table 2 col (Total Steps)).
This diversity in the number of steps impacts installation Plan length in two
ways: 1) more steps introduce more complexity, and 2) additional instructions
can serve as obstacles, needing further action for installation.

Approximately 44% of our samples offered multiple plans or combinations for
software installation, suggesting a diverse landscape of installation approaches.
Further analysis of these combinations revealed redundant information across
many instruction sections, highlighting potential challenges for LLMs in accu-
rately identifying plans and steps. For instance, the maximum length of installa-
tion instructions for the source plan reached approximately 1,765 tokens, under-
scoring the complexity and variability of these instructions. This diversity not
only reflects the varied nature of installation plans but also poses challenges for
LLMs in accurately parsing and selecting relevant instructions, potentially lead-
ing to errors in plan and step detection. The total average length of installation
instructions across all subjects was 130.79 tokens.3

3.6 PlanStep Prompting

This section introduces our PlanStep prompt templates and its explanations for
such tasks, as depicted in PROMPT101 and PROMPT201.
3 Additional details about the corpus and its data exploration are available in our

GitHub repository: https://github.com/carlosug/READMEtoP-PLAN/blob/main/
RESULTS/corpus-explore-data.ipynb.

https://github.com/carlosug/READMEtoP-PLAN/blob/main/RESULTS/corpus-explore-data.ipynb
https://github.com/carlosug/READMEtoP-PLAN/blob/main/RESULTS/corpus-explore-data.ipynb
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Table 2. Statistics of plan and steps in the corpus. We report the number and average
of “ids” per plan type, multiple plans, maximum total steps in a plan, and the length
of installation instructions with parameters (TokenInstall.)

Plan Types(Combinations) Counts(Prop. %) Max. Total Steps Max.TokensInstall .md

Source 22 (66.66%) 10 253

Container 2 (6.06%) 3 158

Package Manager 1 (3.03%) 2 102

Binary – (−%) – –

Mult. Binary 1 (3.03%) 1 108

Mult. Source 1 (3.03%) 3 303

Mult. Package Manager 3 (9.09%) 3 348

Package Manager & Source 1 (3.03%) 3 217

Package Manager & Binary 1 (3.03%) 2 187

Container & Source 1 (3.03%) 9 725

ALL 33 (100%)

We directly instruct the LLMs with prompt design to describe the installation
methods (Plan) and their corresponding installation instructions (Step) for each
README. That is, the usual zero-shot prompt is set to ask LLM two tasks,
Plan and Step, respectively. Since the LLM contains no information about these
terms, we describe the terms and their respective meanings next to the task of the
prompt. Consequently, the prompts used in our experiment can be categorised
as follows:

Plan Prompting: This task is about extracting the installation method as
Plans described in a README. We named it the PROMPT101, and it contains
the four unique Plans and its definitions.

Plan Task (PROMPT101)

Plan Task (PROMPT101):
Given the following README, your task is to identify and list the unique
installation methods. These methods are plans containing instructions for
installing research software, to be executed in a specific order and under defined
conditions. Exclude code commands. Be concise.

1. Binary: Install via download and run precompiled files. For example,
GitHub releases.

2. Container: Install the software and its dependencies via isolated environ-
ments. For example, Docker, Podman, or Singularity.

3. Package Manager: Install via tools and indexed repositories. For example,
Conda, Homebrew, or Pip.

4. Source: Run via command-line, manage and install dependencies, compile
source code to a target machine, build, and run. For example, download
raw source code, clone repositories, and install dependencies from code
repositories.



Automated Extraction of Research Software Installation Instructions 123

Step Prompting: This task asks for detecting the installation instructions as
Steps found in a README. We named it the PROMPT201 and it requests a
list of Steps for a given installation plan.

Step Task (PROMPT201)

Step Task (PROMPT201):
Given the following README, extract the installation instructions for each
installation method. These methods are plans containing instructions as steps
for installing research software, to be executed in a sequential order, and under
defined conditions. Exclude code commands. Be concise.

1. Binary:[....] 4. Sourcea.

a We insert the same definitions as states in PROMPT101

4 Experiments

In order to evaluate the effectiveness of our approach, we conducted experiments
to test the ability of LLMs to capture plans and the sequence of tasks required
to install different software.

4.1 Experimental Setup

We employed Mixtral-8x7b-Instruct-v0.1 [12] and LLaMA2-70b-chat [31],
which are two of the most widely-used open-source LLMs with public access.4

Both models demonstrate moderately good instruction-following capabilities
[43]. Throughout our experiments, we maintained a temperature of 0 (argmax
sampling) to ensure reproducible results. The ground-truth annotations and
study subjects used to compare LLM’s predicted responses in the experiments
were those presented in Sect. 3.3 and Sect. 3.4.

4.2 Evaluation Metrics

To assess our proposed PlanStep method, we employed the following metrics to
assess the performance of LLMs on NLP-oriented tasks (as proposed by [3]):

– F1-scores: these scores are computed to compare the performance of LLMs
in extracting plans with the ground truth annotations.

– Recall-Oriented Understudy for Gisting Evaluation (ROUGE) [16]:
we report ROUGE-1 (R1), ROUGE-2 (R2), and ROUGE-L to evaluate the
quality of the results by comparing the LLMs extracted steps with the ground-
truth dataset.

4 Accessible through a public Python API Library: https://pypi.org/project/groq/.

https://pypi.org/project/groq/
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Table 3. Results obtained on the Plan detection task.

LLM Zero-shot

Precision Recall F1 score

llama-2-7b-chat 0.4615 0.8333 0.5941

Mixtral-8x7b-Instruct-v0.1 0.4068 0.6667 0.5053

Table 4. Evaluation results for detecting task steps for each plan. The scores (%) for
Rouge-1 (R1), Rouge-2 (R2), and Rouge-L (RL) for the generated step descriptions
compare our results against the ground truth steps.

LLM Zero-shot

R1 ↑ R2 ↑ RL

llama-2-7b-chat 29.48 18.88 27.75

Mixtral-8x7b-Instruct-v0.1 46.42 37.53 45.27

4.3 Evaluation Results

The results of our evaluation are shown in Table 3 and Table 4 for Plan and
Step tasks respectively. We present the performance of open-source LLM on
two task with the standard (PROMPT101 and PROMPT201) zero-shot prompt
templates.

Plan-Task: To evaluate the effectiveness of the LLMs, we tested the models in
different ways, measuring the change in performance on plan task by comparing
their generated response plans with ground truth annotations. We used zero-
shot approach. Table 3 summarises our results on plan tasks, and compares both
LLMs’ performance.

Both LLMs in zero-shot prompting achieved roughly a performance of more
than 50% F1-score. LLaMA-2 exhibits superior performance over MIXTRAL in
plan task with the LLaMA-2 outperforming the best of our experiment by 9%
compared to MIXTRAL.

Step-Task: We evaluated the performance with three metrics to measure the
quality in analyzing step-task. Table 4 shows the performance of the models (e.g.,
MIXTRAL and LlaMA).
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We further observe that while MIXTRAL consistently outperforms LLaMA-2
across all ROUGE scores (R1, R2, and RL) in the Step-task, achieving approxi-
mately 15% higher scores, both models demonstrate similarly poor performance
in adhering to optimal step orderings, with scores ranging from 0.46 to 0.29.
These findings suggest that both models struggle with the task of sequentially
ordering steps in a installation Plan.

4.4 Analysis

Results of Plan-Step task. Experimental results indicate that both LLMs
scored an average of around 55% F1-score for plan-task, and 37% ROUGE scores
for step-task. This suggest that LLMs intrinsically vary in their abilities to solve
complex tasks and reason efficiently, which are crucial for extracting plans and
detecting steps more accurately.

Error Analysis. We performed a detailed analysis on specific cases where
the detection performance of the LLMs differ significantly from the annota-
tions to understand why certain steps were falsely detected. We manually stud-
ied all errors made by LLMs and classify them into four categories. Table 55

shows the count of each error type on Plan-Step tasks: E1: means models call
Plans and Steps installation instructions wrongly by reusing prompt input e.g.,
"Binary": ["Step 1: Definition Prompt."; E2: indicates cases where mod-
els include notes and code commands in their responses, resulting in falsely
imputed new steps to a wrong Plan; E3 refers to situations where models extract
steps correctly but assign them to the wrong Plan Types due to a mixture of
verbs or words associated with the different methods, and lack of context e.g.,
if the word "pip" appears, the LLM directly assigns the corresponding step to
directly “Package Manager”6; O represents errors in an unclassified category
(e.g., summarizing steps, incorporating steps from a previous README, splits
steps or invented sentences as hallucinations). Further tables, plots and error
responses examples can be found in the Appendix.

Our results suggest that different Plans exhibit a wide diversity in error
types: simple installation tasks with few actions (“Package” and “Binary”) pri-
marily encounter issues related to E3; notably, “Source” faces more issues with
E1, indicating a significant impact of prompts on model performance. Across
Plan types, we observe nearly identical results suggesting a possible explana-
tion: concise instructions in README files may significantly reduce these incor-
rect behaviors, leading to successful execution of installation steps. Additional
experiments are needed to assess this hypothesis.

Effect of Prompts. Figure 3 shows an overview of the steps detected by each
LLM. Both MIXTRAL and LLaMA-2 perform on par (score: 10 vs. 7) in detect-
ing steps correctly and incorrectly (score: 8 vs. 9). However, the latter exhibits
5 The raw material we used to calculate the counts are listed in our repository [44]:
qualitative error analysis.md.

6 Install python packages from a git repository has been classified as step of “Source”
plan.
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Table 5. Counts of PlanStep on different Plans. E1: wrong Plans category but correct
Steps; E2: wrong order of steps but correct number; E3: wrong sequential order; O:
others

LLAMA MISTRAL

Error Type: E1 E2 E3 O E1 E2 E3 O

Binary 0 0 1 0 0 0 0 1

Source 15 4 8 1 0 6 4 2

Package Manager 0 0 1 0 1 0 4 0

Container 0 1 1 1 0 0 1 0

Fig. 3. Total count of steps detected for each Plan per LLM, in comparison with the
ground truth. If a LLM detected fewer steps than the annotations, we consider it under-
detection (under-d), while if it detected more, it indicate over-detection (over-d). A
correct step detection ((perfect) indicates the number of steps agree with those in the
ground truth. The (incorrect) detection counts steps in a plan that are falsely detected
i.e., the LLM model detected a plan with steps that are not part of our annotations)

slightly worse performance compared to the former in over-detection cases (score:
4 vs. 9), which is likely due to the ability of the model to insert prompts infor-
mation into the responses. The definitions seem to inadvertently lead LLMs
to incorrectly detect plans and steps by copying extra steps added solely to
the prompt definition i.e., E1: call non-existing Plans by adding prompt’s input.
This observation suggests the need for additional testing with zero-shot prompts
for different installation plans (and reduce the definitions used in the prompt).
More advanced zero-shot prompting methods [40] as well as chain-of-thought
prompt strategies [41] to effectively guide LLMs in translating steps into smaller
sub-tasks will be investigated in our future work.

Few-shot prompt strategies such as LLM4PDDL [28] together with chain-of-
thought prompts, may provide an expressive and extensible vocabulary repre-
sentation for semantically writing and describing plans to machines. We plan to
investigate this approach further in future work.



Automated Extraction of Research Software Installation Instructions 127

5 Discussion

This work aims to automatically extract all available installation information
from research software documentation. Our experiments demonstrate that while
LLMs show promising results, there is substantial room for improvement. During
our analysis, we prioritized extracting concise plans and steps of software instal-
lation text using two LLMs. LlaMA-2 generally demonstrates the fewest errors
in plan-task, indicating a higher accuracy in predicting the installation methods.
The LlaMA-2, however, shows a progressively higher number of errors when deal-
ing with steps. MIXTRAL exhibits the opposite. We observe that MIXTRAL
outputs are significantly more truthful than LlaMA-2 with less randomness and
creativity in their responses. Notably, the more steps involved, the more fre-
quent errors across both models, indicating the challenges faced in accurately
predicting parameters for tools.

Moreover, the reliance on LLM for the evaluation of plans and step instruc-
tions introduce new challenges. As LLM’s ability in planning tasks in under
scientific scrutiny [14,29], there is a crucial need for further validation and fine-
tuning of its capabilities in this specific context.

We are in our initial phase of the experimental research project, and con-
sequently, components from PlanStep approach will certainly be updated and
revised. First, we believe that designing combinations of few-shot prompt stan-
dards with the addition of strict formal language will improve the ability of
LLMs to detect plans, and their instructions for installation consistently. Second,
additional evaluations are needed to validate the insights obtained in our exper-
iments. For plan tasks, our approach may be compared with baseline models,
measuring the change in performance. Third, increasing the size of our annotated
corpus is notably advantageous, providing a broader exploration of alternative
semantic approaches formal representations. However, the manual nature of our
instruction writing process limits our capacity to scale this work significantly.

6 Conclusion and Future Work

In this work we presented an evaluation framework and initial experimentation
for using LLMs as a means to extract alternate research software installation
plans and their corresponding instructions. Our approach involves equipping the
LLM with essential documentation tailored to installation instructions, enabling
them to refine their accuracy when using the README and improve their per-
formance in automating the detection of installation instructions. As part of
our evaluation framework we have proposed an annotated corpus, which collects
different research software with their installation instructions, to systematically
evaluate LLMs in extracting tasks, including plans and steps belonging to those
plans.

Our experiments show promising results for both plan detection and step
detection, although we are still a long way from our goal. We are currently
extending our approach in different directions. First, we are augmenting the
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annotation corpus to consider additional README files of increasing complexity
in order to create a comprehensive benchmark, distinguishing READMES of
different complexity. Second, we aim to improve the prompting strategies used
in our approach, including few-shot examples to better equip the model with the
goal of each PlanStep task. Our central goal is to create an assistant that aids
in installing research software while addressing issues that may currently exist
in the installation instructions. Investigating further the addition of executable
instructions in formalised and machine-readable language from classical planning
research community i.e., Domain Definition Language (PDDL) [1] and beyond
i.e., P-Plan Ontology [7] is another research goals of ours.
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Appendix

Examples of Error Types Produced by LLMs

1 Question: PROMPT201
2 Correct Answer:
3 },
4 "7": {
5 "Source": [
6 "### Dependencies \n Initialize git submodules with",
7 "### Python environment \n Install the specific versions of every

package from ‘requirements.txt ‘ in a new conda environment:",
8 "To ensure that Python paths are properly defined , update the

‘~/.bashrc ‘ by adding the following lines"
9 ]

10 },
11 LLAMA Answer:
12 "7": {
13 "Binary": [
14 "Step 1: Download the precompiled files from GitHub releases."
15 ],
16 "Container": [
17 "Step 1: Initialize git submodules with ‘git submodule init ‘ and

‘git submodule update ‘.",
18 "Step 2: Create a new Conda environment with the specific

versions of every package from ‘requirements.txt ‘ using ‘conda create --
name gsft python =3.9 ‘.",

19 "Step 3: Activate the environment using ‘conda activate gsft ‘.",
20 "Step 4: Install the packages listed in ‘requirements.txt ‘ using

‘pip install -r requirements.txt ‘."
21 ],
22 "Source": [
23 "Step 1: Clone the repository.",
24 "Step 2: Initialize git submodules with ‘git submodule init ‘ and

‘git submodule update ‘.",
25 "Step 3: Create a new Conda environment with the specific

versions of every package from ‘requirements.txt ‘ using ‘conda create --
name gsft python =3.9 ‘.",

26 "Step 4: Activate the environment using ‘conda activate gsft ‘.",
27 "Step 5: Install the packages listed in ‘requirements.txt ‘ using

‘pip install -r requirements.txt ‘."
28 ]
29 },

Listing 1.2. Demonstration id: 7 (Error Type. 1 - Adding definition in the LLM
answer)
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1 Question: PROMPT201
2 Correct Answer:
3 "14": {
4 "Source": [
5 "Install the requirements with:",
6 "or set up TPU VM with:"
7 ]
8 },
9 MISTRAL Answer:

10 "14": {
11 "Package Manager": [
12 "1. Create a new conda environment with Python 3.10.",
13 "2. Activate the new conda environment.",
14 "3. Install Jax with CUDA 12 support: ‘pip install -U ‘jax[

cuda12_pip ]==0.4.23 ‘ -f https :// storage.googleapis.com/jax -releases/
jax_cuda_releases.html ‘",

15 "4. Install the required packages: ‘pip install -r requirements.
txt ‘"

16 ]
17 },

Listing 1.3. Demonstration id: 14 - Error Type. 2 (Mixture of steps from code
commands and notes)

1 Question: PROMPT201
2 Correct Answer:
3 },
4 "13": {
5 "Container": [
6 "First , install Docker on your machine. Then move to the original

directory ‘learning_to_fly ‘ and build the Docker image:",
7 "If desired you can also build the container for building the

firmware:",
8 "After that you can run it using e.g.:",
9 "Navigate to [https ://0.0.0.0:8000]( https ://0.0.0.0:8000) with

your browser , and you should see something like in the screenshot above (
after starting the training).",

10 "Navigate to [https ://0.0.0.0:6006]( https ://0.0.0.0:6006) with
your browser to investigate the Tensorboard logs."

11 ],
12 "Source": [
13 "Clone this repository:",
14 "Then instantiate the ‘RLtools ‘ submodule:",
15 "Then instantiate some dependencies of ‘RLtools ‘ (for

conveniences like checkpointing , Tensorboard logging , testing , etc.):",
16 "#### Install dependencies on Ubuntu",
17 "#### Install dependencies on macOS",
18 "Going back to the main directory (‘learning_to_fly ‘), we can now

configure the build of the code:",
19 "Finally , we can build the targets:",
20 "After successfully building the targets , we can run the code (in

the original directory ‘learning_to_fly ‘):",
21 "If not already installed:",
22 "Then from the original directory ‘learning_to_fly ‘:",
23 "To run the training with the UI, we download the JavaScript

dependencies in the form of the two files ‘three.module.js‘ and ‘
OrbitControls.js ‘:",

24 "After that we can execute the UI binary from the root folder:",
25 "Now you should be able to navigate to [http ://0.0.0.0:8000]( http

://0.0.0.0:8000) in your browser and start the training."
26 ]
27 },
28 LLAMA Answer:
29 "13": {
30 "Container": [
31 "Step 1: Install Docker on your machine.",
32 "Step 2: Move to the original directory ‘learning_to_fly ‘ and

build the Docker image: ‘docker build -t arpllab/ learning_to_fly .‘",
33 "Step 3: Run the container using ‘docker run -it --rm -p

8000:8000 arpllab/learning_to_fly ‘.",
34 "Step 4: Navigate to [https ://0.0.0.0:8000]( https ://0.0.0.0:8000)

with your browser to access the training program."
35 ],
36 "Source": [
37 "Step 1: Clone the repository: ‘git clone https :// github.com/

arplaboratory/learning -to-fly ‘.",
38 "Step 2: Instantiate the ‘RLtools ‘ submodule: ‘git submodule

update --init -- external/rl_tools ‘.",
39 "Step 3: Instantiate some dependencies of ‘RLtools ‘: ‘git

submodule update --init -- external/cli1 external/highfive external/json/
external/tensorboard tests/lib/googletest/‘.",

40 "Step 4: Install dependencies on Ubuntu or macOS.",
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41 "Step 5: Configure the build: ‘cmake .. -DCMAKE_BUILD_TYPE=
Release -DRL_TOOLS_BACKEND_ENABLE_OPENBLAS:BOOL=ON‘ (for Ubuntu +
OpenBLAS) or ‘cmake .. -DCMAKE_BUILD_TYPE=Release -
DRL_TOOLS_BACKEND_ENABLE_MKL :BOOL=ON‘ (for Ubuntu + MKL) or ‘cmake .. -
DCMAKE_BUILD_TYPE=Release ‘ (for macOS).",

42 "Step 6: Build the targets: ‘cmake --build . -j8 ‘.",
43 "Step 7: Run the code: ‘cd .. ./build/src/training_headless ‘.",
44 "Step 8: To run the training with the UI , download the JavaScript

dependencies and execute the UI binary: ‘cd src/ui ./ get_dependencies.sh
‘ and ‘cd ../../ ./build/src/ui 0.0.0.0 8000 ‘.",

45 "Step 9: Navigate to [http ://0.0.0.0:8000]( http ://0.0.0.0:8000)
in your browser to access the training program."

46 ]
47 },

Listing 1.4. Demonstration id: 13 - Error Type. O (correct sequential order but llm
split and invented sentences)

Detailed Tables

– Figure 4 illustrates the distribution of total length of readme instructions for
each study subject in our corpus.

– Figure 5 aggregates the study subjects per distinct Plan type and its technol-
ogy properties.

– Plots where each bar represents an ID research software, and within each
bar, different colored segments represent the ratio of system-detected steps
to reference steps for each method. Ratio of LLM Detected steps to Anno-
tations steps. A value around 1 indicates a good match between LLM and
Annotations (Figs. 6 and 7).

Fig. 4. Length (Tokens) of the
README for each “id” research
software

Fig. 5. Heatmap of our corpus
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Fig. 6. Ratio of LLM detected steps by
LlaMa versus ground truth steps

Fig. 7. Ratio of LLM detected steps by
MIXTRAL versus ground truth steps
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Abstract. This paper first presents DANKE, a data and knowledge
management platform that allows users to submit keyword queries to
a centralized database. DANKE uses a knowledge graph to provide a
semantic view of the centralized database in a vocabulary familiar to the
users. The paper then describes DANKE-U, a specialized module that
enables DANKE to handle unstructured data, including scientific and
engineering documents. Lastly, the paper presents a real use case from
the oil and gas industry, involving technical/scientific documents.

Keywords: Database Keyword Search · Knowledge Graphs · Data
Integration · Engineering Data · Scientific Data · Unstructured Data

1 Introduction

This paper first presents DANKE, a data and knowledge management platform
that allows users, without technical training, to submit keyword queries to a
centralized database. DANKE’s primary motivation is to democratize access to
data and documents, originally dispersed across different data sources, without
requiring users to write scripts or depend on the development of applications
that provide forms for querying this data.

DANKE helps construct a centralized database through a data integration
process with the following major steps: (i) data extraction from the original data
sources; (ii) transformation and enrichment of these data; (iii) loading the data
into the centralized database; (iv) indexing the data. DANKE uses a knowledge
graph to provide a semantic view of the centralized database in a vocabulary
familiar to the users. The knowledge graph is the basis of the search engine,
which matches the keywords users submit with the concepts of the graph, and
uses the matchings to compile automatically an SQL (or RDF) query on the
centralized database.
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The paper then describes DANKE-U, which enables DANKE to handle
unstructured data, including scientific and engineering documents. DANKE-U
is a collection of components that process unstructured data, extracting meta-
data, thumbnails, texts, images, named entities, and tables. With the help of
this extension, DANKE’s users can seamlessly search unstructured documents
and relate them to structured data.

Lastly, the paper presents a real use case from the oil and gas industry,
where DANKE is applied to technical/scientific documents and structured data
about subsea production systems, that play a critical role in offshore oil and
gas extraction. In this context, technical/scientific documents are challenging
to interpret: they may contain data organized in non-conventional tables that
merge cells (between rows and columns); or they may take the form of engineer-
ing drawings, etc. Thus, off-the-shelf tools are of limited help to analyze such
documents.

The paper is organized as follows. Section 2 contains a very brief discussion
on related work. Section 3 introduces DANKE. Section 4 outlines DANKE-U.
Section 5 covers a use case. Finally, Sect. 6 contains the conclusions.

2 Related Work

This section briefly covers related work in areas directly connected to data inte-
gration and database keyword search.

Data Integration. Classic data integration is usually divided into the major
sub-problems of data retrieval, data fusion, schema alignment, and entity linkage
[3]. The progress the data integration community has made in addressing these
challenges in the context of big data integration was explored in [5]. The ties
between machine learning and data integration were discussed in [4,20].

In the context of engineering data, Nguyen et al. [17] described the devel-
opment of a framework for data integration to optimize the remote operations
of offshore wind farms. Espinola et al. [6] presented an approach that integrates
data from mixed/augmented reality tools and embedded intelligent maintenance
systems to support operators/technicians during maintenance tasks, providing
easier access, understanding, and comprehension of information from different
systems. Urbina Coronado et al. [22] described how to integrate data from
machine tools with production data collected by a Manufacturing Execution
System (MES) to monitor process output, consumable usage, and operator pro-
ductivity.

Database Keyword Search Engines. Early relational keyword-based query
processing tools [1,18,19] explored the foreign/primary keys declared in the rela-
tional schema to compile a keyword-based query into an SQL query with a min-
imal set of join clauses based on the notion of candidate networks.

State-of-the-art content-based image retrieval strategies [9,13] assume that
high-dimensional vectors represent images, created using Deep Learning tech-
niques. Alternatively, the tool might transform both the text and the images
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(or, in fact, any other media as well) into a single high-dimensional vector, as in
cross-modal retrieval techniques [2,25].

Tautkute et al. [21] proposed a multimodal search engine in the fashion
domain that retrieves items aesthetically similar to a query composed of image
and textual inputs. Vo et al. [23] addressed a similar problem, where a query
is specified in the form of an image and a text description of desired modifi-
cations to the input image. Yu et al. [24] introduced a multimodal model for
understanding commerce topics, where the content can be an image, a text, or
a combination of both.

DANKE [12] is an evolution of earlier tools [8,10,11]. DANKE-U enables
DANKE to handle unstructured data, including scientific and engineering doc-
uments, as mentioned in the introduction.

3 A Brief Overview of DANKE

A keyword query in DANKE is just a list of terms, or keywords, that the user
wants to search the database for, and may include reserved terms, such as “<”,
“>”, “between”. In relational jargon, an answer to a keyword query is formatted
as a table whose columns (or column names) contain the keyword matches. The
answer may be the result of joining several database tables, that is, an answer
to a keyword query does not need to be constructed out of a single table.

DANKE has three main components (see Fig. 1): Storage Module; Preparation
Module; and Knowledge Extraction Module.

The Storage Module houses a relational (or RDF) database, constructed from
various data sources. The database is described by a knowledge graph (KG),
which is independent of the data model of the underlying database. The Storage
Module also holds data indices required to support keyword search and other
services.

The Preparation Module provides tools for creating the knowledge graph
and for constructing and updating the centralized database through a pipeline
responsible for a typical data integration process. This includes indexing data,
collecting data from data sources, transforming and enriching data, and ingesting
data into the database. This module enables customization of the pipeline in the
most convenient manner for each case. The knowledge graph KG is defined
by de-normalizing the schemas of the underlying databases, enriching KG with
metadata that help interpret the data, and indicating which properties will have
their values indexed.

The Knowledge Extraction Module uses the technology described in [7,8,10]
and explores the knowledge graph and the data indices to compile a keyword
query into an SQL (or SPARQL) query that returns data that best match the
keywords. It features an algorithm [8] that accepts as input a keyword query
QK , the knowledge graph KG, and the indices, and: (1) finds matches with the
keywords in QK ; (2) creates a conceptual query QC by exploring the keyword
matches found and KG; (3) compiles QC into an SQL (or SPARQL) query QS ,
which is then executed.
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Fig. 1. Architectural Overview of the DANKE Platform

4 DANKE-U

To handle unstructured data, such as technical/scientific documents, DANKE
creates pipelines using DANKE-U, as illustrated in Fig. 2. DANKE-U com-
prises a set of components that process unstructured data, extracting metadata,
thumbnails, texts, images, named entities and tables, for example.

A pipeline encompasses several forms of text document processing, auto-
matically extracting information and enriching the database with new data and
relationships. If it is necessary to search through the textual content of the file,
the pipeline must include text indexing, enabling the search engine to match
keywords with the textual content of the file.

In relational mode, documents and the associated data are recorded in a
table, including their identification, file path, thumbnail, textual content, and
metadata such as title, author, date, and type. Furthermore, other tables that
relate documents to additional information may also be used.

An example of text document processing is extracting attribute values from
specific entities using advanced table processing techniques facilitated by the
“Table Extraction” component of DANKE-U. This component can be tailored
to extract data from various types of tables, as illustrated on the right-hand side
of Fig. 2, and executes the processing in three stages: (i) Collect and Settings:
involves reading a folder containing PDF documents and a configuration file
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defining the metadata and tables to be investigated in the documents. The con-
figuration determines domain-specific structures (e.g., applying regular expres-
sions to identify entity and attribute names) used to select tables and attributes
for extraction, along with formatting options for each attribute in the output.
(ii) Extractor: extracts the attributes and tables defined in the previous stage.
The process utilizes the Camelot library1, capable of extracting tables with col-
umn and line separators (lattices, illustrated in Figs. 4 and 5 of the appendix)
as well as those without clear separators (stream, illustrated in Fig. 6 of the
appendix). From the Camelot output, the component identifies and extracts the
attributes based on the configuration. (iii) Cleaner and Formatter: transforms
the extracted data into tabular format, which can be stored using spreadsheets,
CSV, or database tables. The user can personally and configure the output for-
mat through the configuration file.

Another relevant example of text processing is Named Entity Recognition.
Assuming the closed-world hypothesis, where there is a known set of values
representing an entity, this technique can identify which documents mention a
specific entity in their text. Hence, it is possible to relate documents to entities,
storing this relationship in the database.

Fig. 2. Architectural Overview of the DANKE-U Module

1 https://camelot-py.readthedocs.io/en/master/index.html.

https://camelot-py.readthedocs.io/en/master/index.html


A Data and Knowledge Retrieval Platform 139

Fig. 3. Extracting data from tables

5 Use Case

This section introduces the domain in which DANKE is employed to handle
scientific and technical documents, illustrating the approach with real-life cases
in subsea production systems of offshore oil and gas extraction.

Subsea production systems are composed of increasingly complex structures
to meet the growing demands of large deep-water oil fields. Moreover, main-
taining the physical integrity of several subsea components faces an additional
challenge from their remote and hard-to-access locations. Nonetheless, tracking
their operational health is crucial to guarantee environmental safety, reduce the
high costs of an unplanned operation shutdown, and meet regulatory demands.

To accomplish these tasks, subsea experts need efficient access to consis-
tent and up-to-date information about equipment designs, layouts and locations,
inspection reports, maintenance activities, and other daily-generated data. How-
ever, throughout the life cycle of the subsea system, a large variety of data
are generated and stored in various places, creating a complex environment. In
this context, accessing, searching, navigating, and integrating this data becomes
critical for decision-making. However, these actions are often costly and require
substantial time from experts, technicians, and engineers.

Figure 3 illustrates a fragment of the knowledge graph that represents the
subsea domain, encompassing: (i) a riser, a conductor pipe connected to offshore
production platforms and the subsea flowlines, manifolds, and wellhead; (ii) a
structure detailing the specific attributes for which a riser is designed, such as
volume, diameter, and weight; and (iii) documents containing engineering and
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scientific data related to the risers and structures. Figure 3 also displays the
resulting relational database, featuring tables to store data about risers, struc-
tures, documents, and the relationships among them. The appendix contains
three illustrations of tables with a layout commonly found in PDFs in a real-
world scenario; however, for confidentiality reasons, the values of the structures
are fictitious.

The following use cases illustrate the approaches used in this domain for
searching the documents.

Use Case 1 - A Keyword Query Over Document Metadata. Suppose
the user enters the keyword query “document type technical drawing”. DANKE
compiles this keyword query into an SQL query involving the table “Document”
and its attribute “type”, filtering for the attribute value “technical drawing”, and
responds with documents of the type technical drawing. Document metadata
may have been automatically extracted from the PDF file using the “Metadata
Extraction” component of DANKE-U, or it could have been manually entered
by a specialist using an Electronic Document Management (EDM) system.

Use Case 2 - A Keyword Query Over Document Text. Suppose the user
enters the keyword query “document diagram yyyy.xxxx”. DANKE compiles
this keyword query into an SQL query to find documents of type “diagram” that
contain the text “yyyy.xxxx”. To locate the text “yyyy.xxxx” within diagrams,
represented as images in PDFs, it is necessary to extract the text from the
images using OCR, a task performed by the “Text Extraction” component of
DANKE-U. Additionally, the pipeline created in DANKE’s Preparation Module
must store and index the text extracted from the PDF.

Use Case 3 - A Keyword Query Relating Data and Documents. Suppose
the user enters the keyword query “structure document diagram yyyy.xxxx”.
DANKE compiles this keyword query into an SQL query similar to the previous
example but includes the relationships between structures and documents. To
establish this relationship, document texts must be processed to identify those
that mention structure identifiers. This task is accomplished by the “Entity
Extraction” component of DANKE-U. Using the structure identifiers, previously
known and stored in the table “Structure”, the component “Entity Extraction”
processes the document texts and returns a table associating the structure iden-
tifiers with the document identifiers.

Use Case 4 - A Keyword Query Involving Attribute Values Defined
in Documents. Suppose the user enters the keyword query “riser xxxx-yyyy
structure diameter.” DANKE compiles this keyword query into an SQL query
that retrieves the diameter of the structures for the riser “xxxx-yyyy”. Some
attributes of the structure are not originally present in a structured form (e.g., in
a relational database) and had to be extracted through a sophisticated process
that interprets various table formats found in documents. This extraction is
performed by the “Table Extraction”component of DANKE-U, customized to
process complex tables. Figures 4, 5 and 6 in appendix illustrates a real-life
scenario. However, for confidentiality reasons, the values presented in the tables
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are fictitious. The classical format of a table places each attribute in a separate
cell, as in Fig. 4. In this example, the figure shows a table with diameter 4 for the
structure identified as 001.00024. However, in some cases, when the attribute
value is the same for different structures, the attribute value is presented only
once by merging cells. Figure 5 presents a slightly more complex table to process,
as it contains the same diameter value (4 ) in a merged cell, for three different
structures: 001.00021, 001.00022, and 001.00023. Figure 6 depicts a table with a
different layout but also containing the diameter value 4 of structure 001.00024.
Furthermore, a page break may occur within the same table.

6 Conclusions and Directions for Future Work

The paper first presented the overall architecture of DANKE, a data and knowl-
edge extraction platform, based on a search engine. Then, it described DANKE-
U, that enables DANKE to handle unstructured data, including scientific and
engineering documents. Finally, the paper presented a use case from the oil and
gas industry, involving technical/scientific documents, processed using DANKE.

DANKE is currently being equipped with a Natural Language (NL) inter-
face, constructed with the help of a Large Language Model (LLM), to help users
locate data using NL questions, covering language constructs not supported by
keyword queries [14–16]. The final goal is to explore the combination of con-
trollable database keyword search with LLM freedom to create a trustworthy
application that generates reliable answers.

As for future work, the application area involves a large variety of documents,
including complete engineering drawings. This demand calls for the development
of other specialized set of components to be included in DANKE-U.
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A Appendix

Fig. 4. Example 1 of table format (with fictitious data)
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Fig. 5. Example 2 of table format (with fictitious data)

Fig. 6. Example 3 of table format (with fictitious data)
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Abstract. The output of research doubles at least every 20 years and
in most research fields the number of research papers has become over-
whelming. A critical task for researchers is to find promising future
directions and interesting scientific challenges in the literature. To tackle
this problem, we hypothesize that structured representations of infor-
mation in the literature can be used to identify these elements. Specif-
ically, we look at structured representations in the form of Knowledge
Graphs (KGs) and we investigate how using different input schemas for
extraction impacts the performance on the tasks of classifying sentences
as future directions. Our results show that the MECHANIC-Granular
schema yields the best performance across different settings and achieves
state of the art performance when combined with pretrained embeddings.
Overall, we observe that schemas with limited variation in the resulting
node degrees and significant interconnectedness lead to the best down-
stream classification performance.

Keywords: Information Extraction · Scientific Knowledge Graphs ·
Scientific Discourse · Classification

1 Introduction

Scientific papers often discuss future research directions and challenges, suggest-
ing potential areas for further exploration. These are commonly found in the
future work and conclusion sections and for multiple venues, they are a require-
ment for publication. Given a potentially infinite number of research trajectories,
future research statements in papers attempt to guide researchers into promis-
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Fig. 1. Illustration of the pipeline with an example. First, a sentence (either research
suggestion or random) is fed to a joint NER and RE model. The generated triples form
graph(s). Lastly, these graphs form the input to the graph classification which classifies
them as containing a future research suggestion or not.

ing directions. Knowledge gaps or unresolved questions may be identified and
recommended as the most impactful directions.1

Multiple approaches have attempted to utilise Machine Learning (ML) and
Natural Language Processing (NLP) to automatically identify such suggestions.
In this work, we look at the problem of classifying future research suggestions
when modelling the discourse not as text, but as a knowledge graph.

1.1 Problem Statement

Utilizing the future research directions to guide research becomes increasingly
difficult due to the volume of published research. Several studies indicate that the
growth of the size of research papers in terms of references, statistics, participants
and tables [49] and especially the total volume of published studies in a given
period increases continuously, leading to exponential growth [7,17,35,42,63].
Some studies suggest that research output currently doubles at least every 20
years with some periods of the 20th century seeing research output double every
7 years [34]. Meta-analysis can help condense information in certain disciplines
but meta-analyses are subject to an even stronger volume increase [17], with
specific fields seeing explosive growth [29]. The increasing volume in academic
publications is an inspiring indicator of progress. However, the information over-
load is time-consuming [1] and can lead to a diminished quality in the interaction
between researcher and research papers [44].

With the volume in research output increasing, the amount of potential future
research directions becomes intractable. Thus, efficiently collecting and compar-
ing future research indications becomes overly tedious for the average researcher.
Furthermore, important directions might be overlooked, and researchers may

1 Code, documentation and demo for exploring extracted triples: https://github.
com/JoshuaSeth/Schema Subgraph Classification/tree/master and https://future-
research.netlify.app/.

https://github.com/JoshuaSeth/Schema_Subgraph_Classification/tree/master
https://github.com/JoshuaSeth/Schema_Subgraph_Classification/tree/master
https://future-research.netlify.app/
https://future-research.netlify.app/
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fail to combine research directions that appear in separate sources [16]. Ground-
breaking discoveries might be missed as the right questions or directions remain
hidden in the large amount of data [24]. With knowledge being mostly published
in natural language, distributed among research papers in multiple journals and
via diverse media, the question of effective communication in academic research
is of paramount importance [27].

Although modelling scientific discourse has received increased attention,
there have been few attempts focused on structuring future research suggestions,
and summarize and communicate these efficiently.

In this work, we introduce an architecture that takes as input scientific
sentences that contain future research suggestions (or not), transforms them
into graphs via triple extraction, and evaluates the suitability of the extracted
graphs for the downstream task of predicting whether a (sub)graph contains a
research challenge or direction recommendation. The produced graphs are fur-
ther analysed based on topological metrics, allowing for a better comparison of
the schemas used to generate them.

1.2 Research Questions

Our main research questions (RQs) examine how schema choice influences triple
extraction and the resulting graph topology (RQ1) and its subsequent impact
on downstream graph classification (RQ2).

For RQ1, we explore and analyze the effect of schema choice on both local
and global KGs in terms of topological features. In RQ2, we investigate how dif-
ferent schema characteristics impact the classification of (sub)graphs containing
research recommendations. We also study the relationship between classification
performance and graph topology. Lastly, we assess the effectiveness of graph
classifiers for research suggestion classification.

2 Related Work

Scientific Paper Segmentation and Argumentation Extraction. Sub-
stantial research has been performed in extracting (semi-)structured data from
research papers, such as scholarly argumentation mining (SAM) [5,38,41],
research paper segmentation of text and figures [8,37], and parsing the figures of
research papers [55]. Scientific metadata extraction focuses on extracting title,
authorship and other metadata from articles [47]. Other approaches attempt to
link the extracted concepts to articles or sentences from articles [32], also known
as entity linking. Related research proposes KG based systems for recommending
a scientific method or technique for a scientific problem [39]. Automated hypothe-
ses generation generates promising hypotheses from research papers [56,65]. Fur-
thermore, the shared task 11 of SemEval 2022 [43] of recognizing contributions
of a paper brought increased attention to the problem of extracting knowledge
from publications. Identifying the contributions of a paper can be a valuable
task for researchers looking to build on existing work as it can lead to better
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recommendations. Lastly, subjectivity analysis has received attention, since fil-
tering out the subjective sentences from a paper appears to improve Information
Extraction (IE) [50,64].

KG Construction for Scientific Discourse. Knowledge Graphs are graph
structures (networks of labelled nodes and edges) [15] with additional semantics
[9]. Entities and relations in a KG are expressed in the form of triples of sub-
ject, predicate, object that correspond to an edge (predicate) between two nodes
(subject and object). Entities and relations are often typed with a class.

KGs can be constructed using several methods. Automated approaches
attempt to model research content into a KG by employing pipelines involving
Natural Language Processing (NLP) methods, rather than hand-engineering.
These automated Information Extraction (IE) approaches can model scientific
knowledge in the form of a graph of (scientific) triples. Initially, IE meth-
ods employed domain-specific, rule-based systems while recent years have seen
approaches employing Machine Learning (ML) [52] and Deep Learning (DL)
take over [24]. For these approaches, a ML model is trained based on a “high-
quality” dataset, often manually annotated. The trained model is then applied to
a larger text dataset to automatically extract entities and relations to build a KG.
Examples of such KGs are the COVID-19 themed CORD-KG (generated with
DyGIE++ trained on MECHANIC data, [25]), the material sciences themed
MatKG (build with an LLM transformer, [60]), or the AI-based Intelligence Task
Ontology (ITO) KG [6]. Employing AI/ML for the generation of KGs allows for
automatic generation on a larger scale. However, automatic generation can be
less robust to erroneous input data and the resulting graph can be of low quality.
Different disciplines tend to exhibit large discrepancies in adopting IE [24].

Alternatively, KGs can be constructed by hand or by extracting data
from semi-structured datasets (e.g. patient records), without employing ML
approaches. These KGs are often high-quality but small-scale as human annota-
tions are time-consuming and depend on the expertise of the annotator. Some
examples include the chemical protein interactions of ChemProt [58] and adverse
drug events (ADE) [19].

3 Methodology

The goal of this research is to construct a graph from sentences suggesting future
research, observe and analyse the topological features of said graph, and test
the influence of the schema on the downstream task of graph classification. To
achieve this we designed the following pipeline. Starting from the dataset cre-
ated by [25], we take future research suggestion sentences (either a challenge or
a direction) from papers and extract their corresponding triples using a joint
Named Entity Recognition (NER) and Relation Extraction (RE) model pre-
trained on different selected schemas. Although we understand the importance
of NER/RE model performance on the resulting graphs and hence downstream
task, in this work we are focusing on the effect of their underlying schema on
downstream performance, since more generic schemas can for example result
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in higher recall but lower precision. We then analyse the resulting graphs both
locally (subgraph-level, i.e. collection of triples) and globally (full KG) in terms
of topological features. Finally, we employ Relational Graph Convolutional Net-
works (R-GCNs) to perform graph classification on the resulting graphs.

The rest of this section describes the input data and schema choices and the
graph classification using R-GCNs, including details around the architecture and
experimental setup. The pipeline is illustrated by Fig. 1.

3.1 Schema and Dataset

There are multiple options when choosing a schema for modelling research con-
tent. An extensive selection can be found in Table 5 of the Appendix A. Amongst
the listed options, six candidates were considered fit for this work. These
are the MECHANIC (Coarse-Granular), SciERC, ACE05, ACE-Event and
GENIA. The criteria for the selection were based on granularity and generaliz-
ability. For example SciERC has several entity and relationship types, whereas
MECHANIC-Coarse only has a single entity type and two relationship types.
Concerning generalizability, MECHANIC-Coarse is about general science,
while GENIA is specifically about biology. Another motivation for the cho-
sen schemas was their accessibility in the pretrained DyGIE++ joint NER and
RE model, which allowed for a straight-forward comparison. The performance
of DyGIE++ for NER/RE can be found in the original DyGIE++ paper [61].
The results of our analysis focused on the schemas found in Table 1. A compar-
ison of the different entity and relation types defined by each schema can be
found in the Appendix A in Table 7.

Table 1. The selected datasets and schemas investigated in this work. The difference
between 0 and N/A for the number of entities or relations is that for the former no
entities or relations were defined (like the ACE-Event schema) while for the latter it
was OpenIE.

Dataset + Schema Domain Size Entities Relations Characteristics

SciERC [40] CS 500 abstracts 6 7 Coarse-grained, domain-specific

MECHANIC-Coarse [25] Bio 1000 sentences 1 2 Coarse-grained, domain-specific

MECHANIC-Granular [25] Bio 1000 sentences N/A N/A Fine-grained, domain-specific

ACE05 [62] Various 511 documents 7 6 Complex, general

ACE-Event [61] Various 599 documents 6 18 Complex, general

GENIA [30] Bio 2,000 abstracts 6 5 Fine-grained, domain-specific

SciERC is a dataset accompanied by a simple schema aimed at extracting
methods, tasks and metrics from Computer Science and Artificial Intelligence
(CS/AI) abstracts. Nevertheless, it shows good generalisability when detecting
concepts and relations in future research sentences outside of CS/AI. GENIA
was meant for DNA, RNA and proteins, hence it performs well when dealing
with biomedical data. Since it lacks generalisability, it would not be a perfect fit
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as the basis of a scientific modelling schema, but could be beneficial as an addi-
tion to another, more general schema. The ACE05 dataset was available in the
ACE-Event and ACE05 format, where the ACE-Event is a filtered version of the
ACE05 dataset focused on identifying events. As such, the ACE-Event dataset
had different entity types and extended (sub)relation types. ACE05 relations
and entities were designed for capturing news events involving people, organi-
zations, locations, movements, and concepts that are physical in nature. This
makes it interesting to experiment with for scientific content. Finally, the two
MECHANIC schemas were created by [25] in the context of designing a knowl-
edge base of mechanisms extracted from COVID-19 papers. A coarse-grained
and fine-grained version were defined, with the coarse-grained version detecting
entities of type Entity and relations of type mechanism (direct mechanisms) and
effect (indirect mechanism) in sentences. The fine-grained version was closer to
Open Information Extraction (OpenIE), where the verb of the sentence would
denote the relation (e.g. “COVID-19 influences diabetes” results in “influences”
as the relation type [25]).

3.2 Graph Classification of Challenges and Directions

Motivation. Graph Convolutional Networks (GCNs) [31], are a class of neural
architectures that operate on graph-structured data and leverage its topological
features. GCNs can be applied to graph classification tasks, i.e. classifying a
graph given its nodes and edges. An advantage of GCN architectures for graph
classification lies in their ability to integrate both node attributes and graph
topology into the node representations, which can in turn encode global and
local characteristics of the graphs.

GCNs can learn node representations that are more expressive and discrimi-
native than random walk-based methods, which solely rely on the graph structure
and ignore features like node attributes. GCNs can handle graphs with vary-
ing sizes and structures. Furthermore, they can parse different types of graphs,
such as directed, weighted, or heterogeneous graphs, by using the appropriate
convolution operators. Therefore, for this work we considered GCNs for graph
classification.

Architecture and Implementation. Initially we pretrained the GCN with
a Link Prediction (LP) objective to obtain meaningful node representations. In
absence of pre-existing node features, GCN models use a random initialisation.
With the use of a pretraining routine involving a separate GCN model trained
on a Link Prediction (LP) objective we obtain meaningful node representations,
which are subsequently used to initialise the graph classification models. We
investigate the effect of this initialisation on the performance in the graph clas-
sification task. Below we describe the architecture in further detail.

The architecture for pretraining consists of 2 GCN layers. The first layer takes
randomly initialized node embeddings (5 channels) while outputting 128 channel
encodings. The second GCN layer takes the 128 hidden channels and learns
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embeddings with a dimension of 64 channels from the 128 hidden channels. In
the decoding phase, the decoder layer operates on the node embeddings created
by the preceding GCN layers. For each edge e = (i, j), the decoder computes
the score for that edge as the dot product of the embeddings of nodes i and
j. The score is a scalar which is interpreted as the likelihood of the existence
of an edge between nodes i and j. For each positive edge e we sample one
negative edge ê where either i or j is replaced by a node sampled uniformly at
random, i.e. corrupted. After training on LP the encoder part of the model was
employed to get the initial embeddings for all nodes in the (sub)graphs of the
graph classification task.

For graph classification we experimented with both a GCN and a Relational-
GCN (R-GCN, [54]). At each layer the GCN model applies a linear transforma-
tion to the node features and aggregates the features from the neighboring nodes
using a first-order approximation of spectral graph convolutions. In contrast,
the R-GCN model extends the conventional convolution operation introducing
relation-specific weights. Here, at each layer, for each node j the representa-
tions of neighboring nodes i (those with an incoming edge (i, j) ) are aggregated
after passing them through a relation specific linear layer. In our experiments
we investigate the influence of this model choice.

For both GCN and R-GCN, the architecture as illustrated in Fig. 2 is equiv-
alent by swapping the GCN layer(s) with R-GCN layer(s). Each (sub)graph is
initially passed to three (relational) graph convolution layers. Then, we obtain
a single embedding for each graph by performing a mean pooling over the node
representations. Finally, we apply a dropout layer for regularization and a final
linear layer to perform the graph classification.

3.3 Experimental Setup

In this section we describe our experimental setup, including the dataset, the
extraction and finally the classification, including training and pretraining of the
model.

The Dataset. The gold labeled sentences are the ones provided by [33]. In the
original dataset these sentences were classified as either a research challenge,
a research direction, both, or neither. In that work, the focus was on building
a search engine that would distinguish between the two classes and allow for
their retrieval separately. However, in the current work we do not make the
same distinction, because we are interested in discovering all future research
recommendations, which include both challenges and directions. Hence, we cast
the problem into a binary classification problem, where each sentence is labeled
positive if it contains either a research challenge, a research direction, or both,
and negative otherwise.

Joint NER and RE. Entities and relations forming subgraphs were extracted
from the sentences employing the DYGIE++ model. The pretrained models
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Fig. 2. Illustration of using pretrained embeddings as initial node embeddings for the
local subgraphs per sentence. Embeddings are learned by LP on the full graph using
entities and relations from all sentences. The learned embeddings are used as initial
node embeddings for the entities of the smaller graphs for each sentence which are
classified using the (R)-GCN.

hosted in the DYGIE++ repository2 [61] were used. To improve performance
over scientific text, we replaced BERT with SciBERT [4] as our encoder, which
is fine-tuned on scientific data. Apart from this, default settings were used. For
each schema, the DYGIE++ model extracted entities and relations. From the
resulting entities and relations a (global) graph representing the full body of
sentences was constructed.

Graph Classification and Pretraining. The pipeline for the LP task begins
by loading and preprocessing each extracted graph dataset. These graph datasets
are then randomly divided into training, validation, and test sets, with 5% of
edges set aside for validation and 10% for testing. The models are parameterized
based on the feature dimensions of the nodes in the graph and are optimized
using the Adam optimizer with a learning rate of 0.001. The loss function used for
the pretraining task is the Binary Cross-Entropy (BCE) with Logits Loss. The
models are then trained and subsequently evaluated on the test data, with the
2 https://github.com/dwadden/dygiepp.

https://github.com/dwadden/dygiepp


KG Schema in Future Research Suggestion Classification 157

Table 2. Local graph topology metrics under different schemas. Relatively high values
are in bold and relatively low values are in italics. Some statistics are first aggregated
per subgraph and then averaged.

ACE-Event ACE05 GENIA MECHANIC-Coarse MECHANIC-Granular SciERC

Entities 4.730 ± 3.240 5.131 ± 3.551 3.386 ± 2.223 9.118 ± 9.513 6.206 ± 3.535 7.992 ± 6.389

Relations 2.243 ± 1.517 2.430 ± 1.617 1.625 ± 1.033 4.230 ± 3.542 3.062 ±± 1.727 3.951 ± 3.143

Degrees 0.948 ± 0.729 0.947 ± 0.784 0.960 ± 0.669 0.928 ± 1.346 0.987 ± 1.099 0.989 ± 1.032

Clusterings 0.012 ± 0.103 0.011 ± 0.100 0.000 ± 0.000 0.204 ± 0.374 0.275 ± 0.434 0.080 ± 0.251

Modularities 0.185 ± 0.236 0.201 ± 0.243 0.071 ± 0.174 0.029 ± 0.075 0.023 ± 0.060 0.290 ± 0.229

Table 3. Global graph topology metrics under different schemas. Relatively high values
are in bold while relatively low values are in italics.

ACE-Event ACE05 GENIA MECHANIC-Coarse MECHANIC-Granular SciERC

Entities 1568 1645 1065 7119 4240 6918

Relations 2677 2827 1873 11583 6367 9282

Degrees 3.415 ± 21.106 3.437 ± 21.986 3.517 ± 20.209 3.254 ± 72.537 3.003 ± 61.855 2.683 ± 47.125

Clusterings 0.054 ± 0.193 0.057 ± 0.199 0.039 ± 0.154 0.508 ± 0.444 0.557 ± 0.482 0.175 ± 0.348

Modularities 0.708 0.699 0.669 0.510 0.397 0.635

Area Under the ROC Curve (AUC) score being computed as a measure of model
performance. The subsequent graph classification divided the subgraphs in 75%
training graphs, 12.5% validation graphs and 12.5% test graphs. The classes
were roughly balanced. The models were similarly optimized with the Adam
optimizer with a learning rate of 0.001 using Binary Cross-Entropy (BCE) with
Logits Loss. In the graph classification case precision, recall and F1 were used
as measure of performance.

4 Results

The following section analyses the results as obtained with quantifiable metrics.
Main patterns are noted, interpretation and contextualization of these results
follows in the discussion section. We chose to focus on the resulting entities
and relations, the node degree, clustering coefficient and modularity as they
characterize numerically the topology of the generated graphs. The analysis is
performed on both local and global level, i.e. over each subgraph and over the
entire extracted graph.

Joint NER and RE. As expected, the joint NER and RE for the differ-
ent schemas resulted in different graphs. These are described and summarized
through network graph metrics. We observe that the resulting graphs differ
greatly in terms of topologies both visually and using metrics. The global full
interconnected graph statistics are summarized in Table 3. In parallel, the local
graph statistics for the subgraph of each sentence are presented in Table 2.

Entities and Relations. The MECHANIC and SciERC schemas yield a
higher number of detected entities and relations for both the global graph and
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local subgraphs. From our experiments we observe that a higher number of
entities and relations is associated with better downstream task performance.

Node Degree. Certain schemas result in high variation in terms of node degrees
in the KG. Most schemas result in the majority of nodes having a low degree
and a long tail of extremely connected nodes. GENIA has a mean degree on the
higher side of the spectrum whereas MECHANIC-Granular and SciERC are
positioned in the lower end of the spectrum. In terms of local subgraphs, Sci-
ERC and MECHANIC-Granular appear more interconnected, with higher
degrees than other schemas, although the differences in terms of local degrees
are subtle. In general, the standard deviation of these degrees increases with the
average degree for local subgraphs. A higher standard deviation in the degree
appears to be related to better performance in the downstream task in most of
the settings. This phenomenon appears sensible since more densely connected
subgraphs provide more insight in the relations between concepts in a subgraph.
On a global level, during pretraining, without using types, degree centrality is
the only measure that correlates with graph classification performance.

Clustering Coefficients. Initially we expected a relation between degree stan-
dard deviation and clustering coefficient. However, this was not universally the
case. MECHANIC-Granular and MECHANIC-Coarse exhibited very high
clustering coefficients, while GENIA and the ACE schemas were on the low-side.
This indicates presence of cliques was rather average in the SciERC graph. This
positive influence of clustering coefficients was noted on both the global graph
and local subgraph levels of the metrics.

Modularity. In terms of modularity, SciERC, GENIA, ACE05 and ACE-
Event resulted in rather tightly knit communities with few edges connected to
other communities; MECHANIC-Granular and MECHANIC-Coarse pro-
duced graphs with communities that were less connected internally but more
connected to other communities in the graph. This modularity is more intu-
itively illustrated in the network graph plots found in the demo. On a local level,
modularity does not always relate to average degree. Some schemas are very
interconnected but do not exhibit clear subcommunities, such as MECHANIC-
Granular. On a global level higher modularity appears to lead to worse perfor-
mance with high or moderate modularity schemas showing limited performance.
The same holds on the local (subgraph) level, with the exception of SciERC
which performs well even when having a high subgraph modularity.

4.1 Graph Classification

Results are aggregated based on whether the model was pretrained (+Pre-
trained), whether the model captured different relation types (+Relations) and
for both. Table 4 denotes the average performance over 20 runs for the different
combinations of these settings. In general, we observed that pretrained models
(over the global extracted graph), exhibit a strong ability in the detection of
future research challenges and directions.
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Table 4. F1 scores when predicting the future research suggestion label [0, 1] (generic
text vs. future research suggestion). (R-)GCNs were applied to the local subgraphs
per sentence. The +Pretrained indicates whether pretrained embeddings were used.
+Relations indicates whether an R-GCN was used instead of a GCN for the local sub-
graph classification, to incorporate relation-type information. +Pretrained + Relations
indicates the use of both. Best scores per mode are in bold and best combination of
configuration (pretrained embeddings and typed relations) is underlined.

F1 P R

ACE-Event 0.494 0.489 0.506

+ Pretrained 0.511 0.462 0.580

+ Relations 0.737 0.723 0.757

+ Pretrained + Relations 0.964 0.976 0.953

ACE05 0.469 0.452 0.497

+ Pretrained 0.527 0.486 0.580

+ Relations 0.864 0.888 0.842

+ Pretrained + Relations 0.978 0.971 0.985

GENIA 0.403 0.423 0.402

+ Pretrained 0.369 0.354 0.394

+ Relations 0.375 0.387 0.376

+ Pretrained + Relations 0.579 0.510 0.682

MECHANIC-Coarse 0.544 0.481 0.629

+ Pretrained 0.602 0.536 0.690

+ Relations 0.878 0.871 0.887

+ Pretrained + Relations 0.990 0.990 0.991

MECHANIC-Granular 0.594 0.507 0.723

+ Pretrained 0.620 0.518 0.775

+ Relations 0.906 0.903 0.911

+ Pretrained + Relations 0.994 1.000 0.988

SciERC 0.560 0.478 0.684

+ Pretrained 0.644 0.556 0.771

+ Relations 0.884 0.877 0.893

+ Pretrained + Relations 0.991 0.991 0.991

In Table 4 we observe that the best performing run utilises both relation
type information and the pretraining of node embeddings. In this setup, our
model gives results comparable to the state-of-the-art in detecting future research
suggestions.
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5 Discussion

Overall, depending on the schema, we observed diverse graph topologies. For
example, some resulted in more modular graphs compared to others. In specific
cases, we observed that there were no entities or relations extracted at all. This
could hint at the schema being unsuitable for the domain of choice. In parallel,
the lack of extractions could imply that the sentence does not contain a research
suggestion. It is noteworthy that schemas with a lower average degree generally
also have much higher standard deviations in their degree. This indicates some
very connected nodes and many sparsely connected nodes. In the current set-up
it appears that the standard deviation and mean of the clustering coefficients
on a local level are influential factors on downstream task performance. Another
observation is that for most schemas/datasets the effect of the inclusion of rela-
tion types appears to have a stronger impact on performance in comparison
to pretraining on the entire graph. Different schemas produce different graphs,
and so differences emerge in the pretraining of embeddings, relation type usage
and performance. When pretrained embeddings or relation types are not being
utilised for classification, SciERC and MECHANIC-Granular consistently
outperform the rest. Performing future research suggestion classification with-
out pretraining and relation types proves difficult for any schema, resulting in
poor performance on this setting, with the single exception being MECHANIC-
Granular.

5.1 Limitations and Future Research

Future research can extend the present results in several directions. More
schemas and input data, different joint NER and RE models and different down-
stream tasks (e.g. entity linking) to list just a few potential extensions. While
graph classification fits well to our task and purpose for testing the influence of
the schemas, other downstream tasks, such as link prediction might be less sen-
sitive to the graph topology resulting from a choice of schema given the setting
of predicting the likelihood of a subject node being connected to an object node.
Additionally, we tested a single joint NER and RE model for several different
graphs. While DyGIE++ provides a baseline model for joint NER and RE, other
more powerful extraction models may influence the resulting graph topology (e.g.
detect more entities). DyGIE++ however has long been the state of the art and
provides easily accessible models. The present research characterizes the fitness
of a schema for scientific modelling by how it influences our graph topology and
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downstream classification task. However, downstream graph ML tasks can be
influenced by multiple different parameters (i.e. hyper-parameter tuning), and
isolating the effect of the schema might be challenging. Additionally, a limita-
tion is observed over the gold set of [33] since the produced dataset is focused on
COVID-19 research and hence is a domain-specific dataset. An intriguing direc-
tion of future research could employ OpenIE to dynamically construct schemas,
with their usefulness evaluated by their performance on several downstream tasks
in parallel (LP, graph classification etc.). This would yield schemas optimised
for several downstream tasks at once, hence increasing robustness (Figs. 3, 4 and
Table 6).

6 Conclusion

In this work we analysed the effect of the choice of schema when extracting
knowledge from text in the form of KGs, to be further used for scientific knowl-
edge discovery and recommendation. Specifically, we experimented with extract-
ing graphs from sentences containing a scientific research suggestion or not, by
employing pretrained models of DyGIE++ with different underlying schemas.
We observed that the choice of schema can have a significant influence on both
graph topology and downstream graph classification performance. Moreover, we
observe that there is a correlation between several topology metrics of the result-
ing graphs and downstream task performance. The MECHANIC-Granular
schema leads to solid downstream task performance with state of the art detec-
tion of future research suggestions when combined with pretrained embeddings
and typed relations.

Acknowledgments. We would like to thank Paul Groth and Thom Pijnenburg for
their valuable comments and insights to this work.
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A Tables and Figures

Table 5. Summary of existing schemas and datasets for joint NER and RE from
research papers. Along with indications of the number of different entities and relations
they have. The size is the number of annotated items.

Dataset Domain Size Entities Relations Limitations

SciERC [40] CS 500 abstracts 6 7 Coarse-grained,
domain-specific

MECHANIC-Coarse [25] Bio 1000 sentences 1 2 na

MECHANIC-Granular
[25]

Bio 1000 sentences N/A N/A na

ChemProt [58] Bio 1,820 abstracts 2 12 Imbalanced,
domain-specific

ADE [19] Bio 6,821 sentences 2 1 Sparse, noisy, narrow

DDI [23] Bio 1017 abstract 4 4 Imbalanced,
domain-specific

CoNLL04 [51] News 1,441 sentences 4 5 Low agreement, general

ACE05 [62] Various 511 documents 7 6 Complex, general

ACE-Event [61] Various 599 documents 6 18 Complex, general

GENIA [30] Bio 2,000 abstracts 6 5 Fine-grained,
domain-specific

ACE04 [45] Various 451 documents 7 6 Complex, general

DocRED [66] Various 5,053 documents / 101k 9 96 Document-level

TACRED [67] Various 106k sentences N/A 41 Sentence-level

SemEval-2010 Task 8
[22]

Various 10,717 sentences N/A 8 Sentence-level

WebNLG [18] Various 21,855 data/text pairs N/A N/A RDF-to-text

NYT [53] Various 2,15M annotated docs N/A N/A Summarization

GDA [3] Bio 30k sentences 3 1 Gene-disease association

BC5CDR [36] Bio 1,500 articles 2 1 Chemical-disease
relation

Retacred [57] Various 106K sentences N/A 41 Biomedical relation

Redocred [59] Various 5K documents 9 96 Document-level
biomedical relation

FewREL [21] Various 70,000 sentences N/A 100 Few-shot relation
classification

KPI-EDGAR [11] Financial 1355 sentences 12 4 Joint NER and RE

T-REx [14] Various 6.2m sentences N/A 642 Semantic Relation
Classification

ACL RD-TEC 2.0 [48] CL 300 abstracts 7 0 0

SemEval 2017 Task 10:
ScienceIE [2]

Various 500 abstracts 3 2 0

SemEval-2018 Task 7
[20]

CL 500 abstracts 0 6 0

ARC-PDN [26] Various 4k docs 4 1 0

STEM-ECR v1.0 [13] ML 332 abstracts 4 0 0

NLP TDMS [46] AI 30k docs 3 4 -

SciREX [28] CL, Computer Vision 438 docs 4 1 -

AI-KG [10] CS, ML 333k 5 9 -

SemEval-2021 Task 11
[12]

CL 442 docs 1 0 -
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Table 6. Local graph topology metrics. For OR mode. Relatively high values are
marked blue with relatively low values being marked red. Density is reported with 5
decimal precision and other factors with 3 decimals unless they are natural numbers.
Some statistics for these small subgraphs are on node-level. This means that the pre-
sented statistic is an aggregation of an aggregation (for example the mean of the mean
centralities of all subgraphs). This statistic could have been represented by listing the
properties for every node and obtaining the statistic from that, but it is intention-
ally represented by aggregating the statistic on the subgraph level and obtaining the
statistic over the different subgraphs to give an improved impression of the subgraph
properties rather than the properties of the nodes in them. As a consequence, not all
node statistics are weighed equally since some subgraphs consist of more nodes and
other subgraphs consist of less nodes. Relations are after the addition of entity type
relations.

ACE-Event ACE05 GENIA MECHANIC-Coarse MECHANIC-Granular SciERC

Entities 4.730 ± 3.240 5.131 ± 3.551 3.386 ± 2.223 9.118 ± 9.513 6.206 ± 3.535 7.992 ± 6.389

Relations 2.243 ± 1.517 2.430 ± 1.617 1.625 ± 1.033 4.230 ± 3.542 3.062 ± 1.727 3.951 ± 3.143

Degrees 0.948 ± 0.729 0.947 ± 0.784 0.960 ± 0.669 0.928 ± 1.346 0.987 ± 1.099 0.989 ± 1.032

Degree centralities 0.311 ± 0.329 0.278 ± 0.308 0.494 ± 0.403 0.146 ± 0.245 0.221 ± 0.286 0.164 ± 0.222

Closeness centralities 0.336 ± 0.324 0.307 ± 0.303 0.522 ± 0.388 0.162 ± 0.250 0.243 ± 0.287 0.187 ± 0.225

Clusterings 0.012 ± 0.103 0.011 ± 0.100 0.000 ± 0.000 0.204 ± 0.374 0.275 ± 0.434 0.080 ± 0.251

Modularities 0.185 ± 0.236 0.201 ± 0.243 0.071 ± 0.174 0.029 ± 0.075 0.023 ± 0.060 0.290 ± 0.229

Densities 0.505 ± 0.380 0.461 ± 0.368 0.697 ± 0.371 0.345 ± 0.362 0.379 ± 0.359 0.321 ± 0.328

Table 7. The different entity and relation types defined by each underlying schema.
We can observe that some schemas employ much more generic entity types than others
e.g. “Entity” vs “Cell type”

Schema SciERC M-Coarse M-Granular ACE05 ACE-Event GENIA

Entity Types

Task

Method

Metric

Material

Other-ScientificTerm

Generic

Entity Entity

Person

Organization

Geo-Political Entity

Location

Facility

Vehicle

Weapon

Person

Organization

Geo-Political Entity

Location

Facility

Time

Weapon

Protein

DNA

RNA

Cell line

Cell type

Other

Relation Types

Compare

Part-of

Conjunction

Evaluate-for

Feature-of

Used-for

Hyponym-of

Mechanisms

Effect
- (OpenIE)

Physical (PHYS)

Part-Whole(PART-WHOLE)

Artifact(ART)

General Affiliation(GEN-AFF)

Organization Affiliation(ORG-AFF)

Personal Social(PER-SOC)

ORG-AFF.Employment

PHYS.Located

PART-WHOLE.Geographical

ART.User-Owner-Inventor-Manufacturer

GEN-AFF.Citizen-Resident-Religion-Ethnicity

ORG-AFF.Membership

PART-WHOLE.Subsidiary

GEN-AFF.Org-Location

PHYS.Near

PER-SOC.Family

PER-SOC.Business

ORG-AFF.Founder

ORG-AFF.Sports-Affiliation

ORG-AFF.Investor-Shareholder

ORG-AFF.Student-Alum

ORG-AFF.Ownership

PER-SOC.Lasting-Personal

PART-WHOLE.Artifact

Component-of

Subunit-of

Site-of

Product-of

Theme-of
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Fig. 3. Global spectrum of major graph topology metric

Fig. 4. Local spectrum of major graph topology metrics
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Abstract. Science Knowledge Graphs (SKGs) have emerged as a means
to represent and capture research outputs (papers, datasets, software,
etc.) and their relationships in a machine-readable manner. However,
different SKGs use different taxonomies, making it challenging to under-
stand their overlaps, gaps and differences. In this paper, we propose a
quantitative bottom-up analysis to assess the overlap between two SKGs,
based on the type annotations of their instances. We implement our
methodology by assessing the category overlap of 100,000 publications
present both in OpenAlex and OpenAIRE. As a result, our approach pro-
duces an alignment of 71 categories and discusses the level of agreement
between both KGs when annotating research artefacts.

Keywords: Scientific Knowledge Graph · Knowledge Graph ·
Taxonomy · Alignment

1 Introduction

As the volume of scientific literature increases, the need for scalable and efficient
systems to navigate this extensive information becomes crucial. Science Knowl-
edge Graphs (SKGs) [11] have emerged as a key tool for representing research
entities (publications, people, organizations, datasets, software, etc.) their rela-
tionships and metadata in a machine-readable manner.

SKGs such as OpenAIRE1 [18,19,23,24] and OpenAlex2 [21] contain mil-
lions of entities describing publications and research outputs. One of the main
challenges when using SKGs is identifying and resolving overlaps in categoriza-
tion, which is critical for querying them consistently and reliably. This challenge
is complex due to the diversity and volume of data within these KGs, requir-
ing advanced methodologies for effective detection and resolution of overlaps.
Understanding these overlaps and disagreements is essential for insights into the
structure of scientific knowledge, highlighting patterns that are not immediately
apparent due to data scale and diversity.
1 https://www.openaire.eu/.
2 https://openalex.org/.
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This paper proposes a quantitative bottom-up methodology to assess the
overlap of SKGs categories, based on the annotations made on their instances.
More specifically we aim to explore the overlap of the taxonomies used in scien-
tific literature [22]. Our contributions include:

1. A novel methodology designed to explore the overlap between SKGs.
2. An implementation of the methodology, based on two SKGs to validate its

effectiveness, resulting in 71 new aligned categories within these graphs.
3. An initial exploration study of the intersection of two SKGs, based on 100,000

papers that are jointly described in both of them.

As a proof of concept, we have applied our methodology to a subset of Ope-
nAlex and OpenAIRE SKGs, in the AI domain. We chose OpenAlex for its exten-
sive global database of academic research, and OpenAIRE for its European focus
and its integration from heterogeneous data sources. This combination offers
a comprehensive view of academic communication, providing a comprehensive
dataset for our methodology.

The remainder of the paper is structured as follows. Section 2 describes our
methodology, while Sect. 3 explains how we implemented our methodology by
assessing OpenAlex and OpenAIRE. Section 4 discusses the results of our cat-
egorization analysis on both SKGs, Sect. 5 introduces relevant efforts to map
taxonomies and ontologies, and Sect. 6 concludes the paper.

2 A Methodology for Assessing SKG Overlap

We propose a sequential process that evaluates the degree of overlap in SKGs
and aims to develop a suite of potential mappings across various KGs, informed
by the insights gained from the overlap assessment.

Our methodology is divided into two phases, detailed in Fig. 1. The initial
phase (on top of Fig. 1) includes data collection, alignment of the different KG
instances and preprocessing. This phase may be repeated and expanded as nec-
essary to refine the dataset to an acceptable size and quality. After completing
the dataset preparation, the category alignment phase starts(bottom of Fig. 1).
This phase systematically proposes, evaluates, and selects the best mappings
between categories based on existing paper annotations, producing a validated
set of final mappings of overlapping categories.

2.1 Data Preparation

To date, there is no available open dataset tailored for the quantitative analysis
of overlaps within SKGs that considers associated papers and their categoriza-
tions. This gap requires the creation of a dataset for conducting a bottom-up
quantitative analysis. The data preparation phase may be challenging due to
1) the size of SKGs and 2) the diverse structures and access methods of SKGs,
which range from complete data dumps available on platforms like Zenodo [17]
to those accessible only via REST APIs or SPARQL [5] queries. We detail the
steps for data preparation below.
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1. Data collection
(papers, categories)

Calculate similariy
value of category paires

2. Align papers from
different KGs 3. Preprocessing

Finalize
collected

data

Finalize
paper

alignments

Collect more data

Align preprocessed papers

Data preparation

4. Propose
candidate mapping

5. Evaluate
candidate mapping

6. Select best
mappings7. Validation Calculate
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Define

threshold

Select
papers

to validate

Category alignment

Fig. 1. Steps of the methodology for assessing the overlap of SKGs

Data Collection encloses the aggregation of data from various KGs. Data
must contain references to the research papers under analysis and their asso-
ciated categories. Distinct unique identifiers (typically DOIs) may be used for
publications, ensuring that these identifiers are consistent across all targeted
KGs for data acquisition. Preliminary examination of the collection structures
is compulsory to ensure the integrity and quality of the data obtained.

Align Papers from Different KGs using the gathered data and the chosen
unique identifier (e.g. paper DOI, title). Complete alignment may not be feasible
due to the heterogeneous nature of data across SKGs, yet a substantial portion
of the data should be possible to align, given the overlap in the data sources.

Preprocessing of the gathered data entails multiple steps. First, we eliminate
noise from category data, in order to avoid potential variations in character
encodings and the presence of inconsistencies in category names and titles, such
as inconsistent capitalization and the use of dashes. Cleaning the textual data
enhances the alignment quality between the papers and their corresponding cat-
egories.

Following text cleansing, we remove underrepresented categories to stream-
line the later stages of the analysis by reducing its complexity. A category is
considered underrepresented when the count of associated papers falls below a
predetermined threshold. The value of this threshold is flexible and should con-
sider the size of the dataset, the overall count of categories, and how papers are
distributed among these categories.

2.2 Category Alignment

This phase consists of three steps that generate an initial set of candidate map-
pings between categories:
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Propose Candidate Mapping. To identify probable candidate mappings with
significant relevance, a similarity model must be used to exclude mappings with
semantic similarity below a designated threshold.

Text similarity may be computed using existing embedding techniques. For
example, in our work we propose the en core web md model in spaCy,3 which
employs GloVe word embeddings [12,20]. The similarity between category strings
is determined by the cosine similarity of their vector representations:

similarity(A,B) =
A · B

‖A‖‖B‖
where A and B are the vector representations of the category strings. The

similarity ranges from -1 (opposite meaning) to 1 (identical meaning).
To maximize the number of candidate mappings, a similarity greater than 0

may be considered.

Evaluate Candidate Mappings using the following metrics:

– Number of papers belonging to the first category (Support1)
– Number of papers belonging to the second category (Support2)
– Number of papers belonging to both categories (Intersection)
– The ratio of Intersection over Union also called as IoU [7,15] (Agreement)

The Agreement (i.e., Intersection/Union) is calculated using the
Intersection over Union (where Union = Support1+Support2− Intersection)
of papers belonging to a certain category in their respective SKG.

Select the Best Mapping based on the Agreement. Category mappings
are classified into three types: exact, related, and unrelated. Exact matches,
where the similarity score equals 1, represent identical categories across all KGs.
Related matches exceed the established threshold of Agreement, suggesting a
strong correspondence. Unrelated categories fall at or below the threshold, indi-
cating a weaker or no relation. The threshold for Agreement is adjustable and
upon various factors, notably the forthcoming manual validation. Although man-
ual validation of all mappings would be ideal, resource limitations require setting
a pragmatic threshold to minimize manual effort.

Validate candidate mappings by having domain experts manually review
papers classified into the aligned categories.

3 Initial SKG Overlap Assessment: OpenAIRE
and OpenAlex

This work uses two KGs as primary data sources: OpenAIRE (Open Access
Infrastructure for Research in Europe [18,19,23,24]) and OpenAlex [21].
3 https://spacy.io/models/en#en core web md.

https://spacy.io/models/en#en_core_web_md
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OpenAIRE is a European Open Science infrastructure that aims to promote
open scholarship and substantially improve the discoverability and reusability of
research publications and data. The OpenAIRE KG integrates data from a wide
range of research outputs, including publications, datasets, projects, and research
organizations, facilitating a more interconnected and comprehensive understand-
ing of European scientific research. The OpenAIRE API4 allows access to a vast
collection of scientific publications, datasets, projects, and funding information.
In this work, we used the Search API56 to collect data on scientific publica-
tions and their categories, facilitating the quantitative analysis of categorization
overlaps in KGs.

OpenAIRE is supported by the European Commission and various European
entities. It aggregates data from a multitude of sources to build its comprehensive
knowledge graph, including repositories, archives, and journals across Europe. As
part of the European Open Science Cloud, OpenAIRE benefits from consistent
updates and enhancements, ensuring its relevance and utility in the research
community. SCINOBO7 and other science taxonomies are used to classify the
results.

OpenAlex is an open catalogue of the global research system, offering detailed
information on academic papers, authors, institutions, etc. The platform indexes
millions of research outputs, providing a rich dataset for analysis in various
academic fields. The OpenAlex API89 provides access to their extensive dataset.
This API enables querying and retrieving detailed information about academic
works, supporting a wide range of scholarly analyses. In this work, the OpenAlex
API was used to gather information on scientific papers and their categorization.

OpenAlex offers a dynamic dataset with weekly updates, incorporating the
latest data from various public and proprietary sources, including academic
publishers, preprint servers, institutional repositories, and databases. It aims
to index the entirety of the scholarly record, offering an open, comprehensive
view of global research output. By ingesting data from various sources, Ope-
nAlex ensures a rich and varied dataset, which includes information on publica-
tions, authors, institutions, and citation metrics. Furthermore, OpenAlex aligns
its dataset with Wikidata [25] categories. As a successor to the Microsoft Aca-
demic Graph [27], OpenAlex aims to provide a comprehensive, open resource for
academia.

OpenAlex employs a taxonomy with 65,000 categories, as detailed in its
README10. Further documentation elaborates on the classification model used

4 https://graph.openaire.eu/docs/apis/home/.
5 https://graph.openaire.eu/docs/apis/search-api/.
6 https://api.openaire.eu/search/publications.
7 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10192702/.
8 https://docs.openalex.org/.
9 https://api.openalex.org/works.

10 https://github.com/ourresearch/openalex-concept-tagging.

https://graph.openaire.eu/docs/apis/home/
https://graph.openaire.eu/docs/apis/search-api/
https://api.openaire.eu/search/publications
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10192702/
https://docs.openalex.org/
https://api.openalex.org/works
https://github.com/ourresearch/openalex-concept-tagging
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by OpenAlex, providing comprehensive details. It is noted that the model attains
a precision of 60%, an important consideration during our alignment efforts.

3.1 Paper-Category Schema Representation

Figure 2 represents the schema we used for storing the collected data, providing
a structural basis for querying and retrieving information during the analysis. It
outlines the associations between scientific papers and their respective categories
within the database. Nodes marked as Paper are attributed with a title, while
Category nodes encapsulate both the category name and the source attribute,
which identifies whether the category is derived from the OpenAIRE or OpenAlex
SKGs. The relational attribute belongs to connects papers to their relevant cat-
egories, and a second relational attribute similar binds category nodes together,
equipped with a similarity value to express the level of similarity between cate-
gory pairs. The Neo4j graph database11 [26] was chosen store SKG data following
our chosen representation.

belongs toPaper

Title: String

Category

Category name: String

Source: String {OpenAIRE,
OpenAlex}

similar:
similarity value

Fig. 2. Paper-category schema representation

3.2 SKG Overlap Analysis: Data Preparation

The alignment of the collected papers from the KGs was conducted using their
titles. Whenever multiple papers from the same source shared the same title,
leading to potential matching conflicts, such occurrences were disregarded to
maintain alignment precision.

A total of 108,555 papers were aligned, that were available in both KGs. On
average, OpenAIRE assigns approximately 21 categories to each paper, whereas
OpenAlex assigns around 18. Consequently, the dataset from OpenAIRE encom-
passes a larger number of categories. OpenAlex also assigns a confidence value
to each of the assigned categories (not taken into account in this analysis).

The preprocessing primarily targeted the categories to ensure the text was
clean for category alignment. The steps included removing Unicode characters,
removing punctuation, and converting all text to lowercase. Through experimen-
tation, it was determined that more extensive preprocessing did not significantly
improve the results.

11 https://neo4j.com/.

https://neo4j.com/
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A threshold was defined for the minimal number of papers a category must
be represented by to be included in the analysis. This threshold was set after
evaluating the initial distribution of categories in OpenAIRE and OpenAlex and
testing various threshold levels. As depicted in Fig. 3, a threshold of 1 had no
effect, while a threshold of 5 made a noticeable difference. A threshold of 10
was found to effectively refine the categories without excessively reducing their
number. Consequently, we set the threshold at 10, thereby finalizing our dataset
for further analysis stages.

Fig. 3. The number of categories based on the threshold applied to the number of
papers representing each category

3.3 SKG Overlap Analysis: Category Alignment

The category alignment phase involves proposing potential mappings between
categories based on their similarity, evaluating these mappings against predefined
metrics, and then refining the selection based on an agreement threshold to
ensure only the most relevant mappings are considered.

While proposing the candidate mappings, a similarity threshold of 0.0 was
selected, removing the mappings of opposite categories. This approach was cho-
sen to ensure no potentially significant mappings were excluded at this early
stage.

This approach resulted in 509,034 potential mappings. We then assessed these
mappings using the metrics outlined in Sect. 2.2. To determine an appropriate
threshold for the Agreement metric, we evaluated how the number of related
matches varied with different threshold settings. As illustrated in Fig. 4, increas-
ing the threshold reduces the count of mappings deemed related, with a notable
decrease between 0.1 and 0.2. A plateau appears to occur between 0.4 and 0.5,
beyond which the number of related matches dwindles to near zero, especially at
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a threshold of 0.9. Hence, we established an Agreement threshold of 0.5 (with-
out imposing a limit on the ’Similarity’ value), which identified 72 mappings as
related.

Fig. 4. Number of related matches based on the agreement threshold

We collected the papers that were associated with both of the matched cat-
egories for manual review. Following our validation process, the candidate map-
pings were inspected individually by two researchers, discussing the results until
an agreement was reached.

4 Results

Figure 5 illustrates the evolution of the data throughout our analysis, indicating
how each step of the methodology impacts data quantity and analysis detail. A
corpus of 176,200 papers from OpenAlex was collected, from which 108,555 were
found to correspond with the OpenAIRE database entries. Following the paper
alignment, an analysis of the categories was conducted. We defined a threshold,
requiring a category to contain a minimum of 10 papers for consideration in
the mapping process. This criterion resulted in a total of 12,642 categories from
OpenAlex and 22,462 categories from OpenAIRE. There was considerable over-
lap among the categories, leading to the creation of 509,034 potential category
mappings. Upon calculating the metrics described in Sect. 2.2 for each mapping,
we categorized the mappings into three types: exact, related, and unrelated.
Detailed in the bottom right of Fig. 5, under 0.1% of these mappings were consid-
ered related (counting 72). Meanwhile, 2.34% were identified as exact matches,
signifying categories with a one-to-one correspondence across both KGs. The
rest, 97.65% were classified as unrelated matches, which fall outside the relevant
domain of this analysis.

In summary, there are 12,642 categories in OpenAlex, with 11,920 identified
as exact matches, accounting for 94.23%. These categories also exist in Ope-
nAIRE, directing our focus to matching the remaining 722 OpenAlex categories.
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Categories
belonging
to papers

Papers:
- OpenAIRE: 108555
- OpenAlex:  176200
- Alignment:  108555

Selecting
categories

belonging to
>10 papers

Categories:
- OpenAIRE:  30744
- OpenAlex: 111309
- Union: 114599

Map
Categories

Selected Categories:
- OpenAIRE:  22462
- OpenAlex: 12642
- Union:  24102

Results

Candidate Mappings:
509034

Related:
72

0.01%

Exact:
11920
2.34%

Unrelated:
497042
97.65%

Fig. 5. Data flow from the initial collection to final category mapping analysis results

We found 72 related categories, approximately 10% of the OpenAlex categories
requiring matches.

We manually examined these 72 mappings and observed that the labels do
not always align (15 mappings). Upon further analysis of the overlapping papers
for each SKG, we determined that the mappings remain plausible, although one
of the label names may be incorrect. For instance, both ’lasso (statistics)’ and
’lasso (programming language)’ refer to papers related to lasso statistics. How-
ever, the label ’lasso (programming language)’ in OpenAlex is used incorrectly
for the reviewed papers, which all correspond to lasso statistics. We also identi-
fied 1 example of correlation, but not causation between categories: ’melanism’
from OpenAlex and ’peppered moth’ from OpenAIRE both refer to a collection
of papers studying the melanism in a concrete species of moth. Therefore, of
the initial 72 mappings we proposed, 14 were identified with misaligned labels
referring to the same papers and 1 exhibited correlation without causation. This
underscores the importance of our methodology in identifying candidate map-
pings that require expert validation.

Further, we investigated the relationship between the Similarity and the
Agreement metrics, with findings illustrated in Fig. 6. Interestingly, there
appears to be no significant correlation between these two metrics, indicating
a high level of disagreement when annotating research publications with con-
cepts.

Another interesting takeaway is the distribution of the Agreement values of
the exact matches, shown in Fig. 7. Despite the presence of identical categories
across both KGs, there is a strong disagreement among the papers that belong
to these categories (i.e., the same papers have different category annotations).
Additional work is needed to assess if the confidence values assigned in OpenAlex
categories affect these findings (e.g. removing low-confidence categories).
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Fig. 6. Correlation of Similarity and Agreement

The scripts [2]12 used to carry out our methodology and analysis are available
online under the MIT license. The results of the matches can be found in Zenodo
[3].13

In summary, our analysis yielded 3 main findings. First, we identified 71
(72 mappings proposed - 1 mismatch: ’melanism’ from OpenAlex and ’peppered
moth’ from OpenAIRE) newly aligned categories across two SKGs. Secondly, we
observed a notable lack of correlation between the ’Similarity’ and ’Agreement’
metrics. Finally, our research revealed that the presence of identical categories
in both SKGs does not guarantee agreement on category assignments.

Fig. 7. Distribution of Agreement values of the exact mappings (Similarity = 1)

12 https://github.com/kuefmz/define taxonomy.
13 https://zenodo.org/records/10974512.

https://github.com/kuefmz/define_taxonomy
https://zenodo.org/records/10974512
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5 Related Work

Ontology alignment [6] is a subset of KG alignment and involves matching con-
cepts, relationships, and instances across different ontologies to enable knowl-
edge integration, facilitating a unified view of knowledge across various domains.
This section explores significant contributions to the field of KG and ontology
alignment.

5.1 KG Alignment Based on Embeddings

Several methods leverage embedding techniques to enhance the interoperability
and integration of heterogeneous knowledge bases.

ITransE [29] is an approach for embedding knowledge from various KGs,
applicable to cross-lingual KG alignment. The method builds on TransE [1],
learning embeddings for entities and relations, and then mapping these embed-
dings to a shared space using predefined entity alignments. ITransE updates
these embeddings through an iterative process as it discovers new entity align-
ments, requiring uniform relations across all involved KGs for alignment execu-
tion.

JE [9] learns embeddings for multiple KGs in a single vector space to align
entities. The method employs initial entity alignments to associate two KGs and
modifies the TransE model to include an entity alignment loss in its loss function,
allowing the alignment process.

In [8] the authors present a KG embedding method for entity alignment, a
crucial task for integrating knowledge from various KGs. Their work provides
a comprehensive meta-level analysis of popular embedding methods, identify-
ing statistically significant correlations between different embedding methods
and meta-features extracted from KGs. This rigorous analysis offers a unique
perspective on the effectiveness and efficiency of various embedding methods in
real-world KG settings, addressing critical questions about the assumptions and
sensitivities of these methods to different KG characteristics.

The publications presented above focus on using embedding methods for
aligning KGs, utilizing models to project entities and relations into a unified
vector space. These methods often depend on pre-aligned data. In contrast, we
introduce a quantitative approach that focuses on a bottom-up analysis to assess
overlaps directly based on the categorization of scientific literature within the
KGs. However, we base our work on these techniques to calculate similarity
between categories.

5.2 KG Alignment Based on Machine Learning

SelfLinKG [16] introduces an approach for enhancing the connectivity and util-
ity of scientific KGs. This work leverages self-supervised learning techniques to
identify and establish links between disparate KGs, facilitating a more inte-
grated and comprehensive representation of scientific knowledge. By employing
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self-supervision, the authors demonstrate significant improvements in the accu-
racy and efficiency of KG linking, offering valuable insights into the potential of
machine learning in KG integration.

Cross-lingual KG alignment [28] presents method for aligning KGs across
different languages using graph convolutional networks (GCNs). This work [28]
focuses on the challenge of matching entities in multilingual KGs, an essential
task for enhancing cross-lingual interoperability and integration of information.
Their approach involves training GCNs to embed entities from different lan-
guages into a unified vector space, where alignment is determined based on
the proximity of entity embeddings. This method leverages both structural and
attribute information of entities, aiming to improve the accuracy and efficiency
of cross-lingual KG alignment.

In [13], the authors explore the application of KGs and attention mechanisms
in bag-level relation extraction, providing a quantitative analysis of their impact.
This study contributes a new dataset and proposes a framework to evaluate how
KGs and attention mechanisms affect the extraction process, offering insights
that could inform the development of more effective relation extraction methods.

All these methods leverage the power of machine learning to identify pat-
terns and establish connections within and across KGs, contributing to a richer,
more interconnected web of knowledge. However, they often require substantial
training data and can sometimes obscure the interpretability of the alignment
process. These methods adapt and evolve through learning patterns in the data,
which, while effective, can introduce complexities in understanding why specific
alignments are suggested. Our quantitative approach sidesteps these challenges
by employing a straightforward, bottom-up analysis that directly assesses the
categorizations of papers in KGs. Our method offers a clear, logical pathway to
understanding alignments, grounded in the inherent structure and content of the
KGs themselves, rather than inferred patterns from machine learning models.

6 Conclusions and Future Work

This work proposed a quantitative bottom-up analysis to assess the overlaps
among different KGs, using OpenAIRE and OpenAlex as primary data sources.
The findings underscore a notable divergence in the categorization and alignment
of KGs despite their reliance on similar resources and methodologies. Surpris-
ingly, even when these KGs draw upon comparable datasets and aim to represent
similar domains, the divergence in their categorization frameworks is substantial.

This study successfully proposed a set of mappings that are likely to be
related, offering a new perspective on the interconnectedness of these KGs. How-
ever, it is imperative to note that the proposed mappings are preliminary and
require further validation by domain experts to ensure their accuracy and rele-
vance. This validation is crucial for ensuring the mappings’ utility in enhancing
the interoperability and integration of KGs in the realm of scientific research.

The future direction of this research involves expanding the scope to complete
the analysis of the entire OpenAlex and OpenAIRE KGs and expand to other



Assessing the Overlap of SKGs: A Quantitative Analysis 183

SKGs (e.g. ORKG [14], AI-KG [4], Crossref [10]), thereby enriching the dataset
and enhancing the robustness of the findings. Furthermore, we plan to enhance
our experiments by employing various embeddings to eliminate biases and ascer-
tain the similarity between terms. An important aspect for the future is to con-
sider additional data available in the KGs. OpenAlex provides the confidence
values for categories, which we did not incorporate in our work. By integrating
more KGs and more data from the KGs, a more comprehensive understand-
ing of the overlaps and divergences across different knowledge domains may be
achieved. We intend to broaden our analysis by incorporating an inter-annotator
agreement metric, which will serve not only as an additional measure but also
as a tool for validation. Furthermore, we plan to enhance our experiments by
employing various embeddings to ascertain the similarity between terms.

Moreover, our goal is to delve deeper into AI-related papers, extracting and
analyzing their categorizations to propose a refined set of mappings. This effort
will involve a systematic collection and analysis of AI research outputs across
various KGs, followed by the application of advanced alignment and mapping
techniques. The ultimate goal is to construct a more interconnected and semanti-
cally rich network of KGs, facilitating a more integrated and accessible repository
of scientific knowledge.
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Abstract. This article provides an overview of the Field of Research
Classification (FoRC) shared task conducted as part of the Natural Sci-
entific Language Processing Workshop (NSLP) 2024. The FoRC shared
task encompassed two subtasks: the first was a single-label multi-class
classification of scholarly papers across a taxonomy of 123 fields, while
the second focused on fine-grained multi-label classification within com-
putational linguistics, using a taxonomy of 170 (sub-)topics. The shared
task received 13 submissions for the first subtask and two for the second,
with teams surpassing baseline performance metrics in both subtasks.
The winning team for subtask I employed a multi-modal approach inte-
grating metadata, full-text, and images from publications, achieving a
weighted F1 score of 0.75, while the winning team for the second sub-
task leveraged a weakly supervised X-transformer model enriched with
automatically labelled data, achieving a micro F1 score of 0.56 and a
macro F1 of 0.43.

Keywords: field of research classification · shared task · scholarly
information processing

1 Introduction

In recent decades, the volume of published scientific research has experienced
an exponential growth rate, estimated to double approximately every 17 years
[6,15]. This surge has prompted the establishment of diverse repositories,
databases, knowledge graphs, and digital libraries, encompassing both general
and specialised domains, aimed at capturing and organising the ever-expanding
scientific knowledge landscape. Notable examples include the Open Research
Knowledge Graph (ORKG) [20] and the Semantic Scholar Academic Graph
(S2AG) [23], along with domain-specific repositories such as PubMed Central
[8] for medical research and ACL Anthology [5] for computational linguistics
(CL) and natural language processing (NLP).

Classifying scientific knowledge into Fields of Research (FoR) is a fundamen-
tal task for these resources, allowing the development of downstream applica-
tions like scientific search engines and recommender systems. However, numer-
ous existing resources face limitations in their classification systems, which can
c© The Author(s) 2024
G. Rehm et al. (Eds.): NSLP 2024, LNAI 14770, pp. 189–204, 2024.
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manifest in the form of a FoR taxonomy that lacks granularity, failing to cover
fine-grained hierarchical fields, or in the utilisation of unsupervised methods in
the classification model, which do not accurately capture desired labels [11].

Previous efforts of FoR classification have been conducted using machine
learning [14], deep learning [12,19], and graph-based approaches [2,7,16,19].
However, a state-of-the-art system that enables the classification into a hierar-
chical taxonomy using human-curated labels is still lacking. Thus, we conducted
the Field of Research Classification (FoRC) shared task as part of the Natural
Scientific Language Processing Workshop (NSLP) 2024,1 in which we offered two
distinct subtasks:

– Subtask I: Single-label multi-class field of research classification of general
scholarly articles.

– Subtask II: Fine-grained multi-label classification of Computational Lin-
guistics scholarly articles.

Both subtasks aimed to classify scholarly papers in a hierarchical taxonomy
of FoR, and participants chose to take part in either one or both subtasks.
For subtask I, we constructed a dataset of 59,344 publications with their (meta-
)data from existing open-source repositories, mainly the ORKG2 and arXiv,3 and
used a subset of the existing ORKG research fields taxonomy [2]. On the other
hand, for subtask II, we introduced a new human-annotated corpus, FoRC4CL,
consisting of 1,500 publications from the ACL Anthology labelled using a novel
taxonomy of CL (sub-)topics [1].

Both competitions were run using the Codalab platform [30]. For subtask I4
we had 35 registrations, 13 of which submitted results. In contrast, for the more
challenging subtask II5 we had 20 registrations, two of which submitted results.
The shared tasks had the following schedule:

– Release of training data: January 2, 2024
– Release of testing data: January 10, 2024
– Deadline for system submissions: February 29, 2024
– Paper submission deadline: March 14, 2024
– Notification of acceptance: April 4, 2024

The rest of the paper is structured as follows. Section 2 presents previous work
related to FoRC in order to compare the presented systems to current research,
and Sect. 3 defines both subtasks along with the used evaluation metrics. In
Sect. 4, we introduce the datasets and taxonomies used for both subtasks, delving
into their construction methods. Section 5 showcases the results achieved by the
participating teams in both subtasks, describing the system architectures when
possible. Section 6 discusses those results along with their limitations, and Sect. 7
provides concluding remarks.
1 https://nfdi4ds.github.io/nslp2024/.
2 https://orkg.org.
3 https://arxiv.org.
4 https://codalab.lisn.upsaclay.fr/competitions/16684.
5 https://codalab.lisn.upsaclay.fr/competitions/16712.

https://nfdi4ds.github.io/nslp2024/
https://orkg.org
https://arxiv.org
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https://codalab.lisn.upsaclay.fr/competitions/16712
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2 Related Work

Prior research on FoRC, whether in a general context or within a specific fine-
grained domain, has been sporadic and isolated. Different researchers used dif-
ferent datasets, lacking a unified gold standard benchmark and taxonomy for
training and evaluating classification systems, which makes it difficult to com-
pare different techniques.

Generally, FoRC systems fall into supervised and unsupervised methods. The
former involves systems developed with annotated data, utilising models trained
on (meta-)data of scholarly articles with pre-existing, ideally human-curated,
information about their respective FoR [21]. While the latter relies on clustering
existing (meta-)data using various similarity measures [21].

Some argue that unsupervised classification systems are ideal as they do
not rely on manually curated and expensive training data, and can be scalable
solutions that handle the vast amount of publications and new FoR [35,36].
However, this approach is insufficient, requiring manual validation due to the
tendency of unsupervised algorithms like topic modelling to produce noisy and
error-prone results that may not accurately capture the intended labels [11]. For
this reason, others prefer a supervised learning approach, working with existing
datasets of research publications labelled with FoR based on established tax-
onomies [12,38,42]. In line with the latter, this shared task employed supervised
classification because of its ability to train models on more accurate data.

In terms of supervised techniques, some efforts have proposed jointly learning
(meta-)data representations in the same latent space as the FoR taxonomy either
by regularising parameters and applying penalties to ensure each FoR is close to
its parent nodes [42] or by utilising a contrastive learning approach that gener-
ates vector representations encompassing information about the FoR hierarchy
along with the text [38]. The former used computer science publications from
the Microsoft Academic Graph (MAG) and medical publications from PubMed,
while the latter applied their technique to general FoR using the Web of Science
(WoS) dataset.

Alternatively, other work utilised Convolutional Neural Networks (CNNs)
trained on general FoR data from ScienceMetrix, considering metadata like affil-
iation, references, abstracts, keywords, and titles [33]. Similarly, Daradkeh et
al. [12] also used CNNs by focusing on data science publications, conducting
dual classification for both content (i. e., FoR) and methods employed in the
publications. The authors incorporated explicit (titles, keywords, and abstracts)
and implicit (authors, institutions, and journals) metadata, classifying them into
a manually curated flat list of labels.

Another approach used Deep Attentive Neural Networks to classify abstract
texts from WoS [22]. The authors also used Long Short-Term Memory cells
and Gated Recurrent Units with an attention mechanism to embed abstract
texts and classify them into 104 general FoR categories according to the WoS
schema. Other work focused on hierarchical text classification, neglecting other
metadata and emphasising the incorporation of hierarchical taxonomies into
classification models. For instance, Deng et al. [13] developed a model maximising
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text-label mutual information and label prior matching, using constraints on
label representation. Similarly, Chen et al. [9] argued for semantic similarity
between text and label representations, introducing a joint embedding loss and
a matching learning loss to project them into a shared embedding space.

Finally, addressing the research problem through a graph-based approach,
Gialitsis et al. [16] viewed classification as a link prediction problem between
publication and FoR nodes in a multi-layered graph. They used data from
Crossref, MAG, and ScienceMetrix journal classification, and their taxonomy of
labels was derived from the Organisation for Economic Cooperation and Devel-
opment extended with ScienceMetrix. Other research incorporated knowledge
from external knowledge graphs (KGs) to augment the representation of FoR.
This was done by linking FoR to entities on DBpedia and concatenating their
vector representations with (meta-)data [2,19] or by using research-specific KGs
such as the AIDA KG [7].

3 Tasks Description

Both subtasks in the FoRC shared task consist of a document classification
problem using data and metadata of research publications to predict the main
FoR or (sub-)topic the document addresses. The tasks are described as follows:

– Subtask I: Multi-class FoRC of general research papers: Given each
publication’s available (meta-)data, predict the most probable associated FoR
the publication deals with from a pre-defined taxonomy of 123 FoR.

– Subtask II: Multi-label FoRC of CL research papers: Given each pub-
lication’s available (meta-)data, predict all possible associated (sub-)topics
that describe the main contributions of the publication from a pre-defined
taxonomy of 170 (sub-)topics in CL.

As a single-label multi-class classification problem, subtask I is evaluated
based on the metrics of accuracy as well as weighted precision, recall, and F1
scores. On the other hand, subtask II is evaluated based on macro and micro
precision, recall, and F1 scores.

4 Shared Task Datasets

4.1 Subtask I

For the first subtask, we use a dataset [2], which was developed based on var-
ious open-source resources. The ORKG (CC0 1.0 Universal) and arXiv (CC0
1.0) were the main sources for fetching publications with FoR labels, which was
intentional since, for both sources, papers are uploaded manually and FoR are
curated from their respective taxonomies. In contrast to other repositories, they
do not employ automatic classification systems to label scholarly articles, which
aligns with our goal of using only manually curated data in order to bypass dupli-
cating a previous classifier. Additionally, Crossref API [18] (CC BY 4.0), S2AG
API6 (ODC-BY-1.0), and OpenAlex [32] (CC0) were used to fetch abstracts
6 https://www.semanticscholar.org/product/api.

https://www.semanticscholar.org/product/api
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and validate (meta-)data. All publications in the dataset are categorised using
a subset of the ORKG research fields taxonomy.7

The ORKG and arXiv datasets were combined, and articles with non-English
titles and abstracts were excluded. This process resulted in a dataset compris-
ing 59,344 scholarly articles, each labelled according to a taxonomy of 123 FoR
organised into four hierarchical levels and five high-level classes: “Physical Sci-
ences and Mathematics”, “Engineering”, “Life Sciences”, “Social and Behavioral
Sciences”, and “Arts and Humanities”.8 Metadata fields for each publication con-
sist of title, abstract, author(s), DOI, URL, publication month, publication year,
and publisher. However, it is important to note that not all instances have all
metadata fields available [2]. Table 1 shows a sample of three data instances
with partial metadata fields. The dataset exhibits significant imbalances in the
distribution of FoR, with the high-level label “Physical Sciences and Mathemat-
ics” dominating due to the majority of articles originating from arXiv. Notably,
“Physics”, “Quantum Physics”, and “Astrophysics and Astronomy” are the most
prevalent, with 6610, 5209, and 3716 articles, respectively. Conversely, the label
“Molecular, cellular, and tissue engineering” is the least frequent, comprising
eight articles. The average and median number of articles per field are 482.5 and
175, respectively. Figures 1 and 2 show the distribution among the five high-level
labels and the overall 123 labels [2].

To run the task, we shuffled the dataset and created a random split of
70/15/15 for training, validation, and testing. The shared task participants were
first given access to the training and validation datasets, which contain labels
for each publication. Then, the test dataset was shared separately with no labels
attached to it. The dataset is available online.9

4.2 Subtask II

The dataset used for subtask II was the FoRC4CL corpus [1], which consists
of 1500 CL publications extracted from the ACL Anthology10 that are manu-
ally annotated to indicate each publication’s main contribution(s). In order to
construct the corpus, we randomly selected English publications from the year
range of 2016 to 2022. This was done while keeping in mind the venue distri-
bution in the original full corpus, making bigger venues, such as the main ACL
Conference, represented by a proportional amount of publications in the corpus.
Overall there are 255 venues represented in the corpus, with an average of six
papers per venue. The following metadata is available for each publication: ACL
Anthology ID, title, abstract, author(s), URL to the full text in PDF, publisher,
publication year and month, proceedings title, DOI, venue, and its labels in all
three levels of the taxonomy. A sample of the corpus is presented in Table 2,

7 https://orkg.org/fields.
8 An interactive view of the taxonomy used for subtask I can be accessed at https://

huggingface.co/spaces/rabuahmad/forcI-taxonomy.
9 https://zenodo.org/records/10777735.

10 https://github.com/shauryr/ACL-anthology-corpus.

https://orkg.org/fields
https://huggingface.co/spaces/rabuahmad/forcI-taxonomy
https://huggingface.co/spaces/rabuahmad/forcI-taxonomy
https://zenodo.org/records/10777735
https://github.com/shauryr/ACL-anthology-corpus
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Table 1. Partial sample of three instances from the FoRC subtask I dataset

Title Author(s) DOI Label

belt losses
evaluation for a
push-belt cvt

[‘Valerian
Croitorescu’]

10.5194/bg-10-7035-2013 Mechanical
Engineering

petroleum
exploration and
production: past
and present
environmental issues
in the nigeria’s niger
delta

[‘Petters, Sunday
W.’, ‘Ite,
Margaret U.’,
‘Ibok, Udo J.’,
‘Aniefiok Ite’]

10.12691/env-1-4-2 Environmental
Sciences

public history and
contested heritage:
archival memories of
the bombing of italy

[‘Alessandro
Pesaro’, ‘Zeno
Gaiaschi’, ‘Greta
Fedele’, ‘Heather
Hughes’]

10.5130/phrj.v27i0.7088 Arts and
Humanities

Fig. 1. High-level FoR distribution of subtask I dataset

while the complete dataset is accessible online.11 The corpus is annotated using
Taxonomy4CL [1],12 a taxonomy developed semi-automatically using a topic
modelling approach. The version of the taxonomy used for the corpus consists
of 170 topics and subtopics of CL structured in three hierarchical levels.

11 https://zenodo.org/records/10777674.
12 https://github.com/DFKI-NLP/Taxonomy4CL.

https://link.springer.com/chapter/10.1007/978-3-319-45447-4_17/
http://pubs.sciepub.com/env/1/4/2
https://epress.lib.uts.edu.au/journals/index.php/phrj/article/view/7088
https://zenodo.org/records/10777674
https://github.com/DFKI-NLP/Taxonomy4CL
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Fig. 2. Overall FoR distribution of subtask I dataset

Similar to subtask I, to run subtask II, we shuffled the corpus and split it
randomly into 70/15/15 for training, validation, and testing. Notably, the ran-
domness of the split results in some labels included in the test and/or validation
sets but not in the training set. The training and testing datasets were released
fully including labels of each hierarchy level, while the testing dataset was later
released excluding those labels.

5 Results

5.1 Baselines

As a baseline for subtask I, we fine-tuned SciNCL [29], a model that learns scien-
tific document representations by utilising citation embeddings, and outperforms
SciBERT [4] on many tasks. The features fed into the model were the titles and
abstracts, and the labels were encoded categorically using LabelEncoder13 with-
out taking semantic information into account. No regard was given neither to
class imbalance nor to the hierarchical representation of labels. The AdamW
optimizer was used during training for three epochs with a batch size of 8. We
used an RTXA6000 GPU with NVIDIA Turing architecture. This resulted in
0.73 accuracy, 0.73 weighted precision, 0.73 weighted recall, and 0.72 weighted
F1 scores.

Similarly, we fine-tuned SciNCL and use it as a baseline for subtask II. We
utilised only titles and abstracts as representative features for each publication
and combined labels from the three hierarchy levels into one flat list. All tax-
onomy labels were then multi-hot encoded and fed as input into the model. We
13 https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.

LabelEncoder.html#sklearn.preprocessing.LabelEncoder.

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html#sklearn.preprocessing.LabelEncoder
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html#sklearn.preprocessing.LabelEncoder
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Table 2. Partial sample of instances from the FoRC4CL dataset used for subtask II

ACL ID Level 1 Level 2 Level 3

2022.udfestbr-1.5 [‘Parsing’,
‘Data Management
and Generation’,
‘Low-resource Lan-
guages’,
‘Domain-specific
NLP’]

[‘Data Prepara-
tion’,
‘Syntactic Parsing’]

[‘Dependency Pars-
ing’,
‘Annotation
Processes’]

2021.konvens-1.14 [‘Text Preprocessing’,
‘Domain-specific
NLP’,
‘Low-resource Lan-
guages’,
‘Classification
Applications’]

[‘Hate and Offen-
sive Speech Detec-
tion’,
‘NLP for News and
Media’]

[‘NLP for Social
Media’]

utilised the Google Collab T4 GPU for training the model for three epochs. BCE-
WithLogits14 was used as the loss function, AdamW as the optimizer, and all
other hyperparameters were the default ones in the AutoModelForSequenceClas-
sification class by Hugging Face.15 This resulted in micro scores of 0.36 precision,
0.33 recall, and 0.34 F1, and macro scores of 0.01 precision, 0.05 recall, and 0.02
F1.

5.2 Subtask I

We received 13 systems submissions for subtask I, the evaluation results of which
are shown in Table 3. The top five teams achieved accuracy, precision, and recall
scores higher than the given baseline, while the top six contenders outperformed
the F1 score, the last one of which only by a small margin. Although we show
all evaluation metrics, we rank the submissions according to their F1 scores, and
thus the winning team of the shared task is SLAMFORC, followed by flo.ruo
in second place and HALE-LAB-NITK in third. The results of these three
teams are very similar and fluctuate for the top three positions in each metric.

Since there was no obligation for each team to submit a description of their
system, we provide system descriptions when available, namely for the teams of
SLAMFORC [34], HALE-LAB-NITK (private communication), ZB-MED-DSS
[39], and NRK [26], all of which are in the top five ranking systems, surpassing
the baseline results in all metrics.

Both NRK and ZB-MED-DSS experiment with BERT-based models in a
similar manner. NRK build a framework that consists of three different models:
SciBERT [4], DeBERTa-V3 [17], and RoBERTa [24]. Each model is fine-tuned
14 https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html.
15 https://huggingface.co/docs/transformers/model_doc/auto.

https://aclanthology.org/2022.udfestbr-1.5.pdf
https://aclanthology.org/2021.konvens-1.14.pdf
https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html
https://huggingface.co/docs/transformers/model_doc/auto
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using the provided training dataset of the subtask, utilising a focal loss function
to account for data imbalance. The framework is then designed to take all three
predictions into account and decide on the final prediction using a hard voting
ensemble [27]. The team explains that the combination of all three BERT-based
models outperforms the best-performing single model, which is SciBERT in this
case.

Similarly, the ZB-MED-DSS team experiment with the following BERT-
based models: SciBERT, SciNCL, and SPECTER2 [37]. However, instead of
only fine-tuning the models using the available training data, they augment each
scholarly article with data from OpenAlex, S2AG, and Crossref. They extract
metadata related to (sub-)topics, concepts, keywords, fields of study, and full
journal titles. These are then concatenated with the title and abstract of each
publication in the available training data and used to fine-tune each of the afore-
mentioned pre-trained BERT-based models. Their best result was achieved by
using this combination of raw and augmented data to fine-tune SPECTER2.

The HALE-LAB-NITK team opted to train a support vector machine (SVM)
with grid search cross-validation (CV) to find the best-performing hyperparam-
eter combination. This resulted in using a polynomial kernel with the regular-
isation parameter C set to 1.5. They trained a one vs. rest classifier, meaning
that the model was separated into 123 SVMs corresponding to each class in the
taxonomy, learning to distinguish the specific class from all the others.

Finally, the SLAMFORC team proposed a multi-modal approach in which
they combine (meta-)data from the training dataset, i. e., title, abstract, and
publisher, with enriched semantic information from Crossref. The enriched data
included subjects mentioned in the article as well as missing DOIs and URLs to
the full text. The (meta-)data from the original training dataset was embedded
using SciNCL, while the full text of each scholarly article was embedded using
both SciNCL and SciBERT with a sliding window of 512 tokens and an over-
lap of 128 tokens in order to account for the token limitation in these models.
Adopting a multi-modal approach, the SLAMFORC team also took advantage
of any images found in the PDF of the full text, extracting those using Paper-
Mage [25]. These images were converted to raster graphics and embedded using
OpenCLIP [10] and DINOv2 [28]. All three embeddings for each article (i. e.,
data and metadata, full-text, and images) were concatenated and used to train
five different models: SVM, random forest, logistic regression, extreme gradi-
ent boosting, and a multi-layer-perceptron. Additionally, SciNCL was fine-tuned
using the original (meta-)data. The six predictions from the five mentioned mod-
els and SciNCL were then incorporated into a hard-voting ensemble to decide
on the final prediction.



198 R. Abu Ahmad et al.

Table 3. Evaluation results of subordination for subtask I; top result in bold, runner-up
underlined, third place italicised

Rank Team Accuracy Precision Recall F1

– Baseline 0.733 0.731 0.733 0.723
1 SLAMFORC [34] 0.7558 0.7566 0.7558 0.7540
2 flo.ruo 0.7542 0.7545 0.7542 0.7524
3 HALE-LAB-NITK 0.7572 0.7536 0.7572 0.7500
4 ZB-MED-DSS [39] 0.7476 0.7438 0.7476 0.7426
5 NRK [26] 0.7433 0.7423 0.7433 0.7391
6 Sailor Moon 0.7302 0.7247 0.7302 0.7243
7 pranjalks 0.7260 0.7194 0.7260 0.7202
8 Sallu 0.7059 0.7027 0.7059 0.6930
9 Shaad 0.7023 0.6951 0.7023 0.6915
10 CAU&ZBW 0.6815 0.6792 0.6815 0.6779
11 PhD_CV 0.6581 0.6594 0.6581 0.6528
12 Elixir 0.0584 0.0614 0.0584 0.0572
13 dingdong 0.0037 0.0015 0.0037 0.0019

5.3 Subtask II

As a more complex task, subtask II received two system submissions, both of
which outperformed the given baseline in all metrics. Full evaluation results
are shown in Table 4. The winning team of this subtask is CAU&ZBW, who
outperform their runner-up, CUFE, on all evaluation metrics. Since we only
received a system description from CAU&ZBW [3], we proceed to describe the
system they developed.

The challenging aspects of this task lie in its relatively high number of labels
(170), its hierarchical nature, its multi-label characteristic, and its small cor-
pus consisting of 1500 overall instances with only 1050 articles available in the
training data. For these reasons, the CAU&ZBW team treats this challenge as
an extreme multi-label classification (XMLC) task. The team thus experiments
with several models, specifically a tf-idf model, Parabel [31], and X-transformer
[40]. To represent each scholarly article in the dataset, the CAU&ZBW team
uses the title, abstract, venue, publisher, and book title (meta-)data fields from
the available training dataset. In addition, they extract the full-text from the
given URL of each publication.

However, since the labelled training data is not sufficient for training a model
with satisfactory results, CAU&ZBW enrich the dataset with 70,000 unlabelled
publications from the ACL Anthology. Then, they use their trained tf-idf model
to generate weak labels for each of those publications, giving those as input to
fine-tune a weakly supervised X-transformer model. Finally, the team adds the
hierarchy of the taxonomy to the final stage of the model, accepting predictions in
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levels 2 and 3 only if their parent node is already predicted in the previous level.
This model achieved their best result, which was the team’s final submission.

Table 4. Evaluation results of submissions for subtask II; top result is bolded and
runner-up is underlined

Rank Team Precision
(micro)

Recall
(micro)

F1 (micro) Precision
(macro)

Recall
(macro)

F1 (macro)

– Baseline 0.3556 0.3277 0.3411 0.0163 0.0459 0.0239

1 CAU&ZBW [3] 0.4391 0.7591 0.5563 0.3942 0.5551 0.4344
2 CUFE 0.4015 0.3707 0.3855 0.1043 0.0666 0.0592

6 Discussion

As the two approaches that utilise BERT-based models in subtask I, we see
that ZB-MED-DSS and NRK produced similar results, with the former slightly
outperforming the latter on all metrics. This can be attributed to two main
reasons, the first of which is the exclusive use of science-specific BERT models
by ZB-MED-DSS as opposed to NRK, which has proven to be more effective
when dealing with scientific data [4]. The second reason is the enrichment process
applied by the ZB-MED-DSS team, in which they added information from several
open-access resources that directly relate to the FoR of each publication.

The model proposed by the HALE-LAB-NITK team is one of the top-scoring
ones, yielding the top results in terms of accuracy and weighted recall scores.
This means that one vs. rest SVMs with grid search CV outperform fine-tuning
BERT-based models (i. e., the ZB-MED-DSS and NRK teams), despite the lat-
ter’s inherent capability for language understanding. These results suggest that
carefully engineered features, combined with hyperparameter tuning, effectively
capture domain-specific linguistic patterns crucial for classifying FoR. Addition-
ally, the decision boundaries created by SVMs seem to align well with the sepa-
rability of different FoR in the feature space, while their computational efficiency
and interpretability provide practical advantages. This highlights the importance
of considering dataset characteristics, feature representation, hyperparameter
tuning, and the potential for hybrid approaches when designing models for tasks
requiring advanced language understanding capabilities, rather than fine-tuning
pre-trained language models.

The best approach in subtask I was by SLAMFORC, using as much informa-
tion from scholarly articles as possible. This includes (meta-)data such as title,
abstract, publisher, and the full text of the publication along with its images.
This is an interesting approach that, to the best of our knowledge, has not been
applied to a FoRC task before. The results of this shared task clearly show that
there is a high potential for such multi-modal models, seeing as it competes
highly with the other text-based models in the task on all evaluation metrics. In
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the future, it would be interesting to explore the types of images and perhaps
also tables used in scholarly publications and how they can help predict the FoR
they pertain to.

In terms of subtask II, we see that applying methods used for XMLC tasks
did indeed yield good results and thus seem to be appropriate for this task. The
problem of insufficient training data was solved by the CAU&ZBW team by
introducing noisy data that was automatically labelled. However, the evaluation
results exhibit notable disparities across metrics, with micro metrics reflecting
relatively strong classification on individual instances but macro metrics indi-
cating variability in class prediction consistency, a problem expected when it
comes to XMLC. The model’s reliance on a weakly supervised dataset suggests
a capacity to learn from noisy or incomplete labels, but also poses challenges
in interpreting classification decisions. Future directions might involve refining
weakly supervised learning techniques and exploring alternative model architec-
tures.

Importantly, we note that none of the teams in either subtask incorporated
the hierarchical relations of labels into training their models, and did not include
any other semantic representation pertaining to the labels in their training pro-
cesses. This can definitely be explored further in future research by incorporating
techniques from work on hierarchical text classification [9,13,41,42].

Finally, as organisers of this task, we note that most teams participating in
subtask I struggled with two main problems. The first is the class imbalance of
the dataset that was outlined more clearly in Sect. 4, which resulted from the lack
of human-annotated publications in fields such as Social and Behavioural Sci-
ences and Arts and Humanities. Future endeavours could focus on these under-
represented fields and construct databases of human-annotated publications that
can be added to the dataset. Additionally, teams were challenged by the incom-
pleteness of the dataset in specific (meta-)data fields such as publisher and DOI,
which made some of them extract additional data from external resources. In
terms of subtask II, the main challenge was insufficient training data. In the
future, we aim for the FoRC4CL corpus to be expanded by asking authors to
annotate their own papers, which should be helpful in training more accurate
classification systems [1].

7 Conclusion

In this article, we presented an overview of the Field of Research Classification
(FoRC) shared task, which was held under the umbrella of the Natural Scientific
Language Processing Workshop (NSLP) 2024. The FoRC shared task consisted
of two subtasks, the first being a single-label multi-class classification of general
scholarly papers from 123 hierarchical fields, and the second a more fine-grained
multi-label classification of a specific field into a taxonomy 170 (sub-)topics,
taking Computational Linguistics as a use-case. The task attracted 13 submis-
sions for subtask I and two submissions for subtask II, both of which included
teams succeeding in outperforming the given baselines. The winning team of the
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first subtask introduced a multi-modal approach combining (meta-)data, full-
text, and images from publications, followed by training six different models
and a final voting ensemble. While other top teams explored techniques of one
vs. rest SVM classifier with grid search and fine-tuning different BERT-based
models with data enrichment from external resources. In terms of the second
subtask, the winning team utilised a weakly supervised X-transformer model
while adding automatically labelled data in order to increase instances for train-
ing. Our datasets for both subtasks are publicly available and we aim for them to
be used in the future by researchers developing new classification systems. Fur-
ther improvements can look into incorporating the hierarchical nature of labels
in both datasets in the training of the models and making use of the semantic
information of the labels for classification. Future iterations of this shared task
can increase the number of available training data, especially for subtask II,
and incorporate an evaluation metric that takes the hierarchy of the labels into
account.
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Abstract. This study presents the system developed by team NRK for
SubTask I of the Field of Research Classification (FoRC) - NLSP 2024.
The task focuses on single-label, multi-class classification of general schol-
arly papers. Our approach exploits the capabilities of various pre-trained
BERTopology models, combined with a straightforward ensemble vot-
ing scheme to enhance classification performance. The proposed system
achieved competitive results, ranking within the Top 5 on the final score-
board.

Keywords: BERT-based models · Paper Classification · FoRC ·
voting ensemble · FoRC shared task

1 Introduction

The automated classification of scientific articles into their respective fields of
research (FoR) plays a crucial role in various Natural Language Processing
(NLP) applications. It facilitates information retrieval, knowledge organization,
and facilitates scholarly search engines. While existing repositories often uti-
lize FoR classification systems, these systems face limitations in terms of the
employed taxonomy and the underlying classification model.

This paper addresses these limitations by exploring the application of BERT-
based [3] models for single-label, multi-class FoR classification (FoRC) of general
scholarly papers. We focus on Subtask I of the Field of Research Classification
(FoRC) shared task at NLSP 2024, which aims to develop classifiers that accu-
rately assign one of 123 predefined hierarchical classes from the ORKG taxon-
omy to general scholarly papers based on their available metadata (title, authors,
abstract, etc.).

The contribution of this paper is presented below:

– Investigating the effectiveness of pre-trained BERT-based models for single-
label, multi-class FoRC: This study examines the potential of BERT-based
models in capturing the semantic relationship within scientific articles and
their corresponding research fields.

c© The Author(s) 2024
G. Rehm et al. (Eds.): NSLP 2024, LNAI 14770, pp. 205–213, 2024.
https://doi.org/10.1007/978-3-031-65794-8_13
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– Contributing to the understanding of automated FOR classification: The find-
ings of this research can provide valuable insights into the effectiveness of
pre-trained language models for automated FoRC tasks.

2 Related Work

Automated FoRC has been an active area of research within the Natural Lan-
guage Processing (NLP) domain. This section explores existing work relevant to
Subtask I of the FoRC shared task, focusing on single-label, multi-class classifi-
cation of general scholarly papers.

Previous works often employed traditional machine learning models like Sup-
port Vector Machines (SVMs), Näıve Bayes, K-Nearest Neighbor and Decision
Tree introduced in [2] and [6] were employed to classify scientific publications
into three categories: Science, Business, and Social Science. These approaches
relied on manually extracted features, often utilizing the TF-IDF method to
represent the textual content.

To address the challenge of multi-label research paper classification in the
face of growing publication volume, [9] propose a joint embedding approach.
They utilize separate models for title and abstract processing: a Transformer-
based model for title embedding and a combination of GloVe word vectors with a
GRU network for abstract embedding. The final joint representation is obtained
through a two-tower structure, and their method outperforms baseline models
on the CiteULike dataset [8].

In [11], the authors propose a BERT-based graph convolutional neural net-
work (BERT-GCN) model for scientific paper classification. This model leverages
the strengths of both BERT and GCNs: BERT, fine-tuned with span masking,
learning rate attenuation, and data augmentation, captures the semantic content
of paper titles, while the GCN captures the relationships between words within
the titles. By combining these elements, BERT-GCN aims to achieve superior
classification performance compared to traditional methods.

While prior research has explored various approaches for FoRC, this study
specifically focuses on the application of pre-trained BERT models for single-
label, multi-class classification of general scholarly papers. We investigate the
effectiveness of different BERT models and fine-tuning strategies in the con-
text of Subtask I of the FoRC shared task, contributing to the understanding
of their suitability for this specific task and domain. We also compared the per-
formance of our BERT-based model with other techniques, including traditional
machine learning approaches and deep learning models, further contributing to
the understanding of effective methods for this task.

3 Approach

We employ multiple pre-trained BERT models from the Hugging Face Trans-
formers library suitable for text classification tasks. These models are fine-tuned
on the provided dataset, which allows them to adapt to the specific domain of
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Fig. 1. The overall framework for our system.

scientific papers and the classification task at hand. As can be seen in Figure
1, we utilize the power of pre-trained contextual language models, including the
SciBERT [1], DeBERTa-V3 [4] and RoBERTa [7].

– SciBERT: a BERT [3] model trained on a massive dataset of scientific text,
including research papers, scientific articles, and other relevant materials col-
lected from Semantic Scholar. This allows it to understand the nuances of
scientific language, such as specific terminology, jargon, and sentence struc-
tures.

– DeBERTa-V3: a DeBERTa [5] version improved the efficiency of original
DeBERTa using ELECTRA-Style pre-training with Gradient Disentangled
Embedding Sharing [4].

– RoBERTa: a pre-trained language model builds upon BERT [3] by address-
ing its limitations with dynamic masking, removing the potentially harmful
NSP objective, and using a full-sentence representation.

Voting Scheme: Our motivation for applying an ensemble approach is to
take advantage of the performances of various models. Given predictions
{ŷθ1 , ŷθ2 , .., ŷθn

} the n base classifiers. We applied the hard voting technique
to merge the predictions of the base models. In hard voting, the class predicted
by the majority of models becomes the final predicted class for the given paper.

4 Experimental Setup

4.1 Data

Data: We utilized the official training set for training models. The development
set was used to choose which model will be included in the voting scheme.

Pre-processing: We apply different pre-processing steps as below to improve
the performance for our system:

https://www.semanticscholar.org/
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– Cleaning and normalization: Extensive cleaning and normalization proce-
dures common in more general text datasets (e.g., removing punctuation, con-
verting to lowercase) is likely not required for scientific text data. Maintaining
the original text format can be beneficial for preserving domain-specific ter-
minology and nuances within the scientific vocabulary.

4.2 Configuration Settings

The system was implemented using the Trainer API from the Hugging Face
library [10] for streamlined training and evaluation of the fine-tuned BERT mod-
els. This API simplifies the process by handling data loading, model training,
and metric computation. We adopted a sequence classification approach, setting
a maximum input length of 512 tokens to accommodate potential variations in
paper titles and abstracts. The training process consisted of 5 epochs, utilizing a
batch size of 16 papers per batch. To optimize training, we employed the AdamW
optimizer, commonly used for deep learning models, and incorporated a linear
schedule warm-up technique to gradually increase the learning rate during the
initial phase. Notably, we also addressed potential class imbalance within the
dataset by employing the Focal loss function with the formula as follows:

Focal Loss(pt) = −α(1 − pt)γ log(pt), (1)

where:

pt = Model’s predicted probability for the true class.
α = Balancing factor controls the focus of the loss function towards easy or
hard examples.
γ = Focusing parameter controls the degree of modulating the loss for well-
classified examples.

5 Results and Discussion

5.1 Baseline Performance

Naive Bayes: The analysis of Naive Bayes reveals poor performance compared
to other models on this task. Its performance falls significantly behind all mod-
els. This suggests that Naive Bayes might not be well-suited for this specific
classification problem due to several limitations.

Support Vector Machine: While still falling short of the BERT-based mod-
els, SVM demonstrates a better performance compared to Naive Bayes and BiL-
STM and even achieved a competitive result compared to deBERTa-v3-small - a
transformer-based model. This suggests that the SVM model is able to capture
well features extracted by applying TF-IDF.

We trained both a simple BiLSTM model and a CNN model, leveraging
pre-trained word embeddings ‘word2vec-google-news-300’ provided by 1Gensim,
1 https://radimrehurek.com/gensim/models/word2vec.html.

https://radimrehurek.com/gensim/models/word2vec.html
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to achieve moderate performance for both. This performance falls behind the
traditional machine learning models (SVM) and the pre-trained BERT models.
While pre-trained word embeddings provided some improvement in capturing
semantic relationships, the limitations remain:

– Limited training data: The available dataset might not have been sufficient
for either the BiLSTM or CNN to learn the complex relationships needed
for accurate classification, even with the additional information from pre-
trained embeddings. This limitation likely explains the observed performance
gap between these models and the SVM classifier. In tasks with restricted
training data, the ability of deep learning models to exploit their full potential
compared to traditional machine learning models can be hindered.

– Lack of pre-trained knowledge: Compared to BERT, both BiLSTM
and CNN still lack pre-existing knowledge of language structures and rela-
tionships beyond the information captured in the pre-trained word embed-
dings. Learning these intricacies from scratch remains challenging with limited
data.

5.2 Results

The performance of the participant’s system is reported by the metrics which are:
weighted Precision, Recall, and F1 Score, Accuracy. For individual models, the
SciBERT-uncased achieved the highest performance among the individual mod-
els, followed by SciBERT-cased, RoBERTa-base, and deBERTa-v3-small. This
could be attributed to the specific pre-training data and objectives of each model.
SciBERT, being pre-trained on scientific text, might have a better understand-
ing of the domain-specific language used in the papers, leading to its superior
performance.

The ensemble model, combining the predictions of SciBERT-uncased,
SciBERT-cased, and RoBERTa-base, outperforms all individual models, demon-
strating the effectiveness of combining diverse predictions with an Accuracy of
0.7433, Precision of 0.7423, Recall of 0.7433, and F1 score of 0.7391. Among
the individual models, SciBERT-uncased performs best, followed by SciBERT-
cased, RoBERTa-base, and deBERTa-v3-small. The deBERTa-v3-small model
was excluded from the ensemble due to its poor performance, the ensemble was
thus formed using only the remaining models. Consequently, we opted for the
ensemble model as the final submission system over the best models based on
their performance shown in Table 1 below.
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Table 1. Results of base models and our ensemble on the test set.

Model Accuracy Precision Recall F1

Naive Bayes 0.2923 0.2325 0.2923 0.1741

SVM 0.6577 0.6537 0.6577 0.6285

CNN 0.6098 0.6184 0.6098 0.6062

BiLSTM 0.5430 0.5344 0.5430 0.5145

SciBERT-uncased 0.7347 0.7301 0.7346 0.7293

SciBERT-cased 0.7279 0.7280 0.7279 0.7251

deBERTa-v3-small 0.6601 0.6592 0.6601 0.6546

RoBERTa-base 0.6984 0.6943 0.6984 0.6941

Ensemble 0.7433 0.7423 0.7433 0.7391

Table 2 showcases the performance of our ensemble model alongside that of
the top four teams. Our system ranks fifth in terms of all metrics and shows
comparable performance to the fourth-ranked system (”benjwolff”) across all
metrics. This suggests a competitive position with potential for improvement.
The top three systems (”saliq7,” ”rosni,” and ”flo.ruo”) achieved slightly higher
Accuracy and F1 scores compared to ours. This highlights areas where further
development can enhance our system’s ability to correctly classify examples and
maintain a good balance between precision and recall.

Table 2. Results of our best submission compared with four top systems.

User Accuracy Precision Recall F1

saliq7 0.7572 (1) 0.7536 (3) 0.7572 (1) 0.7500 (3)

rosni 0.7558 (2) 0.7566 (1) 0.7558 (2) 0.7540 (1)

flo.ruo 0.7542 (3) 0.7545 (2) 0.7542 (3) 0.7524 (2)

benjwolff 0.7476 (4) 0.7438 (4) 0.7476 (4) 0.7426 (4)

kietnt0603 (Ours) 0.7433 (5) 0.7423 (5) 0.7433 (5) 0.7391 (5)

5.3 Error Analysis

Based on the large number of labels and to focus on insightful cases, the error
analysis section will highlight the following classes as shown in Table 3

– Biomedical Engineering and Bioengineering: This class has a preci-
sion, recall, and F1-score of 0.00, indicating that the model is unable to
correctly classify any instances of this class. With only 1 instance in the
dataset, the model may be underfitting or overfitting this class due to the
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Table 3. Performance metrics and instance count on test set for selected classes.

Class F1-score Recall Precision # Instances

Biomedical Engineering and Bioengineering 0.00 0.00 0.00 1

Quantitative Finance 0.67 0.91 0.53 11

Computational Engineering 0.07 0.06 0.10 17

Neuroscience and Neurobiology 0.63 0.46 1.00 13

severe lack of data. Analyzing the misclassified instance(s) and the features
used could reveal why the model struggles with this class, potentially due to
non-discriminative features or similarities with instances from other classes.

– Quantitative Finance: This class has a high recall of 0.91 but a relatively
lower precision of 0.53, resulting in an F1-score of 0.67. The high recall sug-
gests that the model is good at identifying instances of this class, but the
lower precision indicates that it also tends to incorrectly classify instances
from other classes as Quantitative Finance. Investigating the instances mis-
classified as Quantitative Finance could provide insights into the types of
features or patterns that cause the model to make these errors, potentially
leading to improvements in the feature set or model architecture.

– Computational Engineering: This class has very low precision (0.10) and
recall (0.06), leading to a poor F1-score of 0.07. With 17 instances in the
dataset, the class may not be well-represented, causing the model to underfit
or overfit. Analyzing the misclassified instances could reveal whether there
are specific types of instances or features that the model struggles with or
whether the issue is more general, guiding strategies for improving the model’s
performance on this class.

– Neuroscience and Neurobiology: This class has a perfect precision of 1.00
but a relatively low recall of 0.46, resulting in an F1-score of 0.63. The high
precision indicates that when the model classifies an instance as Neuroscience
and Neurobiology, it is highly likely to be correct. However, the low recall
suggests that the model misses many instances of this class, classifying them
as other classes. Analyzing the instances misclassified as other classes could
reveal patterns or features that the model overlooks or fails to capture for
this class, potentially guiding improvements in feature engineering or model
architecture.

Our error analysis revealed two primary challenges contributing to the
model’s performance in specific classes:

– Limited taxonomic structure: The transformation of the original classes’s
hierarchical or conceptual taxonomic structure into a single-label, multi-class
format (The original structure of classes can be found here) eliminates explicit
relationships between classes. This flattening impedes the model’s ability to
distinguish between categories that share inherent similarities or belong to
broader, overlapping groups within the original hierarchy. This is a com-
mon challenge in NLP tasks involving multi-class classification with complex

https://orkg.org/fields
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and potentially overlapping categories, where inherent relationships between
classes might not be readily captured by traditional classification approaches.

– Imbalanced data distribution: The limited number of instances for spe-
cific classes in the test set hinders the model’s capacity to effectively learn the
distinctive patterns necessary for accurate classification. This data imbalance
is a well-documented issue in various NLP domains, and it can significantly
impact the generalizability and robustness of machine learning models, par-
ticularly for underrepresented classes.

6 Conclusion and Future Work

This study presents a system for single-label, multi-class classification of schol-
arly papers. It leverages fine-tuned BERT models, ensemble voting, and the
Focal Loss function to address potential class imbalance within the dataset.
While achieving a rank of 5 in the shared task, the approach demonstrates
promising potential for further advancement. For future work, addressing class
imbalance through techniques beyond Focal Loss and extending the approach to
classify other types of scientific literature holds significant potential for broader
applicability.

Acknowledgements. This research was supported by The VNUHCM-University of
Information Technology’s Scientific Research Support Fund. We also thank the anony-
mous reviewers for their valuable comments on our manuscript.

References

1. Beltagy, I., Lo, K., Cohan, A.: SciBERT: a pretrained language model for scientific
text. In: Inui, K., Jiang, J., Ng, V., Wan, X. (eds.) Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Processing (EMNLP-IJCNLP). pp.
3615–3620. Hong Kong, China, November 2019

2. Chowdhury, S., Schoen, M.P.: Research paper classification using supervised
machine learning techniques. In: 2020 Intermountain Engineering, Technology and
Computing (IETC), pp. 1–6 (2020)

3. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding. In: Burstein, J., Doran,
C., Solorio, T. (eds.) Proceedings of the 2019 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186 (Jun 2019)

4. He, P., Gao, J., Chen, W.: Debertav3: Improving deberta using electra-style pre-
training with gradient-disentangled embedding sharing. In: The Eleventh Interna-
tional Conference on Learning Representations (2022)

5. He, P., Liu, X., Gao, J., Chen, W.: Deberta: decoding-enhanced bert with disent-
ageled attention. In: International Conference on Learning Representations (2021)

6. Kim, S.W., Gil, J.M.: Research paper classification systems based on TF-IDF and
LDA schemes. HCIS 9, 1–21 (2019)



NRK at FoRC 2024 Subtask I: Exploiting BERT-Based Models 213

7. Liu, Y., et al.: Roberta: a robustly optimized BERT pretraining approach. CoRR
(2019)

8. Wang, H., Chen, B., Li, W.J.: Collaborative topic regression with social regulariza-
tion for tag recommendation. In: Proceedings of the Twenty-Third International
Joint Conference on Artificial Intelligence, pp. 2719–2725 (2013)

9. Wei, Y., He, Y., Yang, C.: Jetam: a joint embedding method for research paper
mutil-label classification. In: 2022 International Conference on Image Processing,
Computer Vision and Machine Learning (ICICML), pp. 390–394 (2022)

10. Wolf, T., et al.: Transformers: state-of-the-art natural language processing. In: Liu,
Q., Schlangen, D. (eds.) Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing: System Demonstrations, pp. 38–45, October 2020

11. Zhang, X., Yu, X., Liu, X., Lyu, X.: Scientific paper classification by fusing BERT
and GCN. In: 2023 International Conference on Intelligent Education and Intelli-
gent Research (IEIR), pp. 1–6 (2023)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/


Advancing Automatic Subject Indexing:
Combining Weak Supervision

with Extreme Multi-label Classification

Lakshmi Rajendram Bashyam1(B) and Ralf Krestel1,2

1 ZBW – Leibniz Information Centre for Economics, Hamburg, Germany
l.rajendram-bashyam@zbw.eu, rkr@informatik.uni-kiel.de

2 Kiel University, Kiel, Germany

Abstract. The multi-label automatic classification of scientific publi-
cations based on a pre-defined taxonomy, also called automatic subject
indexing is a continuing research endeavor with significant cross-domain
applicability. In this paper, we assess the performance of X-transformer
and its variants with other extreme multi-label classification models for
the above task. Our model Weak X-transformer achieves a micro F1-
score of 0.65 and 64% accuracy on the task outperforming all other
methods. We also investigate the impact of incorporating additional
unlabelled data and hierarchical structure into the models. Our findings
demonstrate that the transformer-based model with weak supervision
outperforms other approaches, providing insights into effective strate-
gies for extreme multi-label classification in scholarly publications.

Keywords: Extreme multi-label classification · Automatic subject
indexing · Digital libraries · Semi-supervised learning

1 Introduction

Automatic subject indexing in libraries involves the use of computational tech-
niques to assign relevant subject headings or descriptors to library resources
such as books, articles, and other materials. This process utilizes algorithms,
machine learning, and natural language processing to analyze the content of the
resources and determine their main topics or subjects. By automating this task,
libraries can efficiently organize their collections. Automatic subject indexing
not only saves time and resources for librarians but also enhances the accuracy
and consistency of indexing across the library catalog. In addition, automatic
subject indexing also provides a keyword-based summary of the publication to
the user. Additionally, it allows libraries to keep pace with the growing volume of
digital materials and ensures that their collections remain organized and easily
navigable in the digital age.

The subjects/labels assigned to the publication usually are obtained from a
pre-defined thesaurus maintained by the respective subject authority. Typically
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each publication is assigned multiple subjects by the indexers, thus making it a
multi-label classification task. However, the nature of the topics observed in the
publication makes the assigned subjects highly imbalanced. Depending on the
type of thesaurus used, it can also be classified as an XMLC task.

In this work, we compare XMLC models on a shared task as a part of the chal-
lenge “FoRC: Field of Research Classification of Scholarly Publications” orga-
nized by the “Natural Scientific Language Processing and Research Knowledge
Graphs (NSLP 2024)” workshop. For the second task “Fine-grained multi-label
classification of Computational Linguistics scholarly papers”, we evaluate multi-
label and extreme multi-label classification models. Additionally tweaking it to
support the hierarchical nature of the task.

2 Related Work

The task of extreme multi-label classification (XMLC) is characterized by an
imbalanced distribution of labels, posing significant challenges, particularly in
improving the performance of less frequent labels. BONSAI [5] and PARABEL
[9] represent tree-based approaches widely adopted for addressing the XMLC
problem. Building upon this foundation, the X-transformer [16] introduces
innovations such as X-linear, recursive linear models, and XR-transformers, a
transformer-based framework that recursively fine-tunes pre-trained transform-
ers. The pecos [14] library offers a robust implementation of these models, along
with several other recent XMLC solutions including PINA [2] and FINGER
[1]. More recently, the XLGEN model [4] has explored leveraging a text-to-text
transformer model to tackle the challenges posed by XMLC.

Assigning labels or subjects to scientific publications constitutes a funda-
mental aspect of library organization. The size of the thesaurus employed for
this purpose varies significantly among different organizations. The annotators
responsible for assigning labels typically adhere to a predefined methodology
for conducting this task. However, due to the slow annotation process, a con-
siderable number of publications remain unlabeled. Integrating semi-supervised
techniques to augment the training data becomes imperative in such scenarios.
Addressing this need, recent research [17] conducts a comprehensive analysis
utilizing unlabeled data through weak supervision techniques. The authors com-
pare the efficacy of well-known weak supervision methods, including COSINE
and WRENCH [15], under real-world conditions characterized by limited avail-
ability of clean labels. Widely adopted libraries such as setfit [13] and skweak
[6] have significantly contributed to the adoption of semi-supervised and weak
supervision techniques in resource-constrained settings. A method for generating
weak labels through a noisy labeling scheme and subsequent refinement via a
two-level approach [3] offers a computationally efficient solution that can prove
invaluable in low-resource scenarios.

Access to full-texts represents a significant asset within library systems.
Annotators are furnished with the title, abstract, and full-text of a publication
to ensure accurate labeling. Without all these resources, particularly full-texts,
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achieving human-level performance would pose a formidable challenge for any
system. Previous research [7] has examined the performance of machine learning
models when provided with an abundance of abstracts versus a comparatively
limited number of full-texts.

Fig. 1. Histogram of label distribution in the train set of FORC corpus

3 Data Analysis

The training set for task 2 has 1051 publications. Each publishing record contains
the title, abstract, and acl-id. Other information fields, such as date, venue,
and publisher, are also available for the majority of records. Each publication
receives three levels of coarse-to-fine-grained labels: Level 1, Level 2, and Level 3.
The annotated labels are based on a predefined taxonomy created by extracting
subjects from the publication and correlating them with existing topics from
multiple paper sources. As specified by the workshop guidelines, the quality
of annotations is evaluated based on inter-annotator agreement scores (IAA)
using Krippendorff’s Alpha for multi-label annotations on each one of the three
taxonomy levels. The average IAA scores for each level is given as part of the
results in Table 3.

Figure 1 shows the distribution of labels across all levels. The figure clearly
shows that the annotated labels are severely unbalanced. It was also discovered
that several of the labels used in the validation and test splits did not appear
once in the training split. This makes it more difficult to detect these labels.

In addition to the existing data, we were able to collect the full text of every
paper using the acl-id [11]. The average length of full-text was approximately
16,000 words. The same source also gave abstracts for over 70,000 other publi-
cations from ACL articles and posters. The publications collected ranged from
2001 to 2021 and were published in a variety of venues. The additional publi-
cation dataset also includes the title, abstract, full-text, and all other metadata
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elements found in the FORC dataset. However, no labels are associated with the
new dataset collected. Thus, we have approximately 70,000 unlabeled publica-
tion records from the same source as the FORC dataset.

4 Experiments

The text for training and testing the model is created by merging the fields title,
abstract, venue, publisher, and book title, each separated by a specific token. By
integrating the label sets from the three levels, we can define the Fine-grained
multi-label classification task as a general multi-label classification. This allows
us to use models intended for multi-label and XMLC tasks with minimal changes
to the model.

The baseline model metrics were provided by the workshop committee. The
metrics was reproduced by fine-tuning the scincl model [8] on FORC subtask
2 training dataset. The training text consists of combining only the title and
abstract of each publication. Level wise labels for each publication were combined
together as a list to form a multi-class multi-label classification task. The SciNCL
is the state of the art pre-trained BERT language model to generate document-
level embeddings of research papers. Since the training data for the FORC task
consists of similar scientific documents, fine-tuning scincl model as baseline gives
a good starting point.

We train a basic model like tf-idf on the train set in addition to the baseline
that the organizers provided. Unlike the baseline, the tf-idf and all subsequent
models was training on the train text created by merging title, abstract, venue,
publisher, and book title, each separated by a specific token. The tf-idf model
returns most similar subjects based on similarity in sparse tf-idf normalized bag-
of-words vector space. Our XMLC models including tf-idf are trained using the
Annif [12] toolset. Annif tf-idf implementation is based on the topic modelling
library Gensim [10].

For this work, the label set size is 170. We model the problem as an extreme
multi-label classification because this is on the higher end for a multi-label clas-
sification task. Regarding label occurrences, the label distribution in the picture
likewise complies with Zipf’s law. The high imbalance in the label distribution
can affect the performance of the model. The model performs best on labels that
appear frequently in the training set and poorly on labels that are rare. This
is a typical occurrence in contexts with extreme multi-label classification. For
the reasons listed above, this task could still benefit from being modeled as an
XMLC problem even though most XMLC projects have label sets larger than
500 labels.

We use tree-based models like parabel [9] in the XMLC space. The label
space is divided recursively by these models. Because there are an equal number
of labels in each cluster, it is balanced. We tokenize the dataset using a nltk
tokenizer and choose trigram tokens for training. We tune the parameters of the
model such as number of clusters and maximum tree depth on the validation
split of the dataset.



218 L. Rajendram Bashyam and R. Krestel

Furthermore, we utilize the implementation of transformer based XMC
framework, the X-transformer framework [16] provided by the Pecos library
[14]. This XR-transformer framework allows fine-tuning pre-trained transform-
ers recursively on multi-resolution objectives. There are three steps involved in
the fine-tuning. For starters, the label space is clustered. In the second stage, a
matcher is trained to classify the publication to one of the clusters and finally,
a ranker is trained to rank the labels inside each cluster. Based on this method,
we train the model on the training set for 10 epochs with early stopping.

Further, we were able to obtain the full text for each publication in train,
val and test split [11]. Due to hardware restrictions and because BERT-based
transformer models only support up to 512 tokens. However, we train the parabel
model on the full texts called parabel-ft and evaluate on the full-text corpus of
the test split.

With the new dataset gathered, we now have access to more fields and around
70000 more ACL abstracts. However, they are not tagged with any labels. First,
we train the X-transformer model on this unlabeled dataset to further enhance its
performance. We produce weak labels from each unlabelled publication to enable
supervised training. The previously trained tf-idf model is used to generate the
weak labels. Since the model’s performance determines the quality of these labels,
they are noisy. We then combine the annotated clean labels and generate weak
labels into the training dataset for the x-transformer model [3,17]. Finally, the
model is then fine-tuned on the dataset containing combination of weak and
clean labels. We name this model the weak X-transformer owing to the training
data containing weak/noisy labels.

There are three levels of subjects, ranging from coarse to fine-grained sub-
jects. The levels designated as Level1 > Level2 > Level3 are arranged in a rigid
hierarchy. The hierarchy of the labels is not taken into account when training
the model because we utilize a general XMLC model. As an alternative, we add
hierarchy to the output of the model. This is accomplished by comparing the
label set of each publication to the taxonomy hierarchy. The labels in Levels
2 and 3 that do not adhere to the preceding level’s hierarchical structure are
pruned from the collection of results. Furthermore, we only keep labels above a
confidence score of 0.2 to increase the system’s accuracy.

5 Results and Discussion

Table 1 provides the performance metrics for each model in our experiment.
Overall, the baseline model performance is subpar. The poor macro average
scores for recall, precision, and F1 indicate that the model does not work well
for multi-label task. This suggests that optimizing a transformer-based model
directly for our goal is not a good idea.

One of the easiest models to train and assess is the tf-idf model. It is interest-
ing to note that the tf-idf model has very good recall scores despite having lower
precision scores than other models. One reason for this could be that the lexical
matching component identifies many labels in the publication text increasing
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Table 1. Performance metrics of baseline and XMLC models

Model Micro Macro Weighted

Prec Rec F1 Prec Rec F1 Prec Rec F1

weak x-transformer 0.64 0.65 0.65 0.56 0.52 0.52 0.64 0.65 0.63

x-transformer 0.70 0.60 0.64 0.50 0.37 0.40 0.66 0.60 0.61

parabel-ft 0.62 0.46 0.53 0.25 0.14 0.16 0.51 0.37 0.40

parabel 0.66 0.50 0.57 0.33 0.19 0.21 0.45 0.76 0.56

tfidf 0.41 0.75 0.53 0.44 0.54 0.45 0.47 0.75 0.55

baseline 0.35 0.32 0.34 0.01 0.04 0.02 0.16 0.33 0.17

the recall scores. However, a large number of the labels in the result set have no
semantic relevance to the publication. Thus, a simple model could not adequately
represent this.

Table 1 further shows the outcome of our tree-based parabel approach studies.
The performance gain over the tf-idf model is not evident in the findings. The
macro average scores are in fact decreasing. This suggests that the model has
extremely low performance on some classes. Upon examination of the data, we
discovered that the label set contains a large quantity of false negatives. In the
next experiment, we again train a parabel model using the full-text dataset for
the publications to refine it. The results of the parabel-ft model also demonstrate
a decline in macro average scores. This suggests that training using full-text does
not always result in improved performance. The reason for the degradation in
performance could be that the model cannot identify the relevant parts of the
text correctly.

Out of the models previously discussed, the weak X-transformer model, which
is a combination of weak supervision applied to an X-transformer model designed
for extreme multi-label classification, exhibits the best performance. Table 2 pro-
vides a few examples of the labels generated by our final model. The predicted
label set is sorted by the confidence score from the weak X-transformer model.
In terms of micro average scores, the model maintains a relatively high recall
score while improving on the precision score. Both the weighted average scores
and the macro scores show similar results. It obtains weighted averages, macro,
and micro F1 scores of 0.64, 0.65, and 0.63 respectively.

Table 3 provides the level-wise performance of the model in the label hierar-
chy. We compare the multi-label outputs of our model with the actual labels at
every label hierarchy. With a level1 label set, the X-transformer model obtains
a high score for precision and recall metric of 0.90 each. Performance slightly
declines as one moves up the tiers of the label hierarchy. The gradual decrease
through the label hierarchy is also observed in the inter-annotator agreement
(IAA) scores.

In the realm of XMLC, a common hurdle lies in enhancing the performance
of less frequent labels. As depicted in Fig. 2, the precision scores of different mod-
els across each label class are illustrated. Labels are organized based on their
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Table 2. Examples of labels obtained from the weak X-transformer model

ACL ID:2021.sigdial-1.31 Title: Summarizing Behavioral Change Goals

from SMS Exchanges to Support Health

Coaches

True Labels Automatic Text Summarization Predicted Labels Model Architectures

Discourse Analysis Domain-specific NLP

Domain-specific NLP Data Management and Generation

Data Management and Generation Classification Applications

Model Architectures Discourse Analysis

Transformer Models Dialogue Systems

Extractive Text Summarization Medical and Clinical NLP

Data Preparation Data Preparation

Medical and Clinical NLP NLP for News and Media

NLP for Mental Health

ACL ID:2021.unimplicit-1.1 Title: Let’s be explicit about that: Distant

supervision for implicit discourse relation

classification via connective prediction

True Labels Learning Paradigms Predicted Labels Model Architectures

Classification Applications Learning Paradigms

Discourse Analysis Discourse Analysis

Few-shot Learning Classification Applications

occurrence frequency in descending order along the x-axis. Notably, the models
generally exhibit superior performance for more commonly occurring labels com-
pared to rare ones. Interestingly, the weak X-transformers model demonstrates
higher precision scores for less frequent labels in comparison.

To improve on the previous model, we incorporate the unlabelled data into
the training step. The result of the weak supervision/ weak x-transformer model
is shown in the Table 1. While the enhancement in performance may not be sub-
stantial, the weak x-transformer still demonstrates superior performance across
micro, macro, and weighted average scores in comparison. Both precision and
recall scores are close to each other without any trade-offs of improvement of one
score over the other. Hence, this model is comparatively better than the rest of
the models.

Finally, in addition to the training of the model, label pruning is executed
for each model. Pruning the labels that do not conform to hierarchical structure
slightly improves the precision score by removing false labels without affecting
the recall values negatively.

Table 3. Performance metrics of weak X-transformer model by each level of hierarchy
and the associated inter-annotator agreement

Hierarchy Prec Rec F1 IAA

Level 1 0.80 0.92 0.90 0.67

Level 2 0.80 0.73 0.76 0.58

Level 3 0.75 0.70 0.72 0.54
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Fig. 2. Label-wise precision score for each model. The labels are arranged in descending
order of count. For the presentation, the graph is smoothed.

6 Conclusion and Future Work

This study presents an approach to modeling hierarchical fine-grain multi-label
classification as an XMLC problem. Furthermore, we assess how well simple
models such as tf-idf to complex transformer-based models perform for the given
task. We also explore other approaches, such as training with full-text and uti-
lizing unlabeled datasets in a weak supervision setting. Our weak X-transformer
model, which is our best-performing model, attains an F1 score of 0.65 across
all labels.

In future work, we would like to explore the possibility of incorporating hier-
archy during training instead of at the output level. Furthermore, We would like
to experiment with generative AI by grounding the model to a graph RAG for
label space.
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Abstract. The automated field of research classification for scientific
papers is still challenging, even with modern tools such as large lan-
guage models. As part of a shared task tackling this problem, this paper
presents our contribution SLAMFORC, an approach to single-label
classification using multi-modal data. We combined the metadata of
papers with their full text and, where available, images into a pipeline
to predict their field of research with an ensemble voting on traditional
classifiers and large language models. We evaluated our approach on the
shared task dataset and scored the highest values for two of the four
metrics used in the evaluation of the competition, with the other two
being the second highest.

Keywords: Natural Scientific Language Processing · Field of Research
Classification · Multi-Modality

1 Introduction

Keywords and other classifications may help when searching or organizing schol-
arly publications [20]. They can be annotated by the authors or the publishers,
with a corresponding manual effort, or may be machine-generated. The latter
has been an application of natural language processing which, with the advent
of pre-trained large language models such as BERT [14], has recently gained
momentum. Still, the automated classification of research papers remains chal-
lenging [27].

This paper describes our submission to the shared task Field of Research
Classification of Scholarly Publications1 of the 1st Workshop on Natural Sci-
entific Language Processing and Research Knowledge Graphs (NSLP 2024). Its
Subtask I, which our contribution addresses, is to develop a single-label classi-
fier for general scholarly publications. We trained and tested it on a dataset of
1 https://nfdi4ds.github.io/nslp2024/docs/forc_shared_task.
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around 60, 000 English scientific papers [1,2], each from one of 123 hierarchi-
cal classes of a subset of the Open Research Knowledge Graph taxonomy.2 Our
approach, dubbed SLAMFORC (short for Single-Label Multi-modal Field of
Research Classification), is multi-modal in that we incorporated data from three
different sources: the dataset provided by the organizers of the challenge con-
taining metadata of the articles (e.g., title, abstract), the semantic information
provided by Crossref3, and the contents of the papers (i.e., full text and images).
Using this data as features, we engineered a classifier that produces single-label
predictions for a given input document. For this endeavor, we computed the
embeddings with two different flavors of a pre-trained BERT [14] model and,
subsequently, fed these vectors to a handful of traditional classifiers. Then, we
applied a voting ensemble [21] to their output to combine them into a final clas-
sifier, incorporating all of them as well as the entirety of the available features.

The shared task was very competitive, with 13 system submissions. The
margin among the top five submissions was very narrow (±0.75%), illustrating
that the boundaries were pushed of what was possible with the provided data
and task. In the end, our approach came in among the top results, scoring the
highest values for two out of four evaluated aspects and the second-best for the
others: accuracy (75.6%), precision (75.7%), recall (75.6%), and F1 (75.4%).

The remainder of this paper is structured as follows. Section 2 presents the
related work, and Sect. 3 introduces our methodology. In the ensuing Sect. 4, we
describe our experiments. Finally, we draw conclusions in Sect. 5.

2 Related Work

The classification of scholarly papers into research fields has found ample applica-
tions: for example, to ease organizing or searching the flood of new publications.

One such system [8] groups biomedical papers by applying non-negative
matrix factorization [17] to the term relevance vectors of the documents. It uses
bisecting k-means clustering [6], and, at the same time, assigns semantic meaning
to each document and cluster inferred from the matrix decompositions.

The work by Taheriyan [27] describes an approach to classifying papers by
using relationships such as common authors and references as well as citations in
a graph. This information allows new papers to be assigned topics automatically
instead of requiring manual annotations.

Nguyen and Shirai [20] focus on various text features such as the segmen-
tation of the paper and apply three different classifiers: multi-label kNN [30],
binary approach [28], and their newly proposed back-off model. While the lat-
ter performs the best, another interesting insight from their results is that only
using the title, abstract, and the sections Introduction and Conclusions of papers
improves over using the full text as a feature.

Another approach is presented by Kim and Gil [16]: They describe a classifi-
cation system based on latent Dirichlet allocation [7] and term frequency-inverse
2 https://orkg.org/fields.
3 https://www.crossref.org/.
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Fig. 1. Overview of the system architecture.

document frequency [25]. The former is employed to extract relevant keywords
from the abstracts, the latter for k-means clustering [4] papers with similar top-
ics.

More recently, SPECTER [12] uses pre-trained language models (e.g., SciB-
ERT [5]) to generate document-level embeddings from the titles and abstracts.
These can be used for downstream tasks, such as predicting the class of a doc-
ument, which is demonstrated by applying SPECTER to a new dataset with
papers in 19 classes. In this work, incorporating the entire text of papers remains
an open issue due to limitations on memory and the availability of the paper
contents.

3 The SLAMFORC System

This section describes our approach to solving the shared task. We first explain
the multi-modal data of our system. Then, we detail the classifiers we used with
this data.

Figure 1 shows an overview of the system. Its code is publicly available.4

3.1 Multi-modal Data

The dataset for the shared task [1,2] consisted of approximately 60, 000 scholarly
articles, compiled from various sources such as the Open Research Knowledge
Graph [3], arXiv5, Crossref 6, and the Semantic Scholar Academic Graph [29]. It
spans 123 fields of research (FoR) across five major domains and four hierarchical

4 https://gitlab.ifi.uzh.ch/DDIS-Public/forc24.
5 https://arxiv.org.
6 https://www.crossref.org/.
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levels, with mapping to the ORKG taxonomy.7 The challenge of imbalanced data
is evident in the dataset, where the distribution of fields is uneven, varying from
as low as eight articles (for Molecular, Cellular, and Tissue Engineering) to over
6, 000 (for Physics).

We utilized Crossref (see Footnote 3) to further enhance the text data
of papers. Specifically, for each paper, we used its Digital Object Identifier
(DOI) and the Crossref API client8 to retrieve its annotated subjects and ref-
erences from the Crossref Unified Resource API.9 For the paper with the DOI
“10.1007/JHEP06(2012)126,” for example, we retrieved the subject “Nuclear
and High Energy Physics” and the metadata of 37 reference papers. Despite
Crossref adopting a different taxonomy, this retrieved subject remains highly
useful for predicting the target label of this paper (i.e., “Physics”). Also, the
reference papers are mostly in the Physics domain, and this information can be
very useful.

We used the title, abstract, and publisher information from the provided
dataset, along with the subject data, to generate the metadata embeddings for
each paper. We appended all this data as input text to SciNCL [23], a pre-trained
BERT model, for computing an embedding as a comprehensive representation
of each paper.

In order to make use of the full text for the papers in the dataset, we first
had to obtain the respective documents. This was straightforward for items that
already had a download link annotated. For all other papers, we used the DOI
field, where available, to find the PDFs. There were some cases where neither
was available. For those, we relied on Crossref’s API to resolve the paper title to
its DOI, which allowed us to download the full text document, if it was available.

To extract the text from the PDFs, we employed PaperMage [19]. For each
PDF, it produces a JSON file with information about its content and structure.
We only relied on the extracted symbols, which we used to reconstruct the full
text of the respective papers. Using this data, we computed the document-level
embeddings with two pre-trained BERT models: SciBERT [5] and SciNCL [23].
Because of BERT’s limitation to processing 512 tokens at a time [14] and papers
exceeding this, we batched the input data accordingly. We employed a sliding
window of size 512 tokens with an overlap of 128 to conserve semantics near
the window borders. After computing the embeddings for each such chunk, we
averaged them to obtain the final document-level embedding.

To incorporate the visual information contained in the PDFs, we extracted
all their images and converted them to raster graphics. For each image, we used
an OpenCLIP [11] model pre-trained on the LAION-5B dataset [26] as well as a
pre-trained DINOv2 [22] model to extract image features. When PDFs contained
multiple images, we used mean-pooling to aggregate the multiple feature vectors
per model, resulting in two vectors per PDF; one for each applied model. For

7 https://huggingface.co/spaces/rabuahmad/forcI-taxonomy/blob/main/taxonomy.
json.

8 https://github.com/fabiobatalha/crossrefapi.
9 https://api.staging.crossref.org/swagger-ui/index.html.
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Table 1. The first results on the validation set of the individual classifiers with all
features (embeddings of metadata, full text, and images) as measured by accuracy,
weighted precision, recall, and F1.

Classifier Accuracy Precision Recall F1

Support Vector Machine 0.755 0.754 0.755 0.752
Random Forest 0.755 0.754 0.755 0.753
Logistic Regression 0.750 0.755 0.750 0.750
XGBoost 0.731 0.735 0.731 0.731
Multilayer Perceptron 0.743 0.748 0.743 0.743

papers where the PDF did not contain any images or the PDF was not available,
these vectors were set to zero.

3.2 Classifier

For the final system, we used a mixture of traditional classifiers and neural
methods that we combined with an ensemble voting method [21]. Figure 1 shows
an overview of the system. After computing the embeddings for the various data
sources, we trained several classifiers that could handle vectors as input and
predict the single-label class for each item in the dataset.

An obvious choice are Support Vector Machines [13], or SVM for short. Due
to the nature of the input data, they can naturally classify them in a high-
dimensional space and predict the field of research label. We employed a Random
Forest (RF) [15] since they avoid overfitting to the training data, which was an
overt problem to be expected because of the skew in classes in the dataset. Logis-
tic Regression (LR) is another widely used traditional classifier to predict single
labels on linearly separable data. With eXtreme Gradient Boosting (XGB) [10],
we used another popular method that can achieve good performance while sac-
rificing interpretability. Next, we also employed a fully connected neural net
that is a Multilayer Perceptron (MLP), able to deal with not linearly separable
data. Furthermore, we also trained SciNCL [23] as an end-to-end solution on the
metadata.

Finally, we combined the output of the classifiers described above into an
ensemble method [21] with hard voting [18]. This enabled the use of all techniques
and all available data at the same time while still producing a single predicted
label for each item in the dataset.

4 Experiments

Table 1 shows the results of the initial experiments. We used a set of traditional
classifiers as implemented by scikit-learn [24] with all of the available data for
each paper consisting of the stacked embedding vectors. Since no method sig-
nificantly outperformed the others, we combined all of them post-hoc using a
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Table 2. Ablation study on the validation set by feature combination.

Meta Text CLIP DINO Accuracy Precision Recall F1-Score

� 0.774 0.776 0.774 0.773

� 0.437 0.709 0.437 0.463

� 0.254 0.552 0.254 0.241

� 0.259 0.505 0.259 0.250

� � 0.776 0.778 0.776 0.775

� � 0.772 0.775 0.772 0.772

� � 0.776 0.777 0.776 0.774

� � 0.438 0.700 0.438 0.463

� � 0.437 0.700 0.437 0.461

� � 0.271 0.529 0.271 0.265

� � � 0.776 0.777 0.776 0.775

� � � 0.779 0.781 0.779 0.778

� � � 0.776 0.778 0.776 0.774

� � � 0.433 0.701 0.433 0.456

� � � � 0.777 0.779 0.777 0.775

voting ensemble method, giving us our final classifier for the results of which we
submitted to the shared task.

To illustrate the impact of each data source and dissect our multi-modal
approach, we performed a feature ablation study, the results of which are shown
in Table 2. We used our final system architecture with all classifiers combined
with voting on the powerset of possible feature combinations. It is evident that
the (embeddings of the) metadata have the most positive influence on the results.
Still, adding extra information to the classifier is not detrimental but rather
contributes to a higher score. This holds more for the (embeddings of the) full
texts of the papers which perform decent on their own. Using the embeddings of
the images in the papers alone, where applicable, achieves clearly worse results
than the other two data sources. Nevertheless, the combination of all features
is among the highest scoring for all four employed metrics, and there was no
reason not to rely on everything available.

Finally, Table 3 shows the results of the shared task evaluation.10 Our submis-
sion (ID 683689, top row) scored the highest for precision (75.7%) and F1 (75.4%)
while achieving the second-best values for accuracy (75.6%) and recall (75.6%).
This goes to show that our multi-modal approach worked and performed well
in this competition. Without further knowledge of the other systems, no com-
parisons can be made or insights gained, and are, thus, left for future work. In
conclusion, the automated field of research classification of scientific papers is
still challenging, but the submissions for this shared task seemed to have pushed
the boundaries of what was possible with the given tools and information, seeing
how close the top results were.

10 https://codalab.lisn.upsaclay.fr/competitions/16684#results.

https://codalab.lisn.upsaclay.fr/competitions/16684#results
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Table 3. The final evaluation results on the test set as measured by accuracy, weighted
precision, recall, and F1 (best for each in bold, runner-up underlined). Our submission
is the first line.

ID Accuracy Precision Recall F1 ↓
683689 0.756 0.757 0.756 0.754
688995 0.754 0.755 0.754 0.752
687946 0.757 0.754 0.757 0.750
689747 0.748 0.744 0.748 0.743
688510 0.743 0.742 0.743 0.739
651741 0.730 0.725 0.730 0.724
649383 0.726 0.719 0.726 0.720
686435 0.706 0.703 0.706 0.693
686384 0.702 0.695 0.702 0.692
689251 0.682 0.679 0.682 0.678
689454 0.658 0.659 0.658 0.653
647796 0.058 0.061 0.058 0.057
678150 0.004 0.002 0.004 0.002

5 Conclusions

In this paper, we presented SLAMFORC, a system for the Single-Label Multi-
modal Field of Research Classification. We used it to produce the results for
our submission to the shared task Field of Research Classification of Scholarly
Publications. Pursuing a multi-modal approach by incorporating not only the
given dataset containing metadata of the papers but also the full text of publi-
cations as well as images in these documents, we built an ensemble classifier by
combining a set of traditional classifiers using a voting ensemble. We computed
the embeddings with pre-trained large language models, stacked these vectors,
and trained the individual classifiers. Then, we used them jointly to obtain a
single-label prediction for each item in the dataset.

As one of the conclusions of this work, we would like to raise some issues with
the evaluation method. Possibly, some metric that also considers the semantics
in the taxonomy might have enabled a more effective evaluation and allowed for
insights into the inner workings of the systems, especially in connection with the
misclassified items. One such metric was proposed by Chen et al. [9], which eval-
uates the performance of taxonomic assignments based on said given taxonomy.

Our system achieved the highest precision and F1 and the second-best accu-
racy and recall values of all submissions, demonstrating its effectiveness. While
the ceiling seems to have been reached of what was possible in the shared task,
judging by the range of the top submissions We hope to have contributed to the
still challenging classification of research fields for scientific publications.
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Abstract. With the rapid expansion of academic literature and the pro-
liferation of preprints, researchers face growing challenges in manually
organizing and labeling large volumes of articles. The NSLP 2024 FoRC
Shared Task I addresses this challenge organized as a competition. The
goal is to develop a classifier capable of predicting one of 123 predefined
classes from the Open Research Knowledge Graph (ORKG) taxonomy
of research fields for a given article. This paper presents our results.

Initially, we enrich the dataset (containing English scholarly articles
sourced from ORKG and arXiv), then leverage different pre-trained lan-
guage Models (PLMs), specifically BERT, and explore their efficacy in
transfer learning for this downstream task. Our experiments encompass
feature-based and fine-tuned transfer learning approaches using diverse
PLMs, optimized for scientific tasks, including SciBERT, SciNCL, and
SPECTER2. We conduct hyperparameter tuning and investigate the
impact of data augmentation from bibliographic databases such as Ope-
nAlex, Semantic Scholar, and Crossref. Our results demonstrate that
fine-tuning pre-trained models substantially enhances classification per-
formance, with SPECTER2 emerging as the most accurate model. More-
over, enriching the dataset with additional metadata improves classifica-
tion outcomes significantly, especially when integrating information from
S2AG, OpenAlex and Crossref. Our best-performing approach achieves
a weighted F1-score of 0.7415. Overall, our study contributes to the
advancement of reliable automated systems for scholarly publication cat-
egorization, offering a potential solution to the laborious manual curation
process, thereby facilitating researchers in efficiently locating relevant
resources.

Keywords: Scholarly Publication Classification · BERT-Embeddings
for scientific tasks · Enrichment of Scholarly Publications

1 Introduction and Background

In academic publishing, we currently see two trends converging: the exponential
growth of publications, on average doubling every 14 years [2], as well as the
increased frequency of publication, due to the growing importance of preprints,
which accelerates the publishing process [6]. The vast amount of publications
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presents a challenge to researchers in distinguishing relevant papers from irrele-
vant ones concerning a specific research question. Thus, a fine-grained categoriza-
tion provides researchers with an invaluable tool for finding relevant resources.
Manual curation is not a feasible approach. Besides that, categorization is not
static. Instead, it has a dynamic nature: New categories emerge over time, while
others evolve or disappear. Moreover, the compiled categories depend on the
underlying platforms, where the publications are indexed. Thus we need reliable
automated systems for the task of scholarly publication categorization. This
paper stands within the scope of the NSLP20241 and is dedicated to the Field
of Research Classification (FoRC) shared task, Subtask I. The goal of Subtask I
is to develop a classifier that predicts one of 123 predefined classes from Open
Research Knowledge Graph (ORKG) taxonomy of research fields for a given
article. The competition hosts provide a dataset of English articles (split into
test and validation sets), compiled from ORKG2 and arXiv3, which suggests
a classifier that is trained in a supervised manner. The dataset consists of a
selection of metadata fields. The shared task is run as a competition. Submitted
systems will be evaluated on a test set, using accuracy and weighted scores of
recall, precision, and F1.

With the advent of transformer models, the field of Natural Language Pro-
cessing (NLP) underwent significant changes. Pre-trained Language Models are
the current state-of-the-art across many NLP tasks and achieve top positions
in General Language Understanding Tasks4. FoRC Shared Task I represents a
task of scholarly document classification, a task where BERT [3], an encoder
model for text embeddings, has demonstrated excellent results in a variety of
benchmarks [12]. BERT is available in different flavors, pre-trained on specific
tasks, and can be further fine-tuned to adapt it to downstream tasks.

Significant research effort is put towards automated classification into schol-
arly publication categorization. Automating this task could replace the time-
consuming and costly manual curation process, which relies on experts in the
field. Garcia et al. [4] explore how BERT and its variants effectively use specific
words, semantically relevant to research fields in their final layer. In SciRepEval
[12] the authors introduce a benchmark, which applies 24 realistic tasks for use
cases involving scientific document embeddings. The results yield a novel model
called SPECTER2. Ostendorff et al. [8] show how BERT embeddings, when
combined with metadata and knowledge graph embeddings, improve results in
a document classification task.

1 https://nfdi4ds.github.io/nslp2024/.
2 https://orkg.org/.
3 https://arxiv.org/.
4 https://gluebenchmark.com/.
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2 Dataset

The provided dataset contains the following fields: abstract, author, DOI, URL,
publication month, publication year, title, publisher and label. However, these
fields are incomplete for many items. Particularly, the absence of a DOI becomes
problematic later on during the enrichment process, as we can not use a unique
identifier for further information retrieval from bibliometric databases. In total,
the dataset comprises 50,441 items (train: 41,540, validation: 8901). For eval-
uation purposes, initially, a test set without labels was provided, which was
distributed with labels after the end of the competition’s deadline. The dataset
(train and validation) shows significant class imbalance with a multitude of items
assigned to the fields “Physics and Mathematics” (≈ 79.5%), while other fields
like “Arts and Humanities” are largely underrepresented, with only a handful of
entries (≈ 0.14%).

3 Enrichment

We encountered a challenge with enrichment due to the absence of DOIs in
the provided article metadata collection. In the training dataset, 16,977 DOIs
were missing, while the test and validation datasets had 3,712 and 3,673 gaps
in the DOI column, respectively. To fill the missing DOI, we used the article
titles to query the OpenAlex (OA)5 database, a bibliographic repository con-
taining research literature metadata. In cases where the title was not suitable
for retrieval, we decided to clean it by removing special characters like line
breaks, tabs, multiple spaces, as well as LaTeX tags. Subsequently, we success-
fully retrieved DOIs for numerous titles, filling 7,921 gaps in the training dataset
and adding 1,702 and 1,710 DOIs to the test and validation datasets, respectively.

For further metadata enrichment we used three bibliographic databases: Ope-
nAlex, Semantic Scholar Academic Graph (S2AG)6 and Crossref (CR)7. These
sources were employed to fill gaps in the provided original dataset and enhance
it with additional categories. S2AG is a large, open, heterogeneous knowledge
graph of scholarly works, authors and citations, developed by Allen Institute for
AI8, suitable for enrichment purposes. CR is an association of publishers that
provides a database of metadata for scientific literature. From the mentioned
providers, we collected the following metadata:

– Openalex: topics, subtopics, concepts, keywords and external identifiers
– S2AG: fields of study
– Crossref: journal title, (research) subjects

5 https://openalex.org/.
6 https://www.semanticscholar.org/product/api.
7 https://www.crossref.org/.
8 https://allenai.org/.
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4 Approaches

4.1 BERT-Embeddings

In our first approach we decided to use a single BERT model to derive docu-
ment embeddings, followed by a dense layer for the classification task. Since the
BERTbase model uses 12 transformer blocks, and a hidden dimension size of 768,
a single dense layer is sufficient to separate the documents for classification. To
fully leverage the power of pre-trained models and achieve a good performance,
there are two important questions to consider:

1. Which available pre-trained models suit the given task?
2. Which hyperparameter setting yields the best performance?

Furthermore, we aim to investigate the impact of transfer learning on selected
pre-trained models by comparing feature-based transfer learning and fine-tuning.
Additionally, we examine the effect of enriched data on the classification result.

Selecting Pre-trained Models. For selecting promising pre-trained models
for our downstream task, we rely on the insights from the SciRepEval bench-
mark [12] and chose the top-performing models identified for scientific tasks as
potential candidates: SciBERT [1], SciNCL [9] and SPECTER2 [12]. Addition-
ally, the BERTbase model served as a baseline [3]. SciBERT, a variant of BERT,
is specifically trained on a vast collection of scientific publications to optimize
its performance on scientific downstream tasks. SciNCL, initialized with the
SciBERTs weights, utilizes citation graph neighborhood to generate samples for
Contrastive Learning, a technique used to learn representations by contrasting
positive and negative examples. SPECTER2 employs a BERTbase model, which
is trained from scratch using citation links, similar to the original SPECTER
model. However, the training data for SPECTER2 comprises 10 times more
triplets spanning 23 Fields of Study9.

Hyperparameter Tuning. To find the best hyperparameter settings, we per-
formed a grid search. In grid search we define a range of values for each hyper-
parameter. All possible combinations of these values are explored systematically
and evaluated to identify the best-performing combination. The models’ perfor-
mance was evaluated on BERTbase with weighted F1-Score on the test set. We
employed the following parameters and ranges for grid search (best parameter
combination is highlighted): Batchsize: [8, 16, 32], Learningrate: [1e−3, 1e−4,
1e−5], Weight Decay: [1e−1, 1e−2, 1e−3]. We experimented with a range of
3–5 training epochs. During evaluation, we observed signs of overfitting after 3
epochs. This was evident by a sharp decrease in loss on the training data while
loss on the validation set simultaneously increased. We maintained hyperparam-
eter settings constant for all experiments.

9 https://github.com/allenai/SPECTER2.

https://github.com/allenai/SPECTER2
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Transfer Learning. For an assessment of the selected pre-trained models, we
evaluated the performance between the feature-based and fine-tuned transfer
learning: In feature-based transfer learning parameters of the pre-trained models
were frozen. Only the task-specific classifier on top was trained, in the fine-
tuned transfer learning the parameters of the pre-trained models are additionally
adapted to the task. For the basic evaluation, we did not utilize enrichments.
We relied solely on title and abstract. For a more detailed overview, we ran both
approaches on the models selected in the previous step.

Table 1. Comparison of evaluation metrics for feature-based and finetuned transfer
learning on a selection of different PLMs.

Feature-Based Finetuned
Acc Prec Rec F1 Acc Prec Rec F1

BERTbase 0.2033 0.0887 0.2033 0.1013 0.6973 0.6838 0.6973 0.6868
SciBERT 0.3313 0.2368 0.3313 0.2179 0.7259 0.7223 0.7259 0.7206
SciNCL 0.490 0.4497 0.490 0.4095 0.7285 0.7245 0.7285 0.7239
SPECTER2 0.4351 0.4035 0.4351 0.3364 0.7330 0.7285 0.7330 0.7283

Raw Data vs Enriched Data. We utilized the gathered enrichments to
enhance the classification performance, assuming that these additional pieces
of information could significantly influence the outcome. Since BERT has a lim-
ited input capacity (maximum of 512 tokens), we decided to use only a selection
of the data enrichments. Moreover, it is crucial to determine the order and man-
ner in which the enrichments are fed into the model. First, we selected enrich-
ments from which we expected the most informative content, while consuming
few additional input tokens. We first experimented with the data gathered from
S2AG and OpenAlex and subsequently integrated enrichments from CrossRef in
a second step. We decided to integrate the following enrichments:

– from S2AG: Fields of Study (FoS)
– from OpenAlex: Concepts and Topics
– from CrossRef: Journal Title, Subjects

We opted for the following order: title, fields of study, topics, abstract, concepts,
categories, journal title and subject. Each of the fields was separated by a [SEP]-
token. Additionally, the field name was prepended to the terms to provide context
(except for title and abstract). Our final pipeline is depicted in Fig. 1.

4.2 Combined BERT-Embeddings (TwinBERT)

We explored alternative approaches to enhance the methodology described ear-
lier, considering BERT limitations: 512 token limit and treating the entire input
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Table 2. Comparison of evaluation metrics for raw data (title and abstract) and
enriched data from S2AG, OpenAlex (OA) and CrossRef (CR).

SPECTER2 SciNCL
Acc Prec Rec F1 Acc Prec Rec F1

Title+Abstract (TA) 0.7330 0.7285 0.7330 0.7283 0.7285 0.7245 0.7285 0.7239

TA+S2AG+OA 0.7419 0.7386 0.7419 0.7367 0.7353 0.7299 0.7353 0.7256

TA+S2AG+OA+CR 0.7467 0.7438 0.7467 0.7415 0.7340 0.7275 0.7340 0.7246

Fig. 1. Workflow using a single BERT-model with enrichments and SPECTER2 (best
performing model according to Table 2)

as a single document. To overcome these issues, we experimented with a cus-
tom model that employs two BERT models in parallel. In literature, we found
several similar approaches already known as TwinBERT [5,7], but in different
contexts. The use of two BERT models provides separate embedding pathways:
one for the basic document (title and abstract) and another for metadata. These
embeddings are then concatenated before classification. By utilizing two BERT
models, the number of parameters more than doubles. Thus we aimed to deter-
mine if this additional effort is justified. When experimenting with TwinBERT,
we varied the number of transformer layers, to account for this consideration. We
developed TwinBERT as a custom model using PyTorch [11]. Our TwinBERT
model is depicted in Fig. 2. The results are presented in Table 3.

5 Results

Table 1 shows the evaluation results for transfer learning without any enrich-
ments. In feature-based transfer learning (no fine-tuning) across different models,
we achieve a weighted F1-score ranging from 0.1013 to 0.4095. While this result
demonstrates a general ability to address the required task, the quality falls
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Fig. 2. Twin-Bert Model, which utilizes two BERT models, to separate embeddings
from essential data (title, abstract) from enriched data.

Table 3. Comparison of evaluation metrics for TwinBERT model with varying number
of transformer layers.

# of Layers TwinBERT
Acc Prec Rec F1

12 Layers 0.1145 0.0131 0.1145 0.0235
8 Layers 0.1280 0.0278 0.1280 0.0444
6 Layers 0.6179 0.5940 0.6179 0.5959
4 Layers 0.6688 0.6560 0.6688 0.6577
2 Layers 0.6719 0.6597 0.6719 0.6618

short of an acceptable range. Nevertheless, models optimized for scientific publi-
cations outperform the BERTbase model with a significant margin, with SciNCL
leading. In fine-tuned transfer learning, the results for these models are closely
clustered, with the weighted F1-score ranging from 0.6868 to 0.7283. SciBERT,
SciNCL, and SPECTER2 achieve F1-scores that are nearly equivalent (between
0.7206 and 0.7283), with SPECTER2 now taking the lead position. These results
suggest that for the given task, fine-tuning plays a more significant role than the
actual selection of the pre-trained model. Compared to the BERTbase model,
the models pre-trained for scientific tasks perform significantly better, although
the results of the fine-tuned BERT Base model are quite acceptable.

Table 2 presents the evaluation results for finetuned transfer learning, incor-
porating enrichments. We decided to assess the two best-performing pre-trained
models from the preceding task (SciNCL and SPECTER2). With enrichments,
we observe an improvement in the evaluation metrics for both models. How-
ever the enrichments yield a more substantial improvement for SPECTER2.
The F1-score for SPECTER2 increases by 0.013, while for SciNCL, it only rises
by a slight margin of 0.0017. We find that combining enrichments from multi-
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ple sources (S2AG, OA, CR) enhances the classification process without adding
noise. Our evaluation demonstrates the superior performance of the SPECTER2
model, fine-tuned for the task. The best results are achieved with enrichments
from various sources (S2AG, OA, CR) with an F1-score of 0.7415.

Table 3 shows the evaluation results for our custom TwinBERT model.
Despite its increased complexity, and the option to incorporate additional enrich-
ments, this model yields unsatisfactory results. During the evaluation, we sim-
plified the model by gradually reducing the number of transformer layers. With
each layer removed, the model’s performance improved. The best performance
was achieved with only 2 layers in each BERT Model. However, with an F1-
score of 0.6618, it still lags behind the simplest BERTbase model without any
enrichments.

6 Discussion and Conclusion

We present a classification model for scholarly publications that achieves a
weighted F1-Score of 0.7415 in the FoRC shared task I. When considering the
evaluation results, it is noteworthy that even with a fine-tuned BERTbase model
without any enrichments, a remarkable weighted F1 of 0.6868 is achieved. This
demonstrates the robustness and versatility of the BERTbase model. However,
the models optimized for scholarly publications perform noticeably better, yet
these models are almost equivalent without enrichments. By enriching from var-
ious sources, we were able to further boost the classification performance, with
SPECTER2 showing a better response to these enrichments compared to other
models. To appropriately contextualize and evaluate our results, a comparison
with human curators would be valuable. The provided dataset represents real-
ity in a highly simplified manner. In our dataset, there is only one target label
per item. Thus, in some cases, there are numerous alternative categorizations
that deviate from the provided solution but are nonetheless not incorrect due to
thematically overlapping categories. Instead of providing a single correct label,
training the model with multiple possible classes per item could lead to a more
nuanced prediction. Additionally the dataset is highly unbalanced, with a strong
emphasis on “Physical Sciences and Mathematics”, leading to a bias in the model.
Training with hundreds or thousands of samples greatly enhances class efficacy
compared to having only a few (e.g., “Art and Humanities”), which limits the
transferability of our trained model. The approach of a two-stage TwinBERT,
based on theoretical considerations, failed to deliver significant advantages in
practical application. Although we applied the same methodology to compute
the evaluation results, we were unable to reproduce the competition’s outcomes,
leading to a weighted F1-score approximately 0.008 lower.

Our current approach might potentially achieve even better results by incor-
porating a dedicated SPECTER2 adapter specifically designed for classification
tasks. We also intend to explore a sliding window approach, addressing the input
limitations of BERT [10,13], to enable the model to leverage the full scope of
enriched metadata and full-text. Our source code, as well as the trained models
are available for reuse10 under the MIT-License.
10 https://github.com/foerstner-lab/NSLP2024-FoRC.

https://github.com/foerstner-lab/NSLP2024-FoRC
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Abstract. Software is a central part of the scientific process and
involved in obtaining, analysing, visualising and processing research data.
Understanding the provenance of research requires an understanding
of the involved software. However, software citations in scientific pub-
lications often are informal, what creates challenges when aiming at
understanding software adoption. This paper provides an overview of
the Software Mention Detection (SOMD) shared task conducted as part
of the 2024 Natural Scientific Language Processing Workshop, aiming at
advancing the state-of-the-art with respect to NLP methods for detect-
ing software mentions and additional information in scholarly publica-
tions. The SOMD shared task encompasses three subtasks, concerned
with software mention recognition (subtask I), recognition of additional
information (subtask II) and classification of involved relations (subtask
III). We present an overview of the tasks, received submissions and used
techniques. The best submissions achieved F1 scores of 0.74 (subtask I),
0.838 (subtask II) and 0.911 (subtask III) indicating both task feasibility
but also potential for further performance gains.

Keywords: scholarly information processing · software mention
extraction · software metadata identification · information extraction ·
relation classification

1 Introduction

Science across all disciplines has become increasingly data-driven, leading to
additional needs with respect to software for collecting, processing and analysing
data. Hence, transparency about software used as part of the scientific process
is crucial to ensure reproducibility and to understand provenance of individual
research data and insights. Knowledge about the particular version or software
development state is a prerequisite for reproducibility of scientific results as even
minor changes to the software might impact them significantly.
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Fig. 1. Annotated sentences from SoMeSci. (Image taken from [18])

Furthermore, from a macro-perspective, understanding software usage, vary-
ing citation habits and their evolution over time within and across distinct dis-
ciplines can shape the understanding of the evolution of scientific disciplines,
the varying influence of software on scientific impact and the emerging needs
for computational support within particular disciplines and fields. Initial efforts
are made to provide publicly accessible datasets that link open access arti-
cles to respective software that is used and cited, for instance, the OpenAIRE
Knowledge Graph [10] or SoftwareKG [20]. Given the scale and heterogeneity
of software citations, robust methods are required, able to detect and disam-
biguate mentions of software and related metadata. Despite the existence of
software citation principles [6,21], software mentions in scientific articles are
usually informal and often incomplete [19]—information about the developer or
the version are often missing entirely, see Fig. 1. Spelling variations and mistakes
for software names, even common ones [20], increase the complexity of automatic
detection and disambiguation. Training and evaluation of information extraction
approaches require reliable ground truth data of sufficient size, raising the need
for manually annotated gold standard corpora of software mentions.

With this shared task, we would like to advance the field of software mention
detection, seeking novel methods that outperform the state-of-the-art on the
provided three subtasks.

We use Codalab [14] as a platform to run all three competitions. Subtask I1

received 22 registrations from participants, from which 10 results were submitted.
In contrast, the more challenging subtasks II2 and III3 received 12 registrations
and 11 registrations respectively, but for each, only 3 actual submissions were
received.

The rest of the paper is structured as follows. Section 2 presents previous
work related to SOMD in order to compare the presented systems to current
research, Sect. 3 defines both subtasks along with the used evaluation metrics.
In Sect. 4, we introduce the datasets and taxonomies used for both subtasks,
delving into their construction methods. Section 5 showcases the results received
from submissions of both subtasks, describing the system architectures when
possible. Finally, Sect. 6 discusses those results along with their limitations, and
provides concluding remarks.

1 https://codalab.lisn.upsaclay.fr/competitions/16935.
2 https://codalab.lisn.upsaclay.fr/competitions/16936.
3 https://codalab.lisn.upsaclay.fr/competitions/16937.

https://codalab.lisn.upsaclay.fr/competitions/16935
https://codalab.lisn.upsaclay.fr/competitions/16936
https://codalab.lisn.upsaclay.fr/competitions/16937
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2 Related Work

Most works concerned with recognition of software mentions in scientific arti-
cles apply manual analysis on small corpora in order to answer specific ques-
tions [4,12] or are limited to specific software [8,9]. Automatic methods, enabling
large scale analysis, have been implemented by iterative bootstrapping [13] as
well as machine learning on manually engineered rules [2]. However, both achieve
only moderate performance. Extraction through deep learning with a Bi-LSTM-
CRF [20] shows promise, but requires sufficient and reliable ground truth data
which only recently became available. More recently, Schindler et al. [17] pro-
vided robust information extraction models based on SciBERT and trained on
the SoMeSci corpus [18] for NER and classification outperforms state-of-the-art
methods for software extraction by 5% points on average. A similar approach
was taken by [5] to recognize software mentions across several million articles
achieving Named Entity Recognition performances at a similar level. Given that
performance of related works still widely varies and is far from robust, this shared
task aims at advancing the field of software mention detection and disambigua-
tion across various subtasks.

3 Tasks Description

Software is an important part of the scientific process and should therefore be
recognized as first class citizen of research. Research Knowledge Graphs have
recently been adopted to provide bibliographic data at scale that could be pop-
ulated by automatic extraction of software mentions. Given the scale and het-
erogeneity of software citations, robust methods are required to detect and dis-
ambiguate mentions of software and related metadata. The SOftware Mention
Detection in Scholarly Publications (SOMD) task utilises the SoMeSci - Soft-
ware mentions in Science - corpus. Participants had the option to sign up for
one or more subtasks. Automated evaluations of submitted systems are done
through the Codalab platform.

– Subtask I: Software Mention Recognition: Software mentions are recog-
nized from individual sentences. At the same time, software mentions had to
be classified according to their mention type, e.g., mention, usage, or creation
and their software type, e.g., application, programming environment, or pack-
age. Participants developed classifiers that take individual sentences from the
different subsets of SoMeSci and output mentions of software further clas-
sified into their type of software and mention. Submissions were evaluated
using the F1 score computed based on exact matches. Please note that sub-
task I deviates from the from the original publication in that it combines the
identification of the software and the classification of mention and software
type.

– Subtask II: Additional Information: For each software mention, addi-
tional information according to the SoMeSci schema shall be recognized from
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the sentence. This includes information such as version, URL, and developer.
Participants had to develop classifiers that take sentences with software men-
tions as input and identify all additional information within the sentence. As
in Subtask I, submissions were evaluated through the F1 score based on exact
matches.

– Subtask III: Relation Classification: For each software mention, relations
to other recognized entities had to be classified. This includes versions and
developers, but also URLs or host applications for plugins. The evaluation
was based on exact matches rather than partial matches. F1 score had been
used as an evaluation performance metric for all the subtasks.

4 Dataset

The shared tasks utilise SoMeSci-Software Mentions in Science - a gold stan-
dard knowledge graph of software mentions in scientific articles [18]. It contains
high quality annotations (Inter-Rater Reliability, IRR: κ = .82) of 3756 soft-
ware mentions in 1367 PubMed Central articles. Besides the plain mention of
the software, it also provides relation labels for additional information, such as
the version, the developer, a URL or citations and distinguishes between dif-
ferent types, such as application, plugin or programming environment, as well
as different types of mentions, such as usage or creation. SoMeSci is the most
comprehensive corpus about software mentions in scientific articles, providing
training samples for Named Entity Recognition, Relation Extraction, Entity
Disambiguation, and Entity Linking.

SoMeSci is created by manually annotating 3756 software mentions with
additional information, resulting in 7237 labelled entities in 47,524 sentences
from 1367 PubMed Central articles. Data is lifted into a knowledge graph
(excerpt in Fig. 2) by using established vocabularies such as NLP Interchange
Format (NIF) [3] and schema.org [16], disambiguated and linked to external
resources, and shared as a publicly available 5-star Linked Open Data resource [1]
that can be explored interactively.

In preparation of the three subtasks for the SOMD challenge, we released a
new dataset implementing predefined splits for training and testing.

For each subtask, the same split was created, which also follows the original
train-test split, as reported for SoMeSci [18], resulting in 39.768 sentences for
train and 8180 sentences for testing for the first subtask.

The new dataset was released via Zenodo [7] and consists of three parts,
one for each subtask. Each of the individual parts contains a list of sentences
and labels for training and a list of sentences for testing. As subtask II and
III require additional information for the test set, such as the already identified
software mentions and their respective meta data, for both tasks, we provided
an additional file with this information for train and test set respectively. As
subtask II and III require already recognized software mentions, the number of
sentences provided for these tasks reduced to 2353 (1091) for the train set and
374 (131) for the test set for subtask I (subtask II).
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Fig. 2. Excerpt of the SoMeSci knowledge graph illustrating the textual references
of software mentions and their version, developer and citation. The different levels
of representation separate the main concerns of interest, natural language sentences,
mentions of entities, their types and disambiguation to knowledge entities. For clarity,
some information is omitted. (Image taken from [18])

Participants of the SOMD shared task were required to retrieve the dataset
and use all available training data to establish a classifier to be tested on the pro-
vided test set. The prediction as created from the test set of the respective tasks
was subject to submission at the Codalab platform. Finally, evaluation scripts
implemented in Python by using the packages scikit-learn [15] and seqeval [11]
were used to determined weighted Precision, Recall and F1 score, where the F1
score was used to rank the submissions.

5 Results

In this section we describe results reported as well the techniques and strategies
adopted by different participants in the subtasks.

5.1 Subtask I

Overall, 23 participants registered for subtask I, from which we received nine sub-
missions in total. Two of the submissions obtained F1 scores close to 0, resulting
in seven valid submissions. An overview of the valid submissions including the
achieved scores is provided in Table 1. As not all teams submitted system descrip-
tions, in to following we focus on submissions that provided such descriptions.
phinx achieved the highest F1 score, followed by david-s477, ThuyNT03 and
ottowg.

Team phinx experimented with different LLMs namely BloomZ, Mistral,
Llama-2 and Jaskier-7b-dpo, where Jaskier-7b-dpo provided the best perfor-
mance (F1 score of 74%). They further finetuned pre-trained models using the
LoRA (Low-Rank Adaptation) [22] technique.
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Table 1. Evaluation results of submissions for subtask I

User F1 (weighted) precision (weighted) recall (weighted)

phinx 0.740 0.761 0.750

david-s477 0.692 0.739 0.711

ThuyNT03 0.678 0.729 0.649

ottowg 0.652 0.679 0.664

vampire 0.648 0.682 0.637

fddaFIT 0.504 0.548 0.499

dainb 0.483 0.709 0.392

Team ThuyNT03 experimented with BERT based models specifically XLM-
Roberta, BERT and SciBERT. Utilizing each model, they experimented with
three approaches: in their first approach they chose direct classification, whereas
in the second approach, classification was split into two stages, where the first
stage produced BIO tags and the second stage produced actual entity labels. The
third approach conducted a three stage classification that included a preliminary
step to detect if a sentence contains any entities before continuing with the two
stage classification.

The team fddaFIT investigated the effectiveness of the decoder-only Falcon-
7b model, which is known for its performance across a wide range of NLP tasks.
They experimented with different sampling schemes like selective sampling and
adaptive sampling to compose finetuning data. They also experimented with
different strategies but that did not yield enhancements in outcome. To address
the class imbalance they used a weighted loss mechanism (where class weights
are inversely proportional to class frequencies) and adaptive sampling, i.e. over-
sampling the underrepresented data by a factor of 2 and undersampling the
over-represented data to sizes equal to multiples (1, 1.5, 3) of the oversampled
data volume.

Team ottowg employed SciBERT pre-trained model and they also experi-
ment with generative large language models. Various prompting strategies were
used by the team for the subtask. Retrieval-Augmented Generation (RAG) with
LLM has been applied using Generative Language Models (GLMs), specifically
GPT 3.5 and GPT 4 for the task. They used a pipeline strategy that prioritizes
selecting relevant text passages for GLM analysis, improving efficiency by fil-
tering out unrelated content. Their performance optimization employs a hybrid
method, combining a fine-tuned NER model for sentence selection with GLMs
for information extraction. Their best configuration achieved an F1 score of 0.679
for subtask I using a generative LLM.

5.2 Subtask II

Out of 12 registrations for subtask II, we received submissions by two teams,
namely phinx and ottowg. Performance metrics for this subtask are reported
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in Table 2. The team ottowg achieves the top performance with an F1 score of
0.838, whereas the phinx team achieves 0.743.

For this subtask, the ottowg team adopted an approach similar to the app-
roach of subtask I, but tuned for the extraction of associated software attributes.
They utilised a retrieval mechanism to augment the task description in a few
shot setup. For each sample, including those derived from few-shot learning, the
process entailed presenting the sentence containing the software entity(ies) and
then predicting a JSON list of identified entities.

The phinx team followed the same experimentation model as in subtask I
with LLMs with modifications to the prompt engineering to accommodate the
additional information for the software such as as version, URL, and developer
etc. With multiple experimentation with various LLMs, they achieved 0.743 in
F1 score as their best performing approach for this subtask using the Jaskier-
7b-dpo model.

Table 2. Evaluation results of submissions for subtask II

User F1 (weighted) precision (weighted) recall (weighted)

ottowg 0.838 0.835 0.847

phinx 0.743 0.745 0.748

5.3 Subtask III

Like the previous subtask, we received two submissions for subtask III by the
same two same teams phinx and ottowg. Table 3 depicts the results of their
submission with ottowg scored the best followed by phinx team.

For this subtask, the study for ottowg proposed a novel approach by con-
ceptualizing the task of relation extraction as a single-choice question-answering
(QA) activity. This method entailed generating a comprehensive list of all pos-
sible entities within a sentence, drawing from the existing entities and their
relationships as delineated in the training dataset. Each potential pair of enti-
ties was then evaluated to ascertain if a specific relation attribute types. These
questions were then presented to a Large Language Model for answering.

The phinx team followed the same experimentation model as they applied
for their earlier subtasks here with LLMs for modifications to the prompt engi-
neering to accommodate the relations to other recognized entities which includes
versions and developers, but also URLs or host applications for plugins. With
multiple experimentation with various LLMs; again the Jaskier-7b-dpo model
proved best for them by bringing 0.897 in F1 score as their best for this subtask.
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Table 3. Evaluation results of submissions for subtask III

User F1 (weighted) precision (weighted) recall (weighted)

ottowg 0.911 0.924 0.916

phinx 0.897 0.904 0.897

6 Conclusion

In this paper, we presented an overview of the Software Mention detection
(SOMD) shared task, that was run as part of the 2024 Natural Scientific Lan-
guage Processing Workshop, in conjunction with the Extended Semantic Web
Conference 2024 (ESWC2024). The task is the first of its kind, proposing a set
of three subtasks concerned with the detection of software mentions and related
attributes in scholarly publications together with benchmark datasets and base-
lines. Given the important role of used software in the scientific process, under-
standing software citations is a crucial factor towards reproducibility of scientific
works. This shared task provides the basis for advancing research into detect-
ing and disambiguating software mentions. Unsurprisingly, the submissions to
a large extent adopted various kinds of pre-trained language models as starting
point for their pipelines. However, the diversity of submissions documented the
range of techniques that can facilitate performance gains, starting from different
base model choices, retrieval augmented approaches, sampling techniques or the
use of prompt engineering as part of intermediate steps.
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Abstract. This paper describes our systems for the sub-task I in the
Software Mention Detection in Scholarly Publications shared-task. We
propose three approaches leveraging different pre-trained language mod-
els (BERT, SciBERT, and XLM-R) to tackle this challenge. Our best-
performing system addresses the named entity recognition (NER) prob-
lem through a three-stage framework. (1) Entity Sentence Classifica-
tion - classifies sentences containing potential software mentions; (2)
Entity Extraction - detects mentions within classified sentences; (3)
Entity Type Classification - categorizes detected mentions into specific
software types. Experiments on the official dataset demonstrate that
our three-stage framework achieves competitive performance, surpass-
ing both other participating teams and our alternative approaches. As
a result, our framework based on the XLM-R-based model achieves
a weighted F1-score of 67.80%, delivering our team the 3rd rank in
Sub-task I for the Software Mention Recognition task. We release our
source code at this repository (https://github.com/thuynguyen2003/
NER-Three-Stage-Framework-for-Software-Mention-Recognition).

Keywords: Software mention recognition · Named entity recognition ·
Transformer · Three-stage framework

1 Introduction

Named Entity Recognition (NER) is an important task in NLP that involves
identifying and classifying named entities in text. That will transform them into
structured data, making it easier to categorize and perform search processing
or carry out other NLP tasks [5] on that data such as text classification, senti-
ment analysis, and contextual analysis, particularly in the domain of Biomedical
Named Entity Recognition (Bio-NER), which is challenged by a range of entities
like genes, proteins, medications, and diseases [9].
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The SOMD 2024 shared-task, hosted within Natural Scientific Language Pro-
cessing and Research Knowledge Graphs (NSLP 2024) workshop [8], is designed
to extract mentioned software and metadata from documents. In this context,
both the software and the metadata are identified as specific intervals in the orig-
inal documents. Understand and identify the software mentioned in documents,
which is especially important to support information extraction in scientific doc-
uments.

In this paper, we present three different approaches to address the challenge
of sub-task I, including:

– Approach 1: Fine-tuning pre-trained language models as a token classifica-
tion problem.

– Approach 2: Two-stage framework for entity extraction and classification.
– Apporach 3: Three-stage framework for entity sentence classification, entity

extraction, and entity type classification.

2 Related Work

In recent years, pre-training language models (PLMs) have made significant
advancements in Named Entity Recognition (NER) tasks [16]. Among these, the
most popular model is BERT [7] and its variations like SciBERT [2], RoBERT
[3], and BiLSTM [11]. These models are often paired with machine learning tech-
niques, particularly Conditional Random Fields (CRF) [10]. Additionally, some
approaches involve breaking down the NER task into two simpler tasks using
question-answering methods [1], achieving notable results on various datasets
like BioNLP13CG, CTIReports, OntoNotes5.0 [12], and WNUT17 [6] based on
the F1 measure.

With the emergence of ChatGPT, researchers have been exploring the use of
Large Language Models (LLMs) for NER tasks [15,17], with some studies demon-
strating that ChatGPT can be distilled into smaller UniversalNER models for
open NER [18]. These UniversalNER models have shown exceptional accuracy
across 43 datasets spanning diverse fields such as biomedicine, programming,
social media, law, and finance, without requiring direct supervision. Universal-
NER surpasses traditional guideline-tuned models like Alpaca and Vicuna by an
average of over 30 F1 points and achieves a high F1 score of 0.8 on SoMeSci.
In this paper, BERT, SciBERT, and XML-R models are still utilized to address
the first task of the shared SOMD 2024 challenge.

3 Approach

To address the Software Mention Recognition task, we utilize the power of dif-
ferent pre-trained transformer-based language model in different approaches.
Figure 1 illustrates three approaches to participate in the competition. Because
shared-task is related to each token in the sentence and whether words are in
capital letters or not also greatly affects the recognition of entities. Therefore,



Three-Stage Framework Based on BERTology Models at SOMD 2024 259

Fig. 1. Overview system of three approaches: Sample input is “Celeste was written in
C #” with two entities are E 1 and E 2. E 1 and E 2 play the role of two entity types
in this example

we do not apply any preprocessing techniques but use data directly from the
organizers. Also the tokenize method will depend on the default tokenier of the
models. In our work, we employ various pre-trained language models, includ-
ing the XLM-Roberta (XLM-R) [4], BERT [7], and SciBERT [2] as our main
backbones. The detail of our three approaches are present as follow.

3.1 Approach 1: Token Classification with BERTs

For the first approach, we address the task by fine-tuning different transformer
BERT-base models for the token classification task. We adapted different pre-
trained language models to the training dataset. After tokenizing the input, we
feed the token sequence to backbones models to extract the fixed vector in the
last layer as the final representation of the input sentence. Then, we apply a
fully connected layer to process the vectors and predict labels for each input
token using a softmax function. There are a total of 27 labels (in Table 1), where
26 correspond to 13 different entity types, and one label represents non-entities.
Figure 1 illustrates the overview of our first approach.

3.2 Approach 2: Two-Stage Framework for Entity Extraction
and Classification

Motivated by recent work by [1], we address Task 1 - Software Mention Recog-
nition with a two-stage framework composed of entity extraction and entity
classification components. However, our components are re-designed to improve
the overall performance than original framework proposed by [1]. Figure 1 illus-
trates the overview of this approach, the detail of each component is presented
below:
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Table 1. List of labels for token classification task in Approach 1

Index Label Index Label

1 B-Application Creation 15 B-PlugIn Deposition

2 I-Application Creation 16 I-PlugIn Deposition

3 B-Application Deposition 17 B-PlugIn Mention

4 I-Application Deposition 18 I-PlugIn Mention

5 B-Application Mention 19 B-PlugIn Usage

6 I-Application Mention 20 I-PlugIn Usage

7 B-Application Usage 21 B-ProgrammingEnvironment Mention

8 I-Application Usage 22 I-ProgrammingEnvironment Mention

9 B-OperatingSystem Mention 23 B-ProgrammingEnvironment Usage

10 I-OperatingSystem Mention 24 I-ProgrammingEnvironment Usage

11 B-OperatingSystem Usage 25 B-SoftwareCoreference Deposition

12 I-OperatingSystem Usage 26 I-SoftwareCoreference Deposition

13 B-PlugIn Creation 27 O

14 I-PlugIn Creation

– Stage 1 - Entity extraction: This stage aims to identify whether each
token in a given input sentence belongs to an entity or not. We achieve this
through token classification, similar to Approach 1. However, instead of using
27 labels for different token types, we only use 3 labels as:
• O: Non-entity token
• B-X: Beginning token of an entity of type X (where X represents one of

the 13 entity types)
• I-X: Token within an entity of type X

Using separate labels for the beginning (B) and inside (I) positions of tokens
within an entity allows us to efficiently extract all words belonging to the
same entity in stage 2.

– Stage 2 - Entity classification: In this stage, we classify the detected
entities from stage 1. We use a classifier with 13 labels corresponding to the
13 entity types, discarding the B-I prefix distinction used for token position.
This classifier is built by fine-tuning a transformer-based model like BERT.
[14] During fine-tuning for classification tasks, it’s common practice to use
the hidden state associated with the [CLS] token as input for a classifier.
However, in this approach, we fine-tune the entire transformer model end-
to-end. This means the hidden states are not treated as fixed features, but
are trained alongside the classification head (a component added on top of
the pre-trained model) for optimal performance. Additionally, to leverage the
knowledge of transformer models, we format this classifier as a question-and-
answering model by constructing the input as the following prompt:
• Input: What is <entity> in the sentence: <input sentence>
• Output: Type of entity
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Table 2. General statistics in the training set and private test set

Information Training set Private test set

#Sentence 39768 8180

#Sentence with entity 2353 374

Total entity 3241 515

Max length 568 347

Avg length 28.32 28.82

3.3 Approach 3: Three-Stage Framework

Our analysis in Table 2 revealed a limited number of sentences containing entities
within the training set. This disparity raised concerns about potential biases in
the label information during the training process for the previously mentioned
approaches. To address this, we introduce a new three-stage framework, which
integrate a binary classification with Approach 2. We simply built a binary
classification model to detect the sentences which contain the entity. As shown
in Fig. 1, if a sentence is classified as class 0, assign all tokens in the sentence as
O, otherwise, this sentence will be passed to Approach 2 to extract the entity
and its type.

4 Experimental Setup

4.1 Data and Evaluation Metrics

This shared-task uses the SoMeSci dataset [13] which included 39768 sentences
and 3756 software mentions divided into a training set and a private test set. We
train our systems only on the training set and evaluate the performance of our
model on the private test set using weighted precision, recall, and F1-score. In
Table 2, we summarize some general information about the two data sets. Where
#Sentence denotes the number of sentences, #Sentence with entity denotes the
number of sentences containing the entity, and Total entity is the total of enti-
ties in all sentences. Max length and Avg length are the maximum length and
average length of the sentences in each set, respectively. This dataset contains
six groups of entity Application, OperatingSystem, PlugIn, ProgrammingEnvi-
ronment, and SoftwareConference. Each group can have the entity belong to
four types [Creation, Deposition, Mention, Usage]. In Table 3 we indicate the
distribution of each entity in the dataset

4.2 System Settings

We conduct all experiments on three approaches, using three base-version back-
bones: XLM-R1, BERT2, and SciBERT3. We loaded the weights of the back-
bones from the HuggingFace library and carried out training on an NVIDIA
1 https://huggingface.co/FacebookAI/xlm-roberta-base.
2 https://huggingface.co/google-bert/bert-base-uncased.
3 https://huggingface.co/allenai/scibert-scivocab-uncased.

https://huggingface.co/FacebookAI/xlm-roberta-base
https://huggingface.co/google-bert/bert-base-uncased
https://huggingface.co/allenai/scibert-scivocab-uncased


262 T. Nguyen Thi et al.

Table 3. Statistics the number of entities in each entity type entity in each entity
group in the training set and private test set

Entity group Entity Training set Testing set

Quantity Total Quantity Total

Application Application Creation 150 2353 47 348

Application Deposition 80 22

Application Mention 162 31

Application Usage 1958 248

OperatingSystem OperatingSystem Mention 13 140 17 33

OperatingSystem Usage 127 16

PlugIn PlugIn Creation 53 344 17 81

PlugIn Deposition 21 8

PlugIn Mention 40 11

PlugIn Usage 230 45

ProgrammingEnvironment ProgrammingEnvironment Mention 41 372 6 49

ProgrammingEnvironment Usage 331 43

SoftwareCoreference SoftwareCoreference Deposition 35 35 4 4

T4(x2) GPU provided by Kaggle. The corresponding hyper-parameters for each
approach are presented below:

– Approach 1: batch size = 32, learning rate = 5e−05, and the number of
epoch = 25 with XLM-R model and the number of epoch = 20 both remain
backbones.

– Approach 2:
• Stage 1: batch size = 32, learning rate = 5e−05 and the number of epoch

= 20 for all three backbones.
• Stage 2: batch size = 16, learning rate = 2e−05 and the number of epoch

= 25 with XLM-R model and epoch = 20 two remainder models.
– Approach 3:

• Stage 1: batch size = 32, learning rate = 2e−5 and the number of epoch
= 10 for all three backbones.

• Stage 2 and Stage 3: Using the configuration and architecture as the
Approach 2.

5 Main Results

According to the organizing committee, this sub-task will be evaluated by F1-
Score based on exact matches. As shown in Table 4, we provide a tabulated
summary of 9 experiments, each representing one of the 9 final systems generated
from three different approaches and using three distinct backbones.

The experimental results in Table 4 indicate that Approach 3, a three-stage
system, demonstrates the best performance across all backbones, with the XLM-
RoBERTa backbone exhibiting the highest efficacy among all approaches. How-
ever, this result is for reference only and is only true in all of my experiments.
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Table 4. Comparative performance of our three Approaches with different pre-trained
language models on the test set.

Models Approach 1 Approach 2 Approach 3

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

BERT 0.675 0.594 0.625 0.682 0.643 0.653 0.690 0.629 0.650

SciBERT 0.658 0.621 0.623 0.719 0.645 0.670 0.736 0.631 0.670

XLM-R 0.716 0.614 0.649 0.707 0.654 0.671 0.729 0.649 0.678

Table 5. Official scoreboard (https://codalab.lisn.upsaclay.fr/competitions/16935#
results) for the sub-task I: Software mention recognition.

Participant Ranking Evaluation metrics

Precision Recall F1-score

phinx Top 1 0.761 0.750 0.740

david-s477 Top 2 0.739 0.711 0.692

ottowg Top 4 0.679 0.664 0.652

vampire Top 5 0.682 0.637 0.648

Our best system Top 3 0.729 0.649 0.678

It’s important to acknowledge that different contexts, set up or datasets might
yield different outcomes, and we are not sure this is the best result that each
backbone could give in other cases. Finally, the best system was built according
to approach 3 with XLM-R backbone and our best submission was ranked 3rd.
Table 5 show the final score of the top 5 participants.

With the test dataset labels provided by the organizing committee, we eval-
uated the performance of our best system for each entity class in Table 6. We
observed that the SoftwareCoreference Deposition entity achieved the highest
Precision score, while the ProgrammingEnvironment Usage entity attained the
highest Recall and F1 score, top 5 F1-score classes are ProgrammingEnviron-
ment Usage, SoftwareCoreference Deposition, and OperatingSystem Mention. It
is evident that entities belonging to the PlugIn group typically scored lower than
those in other groups shows that it has difficulty in the regconization process.
Although, the number of PlugIn Usage entities in the training set is pretty large
the result on the test set is not positive. Besides that, PlugIn Creation and Plu-
gIn Deposition entities have the sample in the training set are pretty low and
their score moves forward to zero. The number of OperatingSystem Mention
entities in the training set is low and the score on the test set is high so we
predict the mention entity type in this group is featured and easier to recognize
than other groups.

Additionally, in Table 7, we evaluated each individual stage in our final three-
stage system by assuming that the accuracy of the stages before it is 100%. The
first stage works well with an F1-score of 0.992 in classifying whether a sentence
contains an entity or not. Moving to stage 2, tasked with detecting entities
in sentences, achieved an F1 score at a relatively good level, but a significant

https://codalab.lisn.upsaclay.fr/competitions/16935#results
https://codalab.lisn.upsaclay.fr/competitions/16935#results
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Table 6. Performance of the final system on the test dataset across entity classes
evaluated by Precision, Recall, and F1-score.

Entity class Precision Recall F1-score

Application Creation 0.692 0.766 0.727

Application Deposition 0.615 0.727 0.667

Application Mention 0.560 0.452 0.500

Application Usage 0.812 0.730 0.769

OperatingSystem Mention 0.867 0.765 0.812

OperatingSystem Usage 0.579 0.688 0.629

PlugIn Creation 0.200 0.059 0.091

PlugIn Deposition 0.000 0.000 0.000

PlugIn Mention 0.667 0.364 0.471

PlugIn Usage 0.682 0.333 0.448

ProgrammingEnvironment Mention 0.500 0.167 0.250

ProgrammingEnvironment Usage 0.886 0.907 0.897

SoftwareCoreference Deposition 1.000 0.750 0.857

Table 7. Performance of components in our final three-stage framework.

Stage Precision Recall F1-score

Stage 1 0.992 0.992 0.992

Stage 2 0.912 0.786 0.845

Stage 3 0.786 0.806 0.784

difference between Precision and Recall (12.6% difference) is evident, which also
affects the overall system performance. In the final stage, the scores between the
three metrics are relatively balanced, but it appears that the task of classifying
13 entity classes had some impact on this stage with relatively lower overall
performance. The propagation of errors between the three stages has a significant
impact on the entire system, with the final F1-score of the entire system being
0.678.

6 Conclusion and Future Work

In this paper, we present and evaluate three approaches for tackling sub-task I
in the Software Mention Detection in Scholarly Publications shared task. While
we explored the use of suitable transformer models like BERT, our three-stage
system leveraging the XLM-R model achieved the highest performance in the
competition. As a result, our best system achieved the Top 3 in the private
test. In future work, our intention is to analyze the error propagation between
the three stages to enhance the performance of the entire three-stage system.
Additionally, with access to more substantial computational resources, we aim
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to experiment with fine-tuning sub-tasks using larger batch sizes and epochs for
each backbone in order to investigate the effects of these hyper-parameters on
the model’s performance.
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Abstract. This paper outlines the ABCD team’s approach to employ-
ing LLMs for three subtasks at SOMD 2024, specifically focusing on
Software Mention Detection in Scholarly Publications. The task revolves
around scientific articles and information, comprising three subtasks: (1)
extracting software entities from a given sentence, (2) extracting rele-
vant entities related to software entities from the task I, and (3) deter-
mining the relationship between entities extracted from the previous two
tasks. Our objective is to gain valuable insights into fine-tuning LLMs
using LoRA. The experimental results showcase that our approach has
demonstrated competitive performance across all three tasks, securing
Top 1, Top 2, and Top 2 rankings for Subtask I, Subtask II, and Sub-
task III, respectively. We release our source code in this Github reposi-
tory(https://github.com/Xphi310302/ABCD-team-NLSP.git).

Keywords: SOMD 2024 · Software Mention Detection in Scholarly
Publications · Large Language Model · LoRA · Fine-tuning LLM ·
Prompting Engineering

1 Introduction

Named Entity Recognition (NER) is the task of identifying and classifying enti-
ties such as people, locations, and organizations within a piece of text. While
most NER datasets, like CoNLL2003 [14], have focused on high-resource lan-
guages like English and specific domains like news, the recently shared task on
Software Mention Detection in Scholarly Publications (SOMD) [15] indicated the
growing importance of software in research. With the rise of Research Knowledge
Graphs, there is a need for efficient extraction of bibliographic data, particularly
through automated software mention detection. The Software Mention Detec-
tion (SOMD) shared task aims to tackle this problem by offering three different
sub-tasks as below:
c© The Author(s) 2024
G. Rehm et al. (Eds.): NSLP 2024, LNAI 14770, pp. 267–277, 2024.
https://doi.org/10.1007/978-3-031-65794-8_19
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https://doi.org/10.1007/978-3-031-65794-8_19


268 P. Nguyen Xuan et al.

– Subtask I: Software NER: This task involves identifying four types of
software-related entities: Application, Plugin, Operating System, and Pro-
gramming Environment. Accurately classifying software mentions is necessary
to understand their role in academic discourse.

– Subtask II: Attribute NER: This task aims to extract ten different
attributive information associated with software entities, such as alternative
names, abbreviations, authorship (developers), software release maintenance
(versions, extensions, release dates, licenses), and elements of the referencing
system (in-text citations, URLs, and software coreferences for cross-sentence
linkage), to a specific software mention.

– Subtask III: Relation Extraction: This task involves establishing rela-
tionships between software entities and their attributes using specific relation
types and mapping each attribute to these relations. This task aids in com-
prehending the interrelations of software entities within scholarly texts.

In this paper, we present our approach for three subtasks at the SOMD shared
task. Instead of using traditional classification methods, in this study, we use a
generative approach for shared task problems. We leverage the power of large
language models (LLMs) combined with prompt engineering, further fine-tuning
them with the LoRA technique.

2 Related Work

Named Entity Recognition (NER) is the task of identifying and classifying key
information in text into predefined categories. A common approach for NER
is to formulate it as a sequence labelling task. For example, Hammerton et
al. (2003) [3] used unidirectional LSTMs to obtain token-level representations,
which were then fed to a softmax classifier for predictions. Collobert et al. (2011)
[1] employed CNNs to embed each input word and used CRF to decode each
embedding into a specific entity type. Devlin et al. (2019) [2] utilized BERT to
obtain token-level representations for classifications. Methods leveraging large
pre-trained Transformers have further pushed the state-of-the-art, such as the
UnifiedSG model [10]. Recent advancements include DeepStruct by [20], which
modifies language modelling to enhance the model’s awareness of the corpus’s
logical structure, and then applies this trained model to NER tasks. Other
approaches involve introducing specialized architectures designed specifically for
the characteristics of NER, as seen in the work of [7].

Regarding LLMs for NER, Wang et al. (2023) [21] examined the use of text-
generation models for sequence labeling in low-resource and few-shot scenarios.
Ji et al. (2023) [5] proposed a zero-shot and few-shot NER framework based on
the Vicuna model.

For LLMs in relation extraction, Wadhwa et al. (2023) [18] utilized few-shot
prompting and fine-tuning with large language models to achieve state-of-the-
art performance. Wan et al. (2023) [19] introduced GPT-RE to enhance relation
extraction accuracy through task-specific entity representations.
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Fig. 1. Our workflow for three sub-tasks at the SOMD shared task.

Fine-tuning large language models (LLMs) for downstream tasks is a recent
approach that leverages their capabilities to solve various NLP tasks. Stavropou-
los et al. (2023) [16] introduced a method for extracting knowledge from scientific
literature, focusing on identifying datasets and code/software mentions. Using a
meticulously curated dataset, generated with ChatGPT, the authors employed
Low-Rank Adaptation (LoRA) [4] to fine-tune a Large Language Model (LLM),
turning Research Artifact Analysis (RAA) into an instruction-based Question
Answering (QA) task. This innovative approach significantly enhances the LLM’s
performance, facilitating accurate extraction of research artifacts and addressing
reproducibility and reusability challenges in scientific research.

3 Approach

3.1 Overview

The diagram in Fig. 1 illustrates our approach for all three subtasks. The frame-
work consists of four steps: a pre-processing layer, a layer for Prompting construc-
tion, a layer of fine-tuning Large Language Models, and a post-processing layer.
Firstly, the input text is subject to several processing steps in the pre-processing
layer. Following this, we fine-tune LLMs in order to obtain probability outputs
of labels. Finally, the probability outputs are processed by the post-processing
layer to convert the model output to the format that can be submitted to the
competition. The detailed structure of the pipeline is described in the following:

Pre-processing: Pre-processing before fine-tuning a Large Language Model is
essential for cleaning, standardizing, and structuring the data to optimize the
model’s learning process and improve its performance on specific downstream
tasks:

– Subtask I: In the dataset sentence, certain links or websites should be elim-
inated or substituted to assist the language model in disregarding extraneous
information. Next, we convert the original label of subtask I into natural
language to input it into LLMs. For example, we have the input sentence,
original label and converted label as follows:
• Input sentence: In this work, we described the Delphi package and

associated resources.
• Original label: O O O O O O O B-Application Creation O O O O O.
• Converted label: DelPhi:Application Creation.

– Subtask II: we convert the original label of subtask I into natural language
for inputting into LLMs. The process is similar to subtask I.
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– Subtask III: we convert the original label of subtask III into natural language
for inputting into LLMs. For example, we have the input sentence, original
label and the covered label as follows:
• Input sentence:: Users are welcome to use an instance of PhyloBot

available at http://www.phylobot.com, or launch their own instance of
PhyloBot using its open-source code.

• Original label: O O O O O O O O B-Application Deposition O O B-
URL O O O O O O O B-Application Mention O O O O O O O.

• Converted label: http://www.phylobot.com is URL of PhyloBot.

Prompting Construction: Through experimentation, we conducted compar-
ative analyses involving the utilization and absence of Prompting Construction.
Our findings suggest that transforming labels from the BIO Tags into a prompt-
based format aids Large Language Models (LLMs) in grasping the task’s intent.
Moreover, the linguistic structure embedded in the prompts closely corresponds
to the knowledge encapsulated within LLMs.

– Subtask I: The prompt outlines four key skills: (1) Sentence Scrutiny: Ana-
lyzing sentences and flagging software-related keywords. (2) Entity Identifica-
tion: Pinpointing entities related to identified keywords and ensuring contex-
tual alignment. (3) Categorize Software: Evaluating input by mapping it to
predefined software categories. (4) Ascertain Mention Type: Determining the
type of software mention, such as Deposition, Usage, Creation, or Mention.
An example is provided in Fig. 2.

– Subtask II: The prompt outlines four key skills: (1) Comprehensive Under-
standing: Thoroughly analyze the given text and software terminologies for a
holistic view of the context. (2) Details Recognition: Identify elements associ-
ated with specific categories, including Abbreviation, Developer, Extension,
AlternativeName, Citation, Release, URL, and Version. (3) Focused Extrac-
tion: Diligently sift through the text to extract data fitting the identified
categories. (4) Data Sorting: Allocate extracted information to its appro-
priate category, including Abbreviation, Developer, Extension, Alternative-
Name, Citation, Release, URL, and Version. An example is provided in Fig. 2.

– Subtask III: The prompt outlines two key skills: (1) Rigorous Examina-
tion: Thoroughly examine given phrases and related software terminologies
to comprehend the wider context. (2) Relationship Categorization: For each
software mentioned, categorize its relationships with other recognized pieces
of information, including versions, developers, URLs, or host applications for
plugins. An example is provided in Fig. 3.

Fine-Tuning LLMs: We implement the fine-tuning with different large lan-
guage models as below:

– Phi [8]: Phi 1.5 and Phi-2, developed by Microsoft Research, are small lan-
guage models (SLMs). Phi-1.5, with 1.3 billion parameters, excels in Python

http://www.phylobot.com
http://www.phylobot.com
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Fig. 2. Prompting Construction for Subtask I and Subtask II

coding tasks and common sense reasoning. Despite its smaller scale, it per-
forms comparably to models five times larger. Phi-2, boasting 2.7 billion
parameters, demonstrates outstanding reasoning and language understand-
ing capabilities. It matches or outperforms models up to 25 times larger.
The model showcases that smaller models can achieve remarkable feats when
strategically trained and curated with high-quality data.

– BloomZ [11]: The BLOOM family of LLMs, including Bloomz, leverages the
176-billion parameter BLOOM model for multitask fine-tuning. This app-
roach improves performance on unseen tasks compared to purely pre-trained
models.

– Mistral [6]: Mistral-7B, developed by Mistral AI, is a 7-billion parameter
large language model (LLM) designed for efficiency and ease of use. It boasts
competitive performance on various benchmarks compared to larger models,
highlighting its potential for applications where computational resources are
limited. Additionally, Mistral-7B is available through open-source channels
and offers fine-tuning capabilities for specific tasks, promoting further expLo-
RAtion and customization by researchers.

– Llama-2 [17]: pushes the boundaries of large language models, offering a
range of pre-trained and fine-tuned models with varying parameter sizes (7B
to 70B). This family of models, built upon advancements in training data,
context length, and efficient inference techniques, demonstrates significant
progress compared to the LLaMA 1.

– Jaskier-7b-dpohttps://huggingface.co/bardsai/jaskier-7b-dpo-v6.1: Jas-
kier-7b-dpo is a 7-billion parameter large language model (LLM), is based
on the PAULML/OGNO-7B model and further fine-tuned using Direct Pref-
erence Optimization (DPO) [12]. This fine-tuning approach aims to enhance

https://huggingface.co/bardsai/jaskier-7b-dpo-v6.1
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the LLM’s capabilities beyond general language understanding by incorpo-
rating user preferences into its training process.

Post-processing: In this layer, the task involves converting the output of the
LLMs back to the original label format for submission to the competition. Essen-
tially, this layer represents the reverse process of the pre-processing layer for all
three tasks.

3.2 Low-Rank Adaptation

Low-rank adaptation (LoRA) stands out as a widely adopted method for the
fine-tuning of pre-trained models, such as large language models and diffusion
models. This approach is particularly known for its efficiency in leveraging low-
rank adaptation of weight matrices. In the context of our paper, we draw upon
the effectiveness of LoRA to enhance and optimize our proposed method. As
[4] mentioned, LoRA allows us to train some dense layers in a neural network
indirectly by optimizing rank decomposition matrices of the dense layers’ change
during adaptation instead while keeping the pre-trained weights frozen. Due to
the aforementioned benefits, we applied LoRA as the fine-tuning technique to
adapt LLMs to the domain of three subtasks.

4 Experimental Setup

4.1 Dataset and Evaluation Metrics

Dataset: Each subtask in the SOMD Shared Task is assessed independently.
Subtask II’s attributive NER builds upon software entities identified in Sub-
task I, while Subtask III’s Relation Extraction combines annotations from both
previous subtasks. The dataset follows a hierarchical structure, leading to some
data leakage, particularly in Subtask I. Despite this, the design ensures inter-
connectedness and cumulative challenge complexity. Initially presented as the
SoMeSci knowledge graph [15], the Corpus consists of 1,367 documents con-
taining 399,942 triples representing 47,524 sentences. It includes 2,728 software
entities and 7,237 labeled entities, both positive and negative examples, enhanc-
ing model accuracy. Duplicate sentences, headings, and varied sentence lengths
add complexity to extracting information from scientific texts.

Evaluation Metrics: The evaluation metrics for the three sub-tasks are
reported using Precision, Recall, and F1-score. These scores are calculated based
on exact matches and weighted accordingly.
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Fig. 3. Prompting Construction for Subtask III

4.2 System Settings

Training Setting: We use the PyTorch framework and HuggingFace’s Trans-
formers library [22] for our system. We used the various LLM architectures and
fine-tuned them on each task. We train the model in a batch size of 4 on the
training dataset. We used a learning rate of 2.10−4. For the optimizer, we used
AdamW optimizer [9]. AdamW is a stochastic optimization method, and it mod-
ifies the implementation of weight decay in Adam by separating weight decay
from the gradient update.

LoRA Setting: In the specified LoRA setting for Causal Language Modeling
(CAUSAL LM), key parameters are defined. The attention dimension “r” is set
to 8, “LoRA alpha” to 16, and a dropout of 0.05 in LoRA layers. Target modules
for attention, like “q proj” and “o proj,” are identified, with exclusions like
“embed tokens” and “lm head.” We trained the model on 12 epochs for subtask
I and 15 epochs for subtask II and subtask III and gaining the experiments results
as in Table 1.

5 Main Results

In this section, we present the results of our final submission model within the
framework of the SOMD shared task competition’s main tasks. When evaluating
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Table 1. The performances of various LLMs for three Subtasks.

Models Subtask I Subtask II Subtask III

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Phi - 1.5 70.10 66.80 66.99 69.02 71.36 69.74 75.58 76.97 76.02

Phi - 2 72.13 71.46 70.85 71.64 74.03 72.36 80.00 81.21 80.38

BloomZ - 1B1 69.99 69.13 68.53 71.15 71.60 70.80 83.79 82.73 83.01

BloomZ - 1B7 69.91 68.35 67.59 74.05 70.63 72.02 87.65 86.06 86.65

BloomZ - 3B 73.35 70.87 71.47 71.69 71.60 71.17 86.80 74.55 80.03

BloomZ - 7B1 73.84 72.43 72.07 71.94 73.06 71.91 85.84 85.76 85.56

Mistral - 7B 66.99 56.89 59.74 58.21 59.47 56.14 79.12 80.30 79.60

Llama - Chat - 7B 73.83 71.65 72.50 70.47 75.73 72.65 89.33 87.58 88.33

Jaskier-7b-dpo - 7B 76.14 74.95 73.96 74.46 74.76 74.28 90.04 89.70 89.74

Table 2. The results and corresponding ranking of our best submission with other
team participants for three Subtasks in the official scoreboard.

User Subtask I Subtask II Subtask III

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

david-s477 73.90 71.10 69.20 (Top 2) – – – – – –

ThuyNT03 72.90 64.90 67.80 (Top 3) – – – – – –

ottowg 67.90 66.40 65.20 (Top 4) 83.50 84.70 83.80 (Top 1) 91.10 92.40 91.16 (Top 1)

vampire 63.70 68.20 64.80 (Top 5) – – – – – –

Ours results 76.14 74.95 73.96 (Top 1) 74.46 74.76 74.28 (Top 2) 90.04 89.70 89.74 (Top 2)

Subtask II and Subtask III, we specifically focus on comparing our performance
metrics with those of the leading team. On the other hand, we offer a thorough
summary by presenting the results of the top five performing systems.

The performance on Subtask I revealed notable differences among the LLM
models. Jaskier-7b-dpo emerged as the clear leader, achieving a precision of 76.14
and a robust F1-score of 73.96. This indicates that Jaskier-7b-dpo effectively
identified relevant information and minimized errors in its responses for Subtask
I. In contrast, Mistral-7B displayed the poorest performance, with a significantly
lower precision of 66.99 and an F1-score of 59.74. This suggests that Mistral-7B
struggled with this specific task, potentially due to limitations in its training
data or architecture.

Jaskier-7b-dpo consistently achieved the best performance across all metrics
for Subtask II and Subtask III. This finding suggests that the fine-tuning process
using Direct Preference Optimization (DPO) [13] has significantly improved the
model’s performance compared to other baseline large language models (LLMs).
It is noteworthy that Llama Chat exhibited the highest recall on Subtask II
(Table 1).
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6 Discussion

6.1 Challenges in Applying LLMs to NER Tasks

Incorporating Large Language Models (LLMs) into Named Entity Recogni-
tion (NER) tasks presents distinct challenges that can greatly affect extraction
results’ effectiveness and dependability. A common challenge in generative NER
methods is the occurrence of hallucination, as documented by Wang et al. (2023)
[21], wherein the model generates entities that aren’t actually present in the test
data. This can arise from the model mistakenly interpreting given examples
as text from which entities should be extracted, resulting in inaccuracies and
inconsistencies in the outcomes.

Moreover, locating mention positions poses significant challenges, especially
within span-based evaluation systems. These systems assess entity extraction
accuracy based on the exact text span identified as an entity. Discrepancies in
the extracted span, such as corrected spellings or variations in representation,
can complicate matching.

Additionally, texts with multiple mentions of the same entity add complexity.
The task involves accurately classifying each mention as an entity while address-
ing ambiguity arising from entities with identical representations. Overlapping or
nested mentions that deviate from the ground truth data add further complexity,
demanding nuanced approaches to entity recognition and classification.

6.2 Conclusion and Future Work

This paper introduced an effective strategy for NER tasks within the SOMD
shared tasks. Our system involves fine-tuning LLMs applying the LoRA tech-
nique with parameter counts ranging from 1 billion to 7 billion to serve as the
NER extractor. Our experiments demonstrated that harnessing the capabilities
of LLMs leads to competitive results in downstream tasks like NER.
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Abstract. This paper aims to tackle the challenge posed by the increas-
ing integration of software tools in research across various disciplines by
investigating the application of Falcon-7b for the detection and clas-
sification of software mentions within scholarly texts. Specifically, the
study focuses on solving Subtask I of the Software Mention Detection in
Scholarly Publications (SOMD), which entails identifying and categoriz-
ing software mentions from academic literature. Through comprehensive
experimentation, the paper explores different training strategies, includ-
ing a dual-classifier approach, adaptive sampling, and weighted loss scal-
ing, to enhance detection accuracy while overcoming the complexities of
class imbalance and the nuanced syntax of scholarly writing. The find-
ings highlight the benefits of selective labelling and adaptive sampling
in improving the model’s performance. However, they also indicate that
integrating multiple strategies does not necessarily result in cumulative
improvements. This research offers insights into the effective application
of large language models for specific tasks such as SOMD, underlining
the importance of tailored approaches to address the unique challenges
presented by academic text analysis.

Keywords: Falcon · Entity Recognition · Mention Detection ·
Scholarly Data Analysis

1 Introduction

The integration of software tools into scientific research is no longer confined to
engineering disciplines but has extended to all disciplines, including the human-
ities and social sciences. This is largely driven by the escalating need to process
and analyze data across various domains. Consequently, an extensive mention
of these tools in the scientific articles. Furthermore, the volume of published
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scholarly articles continues to grow year after year, which makes overcoming
the challenge of managing this vast repository of knowledge more important
than ever before. In response, numerous projects and initiatives such as EOSC1

and NFDI2 have been launched to organize research outputs, including articles,
software mentions, and datasets, in a manner that adheres to the FAIR princi-
ples [27] (i. e., Findable, Accessible, Interoperable, and Reusable) to enhance the
overall integrity and reproducibility of scientific research.

The absence of a standardized mechanism for authors to accurately cite and
reference tools and datasets in their scholarly articles necessitates the extrac-
tion of such mentions post-publication. However, this task is challenging due
to the unstructured nature of these articles. This underscores the importance
of developing sophisticated and reliable methodologies capable of automatically
and accurately recognizing mentions of these tools. This paper addresses this
challenge by concentrating on a key aspect of it: “Subtask I of the Software Men-
tion Detection in Scholarly Publications (SOMD).”3 The aim is to explore new
methodologies and models of software mention detection processes in academic
literature.

Although the challenge of detecting software mentions has been directly
addressed using the KG approach [20,22], a lot of approaches that solve the
general problem have been proposed to solve the general problem of extracting
information from scholarly data, including Named Entity Recognition [23], Meta-
data Extraction [1,5,10] and Reference Extraction and Segmentation [4,8,19].
The proven capabilities of large language models (LLMs) to understand and
generate human-like text offer new possibilities. Among the advanced models,
the LLM such as the Falcon-7b model stands out due to its decoder-only archi-
tecture and the breadth of its training data. Although it was initially designed
for generative tasks, the scale of architecture and the breadth of its training
data present an exciting opportunity for exploring its potential for application
in specialized areas of NLP, such as the detection and classification of software
mentioned in academic publications.

This paper investigates the effectiveness of the Falcon-7b model on the task
of software mention detection in the scientific literature by adapting it to the
task. The choice of model is arbitrary without assuming it has a specific advan-
tage over similar models like LLAMA 2 [24] or GPT3.5 [6]. This choice allows
us to explore how well such LLM models perform on a specialized task, specif-
ically, we leverage the model’s extensive training on a wide array of texts and
its advanced understanding of linguistic nuances. This effectiveness is critically
assessed through comprehensive experiments, encompassing a variety of evalu-
ation metrics to ensure a balanced analysis of the model’s applicability to the
task at hand.

The structure of this paper is laid out as follows: Sect. 2 provides a review of
the relevant literature. In Sect. 3, we delve into the methodology of this study,

1 https://eosc-portal.eu/.
2 https://www.nfdi.de/.
3 https://nfdi4ds.github.io/nslp2024/docs/somd_shared_task.html.
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outlining the approaches and techniques utilized. Section 4 presents the exper-
imental setup, alongside the results achieved from our investigations. Finally,
Sect. 5 concludes the paper, summarizing our findings and offering insights into
potential avenues for future research.

2 Related Work

As there are not so many efforts to detect software mention using LLM, we
review in this section approaches on named-entity recognition (NER), where
we consider that software mention detection is a use case of this problem. This
review is structured in three categories:

2.1 Rule-Based and Classical Machine Learning Approaches

Named entity recognition has been at the core of machine learning research
for decades due to its importance in a variety of applications. However, the
task is challenging and thus many approaches have been proposed to tackle
the problem in specific scenarios. [2] introduces a rule-based NER framework
designed for the Malay language, to improve the retrieval process of articles. It
addresses the challenges faced by NER processes in languages with morphological
differences and the lack of existing systems for the Malay language. By analyzing
the domain of studies and the specific linguistic features of Malay, this framework
accurately classifies named entities such as people, organizations, and locations.
[16] proposes to address the limitations of traditional rule-based approaches by
using Hidden Markov Models (HMM) for NER tasks in Indian Language beyond
domain-specific applications. [25] proposes an approach using the Conditional
Random Field (CRF) and Active Learning (AL) algorithm, where the training
process of the CRF classifier is repeated until the model stabilizes. This resulted
in an efficient and cost-effective outcome. [9] uses the Beam search algorithm to
detect named entities in the Persian language by segmenting text into suitable
and unsuitable expressions for the named entities and then applying dynamic
external knowledge to recognize the emerging named entity.

2.2 Deep Learning-Based Approaches

Deep Neural Networks have proven significant performance over classical
machine learning approaches on different tasks, including NLP, computer vision
and others. Consequently, they have been used to address NER tasks as well
[12,14]. [29] proposes a NER framework called E-NER that uses evidential deep
learning (EDL) to explicitly model predictive uncertainty for named entity recog-
nition (NER) tasks. It addresses the challenges of sparse entities and out-of-
vocabulary (OOV) entities in NER by introducing uncertainty-guided loss terms
and training strategies. E-NER achieves accurate uncertainty estimation, better
OOV/OOD detection performance, and improved generalization ability on OOV
entities compared to state-of-the-art baselines. [15] introduces a novel approach
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to Clinical NER for de-identifying sensitive health information in clinical texts
by developing a Capsule-LSTM network that leverages the strengths of cap-
sule networks for capturing complex data relationships and LSTM networks for
understanding sequential data. [13] the All CNN (ACNN) model for Chinese clin-
ical NER that employs CNN enhanced by an attention mechanism, sidestepping
the inefficiencies of traditional LSTM models. By leveraging multi-level CNN lay-
ers with various kernel sizes and a residual structure, ACNN adeptly captures
context information across different scales, addressing the challenges posed by
the complex grammar and terminology of Chinese clinical texts. [7] proposes to
combine CNN and bi-LSTM architectures for biomedical NER (bioNER), aim-
ing to efficiently handle the complexities of biomedical texts, such as variant
spellings and inconsistent use of prefixes and suffixes. The proposed combinato-
rial feature embedding and attention mechanism for enhanced entity recognition
demonstrate superior performance on benchmark datasets JNLPBA and NCBI-
Disease when compared with existing methods.

2.3 Large Language Model-Based Approaches

Due to their power to understand and generate natural text, LLMs have been
employed for many Natural Language Processing (NLP) tasks, including Named
Entity recognition. [26] proposes GPT-NER, a method that transforms the
sequence labelling task of Named Entity Recognition (NER) into a text gen-
eration task, allowing large language models (LLMs) to be easily adapted for
NER. GPT-NER achieves comparable performances to fully supervised base-
lines on five widely adopted NER datasets and exhibits a greater ability in
low-resource and few-shot setups, making it suitable for real-world NER appli-
cations with limited labelled examples. [17] employs Generative Pre-trained
Transformer 3 (GPT-3) by OpenAI together with a weak supervisor to address
the NER challenge within the legal domain, exemplified by documents from
the Official Gazette of the Federal District (DODF). [11] proposes an archi-
tecture that refines the adversarial example generation process for LLM using
disentanglement and word attribution techniques to efficiently generate adver-
sarial examples while maintaining semantic similarity. The experiments con-
ducted on benchmark datasets-CoNLL-2003, Ontonotes 5.0, and MultiCoNER-
demonstrated that the approach improves the F1 scores by 8%.

3 Method

This section elaborates on the methodologies applied for the Software Mention
Detection in Scholarly Publications (SOMD) [21] Subtask I, part of the Natural
Scientific Language Processing and Research Knowledge Graphs (NSLP)4 2024
workshop. Our approach is centred on token classification, addressing the unique
challenges software mention recognition poses in scientific texts.

4 https://nfdi4ds.github.io/nslp2024/.
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The primary objective of the subtask is to recognize software mentions within
individual sentences, further classifying them by mention type (e.g., mention,
usage, creation) and software type (e.g., application, programming environment,
package). The task is approached with a methodology that innovatively applies a
large language model (LLM), such as the Falcon-7b [3] model, as the foundation
for a token classification system.

The core of our methodology is The Falcon-7b model, which is a decoder-only
architecture known for its performance across a wide range of NLP tasks. Despite
its primary design as a generative model, we adapt Falcon-7b for token classifi-
cation by appending a classification layer atop its structure. This adaptation is
driven by the hypothesis that the extensive pre-training on diverse corpora, cou-
pled with its vast parameter space, provides the Falcon-7b model with a nuanced
understanding of textual context. Such capabilities can significantly enhance the
model’s proficiency in identifying and classifying software mentions within the
complex syntax and semantics of scholarly writing.

The methodology implemented in this study is structured around several
strategic training approaches, tailored to address the intrinsic challenges of the
SOMD task. Initially, the task is framed as a token classification problem, where
labels are assigned to each word or subtoken within a sentence to denote the
presence and category of software mentions. A notable challenge arises from
the tendency of transformer-based models like Falcon-7b to segment words into
multiple subtokens, which complicates the direct application of labels.

To address the challenge of labelling consistency in the presence of subto-
ken segmentation by transformer models, our methodology employs two distinct
strategies. The first, referred to as “Unified Labeling” assigns the same label
to all subtokens derived from a single word’s segmentation, ensuring consistency
across the subtoken sequence. This maintains label continuity across divisions,
which facilitates coherent entity recognition despite the segmentation process.
In contrast, the second strategy “Selective Labeling” assigns a label only
to the first subtoken of a segmented word, disregarding subsequent subtokens.
This method aims to minimize label redundancy and computational complexity
associated with processing multiple labels for a single entity. Each approach is
independently explored to determine its efficacy in addressing the challenges of
subtoken label alignment in the context of the SOMD task.

A critical obstacle encountered in the SOMD task is the substantial class
imbalance, where data is skewed towards non-mention (’O’) labels. To address
this imbalance, we implemented two distinct and independently tested strate-
gies to recalibrate the dataset for training. In the first strategy “Weighted
Loss”, weighted loss is applied, where class weights are inversely proportional to
class frequencies. however, given the substantial imbalance, original weight values
became impractical for underrepresented classes. To resolve this, we scaled the
weights within a sensible range, setting minimums and maximums (1, and thresh-
olds of 25, 50, 100, and 200), thereby enabling the nuanced training of models
across various weight configurations to explore their efficacy in balancing classi-
fication performance. The second strategy “Adaptive Sampling” strategically
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segments the dataset into over-represented (all ’O’ tokens) and under-represented
(at least one non-’O’ tokens) categories. This involves oversampling the under-
represented data by a factor of 2 and undersampling the over-represented data
to sizes equal to multiples (1, 1.5, 3) of the oversampled data volume. Adap-
tive Sampling aims to achieve a more balanced class distribution, enhancing
the model’s capacity to learn from a representative spectrum of the dataset.
Each strategy’s independent evaluation provides insights into its effectiveness in
addressing dataset imbalance challenges in the SOMD task.

Additionally, recognizing the multifaceted nature of software mentions, sep-
arate token classifiers are developed for identifying software types and the men-
tioned types. We call this strategy “Dual-Classifier”. It enables more precise
label application by separating the task into two distinct classification problems,
by distinguishing between software and mention types. This setup is designed
to explore whether such a nuanced approach can effectively capture the diverse
nature of software mentions, offering a potentially more sophisticated mechanism
for their identification and classification.

To ensure the effectiveness and generalizability of the model, the pre-defined
training dataset was utilized to develop and refine the model’s capabilities. For
evaluating the model’s performance in accurately identifying and classifying soft-
ware mentions, the test dataset provided for Subtask II was employed. With this,
we aim to conduct a comprehensive assessment of the model’s ability to general-
ize across various scenarios and text variations found in scholarly publications,
thereby validating the model’s applicability and effectiveness in real-world tasks.

Following the comprehensive methodologies delineated for the Software Men-
tion Detection (SOMD) task, our evaluation process is designed to rigorously
assess the effectiveness of our approaches, namely the “Unified Labeling,” “Selec-
tive Labeling,” “Weighted Loss,” “Adaptive Sampling,” and the “Dual-Classifier”
Approach. Central to our evaluation is the F1-Score, focusing on exact matches,
which serves as a critical metric to quantify the precision and recall of our mod-
els in accurately identifying and classifying software mentions. Adherence to the
IOB2 format for our submission files ensures our alignment with the standard-
ized training labels, facilitating direct comparison of our model’s performance
against established benchmarks.

4 Experimental Results

4.1 Results

To evaluate our method on Software Mention Detection in Scholarly Publications
(SOMD) Subtask I, we explored various settings centred around the Falcon-7b
model. The experiments are conducted using the Hugging Face Transformers
library [28], with PyTorch [18] as the computational backend. Model training and
evaluation were performed on a high-performance computing cluster equipped
with NVIDIA A100 GPUs. To maintain consistency across all experiments con-
ducted in this study, we standardized our training hyperparameters. This ensures
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that any observed differences in model performance are attributable to the varia-
tions in model architecture, data preprocessing, or other experimental conditions,
rather than inconsistencies in training configurations.

The focal point of our evaluation is the F1 score, which balances precision and
recall and offers a comprehensive measure of model performance. The evaluation
result on the test dataset is illustrated in Table 1. These results are submitted
to the shared task platform under the username: “fddaFIT”.

Table 1. Evaluation metrics for each experimental approach.

Method Precision Recall F1 Score

Unified Labeling 0.6769 0.4718 0.5561
Selective Labeling 0.7563 0.5243 0.6193
Adaptive Sampling multiples@1 0.6496 0.4932 0.5607
Adaptive Sampling multiples@1.5 0.7480 0.5417 0.6284
Adaptive Sampling multiples@3 0.7213 0.4874 0.5817
Weighted loss scaled@25 0.7559 0.4990 0.6012
Weighted loss scaled@50 0.7211 0.4971 0.5885
Weighted loss scaled@100 0.7195 0.4932 0.5853
Weighted loss scaled@200 0.7110 0.4874 0.5783
Dual-Classifier 0.7602 0.5048 0.6068
Dual-Classifier + Adaptive Sampling multiples@1.5 0.7602 0.5048 0.6068

In comparison between the two distinct labelling strategies:“Unified Labeling”
and “Selective Labeling.” The outcome favoured the “Selective Labeling” strat-
egy, which demonstrated superior precision and recall and achieved a higher F1
score of 0.6193 compared to the 0.5561 of “Unified Labeling.” This demonstrates
the effectiveness of selectively assigning labels in enhancing the model’s preci-
sion and recall. This finding guided the direction of subsequent experiments, by
embedding the “Selective Labeling” strategy in our methodology.

Further investigations focus on adaptive sampling and weighted loss scaling
to address the notable challenge of dataset imbalance. Adaptive sampling exper-
iments, applying various undersampling multipliers to over-represented data,
demonstrated the precise impact of data distribution on model efficacy. The
employment of a multiplier of 1.5 showed an enhancement of the F1 score to
0.6284, the highest among adaptive sampling variations. This suggests an opti-
mal balance in dataset composition, significantly contributing to model perfor-
mance.

Experiments with weighted loss, adjusted across a range of maximum weights
(25, 50, 100, and 200), aimed to refine the model’s sensitivity to class frequencies.
While experimenting with weighted loss scaling offered insights into handling
class imbalance, the adjustments did not surpass the adaptive sampling’s peak
F1 score, with the highest recorded F1 at 0.6012 for a scaling factor of 25.
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The “Dual-Classifier” approach introduced a bifurcated strategy for identi-
fying software types and mention types, aiming to enrich the model’s under-
standing and classification accuracy. Interestingly, this approach alone achieved
an F1 score of 0.6068, comparable to some weighted loss scaling strategies but
slightly below the best-performing adaptive sampling method. Combining the
“Dual-Classifier” with “Adaptive Sampling” at a multiplier of 1.5 did not further
enhance the F1 score, indicating that while each method independently con-
tributes to addressing specific challenges in SOMD, their combined effect does
not necessarily result in cumulative improvements.

The experiments demonstrate the critical role of selective labelling and adap-
tive sampling in enhancing F1 scores for SOMD. While weighted loss scaling
and the “Dual-Classifier” approach contribute to performance improvements, the
combination of strategies does not yield further enhancements. This indicates
the necessity of strategic selection and implementation in model development
for SOMD tasks.

In these experiments, we observed that the model effectively identifies soft-
ware mentions within the complex academic text and accurately classifies entities
like specific software tools or programming languages.

For example, it might correctly identify “Python” as a programming lan-
guage used within a research context. However, challenges arise in distinguishing
between mentions of software and instances where the software is being actively
used or discussed in depth. This differentiation is crucial for understanding the
role of software in research, as only mentions might not signify importance or
relevance to the study’s outcomes. Examples of the model’s output are provided
in the full version5 of this paper.

5 Conclusion

In this paper, we presented the efficacy of the Falcon-7b model, a prominent
Large Language Model (LLM), in tackling the nuances of Software Mention
Detection (SOMD) within scholarly publications. Guided by the hypothesis that
advanced LLMs could significantly improve the precision and recall for SOMD
tasks due to their extensive training on diverse datasets, our study systematically
explored various strategies centred around the Falcon-7b model.

The comparative analysis of “Unified Labeling” and “Selective Labeling”
strategies revealed a preference for “Selective Labeling,” which yielded a higher
F1 score. This result underscores the incremental nature of advancements achiev-
able with the Falcon-7b model in the context of SOMD tasks. Additionally,
our experiments with adaptive sampling and weighted loss scaling aimed at
addressing dataset imbalances highlighted that, despite certain improvements,
the enhancements were not as substantial as anticipated. The adaptive sampling
strategy, especially with a multiplier of 1.5, did indeed enhance the F1 score,
to the highest obtained score. However, this observation was not sufficient to

5 https://zenodo.org/doi/10.5281/zenodo.10993039.
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categorize the performance as extraordinary. This finding suggests that while
the Falcon-7b model and similar LLMs hold promise for NLP tasks, their appli-
cation in specialized areas such as SOMD may not always yield groundbreaking
results.

In conclusion, the outcomes of our study indicate that, despite the advanced
capabilities of LLMs like Falcon-7b, the performance improvements in specific
NLP tasks such as SOMD are modest. While LLMs offer advantages in pro-
cessing and understanding complex language patterns, their effectiveness in spe-
cialized domains like software mention detection within scholarly texts does not
markedly outperform more traditional approaches. This emphasizes the impor-
tance of combining LLMs with other approaches and the need to explore a broad
spectrum of models and methodologies to identify the most effective solutions
for specialized NLP challenges.
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Abstract. This paper describes our participation in the Shared Task on
Software Mentions Disambiguation (SOMD), with a focus on improving
relation extraction in scholarly texts through generative Large Language
Models (LLMs) using single-choice question-answering. The methodol-
ogy prioritises the use of in-context learning capabilities of LLMs to
extract software-related entities and their descriptive attributes, such
as distributive information. Our approach uses Retrieval-Augmented
Generation (RAG) techniques and LLMs for Named Entity Recog-
nition (NER) and Attributive NER to identify relationships between
extracted software entities, providing a structured solution for analysing
software citations in academic literature. The paper provides a detailed
description of our approach, demonstrating how using LLMs in a single-
choice QA paradigm can greatly enhance IE methodologies. Our par-
ticipation in the SOMD shared task highlights the importance of pre-
cise software citation practices and showcases our system’s ability to
overcome the challenges of disambiguating and extracting relationships
between software mentions. This sets the groundwork for future research
and development in this field.

Keywords: Generative Large Language Models · Information
Extraction · Named Entity Recognition · Relation Extraction ·
Software Citation · Retrieval-Augmented Generation · Single-Choice
Question Answering · Software Mentions Disambiguation Task

1 Introduction

The evolution of information extraction (IE) in scholarly communications neces-
sitates the development of innovative methodologies to accurately identify and
categorise software mentions. This is a critical component for ensuring research
transparency and reproducibility. The Shared Task on Software Mentions Disam-
biguation (SOMD) highlights the importance of refined citation practices amidst
inconsistent referencing of software artifacts. This research employs generative
c© The Author(s) 2024
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Large Language Models (LLMs) to address the challenges in software men-
tion extraction and relation identification, marking a significant step towards
the sophisticated extraction of software-related information. Our approach inte-
grates Retrieval-Augmented Generation (RAG) techniques with LLMs to dissect
and comprehend the intricate web of software citations and their attributive
details (e.g. the developer or the version) within scientific texts. By examining
the potential of LLMs in performing IE tasks by transforming them into single-
choice question-answering, we present a comprehensive analysis that addresses
the nuances of software mention extraction and could be applied on a broader
scope of scholarly artifacts NER and relation extraction. This paper explores
the complexities of applying LLMs to NER tasks, providing insights into the
challenges and proposing a new methodology for relation extraction that could
pave the way for future innovations in the field.

2 Related Work

This section explores works in Named Entity Recognition (NER) and Informa-
tion Extraction (IE), focusing on software mention extraction, scholarly artifact
NER, and the use of generative LLMs in these areas.

In software mention extraction, the Softcite dataset [2] and the SoMeSci
knowledge graph [7] are significant. Softcite offers a gold-standard dataset for
extracting software mentions from biomedical and economic research, while
SoMeSci Knowledge Graph includes software mentions in scientific articles with
relation labels such as version, developer and citations, highlighting the need for
accurate software mention extraction.

In scholarly artifact NER, Saji and Matsubara [6] introduced a method using
academic knowledge graphs to extract research resource metadata from scholarly
papers, enhancing metadata quality and repository size. Otto et al. [5] developed
the GSAP-NER corpus for extracting machine learning-related entities from sci-
entific publications, filling the gap in general-purpose NER models. These words
demostrate the importance of domain-specific NER tasks and leverageing knowl-
edge graphs for enhancing research resource repositories.

Regarding LLMs for NER, Wang [10] explores the use of text-generation mod-
els for sequence labeling and underlying challenges, particularly in low-resource
and few-shot setups. Furthermore, Xie [11] investigates LLMs’ self-improving
capabilities for zero-shot NER.

For LLMs in relation extraction, Wadhwa [8] uses few-shot prompting and
fine-tuning with large language models achieving state-of-the-art performances in
relation extraction using LLMs, while Wan [9] introduce GPT-RE to enhancing
relation extraction accuracy through task-specific entity representations.

Lastly, Xu [12] conducts a comprehensive survey providing an overview of
generative information extraction using LLMs, categorizing works by IE subtasks
and learning paradigms, and highlighting the transformative potential of LLMs
in IE.
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Overall, these studies underscore the evolving methods and significant contri-
butions in extracting information from scholarly texts using specialized datasets,
domain-specific approaches, and advanced generative models.

3 SOMD Shared Task

The Shared Task on Software Mentions Disambiguation (SOMD) aims to
enhance transparency and reproducibility in scientific research by improving
software citation practices. Participants are required to develop models that
can identify and disambiguate software mentions in scholarly texts using the
expanded Software Mentions in Science (SoMeSci) knowledge graph, with a focus
on AI and Computer Science.

Subtask 1, Software NER, involves identifying four types of software-related
entities: Application, Plugin, Operating System, and Programming Environ-
ment. Accurately classifying software mentions is necessary to understand their
role in academic discourse.

Subtask 2, Attribute NER, aims to extract ten different attributive infor-
mation associated with software entities, such as alternative names, abbrevi-
ations, authorship (developers), software release maintenance (versions, exten-
sions, release dates, licenses), and elements of the referencing system (in-text
citations, URLs, and software coreferences for cross-sentence linkage), to a spe-
cific software mention.

Subtask 3, Relation Extraction, involves establishing relationships between
software entities and their attributes using specific relation types and mapping
each attribute to these relations. This task aids in comprehending the interrela-
tions of software entities within scholarly texts.

The tasks evaluation metric, is the Weighted Average Macro F1 score. This
metric adjusts the influence of each label on the final result based on the number
of test instances assigned to it, ensuring that labels with fewer instances have a
proportionally smaller impact on the overall performance evaluation.

4 Using LLMs for Software Related IE-Tasks

The exploration of generative LLMs such as GPT-4 for Information Extraction
(IE) tasks related to software underscores the transformative potential these
models hold as general-purpose task solvers. The allure of leveraging LLMs in
this capacity is significant, given their ability to process and generate human-like
text across a wide range of topics and formats. However, the challenge arises in
the specificity and nuanced requirements of domain-specific tasks, such as NER
within specialized fields. It has been observed that, despite their vast knowledge
and versatility, current models like GPT-4 often fall short when tasked with
domain-specific NER, primarily due to their generalized training and lack of
domain-specific tuning.

To mitigate these shortcomings and enhance the performance of LLMs in
specialized IE tasks, various in-domain learning strategies are employed. These
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strategies are designed to equip the LLM with a deeper understanding of the
task at hand, essentially guiding the model towards more accurate identification
and classification of relevant text spans. Among these strategies, optimizing the
task description plays a crucial role. A well-crafted, precise task description
can significantly improve the model’s focus and comprehension of the task’s
objectives, leading to more relevant and accurate outcomes.

Furthermore, the provision of speaking, prototypical examples serves as
another effective strategy. By presenting the model with clear, illustrative exam-
ples that encapsulate the essence of the task, we can anchor its understanding and
enhance its ability to generalize from these examples to new, unseen instances.
This approach leverages the model’s inherent learning capabilities, allowing it
to draw parallels and apply learned concepts to the task at hand.

Additionally, augmenting the model’s capabilities with Retrieval Augmented
Generation (RAG) introduces a powerful dimension to the information extrac-
tion process. RAG combines the generative prowess of LLMs with the specificity
and relevance of retrieved documents, enabling the model to access a broader
context and detailed examples that are pertinent to the task. This strategy is
particularly advantageous in domain-specific applications, where the relevance
and accuracy of the information extracted are paramount.

In our approach, we capitalize on the last strategy, RAG, to maximize the
utility of training sets for each specific task. The retrieval component of this
strategy entails identifying instances within the training set that are similar to
the test instance and can provide valuable insights for the identification and clas-
sification of relevant information. This method not only enhances the model’s
performance by providing it with task-relevant data but also ensures that the
information extracted is of high relevance and quality, tailored to the specific
demands of the domain-specific NER task. Through these tailored strategies,
we aim to bridge the gap between the broad capabilities of LLMs and the pre-
cise requirements of domain-specific information extraction tasks, paving the
way for more effective and efficient utilization of generative language models in
specialized domains.

4.1 Challenges in Applying LLMs to NER Tasks

The integration of generative LLMs into NER tasks introduces a set of unique
challenges that can significantly impact the performance and reliability of extrac-
tion outcomes. One of the most prevalent issues in generative NER approaches
is the phenomenon of hallucination [10], where the model generates entities not
present in the test instance. This can result from the model misinterpreting the
provided examples as part of the text from which entities should be extracted,
leading to inaccuracies and inconsistencies in the results. n Furthermore, match-
ing problems during the location of mention positions present considerable chal-
lenges, particularly in the context of span-based evaluation systems. These sys-
tems evaluate the accuracy of entity extraction based on the precise span of
text identified as an entity. Discrepancies in the extracted span-whether through
corrected spellings or variations in representation-can complicate the matching
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process. For example, the extraction of “jquery” as “jQuery” illustrates a com-
mon scenario where the prevalent spelling of a software library may differ from
its mention in the text, yet both are correct. This variability necessitates sophis-
ticated matching strategies to ensure accuracy in evaluation.

The situation is further complicated by texts containing multiple mentions
of a single entity. The challenge lies in determining whether each mention can
be accurately classified as an entity, alongside dealing with the ambiguity of dif-
ferent entities that are written in the same way. Overlapping or nested entity
mentions that do not align with the ground truth data introduce additional
layers of complexity, requiring nuanced approaches to entity recognition and
classification. Our proposed baseline solution, filtering out non-matching enti-
ties and employing rule-based decisions for handling multiple matches have been
adopted. However, the disadvantage of this method is that it is based on sim-
plistic heuristics.

Future work may explore advanced solutions like using LLMs for precise
entity matching, offering potential improvements for NER challenges. While this
paper does not delve into these complex methods, it highlights the importance
of ongoing research to further refine and improve LLMs for more accurate and
efficient entity extraction.

4.2 Sample Retrieval for RAG on Various IE-Tasks

Retrieval-Augmented Generation (RAG) significantly bolsters the capabilities of
LLMs in IE tasks by effectively utilizing both unstructured and structured con-
texts [3,4]. This dual approach is essential in IE for achieving precise extractions,
yet the selection of optimal samples for the generative process poses a substan-
tial challenge. Addressing this involves two primary strategies: utilizing sentence
embeddings to find contextually similar textual content for the LLM, and identi-
fying analogous entities to uncover beneficial training sentences. These methods
enable the LLM to discern structural and semantic patterns for more accurate
text extractions. A crucial obstacle is accurately identifying target entities within
test instances, for which we employ a pre-trained Language Model (PLM) tai-
lored to our NER task. This PLM is instrumental in both spotting potential
entity candidates and facilitating entity similarity searches, leveraging last hid-
den state embeddings from training examples to locate matching entities within
the dataset.

Our methodology extends to evaluating various retrieval techniques and their
impact on the LLM’s efficiency, particularly within a Few-Shot learning frame-
work. We explore different methods, including random illustrative samples, text
similarity-based RAG, and entity-based sentence retrieval, to provide the LLM
with contextually relevant examples, thereby optimizing the software entity
extraction process from scientific texts. This exploration aims to identify the most
effective strategies for utilizing LLMs in domain-specific software entity extraction
tasks. By overcoming challenges related to resource demand, execution time, and
precision in entity identification, our approach aims to enhance the accuracy and
efficiency of NER processes, contributing valuable insights and methodologies to
the field of computational linguistics and information extraction.
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A special retrieval method is used for the RE Task. Because for this task, the
entities for each test instance are given, we easily could list all possible relations
(compare Table 3). We could use them to find similar relations in the train set.
If we find more then one, we decide for the one, with highest sentence similarity.

For the RE Task, a special retrieval method is employed. As entities for each
test instance are provided, all possible relations can be listed based on Table 3.
These relations can then be used to find relations of the same type, and with the
same domain and range in the train set. If multiple similar relations are found,
the one with the highest sentence similarity is selected.

4.3 Extraction of Software Entities

The extraction of software entities from scientific texts represents a special-
ized challenge within the realm of NER, targeting the identification of software
entities across four distinct categories ranging from applications to operating
systems. Furthermore, this task extends beyond mere identification, seeking to
understand the intent behind each mention of software entities-whether it per-
tains to creation, usage, deposition, or mere citation.

We address this challenging task using LLMs, despite their high demands
on resources and time, especially when processing extensive publications with
sparse relevant text. Our approach includes a pipeline strategy that prioritizes
selecting relevant text passages for LLM analysis, improving efficiency by fil-
tering out unrelated content. This method’s success depends on the selection
accuracy, directly impacting recall. However, the trade-off for reduced compu-
tational costs justifies the potential minor decrease in recall. Our performance
optimization employs a hybrid method, combining a fine-tuned NER model for
sentence selection with LLMs for information extraction. This approach faces
limits, notably when sentences crucial for analysis are missed in the selection
phase, capping the LLM extraction phase’s accuracy as indicated by an initial
sentence classification task recall of 0.882 (0.884 F1). This establishes a theo-
retical limit on extraction accuracy due to potential false negatives, illustrating
a balance between efficiency and the precision constraints of LLMs in detailed
text analysis.

4.4 Extraction of Software Attributes

Following the identification of software entities within scientific texts, a further
nuanced aspect of NER and IE tasks emerges in the extraction of associated
software attributes. These attributes encompass a wide array of specific details,
the version, developer, citations, URLs, release dates, abbreviations, licenses,
extensions, software co-references, and alternative names. We used a similar
approach as for subtask 1, and utilised train sample retrieval to augment the
task description in a few shot setup. For each sample, including those derived
from few-shot learning, the process entails presenting the sentence containing
the software entity(ies) and then predicting a JSON list of identified entities
along with their respective attribute types.
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4.5 Relation Extraction as Single-Choice Question Answering Task

In the field of Natural Language Processing (NLP), the extraction of relations
between entities within a text corpus poses significant challenges. This study
proposes a novel approach by conceptualizing the task of relations extraction as
a single-choice question-answering (QA) activity. This method entails generating
a comprehensive list of all possible entities within a sentence, drawing from the
existing entities and their relationships as delineated in the training dataset.
Each potential pair of entities is then evaluated to ascertain if a specific relation,
such as “version_of”, appropriately links them. For instance, considering the
relationship “version_of”, a sentence may be formulated as “8 is the version
of SPSS”, representing a possible relation between the version number and the
software entity.

For every sentence in the dataset, this process yields a set of single-choice
questions, each positing a potential relationship between entities. These ques-
tions are then prompted to a LLM for answering. The LLM’s task is to select
the most plausible relation from among the given options, thereby facilitating
the extraction of accurate entity relations from the text. However, this approach
is not without its challenges. A primary source of error stems from instances
where multiple relations could plausibly link a pair of entities, leading to ambi-
guity and complicating the single-choice question-answering framework. Despite
the challenges, we demonstrate that treating relation extraction as a single-choice
QA task provides a structured and innovative approach to extracting valuable
insights from complex textual data.

5 Experiments

5.1 Models

Fine-tuned Model. In our experimental setup, the initial phase focused on
fine-tuning a language model specifically for Subtask 1, which involved NER.
Following the methodology similar to Schindler [7], we employed the SciB-
ERT model [1], given its pre-training on scientific corpus, making it apt for
NER fine-tuning within scholarly texts. The fine-tuning process entailed rigor-
ous parameter optimization, including adjustments to the batch size, learning
rate, and the relative share of negative samples-sentences that do not contain
any annotations. This optimization utilized a 90/10 train/evaluation data split
from the available training dataset. Subsequent to parameter tuning, we con-
ducted a final training run with a modified data split of 95/5 train/evaluation
to maximize the training data’s utility.
Generative Large Language Models. For a comparative analysis, our study
integrated LLMs, specifically examining the performance differences between
GPT-3.5-fast and GPT-4-fast models accessed via the OpenAI API. To ensure
deterministic outputs for comparison, we set the temperature parameter to zero,
eliminating randomness in the model’s response generation.
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5.2 Prompting

Software NER. The prompting strategy for Software NER involved providing a
concise task description, which included specifying the task as NER and intention
classification, alongside an enumeration of target labels. We also highlighted the
domain specificity of the texts (i.e., scientific publications) and requested the
output in JSON format, delineating separate labels for entity type and intention.
Sample sentences from the training set, along with their corresponding JSON
output, were included as illustrative examples. This setup varied in the number
and order of displayed examples based on the retrieval method, exploring the
impact of these factors on model performance through separate experiments.
Attributive NER. For Attributive NER, the prompt construction mirrored
the approach taken in Subtask 1 but incorporated more detailed rules, empha-
sizing the necessity for attributes to relate directly to software entities. Known
software entities were additionally provided as input, even for test instances,
adhering to the oracle setup defined in the shared task guidelines. This method
aimed to refine the model’s ability to extract and classify attributive information
accurately.
Relation Extraction. The approach to Relation Extraction reimagined the
task as a series of single-choice question-answering challenges. Each potential
relation, given the software and attributive entities within a sentence, was listed,
with claims formulated for each possible relationship (e.g.,“IBM is the developer
of Windows”). The model was tasked with identifying the veracity of each claim
through a single-choice question format, where all claims were enumerated and
solutions provided in a batch format for each example sentence. This setup cul-
minated in presenting the test instance alongside its single-choice questions,
expecting the model to deliver decisions on the relational claims.

5.3 Train Sample Retrieval for Few-Shot Generation

Our experimental framework explored various methods for test sample retrieval
to ascertain the most effective approach in enhancing model performance. These
methods included the use of random illustrative samples to represent every possi-
ble signature, retrieval based on entity similarity, and retrieval based on sentence
similarity. Each method was evaluated against a baseline to determine its impact
on the accuracy and efficiency of the information extraction tasks at hand.

5.4 Relation Extraction Baseline

In the development of our baseline for relation extraction, we established a
robust heuristic framework derived from an analysis of potential relations indi-
cated within the text. Our strategy was guided by two principal rules aimed
at simplifying the decision-making process for identifying accurate relationships
between entities. Firstly, we limited our consideration to relations that necessi-
tate the presence of at least one related entity, deliberately excluding optional
inter-software entity relations such as “specification_of” and “PlugIn_of.” Given
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Table 1. Results of Different Models and Retrieval Methods on Subtask 1

Paradigm Retrieval F1 Model parameter

Finetuned – 0.599 SciBERT –
Prompt Random 0.483 GPT 3–5 Random k = 7
Prompt Random 0.525 GPT 3–5 Random all entity types shown
Prompt Sim. sentences 0.647 GPT 3.5 topn = 10
Prompt Sim. entities 0.624 GPT 3.5 topn = 7 x n entities
Prompt Random 0.574 GPT 4 Random all entity types shown
Prompt Sim. sentences 0.677 GPT 4 topn = 10
Prompt Sim. entities 0.679 GPT 4 topn = 7 x n entities

the infrequent occurrence of these cases within the training dataset, we antici-
pated only a minimal impact on the overall performance metric, specifically the
weighted mean macro F1 score for the subtask. Secondly, for all remaining rela-
tion types, our approach favored selecting the closest possible entity positioned
to the left of the focal software entity as the most likely relation partner. This
heuristic was not only straightforward but proved to be highly effective, aligning
our baseline performance with that of the top contenders in the shared task. This
methodology highlights the potential of leveraging simple, rule-based strategies
to achieve competitive results in complex relation extraction challenges.

6 Results

Our analysis in Subtask 1 (Software NER) shows a varied performance land-
scape across different models and retrieval methods (Table 1). The finetuned
baseline, which uses SciBERT, achieved a solid foundation with a 59.9% F1
score. However, LLMs that use random samples without fine-tuning showed a
decrease in performance, with the highest F1 score reaching only 57.4%.

A closer examination of retrieval-based models indicates that LLMs per-
form better. The highest F1 score of 67.9% was achieved by sentence similarity
retrieval models, while entity retrieval showed the best performance at 67.7%
F1. The transition from GPT 3.5 to GPT 4 models resulted in a significant
improvement of approximately 3–5%, although it required around three times
more computation time. Notably, our best models were able to perform within
a mere 3% below the theoretical maximum by utilizing SciBERT for sentence
selection, leveraging oracle positive sentences.

In Subtask 2 (Attributive NER), our methodology showed a significant
improvement of +10% in F1 performance compared to our competitors, demon-
strating the effectiveness of our approach in a low data regime (Table 2). For
Subtask 3 (Relation Extraction), our LLM Single-Question Answering model
further improved the F1 score by 5.1%, building on the already competent per-
formance of the heuristic baseline and highlighting the advantage of our method.
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Table 2. SOMD Performance Rankings (Weighted Average Macro)

Task # User F1 Precision Recall Task # User F1 Precision Recall

1 1 phinx .740 .761 .750 2 1 ours .838 .835 .847
1 2 david-s477 .692 .739 .711 2 2 phinx .743 .745 .748
1 3 ThuyNT03 .678 .729 .649 3 1 ours .916 .911 .924
1 4 ours .652 .679 .664 3 2 phinx .897 .900 .897
1 5 vampire .648 .682 .637 3 – baseline .864 .857 .875

3 – necessary .562 .933 .415

Furthermore, it has been demonstrated that using 7–10 samples is the most effec-
tive strategy, as it optimises the balance between input complexity and model
performance.

This analysis highlights the potential of utilising advanced LLM techniques
and carefully selected retrieval methods to significantly improve the accuracy
and efficiency of NER tasks in specialised domains.

7 Conclusion

Our research on enhancing Relation Extraction (RE) with LLMs through Single-
Choice QA has introduced a novel intersection of methodologies aimed at improv-
ing the precision of information extraction in the context of scientific texts. By
integrating Retrieval-Augmented Generation (RAG) with LLMs and adopting a
methodical approach to fine-tuning and leveraging large language models such
as SciBERT and use the model to support GPT variants, we have demonstrated
the capability of LLMs to navigate the complexities inherent in the extraction
of software entities and their attributes.

The exploration of different retrieval strategies-ranging using entity and sen-
tence similarity underscores our commitment to refining the inputs for generative
models, ensuring that they are fed the most relevant and contextually appro-
priate data. This meticulous preparation has allowed us to significantly boost
the performance of LLMs in recognising nuanced distinctions among software-
related entities and accurately extracting relation types within scholarly articles.
Our experiments have not only highlighted the efficacy of LLMs in addressing
domain-specific tasks with a limited set of examples but also revealed the inher-
ent challenges, such as the difficulties in matching entity mentions accurately.
Despite these hurdles, our single-choice QA approach for RE lead to a strong
heuristic baseline for relation extraction and show how altering the task simpli-
fies the problem.
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The outcomes of our research indicate a promising direction for future work
in leveraging LLMs for NER and RE tasks. The development of our system for
participation in the SOMD shared task has illustrated the potential of a single-
choice QA approach to relation extraction, offering a structured and scalable
method for extracting meaningful insights from textual data. Our findings con-
tribute to the growing body of knowledge on the application of generative models
in the field of computational linguistics, paving the way for more sophisticated
and efficient methodologies in information extraction from scientific literature.
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(grant number 460037581) as well as NFDI4DS (grant number 460234259).

A Dataset Overview

Each subtask in the SOMD Shared Task is evaluated independently. Subtask 2’s
attributive NER uses the identified software entities from Subtask 1 as inputs,
and the annotations from the first two subtasks are combined for Subtask 3’s
Relation Extraction. The dataset is hierarchically structured, with each sub-
task’s test set forming a subset of the previous one. This lead to data leakage
in Subtask 1 and to a lesser extent in Subtask 2. This design ensures that tasks
are interconnected, but it requires careful interpretation of results, particularly
with respect to error propagation. Although this design creates data leakage,
it ensures the interconnectedness and cumulative nature of the challenges. The
initial presentation of the Corpus is as the SoMeSci knowledge graph [7]. It is
a comprehensive dataset consisting of 1,367 documents and containing 399,942
triples that represent 47,524 sentences. The dataset includes 2,728 software enti-
ties, totaling 7,237 labeled entities. The dataset includes positive and negative
examples, i.e. sentences without software mentions, which improves the accu-
racy of the model. The presence of duplicate sentences, headings, and varying
sentence lengths increases the complexity of the text and makes extraction tasks
from scientific texts more challenging. For possible domains and ranges of the
relations int the train set compare Table 3.
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B Similarity Search Examples

B.1 Search by Entity Similarity

Table 3. Object Properties, Domain, and Range Classes with Inner Software Relations.

Range Class
⇒ Object Property

Application Operating
System

PlugIn Programming
Environment

Abbreviation
⇒ Abbreviation_of � � � �

Developer
⇒ Developer_of � � � �

Release
⇒ Release_of � � � �

Version
⇒ Version_of � � � �

Citation
⇒ Citation_of � × � �

PlugIn
⇒ PlugIn_of � × � �

URL
⇒ URL_of � × � �

Extension
⇒ Extension_of � � × ×
License
⇒ License_of � × � ×
AlternativeName
⇒ AlternativeName_of � × × ×
Application
⇒ PlugIn_of
⇒ Specification_of

� × × ×

ProgrammingEnvironment
⇒ Specification_of × × × �
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Table 4. Retrieval example based on entity similarity for RAG. The first row is the
query entity. “sim” reflects the cosine similarity of the enities.

entity label sim split sentence

PhosphOrtholog Application
Creation

1.00 test To this end , we have developed an
automated web - based tool,
PhosphOrtholog , which allows
batch processing and mapping of
large species - specific PTM datasets
to compare overlap at a site -
specific level

SNPdetector Application
Creation

0.93 train We developed a software tool,
SNPdetector, for automated
identification of SNPs and mutations
in fluorescence - based resequencing
reads

ESPRIT - Forest Application
Creation

0.92 train In this paper we developed a new
algorithm called ESPRIT - Forest
for parallel hierarchical clustering of
sequences

B.2 Search by Sentence Similarity

Table 5. Retrieval example based on sentence similarity for RAG. The first row is the
query entity. “sim” reflects the cosine similarity of the sentences. No information about
the annotated entities are given for retrieval. The example sentence is the same as in
Table 4

split sim text

test 1.00 To this end , we have developed an automated web - based tool,
PhosphOrtholog , which allows batch processing and mapping of large
species - specific PTM datasets to compare overlap at a site - specific level

train 0.99 Here we present a tool , Podbat (Positioning database and analysis tool) ,
that incorporates data from various sources and allows detailed dissection of
the entire range of chromatin modifications simultaneously

train 0.99 We designed and developed a new method , MSACompro, to synergistically
incorporate predicted secondary structure, relative solvent accessibility , and
residue - residue contact information into the currently most accurate
posterior probability - based MSA methods to improve the accuracy of mult

train 0.99 In this paper , we present a lossless compression tool, MAFCO, specifically
designed to compress MAF (Multiple Alignment Format) files

C Prompting Examples

See Figs. 1, 2 and 3.
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Fig. 1. Software NER Few-Shot prompt (n = 2). The shown sample is the same as in
the similarity examples in Tables 4 and 5.
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Fig. 2. Attibutive NER Few-Shot prompt (n = 2).
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Fig. 3. Single-Choice QA prompt for Relation Annotation (n = 2).
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