

Lecture Notes in Computer Science 3747
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Carlos Alberto Maziero João Gabriel Silva
Aline Maria Santos Andrade
Flávio Morais de Assis Silva (Eds.)

Dependable
Computing

Second Latin-American Symposium, LADC 2005
Salvador, Brazil, October 25-28, 2005
Proceedings

13

Volume Editors

Carlos Alberto Maziero
Pontifícia Universidade Católica do Paraná
Programa de Pós-Gradução em Informática Aplicada
80.215-901 Curitiba PR, Brazil
E-mail: maziero@ppgia.pucpr.br

João Gabriel Silva
Universidade de Coimbra
Dep. Eng. Informatica - Polo II
Pinhal de Marrocos, 3030-290 Coimbra, Portugal
E-mail: jgabriel@dei.uc.pt

Aline Maria Santos Andrade
Flávio Morais de Assis Silva
Universidade Federal da Bahia (UFBA)
Departamento de Ciência da Computação (DCC)
Laboratório de Sistemas Distribuídos (LaSiD)
Campus de Ondina - Prédio do CPD, Av. Adhemar de Barros, S/N, CEP 40170-110,
Salvador-BA, Brazil
E-mail: {aline,fassis}@ufba.br

Library of Congress Control Number: 2005933898

CR Subject Classification (1998): C.3, C.4, B.1.3, B.2.3, B.3.4, B.4.5, D.2.4, D.2.8,
D.4.5, E.4, J.7

ISSN 0302-9743
ISBN-10 3-540-29572-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-29572-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11572329 06/3142 5 4 3 2 1 0

Foreword

The Latin-American Symposium on Dependable Computing, LADC, is the main
Latin-American event dedicated to the discussion of the many issues related to
dependability in computer systems and networks. It is a forum for researchers
and practitioners (from all over the world) to present and discuss their latest
results and experiences in this field.

LADC 2005, the second edition of this event, followed on the success of LADC
2003, which took place at the Polytechnic School of the University of São Paulo.
It was organized by LaSiD, the Distributed Systems Laboratory associated with
the Department of Computer Science of the Federal University of Bahia. LADC
2005 was sponsored by SBC, the Brazilian Computer Society, in cooperation with
IEEE TC on Fault-Tolerant Computing, IFIP Working Group 10.4 “Dependable
Computing and Fault-Tolerance”, SADIO, the Argentine Society for Informatics
and Operations Research, SCCC, the Chilean Computer Science Society, and
SMCC, the Mexican Society for Computer Science.

LADC 2005 was structured around technical sessions, keynote speeches and a
panel. Two workshops were co-located with LADC 2005: WDAS (Latin-American
Workshop on Dependable Automation Systems) and WTD (3rd Workshop on
Theses and Dissertations on Dependable Computing). WDAS is a forum where
members of academia and industry can meet to discuss specific dependability
issues related to automation systems. WTD is a student forum dedicated to the
discussion of ongoing and recent work in the field of dependability carried out
at graduate level.

We would like to thank the LADC 2005 Organizing Committee and the sup-
port staff at LaSiD for having helped us with the organizational tasks, the Steer-
ing Committee for their advice, and the chairs of the technical committees for
their cooperation. A special “thank you” goes to Raimundo Macêdo and to
Rogério de Lemos who were sources of constant support and suggestions. We
are also grateful to Raimundo Macêdo for having suggested our names to chair
this symposium. Additionally, we would like to thank the invited guests, all the
authors of submitted papers, the support provided by CAPES (Coordenação de
Aperfeiçoamento de Pessoal de Nı́vel Superior), the sponsoring partners, and
Springer for accepting to publish the LADC proceedings in the LNCS series.

We hope all present at LADC 2005 enjoyed the symposium and their stay in
Salvador.

October 2005 Aline Maria Santos Andrade
Flávio Morais de Assis Silva

Preface

Welcome to the proceedings of LADC 2005.
We are very proud of the high-quality program that LADC offered this year

in Salvador.
It was our privilege to have the opportunity to select from such high-level

papers as were submitted to LADC 2005. The profile of those submissions clearly
shows that the previous (and first) LADC edition in 2003 was successful in setting
a high-quality standard that all the prospective authors understood.

The 16 accepted papers, chosen from 39 submissions, laid out the guarantee
of a technically very rewarding conference. The review process was very careful
and selective, and we felt that our mission was that of strengthening the high-
quality and international character of LADC. The accepted papers are from
seven different countries, the majority of them from outside Latin America.
The submitted papers had a similar profile, showing that LADC is clearly a
conference that, in spite of the focus on Latin America, has a strong international
visibility.

All papers were reviewed by four members of the Program Committee, and if
needed by outside reviewers. The reviews were in general quite detailed, offering
significant advice to the authors of accepted papers in preparing the final ver-
sion, and to the authors of rejected papers in perfecting their work for a future
submission. The acceptance decision was taken after a careful evaluation of all
reviews, paying a very special attention to the reviews’ content and not just the
proposed numerical scores.

Finally, we would like to acknowledge the enthusiastic support of the LADC
Steering Committee in all steps of this process, as well as of the Brazilian Com-
puter Society for hosting the web tool supporting the paper submission and
selection process. A word is also in order to our institutions, the Pontif́ıcia Uni-
versidade Católica do Paraná and the Universidade de Coimbra, without whose
support we would not have been able to perform this task. A special thanks goes
also to William Sanders and Christof Fetzer for accepting to hold the keynote
presentations.

Above all, we are confident that LADC 2005 will be remembered as a tech-
nically very rewarding conference, for the quality of both the papers and the
discussions and contacts in Salvador.

October 2005 Carlos Maziero
João Gabriel Silva

Organizing Committee

General Co-chairs: Aline Maria Santos Andrade (UFBA, Brazil)
Flávio Morais de Assis Silva (UFBA, Brazil)

Program Co-chairs: Carlos Alberto Maziero (PUCPR, Brazil)
João Gabriel Silva (UCoimbra, Portugal)

Publication Chair: George Lima (UFBA, Brazil)

Publicity Chair: Luciano Porto Barreto (UFBA, Brazil)

Finance Chair: Sergio Gorender (UFBA, Brazil)

Local Arrangement Co-chairs: Marcela Santana (UFBA, Brazil)
Sandro Santos Andrade (UFBA, Brazil)

Registration Co-chairs: Frederico Barboza (UFBA, Brazil)
Ivo de Carvalho Peixinho (UFBA, Brazil)

Tutorial Co-chairs: Elias Procópio Duarte Jr. (UFPR, Brazil)
Sergio Rajsbaum (UNAM, Mexico)

Workshop Chair: Raul Ceretta Nunes (UFSM, Brazil)

WDAS Co-chairs: Herman Augusto Lepikson (UFBA, Brazil)
Leandro Buss Becker (UFSC, Brazil)

WTD Co-chairs: Avelino Zorzo (PUCRS, Brazil)
Ingrid Jansch-Pôrto (UFRGS, Brazil)
Fab́ıola Gonçalves P. Greve (UFBA, Brazil)

Steering Committee

Francisco Brasileiro, Brazil
Joni da Silva Fraga, Brazil
Rogério de Lemos, UK
Raimundo Macêdo, Brazil
Eliane Martins (Chair), Brazil

Carlos Maziero, Brazil
Sergio Rajsbaum, Mexico
Taisy Silva Weber, Brazil
Flávio M. Assis Silva, Brazil

X Organization

LADC Program Committee

Pedro Mejia Alvarez, Mexico
Lorenzo Alvisi, USA
Pedro d’Argenio, Argentina
Jean Arlat, France
Marinho Barcellos, Brazil
Andrea Bondavalli, Italy
Francisco Brasileiro, Brazil
João B. Camargo Jr., Brazil
Ricardo Cayssials, Argentina
Jose Contreras, Chile
Mariela Curiel, Venezuela
Xavier Défago, Japan
Elmootazbellah Elnozahy, USA
Joni da Silva Fraga, Brazil
Paulo Ĺıcio de Geus, Brazil
Michel Hurfin, France
Ravi Iyer, USA
Ingrid Jansch-Pôrto, Brazil
Ricardo Jiménez-Peris, Spain

Jörg Kaiser, Germany
Johan Karlsson, Sweden
Kane Kim, USA
Jean-Claude Laprie, France
Rogério de Lemos, UK
Raimundo Macêdo, Brazil
José C. Maldonado, Brazil
Eliane Martins, Brazil
Fernando Pedone, Switzerland
Ravi Prakash, USA
Michel Raynal, France
Cećılia M. Rubira, Brazil
William H. Sanders, USA
Richard Schlichting, USA
Paulo Veŕıssimo, Portugal
Pedro Gil Vicente, Spain
Raul Weber, Brazil
Taisy Weber, Brazil

LADC External Referees

Jorge Rady Almeida Jr., Brazil
Alysson Bessani, Brazil
José Eduardo Brandão, Brazil
Andrey Brito, Brazil
Lásaro Camargos, Brazil
Julien Cartigny, Japan
Mauro Fonseca, Brazil
Shashidhar Gandham, USA
Diogo Kropiwiec, Brazil
Srikant Kuppa, USA
Dorival Leão, Brazil
Lau Lung, Brazil
Paulo Marques, Portugal
Paulo Masiero, Brazil

Carlos Maziero, Brazil
Neeraj Mittal, USA
Mansoor Mohsin, USA
Felipe Pereira, Brazil
Ĺıvia Sampaio, Brazil
Giuliana Santos, Brazil
Rodrigo Schmidt, Switzerland
Flávio Assis Silva, Brazil
João Gabriel Silva, Portugal
Henrique Silva, Portugal
Adenilso Simão, Brazil
Matthias Wiesmann, Japan

Organizer

Distributed Systems Laboratory (LaSiD),
Department of Computer Science (DCC),
Federal University of Bahia (UFBA)

Organization XI

Sponsor

Brazilian Computer Society (SBC)

In Co-operation with

IEEE TC on Fault-Tolerant Computing
IFIP Working Group 10.4 “Dependable Computing and Fault-Tolerance”
SADIO, Argentine Society for Informatics and Operations Research
SCCC, Chilean Computer Science Society
SMCC, Mexican Society for Computer Science

Table of Contents

Invited Talks

Probabilistic Validation of Computer System Survivability
William H. Sanders . 1

Timed Asynchronous Distributed Systems
Christof Fetzer . 2

WLAN in Automation - More Than an Academic Exercise?
Edgar Nett . 4

Evaluation

Using Stratified Sampling for Fault Injection
Regina Lúcia O. de Moraes, Eliane Martins,
Elaine C. Catapani Poletti, Naaliel Vicente Mendes 9

A Methodology for the Automated Identification of Buffer Overflow
Vulnerabilities in Executable Software Without Source-Code

João Durães, Henrique Madeira . 20

Quantitative Evaluation of Distributed Algorithms Using the Neko
Framework: The NekoStat Extension

Lorenzo Falai, Andrea Bondavalli, Felicita Di Giandomenico 35

Certification

Airborne Software Concerns in Civil Aviation Certification
Benedito Sakugawa, Edson Cury, Edgar Toshiro Yano 52

Modelling

A Method for Modeling and Testing Exceptions in Component-Based
Software Development

Patrick Henrique da S. Brito, Camila Ribeiro Rocha,
Fernando Castor Filho, Eliane Martins, Cećılia M. Fischer Rubira . . 61

Verifying Fault-Tolerant Distributed Systems Using Object-Based
Graph Grammars

Fernando L. Dotti, Odorico M. Mendizabal, Osmar M. dos Santos . . 80

XIV Table of Contents

The Zerberus Language: Describing the Functional Model of
Dependable Real-Time Systems

Christian Buckl, Alois Knoll, Gerhard Schrott . 101

Embedded Systems

Soft Error Mitigation in Cache Memories of Embedded Systems by
Means of a Protected Scheme

Hamid R. Zarandi, Seyed Ghassem Miremadi . 121

On the Effects of Errors During Boot
Mário Zenha-Rela, João Carlos Cunha, Carlos Bruno Silva,
Lúıs Ferreira da Silva . 131

A Fault Tolerant Approach to Object Oriented Design and Synthesis of
Embedded Systems

M. Fazeli, R. Farivar, S. Hessabi, S.G. Miremadi 143

Time

Scheduling Fixed-Priority Hard Real-Time Tasks in the Presence of
Faults

George Lima, Alan Burns . 154

On the Monitoring Period for Fault-Tolerant Sensor Networks
Filipe Araújo, Lúıs Rodrigues . 174

Adapting Failure Detectors to Communication Network Load
Fluctuations Using SNMP and Artificial Neural Nets

Fábio Lima, Raimundo Macêdo . 191

Distributed Systems Algorithms

Parsimony-Based Approach for Obtaining Resource-Efficient and
Trustworthy Execution

HariGovind V. Ramasamy, Adnan Agbaria, William H. Sanders 206

Generating Fast Atomic Commit from Hyperfast Consensus
Fab́ıola Gonçalves Pereira Greve, Jean-Pierre Le Narzul 226

Group-Based Replication of On-Line Transaction Processing Servers
A. Correia Jr., A. Sousa, L. Soares, J. Pereira, F. Moura,
R. Oliveira . 245

Table of Contents XV

Workshops

Third Workshop on Theses and Dissertations on Dependable Computing
Avelino Zorzo, Ingrid Jansch-Pôrto,
Fab́ıola Gonçalves Pereira Greve . 261

Latin-American Workshop on Dependable Automation Systems
Herman Augusto Lepikson, Leandro Buss Becker 262

Tutorials

Software Architectures for Dependable Systems
Rogério de Lemos, Paulo Asterio de Castro Guerra 263

Fault-Tolerant Techniques for Concurrent Objects
Rachid Guerraoui, Michel Raynal . 265

Agreement Protocols in Environments with Temporal Uncertainties
Fab́ıola Gonçalves Pereira Greve . 266

Author Index . 267

Probabilistic Validation of Computer System
Survivability�

William H. Sanders

Donald Biggar Willett Professor of Engineering,
Dept. of Electrical and Computer Engineering,

Coordinated Science Laboratory and Information Trust Institute,
University of Illinois at Urbana-Champaign, USA

whs@uiuc.edu

There is a growing need for systems whose survivability in a specified use and/or
attack environment can be assured with confidence. Many techniques have been
proposed to validate individual components (e.g., formal methods) or a system
as a whole (e.g., red teaming). However, no single technique can provide the
breadth of evidence needed to validate a system with respect to high-level sur-
vivability requirements. To accomplish this, we propose an integrated validation
procedure (IVP) that begins with the formulation of a specific survivability re-
quirement R and determines whether a system is valid with respect to R. The
IVP employs a top-down approach that methodically breaks the task of valida-
tion into manageable tasks, and for each task, applies techniques best suited to
its accomplishment. These efforts can be largely independent, and the results,
which complement and supplement each other, are integrated to provide a con-
vincing assurance argument. We then illustrate the IVP by applying it to an
intrusion-tolerant information system being developed by the U.S. Department
of Defense. In addition to validating the system against high-level survivabil-
ity requirements, we demonstrate the use of model-based validation techniques,
as a part of the overall validation procedure, to guide the system’s design by
exploring different configurations and evaluating tradeoffs.

� This is joint work with Sankalp Singh, Adnan Agbaria, Fabrice Stevens, Tod Court-
ney, John F. Meyer, Partha Pal, and the rest of the DPASA project team. The
author is grateful for this collaboration.

C.A. Maziero et al. (Eds.): LADC 2005, LNCS 3747, p. 1, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Timed Asynchronous Distributed Systems

Christof Fetzer

Technische Universität Dresden, Fakultät Informatik, Dresden, Germany
christof.fetzer@inf.tu-dresden.de
http://wwwse.inf.tu-dresden.de

The development of dependable distributed systems needs to be based on a
proper foundation. This foundation is generally given in form of a system and
failure model. The system model defines the semantics of basic services like
process and message services of a distributed system. More advanced system
services will be based on these basic services. The failure model specifies the
likely failures of the basic services, i.e., these are the failures that the advanced
system services need to cope with.

The objective of the system and failure model is the following. As long as
the assumptions of the failure and system model are valid, a system has to
guarantee its specification. However, if these assumptions are violated during
run-time, the system specification might be violated. The probability that a
dependable system violates its specification must be negligible. Therefore, the
probability of the occurrence of failures which are not specified by the failure
model must also be negligible.

In general, making stronger failure and system model assumptions simplifies
the development of advanced system services. However, stronger assumptions
increase the probability that the system and failure model assumptions are vi-
olated during run-time. Weaker assumptions reduce the probability of run-time
violations but too weak assumptions will not permit a correct implementation of
the system specification. Therefore, one needs to find assumptions that permit
to implement the system specification while having a negligible probability of
run-time violations.

The timed asynchronous system model [1] defines three basic services: a
process, a clock and a communication service. All services are associated with
appropriate failure assumptions. The process service has crash / performance
semantics. The communication service has omission / performance semantics.
The clock service is assumed to be failure free, i.e., each non-crashed process has
access to a correct clock service.

The failure assumptions must be enforced. For example, clocks might fail. If
the probability of a clock failure is not negligible in a certain system, one needs to
enforce that clock failures are masked. For example, a clock failure could be trans-
formed into a process crash failure to prevent that clock failures become visible. I
will demonstrate how one can enforce the failure assumptions of the timed asyn-
chronous system model using different model enforcement techniques. Using ap-
propriate enforcement techniques the timed asynchronous system model is suit-
able even for dependable system with very stringent dependability requirements.

C.A. Maziero et al. (Eds.): LADC 2005, LNCS 3747, pp. 2–3, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Timed Asynchronous Distributed Systems 3

Recently, we introduced a time-free model [2] that is based on the assumption
that the average response times of non-crashed processes are finite to permit a
deterministic solution of the consensus problem. I will show how this finite aver-
age response time can be added as an option to the timed asynchronous system
model. I will discuss how this assumption can complement the traditional as-
sumptions of the timed asynchronous system model, for example, in the domain
of grid computing.

References

1. Flaviu Cristian and Christof Fetzer. The timed asynchronous distributed system
model. IEEE Transactions on Parallel and Distributed Systems, pages 642–657,
June 1999.

2. Christof Fetzer, Ulrich Schmid, and Martin Suesskraut. On the possibility of con-
sensus in asynchronous systems with finite average response times. In Proceedings
of the 25th International Conference on Distributed Computing Systems (ICDCS
2005), 2005.

WLAN in Automation - More Than an
Academic Exercise?

Edgar Nett

Otto-von-Guericke-Universitt Magdeburg,
Institut fr Verteilte Systeme,

Universittsplatz 2, 39106 Magdeburg, Germany
nett@ivs.cs.uni-magdeburg.de

Nowadays information technology (IT) is increasingly determining growth in the
world of automation. After it changed hierarchies, structures and flows in the
entire office world, it now covers all the sectors from the process and manu-
facturing industries to logistics and building automation. The communications
capability of devices and continuous, transparent information routes are indis-
pensable components of future-oriented automation concepts.

Today, two aspects determine new automation concepts. On the one hand
they consist of distributed and component-oriented control structures, on the
other hand the industrial automation and the IT of high-level management fields
are growing more and more together (vertical integration). The expected benefits
are

– Open communication from company management level to the field level (ver-
tical and horizontal integration)

– Safe of investments through seamless integration of existing fieldbus systems
– Higher functional scope and performance as conventional fieldbus systems
– Simple and vendor independent plant wide engineering
– Extended range of applications: Remote Access, wireless communication

PROFINET possibly is the most advanced concept, especially for distributed
automation standards. It is based on Ethernet and integrates existing fieldbus
systems (in particular PROFIBUS) simply and without change. This is an im-
portant aspect for meeting the demand for consistency from the corporate man-
agement level to the field level. Furthermore, it represents a key contribution to
providing the user with security for his investment in that existing parts of a
system can be incorporated without needing to be changed.

Regarding real-time aspects, the Ethernet-based communication can be
scaled along three levels:

1. TCP, UDP and IP for non-time-critical data, such as parameter assignment
and configuration,

2. Real-Time (RT) for time-critical process data used in the field of factory
automation and

3. Isochronous Real-Time (IRT) for particularly sophisticated demands, as for
Motion Control applications.

C.A. Maziero et al. (Eds.): LADC 2005, LNCS 3747, pp. 4–8, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

WLAN in Automation - More Than an Academic Exercise? 5

These rt levels conform nicely to with three different communication levels
in automation systems realized by different bus systems.

At sensor/actuator level the signals of the binary sensors and actuators are
transmitted via a sensor/actuator bus. Here, a particularly simple, low-cost in-
stallation technique, through which data and a 24-volt power supply for the end
devices are transmitted using a common medium, is an important requirement.
The data are transmitted purely cyclically.

At field level the distributed peripherals, such as I/O modules, measuring
transducers, drive units, valves and operator terminals communicate with the
automation systems via an efficient, real-time communication system. The trans-
mission of the process data is effected cyclically, while alarms, parameters and
diagnostic data also have to be transmitted acyclically if necessary. Fieldbuses
like PROFIBUS meet these requirements and offer a transparent solution for
manufacturing as well as for process automation.

At cell level, the programmable controllers such as PLC and IPC communi-
cate with each other. The information flow requires large data packets and a large
number of powerful communication functions. Smooth integration into company-
wide communication systems, such as Intranet and Internet via TCP/IP and
Ethernet are important requirements.

What is still missing in the convergence of IT and automation technolo-
gies is the integration of wireless communication. Even though this rises some
tough challenges there are new application fields that drive a strong trend to
deploy WLANs in industrial applications. Among these new applications fields
mobile transport systems of all kinds are the most important and widely recog-
nized sector. This sector spans from rail-guided baggage carriers that improve
throughput and flexibility in airport baggage logistics, over warehouse systems
with integrated transport entities, to AGVs and overhead monorail carriers that
transport work pieces in assembly systems. In all these applications, provid-
ing wireless connectivity to the mobile entities promises a more detailed and
up-to-date supervision and diagnosis, a more flexible control and an improved
scalability.

The envisaged applications can be characterized w.r.t to the kind and tight-
ness of control they exert via the wireless medium. The spectrum ranges from
monitoring and diagnosis only (no control) over commissioning (task assign-
ment), to autonomous or even centralized motion control. Depending on the
kind of application, the WLAN will be used for the cell / production control
layer with TCP / IP communication and no or soft real-time requirements, or
the field bus layer with real-time requirements in the range from 100ms down to
10ms.

Using wireless communications in such demanding applications and environ-
ments poses some tough challenges. Besides fulfilling typical hardware require-
ments of industrial equipment, like DC voltage supply, standard industrial plugs,
rugged housing with a sufficient protection against dust, water and heat, this
mostly applies to the non-functional properties of the communication:

6 E. Nett

– Real-time. The envisaged applications are all subject to real-time require-
ments. How tight these requirements are depends on the kind of control tasks
performed. Typically, a cyclic communication with a deterministic timing is
required. Since this constitutes an end-to-end timing requirement between
a mobile entity and another mobile entity or the cell / process controller,
the roaming delays of the mobile entities have to be considered as messages
may be lost or delayed while the source/destination station is in transition
between two APs. Thus, fulfilling the real-time requirements not only means
predictable and short medium access delays, but also a predictable and fast
roaming.

– Reliability. Wireless media are by their very nature more error prone than
wired ones. They are unshielded against EMI and suffer from different kinds
of fading. Thus, measures have to be taken to achieve a reliability that meets
the requirements of the applications, which in many cases are not designed
to tolerate message losses. However, reliability measures such as retrans-
missions impact message delays and hence may conflict with the real-time
requirements. The resulting trade-off has to be addressed when designing the
reliability measures and when provisioning the networks for the application
at hand.

– Availability. As WLANs become part of the control system, availability be-
comes crucial since unavailability of the wireless network may stop produc-
tion and hence incur significant costs. Several kinds of measures must be con-
sidered to improve availability: fault avoidance measures to increase MTTF,
like uninterruptible or redundant power supplies, fast diagnosis and easy
(automatic at best) configuration and provisioning of replacement compo-
nents to reduce MTTR; or measures that support active redundant WLAN
deployments with fast fail over.

– Security. Again, the more the production relies on the underlying network,
the more security becomes a key requirement. While physical security was
considered a sufficient solution in many classical field bus and office systems,
this is clearly not viable for wireless media because the physical access to
the medium is hard to constrain. Therefore, measures have to be taken that
achieve at least a level of security comparable to what the traditional sys-
tems do offer. While it is possible to employ sufficiently strong protection
measures to achieve this goal, a key factor in industrial applications is also
to consider the timing overhead these measures incur. Similar to reliability,
the key challenge here is to achieve a sufficient security and at the same time
fulfil the real-time requirements of the application.

Generally speaking, all the requirements can be captured under the notion
of transparency. What people in automation would like to have is a communica-
tion channel that allows connecting mobile devices, but on a certain level looks
like a traditional field bus system. This corresponds to the PROFINET idea to
exchange the physical basis but maintain the properties. It should be noted, how-
ever, that this kind of transparency w.r.t the non-functional requirements means

WLAN in Automation - More Than an Academic Exercise? 7

that the wireless cable replacement must fulfil the same timing and reliability
requirements as the wired field bus, a challenging and ambitious objective.

During the last years a notable progress has been made towards the achieve-
ment of these goals: The IEEE has been and is still working on amendments
to improve the non-functional properties of WLANs. IEEE 802.11i provides the
required security features and actually steps beyond what is currently provided
by wired links. However, the mechanisms employed incur a significant overhead
and hence are not well suited for real-time applications. IEEE 802.11e will be
adopted soon as an amendment to provide QoS on wireless media. While it
specifies the air interface for resource reservation and allocation it intentionally
leaves open the actual resource scheduling. Other task groups in IEEE 802.11 are
working on reducing the roaming delays (802.11r) and improved monitoring and
diagnosis interfaces (IEEE 802.11k). Furthermore, the IETF is in the process of
standardizing a protocol for so-called Switched-WLAN architectures where part
of the functionalities of the APs is delegated to a central controller, which is also
in charge of configuration, provisioning and monitoring of the APs.

While the fast evolvement of new standards will provide the means (e.g
authentication and encryption protocols, real-times MACs, measurement inter-
faces, protocols for centralized AP management, etc.) to address the require-
ments stated above it also

– brings about significant confusion regarding future development and whether
investments spent today are secure. Actually, many of the standards (e.g.
CAPWAP) are still under development and it is not clear which proposal
will be adopted. Even for those standards which have already been imple-
mented there are doubts, if there will be a sufficiently sustained support and
availability of products.

– overburdens people who are not networking professionals and are now con-
fronted with ever new technologies.

Besides a kind of settlement in the technological evolvement, what is needed
with all the standardized technologies at hand is a coherently integrated solution
that provides transparency of the underlying technology. Transparency means
the solutions hides the intricacies of the underlying network from those engi-
neers designing the plant and even more from the staff that will finally operate
it. The talk will shortly explain what current standards and standardization ef-
forts contribute to the achievement of this goal and what lines of development
should be pursued to finally arrive at an integrated and transparent solutions.
For example, such lines of development are:

– Scheduling of the wireless medium. This not only means scheduling the net-
work access within a single cell. Rather, if infrastructure networks are con-
sidered, a global scheduling is required ensuring that roaming mobile entities
will get their resource demands fulfilled with a sufficient probability. Such
a scheduling should automatically be performed based on the information
provided during the engineering of the plant control system and the resulting
schedules should automatically be provisioned to the APs. Furthermore, the

8 E. Nett

scheduling has to be integrated with other aspects such as capacity planning,
transmission power control, and rate selection.

– An application-dependent selection of reliability measures (e.g. FEC, ARQ,
no ack) and parameters (e.g. retry limits) should be supported in a way
that does not require application engineers to be networking experts. Fur-
thermore, making this choice has to be integrated with the scheduling and
capacity planning.

– Diagnosis components that not only provide large amounts of detailed data
but support operators in comparing those data against real-time and relia-
bility requirements and underlying load and capacity assumptions.

– A centralized management of users / devices and their credentials that in-
curs a minimum of additional maintenance effort and roaming overhead and
is applicable for mobile devices with limited processing resources. ” Opti-
mization of roaming delays based on centrally available information like site
surveys, client positions, load information etc.

Acknowledgement

I would like to thank very much Dr. Stefan Schemmer from rt.solutions.de for
his valuable contributions from a business perspective.

C.A. Maziero et al. (Eds.): LADC 2005, LNCS 3747, pp. 9 – 19, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Using Stratified Sampling for Fault Injection

Regina Lúcia O. de Moraes1, Eliane Martins2, Elaine C. Catapani Poletti1,
 and Naaliel Vicente Mendes1

1 Superior Centre of Technological Education (CESET),
State University of Campinas (UNICAMP)

{regina, elainec, naalielb}@ceset.unicamp.br
Phone: +55 19 3788-5872/ Fax: +55 19 3404-7164

2 Institute of Computing (IC),
State University of Campinas (UNICAMP)

eliane@ic.unicamp.br
Phone: +55 19 3404-7165/ Fax: +55 19 3788-5847

Abstract. In a previous work we validated an ODBMS component injecting
errors in the application’s interface. The aim was to observe the robustness of
the component when the application that interacted with it failed. In this work
we tackle the injection of errors directly into the interfaces among the target
component’s classes. As the component under test has several classes, we use
stratified sampling to reduce the amount of injections without losing the ability
to detect faults. Strata are defined based on a complexity metric, Weighted
Methods in a Class – WMC. Experiments show that this metric alone is not
sufficient to select strata for testing purposes.

1 Introduction

Increased pressures on time and money make component-based software development
a current trend in constructing new systems. The development of a system that is an
integration of several Off-The-Shelf (OTS) components brings hypothetical benefits,
such as system quality enhancement, since the components are used in other systems,
and time and money savings, since the source code does not need to be rewritten.
Moreover, components and component-based system validation is still a challenge.

The difficulty stems from the degree of knowledge that developers and users have
about the component [2] [18]. When developing a component, the developer cannot
picture every possible use this component may have in the future. Component users
do not know the acquired component’s quality level, and even if it is known, there is
no guarantee that the component will present the same quality level when used in a
new context. Furthermore, the use of high-quality components does not guarantee that
the overall system will have high quality, due to the complexity of interaction among
components [19].

Component validation is therefore a very important task. It allows us to determine
whether the component provides the expected services, and to check whether it does
not present unexpected harmful behaviour. Fault injection is a useful technique in
which faults or errors are deliberately introduced into a system in order to observe its

10 R.L.O. de Moraes et al.

behaviour and thus better understand how robust the software is, how efficient is it
when recovering its normal execution after a non-successful transaction, and the
impact of its detection and recovery mechanisms on the application’s performance.

In a previous work [10] we validated the Object-Oriented Database Management
System (ODBMS) Ozone [12], an OTS component, aimed at evaluating its robustness
in the presence of errors originated in the application. The benchmark Wisconsin OO7
was our target application. The Jaca tool [9] was used to inject errors at the interface
between OO7 and Ozone. A risk-based strategy [1] [15] was proposed and applied for
the selection of OO7 classes in which to inject. In that work, we injected in the
selected classes and in all OO7 classes to evaluate the effectiveness of the strategy
and to compare the results.

In this work the component under test has several classes and injection in all
classes would be too time-consuming. We consider stratified sample and ratio theory
to determine the number of elements that allows us to get a confidence in the sample.
The number of elements taken from each stratum conserves the same proportion
presented by the set of all component classes. One difficulty with stratified sampling
is the determination of the strata. In order to address this difficulty, in this work we
present a risk-based strategy used in [10]. Section 4 briefly presents this strategy.
The reminder of the paper is organized as follows. Ozone as well as OO7 are
presented in Section 2. Fault Injection fundamentals as well as some related works
are shortly presented in Section 3. The results of the stratified sampling strategy
applied to the case study are presented in Section 5. Finally, Section 6 concludes this
work.

2 Case Study Description

The case study used for strategy testing is a system composed by two main
components, an ODBMS called Ozone and the OO7, a benchmark used to evaluate
ODBMS performance. In this experiment the benchmark is seen as the application
responsible for the activation of injected faults and the propagation of errors to the
component under test, the Ozone database.

2.1 The Target Component

Our target component is an object database management system (ODBMS) called
Ozone [12]. Written in Java, it allows Java objects in a transactional environment to
persist according to the structure defined by the application. Based on client-server
architecture, clients connect to the database using sockets with a RMI protocol. To
guarantee a unique instance in the server, Ozone uses “proxy” objects that can be seen
as a persistent reference. These proxies are generated by the Ozone Post Processor
(OPP) as a result of two linked files, the class file and an external interface that is
created for each class. The experiments performed in this work use a local
configuration, but Ozone can also be used in a distributed architecture.

 Using Stratified Sampling for Fault Injection 11

2.2 The Target Application

We use Wisconsin OO7 [3] as a benchmark application to activate the target
component. Wisconsin OO7 was found in Ozone’s website [12] and was originally
used to evaluate the ODBMS performance.

The main component of the benchmark is a set of composite parts. Each composite
part has a document object and a graph of associated atomic parts. A set of all
composite parts forms the design library. Assembly objects are more complex
structures, which may be composed of composite parts (base assembly) or other
assembly objects (complex assembly). These assemblies are organized in hierarchies;
each of which constitutes a module. There is a manual to document each module.

The Ozone’s version of OO7 implements three main functionalities, one to store
objects and create an assembly hierarchy (create), one to search root objects (query
match), and another to traverse the composite part objects’ hierarchy (query traversal)
[3]. To check the ACID properties (Atomicity, Consistency, Isolation and Durability)
we implement extra functionalities that are based on TPC-C benchmark [16] and OO7
specification [3]. The extra functionalities are used to check the database state before
and after an experiment execution. They are described in more detail in [10]. In short,
to verify atomicity we use OO7 queries and other queries created, and then compare
the stored data before and after fault injection. To check consistency, a query is
performed to verify whether the new data stored in the database is in accordance with
OO7 specification. Durability is checked by disconnecting and connecting the
database and comparing its state through the queries results. As the experiments are
performed in a local machine, isolation is not checked.

Among three possible sizes of the database created by OO7, this work uses the
smallest one, which contains one assembly hierarchy with seven levels, composed of
two other assemblies. Composite parts with a total of 500 per module define the
assemblies in the lowest level. Each composite part contains 20 atomic parts,
comprising a total of 10,000 atomic parts [3].

3 Software Fault Injection

Fault injection is a technique that simulates anomalies by introducing faults into the
systems under test and then observing their behaviour. Among the various existing
fault injection approaches (see [7] for an overview), software fault injection has been
widely adopted. It can be used to simulate internal faults, as well as faults that occur
in external components interacting through interfaces [18]. One approach of software-
implemented fault injection consists of injecting anomalous input data that comes into
the software through its interface [20]. This study uses this approach, allowing
software acquirers to determine its robustness. The software can be stated as robust if
it is fed by anomalous input without propagating the error that may cause a failure.
This demonstrates that the software can produce dependable service even in presence
of an aggressive external environment [20].

To apply this approach, a tool is needed to inject faults during runtime. We use
Jaca [9], a software-implemented fault injection tool that offers mechanisms for the

12 R.L.O. de Moraes et al.

injection of interface faults in Java object-oriented systems. Jaca is source code
independent, allowing the validation of a system that may be composed of multiple
third-parties components. Jaca’s current version can affect the public interface of a
component by altering values of attributes, method parameters and returns. These
values must be simple (integer, float and Boolean), strings or objects. Jaca is
described in more detail in [9].

A similar approach is presented by Ballista [8] and Mafalda tools [6], but in those
cases the errors are injected in the parameters of operating system calls instead of the
components interfaces. As with the Mafalda tool, we also consider the errors
published by Ballista approach. TAMMER [5] is another similar work in which the
injection of interface faults is used to observe fault propagation focused on code
coverage, while in our work we are interested in the exceptions raised as well as
whether these exceptions cause the whole system to fail. Unlike TAMMER, we do
not need the source code.

4 Characterization of the Experiments

The target component Ozone contains 430 classes. In this case, injecting all classes
would be a hard and unpractical work. We need a way to select a sample of classes to
be injected. For this purpose we use stratified sampling. Stratified sampling and
partition testing are presented in [13] to estimate reliability. In our work we use them
to characterize the strata in order to test the robustness of a component-based system.

To use stratified sampling, the steps needed to define an experiment are the
following: (1) define the stratification criteria and categorize Ozone classes in each
stratum; (2) calculate the sample size; (3) apply the theory of proportion to determine
the sample size for each stratum; (4) select the classes that belong to each stratum in
the sample; (5) characterize the fault injection campaign.

4.1 Definition of the Stratification Criteria and the Strata

Stratified sampling is a sample technique that divides, based on any criteria, the
population into strata and then associates another method to select the elements that
should compose the sample. Partition testing can be considered a kind of stratified
sampling, in which a system input domain is divided into partitions according to
operational behaviour, and one input from each stratum is selected. One difficulty in
stratified sampling is defining the stratum. In this work we use a risk-based strategy to
determine the strata. In a previous work we used a set of complexity metrics, namely,
the CK metrics suite, to determine class complexity [4]. According to a pre-specified
threshold for each metric obtained in an experimental study with several real world
classes [15], we were able to define the classes with high complexity, i.e., those for
which one or more metric values lie outside the threshold. In this study we select one
metric of the CK suite, the Weighted Method for a Class, or WMC. The WMC metric
represents the complexity of a class in terms of the number of its methods and their
complexities, and thus it is reasonable to consider them as a first choice for our
assessment. The assumption is that the higher the WMC, the higher the error

 Using Stratified Sampling for Fault Injection 13

proneness of the class, making it a good candidate for fault injection. Thus, we
calculated the WMC metric of all Ozone classes.

Based on the WMC metric obtained, we classify all the Ozone’s classes and
separate them in two strata according to the WMC metric thresholds: (S1) WMC
metric is equal or smaller; (S2) WMC metric is greater [15].

4.2 Calculating the Sample Size

To estimate the sample size we need to determine the percentage of success and non-
success, the confidence level and the error tolerance.

311181,30
..

2

^^2

2 ≡==
E

qpZ
n

α
classes

Where:
E ≡ 0.05 (5% - error tolerance)

Zα/2 ≡ 1.96 (critical value related to the reliability on the failure ratio - 95%)
^

p ≡ 0.02 (failure ratio based on the previous experiments = 45 failures / 2700

experiments)
^

q = 1 –
^

p = 0.98

Fig. 1. Sample Size Estimation [17]

From the failure ratio of previous experiments [10], 45 out of 2700 experiments

performed resulted in failure. In this way, the value of
^

p is 45/2700, which is

approximately 2%; thus, the complementary value,
^

q is 98%. The confidence level

considered is 95%, which implies a critical value of 1.96 and an error tolerance of 5%
(complementary percentage related to 95%). Based on these values we obtained a
sample size of 31 classes [17]. Figure 1 presents the sample size estimator.

4.3 Obtaining the Sample Size for Each Stratum

Given that NS1 represents the number of classes in stratum S1, NS2 the number of
classes in S2, N the number of Ozone classes and n the estimated sample size, then
the sample size (nSx) for a stratum (x) is given by: nSx ≡ NSx / N * n and nSx = n,
according to the theory of proportions mentioned in Section 4. Since stratum S1
represents 89% of Ozone classes and stratum S2 11% of the total of classes, and
considering a sample size of 31 classes, we need to select 27 classes from stratum S1
and 4 classes from stratum S2.

14 R.L.O. de Moraes et al.

4.4 Selecting the Classes in Each Stratum

To select the classes to be sampled, we rank the classes in each stratum (Sx) in a
decreasing order based on the WMC metric. Then we take nSx classes from the top
WMC. We also take into account the class’s visibility since we can inject only in a
public class. Among the top classes of stratum S1 and stratum S2 there are classes in
which is not possible to inject due to technical restrictions (all methods are
protected).

So we consider the next one in the rank. From now on, we inject firstly into the
classes that belong to the stratum S2, secondly into all classes of the sample, and only
then compare the results. To confirm our strategy, no major different failures should
occur when we compare both results.

4.5 Characterization of the Fault Injection Campaign

A fault injection campaign is characterized by a faultload, a workload and readouts to
be collected. A faultload describes the set of faults that are going to be inserted in the
target system, defined according to the fault representativeness and the established
fault selection criteria [18]. A faultload is determined by a fault location, a fault’s
type, triggering condition, repetition pattern and injection start. These elements can be
described as follows:

(i) Fault Location: In this work we inject interface faults [21].
(ii) Fault’s Type: Corruption of the parameters and returned values, replacing

them with invalid values, combining the Ballista approach [8] with
boundary value testing [14] (based on the system's specification).

(iii) Triggering Condition: interception of operation calls at the component
interfaces.

(iv) Repetition Pattern: the frequency of the injection (permanent,
intermittent or transient).

(v) Injection Start: how many times an operation must be called before the
first injection.

The values to be injected are based on Ballista approach for robustness tests,
together with the ones proposed in [18]. Table 1 presents these values, which should
be chosen according to the parameters’ or returned values’ data type.

Table 1. Values to Inject based on the Ballista Approach

Data Type Values to Inject
Integer 0, 1, -1, MinInt, MaxInt, neighbour value (current value ± 1)
Real Floating Point 0, 1, -1, DBLMin, DBLMax, neighbour value (current value

* 0.95 or * 1.05)
Boolean inversion of state (true -> false; false ->true)
String Null

 Using Stratified Sampling for Fault Injection 15

The workload is the based program(s) that run(s) on the system when the
experiment is conducted [18]. In this study the workload is the Benchmark Wisconsin
OO7.

The readouts are collected from several sources: (i) From Ozone’s interface, we
extract the number of stored clusters, and the exceptions thrown by Ozone that were
not treated. (ii) From Benchmark’s interface on Jaca, we extract exceptions thrown
that are not treated by the application. (iii) From Ozone’s log, we take out data that
are not similar to those of Ozone’s interface. (iv) From Jaca’s log, we extract
specification of the injected faults and exceptions raised. (v) From stored data, we
determine whether database consistency is guaranteed and we perform the existent
queries to verify if all committed transactions were stored in the database. If an
interruption occurs, we need to verify the stored data to certify the non-residual data.
These outcomes are used in this study to characterize Ozone’s behaviour in the
presence of faults.

Ozone’s behaviour can be characterized as follows: I) is the ideal case, in which
both OO7 and Ozone have normal termination and the database created is in a
consistent state. EXC OO7) is an exception generated at OO7 as a consequence of
fault injection, but Ozone has normal termination and the database created is in a
consistent state. This case characterizes the robustness of Ozone with respect to
application failures. EXC OZ) is an exception thrown by Ozone, which terminates
abnormally but the database created is in a consistent state. N) is used when Ozone
terminates normally but the database created is in an inconsistent state, which violates
the ACID properties. Finally, A) occurs when Ozone terminates abnormally and the
database created is in an inconsistent state. Types N and A characterize failure of the
database manager, in that it allows stored data to be corrupted as a result of non-
successful transaction.

An error is said to have been tolerated when the system does not crash and the
ACID properties are kept; a failure occurs when the system crashes or the ACID
properties are not kept. A non-effective error is an error that causes no change in the
system, and an error is considered non-detected when the system does not perceive
the occurrence of an error and a failure.

5 Experimental Results

5.1 Strata Definition

Table 2 presents the selected Ozone classes in which to inject according to the
strategy described in Section 4. As described in Section 4.3, the sample size should be
composed by 27 classes from stratum S1 and 4 classes from stratum S2. The classes
JavaCodeAnalyzer, Table and NumberLineEmitter are not considered since it is
impossible to inject into them due to technical restrictions (all its methods are
protected), as explained in Section 4.4.

The values below the metric’s name (between parentheses) indicate the ideal and
the maximum acceptable values of each metrics for Java applications (threshold
values) [15]. The signalled classes are those with WMC metric greater than the
maximum acceptable values.

16 R.L.O. de Moraes et al.

Table 2. Selection of Ozone’s classes to be injected

Class

WMC

(25;40)1

Stratum

Can Inject into this Class?

SAXChunkProducer 133 S2 YES
WizardStore 117 S2 YES
JavaCodeAnalyzer 113 S2 NO
ProxyGenerator 111 S2 YES
NodeImpl 108 S2 YES
HTMLTableRowElementImpl 39 S1 YES
ParamEntity 38 S1 YES
OzoneODMGTransaction 38 S1 YES
CDHelper 38 S1 YES
CollectionImpl 37 S1 YES
CXMLContentHandler 37 S1 YES
HTMLObjectElementImpl 36 S1 YES
DbCacheChunk 35 S1 YES
SimpleArrayList 35 S1 YES
Table 35 S1 NO
AbsoluteLayout 34 S1 YES
DatabaseImpl 34 S1 YES
OzoneXAResource 34 S1 YES
CharacterDataImpl 33 S1 YES
CollectionImpl 33 S1 YES
DxAbstractCollection 33 S1 YES
HTMLElementImpl 33 S1 YES
NumberLinesEmitter 33 S1 NO
OPP 3 S1 YES
BLOB 32 S1 YES
DxMultiMap 32 S1 YES
HashtableContentHandler 31 S1 YES
AbstractObjectContainer 30 S1 YES
AdminObjectContainer 30 S1 YES
DocumentImpl 29 S1 YES
HTMLAnchorElementImpl 29 S1 YES
HTMLSelectElementImpl 29 S1 YES
Enh Properties 28 S1 YES
ExternalTransaction 28 S1 YES

5.2 Fault Injection Campaign

A total of 31 injection points with integer, long, string and objects data type are injected.
We also vary the repetition pattern and the start time. Table 3 resumes the campaign.

1 Ideal and acceptable limit values according to [15]. These values were obtained in tests

conducted over a period of three years, in which over 20,000 Java classes where collected
and analyzed.

 Using Stratified Sampling for Fault Injection 17

Table 3. The Campaign Experiments’ Distribution

Classes of
Experiments

Start Time
Repetition

Pattern

Number of
Parameters/

Return
Values

Injected in S1

Number of
Parameters/

Return
Values

Injected in S2

Total
Injection

O1P
First

Occurrence
Permanent 31 4 35

O1T Transient 31 4 35
O1I Intermittent 31 4 35

O2P
After First
Occurrence

Permanent 31 4 35

O2T Transient 31 4 35
O2I Intermittent 31 4 35

 Total N° of
Experiments

 186 24 210

5.3 Experimental Results Analysis

From a total of 210 injections, 24 are performed on stratum S2 and 186 on S1. On
stratum S2, 20 injections are type I (which cause no violation on Ozone’s behaviour
nor on stored data), and 4 are type EXC OO7 (which are tolerated by the system,
causing the execution as well as all the queries performed to terminate normally). On
stratum S1, 180 injections are type I. Among the other injections one of them is type
A (which did not terminate normally and impacted the system leading it to a failure);
the other five injections are type N (which presented no abnormality in Ozone’s

0

20

40

60

80

100

120

140

160

180

N
on

-
E

ff
ec

tiv
e

T
ol

er
at

ed

Fa
ilu

re

N
on

-
E

ff
ec

tiv
e

T
ol

er
at

ed

Fa
ilu

re

S1 S2

Fig. 2. Strata’s Results

18 R.L.O. de Moraes et al.

interface but the queries could not be performed, pointing that the stored data was
corrupted, which in turn violated the ACID properties). To check stored data, we
make a new connection with the database, invoke a query match (in which the root
objects are checked) and a query traversal (which allows us to check the assembly
hierarchy). Figure 2 presents the results for each stratum.

These results show that although the classes with higher WMC are more prone to
errors than the ones with lower WMC, the impact of their faults in the system is not
severe. This leads us to consider, in further experiments, other factors to define the strata.

6 Conclusions and Future Work

This work presents the use of stratified sampling for robustness testing purposes. The
idea is to select components to inject in each stratum, instead of randomly selecting
them from the whole set of system components. To define the strata, we use a
complexity metric, WMC. The components are in fact divided into two strata: one for
component with higher WMC value than the threshold value of this metric, and the
other for lower WMC value than the same threshold value. We apply the approach for
testing a database component, Ozone.

We perform experiments to evaluate the robustness of an off-the-shelf (OTS)
component. Using a fault injection technique, we inject errors at chosen interfaces
into Ozone.

The results show that Ozone’s behaviour was different for each stratum, as
expected. However, differently from our expectations, the stratum containing the
classes with higher WMC does not produce the most severe failures; they do not
cause database corruption.

In a previous work [10], the classes were selected according to several objected-
oriented metrics selecting the classes with higher risk. In that work, the risk depended
on various factors; among them the WMC metric.

This work is based on a single metric, the WMC, to select the Ozone classes in
which to inject. The results show that the exclusive use of this metric is not sufficient
to choose the strata. Other factors should be taken into account. For example, in the
aforementioned work [11], we analyse the dependences among Ozone and OO7
classes. The results obtained are more promising results, highlighting that the
dependence is more important in [10] than the WMC metric. Furthermore, the
methods that implement a critical function in the system must be considered as a
selection criterion, as shown in [10].

Further experiments are envisaged to define other criteria for stratification. As a
long term goal, we intend to use stratified sampling to obtain inferences about a
system’s reliability.

Acknowledgment. This research is partly supported by CNPq – Brazil’s National
Council for Scientific and Technological Development – through the ACERTE
project.

 Using Stratified Sampling for Fault Injection 19

References

Bach, J.: Heuristic risk-based testing. Software Testing and Quality Engineering Magazine,
(1999)

Beydeda, S., Volker, G.: State of the art in testing components. In: Proc. Of the International
Conference on Quality Software, (2003)

Carey, M. J., DeWitt, D. J., Naughton, J. F.: The OO7 Benchmark. http://www.columbia.edu/,
(1994), recovered February (2005)

Chidamber, K.: Principal Components of Orthogonal Object-Oriented Metrics.
http://satc.gsfc.nasa.gov, (1994), recovered November (2004)

de Millo, R. A., Li, T., Mathur, A. P.: Architecture of TAMER: A Tool for dependability
analysis of distributed fault-tolerant systems. Purdue University, (1994)

Fabre, J-C, Rodriguez, M., Arlat, J., Sizum, J-M.: Building dependable COTS microkernel-
based systems using MAFALDA. In: Proc. of 2000 Pacific Rim International Symposium
on Dependable Computing - PRDC’00, Los Angeles, USA, (2000)

Hsueh, M. C., Tsai, T., Iyer, R.: Fault Injection Techniques and Tools. In: IEEE Computer,
(1997), pp. 75-82

Koopman, P., Siewiorek, D., DeVale, K., DeVale, J., Fernsler, K., Guttendorf, D., Kropp, N.,
Pan, J., Shelton, C., Shi, Y. Ballista Project : COTS Software Robustness Testing. Carnegie
Mellon University, http://www.ece.cmu.edu/~koopman/ballista/ (2003)

Martins, E., Rubira, C. M. F., Leme N.G.M.: Jaca: A reflective fault injection tool based on
patterns. In: Proc. of the 2002 Intern Conference on Dependable Systems & Networks,
Washington D.C. USA, Vol. 23(267), (2002), pp. 483-487

Moraes, R., Martins, E.: A Strategy for Validating an ODBMS Component Using a High-Level
Software Fault Injection Tool. In: Proc. of the First Latin-American Symposium, LADC
2003, pages 56-68, São Paulo, Brazil, (2003)

Moraes, R., Martins, E., Mendes, N.: Fault Injection Approach based on Dependence Analysis.
In: Proc. of the First International Workshop on Testing and Quality Assurance for
Component-Based Systems – TQACBS, (2005)

Ozone, Object Oriented Database Management System, www.ozone-db.org/, (2004)
Podgurski, A., Yang, C.: Partition Testing, Stratified Sampling and Cluster Analysis. In:

Proc.of the 1st ACM SIGSOFT symposium on Foundations of software engineering. pp.
169-181, Los Angeles, USA, (1993)

Pressman, R. S.: Software Engineering a Practitioner Approach, 4th edition. Mc Graw Hill1,
(1997)

Rosenberg, L., Stapko, R., Gallo, A.: Risk-based Object Oriented Testing. In: Proc. 13th
International Software / Internet Quality Week (QW2000), San Francisco, California USA,
(2000)

Transaction Processing Performance Council “TPC-C – Benchmarks”. http://www.tpc.org/tpcc/
default.asp, (2005)

Triola, M. F.: Introcução a Estatística, 7th Edition. LTC Editor, Rio de Janeiro, (1999) (in
portuguese)

Voas, J., McGraw, G.: Software Fault Injection: Inoculating Programs against Errors. John
Wiley & Sons, New York, EUA, (1998)

Voas, J. M., Charron, F., McGraw, G., Miller, K., Friedman, M.: Predicting how Badly Good
Software can Behave.In: IEEE Software, (1997), pp. 73–83

Voas, J.: Marrying Software Fault Injection Technology Results with Software Reliability
Growth Models. Fast Abstract ISSRE 2003, Chillarege Press, (2003)

Voas, J.: An Approach to Certifying Off-the-Shelf Software Components. In: IEEE Computer,
31(6), (1998), pp. 53-59

C.A. Maziero et al. (Eds.): LADC 2005, LNCS 3747, pp. 20 – 34, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Methodology for the Automated Identification of
Buffer Overflow Vulnerabilities in Executable Software

Without Source-Code

João Durães1 and Henrique Madeira2

1 ISEC/CISUC - Polytechnic Institute of Coimbra,
3030 Coimbra, Portugal
jduraes@dei.uc.pt

http://www.cisuc.uc.pt/view_member.php?id_m=80
2 DEI/CISUC - University of Coimbra,

3030 Coimbra, Portugal
henrique@dei.uc.pt

http://www.cisuc.uc.pt/view_member.php?id_m=63

Abstract. This paper presents a methodology for the automated detection of
buffer overflow vulnerabilities in executable software. Buffer overflow exploi-
tation has been used by hackers to breach security or simply to crash computer
systems. The mere presence inside the software code of a vulnerability that al-
lows for buffer overflow exploitations presents a serious risk. So far, all meth-
odologies devised to mitigate this problem assume source code availability or
prior knowledge on vulnerable functions. Our methodology removes this de-
pendency and allows the analysis of executable code without any knowledge
about its internal structure. This independence is fundamental for relevant sce-
narios such as COTS selection during system integration (for which source code
is usually not available), and the definition of attackloads for dependability
benchmarking.

1 Introduction

Buffer overflow exploitation is currently a major cause of security breaches in soft-
ware systems. From January 2004 to March 2005 at least 41.7% of the reported secu-
rity holes were related to buffer overflow exploits [1] (possibly even more as some of
the exploits were not detailed and may also be related to a buffer overflow).

This problem is not recent: the well known internet worm of 1988 was based on
buffer overflow exploitation [2]. Despite the age of this problem, new cases of secu-
rity breaches based on this exploitation keep appearing regularly (e.g., the recent
Windows JPEG GDI+ case [3]). The omnipresence of this type of exploit is due to the
fact that it is based on a relatively simple software weakness (i.e., one that is prone to
exist) and much legacy code contains such weaknesses (e.g., some C library
functions).

The consequences of a well-succeeded buffer overflow attack typically include the
remote access to a root/administrator shell leading to all kinds of security breaches
such as information theft and user impersonation. Less serious consequences typically

 A Methodology for the Automated Identification of Buffer Overflow Vulnerabilities 21

imply system crash and system unavailability, leading to possible business losses.
Thus, software containing weaknesses enabling this kind of attack represents a serious
risk.

So far, research on this topic has not produced a methodology for the identification
of buffer overflow weaknesses in executable software without the need of source code
or any other previous knowledge on the software. Considering the current industry
trend of COTS-based system development, software modules containing vulnerabili-
ties leading to buffer overflow attacks are most likely included in deployed systems
and in general system integrators are not aware of this weakness, as COTS source
code is often not available. Thus, the detection of buffer overflow vulnerabilities
directly in the executable code is particularly relevant.

The successful identification of executable software containing weaknesses leading
to buffer overflow can be useful in a variety of situations:

• Decision making when choosing among different alternative COTS for sys-
tem integration.

• Wrapper development for the vulnerable software.
• Definition of attackloads for dependability benchmarking.

This paper proposes a new methodology for automated discovery of software
weaknesses that may lead to buffer overflow exploitation. The proposed methodology
has the following advantages over previous approaches:

• It does not depend on source code availability.
• It does not require prior knowledge about weak library functions.

The paper structure is as follows: in the next section we describe prior work related
to buffer overrun prevention and detection. Section 3 presents an overview of the
most common and dangerous buffer overrun attacks. Section 4 presents our method-
ology. Section 5 discusses the methodology portability, and section 6 presents several
applications scenarios. Section 7 concludes the paper.

2 Related Work

Previous research on this topic has provided several approaches to mitigate the prob-
lem of buffer overflow vulnerabilities. The RAD tool [4] uses compiler extensions
that automatically insert protections in the source code. StackGuard [5] uses a similar
approach. These approaches have strong limitations, as they can only be used within
the development team and they are useless in a COTS-based software development
scenario.

[6] uses source code static analysis aimed at the identification and correction of
weak spots. This approach is also limited to the development team and offers no pro-
tection against potential buffer overflow vulnerabilities in executable software pro-
vided by third-parties.

In [7] a run-time protection using robust implementation of previously known
weak libraries is proposed. This proposal offers some protection against third-party

22 J. Durães and H. Madeira

developed software provided that there is prior knowledge regarding known weak-
nesses. Unfortunately, this is not often the case, as the weaknesses are discovered
after a system has been compromised (that is the scenario of the internet worms based
on software vulnerabilities).

Another approach uses fault injection to insert attack code into the observed soft-
ware to measure its vulnerability (e.g., FIST [8]). However this approach modifies the
software being evaluated which turns the conclusions obtained afterwards quite dubi-
ous. The tool LibVerify referred in [7] can be used to detect vulnerabilities in execu-
table software modules; however it also relies on the modification of the observed
code.

In [9] it was shown that reverse engineering techniques can be used to discover
hidden vulnerabilities without source code. However, no systematic methodology or
tool was proposed.

TaintCheck [10] is a tool that analyses the propagation of unsafe data through the
system in an attempt to discover attacks during runtime. Although this tool does not
require source code availability, it is limited to runtime detection and cannot be used
for attack avoidance purposes. It also causes performance overhead in the target soft-
ware.

SAFE [11] is a tool that performs static analysis of executable software to detect
the presence of malicious code based on instruction patterns and signatures. Although
the techniques employed in the analysis of the executable code resemble reverse-
engineering techniques and are independent of source code, they do not target the
detection of buffer overrun weaknesses.

In [12] is presented another technique based on static analysis of executable soft-
ware and reverse engineering techniques. Although independent from source code
availability, it specifically tied to vulnerabilities surrounding unsafe use of the C func-
tion sprintf.

3 Buffer Overflow and Stack Smashing

The simplest and most common form of buffer overflow attack is known as stack
smashing [13]. This attack consists of supplying more data to a given software mod-
ule than the amount of data it can store in its internal stack-resident buffer. While
storing the data, the software module writes beyond the end the buffer and eventually
overwriting the return address, which is also stored in the stack (see Figure 1). The
value that replaces the return address is usually the address of a small code portion
that performs an attack action (usually the spawning of a shell). When the function
terminates the return address is fetched from the stack and the execution jumps to the
location specified by the fake address which points to malicious code crafted by the
attacker.

The malicious code is usually supplied as part of the data being fed to the buffer.
Thus, software modules that use input data are strong candidates for stack smashing
attempts. If the attack is successful, the attacker code is executed in context of the
running process. This means that the malicious code is executed with the identity and

 A Methodology for the Automated Identification of Buffer Overflow Vulnerabilities 23

privileges of the process owner. If the process belongs to a system level service (e.g.,
a web server) its privileges will be typically high. Thus, depending on the target na-
ture, the malicious code has potentially complete access to system.

Return
address

Pa
ra
m

s.
Lo

ca
l v

ar
ia
bl
es

Stack

A local
variable

A local
array

Upper
addresses

Return
address

Stack

A) Typical stack layout B) Compromised return address

X
Values were
written into the
array past its
limits and the
function return
address was
overwritten

Return
address

Pa
ra
m

s.
Lo

ca
l v

ar
ia
bl
es

Stack

A local
variable

A local
array

Upper
addresses
Upper
addresses

Return
address

Stack

A) Typical stack layout B) Compromised return address

X
Values were
written into the
array past its
limits and the
function return
address was
overwritten

Fig. 1. Stack smashing overview. The typical stack layout consists of the function local vari-
ables followed by the function return address (left). If one of the local variables is overwritten
with more bytes than those it can hold, the return address may be corrupted and cause the exe-
cution flow to be hijacked to arbitrary code (right). Buffers (arrays) are a type of variable which
are prone to be filled with more data than they can hold.

Stack smashing is based on two simple factors: a) the stack grows towards the
lower addresses, and b) normal operations performed on variables, such as filling a
buffer, are carried towards the upper addresses. Thus the single basic software weak-
ness required to enable a stack smashing attack is the lack of explicit checks for the
limits of buffers. Unfortunately, programmers often use assumptions regarding the
maximum space needed for a given byte sequence (e.g., a string) and often omit
checks to validate those assumptions.

All the platforms where the stack grows towards the lower addresses are suscepti-
ble to stack smashing. This type of architecture represents the vast majority of plat-
forms used nowadays, which makes the problem of stack smashing omnipresent.

4 Methodology Proposal

Our methodology is based on the fact that the weakness necessary for buffer overrun
exploitation can be detected through the automated analysis of the machine-code
instructions of the observed software (in fact, exploits are sometimes discovered
through reverse engineering, although in a non-automated fashion [9]).

The methodology is composed by two main phases. During the first phase we use
the knowledge about the weakness leading to buffer overflow as a search pattern and
analyze the executable code to identify probable locations containing this weakness.
This analysis is performed in a similar way as a software fault emulation technique
developed in our group [14, 15]. The main result of the first phase is the characteriza-
tion of the software functions (modules) as “safe” or “suspect”.

24 J. Durães and H. Madeira

The second phase of our methodology consists of a robustness test of the “suspect”
functions in order to confirm that the suspect functions are indeed vulnerable (it may
be the case that some suspect functions are just “false positive”). This test consists on
supplying values to the function parameters that are likely to cause a buffer overflow.
This is similar to API robustness testing methods [16,17]. However, the values sup-
plied to the parameters are specifically intended to cause buffer overruns and are
based on the knowledge obtained during the first phase. This drastically reduces the
time needed to run the experiments and increases the chances of activating existing
weaknesses.

Figure 2 presents a visual overview of the methodology. We detail the two steps of
our methodology in the following sub-sections.

Analysis of
the

executable
code

Software
target

Suspect
functions

Test
information

1

Software
target

vulnerable
functions

2
Testing

Analysis of
the

executable
code

Software
target

Suspect
functions

Test
information

1

Software
target

vulnerable
functions

2
Testing

Fig. 2. Methodology overview. The first step consists of the analysis of the observed executable
code to identify the existence of buffers in the stack and infer how such buffers are manipu-
lated. This analysis provides a preliminary classification of clear/suspect functions and informa-
tion regarding which values should be used to test the suspect function during the second step.

4.1 Phase 1 − Identification of Potential Weakness Locations

The first phase comprises the analysis of the low-level code of the software being
observed. In this context low-level code means the executable file format (e.g., PE
format in the Wintel platform). The methodology only requires the knowledge of the
software starting address and does not need any meta-data information or compiler-
generated debug information.

The primary objective of phase 1 is to identify and characterize the software mod-
ules regarding its usage of stack space and the relationship existing between each
module. In this context, module means “function” or “procedure”. To avoid conflict
with other common usages of the term “module” such as in “system module” or even
“COTS”, we refer from now on the software functions and procedures as simply
“functions.”

During this step the low-level code is analyzed and the instruction sequence of its
functions interpreted (within the limits of an automated analysis). The goal is to locate
the code signatures of the programming constructs that are related to buffer use and
buffer-limit check omission. Note that the process of “signature location” should not
be interpreted as a simple byte-scan of the observed software. In fact, it is a much

 A Methodology for the Automated Identification of Buffer Overflow Vulnerabilities 25

more complex process during which the meaning of the low-level instructions is taken
into account to detect the distinctive marks of the programming constructs related to
the weaknesses required for buffer overflow and stack smashing attacks.

The two distinctive constructs required for a successful smash stacking attack are:

• The existence of a buffer stored in the stack.
• Instructions to fill the buffer without properly checking the buffer bound-

ary.

It is worth noting that the buffer and the instructions to fill it with data do not need
to be located in the same function: the function containing a buffer may call a second
function supplying the buffer to be filled within that second function. In fact, this is
quite a common scenario (see example in Figure 3). Thus the relationship between
functions must also be examined.

The relationship between function of the type “function f has a buffer – function g
has access to f’s buffer” is easily described through a graph where each node repre-
sents a function and the arcs between nodes represent an access from on function to
another’s internal buffer (Figure 3). This graph is built during the analysis of the code
analysis of the phase 1.

void open_some_file() {

char filename[200]; /* should be enough */
scanf(“%s”, filename);

...

}

void open_some_file() {

char filename[200]; /* should be enough */
scanf(“%s”, filename);

...

}

open_some_file scanf

Has local
buffer

Uses
buffer

open_some_file scanf

Has local
buffer

Uses
buffer

Fig. 3. Example of an unsafe buffer use involving two different functions (top). The
open_some_file function contains the buffer and passes its address to the scanf function which
uses this address ti fill the buffer without checking the size of the buffer. The relationship be-
tween the functions open_some_file and scanf is represented in the graph (bottom). Note that
function scanf may itself call a third function passing the address to the buffer. However this
would not change the analysis feasibility: the third function would be analyzed regarding its use
of the buffer whose address it receives.

All functions that remain tagged as “suspect” are tested during phase 2. It is worth
recalling that tests performed during phase two are defined based on information
discovered during phase one. The first phase comprises seven tasks which are de-
scribed next:

Task 1: Function Identification. This task consists on a recursive analysis of the
target code for the identification of all its functions. If the observed software is an

26 J. Durães and H. Madeira

executable program, then the starting point of the analysis is the program entry point.
If the observed software is a library module, such as a windows dll, then each ex-
ported function is a starting point. During the analysis, every time a call instruction is
detected the target address is added to the list of functions to analyze, unless its ad-
dress is in the list of functions already analyzed. This task is similar to a breadth-first
tree traversal algorithm. The output is a list of all the functions accessible in the soft-
ware being observed.

Task 2: Function Call-Called Relationship. This task is in fact performed at the
same time as the previous one. The output is a graph establishing all relationships
between calling and called functions.

Task 3: Stack Space Analysis. This task comprises the analysis of each function
resulting from task 1 in order to determine the existence of buffer in the stack space of
each function. There are two main clues that can be used to infer the existence of such
buffers. One is the size and layout of the stack storage space (how many variables and
what size they are), and the second is the type of address mode used by the instruc-
tions that deal with stack locations.

The stack size can be directly discovered in the function preamble. Following the
example of the IA32 architecture, the number of bytes that is subtracted to the esp
register is the amount of memory used to store the function local variables. Although
there can be slight variations according to the processor or programming model used
(e.g., for 16 bits programs the register is sp instead of esp), this value can always be
discovered.

The layout of local stack storage space offers information on how many distinct
variables are there and what is the size of each one. This information can be found by
analyzing the code of the function and collecting all references to locations having the
register ebp as base address and using a negative offset (once again there are slight
variations in practice but the method remains applicable). As mentioned, there are two
important characteristics that can be used to infer if a given stack-resident variable is
a buffer: its size and the address mode used in the instructions which reference it.
Buffers usually have a large size, and the instructions that refer to it usually use an
base-indexed address mode (we present an example later on that illustrates this type
of analysis).

Task 4: Function Parameter Analysis. This task is aimed at the identification of the
type of the function parameters of potentially suspect functions. We are specifically
interested in pointer type parameters. If a function does not have a local buffer but
receives a pointer as parameter, then it is possible that the pointer points to the ad-
dress of a buffer belonging to the calling function. It is worth mentioning that it is
possible to infer if a given parameter is a pointer through the analysis of the instruc-
tions that use its value. All parameter are referred through positive offsets based on
the register ebp (other processors use other registers but the method is the same). If a
value obtained from such a location is later used as (part of) the destination address in
a mov instruction, then it is probably a pointer.

 A Methodology for the Automated Identification of Buffer Overflow Vulnerabilities 27

Task 5: Local Buffer Use. This task applies to all functions found earlier that have a
local buffer. During this task the code of the function is analyzed to determine the
existence of instruction patterns related to the filling of the buffer with data or the
calling of another function using the address of the buffer as a parameter. The first
case can be detected through the occurrences of instructions patterns such as loops
containing mov instructions, or special prefixed mov instructions such as rep movs.
The calling of a function passing a pointer to the local buffer can be easily detected
through the occurrence of load effective address instruction using the buffer followed
by a push instruction before the call instruction (e.g., lea reg, [ebp-offset], push reg,
call addr).

Task 6: External Buffer Filling Detection. This task applies to the functions that
receive a pointer as parameter. During this task the code of the function is analyzed to
determine the existence of instruction patterns related to the filling of a buffer using
that pointer or the calling of another function using the pointer (this process is similar
to task 5).

Task 7: Function Classification. This task is responsible for the classification of
functions as suspect or clear. All functions are initially tagged as clear. The rules that
cause a function to be tagged as suspect are the following:

• Rule 1: A function that has a local buffer and fills it without checking the
limits using a constant value equal to the size of the buffer is tagged as sus-
pect.

• Rule 2: A function that receives a pointer and uses it as destination of a
buffer-filling operation is tagged as suspect.

• Rule 3: A function that receives a pointer and uses it as parameter to another
suspect function is tagged as suspect.

• Rule 4: A function that has a local buffer and passes its address to another
function already tagged as suspect is tagged as suspect as well.

• Rule 5: All functions that reside outside the software under observation and
receive a pointer as parameter are automatically tagged as suspect (calls to
these functions are discovered during task 5).

It is worth mentioning that all functions that do not call other functions, or do not
supply pointers to the called functions, must be processed before the others.

4.2 Example of Information Extraction from Low-Level Code

In order to illustrate the kind of analysis that is performed within each function, and to
exemplify how the relevant information can be extracted from low-level instructions,
we present a low-level code example. Figure 4 presents the instruction sequence of a
given function. From the analysis of its instruction sequence we can immediately
discover the following: there is a local variable with size 200; this variable is most
likely a buffer due to its size and the kind of address mode used to access it (mov
[ebp+edx-204], …); there is a loop which copies bytes into the buffer; the loop is
controlled by the value 200 (probably the size of the buffer); the first parameter

28 J. Durães and H. Madeira

(ebp+12) appears to be used as the number of bytes to place in the buffer; the second
parameter (ebp+8) is used as source of the bytes to place in the buffer.

push ebp
mov ebp, esp
sub esp, 204
mov [ebp-4], 0

next-iter:
mov eax, [ebp-4]
cmp eax, [ebp+ 8]
jge exit-loop
cmp [ebp-4], 200
jge exit-loop

mov ecx, [ebp+ 12]
add ecx, [ebp-4]
mov edx, [ebp-4]
mov al, [ecx]
mov [ebp+ edx-204], al

inc [ebp-4]
jmp next-iter

exit-loop:
mov esp, ebp
pop ebp
ret 0

Local space uses 204 bytes

Variable at ebp-204 is 200
bytes long. It is probably an
array (the only local vars. are
ebp-204 and ebp-200)

Condition based on the value
of a function parameter
(weak test)

Condition based on a hard-
wired value (probably the
array size: stronger test)

Filling the (probable) array with
data from parameter + this is
happening inside a loop

We are inside a loop

Another clue to an array

push ebp
mov ebp, esp
sub esp, 204
mov [ebp-4], 0

next-iter:
mov eax, [ebp-4]
cmp eax, [ebp+ 8]
jge exit-loop
cmp [ebp-4], 200
jge exit-loop

mov ecx, [ebp+ 12]
add ecx, [ebp-4]
mov edx, [ebp-4]
mov al, [ecx]
mov [ebp+ edx-204], al

inc [ebp-4]
jmp next-iter

exit-loop:
mov esp, ebp
pop ebp
ret 0

Local space uses 204 bytes

Variable at ebp-204 is 200
bytes long. It is probably an
array (the only local vars. are
ebp-204 and ebp-200)

Condition based on the value
of a function parameter
(weak test)

Condition based on a hard-
wired value (probably the
array size: stronger test)

Filling the (probable) array with
data from parameter + this is
happening inside a loop

We are inside a loop

Another clue to an array

Fig. 4. Example: machine-code instruction sequence pertaining to a small function having a
local buffer. The existence of the buffer is deduced from the analysis of the stack layout and the
references to it in the code. The function has a portion of code that fills the buffer. The analysis
of that portion of code provides clues on the existence of buffer boundary checking.

From there we can conclude the relevant facts used as basis for the proposed meth-
odology:

 There is a variable of size 200 in the stack that is very likely a buffer.
 The (possible) buffer is being filled with values supplied from a source out-

side the function. This has two consequences: a) it increases the probability
that the large variable is indeed a buffer, and b) the content stored in the
buffer is not determined by the function itself as its source is supplied as a
parameter. If nothing else were known about this function it would be tagged
as suspect.

 The loop where the buffer is filled is explicitly controlled by a hard-wired
value which is equal to the size of the buffer. This leads to the conclusion
that this function is not vulnerable to stack smashing and, as such, the func-
tion remains tagged as clear.

 A Methodology for the Automated Identification of Buffer Overflow Vulnerabilities 29

In the example presented above one important fact discovered during the function
analysis that is relevant to the testing phase is the following: if more than 208 bytes
are stored in the buffer, a stack smashing will occur (see Figure 5). Should the func-
tion not check explicitly for the buffer limit, then it would have been tagged as sus-
pect and tested during phase two. In such case the values supplied as parameters
would include a value larger than 208 (first parameter) and a pointer to a sequence of
more that 208 bytes (second parameter). Should the buffer overflow occur and smash
the stack, the function would most likely crash because the return address was over-
written.

Return
address

EBP
(4 bytes)

4 bytes

200 bytes

Some local
variable

Local
buffer

20
8

b
yt

es

Return
address

EBP
(4 bytes)

4 bytes

200 bytes

Some local
variable

Local
buffer

20
8

b
yt

es

Fig. 5. Stack layout of the example presented above. If more than 208 bytes are stored in the
local buffer, the return address is overwritten. Thus, the testing of the example function during
step 2 must necessarily include the calling of the function supplying at least 209 bytes to store
in the buffer.

4.3 Phase 2 − False Positive Elimination

The second step of our methodology is devoted to the test of the functions tagged as
suspect in the previous step. This step is required because the analysis process con-
ducted during step one of our methodology does not guarantee that all functions
tagged as suspect are indeed vulnerable. In fact, the general problem of using one
program to decide the correctness of another program has been shown to have no
general solution. Our approach remedies this by taking a pessimistic approach during
the first step and tagging every function that may be vulnerable to stack smashing as
suspect. During the second step the false positives are eliminated through specific
testing.

The testing process is conducted in a manner similar to traditional robustness test-
ing such as [16]: the observed software is executed and supplied with specially tai-
lored inputs to attempt to uncover its internal vulnerabilities. However, there are two
very important differences when comparing our method to traditional robustness
testing. The first is in the fact that not every function is tested. Only those that were
tagged as suspect are subjected to testing. This reduces the time needed for the ex-
periments. The second difference is in the fact that the values supplied to the func-
tions being tested are based on the information discovered during the first step, and
not just based on the function parameter input domains as in robustness testing. This
increases the likelihood of confirming the vulnerability of the function being tested
and again reduces the time needed for the testing experiments.

30 J. Durães and H. Madeira

As mentioned, there are basically two formats that the observed software can take:
a self-contained executable program, and a library such as a dynamic link library. The
testing process of functions belonging to libraries is a straightforward process. Each
suspect function is directly invoked from the experimental setup. The values supplied
as parameters are those resulting from the information discovered in the step one.

It is possible that some of the functions being tested are dependent on (call) func-
tions external to the software being tested (e.g. operating system API functions). Ex-
ternal functions which are supplied with the address of buffers are relevant for the
testing process (recall that such situations are identified during step one). The fact that
the address of an internal buffer is supplied to the exterior of the software (which is
not directly controlled by the programmer) exposes a possible vulnerability. To verify
if that vulnerability is in fact present these calls are intercepted and the memory at the
address supplied is filled in an attempt to cause a stack smashing.

The testing of a self-contained program is similar to the testing of a library. The
most relevant difference is the fact that the testing process is entirely guided through
the interception of external functions being called from within the program. This is
due to the fact that a self-contained program has exactly one entry point and usually
do not export functions as a library does.

5 Methodology Portability Discussion

Our methodology is based on the automatic analysis of executable code to extract
information on possible vulnerabilities. This information is present in the very struc-
ture of the executable (e.g., the stack layout) and in the patterns of the instruction
sequences. Software programs are in fact a kind of standardized constructs: programs
are organized in code, data, heap and stack; the code is organized in modules which
call another modules; each module stores local variables in stack, and so on. Although
specific details may vary, a structured programming model is used on all platform
architectures (see example in Figure 6). Thus, our methodology is in itself portable as
there is nothing in the methodology tied to a specific platform architecture or program
model (the IA32 architecture was used in the paper only as an example).

Obviously, different processors have different instructions sets. However, the sole
consequence of that fact is that there must be a specific implementation of the meth-
odology for each intended target processor. This should not be viewed as a methodol-
ogy impairment since one implementation able to analyze software for several plat-
forms is not necessarily better than several implementations targeting one platform
each. Different implementations differ mostly on the meaning assigned to each proc-
essor instruction. The algorithm of the methodology remains the same. Most platform
architectures and processors share a common programming paradigm. More specifi-
cally, the same source-code constructs tend to result in similar instruction patterns.
Obviously, there are differences in the instruction patterns, especially in what con-
cerns optimization strategies. However, the analysis process of phase one of our
methodology is easily adapted to the particular characteristics of different processors.

 A Methodology for the Automated Identification of Buffer Overflow Vulnerabilities 31

Code
example

Tipical instruction
sequence

Explanation

procedure entry

tasks:
set frame stack and
save registers

ldgp $gp,0,($27)
lda $sp,-framesize ($sp)
stq $ra,0($sp)
stq $fp,8,($sp)
mov $sp,$fp

lod procedure value
Framesize for local vars and saved regs
Save return address
save fp
sets framepointer

Fig. 6. Example of Alpha processor instructions related to the entry-point and stack frame
initialization. As in the case of the IA32 architecture, the code is structured in a predictable way
and all the information necessary to our methodology can be extracted from the code.

6 Application Scenarios

Several application scenarios can benefit from this methodology: evaluation of exist-
ing systems for which no source-code is available, COTS evaluation in COTS-based
software development, and definition of attackloads for security testing and bench-
marking.

The evaluation of software systems from a security perspective is a kind of evalua-
tion that is severely impaired when no source code is available. Many security flaws
are based on poor programming techniques which traditionally can only be detected
by analyzing the system source code. The methodology presented in this paper en-
ables the detection of security flaws based on buffer overflow exploitation without
requiring source code.

Given the current industry trend of building computer systems through the integra-
tion of general-purpose components off-the-shelf, there is an increasing risk of system
failure due to the integration of vulnerable components. Usually, COTS source code
is not available. This foils most attempts to effectively test these components from a
security perspective. As our methodology does not depend on source code availability
(or even the availability of any kind of information about the internal architecture of
the target software), it presents a valuable tool in the effort of testing general purpose
COTS software components.

One recent effort in the dependability research community is the definition of de-
pendability benchmarks [18, 19, 20, 21]. Given the infeasibility of producing 100%
error free systems, dependability benchmarks are assuming a crucial role in the
evaluation of systems. A simplified definition of dependability benchmarking can be
stated as being an extension to the traditional benchmarks concept where new compo-
nents are added. These new components are related to the observation of the target
system in the presence of faults: this means the use of fault injection techniques and
the use of faultloads. The definition of faultloads is perhaps the most complex task
when proposing a new benchmark. One particular class of faults that is very hard to
define and specify in a faultload is the malicious fault (i.e., the definition of an attack-
load). These are not faults in the traditional sense; instead they are user actions spe-
cifically aimed at the exploitation of system vulnerabilities. One reason that makes
malicious faults hard to specify is that the vulnerabilities exploited by attacks are
usually unknown (except for the attacker) and are very dependent on the system being

32 J. Durães and H. Madeira

attacked. In this scenario, our methodology can be very useful in the detection of
weaknesses in commonly used software libraries. The weaknesses discovered can
then be used to specify an attack which would be relevant to the class of systems that
employs the observed software library.

Another application scenario that should be taken into account is the possible use
of this methodology by malicious hackers to discover weaknesses to exploit. Thus, it
is necessary to consider if the existence of such a methodology provides more advan-
tages than disadvantages. This question is in fact a particularization of the more gen-
eral issue of open software vs. close software: is the open software more secure be-
cause there are more programmers with access to the source code that discover more
bugs, or is the closed software more secure because the malicious hackers do not have
access to the source code. Although both positions are defensible (with perhaps more
supporters to the open-source), there is a general consensus that the advantages of the
source code availability (“more eyes make all bugs shallow” [22]) overcomes its
disadvantages (see [23]). Thus, it is our opinion that the existence of our methodology
does not increase the risk to software systems while at the same time it provides a
valuable means for detecting vulnerabilities in third-party software (this is in fact the
same reasoning behind the existence of tools to test network security flaws).

7 Conclusion

We presented a methodology for the automated discovery of vulnerabilities leading to
buffer overrun and stack smashing attacks. As nearly half of all the successful com-
puter-system attacks are based on the exploitation of buffer overrun and stack smash-
ing vulnerabilities, a technique to detect these vulnerabilities is particularly useful.
The methodology does not depend on the availability of source code nor in any prior
knowledge about known weak library functions. This enables the application of the
methodology in the COTS integration scenario, which is currently a major industry
trend. The benefits deriving from this methodology are several: the integration of
vulnerable software can be avoided; if no other choice is available, wrappers can be
built to remove the vulnerabilities. The definition of attackloads can also be based on
the vulnerabilities discovered through the application of this methodology. Given the
increasing number of vulnerabilities being exploited to attack computer systems, the
definition of attackloads is a problem of high relevance.

Another important aspect of this methodology is the fact that it is not tied to a par-
ticular processor and can be implemented for any given platform architecture.

References

1. FrSIRT – French Security Incident Response Team (available online at http://www.frsirt.
com/ exploits/)

2. M. Eichin, J. Rochlis, “With microscope and tweezers: An analysis of the internet virus of
November 1988”, Proceedings of the 1989 IEEE Computer Society Symposium on Secu-
rity and Privacy.

 A Methodology for the Automated Identification of Buffer Overflow Vulnerabilities 33

3. Microsoft Security Bulletin MS04-028, "Buffer Overrun in JPEG Processing (GDI+)
Could Allow Code Execution”, available at www.microsoft.com/technet/security/bulletin/
MS04-028.mspx.

4. T. Chiueh, F. Hsu, "RAD: A Compile Time Solution for Buffer Overflow Attacks", Pro-
ceedings of the 21st IEEE International Conference on Distributed Computing Systems
(ICDCS), April 2001

5. C. Cowan, et al, "StackGuard: Automatic Detection and Prevention of Buffer-overrun At-
tacks", Proceedings of the 7th USENIX Security Symposium, January 1998

6. D. Larochelle, D. Evans, “Statically Detecting Likely Buffer Overflow Vulnerabilities”,
Proceedings of the 2001 USENIX Security Symposium, Washington, D. C., August 13-
17, 2001

7. A. Baratloo, N. Singh, T. Tsai, “Transparent Run-Time Defense Against Stack Smashing
Attacks”, Proceedings of the 2000 USENIX Annual Technical Conference, San Diego,
California, USA, June 18-23, 2000.

8. A. Ghosh, T. O'Connor, "Analyzing Programs for Vulnerability to Buffer Overrun At-
tacks", Technical Report, Reliable Software Technologies, January 1998

9. Joey__ (Nishad Herath), “Advanced Windows NT Security”, The Black Hat Briefings’00,
April 2000, Singapore.

10. J Newsome, D Song, “Dynamic Taint Analysis for Automatic Detection, Analysis, and
Signature Generation of Exploits on Commodity Software”, Proceedings of the 12th An-
nual Network and Distributed System Security Symposium – NDSS-05, February 2005.

11. M. Christodorescu, S. Jha, “Static Analysis of Executables to Detect Malicious Patterns”,
Proceedings of the 12th USENIX Security Symposium, August 2003

12. T. Gillette, “A Unique Examination of the Buffer Overflow Condition”, MsC Thesis,
2002, College of Engineering of the Florida Institute of Technology.

13. Aleph One, “Smashing the stack for fun and profit”, Phrack Magazine, 49-14, 1998
14. J. Durães, H. Madeira, "Emulation of Software Faults by Educated Mutations at Machine-

Code Level", Proceedings of the Thirteenth IEEE International Symposium on Software
Reliability Engineering, ISSRE’02, November 2002, Annapolis MD, USA.

15. J. Durães, H. Madeira, “Definition of Software Fault Emulation Operators: a Field Data
Study”, in Proceedings of International Conference on Dependable Systems and Networks
- DSN2003, San Francisco, 2003 (IEEE William Carter Award for the best student paper).

16. P. Koopman et al, “Comparing Operating Systems using Robustness Benchmarks”, Pro-
ceedings of the 16th International Symposium on Reliable Distributed Systems, SRDS-16,
1997

17. J. C. Fabre, M. Rodríguez, J. Arlat, F. Salles, and J. M. Sizun, "Bulding Dependable
COTS Microkernel-based Systems using MAFALDA", in Proceedings of the 2000 Pacific
Rim International Symposium on Dependable Computing - PRDC'00, 2000, pp. 85-92

18. A. Brown, D. Patterson, "Towards availability benchmark: a case study of software RAID
systems", Proceedings of 2000 USENIX Annual Technical Conference, San Diego, Cali-
fornia, USA, June 18-23, 2000, pp 263-276.

19. K. Kanoun, J. Arlat, D. Costa, M. Dal Cin, P. Gil, J-C. Laprie, H. Madeira, N. Suri,
“DBench: Dependability Benchmarking”, Supplement of International Conference on De-
pendable Systems and Networks, DSN-2001, Göteborg, Sweden, 2001

20. Marco Vieira, and Henrique Madeira, “A Dependability Benchmark for OLTP Applica-
tion Environments”, 29th International Converence on Very Large Databases, VLDB
2003, Berlim, Germany, Sept. 9-12, 2003

34 J. Durães and H. Madeira

21. João Durães, Marco Vieira, and Henrique Madeira, “Dependability Benchmarking of
Web-Servers”, The 23rd International Conference of Computer Safety, Reliability and Se-
curity, SAFECOMP 2004, Potsdam, Germany, September 21-24, 2004.

22. E. Raymond, “The Cathedral and the Bazaar”, 1998, available at http://tuxedo.org/~esr/
writings/cathedral-bazaar/

23. R. Anderson, “Security in Open versus Closed Systems – the dance of Boltzmann, coarse
and moore”, Proceedings of the Open Source Software Economics, Law and Policy, Tou-
louse, France, June 20-21, 2002, available at http://www.ftp.cl.cam.ac.uk/ftp/users/rja14/
toulouse.pdf

Quantitative Evaluation of Distributed
Algorithms Using the Neko Framework: The

NekoStat Extension

Lorenzo Falai1, Andrea Bondavalli1, and Felicita Di Giandomenico2

1 DSI - Università di Firenze, Viale Morgagni 65, I-50134 Firenze, Italy
{lorenzo.falai, bondavalli}@unifi.it

2 ISTI CNR, Via Moruzzi 1, I-56124 Pisa, Italy
digiandomenico@isti.cnr.it

Abstract. In this paper we present NekoStat, an extension of the Neko
tool. Neko is a Java framework and a communication platform that per-
mits rapid prototyping of distributed applications; it provides tools to or-
ganize the applications using a layered architecture, with the network(s)
at the bottom of the architecture. Neko is also a communication platform
that allows sending and receiving of generic Java objects. Distributed
systems realized within the Neko framework can be exercised both on
real networks and on simulated ones, without changes in the application
code. We constructed an extension to plain Neko, called NekoStat; it
permits attainment of quantitative evaluations of distributed systems.
In the paper we describe this extension; we motivate the development
of NekoStat, we describe the design and finally we illustrate its usage
through a case study, which highlights the usefulness of NekoStat.

1 Introduction

The quantitative evaluation of performance and of dependability-related at-
tributes is an important activity of fault forecasting ([1]), since it aims at proba-
bilistically estimating the adequacy of a system with respect to the requirements
given in its specification. Quantitative system assessment can be performed using
several approaches, generally classified into three categories: analytic, simulative
and experimental. Each of these approaches shows different peculiarities, which
determine the suitableness of the method for the analysis of a specific system
aspect. The most appropriate method for quantitative assessment depends upon
the complexity of the system, the development stage of the system, the specific
aspects to be studied, the attributes to be evaluated, the accuracy required, and
the resources available for the study. Analytic and simulative approaches are
generally cheap for manufacturers and have proven to be useful and versatile in
all the phases of the system life cycle. They are typically based on a parametric
model of the analyzed system and on a set of assumptions concerning the be-
havior of the system and/or of the system environment. Analytic approaches are
highly efficient, but the accuracy of the obtained results is strongly dependent

C.A. Maziero et al. (Eds.): LADC 2005, LNCS 3747, pp. 35–51, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

36 L. Falai, A. Bondavalli, and F. Di Giandomenico

upon the accuracy of the values assigned to the model parameters and on how
realistic the assumptions the system model is based on are. The simulative ap-
proach is one of the most commonly used approaches for quantitative evaluation
in practice, especially for highly complex systems, for which analytical solutions
are generally precluded; however, it tends to be generally more expensive. As
for the analytic approach, the accuracy of the obtained evaluation depends on
the assumptions of the analyzed system as well as on the behavior of the envi-
ronment, and on the simulation parameters; however, it is superior to analytic
models in capturing relevant phenomena through more realistic representations
(e.g., to overcome the exponential distribution for events occurrences, which is
usually implied by the analytic solution). Experimental measurement is an at-
tractive option for assessing an existing system or prototype. This method allows
monitoring the real execution of a system to obtain highly accurate measure-
ments of the metrics of interest. However, it may turn out to be quite expensive,
e.g., when the interest is in very rare events, and moreover the obtained results
are very difficult to generalize.

The largeness and complexity of dependability critical systems, together with
the necessity of continuous verification and validation activities during all the
design and development stages in order to promptly identify deviations from
the requirements and critical bottleneck points, call for a composite V&V (ver-
ification and validation) framework, where the synergies and complementarities
among several evaluation methods can be fruitfully exploited. Comparison of re-
sults for a certain indicator obtained through the application of two alternative
methods allows cross-validation of both. Feeding a system model with parame-
ter values derived through experimental measurement is a central example of
cross-fertilization among different methods.

A high proliferation of automatic tools supporting a variety of quantita-
tive evaluation methods has been reached till now, and research in this direc-
tion is always in progress. In recent years, special attention is being devoted to
the analysis of distributed protocols. Distributed protocols are highly employed
as “basic building blocks” providing basic services, on top of which distrib-
uted applications run. To exemplify, communication protocols (reliable broad-
casts/multicast), consensus algorithms, clock synchronization, failure detectors
to diagnose faulty components, are among the most typical representatives in this
category. Distributed protocols have been traditionally analyzed and validated
in terms of qualitative properties, such as “termination”, “validity”, “integrity”,
and “agreement”. Most of these properties are specified in terms of ”eventual
behavior” (e.g., “sooner or later a faulty processor is identified as faulty” or “a
decision will be made”). To verify such properties is appropriate and important
for theoretical correctness, whereas in real world contexts, where time aspects
are relevant, assessment of quantitative metrics is necessary and required (e.g.,
when guarantees are required on the ability to perform a certain number of runs
of a certain consensus protocol in a fixed time interval). It is therefore paramount
to identify metrics useful to specify dependability, performance and quality of

Quantitative Evaluation of Distributed Algorithms 37

service (QoS) requirements of distributed protocols, and to define methods and
tools to analyze and validate protocols against these QoS metrics.

In this stream of methodologies and tools to contribute to the V&V of distrib-
uted algorithms, a framework has been developed, called Neko, which consists of
a simple communication platform that allows to both simulate a distributed al-
gorithm and execute it on a real network, using the same implementation for the
algorithm ([2,3]). Coupling both simulative and experimental execution inside
the same environment turns out to be very convenient, for a number of reasons:
the easiness of usage for the user (who has to learn just one tool); the efficiency
due to the inherent integration of the methods; and the increased confidence to
analyze always the same system, since the same protocol implementation is used
in all types of analysis.

However, Neko permits only to collect traces of execution; it does not in-
clude support to collect and manage events so as to perform on-line quantitative
evaluations, in parallel with the algorithm execution. The contribution of the
work described in this paper is in this direction, and we present the NekoStat
extension to Neko, through which it is possible to perform simple and powerful
quantitative analysis of distributed algorithms, using simulative and experimen-
tal approaches. Following the same philosophy of Neko, NekoStat has the ability
to perform quantitative evaluations adopting both the simulative and experimen-
tal approaches. The main difference between these two kinds of analysis is that
in simulations we can make on-line evaluations, whereas in real experiments the
quantitative evaluation is performed only at the termination of the distributed
system execution, after all the data have been collected.

The rest of the paper is organized as follows. In Section 2 we describe the
basic architecture and usage of the Neko framework. Section 3 is devoted to the
description of the newly developed NekoStat package. Section 4 illustrates the
usage of NekoStat on a case study. Finally, conclusions and indications of further
developments are drawn in Section 5.

2 The Neko Framework

Neko ([3]) is a simple but powerful framework that permits the definition and
the analysis of distributed algorithms, showing the attracting feature that the
same Neko-based implementation of an algorithm can be used for both simula-
tions and experiments on a real network. This way, the development and testing
phases are shorter than with the traditionally used approach, in which these
two implementations are made at different times and using different languages
(for example, SIMULA for simulations and C++ for prototype implementation).
Neko was built at the Distributed Systems Lab of the EPFL in Lausanne, it is
written in Java to assure high portability and has been deliberately kept simple,
extensible and easy to use.

The architecture of Neko can be divided in three main components (see
Figure 1): applications, NekoProcesses and networks.

38 L. Falai, A. Bondavalli, and F. Di Giandomenico

Fig. 1. Typical architecture of a Neko-based distributed application

Applications are built following a hierarchical structure based on multiple
levels (called Layers). Layers communicate using two predefined primitives for
message passing: send transports a message from a layer to the level below, and
deliver transports a message in the opposite direction, from one layer to the next
upper level. Note that messages in Neko may contain generic Java objects. Then,
a typical Neko-based distributed application is composed by a set of m processes,
numbered 1, ..., m, communicating through a message passing interface: a sender
process inserts, through the asynchronous primitive send, a new message in the
network, and the network delivers the message to the receiver process through
the deliver primitive.

There are two types of layers: active and passive. Active layers have an asso-
ciated thread (and thus an application logic independent from the other layers of
the stack), whereas passive layers can only react to send and deliver of messages.

Every process composing a distributed application has associated to it a
NekoProcess, which maintains data common to all the layers (e.g. the address
of the local host) and it contains the implementation of some services of general
utility (e.g. forwarding of messages to the right network).

The Neko communication platform is a white box : the developer can use a
network available on Neko or he/she can define new network types. Different
networks can be used in parallel, and this allows the exchange of different types
of message using different networks (e.g. it is possible to use a TCP connection
for some message types and UDP datagram service for others).

Neko networks are the lowest level of the architecture of a Neko application.
As already mentioned, an implementation of a distributed algorithm can run

Quantitative Evaluation of Distributed Algorithms 39

on top of a real network, as well as on a simulated network, without changing
any line of code. In fact, two types of networks are supported by Neko: real and
simulated networks. Real networks are built from Java sockets, or using exter-
nal libraries for proprietary networks. Sending and receiving of a NekoMessage
in real networks is based on serialization, an operation that permits message
representation during the message passing between processes. The Neko com-
munication platform provides several predefined simulated networks. However,
integration of a new network type can be easily performed. This operation re-
quires the definition by the developer of a new model for the network, to be
expressed using a new NekoNetwork subclass (and defining the associated send
and deliver methods). It is therefore possible to use in a Neko application a pro-
prietary network, or to define a new kind of simulated network (e.g. a network
in which delays and losses follow specific distributions).

A Neko application can be configured through a configuration file, contain-
ing information to set up all the involved processes. Then, bootstrapping a Neko
application is different for a simulation and a distributed execution. In real ex-
ecutions there is an asymmetry between different processes: there is a master
process, that coordinates the execution, and m − 1 slave processes. The master
is the process that provides the configuration file to the slaves. The m processes
run on m Java Virtual Machines, usually executing on m different hosts, which
communicate using the communication platform of the framework. Simulation
startup is simpler; there are m processes, in execution as different threads of one
Java Virtual Machine. A complete description of Neko can be found in [2].

Neko can be used to make dynamic testing of distributed algorithms and
systems. It permits testing of a system searching for qualitative properties; the
tool is equipped with supports to obtain execution traces, both on simulated and
on real environments. The potentialities of the Neko tool in the rapid prototyp-
ing of distributed algorithms are thus evident: the possibility to use simulated
networks permits the analysis of the algorithm in different conditions (variable
transmission delays, different probabilities of message losses, network congestion,
...) and, after that, it is possible to test the algorithm in real environments. Neko
is thus very useful and versatile to test new algorithms, or to compare already
existing ones. Neko also allows performing fault injection experiments at the
network level as well as at the level of communications between layers, and thus
it can be used to study the behavior of the analyzed algorithm with respect to
specific injected faults or exceptional situations.

Although possessing the attractive features exposed so far, the Neko frame-
work lacks any support to quantitative assessments. In fact, the kind of analyses
supported by Neko is directed to assess qualitative properties (so-called “on/off”
properties) of distributed systems, following a dynamic verification approach.
Thus quantitative measurements can be obtained only off-line, through awk-
ward manipulation of the logs collected, i.e. history of the distributed execution.
There is no embedded support to help the quantitative evaluations. Such a quan-
titative analysis can be made possible through re-definition of supports inside

40 L. Falai, A. Bondavalli, and F. Di Giandomenico

Fig. 2. High level view of typical session of analysis of a distributed system made with
NekoStat

any single application, or through setting up proper filters able to interpret the
traces of the executions collected in the log file.

Therefore, to permit assessment of quantitative properties - namely, depend-
ability and performance metrics - we devised, designed and constructed an ex-
tension to standard Neko framework.

3 The NekoStat Package

NekoStat extends the V&V analysis features of Neko in the direction of a sta-
tistical dynamic evaluation of a system, both on simulated and real execution.
In Figure 2 a high level view of the structure of a session of analysis using the
NekoStat extension is depicted.

One of the basic ideas of Neko was to define a framework in which the de-
veloper can use the same implementation of a distributed algorithm, both for
simulations and real experiments. We wanted to retain this appealing feature in
the NekoStat design: the usage of the provided tools is similar both in simulations
and in real experiments.

The quantitative analysis of distributed systems in NekoStat is approached
through two sets of tools: the first set is composed of tools to collect events,
whereas the second one includes tools for the analysis of measurements.

Using NekoStat to obtain an assessment of relevant metrics of a distrib-
uted system is simple. First of all, it is necessary to implement the distrib-
uted system/algorithm, using the tools available in the Neko framework (Java
language). Then, in order to apply the tools available in the NekoStat exten-
sion, the following simple modifications have to be performed to the application
code:

Quantitative Evaluation of Distributed Algorithms 41

1. define the interesting events and introduce calls to the log(Event) method,
of a special predefined logger class (StatLogger) in the points of the source
code where the event happens;

2. implement a StatHandler, a class containing the methods to manage the
collected distributed events and to transform them into quantities.

Figures 3 and 4 show the architectures of a typical analysis session obtained
using NekoStat, for simulations and real executions respectively. As depicted in
the Figures, a part of the NekoStat support classes must be defined by the user:
it can be used both for simulative and experimental evaluations. The definition
of the StatHandler and of the Quantities is dependent on the analyzed distributed
application and on the interesting metrics.

The NekoStat functionalities, and the related components implementing
them, can be subdivided in two sets: mathematical functionalities, that handle
the numerical quantities, and analysis functionalities, that collect and analyze
distributed events. The implementation of the mathematical functionalities is
the same both for simulation and real executions, whereas analysis supports are
internally different, still with a common interface. However, differences in the
internal structure are hidden to the developer, so the same code for the analysis
can be reused in experiments and simulations without changes.

Although the interface between NekoStat and the application layers is the
same for simulative and experimental analysis, the evolution of the analysis is
different. A simulation starts with the creation of the Neko and NekoStat parts
of the architecture depicted in Figure 3. The application layers and the user-

Fig. 3. Example of architecture for simulative evaluation

42 L. Falai, A. Bondavalli, and F. Di Giandomenico

Fig. 4. Example of architecture for experimental evaluation

defined StatHandler are immediately activated; at the occurrence of an event,
the application layer calls the StatLogger, which calls the StatHandler with
the information on the event. The StatHandler can use this data to obtain the
measurements for the metrics; the evaluation is thus on-line, in parallel with the
system simulation.

The evolution of an experimental analysis (Figure 4) can be subdivided into
different phases. In the first phase the application layers and the EventCollectors
are activated; at the occurrence of an event, the application layer calls the Stat-
Logger, which saves the event in the local EventCollector. At the termination of
the experiment run, the StatLogger of the slaves sends the local EventCollector
to the master. The master can thus construct the global history, merging all the
events of the EventCollector(s). At this point the last phase of the analysis can
start: the master StatLogger calls repetitively the StatHandler with the infor-
mation of every event of the global history. The same StatHandler can thus be
used both for simulative and experimental analysis of an algorithm.

The NekoStat package is actually part of the standard Neko, from the release
0.9 of the tool ([4]).

In the next subsections we describe the mathematical supports of NekoStat,
and the supports for the two kinds of analyses.

3.1 Mathematical Tools for Statistical Analysis of Numerical
Quantities

The supports for handling quantities have been defined as expansions of the
Colt mathematical library for Java ([5]). The Colt library was developed at

Quantitative Evaluation of Distributed Algorithms 43

Cern, with the purpose of offering a powerful and fast mathematical library for
Java (in place of default tools available in the java.Math package).

The classes defined for statistical analysis are composed of a values container
and methods to obtain statistical parameters. We built different classes to handle
the metrics (quantity classes); such classes are characterized by different memory
usages and different statistical methods usable on collected data.

Every class has:

– an add method that permits to insert a new measurement to the collection;
– methods to obtain statistical parameters of the quantity, such as the di-

mension of the collection, the sample mean, the median value, the sample
standard Deviation, the minimum and maximum values measured,...

The complete list of the information obtainable from a quantity can be found
in the Colt library documentation ([6]).

There are also some other methods available to all the quantity classes: initial
transient elimination, export of main statistical parameters on file, definition and
handling of stop conditions for simulation.

The stop condition is a boolean variable, whose value is true when the already
observed values give enough confidence on the quantity under analysis; the value
of the stop condition can be observed during the simulation to decide if the
confidence on all the analyzed quantities is satisfactory enough.

We defined two stop conditions:

Stop after N values: after N collected measures of the quantity, the stop con-
dition becomes true;

Stop on confidence interval: the stop condition becomes true when the con-
fidence interval of the mean of the quantity, of level (1 − α), is less than β
percent of the mean. After n measures, let x̂ be the estimated mean, S2 be
the estimated variance of the quantity; we thus decide when enough data
have been collected using the expression:

tn−1,1−α
2

√
S2

n
≤ x̂

β

(1 − β)

See [7] to obtains further information about the expression above.
We recall that the use of a stop condition is applicable only for on-line analysis

in simulations; in the experimental evaluations the quantities are evaluated at
the termination of the distributed execution, using all the collected events.

A more detailed description of the classes and their usage is in [8].

3.2 Analysis Supports

The supports to quantitative analysis address different objectives, in accordance
with the analysis method they are applied to. In more detail:

– For simulations we defined means for handling the quantitative analysis
process. It is possible to define stop conditions for the simulation, essentially

44 L. Falai, A. Bondavalli, and F. Di Giandomenico

based on the number of evaluations obtained for a quantity or on the accuracy
of the obtained results (this last is usually based on the interval of confidence
for the mean of the quantity).

– For real executions we defined supports for events collection and for clocks
synchronization.

The events collection supports have been developed so as to interfere
as little as possible with the distributed execution: for example, the sup-
port that performs the local process event collection uses a specially defined
SparseArrayList, built with an internal logic to minimize the overhead of
NekoStat monitoring components 1.

Processes composing a Neko application executed on a real network have
a logical clock, whose origin is at the start of the process; the Neko clock has
granularity of 1 msec. In a real execution environment, we often need a global
clock to evaluate and assess the temporal metrics, generally based on events
that occur in different processes of the system. The user can employ the most
appropriate policy to synchronize the clock of the hosts with the real time
(e.g. using the Network Time Protocol [9], as in the example reported in the
next Section). At the beginning of the experimental evaluation, the Neko
logical clocks are also synchronized, using a simple master-slave approach,
in which the real time corresponding to the start of the Neko master process
is forwarded to all slaves: in this way, the slaves set the origin of time of
the local logical clock to the real time corresponding to the origin of time
of the master process (so as to create a unique, logical, global clock). This
approach has the advantage of providing good usability and good precision
of the clocks in different contexts, from LAN to WAN environments ([10]).

– Both for simulations and for real executions we defined supports to han-
dle the start and stop of the analysis phases; to perform this, we defined
appropriate layers, hidden to the NekoStat user.

4 Example of Usage

To show the usage of NekoStat and to point out its appealing functionalities to
support quantitative analysis of distributed systems, in this Section we describe
in detail a case study analyzed using the new tool. It is an experiment that we
made on a Wide Area Network connection, between Italy and Japan, to evaluate
and fairly compare the Quality of Service of a large family of adaptive failure
detectors.

The ability to detect component failures is a qualifying feature of distributed
systems. The unreliable failure detectors, introduced by Chandra and Toueg in
[11], are one of the most used approaches to failure detection. The failure de-
tectors are distributed oracles that provide hints (unreliable information) on the
failures of the system. An asynchronous system equipped with several kinds of
1 In our measurements the mean time to insert a new Event into the special list was

4 microseconds, and the maximum value was around 1 millisecond: these are values
compatible with typical NekoStat usage.

Quantitative Evaluation of Distributed Algorithms 45

Fig. 5. Example of NekoStat architecture for a comparison of different failure detectors
solutions through an experimental approach

Fig. 6. Base metrics for the QoS evaluation of a failure detector

unreliable failure detectors is a very popular system model for distributed com-
putations. In [11] eight classes of failure detectors have been formalized and
classified according to the logical properties of accuracy and completeness of
the information supplied by the failure detector. The qualitative classification
proposed in [11] can however be inadequate. The Quality of Service (QoS) ob-
tainable at the application level is related to the QoS of the failure detector used;
especially for applications with temporal requirements we thus need quantitative
evaluation of the QoS of the failure detector. For this reason we chose to quan-
titatively assess the QoS of a large family of adaptive failure detectors (FD) on
a real WAN connection.

The architecture of our experiment is depicted in Figure 5. The distributed
system used is composed of two Neko processes: Monitored and Monitor. The
Monitored process periodically sends a new heartbeat message (from the Heart-
beater layer), which is used by the failure detectors to establish whether the

46 L. Falai, A. Bondavalli, and F. Di Giandomenico

monitored process is alive. The Monitor process contains a set of different fail-
ure detector alternatives: 30 different calculation methods for the timeout of the
failure detectors have been used. Figure 5 depicts also the NekoStat support
classes that permit the attainment of the numerical evaluation.

As described in detail in [12], the QoS of failure detectors can be characterized
through the following set of metrics:

– TM , the mistake duration time;
– TMR, the interval between successive mistakes;
– TD, the detection time.

Figure 6 provides a graphical representation of these basic metrics.
Actually, this is a complete set: combining these metrics it is possible to

obtain more sophisticated QoS indicators, which better represent how good a
FD is in relation with the characteristics of the application using the FD.

The measurements for these metrics can be derived using the time interval
between the following events:

– StartSuspecti, the time necessary to the i-th failure detector to start sus-
pecting the Monitored process;

– EndSuspecti, the time necessary to the i-th failure detector to stop suspect-
ing the Monitored process;

– Crash, the time to the crash of the Monitored process.

Calls to the log(event) of the StatLogger have been inserted in the points
of the source code in which the events happen: for example, in the point of the
source code corresponding to the receiving of a fresh enough heartbeat message,
we introduced a call statLogger.log(new Event(“EndSuspecti”)). The evalua-
tions are done by the FDStatHandler : it receives the events above described,
and from these it extracts values for the metrics.

To obtain a simple, fair and complete evaluation of the QoS metrics we
used two special layers. The first one is MultiPlexer, performing a simple task:
it forwards every received message from the lower level to the upper layers,
and it forwards also messages from the upper layers to the lower level. This
layer permits feeding directly the different failure detectors, guaranteeing that
they perceive identical network conditions, and thus it is the basis to fairly
compare their QoS. The SimCrashLayer is instead a layer that injects a crash
of the Heartbeater layer: it permits the evaluation of the behavior of the failure
detectors in presence of a crash failure of the Monitored process (obtaining thus
values for TD).

We now consider an example of execution trace. Figure 7 depicts the trace,
the distributed events and the obtained measures. In the Figure three layers are
depicted: the Heartbeater, the Multiplexer, and FDi, one of the failure detec-
tors. The trace corresponds to a so-called good period : the Monitored process is
up. The heartbeat messages hbn and hbn+1 arrive to the Multiplexer, whereas
hbn+2 is lost on the network. The Multiplexer immediately forwards the arrived
heartbeats to the failure detector FDi. In the bottom part of the Figure the

Quantitative Evaluation of Distributed Algorithms 47

Fig. 7. Example of trace of the Failure Detector experiment

Fig. 8. UML Interaction diagram of the collection of the Events of the trace depicted
in Figure 7

state of the failure detector FDi is depicted: the state can be suspect or trust,
and it can change in correspondence to a timeout or when a new heartbeat ar-
rives. The measurements for the metrics TM and TMR can be obtained from the
evolution of the state of the failure detector.

Figure 8 depicts the interaction diagram corresponding to this execution
trace, expresses in the Unified Modeling Language (UML). Figure 8 represents
what happens while the experiment is running: at the occurrence of the events,
the application layers call log(Event) of the local StatLogger, and the events are
thus collected in the local EventCollector. When the experiment stops, NekoStat

48 L. Falai, A. Bondavalli, and F. Di Giandomenico

Fig. 9. Example of NekoStat output files: results obtained for the TM metric of a failure
detector

rebuilds the global distributed history, from which it can extract the measure-
ments under analysis.

The experimental evaluation of the QoS of the failure detectors was based on
13 different experiment runs, every one lasted for around 12 hours, on a WAN
connection between Italy and Japan: the process Monitored ran in Italy (on a
host connected to Internet with ADSL), while the Monitor ran in Japan (on
a host connected to the JAIST2 network). The different executions have been
automatically run using a script that permits execution of a batch of experiments.
This script also permits the definitionvariables, to which values can be assigned,
possibly differing from one experiment run to others; however, in this case study,
the experiment runs have been executed with identical values for the parameters.

The post-processing necessary to extract values for the metrics was negligible.
NekoStat permits exportation of information about the metrics on files, in two
formats: all the measurements for a metric can be stored on a file, and some
other comprehensive data (like mean, standard deviation, and other user-defined
indicators) can be exported on another file. An example of these output files is
in Figure 9: in the left part of the Figure it is reported a portion of the file
containing the obtained measurements for the metric TM of a failure detector,
whereas in the right part it is reported the file containing the comprehensive data
of the same metric. The post-processing thus was only related to extract average
values to summarize the QoS metrics for each failure detector with unique values.
The possibility of extracting all the measurements obtained for a metric is useful
also to study the distribution of values of the metric.

The SimCrashLayer and the Multiplexer could also be used for other exper-
iments. The SimCrashLayer is appropriate in cases of injection of faults: dur-
ing “crash periods”, the upper layers are isolated from the distributed system,
thus appearing as crashed. The Multiplexer is instead useful when we want to
fairly compare different distributed protocols with the same sending and receiv-
ing interface, guaranteeing that they perceive identical network (or lower level)
behavior.

2 Japan Advanced Institute of Science and Technology.

Quantitative Evaluation of Distributed Algorithms 49

With the experiment described here we obtained interesting results about
the mechanisms of failure detection for WANs, in terms of quantitative Quality
of Service. In [13] there is a complete description of the experiment and of the
obtained results.

The structure of the experiment highlights the potentiality and the easiness
of an analysis performed using Neko and NekoStat. In absence of the addition
of the NekoStat extension, the same results are obtainable, but with more diffi-
culty. Without NekoStat it is necessary to collect the traces of execution of the
processes, extracting quantitative information about the metrics using an ad-hoc
tool and finally we have to use another tool to extract statistical parameters of
the obtained measurements.

As a more general comment, not specific to the analyzed case study but to
the general Neko and NekoStat framework, we remark that the main limitation
of the experimental evaluations made with NekoStat is the impossibility to ex-
actly define the temporal behavior of Java applications, essentially caused by the
run-time garbage collection mechanism of the Java Virtual Machine. NekoStat
support classes are implemented in Java and they are executed in the JVM: the
mean and the maximum time necessary to execute a single action can be very
different (e.g.: insertion of a new Event in the local EventCollector). This can
thus influence the accuracy of obtained results: the garbage collection mechanism
of the JVM can disturb/perturb the execution of the distributed system.

We are now extending the analysis by evaluating the QoS of the same failure
detectors on different network conditions; namely on other WAN connections,
and on LAN and WLAN environments. Repeating this experiment on different
hosts is simple: it is sufficient to install Neko, NekoStat, and the specific exper-
iment classes on the hosts that we want to use for the experiment. After that,
we have only to change the configuration file for the Neko application, defining
which are the hosts composing the distributed system. Also in the case that we
want to evaluate the QoS of the failure detectors on a simulated network, we
can use the same structure, layers and supports.

5 Conclusions and Future Works

This paper has presented the NekoStat tool, which is an extension to the already
existing Neko framework for the analysis of distributed systems/protocols. Neko,
although powerful and easy to use, allows only collection of traces of execution,
and does not include any support to manage the gathered events to perform
quantitative evaluations, in parallel with the protocol execution.

While retaining the appealing features of Neko, namely the ability to perform
evaluations adopting both the simulative and experimental approaches, NekoStat
enriches Neko with mathematical supports to handle the numerical quantities,
as well as with analysis supports, to collect relevant distributed events and to
analyze them on-line. The added value provided by NekoStat is in the direction
of a statistical dynamic evaluation of a system, both on simulated and real
execution, thus obtaining in an effective and easy way quantitative assessments

50 L. Falai, A. Bondavalli, and F. Di Giandomenico

of dependability, performance and, more in general, QoS metrics. Quantitative
estimates obtained through NekoStat are beneficial under several aspects:

– they allow knowledge of the performance of a system with respect to specific
application requirements;

– they constitute a valid support to the design and refinement of the protocol,
by identifying weaknesses and bottlenecks;

– they allow comparison of several solutions, in order to select the most ap-
propriate one.

We are currently working on devising additional extensions, both to Neko and
to NekoStat, in order to further improve the analysis of distributed systems. In
particular, two directions are under investigation:

– to extend the framework to include, as Neko layers, portions of source code
of distributed algorithms written in languages different from Java (e.g., C
and C++). Removing the restriction to use only algorithm written in Java
will allow the analysis of a much richer population of already existing distrib-
uted protocols written in languages other than Java, without the necessity
of any translation. Apart from easing the analysis process, this feature is
very attractive especially in those cases where the translation in Java is not
straightforward or possible at all (e.g., because Java does not contain support
for some low-level functions). In any case, avoiding the translation improves
efficiency and is less error-prone;

– to design new statistical analysis tools, to increase the analysis capacity of
NekoStat.

Acknowledgments

Thanks to Peter Urbán and to Prof. André Schiper for Neko support and for
useful comments during the development of the NekoStat extension.

References

1. Avizienis, A., Laprie, J., Randell, B., Landwehr, C.: Basic concepts and taxonomy
of dependable and secure computing. IEEE Transactions on Dependable and Secure
Computing 1 (2004)

2. Urbán, P.: Evaluating the performance of distributed agreement algorithms: tools,
methodology and case studies. PhD thesis, Ecole Polytechnique Fédérale de Lau-
sanne (2003)

3. Urbán, P., Défago, X., Schiper, A.: Neko: a single environment to simulate and
prototype distributed algorithms. In: Proc. of the 15th Int’l Conf. on Information
Networking (ICOIN-15), Beppu City, Japan (2001)

4. Urbán, P.: (Neko 0.9 website. http://lsrwww.epfl.ch/neko/)
5. Hoschek, W.: (Colt library website. http://dsd.lbl.gov/˜hoschek/colt/)
6. Hoschek, W.: (Colt library api documentation. http://dsd.lbl.gov/˜hoschek/colt/

api)

Quantitative Evaluation of Distributed Algorithms 51

7. Law, A.M., Kelton, W.D.: Simulation, Modeling and Analysis. McGraw-Hill (2000)
8. Falai, L.: Metodologie e strumenti per l’analisi quantitativa sperimentale e simu-

lativa di algoritmi distribuiti. Tesi di laurea (in italian), Università degli Studi di
Firenze (2004)

9. Mills, D.L.: Internet Time Synchronization: the Network Time Protocol. In:
Zhonghua Yang and T. Anthony Marsland (Eds.), Global States and Time in
Distributed Systems, IEEE Computer Society Press. (1994)

10. Verissimo, P., Rodrigues, L.: Distributed Systems for System Architects. Kluwer
Academic Publishers, Norwell, MA, USA (2001)

11. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. Journal of the ACM 43 (1996) 225–267

12. Chen, W., Toueg, S., Aguilera, M.K.: On the quality of service of failure detectors.
IEEE Trans. Comput. 51 (2002) 13–32

13. Falai, L., Bondavalli, A.: Experimental evalutation of the QoS of failure detec-
tors on Wide Area Network. In: Proceedings of the International Conference on
Dependable Systems and Networks (DSN 2005), Yokohama (2005)

C.A. Maziero et al. (Eds.): LADC 2005, LNCS 3747, pp. 52 – 60, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Airborne Software Concerns in Civil Aviation
Certification

Benedito Sakugawa1, Edson Cury1, and Edgar Toshiro Yano2

1 Industrial Fostering and Coordination Institute –IFI/CTA,
Praça Marechal Eduardo Gomes, 50,

12228-900 Vila das Acácias, São José dos Campos, SP, Brazil
{benedito.sakugawa, Edson.cury}@ifi.cta.br

http://www.ifi.cta.br
2 Technological Institute of Aeronautic – ITA/CTA,

Praça Marechal Eduardo Gomes, 50
12228-900 Vila das Acácias, São José dos Campos, SP, Brazil

yano@comp.ita.br, http://www.ita.br

Abstract. In the civil aviation certification the software has an unlike treatment
due to its peculiarities and also for being a relatively new item. There is no
specific software certification requirement in the FAR1 – FAR 33.28 is the only
section that mentions the word software. The FAA2 recognizes the
considerations presented in RTCA/DO-178B3 as an acceptable means for
approval of software used in airborne systems for civil aviation. The
CTA/IFI/CAvC4, responsible for the type certification in Brazil, has been
applying RTCA/DO-178B since it was issued. The purpose of this paper is to
present the experience of CTA in applying DO-178B, focusing on those
technical issues that were source of controversy among certification authorities
and industries. This paper is relevant at present time as RTCA and EUROCAE5
have recently organized a Special Committee6 intending to issue DO-178C by
the end of 2008.

1 Introduction

The civil aviation industry has a high level of safety due to careful investigation and
analysis of accidents and immediate feedback of experience to design and operation.
The conservatism approach, i.e., the use of well-matured technology, has contributed
to keep the safety level. The appearance of embedded programmable electronic has
threatened this paradigm - for instance, although its impact on safety is not well

1 The United States Federal Aviation Regulation.
2 The United States Federal Aviation Administration.
3 The Radio Technical Commission for Aeronautics document called “Software

Considerations in Airborne Systems and Equipment Certification”.
4 Aerospace Technical Center, Industrial Fostering and Coordination Institute, Civil Aviation

Certification Division.
5 European Organization for Civil Aviation Equipment.
6 RTCA Special Committee SC-205 and EUROCAE Working Group WG-71.

 Airborne Software Concerns in Civil Aviation Certification 53

known, the software has increased its presence in airborne systems and performed
more critical functions [12].

The Brazilian civil aviation industry, started on the early 1970’s, has been
following the world tendency. Its products can be divided in four generations: the first
used mainly analogical technology; the second had a small number of software items
performing secondary functions; the third presented a great number of airborne
electronics and almost 50 software items; the fourth and present generation has nearly
100 airborne software items, some performing critical functions. [11]

The certification authorities have expressed their concerns on establishing clear
criteria for the use of software on critical airborne systems and equipments. The FAA
recognized the considerations presented in RTCA/DO-178B [1], as an acceptable
means for approval of software used in airborne systems for civil aviation. The CTA
responsible for the type certification in Brazil has been applying DO-178B7 since it
was issued. The objective of this paper is to present the CTA experience in applying
DO-178B focusing on those technical issues that were not either clearly addressed or
in the scope of the guide and, therefore, have demanded extra effort from the
certification authorities as well as the industries. First it shows the relationship
between software and certification regulation, what it means by complying with
regulation, the existing guidance documents for helping compliance, and the role of
software in this compliance. Then it gives a brief description of DO-178B. After that,
a selected list of technical issues is presented followed by discussions related to the
list, and finalized with the conclusion and some references. This paper does not intend
to detail the certification process, regulation, advisory materials and organizations
involved, which would demand a specific work. Information on those topics can be
found in [9] and [11].

2 Relationship Between Software and Certification Regulation

Certification regulation requires that the consequences of all failures should be
analyzed. A catastrophic consequence should virtually never occur in the fleet life of
an aircraft type, while less hazardous one is permitted to occur more often. The
probability of a failure to occur should be inversely proportional to the severity of its
consequence [13]. For certification, the assurance of an acceptable level of risk should
consider:

1. Number of failures: No single failure can lead to a catastrophic consequence,
independent on how unlikely is the failure occurrence;

2. Probability: For each hazard category there is either a quantitative or a qualitative
measurement; and

3. Design Evaluation: Evaluation to confirm the absence of design errors.

For software only the design evaluation is required, which is the scope of DO-
178B. Hardware usually requires all three considerations.

7 The European standard issued by EUROCAE is ED-12B which is exactly same as DO-178B,

as RTCA and EUROCAE have worked together and reached a consensus.

54 B. Sakugawa, E. Cury, and E.T. Yano

3 Certification Guidance Documents

Certification regulation specifies levels of safety that are required. In order to verify if
the safety requirements are met, a systematic system safety assessment must be
performed. With this intent, various techniques have been developed and can be
found in ARP4761 [4].

There is an additional safety concern for those called highly-integrated or complex
systems: the existence of development errors (requirements determination and design
errors). Guidance has been developed with the basic idea of ensuring that safety is
adequately addressed through development process, and can be found in ARP4754
[3]. For complex hardware, refer to RTCA/DO-254 [2]. The figure-1 shows the
relationship among these guidance documents and DO-178B.

Fig. 1. Certification Guidance Documents Covering System, Safety, Software, and Hardware
Processes [3]

An important output from the System Development Process is the Development
Assurance Level (DAL) for system, software, and hardware. For ARP4754,
development assurance is “all of those planned and systematic activities used to
substantiate, at an adequate level of confidence, that development errors have been
identified and corrected such that the system satisfies the applicable certification
basis”[3]. The effort and detail needed in performing such activities depend on the
DAL assigned to the system and its items (software and hardware), which is based on
most severe failure condition classification associated with aircraft-level functions
fully or partially implemented in them. For DO-178B, DAL is equivalent to software
level. The table-1 presents a list of failure condition classification, the acceptable
probability interval for their occurrences, and the corresponding software level

Safety Assessment Process
(ARP 4761)

System Development Process
(ARP 4754)

Hardware Development
Life-Cycle (DO-254)

Software Development
Life-Cycle (DO-178B)

Intended
Aircraft
Function

Function, Failure
and Safety

System
Design

Functions,
Requirements and

DAL

Implementation

Functional System

 Airborne Software Concerns in Civil Aviation Certification 55

required. For a detailed definition of failure condition classification, refer to AC 25-
1309-1A [6].

Table 1. Failure Conditions and Respective Software Levels

Failure
Condition Probability8

Software
Level

Catastrophic < 10E-9 A
Hazardous < 10E-7 B

Major <10E-5 C
Minor <10E-3 D

No Effect Any E

The Software level column on table-1 could also be applied to partitions. As
explained in the DO-178B, partitioning is a technique for providing isolation between
functionally independent software components to contain and/or isolate faults and
potentially to reduce the effort of the software verification process.

4 The RTCA/DO-178B

The RTCA/DO-178B “Software Considerations in Airborne Systems and Equipment
Certification” provides recommendations for the production of software. It presents
guidance for determining, in a consistent manner and with an acceptable level of
confidence that the software aspects comply with certification regulation. It presents
the processes of planning, development (requirements, design, coding, integration),
and integral processes (verification, configuration management, quality assurance,
certification). The software life cycle, transition criteria, life cycle data generated, and
additional considerations (software reuse, tool qualification, alternative methods) are
also described. A list of 66 objectives is described, and if the developer can
demonstrate satisfaction of these objectives, the software will be approved.

Table 2. Number of Objectives for Each Process

Process

Plann. Develop Verific.

Config.
Ctrl

Quality
Assur.

Certific.
Liaison

Total

Numb. of
Objectiv. 7 7 40 6 3 3 66

The greatest effort is spent on verification, a technical assessment of both the
software development processes and the software verification process, and comprises
activities like reviews, analyses and test. The table-3 presents the number of
objectives for each software level, listing whether the objectives should be satisfied
with independence or not. In this context, independence means that the verification

8 It is not acceptable to assign probabilistic numbers to software levels.

56 B. Sakugawa, E. Cury, and E.T. Yano

activity should be performed by a person other than the developer of the item being
verified.

Table 3. Number of objectives for each software level. Note: With = with independenceWout
= without independence.

Number of Objectives Software
Level

With Wout Total

A 25 41 66

B 14 51 65

C 2 55 57

D 2 26 28

The higher is the software level, the more rigorous is the guide, i.e. more objectives
to satisfy. The DO-178B does not provide any guidance for software classified as
level E, as there is no safety impact.

5 Relevant Technical Issues

Following is a summarized list of technical issues that were selected for being source
of discussions and debates among certification authorities and industries. They are
called technical issues because those managerial and organizational issues related to
certification process were not included.

• Issue#1: The DO-178B is sometimes misunderstood as a software development
standard.

• Issue#2: There are no clear criteria for acceptance of software reuse, new
techniques like object-oriented technology, and automated tools.

• Issue#3: In many cases the software verification process was confined to the
developer’s environment that usually was not the aircraft manufacturer. Therefore,
there was a risk of some software requirements being verified without enough
evidence that they fully complied with system or even aircraft requirements.

• Issue#4: Some problems whose cause was attributed to software were actually
consequence of deficiency in system requirements specification related to software.

• Issue#5: Some software items belong to a highly-integrated or complex system,
and to show the software compliance individually to its own requirements may not
be enough evidence that the system functions correctly, which implies several
software and hardware items interacting adequately.

• Issue#6: The scope of software configuration control is limited to the set of
software belonging to a single system, but the high integration among systems
cause dependence among software from different systems, demanding a necessity
for software control at aircraft level.

• Issue#7: Due to timing constraints, it has been a common practice to use for
certification tests, versions of software that were still under acceptance process.

 Airborne Software Concerns in Civil Aviation Certification 57

• Issue#8: Currently, there is no safety assessment process at the software level.
• Issue#9: Current certification guidelines allow software to be a single point of

failure.

6 Discussion

This section presents a brief discussion on those issues introduced in section 5. It does
not intend to be conclusive, but a starting point for further discussions.

On Issue#1: There are cases of applicants (or developers) that attempt to get
acceptance of software modifications by claiming for credits from development
processes previously audited and accepted by certification authorities. However,
certification authorities do not certify processes, and for a clear reason: DO-178B is
not a development standard that can create a software development environment, but
an assurance standard. Assurance standards specify the characteristics that must be
present in a development, but do not specify how to create those characteristics. The
how belongs to development standards, which provide guidelines to ensure an orderly
and repeatable development process. The idea is for the developers to choose a
development standard for creating their software development environment, and then
use the DO-178B to ensure that all needed visibility and characteristics have been
captured by the development.

On Issue#2: The DO-178B was issued in 1992 and reflects the necessities of that
time, when software used to be developed for specific application using well-known
techniques and tools. That means, software reuse, object-oriented approach, and
automated tools did not use to be a concern, as they were not widely utilized. The
scenario has changed, and to fill up the gap the certification authorities (mainly FAA)
has generated guidance material like Service History Handbook [8], Handbook for
Object-Oriented Technology in Aviation [7], and Software Approval Guidelines [5],
the latter addressing field-loadable software, tool qualification, use of Commercial
Off-The- Shelf (COTS) software, and others.

Remark: The issue may be addressed by DO-178C.

On Issue#3: The DO-178B is organized with the assumption that the applicant is the
software developer and does not consider the situation where they are separate
entities, no rare located in distinct countries. In such case, an additional concern
should exist to ensure the continuity in configuration management and quality
assurance, because the test may migrate from the developer to the aircraft integrator
(applicant) in order to fully verify those software requirements that demand the
aircraft (or integrated systems bench) as a more adequate test environment.

Remark: The issue was addressed in the position paper CAST#119 [10].

On Issue#4 and Issue#5: The DO-178B is a development assurance standard, which
assures a proper implementation of what was required by the system, but does not

9 A paper written by the Certification Authorities Software Team (CAST). CAST comprises

civil aviation software specialists from the United States, Europe, Canada and Brazil.

58 B. Sakugawa, E. Cury, and E.T. Yano

assure that the system requirements are correct. It does not tell how to design, verify
and validate a system, which otherwise is the purpose of ARP4754 and ARP4761.
They do provide guidance in the system architectural design against safety problems.
ARP4754 basically adopt DO-178B approach and applied it for highly-integrated or
complex systems. It comprises 11 chapters that deal with system development
process, certification process and coordination, requirement determination and
assignment of DAL, safety assessment process, validation of requirements,
implementation verification, configuration management, process assurance, and
considerations for modified aircraft.

On Issue#6: The scope of DO-178B does not cover the complete software life-cycle.
Phases like installation, maintenance, and operation are not discussed. For example,
the software in some cases is not considered an aircraft configuration item, but an
internal “component” of an item, without individual identification (part number),
making it very difficult to have a software configuration control at aircraft level that
would contribute to more reliable installation, maintenance and operation.

Remark: The issue was partially addressed in Software Approval Guidelines [5].

On Issue#7: Three concerns can be identified: 1- a necessity for improvement of
software configuration control at aircraft level, and in this particular case, during the
certification test campaign, 2- a necessity of clear criteria for accepting use of
versions still under evolution, and 3- a necessity of thorough analysis to verify
whether new software versions would not invalidate past certification tests. Although
at CTA all these concerns had been raised and coordinated by the software group, the
execution demands more of system specialists than software, as the analysis is more
functional and not of development assurance.

Remark: The issue is clearly out of the scope of DO-178B and will probably remain
that way.

On Issue#8: The ARP4761 [4] describes a technique called Functional Hazard
Assessment (FHA). FHA is performed at the functional level, usually when important
information on software (e.g. architecture and design) is still unknown. Consequently,
it does not address software safety requirements and assurance level. For software that
performs safety-critical functions it is essential to analyze the software requirements,
architecture and design, to ensure completeness and correctness of hazards identified
by FHA, which means, a necessity for reassessing at software level the results of
FHA. For example, identification of software failures which confirms the results of
FHA or which could raise new causes for the hazards identified at the FHA level. In
this way, software safety assessment would verify the results of previous system
safety assessment steps.

Remark: The issue may be addressed by working group S-1810, which is currently
reviewing ARP4754 and ARP4761.

On Issue#9: Is it really possible to design software good enough to perform a
function that has a potential to solely create a catastrophic event? The question is
equally valid for hardware when design assurance is considered - only for random

10 A working group coordinated by SAE-The Engineering Society for Advancing Mobility.

 Airborne Software Concerns in Civil Aviation Certification 59

failures hardware is easily quantifiable, differently from software. For example, a
structural component may have a single design error that could result in multiple
structural problems throughout the aircraft, and the present regulations accept it. But
that component has specific physical limitations, which allow it to fail in limited
ways, making it possible for designers to mitigate the consequences. For software,
however, there are no similar limitations, and it can fail in unpredictable ways.
Software complexity has introduced additional concerns over other technologies that
could justify not accepting it as a source of single point failure for catastrophic event.
But on the other hand, the statistic indicates that software design errors, compared to
other technologies, is not a major source of single point failure in the aircraft.[14].
What to do?

Remark: The issue is still a source of debates and controversy.

7 Conclusion

Although DO-178B is the main guidance for acceptance of airborne software used in
civil aviation, some software concerns having direct impact on safety are not either
clearly addressed or in the scope of DO-178B. In that case, it is necessary to use
additional guidance material, which is provided by certification authorities (mainly
FAA), some organisations (e.g. RTCA, SAE, EUROCAE), and dedicated technical
groups (e.g. CAST). Both certification authorities and industries have recognized the
need for some guidance documents update. International working groups have already
started, hoping to solve deficiencies, some of them expressed on the issue list
presented herein.

Based on CTA experience on civil aviation type certification, the paper presented
some selected software issues that were cause of controversy and debates among
certification authorities and industries. For technical support, it provided a brief
description of the relationship between software and certification regulation, the
certification guidance documents, and the assurance standard (DO-178B) used for
airborne software development.

References

1. RTCA/DO-178B: Software Considerations in Airborne Systems and Equipment
Certification. Radio Technical Commission for Aeronautics - RTCA, Inc. (1992)

2. RTCA/DO-254: Design Assurance Guidance for Airborne Electronic Hardware. RTCA,
Inc. (2000)

3. SAE/ARP 4754: Certification Considerations for Highly-Integrated or Complex Aircraft
Systems. SAE-The Engineering Society for Advancing Mobility, ARP-Aerospace
Recommended Practice (1996)

4. SAE/ARP 4761: Guidelines and Methods for Conducting the Safety Assessment Process
on Civil Airborne Systems and Equipment. (1996)

5. Order 8110.49: Software Approval Guidelines. Federal Aviation Administration – FAA
(2003)

6. Advisory Circular AC 25.1309-1A: System Design and Analysis. FAA (1988)
7. Handbook for Object-Oriented Technology in Aviation. FAA (2004)

60 B. Sakugawa, E. Cury, and E.T. Yano

8. Software Service History Handbook. FAA (2002)
9. Cury, E., Sakugawa, B.M., Teixeira, M.M.R.: Certificação de Software Embarcado na

Aviação Civil - Experiência Brasileira. CTA/IFI/CAvC, 2ª Safety Workshop, EPUSP
(2004)

10. Position papers of the Certification Authorities Software Team - CAST
http://www.faa.gov/certification/aircraft/av-info/software/software.htm

11. Lemes, M.J.R., Domiciano, A.J.V., Altoé, F.O., Carbonari, A.J.: Certificação de Software
Embarcado de Emprego Aeronáutico: Processo e Desafios. Embraer, 1ª Safety Workshop,
EPUSP (2003)

12. Leveson, N.G.: Safeware - System Safety and Computers. University of Washington,
Addison-Wesley (1995)

13. Lloyd, E., Tye, W.: Systematic Safety. Civil Aviation Authority London (1982)
14. NASDAC – The National Aviation Safety Data Analysis Center, website, http://www.

nasdac.faa.gov

A Method for Modeling and Testing Exceptions
in Component-Based Software Development

Patrick Henrique da S. Brito, Camila Ribeiro Rocha, Fernando Castor Filho,
Eliane Martins, and Cećılia M. Fischer Rubira

Institute of Computing - State University of Campinas,
PO Box 6176 ZIP 13084-971, Campinas, SP, Brazil
Phone: +55 19 3788 5842 / Fax: +55 19 3788 5847

{patrick.silva, camila.rocha, fernando, eliane, cmrubira}@ic.unicamp.br

Abstract. The design, implementation and testing of the exceptional
activity of a software system are complex tasks that usually do not re-
ceive the necessary attention from existing development methodologies.
This work presents a systematic way to deal with exception handling,
from the requirement specification phase to the implementation and test-
ing phases, in component-based software development. Testing activities
are performed since the early stages of development, promoting an in-
crease in the quality of the produced system. Our solution refines the
Methodology for the Definition of Exception Behavior, MDCE, in the
architectural design, implementation, and testing phases. Moreover, the
proposed method was adapted to the UML Components process.

1 Introduction

In order to reduce the cost and time-to-market of large software systems,
component-based software development (CBD) is rapidly gaining wide accep-
tance. Its adoption is motivated mainly by the extensibility and reuse of code at
a high level of granularity promoted by the use of this technology [35,9]. Due to
its popularity and potential benefits, CBD is currently being used in the devel-
opment of computing systems with strict dependability requirements, such as,
mass transportation controllers and automotive devices.

The activity of a program is normal when it behaves according to its func-
tional specification. When the program presents deviations from its functional
specification, its activity is said to be abnormal or exceptional, since it is ex-
pected that these deviations occur only rarely. Exception handling [18] is a well-
known technique for structuring the exceptional activity of software systems.
It is implemented by many mainstream programming languages, such as C++,
Java, and C#. In spite of the popularity of exception handling, the design, im-
plementation and testing of the exceptional activity of a software system are
complex tasks that do not receive the necessary attention from existing develop-
ment methodologies [12,30]. As a consequence, developers do not use exception
handling mechanisms appropriately, do not focus on designing the exceptional

C.A. Maziero et al. (Eds.): LADC 2005, LNCS 3747, pp. 61–79, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

62 P.H.S. Brito et al.

activity of applications, and do not cover appropriately this behavior during the
test phase, therefore compromising overall system reliability [27].

The use of CBD in the development of critical systems highlights the im-
portance of considering the exceptional activity and the overall system quality
through validation techniques. This work presents a method, called MDCE+,
for the definition and testing of the exceptional activity of component-based
software systems. Our solution refines the Methodology for the Definition of
Exception Behavior (MDCE) [30], which is an extension of the Catalysis [14]
process for CBD. MDCE presents guidelines for the specification of exceptional
activity of a system since the early phases of development and, begin focused on
the requirements definition and analysis phases. MDCE+ refines MDCE mainly
on architectural design, implementation, and testing phases, since the latter did
not cover these phases in depth.

Testing activities, most of which can be automated, are distributed amongst
all development phases in order to improve the reliability of the produced sys-
tem. There are two main activities: testability improvement, embedding built-in
testing capabilities into the component under test, and test cases generation,
following the model-based approach [6,4]. All the testing artifacts can be reused
each time the component is tested: during its development or each time it is
reused.

Development and testing were integrated in previous component-based
methodologies, as proposed by Atkinson et al. in KobrA [2,3] and by Farias [15].
KobrA uses inspections and testing as quality assurance policies. They propose
inspections for the artifacts produced, system testing, and component testing
based on built-in contract-based testing. Farias’ approach deals only with sys-
tem testing, presenting guidelines for automatic test case creation and execution.
None of the two methodologies presents specifics activities for defining or testing
the exceptional activity of the system.

To the best of our knowledge, the only other work that proposes a method-
ology for defining the exceptional activity of a system since the early phases of
development focuses on object-oriented systems [25,12]. Furthermore, Sinha and
Harrold [33] propose an approach for testing the exceptional activity of a system
in a white box way. This work only covers unit tests and requires the source
code of the tested components to be available.

In addition to refining the MDCE, we have adapted it to the UML Compo-
nents [9] CBD process, mainly due to the fact that it has a simple structure and
is easy to learn and apply in practice. These features make it more accessible to
the corporate market, especially when compared to other CBD processes, such
as Catalysis.

The rest of the paper is organized as follows. Section 2 briefly presents the
concept of idealized fault-tolerant component and the UML Components pro-
cess. Section 3 presents the MDCE+ method, its main characteristics, and the
adaptations made to the UML Components process. Section 4 describes the de-
velopment of a real financial application using the method and presents some
examples of the artifacts produced in each phase. Section 5 presents a prelimi-

A Method for Modeling and Testing Exceptions in CBD 63

nary evaluation of the method, based on the results of the case study. Section 6
presents some concluding remarks and directions for future works.

2 Background

2.1 A Dependable Software Architecture Based on Exception
Handling

Following the terminology adopted by Lee and Anderson [1], a system consists
of a set of components that interact under the control of a design. Software com-
ponents receive service requests and produce responses, which can be separated
into two distinct categories: normal, which correspond to those situations where
the component has provided its normal service satisfactorily; and exceptional,
usually signaled when an error is detected, and the component cannot provide
the requested service. Exceptional responses are usually called exceptions [18].

Exceptions can be classified into two different categories: internal, raised
by a component in order to invoke its own error recovery measures, and, if this
exception is handled successfully, the component can return to provide its normal
service; and external, signaled if a component determines that, for some reason,
it cannot provide its specified service. External exceptions can be partitioned
into interface exceptions, which are due to an invalid service request, and failure
exceptions, which are due to a failure in the processing of a valid request. In
this sense, exceptions and exception handling provide a suitable framework for
structuring the fault tolerance activities incorporated in a system.

Figure 1 presents the idealized fault-tolerant component [1] (IFTC), a struc-
turing concept for building fault-tolerant systems by means of exception han-
dling techniques. An IFTC promotes separation of concerns between the normal
activity of a system and its exceptional activity, where measures for fault toler-
ance are implemented. An IFTC produces three types of responses: (i) normal
responses; (ii) interface exceptions; and (iii) failure exceptions.

Normal Activity Exceptional Activity

Client Component

Server Component

Internal Exception

Return to the Normal Activity
Failure Exception

Interface ExceptionNormal Request

Normal Response

Normal Response

Normal Request Interface Exception

Failure Exception

Fig. 1. Idealized fault-tolerant component (IFTC) [30]

64 P.H.S. Brito et al.

Tracker Tester

ITracking ITesting

Component

ILogTrace ILogAssert

InterfaceA InterfaceB

Fig. 2. Testable Component Architecture

IFTCs may be organized into layers, so that components may handle excep-
tions raised by components located in other layers. In this approach, the system
software architecture is partitioned in layers that comprise different levels of ab-
straction. Ideally, each layer is responsible for handling only exceptions raised
by the layer immediately below it.

2.2 Testable Component Architecture

Building components with good testability can simplify test tasks and reduce
test costs. Our testable component architecture [29], illustrated in Figure 2,
augments the component with test facilities known as built-in tests (BIT) [5],
which are accessed by the user through a standard interface.

The monitoring interface implements services to embed monitoring capabili-
ties in the component under test, to monitor methods and attributes/properties.
Monitoring facilities can be useful not only for testing, but also for debugging
purposes, or when a component is tested in an environment for which there is
no possibility to have drivers or stubs interacting directly with the component.

The test interface implements services to embed built-in test capabilities
in the component under test. These capabilities concern components contract
verification at runtime, following the Design by Contract approach [26], which
are used as test oracle. Besides, this interface is also responsable for retrieving
behavior models of the component, which are used during test case generation.

There are also internal interfaces for logging, which are responsible for re-
porting the monitoring information and the assertion violations in a log file.
Both services are implemented using aspect-oriented programming [21], and were
structured as an aspects library inside Tracker and Tester components. With
this technique, it was possible to embed the code even without the component’s
source code, making reutilization possible even if the source code is not available.

2.3 The UML Components Process

UML Components is a software development process which focuses on the con-
struction of component-based systems. In order to simplify development, it
adopts a specific architecture that highlights two layers: a system layer, which
comprises components related to the particularities of the software system, and
a business layer, comprising components that can be reused across different ap-
plications. Development is divided into six phases, described as follows.

A Method for Modeling and Testing Exceptions in CBD 65

The first phase of UML Components is requirements specification , when the
developer specifies the functional requirements of the system as a set of use
cases [31]. Moreover, the business concept model is specified, which represents
the basic entities of the conceptual domain of the system.

The following phase is component specification, the most important one,
which is divided into 3 subphases: (i) component identification, when the devel-
oper identifies system layer interfaces and their respective operations based on
use case descriptions, and also business interfaces, defined from the core entities
(or core types) of the business concept model; (ii) component interaction, when
the operations of the business layer, which are required by the system layer, are
defined; (iii) final specification phase, when the interfaces are refactored and op-
eration execution contracts are formalized through pre and postconditions [26].

Next is provisioning, when components are either built from scratch or ac-
quired from third-parties. These components are later combined in order to real-
ize the architectural configuration of the system during the assembly phase. UML
Components does not provide any guidelines on how the testing and deployment
phases should be executed.

3 The MDCE+ Method

The MDCE+ method systematizes the identification, design, implementation,
and testing of the exceptional activity in the software development phases.

The activities of the MDCE+ method were distributed among the phases of
UML Components, as illustrated in Figure 3. The left column shows the main
UML Components extension points concerning exceptional activity definition,
and the right column shows the testing activities included.

The exceptional activity definition starts already in the requirements specifi-
cation phase, where exceptions are identified. During the specification of the ex-
ceptional activity, exceptions are classified according to the IFTC model. More-
over, according to the way they are detected and handled, they can be classified
as: internal, when they are raised by the component in order to invoke its own
exceptional activity, or external, when they are signaled by the component if
it determines that, for some reason, it cannot provide its specified service. An
external exception can be classified as architectural when it is signaled by an
architectural component.

Architectural exceptions cross the boundary between two architectural com-
ponents, which means that the architectural exceptions that flow between two
components are part of the interaction protocol to which these two components
adhere. Because MDCE+ handles architectural exceptions, the importance of
architectural connectors [32], which realize the interactions between architec-
tural components, is highlighted. Besides handling this kind of exception, these
connectors are also responsible for detecting context-dependent exceptions.

MDCE+ testing activities, so far, only concern component testing level,
which follows the model-based responsability testing approach [6]. In this level,
we are concerned on checking if the component behaves like it was designed,

66 P.H.S. Brito et al.

Requirement

Specification

Component

Identification

Component

Interaction

Component Final

Specification

Provisioning

Assembling

Definition of exceptional

scenarios, informal assetions,

system architeture design

Separation of concerns between

the normal and exceptional

components

Identification of new exceptions

and handlers refinement

Assertion formalization

Design of the wrappers for the

reused components, components

implementation

Internal and architectural

connectors design and

implementation

Test Planning

Component to be tested selection

Specification of component's

interaction with stubs

Assertion formalization, definition

of the execution flow of provided

interfaces

Testable component architecture

implementation, test case

implementation and execution

Idealized fault-tolerant

component test execution,

connectors testing

MDCE+ - Development

Activities

UML Components Phases
MDCE+ - Component Testing

Activities

Fig. 3. MDCE+ interference in UML Components’s phases

including its normal and exceptional parts. In the future, robustness testing
techniques such as [23,22,13], will be incorporated in integration and system
testing levels.

The component testing is performed in a black-box way, allowing test
case reutilization even without component source code. Testing activities also
starts during requirements specification, with test planning, and are distributed
throughout all development phases, consisting of test case generation and com-
ponent testability improvement.

Test cases are generated from component behavior models, produced dur-
ing component specification phase. Although in these case study the test cases
were developed manually, the steps described in the following sections can be
automatized by a future tool.

Testability [5] concerns how easy is to test a system, contributing to test
eficiency. In this case, component testability is improved with the inclusion of
tracking and contract verification mechanisms in the component under test, as
presented in Section 2.2. Tracking mechanisms can ease faults localization and
decrease maintenance costs. Contract verification during runtime can act as a
test oracle, which means the expect result of the test case. As described later in
the text, these mechanisms can also be automatically generated from specifica-
tions by future tools.

The following subsections describe the activities included in each of the UML
Components phases.

A Method for Modeling and Testing Exceptions in CBD 67

Requirements Specification and Architectural Design. The main objec-
tives of this phase are to discover and specify the functional requirements and
the attributes of quality (non-functional requirements) of the system. The devel-
oper is responsible for perfoming the activities prescribed by UML Components
(defining the business concept model and specifying use cases) and some new
activities introduced by MDCE+. The latter comprise defining exceptional sce-
narios, which describe error situations and how to handle them, and extend the
specifications of use cases with invariants, pre and postconditions, following the
Design by Contract methodology.

The main purpose of the new activities introduced by MDCE+ is to discover
exceptions early in the development process. Contracts are important because
exceptions can be anticipated by analyzing the possible violations of these con-
tracts. Exceptional scenarios show what exception handlers should do. The busi-
ness concept model is also used for defining exceptions since, based on this model,
specialists on the application domain can identify the most critical entities. These
critical entities will probably be realized as components that implement some
form of redundancy, either architectural exception handlers or some mechanism
for design diversity [1]. Identification of critical entities also helps test planning
issues, such as test schedule, resources, and people.

Another important activity introduced by MDCE+ is the UML Components
architecture customization, according to system requirements. During this cus-
tomization, the architectural layers internals can also be detailed and may pos-
sess different architectural styles.

Component Identification. According to UML Components, this phase starts
with the identification of the provided interfaces of the system layer and the com-
ponents of the business layer. For system layer interfaces, operations are discov-
ered examining the steps of the use cases. The last activity is grouping these
interfaces as provided component interfaces, observing the component cohesion.

MDCE+ extends the Component Identification phase with two activities: (i)
definition of exceptions and handlers; and (ii) selection of candidate components
for unit testing.

In the first activity, an exceptional class and an exceptional interface are
created for each exception identified in the requirements specification phase.
Exceptional classes encapsulate contextual information regarding the errors that
trigger the exceptions; and Exceptional Interfaces define methods that implement
different exception handling strategies for the different contexts in which the
exception may be caught, and are grouped into exceptional components.

In the second activity, the developer selects components to be tested as a
black-box. Components marked as critical have a higher priority because their
dependability is crucial to the system. The same applies for reusable components,
because they will be employed many times. For both cases, it is recommended
that test suites be devised, so that regression testing can be performed automat-
ically. The components not selected during this phase will be tested during the
integration and system testing phases.

68 P.H.S. Brito et al.

<< component >>

NormalComponent
<< connector >>

internalConnectorClass
<< component , exception >>

ExceptionalComponent

IR1 IP2IP1

Idealized fault−tolerant component

Fig. 4. Realization of the IFTC

Component Interaction. In this phase, according to UML Components, busi-
ness operations are identified using UML colaboration diagrams. In the MDCE+,
colaboration diagrams were replaced by UML activity diagrams [19], because
they can be also used for test case generation (stub creation), as it illustrates
the sequence which the required operations are called. Test generation will be
exemplified in Section 4.

New exceptions can be discovered as well, by evaluating unforeseen condi-
tions resulting from the steps of the scenarios. Exception propagation between
architectural components can also be analysed. These exceptions can be handled
in the architectural connectors or further propagated. Developers can analyze
exception propagation in software architectures by hand, using scenarios, or au-
tomatically, using tools such as the Aereal [16] framework.

Finally, architectural components are structured as IFTCs. In this step,
each normal component is associated to exceptional components, which provide
handlers for exceptions that may be signaled by the operations in the provided
interfaces of the normal component. A specific internal connector realizes this
association, as shown in Figure 4. As for testing, the list of components to be
tested is reviewed based on the identification of IFTCs. It is also necessary to
decide whether the normal and exceptional components will be tested separately
or as a single entity.

Component Final Specification. In this phase, as MDCE+ activity, the nor-
mal and exceptional interfaces can be refactored, in order to reduce the number of
interfaces, without sacrificing cohesion. Possible violations of contracts between
the provided and required components interfaces are identified, and are normally
handled in the architectural connectors through conversion of exception types.

Afterwards, test models are specified. The first test model is the specification
of the execution flow of provided interfaces, using UML activity diagrams, as
proposed in [8]. This model will be used for test case generation and illustrates
the sequential dependencies between the methods in the provided interfaces.
These sequential dependencies define the component behavior, both normal and
exceptional.

The other test model produced in this phase is the formal contract of the
component, based on the informal assertions specified during the requirements
specification phase. Contracts are formalized in UML OCL (Object Constraint
Language) [20], in order to automatically generate contract verifications at run-
time [7].

A Method for Modeling and Testing Exceptions in CBD 69

Provisioning. In this phase, normal and exceptional components (not the
IFTC) are made available separately. According to UML Components, there are
three ways to obtain the components that will be used to implement a system:
(i) reuse of existing components; (ii) acquisition of Commercial Off-The-Shelf
Components (COTS Components); (iii) implementation of new components.

When a component is reused or acquired, MDCE+ foresees the creation of
adapters, which may be implemented either via wrappers or inside the archi-
tectural connectors themselves (in the assembly phase). For implementing new
components, MDCE+ proposes the use of a system implementation model that
explicitly materializes architectural components at the implementation level,
namely COSMOS [11]. Its details are explained in Section 4.

The exceptional classes should also be organized according to the hierarchy
shown in Figure 5 [17]. This hierarchy defines exception types aiming to relate
internal and external exceptions consistently. We can map the classification given
by the IFTC to the types in the hierarchy of Figure 5 as follows. Interface
exceptions inherit from RejectedRequestException. Failure exceptions inherit from
DeclaredException if they refer to errors that are part of the specification of the
system (expected errors). Failure exceptions inherit from UndeclaredException if
they refer to error conditions that are not addressed in the specification of the
system (unexpected errors). UndeclaredException has two subtypes that specify
the state in which a component was left after the exception was signaled. A
failure exception inherits from RecoveredFailureException if it is known that the
component was left in a consistent state after the exception is raised, for instance,
because it implements some backward error recovery mechanism. Conversely,
a failure exception inherits from UnrecoveredFailureException if it is not known
whether the system is consistent after the exception is raised. Internal exceptions
can be of any type, as long as they are converted to some exception in the
exception type hierarchy when they reach the boundaries of the component.

After the implementation of each component, the components behavior mod-
els are revised and testability improvement mechanisms and test cases are pro-
duced. Testability improvement mechanisms are produced based on interfaces
specification (tracking mechanisms) and OCL contracts, produced in the com-

RootException

RecoveredFailureException UnrecoveredFailureException

DeclaredException

RejectedRequestException FailureException

UndeclaredException

Fig. 5. Hierarchy of Suggested Exceptions [17]

70 P.H.S. Brito et al.

ponent final specification phase. These mechanisms can be implemented by using
the testable component architecture presented in Section 2.2, which uses aspect-
oriented programming [21] techniques to introduce tracking and contract verifi-
cation mechanisms in the intermediate code of the component under test.

Test cases are derived from the activity diagrams built during the compo-
nent interaction (interaction diagram) and final specification (execution flow
diagram) phases. Both diagrams are associated recursivelly: each operation in
the execution flow is detailed by the corresponding interaction diagram, that
models the method execution flow concerning interactions with required inter-
faces. The execution flows diagram derive test drivers, which execute test cases,
and the interaction diagram derive stub synchronization commands.

Stubs replace required components, simulating their behavior in a controlled
way, and making it possible to observe component behavior under test in normal
and exceptional situations related to interactions with required interfaces. Test
cases are derived from diagrams paths [24], starting in the execution flow initial
node, passing throw interaction paths, and ending in each corresponding final
nodes, covering paths in both diagrams. Tests are executed in this phase for
components that have already been produced.

Assembly. Due to the focus on the connections between components, the assem-
bly phase basically consists of the architecture configuration realization, which
means connectors design and main program implementation. Two kinds of conec-
tors are produced: internal, which integrates the normal and exceptional parts
of IFTCs; and architectural, which connect two or more IFTCs and where archi-
tectural exception handlers are implemented. In order perform assembly, all the
normal and exceptional components have to be already available.

As for testing, IFTCs are tested using test cases generated in the previous
phase for IFTC’s normal component. Connectors are tested similarly to com-
ponents. Complex connectors are tested in isolation, with the production of the
models and instrumentation mechanisms necessary for test generation and exe-
cution. Simpler connectors are tested only in the context of the whole system,
during integration and system testing.

4 Case Study

The MDCE+ was applied in a case study in an industrial environment. The
method was used for the development of part of a financial system with strict
dependability requirements. This system registers and controls the delivery of
check-books, account contracts and credit limits. It was specified using the
MDCE+ method along with the adapted UML Components process. The case
study was planned by the authors and executed by two other persons, one of
them is a specialist in the business domain.

The main goal of the case study was to evaluate fault tolerance aspects such as
exceptions quality (independence from programming language or development
platform) and fault treatment quality (critical exceptions that behave trans-
parently from the customer point of view). Beyond the fault tolerance-related

A Method for Modeling and Testing Exceptions in CBD 71

criteria, other general aspects were also analyzed, such as maintainability and
testability. The next subsection describes part of the artifacts that were created,
demonstrating our method, and conclusions about the analyzed aspects.

4.1 Execution

Requirements specification and Architectural Design. In the require-
ments specification phase, the first activity was the development of the busi-
ness concept model, where 22 entities were identified and four were considered
critical: Account, AgencyControl, BankPartners, and FinancialTransaction. Six use
cases were specified and, in this paper, for the sake of simplicity, we focus on the
Cancel Contract use case and one of its exceptions as an example. A very detailed
description of the case study and the obtained results is available elsewhere [10].

The Cancel Contract use case was specified with normal, alternative and ex-
ceptional scenarios. For each scenario, pre and postconditions were specified. For
example, one of the preconditions of the main scenario of Cancel Contract was
“Account agency must be registered”. Based on violations of this assertion, the
Not Registered Agency exception was derived.

Another activity performed in this phase is the design of the system’s soft-
ware architecture. This activity must obey some restrictions imposed by UML
Components. The architecture should comprise at least one system architectural
component, which is related to the particularities of the software system, and
a business architectural component, formed by components that can be reused
across different applications.

Besides the aforementioned restrictions, the architecture adopted for the soft-
ware system, presented in Figure 6, reflects the infrastructure which exists in the
company where the system was developed. The adopted architecture adhere to a

<< component >>

userInterface

<< component >>

system

<< component >>

business

<< component >>

database

<< component >>

util

<< component >>

framework

Fig. 6. System Architecture

72 P.H.S. Brito et al.

ITOAgencyControl getAgency
 (String agencyCode)

ITOAccount getAccount
 (ITOAccountPK ito)

TEAgencyIsNotRegisteredException

[result.oclIsTypeOf(TEAgencyIsNotRegisteredException)]

void checkOpenAgency
 (ITOAgencyControl ito)

TEAgencyIsNotOpenException

[result.oclIsTypeOf(TEAgencyIsNotOpenException)]

ISBAgencyControlMgrReq ISBAccountMgrReq

Fig. 7. Part of interaction diagram for cancelAccountContract method

<< component >>

AccountingOperations
<< connector >>

InternalConnector
<< component , exception >>

AgencyHandler

 ITEAgencyIsNot
RegisteredException

<< connector >>

ArchitecturalConnector

ISBCancelAccountContract

.

 ITEAgencyIsNot
RegisteredException

ISBAccountMgrReqISBAccountMgrReq

<< component >>

AccountManager

Fig. 8. Software architecture for the IdealizedAccountingOperations component

“relax posture” of the architectural layers [32] style. This architectural style has
4 traditional layers, which obey the communication constraints that are speci-
fied in the architectural layer style. The database layer contains the components
which provide the operations which access the data bases.

Beyond these four layers, two layers had been defined additionally. These
aditional layers can be accessed by all the other layers. The components of the
util layer provides some services, which are domain independent, as an e-mail
field validation operation or a numeric conversion. Finally, the framework layer
contains the components which provide the needed business infrastructure. This
infrastructure provides the communication between this and other systems.

Component Identification. In the component identification phase, based on
the steps of the normal and alternative scenarios, the ISBCancelAccountContract
provided interface was created, containing the method cancelAccountContract().
For the system layer, the AccountingOperations component was created, which
implements the ISBCancelAccountContract interface. Based on the Account entity
of the business concept model, the AccountManager component was created for
the business layer. This component implements the ISBAccountMgrReq interface,
whose operations are identified in the next phase.

The Not Registered Agency exception, was realized as the class TEAgency-
IsNotRegisteredException, which keeps the agency code as context, and the ex-

A Method for Modeling and Testing Exceptions in CBD 73

void cancelContract (ITOCancContractData ito)

Exception

TEAgencyIsInvalidException

[ito.agencyCode == ""]

[ito.agencyCode == null]

Fig. 9. Execution flow diagram for ISBCancelAccountContract interface

ceptional interface ITEAgencyIsNotRegisteredException. This interface was linked
to the AgencyHandler component, which aggregates the exceptional interfaces
related to agencies.

Component Interaction. In the component interaction phase, activity di-
agrams were created to specify the interactions in which the required inter-
faces participate. Part of the interaction diagram for the cancelAccountContract()
method is shown in Figure 7. The swimlanes represent the required interfaces (IS-
BAgencyControlMgrReq, ISBAccountMgrReq), the actions represent the methods
called, and the final nodes represent possible results of the cancelAccountCon-
tract() method. The values returned by required methods, including exceptions
as TEAgencyIsNotRegisteredException, are registered as guard conditions in the
actions following edges. Architectural exceptions concerning component recon-
figuration were also identified in this phase.

As a result of component interaction definition, the connections between
the components AccountingOperations, AccountManager and AgencyHandler were
defined, as illustrated in Figure 8: AccountingOperations and AccountManager
were connected via an architectural connector, and AccountingOperations and
AgencyHandler were connected via an internal connector, in an IFTC form.

Component Final Specification. The activity in Component Final Specifi-
cation phase was execution flow definition with activity diagrams, and contract
formalization with OCL (Section 3).

Figure 9 illustrates ISBCancelAccountContract execution flow diagram. As in
the interaction diagram, the final nodes define the expected results for the flow
including exceptional ones as, e.g. TEAgencyIsInvalidException), related to and
interface exception, and TEAgencyIsNotRegisteredException, an external excep-
tion also present in the interaction diagram (Figure 7). The method’s parameters
can be specified as guard conditions, including interface exceptions throwing. In
this diagram.

In the OCL contract, invariant, preconditions and postconditions are for-
malized. The postconditions, as they can group verifications for various possible
return values, are divided in condition/post expressions for each return value,
similar as proposed in [9], meaning the return reason and return value.

Provisioning. After specification, the components AccountingOperations, Ac-
countManager and AgencyHandler were implemented using COSMOS, which is
detailed ahead. Figure 10 illustrates the AccountingOperations component in-
ternal structure. COSMOS defines three sub-models, which address different

74 P.H.S. Brito et al.

aspects of the CBD systems: (i) the specification model (spec package) specifies
the interfaces provided and required by each component in the system, includ-
ing the exceptional ones (the normal required interfaces were grouped into the
ISBAccountingOperationsBusReq interface, and the exceptional ones into the IS-
BAccountingOperationsExcReq interface); (ii) the implementation model (impl
package) defines how the services provided by the component are implemented,
including how the component is instantiated (component instantiation control
classes are part of COSMOS); and (iii) the connector model (not illustrated, as
it is an architectural model) specifies the connections between components using
connectors, thus enabling two or more components to be connected in a configu-
ration. Each of these models is implemented as a well-defined pattern which can
be automatically translated to source code.

AccountingOperations

spec

prov

ISBCancelAccountContractMgr IManager

req

ISBAccountingOperationsBusReq

exceptional

IAccountingOperationsExecReq

impl

Manager ComponentFactoryFacadeISBCancelaContratoContaMgr

ObjectFactory

Fig. 10. AccountingOperations component internal structure

In this phase there was also testability improvement generation mechanisms,
as described in [29], and test case generation from the UML activity diagrams.
Figures 9 and 7 were glued, and the interaction diagram became a second level of
the execution flow, illustrating the execution flow resulting from the invocation
of cancelAccountContract() method. Five paths were extracted from the complete
diagram by a depth-first search algorithm [28], producing five test cases.

One of them, e.g., simulates the TEAgencyIsNotRegisteredException throwing,
and consists of four main steps: (i) the stub which simulates ISBAgencyControlM-
grReq interface was prepared to throw the TEAgencyIsNotRegisteredException
exception when the getAgency() operation were (DVIDA INGLS) called, was
described in the portion of the path concerning the interaction diagram; (2) the
component was created; (3) cancelAccountContract() method was invocated, as
described in the execution flow diagram; (4) the expected value was checked as
the TEAgencyIsNotRegisteredException exception throwing, as described in the
path final node. Besides, there is also the contract verification, which checks
exception class type and context.

Assembly. The last activity was connectors implementation, materializing the
architecture showed in Figure 8. The internal and architectural connectors were

A Method for Modeling and Testing Exceptions in CBD 75

implemented using COSMOS. The internal connectors links the AccountingOp-
erations normal component and the AgencyHandler exceptional component, re-
alizing the IFTC architecture, and the architectural connector links the IFTC
AccountingOperations to AccountManager. As this connector implemented recon-
figuration functions, it was also tested separately in a new MDCE+ iteraction.

4.2 Product Evaluation

Concerning the final product quality, approximately 20% of more exceptions
were discovered with the systematic modeling of the exceptional activity, when
compared with other equivalent systems in the company. This addition in the
number of exceptions represents a bigger fault types refinement, that together
with the more appropriate choice of the exceptions name (based on the asser-
tions) and also with the use of their contextualized information, facilitate the
maintenance activities related to the bugs identification and corrections.

Moreover, the proximity of the business logic and the independence of the
specified exceptions related to the programming language, characterizing excep-
tions quality improvement, make a platform changing or a product line pro-
duction easier. The exception contextualization information also contributed for
fault treatment quality, as more detailed fault information could be presented
to the customer.

Despite test case generation was performed manually, the testability improve-
ment could be noticed as test case development was simply the translation of
the diagrams paths to the JUnit framework. The contract verification was also
effective as test oracle, capturing 90% of the defects observed. The tests cover-
age was over 80% both in normal and exceptional components, showing a high
quality of the test cases, at least in what concern code coverage.

Because of the not critic aspects of some specified use cases, the case study
was also important to evaluate how the method can be adequate to develop
software systems, without critic dependability requirements. This adequacy was
made in the component interaction phase, during the definition of exceptional
super types. We have used these more generic exceptions to substitute the specific
ones, satisfying project decisions.

5 Method Evaluation

Besides the method experience in only one case study, a preliminary analysis of
the method could be performed, according to process quality criteria pointed by
Sommerville [34]. The analysis was made by the authors together with the case
study developers. The characteristics analyzed were:

Understandability. Medium. Besides the great number of activities, the clear
separation between each activity facilitate the understanding.

Visibility. High. The results of all phases are clearly defined in documents,
specially UML diagrams.

76 P.H.S. Brito et al.

Supportability. High. All the models can be built using CASE tools, and both
the COSMOS model source code and test cases code can be automatically gen-
erated from the models. Actually, a CASE tool for supporting the method, Bel-
latrix, is already been developed [36]. The Bellatrix environment will cover all
method phases, supporting models production, code generation and test case
execution.

Reliability. Medium. As process progress is all documented in the artifacts pro-
duced, and each artifact is used in the next phase, errors are generally captured
before result in product errors. But some kinds of specification faults are not
identified easily, for example, inconsistences between requirements and use cases
specifications.

Robustness. Low. As there are not guidelines for project management, un-
expected problems that make the development impracticable are not treated
adequately.

Maintainability. Medium. As the activities are clearly separated through dif-
ferent phases, the inclusion of new activities is easy. The removal, although, is
not that simple, as the each phase depend on the result of previous ones.

Rapidity. Low. As the main concern is the detailed specification of exceptional
activity, the documents produced slow down the process.

An important contribution of the MDCE+ method is the adaptation of a
practical software development CBD process (UML Components). New activi-
ties were added among the phases of this process, both concerning development
and testing activities, as shown in Figure 3. These activities systematize the de-
velopment and testing of reliable systems through specification, implementation
and testing of the system exceptional activity.

6 Conclusions and Future Works

In this paper we presented MDCE+, a method for modeling and testing the
exceptional activity of component-based software systems. MDCE+ improves
the system dependability, providing a systematic way to modeling and testing
the exceptions and its handlers, distributing its activities during all the software
development cycle. This structured and rigorous way of detecting and handling
exceptions in the context of faults occurrence is particularly relevant to those
systems with high dependability requirements.

The main characteristic of MDCE+ method is the execution of development
and test activities in parallel, following the model based testing approach. This
parallelism reduces the overhead of its adoption, favoring the method application
in real systems. Another important characteristic is the constant interaction be-
tween the developers and testers through specification artifacts, which are shared
by the two teams. This interaction contributes for artifacts quality improvement.
The synchronization is guaranteed by the joint update of these common artifacts.

A Method for Modeling and Testing Exceptions in CBD 77

Besides development and tests activities in parallel, MDCE+ emphasizes the
architectural aspect of the system, contributing for the definition of exceptional
flow of the system architecture. In relation to maintainability aspects, MDCE+
completely separates the specification of components normal and exceptional
activity, and provides activities to compose these views in the Idealized Fault-
Tolerant Component structure. This feature promotes better understandability,
reliability and maintainability for the system, as these concerns do not get clut-
tered in a single component modeling.

The main limitation observed in the method was the necessity of update the
specified artifacts. Lack of commitment of the development team can compromise
the applicability of the generated test cases, implying in re-work and delay in the
product deployment. To cope with this limitation, the MDCE+ method specifies
joint update activities of the artifacts, which are run by both development and
test teams.

Our most immediate future work is to build the process-oriented case tools
that are oriented to MDCE+ method. These tools have to assist the construc-
tion of methods several artifacts, and test cases automatic generation. Moreover,
currently only component testing activities have been specified, then another im-
portant future work is to complete the method to cover inspections, integration
and system testing phases, where robustness testing techniques will be applied.

Finally, we intend to make a separation between the MDCE+ method and the
activities of the UML Components process. This separation will makes possible
the insertion of the same method in other software development processes.

Acknowledgements

We would like to thank the anonymous referees, who provided many interest-
ing comments and suggestions. Patrick Brito is supported by the lato sensu
postgraduate course in Software Engineering, IC/UNICAMP. Camila Ribeiro
Rocha is supported by CAPES/Brazil. Fernando Castor Filho is supported by
FAPESP/Brazil under grant 02/13996-2. Cećılia M. Fischer Rubira is supported
by CNPq/Brazil, grant number 351592/97-0.

References

1. Thomas Anderson and Peter A. Lee. Fault Tolerance: Principles and Practice.
Prentice-Hall, 2 edition, 1990.

2. Colin Atkinson, Joachim Bayer, and Dirk Muthig. Component-based product line
development: the kobra approach. In Proceedings of the 1st conference on Software
product lines : experience and research directions, pages 289–309, Norwell, MA,
USA, 2000. Kluwer Academic Publishers.

3. Colin Atkinson and Hans-Gerhard Gross. Built-in contract testing in model-driven,
component-based development. In Proceedings of the 1st International Working
Conference on Component Deployment, Workshop on Component-based Software
Development Processes, 2002.

78 P.H.S. Brito et al.

4. Antonia Bertolino, Eda Marchetti, and Henry Muccini. Introducing a reasonably
complete and coherent approach for model-based testing. Electr. Notes Theor.
Comput. Sci., 116:85–97, 2005.

5. Robert V. Binder. Design for testability in object-oriented systems. Communica-
tions of the ACM, 37(9):87–101, 1994.

6. Robert V. Binder. Testing object-oriented systems: models, patterns, and tools.
Addison-Wesley Longman Publishing Co., Inc., 1999.

7. L. Briand, W. Dzidek, and Y. Labiche. Using aspect-oriented programming to
instrument ocl contracts in java. Technical Report SCE-04-03, Carleton University,
2004.

8. Lionel Briand and Yvan Labiche. A uml-based approach to system testing. Software
and Systems Modeling, 1(1):10–42, September 2002.

9. John Chessman and John Daniels. UML Components: A Simple Process for Spec-
ifying Component-Based Software. Paperback, 1992.

10. Patrick Henrique da Silva Brito, Camila Ribeiro Rocha, Eliane Martins, and Cećılia
Mary Fischer Rubira. An integrated method for modeling and testing exceptions in
component-based software development: A case study (in portuguese). Technical
Report (to appear), Institute of Computing, 2005.

11. Moacir C. da Silva Jr., Paulo Asterio de C. Guerra, and Cecilia M. F. Rubira. A
java component model for evolving software systems. In Proc. of the ASE, pages
327–330, 2003.

12. Rogério de Lemos and A. Romanovsky. Exception handling in a cooperative object-
oriented approach. In Proc. of the 2nd IEEE ISORC’99, May 1999.

13. Regina Lúcia de Oliveira Moraes and Eliane Martins. Jaca - a software fault
injection tool. In DSN, page 667. IEEE Computer Society, 2003.

14. Desmond D’Souza and Alam Cameron Wills. Objects, Components, and Frame-
works with UML The Catalysis Approach. Addison-Wesley, 2nd edition, 1999.

15. C. Farias and P. Machado. A functional testing method for components verification
(in portuguese). In Proc. Brazilian Software Engineering Symposium (SBES), 2003.

16. Fernando Castor Filho, Patrick H. S. Brito, and Cećılia Mary F. Rubira. A frame-
work for analyzing exception flow in software architectures. In Proceedings of the
ICSE’2005 Workshop on Architecting Dependable Systems, 2005.

17. Fernando Castor Filho, Paulo Asterio de C. Guerra, Vinicius A. Pagano, and
Cećılia Mary F. Rubira. A systematic approach for structuring exception handling
in robust component-based software. Journal of the Brazilian Computer Society -
Special Issue on Dependable Computing, 2005.

18. John B. Goodenough. Exceptional handling: Issues and a proposed notation.
CACM, 18(12), 1975.

19. Object Management Group. OMG Unified Modeling Language Specification Ver-
sion 1.5, 2003.

20. Object Management Group. UML 2.0 OCL Specification, 2003.
21. Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda, Cristina

Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming.
In Mehmet Akşit and Satoshi Matsuoka, editors, Proc. European Conference
on Object-Oriented Programming, volume 1241, pages 220–242. Springer-Verlag,
Berlin, Heidelberg, and New York, 1997.

22. P. Koopman et al. Ballista project : Cots software robustness testing.
http://www.ece.cmu.edu/ koopman/ballista/, 2003.

A Method for Modeling and Testing Exceptions in CBD 79

23. N. P. Kropp, P. J. Koopman, and D. P. Siewiorek. Automated robustness testing
of off-the-shelf software components. In FTCS ’98: Proceedings of the The Twenty-
Eighth Annual International Symposium on Fault-Tolerant Computing, page 230,
Washington, DC, USA, 1998. IEEE Computer Society.

24. Eliane Martins, Cristina Maria Toyota, and Rosileny Lie Yanagawa. Constructing
self-testable software components. In Proc. DSN 2001, 2001.

25. S. Messina and P. Pleinevaux. Enhancing cimosa with exception handling. In Pro-
ceedings of the International Symposium on Robotics and Manufacturing ISRAM,
World Automation Congress’96, Montpellier, France, May 1996.

26. Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall, 1st edition,
1988.

27. Darrel Reimer and Harini Srinivasan. Analysing exception usage in large java
applications. In Proc. of ECOOP Workshop on Exception Handling in Object-
Oriented Systems(EHOOS’2003), 2003.

28. Ronald L. Rivest and Charles E. Leiserson. Introduction to Algorithms. McGraw-
Hill, Inc., New York, NY, USA, 1990.

29. Camila Ribeiro Rocha and Eliane Martins. A strategy to improve component
testability without source code. In Sami Beydeda, Volker Gruhn, Johannes Mayer,
Ralf Reussner, and Franz Schweiggert, editors, SOQUA/TECOS, volume 58 of
LNI, pages 47–62. GI, 2004.

30. C. Rubira, R. de Lemos, G. Ferreira, and F. Castor Filho. Exception handling
in the development of dependable component-based systems. In Software Practice
and Experience. John Wiley and Sons, 2005.

31. Geri Schneider and Jason P. Winters. Applying Use Cases: A Practical Guide.
Addison-Wesley, 1st edition, 1998.

32. Mary Shaw and David Garlan. Software Architecture: Perspectives on an Emerging
Discipline. Prentice Hall, 1st edition, 1996.

33. S. Sinha and M. J. Harrold. Analysis and testing of programs with exception
handling constructs. IEEE Transactions on Software Engineering, 26(9):849–871,
2000.

34. Ian Sommerville. Software Engineering. Addison-Wesley, 6 edition, 1995.
35. Clemens Szyperski. Component software and the way ahead. In Gary T. Leavens

and Murali Sitaraman, editors, Foundations of Component-Based Systems, chap-
ter 1, pages 1–20. Cambridge University Press, 2000.

36. Rodrigo Teruo Tomita, Fernando Castor Filho, and Ceciĺıa Mary Fischer Rubira.
Bellatrix: An environment to provide architectural support for component-based
software development (in portuguese). In IV Workshop of Component-Based De-
velopment (WDBC’2004), September 2004.

Verifying Fault-Tolerant Distributed Systems
Using Object-Based Graph Grammars�

Fernando L. Dotti1, Odorico M. Mendizabal1, and Osmar M. dos Santos2,��

1 Faculdade de Informática,
Pontifcia Universidade Catlica do Rio Grande do Sul,
Avenida Ipiranga, 90619-900, Porto Alegre - Brazil

{fldotti, omendizabal}@inf.pucrs.br
2 Real-time Systems Research Group, Computer Science, University of York,

Heslington, YO10-5DD, York - United Kingdom
osantos@cs.york.ac.uk

Abstract. Assuring the correctness of fault-tolerant distributed
systems can be an overwhelming task. Besides dealing with complex
problems of distributed systems, it is also necessary to design the system
in such a way that a well-defined failure behaviour, or the masking
of failure components, is presented by the system when components
fail. To help reasoning about such systems, the use of formal meth-
ods becomes desirable. In previous work we introduced a graphical
formal specification language, called Object-Based Graph Grammars
(OBGG), for modelling asynchronous distributed systems. We also
defined a method for automatically inserting classical fault behaviours
into OBGG models. The obtained models could be analysed using
simulation. In this paper a new method for automatically inserting fault
behaviours into OBGG models, which is suitable for using verification
as the analysis method, is proposed. Moreover, we show how to formally
verify OBGG models in the presence of such faults. A two phase commit
protocol is used to illustrate the contributions.

Keywords: Object-based graph grammars, distributed systems,
fault-tolerance, model transformation, model checking.

1 Introduction

The development of fault-tolerant distributed systems is a difficult task. Besides
dealing with the inherent complexity of concurrent systems, the developer also
has to take distribution aspects into account and design the system in such a
way that a well-defined failure behaviour, or the masking of failure components
to users, is presented by the system when components fail [5]. In this context,
the use of formal verification is an important analysis method because it allows
� This work is partially sponsored by IQ-MObile (CNPq/CNR) and DACHIA

(FAPERGS/IB-BMBF) projects. Authors appear in alphabetical order.
�� This author is partially sponsored by CAPES-Brazil.

C.A. Maziero et al. (Eds.): LADC 2005, LNCS 3747, pp. 80–100, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Verifying Fault-Tolerant Distributed Systems Using OBGG 81

the developer to prove properties about the system. The verification method we
consider in this work is model checking. The main advantage of using model
checking for verifying fault-tolerant distributed systems relies on its exhaustive
state-space checking procedure used to prove that a given property is true or not
for a model of the system. Thus, using model checking one can reason about all
interleaving possibilities of the fault occurrence w.r.t. the system behaviour.

In our activities we make use of a graphical formal specification language,
called Object Based Graph Grammars (OBGG) [9], suitable for the specification
of asynchronous distributed systems. Models defined with this formalism can be
analysed using simulation [6] and verification (through model checking) [8,23].
There is also the possibility of generating code for execution in a real environment
[6]. In [10] we proposed a method for automatically inserting (classical) fault
behaviours, found in the literature of distributed systems, into OBGG models.
According to the proposed method, the developer first defines a model M of
the system under consideration and then selects the desired fault behaviour F
that will be incorporated into M . A transformation of M , considering F , is
performed and a new model MF is obtained. MF behaves as M in when the
inserted fault F occurs in the system. In [10], we use simulation to analyse the
behaviour of MF . Once the developer is satisfied with the behaviour of MF it is
possible to generate code for execution in a real environment using M . In a real
environment that exhibits the fault behaviour F , the system should behave as
expected during the analysis phase.

Although simulation is an useful analysis method, especially for very large
systems, the use of model checking allows one to check all the possible behaviours
of the system. This characteristic is particularly useful for the analysis of fault-
tolerant distributed systems, because developers are interested in guaranteeing
a well defined behaviour for their systems in the occurrence of faults.

When using simulation for the analysis of OBGG models, the basic synchrony
model (see Section 2) provided by the OBGG formalism is extended to specify
minimum and maximum times for the reception of messages. Using this notion
of time, developers can then specify timeouts for the reception of messages and
detect the failure of components in the system. This idea is central for the auto-
matic insertion of faults in OBGG models proposed in [10], because the failure
detection is left for the developer to build (in terms of timeouts). Differently,
in the approach based on verification presented here, we do not have this no-
tion of time and the synchrony model is completely asynchronous. Thus, a new
method from [10] is needed to provide developers with a basic failure detection
mechanism. Using such mechanism, developers can work with a clear abstrac-
tion for the detection of faults in the system. They can specify fault-tolerant
models that are analysable, after the automatic insertion of faults, using model
checking. This aspect is further discussed in Section 4.

This way, in this paper we present two main contributions: (i) a new method,
derived from [10], for automatically inserting fault behaviours into OBGG mod-
els that is suitable for using verification as the analysis method; and (ii) show
how to formally verify OBGG models in the presence of such faults. As an ex-

82 F.L. Dotti, O.M. Mendizabal, and O.M. dos Santos

ample, we model a two phase commit protocol and discuss the verification of the
protocol considering the crash fault model in different scenarios.

The paper is organized as follows: Section 2 presents the OBGG formalism
and the model of a two phase commit protocol; Section 3 briefly reviews the
verification approach and its application to the protocol; Section 4 presents the
method for representing fault behaviours in OBGG models and the verification
results for the protocol considering the crash fault behaviour; Section 5 covers
related work and Section 6 presents conclusions and future works.

2 Object-Based Graph Grammars

The formal specification language used in this work is based on a restricted form
of Graph Grammars (GG), called Object-Based Graph Grammars (OBGG). In
this section we present an informal overview of GG and OBGG. The reader is
referred to [22] and [9] for a more detailed presentation of these formalisms.

In a GG, the initial state of the system is called the initial graph. The state of
the system is represented by a graph, called the system state graph. The system
evolves through the successive application of rules that change the state of the
system. A rule is composed of a left-hand side and a right-hand side, and can
be applied whenever an image (match) of its left-hand side is sub-graph of the
current system state graph. When applied, the rule brings the system to a new
state defined as: items in the left-hand side not present in the right-hand side
are deleted; items in the right-hand side not present in the left-hand side are
created; and items present in both sides of the rule are preserved. Multiple rules
can be applied in parallel if there is no conflict between them, i.e. do not modify
(delete) the same item simultaneously. When a conflict situation exists, one of
the candidate rules to be applied will be chosen in a non-deterministic way.

OBGG is a restricted form of GG w.r.t. the kinds of graphs and configuration
of rules that are allowed. Like an object-based system, an OBGG model is com-
posed of the definition of different classes. Each class is defined by a type graph
and a set of rules. A type graph (see Figure 1) defines the attributes of the class
and the messages that can be received by an object of that class. The rules (see
Figures 2 and 3) are used to specify the behaviour of objects of that class upon
the reception of messages defined in the type graph. The left-hand side of a rule
always specifies a message being received by an object. At the right-hand side
we specify the effect of applying the rule, which may be: changing attributes;
creating new objects; and generating new messages. This way, the application of
a rule may leave the system state graph in a configuration where various other
matches may occur. The specification of a system where various classes are in-
volved is given by the definition of each class complemented by an initial graph
(see Figure 6) that contains instances of those classes in the initial state.

If we adopt the classification for message-passing models of distributed sys-
tems proposed in [17], the OBGG formalism provides: (network topology) di-
rected graphs, where an object can only send messages to another if it has a
reference to that object; (synchrony) completely asynchronous; (failure model)

Verifying Fault-Tolerant Distributed Systems Using OBGG 83

not defined, but introduced according to our approach – see section 4; (message
buffering) infinite buffer of messages, that are received non-deterministically.

2.1 Two Phase Commit

In this section the two phase commit protocol described in [1] is modelled using
the OBGG formalism. The protocol operates in rounds of communication and is
composed of one coordinator and various participants. An important character-
istic of the protocol is that a decision made during its execution must be taken
by every participant.

In the first message round, the coordinator sends messages to participants in
order to start the transaction. On receipt of this message, every participant votes
to either commit or abort the transaction. The coordinator collects the votes sent
to the participants and if: (i) all participants voted to commit, the transaction
is committed; (ii) at least one participant voted to abort, the transaction is
aborted; (iii) the reply of at least one participant is timed out, the transaction
is also aborted. This concludes the first phase of the protocol. In the second
phase, the coordinator sends to the participants the decision taken about the
transaction, either commit or abort, depending on (i), (ii), and (iii).

The two phase commit protocol modelled in OBGG is composed of one co-
ordinator and only two participants. This decision is due to the observation
that the situations needed to prove properties of the protocol are covered by
this configuration. With two participants we can represent the situations where:
faulty and non faulty participants coexist; and only faulty or only non faulty
participants coexist. Since the protocol is based on the votes of all participants,
it is actually not important if one or various participants are faulty, because the
transaction has to be aborted in such cases. Complementarily, the communica-
tion among participants may take place during the recovery procedures. In these
situations a participant tries to contact another participant in order to learn the
outcome of the transaction. Again, we have the possibilities that either the con-
tacted participant is available (at least one participant is available) or not (no
participant is available)1. Moreover, the small number of objects in the model
helps to decrease the possibility of state explosion during model checking.

The type graphs of Coord (representing the coordinator) and Part (repre-
senting a participant) classes are shown in Figure 12. Both Coord and Part may
receive Timeout and Recovery messages. A Timeout message is used to repre-
sent that an awaited response message will not arrive (will timeout), whereas a
Recovery message is used to signal for the object that a previous fault situation
in the object has ceased. As discussed in Section 4, the developer does not have
to specify the generation of those messages, since they are part of the introduced
fault behaviour, but he/she does have to specify the reaction of the model to
these situations, e.g. what actions are taken when a response to a message is
1 The protocol does not assure that a participant receives the outcome of a transaction

if the other participants and the coordinator are faulty.
2 The circle near the name of the class is a notation used to facilitate the reference of

the class along the definition of the model (rules and initial graph).

84 F.L. Dotti, O.M. Mendizabal, and O.M. dos Santos

(a) (b)

Fig. 1. Type graph of Coord (a) and Part (b) classes

timed out or when a fault in the object ceases. The use of those messages pro-
vides the developer with a clear abstraction regarding the detection of faults in
the execution of the model.

In the following, the rules describing the behaviour of Coord and Part
are discussed. Due to space constraints, not all rules are shown in Figures 2
and 3. However, the omitted rules are similar to the rules shown and will be
discussed in the text. Basically, a Start message (rule StartCommit) is used
to begin the execution of the protocol. This rule sends messages StartC to
Part objects, requesting their votes. Part objects may non-deterministically an-
swer with either Continue or Abort messages (rules VoteForCommit and Vote-
ForAbort).

Upon receipt of a Continue message, Coord awaits for the vote of the Part
objects (rule RcvContinue1 and RcvContinue2 (not shown, but similar to Rcv-
Continue1, it handles the Continue message for the second Part object)). After
receiving the Continue messages (all participants vote for commit), Coord enters
the second phase of the protocol (round2 attribute becomes true) and decides
that the transaction must be commited. This way, a Commit message is sent to
the Part objects (rule DoCommit). If the Part objects are able to complete the
operation, an Ack message is sent to Coord (rule Commit). Analogously to the
first phase, Coord awaits for Ack messages from Part objects (rules RcvAck1
and RcvAck2 (not shown, but similar to RcvAck1, it handles the Ack message
for the second Part object)), ending the transaction (rule Terminate).

The behaviour discussed above shows the execution of a transaction where
all Part objects vote to commit (Continue message) the transaction. If at least
one of the Part objects votes to abort the transaction (rule VoteForAbort), then
Coord decides to abort the transaction (rule DoAbort – not depicted, but sim-
ilar to DoCommit, except that an AbortC message is sent instead of Commit).
If other Abort or Continue messages are received after the decision to abort
the transaction, they are ignored by Coord (rules IgnoreContinue and Ignore-
Abort (not shown, but similar to IgnoreContinue, where the message Abort is
ignored)). Part objects on receipt of an Abort message will abort the transac-
tion (rule Abort) and send an Ack message to Coord. Finally, Coord awaits for
Ack messages from Part objects (rule RcvAck1 and rule RcvAck2) ending the
transaction (rule Terminate).

Verifying Fault-Tolerant Distributed Systems Using OBGG 85

Fig. 2. Rules of Coord class

If a Part object becomes faulty during the transaction and does not know the
final result of the transaction (attribute round2 is false), it requests the result
by sending a Collect message. Both Coord and Part objects can receive Collect
messages (see rules CRespCommit and CRespAbort (not depicted, but similar
to CRespCommit, where the AbortC message is generated) for Coord, and rules
PRespCommit and PRespAbort (not shown, similar to PRespCommit, where the
message PAbortC is generated) for Part) and reply with the final result of the
transaction. Though, one particular situation occurs when a Part object requests
the result from another Part object and it does not have the result, responding
with an Unknown message to the sender (rule PRespUnknown).

Until now, we have explained the behaviour of the protocol without taking
into account the possibility of faults from: (i) other objects, which are detected
using the Timeout message; (ii) the object itself, when it recovers from a previ-

86 F.L. Dotti, O.M. Mendizabal, and O.M. dos Santos

Fig. 3. Rules of Part class

ous fault, through the reception of a Recovery message. The rules used to model
the fault-tolerant behaviour of both Coord and Part objects are presented, re-
spectively, in Figures 4 and 5.

Because we are modelling asynchronous distributed systems, we need to make
an object be able to detect if other object(s) is(are) faulty or not. If an object
sends a message to another object and keeps awaiting for the response of that
message, two possible outcomes can occur: (i) the correct response of the mes-
sage; (ii) the receipt of a Timeout message, if the destination object is faulty.
The reader should note that a Timeout message does not have parameters, and
the object relies in its internal state in order to recognize the object to which
the Timeout message belongs to.

Verifying Fault-Tolerant Distributed Systems Using OBGG 87

(a)

(b)

Fig. 4. Rules of Coord class (a) fault-tolerance and (b) recovery

The receipt of a Timeout message by Coord (see Figure 4) during the first
phase results in the abortion of the transaction (rule TDoAbort). Besides, up-
coming Timeout messages are ignored (rule IgnoreTimeout). Moreover, if Coord
receives a Recovery message during the first phase it restarts the transaction (rule
Restart), otherwise (if it receives it in the second phase) it resends the trans-
action result to all Part objects (rules ConfirmCommit and ConfirmAbort (not
depicted, similar to ConfirmCommit, where a message AbortC is generated)).

During the recovery process, Part objects (see Figure 5) may request the
result of the transaction from Coord object (rule ReqResultCoord) or ignore the
Recovery message if it already knows the result of the transaction (rule IsOk).
Thus, after requesting the transaction result from Coord object (request attribute
is set to 1) and a Timeout message is received, the object requests the result
of the transaction from another Part object (rule ReqResultPart) and ignore
further Timeout messages (rule ConsumeTimeout).

Finally, Figure 6 presents an initial graph modelling an initial scenario which
is used in Section 3.1 to illustrate the verification method. As explained before,
the model is composed of one Coord object and two Part objects representing,
respectively, the coordinator and two participants of the protocol.

3 Verifying OBGG Models

The use of model checking for the analysis of OBGG models has been introduced
in [8]. The approach used for verifying OBGG is based on the translation of

88 F.L. Dotti, O.M. Mendizabal, and O.M. dos Santos

models. This aims to reuse the existing implementation of a model checker and
take advantage of its enhancements. In particular, we translate OBGG models
to PROMELA, the input language of the SPIN model checker [15]. The reader
is referred to [8] for a more detailed discussion of this translation.

Complementary to the translation of OBGG models, a method is needed
for the specification of properties. In [23] we defined an approach for specifying
properties about OBGG models using Linear Temporal Logics (LTL) – the same
temporal logic used in the SPIN model checker. LTL properties are defined using
events produced during the executions of OBGG models. An event corresponds
to the application of a rule, and is composed of the following information: the
name of the applied rule; the name of the class whose rule was applied; and
any internal attributes of the object that are necessary for the formula being
specified. We follow the notion of events and the property patterns proposed in
[3]. An event is expressed using the symbol ↑ def and is modelled by the LTL

(a)

(b)

Fig. 5. Rules of Part class (a) fault-tolerance and (b) recovery

Fig. 6. Initial graph for two phase commit protocol

Verifying Fault-Tolerant Distributed Systems Using OBGG 89

formula3 (!def && X def). Although the X (next) temporal operator is used,
the property patterns in use [3] are proven closed under stuttering and therefore
can be analysed using the SPIN model checker.

Currently we have an environment [7] that enables a developer to graphically
specify OBGG models and automatically translate them for verification. More-
over, our environment provides the generation of counter-examples in terms of
OBGG abstractions, instead of the translated PROMELA model [23].

3.1 Verifying the Two Phase Commit

Now we discuss four properties that should be satisfied by our model of the
protocol using the initial graph (initial scenario with one coordinator and two
participants) of Figure 6:

(i) If a new transaction starts, eventually the coordinator will terminate it;
(ii) A participant always terminates a transaction (aborting or commiting);
(iii) If all participants vote for commit, they all will commit;
(iv) If at least one participant votes for abort, all participants will abort.

While (i) and (ii) prove the termination of both coordinator and participants,
(iii) and (iv) ensure that Part objects take the same decision during a transac-
tion. Proving these properties we achieve a high degree of confidence that the
execution of a transaction is performed correctly. We need to specify these prop-
erties as LTL formulas in order to use model checking. In Table 1 we present
the observed events of the model. The LTL formulas specified for the previously
discussed properties are presented next. They follow the patterns defined in [3]
and are closed under stuttering. For each formula, the pattern used is informed.

Table 1. Events used in LTL properties

Event Object - Rule applied
(↑ cs) Coord - StartCommit
(↑ ct) Coord - Terminate
(↑ ca) Coord - DoAbort
(↑ cr) Coord - Restart
(↑ cc) Coord - DoCommit
(↑ cta) Coord - TDoAbort
(↑ p1vc) Part1 - VoteForCommit
(↑ p2vc) Part2 - VoteForCommit

Event Object - Rule applied
(↑ p1c) Part1 - Commit
(↑ p1c1) Part1 - Commit1
(↑ p1a) Part1 - Abort
(↑ p1a1) Part1 - Abort1
(↑ pc) some participant - Commit
(↑ pc1) some participant - Commit1
(↑ pva) some participant - VoteForAbort
(↑ pa) some participant - Abort
(↑ pa1) some participant - Abort1

(i) If a new transaction starts (rule StartCommit of Coord) eventually the
coordinator will terminate it (rule Terminate of Coord). The globally
response pattern is used, resulting in the formula [] (↑ cs − > <> ↑ ct).

(ii) The participants always terminate. The following LTL formula (consid-
ering Part1) is actually proved for each participant:

3 LTL formulas used in this paper follow SPIN syntax [15].

90 F.L. Dotti, O.M. Mendizabal, and O.M. dos Santos

<> (↑ p1c || ↑ p1c1 || ↑ p1a || ↑ p1a1). This formula uses the pat-
tern of global existence. We do not use the pattern [] <> because our
model is finite and, therefore, it is not true that participants infinitely
often terminate. Instead they eventually terminate in all possible finite
executions.

(iii) To prove property (iii), we perform 2 steps:
(iii.a) Considering that all participants vote for commit, the coordi-
nator will decide to commit the transaction: <> ↑ p1vc − > [] (↑
p2vc − > <> ↑ cc). This formula uses the patterns global existence
and response.
(iii.b) Once the coordinator decides to commit, no participant will abort.
This formula uses the pattern absence after an event: [] (↑ cc − > [] !(↑
pa || ↑ pa1)). The rationale behind the above steps is that if the par-
ticipants vote for commit, the coordinator will decide to commit, and
the participants will not abort. Since the participants always terminate
(formula (ii)), this means that they commit.

(iv) To prove property (iv), we also perform also 2 steps:
(iv.a) A coordinator may decide to abort for two reasons: the lack of
a response message from a (faulty) participant - in this case a timeout
occurs and the coordinator decides to abort (event ↑ cta); or the partic-
ipant votes for abort and then the coordinator decides to abort (event
↑ ca). Here we prove that a vote for abort from a participant always pre-
cedes the decision to abort (not based in timeout), through the formula:
<> ↑ ca − > !(! ↑ ca U ↑ pva). The existence before pattern was used.
(iv.b) If the coordinator aborts the transaction, the participants will not
commit the transaction: [] (↑ ca − > [] !(↑ pc || ↑ pc1)). This formula
uses the pattern absence after an event. The rationale is analogous to
(iii). If one of the participants votes for abort, the coordinator will decide
to abort. Since the participants always terminate (formula (ii)), it means
that they abort the transaction.

All these formulas are valid for the scenario without faults. The results of the
verification process are presented in scenario (a) of Table 2. As noted in the
results, the generated state space of the model is small and the verification runs
were due in almost no time. This occurs because in our model of the two phase
protocol, only one transaction is executed and eventually terminates, defining
a finite execution model for the problem (this model captures all the possible
behaviours that are relevant to analyse the protocol). This may not be true for
other models and in some cases an infinite behaviour may be required.

4 Representation of Fault Behaviours

As stated in [4] a system may change its state based on two event classes: normal
system operation and fault occurrences. Based on this observation a fault can be
modelled as a state transition of a system [13]. These transitions can be modelled

Verifying Fault-Tolerant Distributed Systems Using OBGG 91

through the use of additional virtual4 variables, acting like guards to activate
specific commands; and a group of guarded commands representing the specific
fault behaviour, being activated whenever its associated guard is satisfied, by
the assignment of a true value to it [12].

The addition of virtual variables and the notion of guarded commands can
be viewed as a transformation of a model M into a model MF that contains
the behaviour of a selected fault behaviour F in its state space [13]. In [10],
we adopted the same concepts to transform an OBGG model M into a model
MF that represents the system with the selected fault behaviour F . Due to the
notion of time available in the simulation approach for OBGG (see Section 1),
the transformations presented in [10] are not suitable for using verification as
the analysis method. Therefore, now we extend the transformations of OBGG
models [10], with a basic failure detection mechanism which makes it suitable
for using verification as the analysis method.

In the OBGG formalism, this model transformation corresponds to the ad-
dition of guarded commands that either trigger the fault behaviour or not. This
way, in OBGG the left-hand side of a rule corresponds to the guard of the com-
mand and the right-hand side of the rule (application of the rule) corresponds
to the execution of the guarded command. We model the fault behaviour F in
an OBGG model inserting virtual variables (used for the guards) and messages
(used for the activation/deactivation of the fault behaviour) in every (type graph)
class of the model. Besides, we need to create and change all the rules defined
for the classes that appear in the model. Depending on the fault behaviour F ,
different rule transformations may occur.

In order to activate the fault behaviour for an object we insert a special mes-
sage, in the initial graph (initial configuration) of the OBGG model, addressed
to the object we are interested to activate the fault behaviour. This approach
is used because messages in OBGG are received non-deterministically. The non-
determinism ensures that all the possible combinations for the activation of the
fault behaviour for an object will be analysed during verification, i.e. the dele-
tion of the message activating the fault behaviour is arbitrary. The same idea
of inserting a message to activate the fault behaviour is used to de-activate the
fault behaviour and enable the recovery of the object from the fault behaviour.
This de-activation of the fault behaviour is characterized with the generation of
a Recovery message (see Section 2.1) to the object recovering from the fault.

When selecting the fault behaviours to be represented we have adopted the
classification found in [12]. There, fault behaviours are classified into the follow-
ing categories: fail-stop, crash, receive omission, send mission, general omission,
and Byzantine. From these fault behaviours, we do not model the fail-stop and
Byzantine behaviours. The reason we do not model the fail-stop behaviour is
that we consider it to be to restrictive and that the crash behaviour is more
commonly used in the literature of distributed systems. In the case of Byzantine
faults, it is subject of future work.

4 The term virtual is used to qualify variables that are not part of the desired system
itself, but part of the introduced fault behaviour.

92 F.L. Dotti, O.M. Mendizabal, and O.M. dos Santos

4.1 Crash Fault Behaviour

In the crash fault behaviour a process fails by halting. The processes that main-
tain communication with the halted process are not warned about the fault.
Figure 7 shows an algorithm to transform an OBGG model M (without fault
behaviour) into a model MF that incorporates the behaviour of a crash fault
FC . In order to add the behaviour of a crash fault (Figure 7) the transformation
procedure inserts a virtual logical variable in every type graph of the classes of
the model. Depending on the value of this variable, the object may exhibit the
fault behaviour (down is true) or not (down is false). Besides, new rules are
added to activate the fault behaviour and to cease it. To illustrate, the rules
Crash and Uncrash for the Part class are presented in Figure 8.

As defined in Figure 7, we also have the addition of new rules to represent
the fault behaviour in the model. These rules represent the behaviour of a crash
fault upon the reception of each message. The behaviour consists in consuming
the message, making no modification to the internal state of the object, creating
no other object(s), and generating no message(s).

1 For every class in the model {
2 // guard
3 in the type graph:
4 insert a boolean "down" variable
5 in the initial graph:
6 set "down" to "false" (used as the guard)
7

8 // activation and deactivation rules
9 create a new rule called "Crash"

10 insert as the activation message a "Crash" message
11 if "down" is "false"
12 this rule sets the guard "down" to "true"
13

14 create a new rule called "Uncrash"
15 insert as the activation message an "Uncrash" message
16 if "down" is "true"
17 this rule sets the guard "down" to "false"
18

19 // create rules with the behaviour in a crash situation
20 For all rules in the class definition {
21 replicate the current rule and for each replica
22 insert a guard "down: true"
23 modify the right-hand side:
24 the internal attributes remain unchanged
25 no messages are generated
26 no objects are created
27 if the received message had a "snd" (sender) parameter
28 send a "Timeout" message to the sender "snd"
29 }
30

31 // change original rules to work only if not crashed
32 For all original rules (not replicas) in the class definition {
33 insert a guard "down: false"
34 }
35 }

Fig. 7. Algorithmic transformation over a model to represent a crash fault behaviour

Verifying Fault-Tolerant Distributed Systems Using OBGG 93

Fig. 8. Rules Crash and Uncrash used to activate/deactivate the crash fault behaviour

(a)

(b)

Fig. 9. (a) Rules without fault behaviour and (b) rules considering fault behaviour

According to [16], the internal state of a crashed process is undefined – when
the process recovers from the fault its state is re-initialized. However, in [12] the
representation of a crashed process is that the internal state remains unchanged
(the last state of the process is the same state when recovered from the fault). In
fact, the representation of crash presented in this work adopts the last definition.
Mainly because it is useful to the case study: the recovery process of the two
phase commit protocol relies on persistent internal state of the isolated members.
Nevertheless, the first definition could be modelled using a Crash message that
re-initializes the object when the fault occurs. This way, the application has to
manage itself to update the object, when it recovers from the fault, with respect
to the current state of the distributed system.

Though, in order to detect a faulty object in the model it is necessary to add
timeouts to the messages sent to the faulty object. Since OBGG models used for
verification are completely asynchronous, we have to explicitly represent the lack
of a response as a message that is generated when a fault behaviour is activated.
Thus, messages that have a reply associated, when processed by a faulty object,
generate a Timeout message in reply to the sender (snd) which is assumed as
a parameter of the incoming message (snd) (see Figure 9, rule Commit and
F Commit). On the other side, messages that do not have reply associated are
simply consumed by the crashed object without generating any reply (see Figure
9, rule Commit1 and F Commit1).

94 F.L. Dotti, O.M. Mendizabal, and O.M. dos Santos

4.2 Omission Fault Behaviours

A process in a send omission fault may exhibit the same behaviour as in a
crash fault. Furthermore, a process may fail to transmit a subset of the total
messages that it was supposed to send [14]. An algorithm to transform a model
M (without fault behaviour) into a model MF that incorporates the behaviour
of a send omission fault FSO is presented in [10]. Due to space constraints we
do not present the revisited algorithm but we explain the main idea behind the
transformation used to represent this fault behaviour.

In order to add the behaviour of a receive omission fault, a virtual logical
variable (rcv omitted) is inserted in every class of the model. Depending on the
value of this variable, the object may exhibit the fault behaviour (true value)
or not (false value). New rules are created to activate and deactivate the fault
behaviour. Moreover, modified replicas of the already defined rules are also cre-
ated. Those modified replicas are used to represent the fault behaviour and have
in their guards the rcv omitted variable set to true. The right hand side of these
rules specify that no objects are created or internal attributes changed. More-
over, no messages are generated. Instead, when a message with a sender attribute
is received in the left hand side, a Timeout message is generated to that sender
in the right hand side (analogous to the Crash fault model). The original rules of
a class are not modified (guards are not inserted), since in the receive omission
fault behaviour a process may fail to receive only a subset of messages. That is
why we do not insert a guard on the original rules, allowing the choice of a rule
to be applied in a non-deterministic way (once the guard is true).

The send omission fault behaviour is analogous to the receive omission fault
behaviour. The main difference is that in this fault behaviour only a subset of
the total messages sent by the fault process are actually sent. Though, it can be
modelled in a similar way to the receive omission fault behaviour. Moreover, the
general omission behaviour specifies that a process may experience both send
and receive omissions [20]. Using these concepts we model the general omission
as a semantic composition of the send and receive omission fault behaviours.

4.3 Verifying the Two Phase Commit with Crash Fault Behaviour

In order to apply model checking to a given system specified in OBGG, consid-
ering the presence of a given fault behaviour, we have to: (i) choose which fault
behaviour F we want to reason about; (ii) transform the OBGG model M ac-
cording to the algorithmic description of the fault; (iii) translate the transformed
OBGG model MF to the input language of the model checker. After that, we
need to describe properties to be checked using LTL, start the model checking
tool, and analyse the output results.

We carried out these basic steps for the two phase commit protocol: (i) the
crash fault behaviour was chosen; (ii) the original OBGG model, presented in
Section 2.1 was transformed into another model according to the algorithm
shown in Section 4.1; (iii) the resulting model was translated to PROMELA
using our tool [7]. After that, we extended the verifications shown in Section 3.1

Verifying Fault-Tolerant Distributed Systems Using OBGG 95

(Scenario b) (Scenario d)

Fig. 10. Example of initial graphs for two phase commit protocol considering faults

Table 2. Verification results for scenarios (a) to (e) and formulas (i) to (iv)

Sc. Resources For.(i) For.(ii) For.(iii.a) For.(iii.b) For.(iv.a) For.(iv.b)
States 17838 1416 5753 3055 1497 24662

(a) Time (m:s) ≈ 00:00 ≈ 00:00 ≈ 00:00 ≈ 00:00 ≈ 00:01 ≈ 00:01
Memory 3.032MB 2.724MB 2.929MB 2.827MB 2.724MB 3.236MB
States 805303 72508 551527 280820 74261 1.78212e+06

(b) Time (m:s) ≈ 02:16 ≈ 00:12 ≈ 01:06 ≈ 00:30 ≈ 00:06 ≈ 03:48
Memory 30.065MB 6.616MB 23.921MB 15.217MB 5.284MB 57.201MB
States 249400 47828 157446 87653 25477 553126

(c) Time (m:s) ≈ 00:34 ≈ 00:07 ≈ 00:12 ≈ 00:06 ≈ 00:01 ≈ 00:55
Memory 11.224MB 4.977MB 8.971MB 6.718MB 3.544MB 19.723MB
States 9.19774e+06 1.3985e+06 1.88823e+07 3.1813e+06 554593 2.09131e+07

(d) Time (m:s) ≈ 17:30 ≈ 03:22 ≈ 01:07 ≈ 04:08 ≈ 00:29 ≈ 38:38
Memory 319.038MB 71.230MB 609.137MB 139.224MB 20.747MB 667.096MB
States - 9.59151e+06 1.12832e+07 2.50637e+07 8.84848e+06 9.26983e+07

(e) Time (h:m) - ≈ 00:59 ≈ 00:41 ≈ 01:49 ≈ 00:35 ≈ 50:16
Memory - 454.206MB 466.904MB 1071.166MB 298.046MB 3033.150MB

to consider the inserted crash fault behaviour. The verification scenarios were:
(a): without faults; (b): only Coord fails and recovers; (c): only one Part fails
and recovers; (d): both Parts fail and recover; (e): Coord and one Part fail and
recover. These scenarios were implemented in the model by creating new initial
graphs with the addition of messages used to activate/deactivate the crash fault
behaviour of the desired objects, as exemplified in Figure 10.

The reader should note that the non-determinism found in the message re-
ception of the OBGG formalism obliges the verification process to traverse all
the possible interleaving between the processing of the Crash message and other
messages, that may be present (at any time) in the model. The inclusion of both
Crash and Uncrash messages in the initial graph are possible, since the Uncrash
message can only be applied after the consumption of the Crash message.

For scenarios (a), (b), (c) and (d), all LTL formulas proposed in Section 3.1
are valid and yield the results shown in Table 2. The formulas were verified in
an Intel Xeon 2.2 GHz Processor with 4 GB of memory allocated to the SPIN
model checker. As expected, the addition of the fault behaviour increases the
size of the model considerably and its verification time.

Now we discuss scenario (e), where Coord and a Part are faulty. With ex-
ception of LTL formulas (i) and (iii.a), all the other formulas are valid also for

96 F.L. Dotti, O.M. Mendizabal, and O.M. dos Santos

scenario (e). Formula (i) does not verify. This is a possible outcome of the basic
protocol that the verification is showing. There is the possibility that Coord does
not terminate the transaction (rule Terminate) because the faulty Part may al-
ready have received the decision (DoCommit or DoAbort) and acknowledged it,
but in the meanwhile Coord may have failed and then looses the acknowledge-
ment. When Coord recovers, it tries to repeat the second phase but then Part
may have failed and will not respond and Coord will continue with a pending
transaction. The faulty Part will then recover and assume the persistent state,
i.e. transaction finished5. The mechanism proposed in the literature [1] to deal
with this is to extend the protocol with a garbage collection mechanism whereby
Coord tries to resolve pending transactions repeating the second phase.

Continuing the discussion of scenario (e), since formula (ii) can be verified,
we know that all participants reach the termination of the protocol, although the
coordinator may not. Given this, we proceed to prove that the participants finish
the transaction with coherence, with properties (iii) and (iv). Formulas (iii.b),
(iv.a) and (iv.b) are also valid for scenario (e), but (iii.a) does not verify. This is
also an expected behaviour and it happens because a participant may vote for
commit while the coordinator is faulty. The recovery action of the coordinator
will ask for a new vote and this time the participant may have failed. The absence
of the participants vote will generate a timeout and the coordinator will decide
to abort. To prove that when both participants vote for commit the coordinator
will decide for commit we have to filter the behaviour of the coordinator to
the traces where it does not restart the voting procedure (to avoid the above
described possible behaviour). The resulting formula is: []! ↑ cr − > (<>↑
p1vc − > [](↑ p2vc − > <> ↑ cc)). The results for formula (iii.a) in scenario
(e) of Table 2 consider this formula.

The practical limitations we faced during our work are strongly related to the
state space explosion problem, which is a general problem when using model-
checking. The verifications reported in Table 2 make use of the same SPIN
options. Among the options we choose compression in order to save memory -
our machine is limited to 4GB of memory and formula (iv.b) used more than
3GB for scenario (e). The drawback of this option is that the processing time is
penalized. The reader should note that in scenario (e) of Table 2 the timescale
is “h:m” and not “m:s” as for the other scenarios.

Further reporting about our experiences in this sense, we have modelled the
scenario where all instances fail. The verification of this case was not possible
due to insufficient memory. The fast increase in the state space is understandable
since the additional behaviours have to be considered in all possible interleaving
with the already existing behaviour. For instance, in the situation where all
instances fail, if compared to scenario (e), the model checking procedure would
have to consider all possible interleaving of the crash of the second participant
with respect to the possible computations of scenario (e).

With the above discussed experiments, we have exemplified our approach
and verified various important properties of the two phase commit protocol.

5 Due to space restrictions we do not present this graphical counter-example.

Verifying Fault-Tolerant Distributed Systems Using OBGG 97

During the verification process our model was naturally extended and corrected.
Extensions could be proposed to the verification here proposed. For instance,
it would be possible to investigate the situation where a selected object repeat-
edly fails. In this case the initial graph would have several Crash and Uncrash
messages posted to the selected object. Crash messages are not consumed dur-
ing a crash and therefore continue in the state graph until the recipient object
could consume it, i.e. the object is not crashed. For the specific case of the two
phase commit protocol, since the recovery actions are atomic, the successive
application of crash/recovery to an object would lead to the repetition of states.

Although we used the same formulas defined in Section 3.1, one can specify
and verify other properties that consider the fault behaviour by selecting a spe-
cific set of computations of the model involving faults. This way, it is possible
to specify properties (via LTL formulas) that consider the activation and deac-
tivation of the fault behaviour (e.g. Crash rule and rules defined for consuming
the Recovery message, respectively) as part of the property specification.

5 Related Work

Concerning related work, we have mainly surveyed the literature trying to iden-
tify approaches that allow developers to reason about distributed systems using
formal verification (model checking) in the presence of faults. Complementarily,
related work on model checking Graph Grammars (GG) are also reported.

The SPIN model checker [15] enables a developer to specify a system using the
formal language PROMELA, and specify properties using LTL. The similarity
is that SPIN allows one to verify models using channel abstractions that may
loose messages. This feature is provided by the supporting tool. Other fault
behaviours are not provided. Thus SPIN provides message losses through the
run-time environment. Faults are not represented as part of the system model.
Since in this work we embed the fault behaviour in the system model, we can
use different tools to analyse the effects of the fault in the model. In [10] we used
simulation and in this paper we introduce model checking as analysis tool.

Another work, which is directed to the development of mobile systems, is
presented in [11]. The Distributed Join Calculus is a process calculus that in-
troduces the notions of locations and agents, where locations may be nested.
The calculus provides the notion of crash of a location, whereby all locations
and agents in the crashed location are halted. A crash of a location changes the
behaviour of basic characteristics hindering any kind of reaction, like for commu-
nication or process migration. Systems that are represented with this calculus
can be verified semi-automatically using theorem proving.

In [19] an extension to the basic I/O Automata [18] model includes fault be-
haviour in critical and distributed systems. According to this extension, actions
are classified in normal, fault and recovery actions. Each class of actions can be
active or not, defining for each instant a set of actions that can be taken. Thus,
it is possible for fault actions to disable some normal actions, in accordance
with the fault class modelling, and recovery actions to activate some normal

98 F.L. Dotti, O.M. Mendizabal, and O.M. dos Santos

actions again. Altogether, [19] offers abstractions (classes of actions and activa-
tion/deactivation lists) such that the developer can represent the fault behaviour
of interest. In our work, fault representation is done by transforming the specifi-
cation automatically. Moreover, although there is tool support for the verification
of I/O Automata, it is not clear whether this extension is also supported.

The work of [24] presents a proposal very similar to this one. A language
based in guarded commands is used to model systems. This language is mapped
to the input language of the SMV model checker [2] for verification. The paper
does not mention the semantic compatibility of the original model and the one
generated as input to SMV. The representation of fault behaviours uses the
same underlying ideas as this paper. However, the approach is not based on a
transformation of the original model but the developer must explicitly describe
the desired fault behaviour.

Complementarily, there are few contributions addressing the verification
of GG. Some of these contributions propose approaches to the verification of
infinite-state and others finite-state GG. The work in this paper uses a finite-
state approach. Among these, main related work are CheckVML and GROOVE
which are described and compared in [21]. A key difference from those contri-
butions to OBGG model checking is that the later allows dealing only with a
restricted form of GG (OBGG), while CheckVML and GROOVE address GG in
general. On the one side, OBGG imposes important restrictions, but on the other
side the restrictions fits well in the object-based style and reduce the problem of
finding matches of rules in the current system state graph. Another difference is
that [21] focus on reachability properties while in OBGG model checking allows
one to state various kinds of properties.

6 Final Remarks

In this paper we presented a method for the specification and analysis (using
model checking), of fault-tolerant distributed systems modelled with the Object-
Based Graph Grammars (OBGG) formalism. We considered the definitions of
crash and omission fault behaviours and how to automatically introduce them
into an OBGG model. This transformation leads to a new model that incorpo-
rates the fault behaviour. Special messages are used to activate/deactivate the
fault behaviour. When activated, the fault behaviour generates special events
(Timeout and Recovery messages) that the model should respond to in order to
deal with the faults. As discussed in this paper, the use of such events provide
a well defined abstraction w.r.t. the fault behaviour that developers can use to
model and analyse (using model checking) fault-tolerant distributed systems.

In particular, two main characteristics of the OBGG formalism made it
suitable for the approach: (i) to be based on rules – making it easy to add
guards for the activation/deactivation of the introduced fault behaviour; (ii)
non-deterministic reception of messages – enabling the analysis of all possible
combinations of the activation/deactivation of the fault behaviour. Since models
described in OBGG can be formally verified using model checking, as well as

Verifying Fault-Tolerant Distributed Systems Using OBGG 99

simulated, we provide methods and tools to help reasoning about distributed
systems in the presence of faults.

We have focused our activities in the Crash fault model. This is because it
is often used in the literature. Moreover, we could satisfactorily illustrate the
general idea of handling with fault models using it together with the case study.
It is possible to envision the automatic modification of messages in order to
model random corruption. However, a deeper study is needed to identify the
possibility of modelling malicious intentions of messages.

Although the case study was small in terms of instances, we could prove
important properties. As discussed in Section 4.3, even this small case lead to
considerable resource consumption. State space explosion is often a problem
when using model checking techniques and various techniques can be employed
to reduce it. In our case we are translating from OBGG to the input language
of a model checker. This translation introduces basic structures and processes
to represent the OBGG abstractions that are costly in terms of time and space.
An important future work comprises the optimization of this translation.

References

1. K. P. Birman. Building secure and reliable network applications. Manning Publi-
cations, USA, 1996.

2. J. R. Burch et al. Symbolic model checking: 1020 states and beyond. Information
and Computation, 98(2):142–170, 1992.

3. M. Chechik and D. O. Păun. Events in property patterns. In 5th and 6th Int. SPIN
Workshops, volume 1680 of LNCS, pages 154–167, Germany, 1999. Springer-Verlag.

4. F. Cristian. A rigorous approach to fault-tolerant programming. IEEE Trans. on
Soft. Eng., 11(1):23–31, 1985.

5. F. Cristian. Understanding fault-tolerant distributed systems. Communications of
the ACM, 34(2):56–78, 1991.

6. F. L. Dotti, L. M. Duarte, B. Copstein, and L. Ribeiro. Simulation of mobile
applications. In 2002 Communication Networks and Distributed Systems Modeling
and Simulation Conference, pages 261–267, USA, 2002. SCS.

7. F. L. Dotti et al. An environment for the development of concurrent object-based
applications. Eletronic Notes in Theoretical Computer Science, 127:3–13, 2005.

8. F. L. Dotti, L. Foss, L. Ribeiro, and O. M. Santos. Verification of object-based
distributed systems. In 6th Int. Conference on Formal Methods for Open Object-
Based Distributed Systems, volume 2884 of LNCS, pages 261–275, France, 2003.
Springer-Verlag.

9. F. L. Dotti and L. Ribeiro. Specification of mobile code systems using graph
grammars. In 4th Int. Conference on Formal Methods for Open Object-Based Dis-
tributed Systems, volume 177 of IFIP Conference Proceedings, pages 45–64, USA,
2000. Kluwer Academic Publishers.

10. F. L. Dotti, O. M. Santos, and E. T. Rdel. On the use of formal specifications to
analyze fault behaviors of distributed systems. In 1st Latin-American Symposium
on Dependable Computing, volume 2847 of LNCS, pages 341–360, Brazil, 2003.
Springer-Verlag.

11. C. Fournet et al. A calculus of mobile agents. In 7th Int. Conference on Concur-
rency Theory, volume 1119 of LNCS, pages 406–421, Italy, 1996. Springer-Verlag.

100 F.L. Dotti, O.M. Mendizabal, and O.M. dos Santos

12. F. C. Gärtner. Specification for fault tolerance: a comedy of failures. Technical
Report TUD-BS-1998-03, Department of Computer Science - Darmstadt University
of Technology, Germany, 1998.

13. F. C. Gärtner. Fundamentals of fault-tolerant distributed computing in asynchro-
nous environments. ACM Computing Surveys, 31(1):1–26, 1999.

14. V. Hadzilacos and S. Toueg. A modular approach to fault-tolerant broadcasts and
related problems. Technical Report TR94-1425, Department of Computer Science,
Cornell University, USA, 1994.

15. G. J. Holzmann. The model checker SPIN. IEEE Trans. on Soft. Eng., 23(5):279–
295, 1997.

16. P. Jalote. Fault tolerance in distributed systems. Prentice Hall, USA, 1994.
17. L. Lamport and N. Lynch. Distributed computing: models and methods. In Hand-

book of theoretical computer science, volume B: formal models and semantics. El-
sevier, 1990.

18. N. A. Lynch. Distributed algorithms. Morgan Kaufmann, USA, 1996.
19. T. S. Perraju, S. P. Rana, and S. P. Sarkar. Specifying fault tolerance in mission

critical systems. In 1st IEEE High Assurance Systems Engineering Workshop,
pages 24–31, Canada, 1996. IEEE Computer Society Press.

20. K. J. Perry and S. Toueg. Distributed agreement in the presence of processor and
communication faults. IEEE Trans. on Soft. Eng., 12(3):477–482, 1986.

21. A. Rensink, Á. Schmidt, and D. Varró. Model checking graph transformations:
a comparison of two approaches. In Int. Conference on Graph Transformation,
volume 3256 of LNCS, pages 226–241. Springer-Verlag, 2004.

22. G. Rozenberg, editor. Handbook of graph grammars and computing by graph trans-
formation, volume 1: Foundations. World Scientific Publisher, 1997.

23. O. M Santos, F. L. Dotti, and L. Ribeiro. Verifying object-based graph grammars.
Eletronic Notes in Theoretical Computer Science, 109:125–136, 2004.

24. T. Yokogawa, T. Tsuchiya, and T. Kikuno. Automatic verification of fault toler-
ance using model checking. In 2001 Pacific Rim Int. Symposium on Dependable
Computing, pages 95–102, Korea, 2001. IEEE Computer Society Press.

The Zerberus Language: Describing the
Functional Model of Dependable Real-Time

Systems

Christian Buckl, Alois Knoll, and Gerhard Schrott

TU München, 85748 Garching b. München, Germany
buckl@in.tum.de

http://www6.in.tum.de

Abstract. A growing number of safety-critical systems is controlled by
computer systems. Currently these systems are often built from scratch.
The Zerberus System assists the developer in the design and implemen-
tation process. Main features of the Zerberus System are generality, de-
pendability, real-time predictability, the ability to be certified and cost-
efficiency.

The main concept of the Zerberus System is the platform indepen-
dent specification of the functional model by the developer. The func-
tional model specifies the functional elements (tasks), the relation be-
tween these elements, the interaction of the system with the environ-
ment and the temporal constraints. On the base of the functional model
the Zerberus System automatically generates the fault-tolerance mecha-
nisms. Thus the task of the developer is restricted to the implementation
of the application-dependent code.

In this paper we present one major part of the Zerberus System: the
Zerberus Language that is used to specify the functional model of the
control applications.

1 Introduction

Many safety-critical control systems are automated by the use of computer sys-
tems. Although the main fault-tolerance mechanisms are known for a long time
[1,2] a general approach in the sense of reusing fault-tolerance mechanisms is
missing. Most systems are therefore built from scratch and the application func-
tionality is mixed with the fault-tolerance mechanisms. This leads to a time-
consuming and cost-intensive development process.

Within the Zerberus System a development process is suggested to the user
that attempts to reduce the development times and costs, while increasing the
reliability and safety of the software. The Zerberus System emphasizes five dif-
ferent features: generality (by supporting the development of computer systems
for various applications and domains, e.g. space, medical and traffic engineer-
ing), dependability (by providing fault-tolerance mechanisms to comply with the
safety and availability requirements), real-time capability (by enabling the sat-
isfaction of hard real-time constraints), the ability to be certified (by meeting

C.A. Maziero et al. (Eds.): LADC 2005, LNCS 3747, pp. 101–120, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

102 C. Buckl, A. Knoll, and G. Schrott

certification standards e.g. DO-178B [3], IEC 61508 [4] and assisting the certi-
fication process by the system’s architecture) and cost-efficiency (by supporting
commercial-of-the-shelf (COTS) hardware and by accelerating the development
process).

The main concept of the Zerberus System to achieve these features is to
separate the functional design of the application from the platform dependent
implementation and to provide a set of pre-implemented fault-tolerance mech-
anisms. This separation is realized by the specification of the functional model
of the application. This model specifies the functional elements, the relation
between the elements, the interaction of the system with the environment and
the temporal constraints. On the basis of the functional model the Zerberus
System is enabled to generate automatically the necessary fault-tolerance mech-
anisms. Thus the task of the developer can be minimized to the implementation
of the application-dependent code. The automatic code generation of the fault-
tolerance mechanisms is performed by using templates that are implemented
independent from a certain application. The templates are carefully designed
and coded and we intend to obtain a certification for these templates from the
German certification authority TÜV. By reusing certified templates for the fault-
tolerance mechanisms the development process can be accelerated and the error
rates in comparison to a repeated reimplementation of these mechanisms can be
reduced.

The fault-tolerance mechanisms that are currently supported are based on
structural redundancy. At least three redundant units are executed in parallel.
In the following we denote the redundant units as Zerberus units. The system
offers facilities for synchronization, voting, exclusion of erroneous units and rein-
tegration of repaired Zerberus units.

In this paper we focus on the Zerberus Language. This language is used for the
specification of the functional model by the developer. The language had to be
designed in a way that the fault-tolerance mechanisms could be realized based
on this model. Therefore the main goals for the language were the suitability
for replica determinism (to enable a comparison of the states of the redundant
Zerberus units for an error detection) and the existence of previously known
points in time for voting (to enable the implementation of distributed voting
and synchronization algorithms).

The paper is structured as follows: section. 2 discusses related work, sec-
tion. 3 introduces the development process proposed by the Zerberus System to
clarify the role of the Zerberus Language. In addition the requirements on the
language are elaborated. The main concepts of the Zerberus Language are then
described in section. 4 in an informal way, while the exact semantics are spec-
ified in section. 5. At the end of the paper the concrete syntax of the Zerberus
Language is pointed out for a concrete control program in section. 6 and the
work is summarized in section. 7.

The Zerberus Language 103

2 Related Work

Different research groups have observed the demand for a development process
for safety critical real-time systems. Most of these solutions are based on the
time-triggered paradigm [5]. The time-triggered approach guarantees one im-
portant aspect that is absolutely necessary for fault-tolerance mechanisms: de-
terminism.

One important representative for the time-triggered approach is TTP/C [6].
TTP/C, the Time-Triggered Protocol, is a TDMA protocol designed to handle
highly dependent real-time applications implemented in distributed networks.
The protocol offers clock synchronization, clique avoidance, deterministic mes-
sage sending and membership services [7]. The TTP/C protocol itself offers
nevertheless no built-in fault-tolerance mechanisms at application level. Several
other projects addressed this problem (MARS [8] or DECOS [9]). All these ap-
proaches have one major drawback in our opinion: the restriction to special hard-
ware (like TTP/C controllers), programming languages or operating systems.

Our attempt was to design a development process that allows the usage
of commercial-off-the-shelf hardware and that has no constraints towards pro-
gramming languages and operating systems. This approach is shared with the
research project Giotto [10,11], from the University of California at Berkeley.
On the one hand, Giotto is based on the time-triggered approach, but on the
other hand it also uses results of the research on synchronous languages like
Esterel [12] or Lustre [13]. Like the synchronous languages Giotto introduces
an abstraction level that separates the software design process from the actual
hardware. By using the concept of FLET (Fixed Logical Execution Times), the
applications designed with Giotto are not only deterministic regarding the val-
ues of the results (like Esterel, Lustre), but also have a deterministic temporal
behavior. Thereto Giotto offers a language for the specification of the platform
independent functional model for distributed real-time applications. A platform
in the sense of Giotto (and in the sense of Zerberus) comprises the hardware, the
operating system and the programming language. The mapping of the platform
independent functional model to executable code is realized by a code generator.
Since Giotto was designed primarily for the use in distributed systems Giotto
has no built-in fault-tolerance.Within our project we developed the Zerberus
Language, which is based on Giotto, to describe the functional model of the
safety critical system.

Another tool intended for modeling and implementation of embedded sys-
tems is TIMES [14]. Within TIMES the developer models a system and the
abstract behavior of the environment. By using a simulator the user can vali-
date the dynamic behavior and verify the schedulability [15] of the system. A
code generator for the synthesis of C-code on a LegoOS platform is provided.
Like Giotto the tool TIMES was not intended for the use for dependable systems.

Several goals of the Zerberus System are also shared with Erlang [16,17].
Erlang is a programming language designed for programming real-time control
systems. The language offers many features that are more commonly associ-
ated with an operating system than a programming language like concurrent

104 C. Buckl, A. Knoll, and G. Schrott

process, scheduling or garbage collection. Fault-tolerance, fail-over, take-over is
built right into the platform and concurrent processing is one of its strengths.
In contrast to the Zerberus System, Erlang was designed only for soft real-time
systems. Another difference is the programming extent: while Erlang is used for
implementing the whole application, the Zerberus Language is only used for the
specification of the functional model. For the implementation of the pure appli-
cation code the developer can use a common, familiar programming language
like C.

3 Development Process

The Zerberus System suggests different steps in the development process for de-
pendable systems. In each step the system assists the developer to accelerate the
process (for example by automatic code generation) and to improve the results
by tool support or by providing guidelines. The individual steps to produce ex-
ecutable code are illustrated in fig. 1 and are described below. Since for most of
the safety-critical systems a certification by an authority is required this problem
is also addressed.

The description of the individual steps is focused on the requirements towards
the Zerberus Language.

Step 1:
Design of the

functional model

Step 2:
Selection of fault-

tolerance
mechanisms

Zerberus
File

Fault-
Tolerance

Mechanism

Step 5: Code Generation

Step 4:
Selection of

Zerberus
Runtime
System

Step 3:
Implementation of

application
dependent code

Application
code

Executable
Code

Step 6:
Certification

Fig. 1. Development process

The Zerberus Language 105

3.1 Specification of the Functional Model

Within this step the user has to specify the functional elements of the appli-
cation, their relationship towards each other and to the environment as well as
the temporal constraints. The specification is realized by the use of the Zerberus
Language. Since the specification of the functional model should be indepen-
dent of a specific platform, the Zerberus Language has to be designed in a way
to support this independency. A platform in the context of the Zerberus Sys-
tem is understood as the hardware, the operating system and the programming
language.

The Zerberus Language was designed very simple and intuitive to avoid an
error source and a long-lasting learning process. The language is not based on a
certain programming language or operating system to comply with the generality
requirement of the Zerberus approach.

3.2 Analysis of the Requirements on the Dependability

Currently the Zerberus System offers active structural redundancy as fault-
tolerance mechanism. At least three Zerberus units compute the application in
parallel. At specified points in time the units perform a distributed voting and
synchronization algorithm. Erroneous units are excluded from the computation
and can perform error recovery algorithms. Since error recovery algorithms are
in most times application dependent the current run-time systems offer only a
restart of the system or a reboot. In addition the developer can specify further
fault reactions and recovery algorithms. After a successful completion, protocols
allow the reintegration into the running system.

Since a replication of identical units allows no toleration of design errors,
the system also supports diversity of hardware and software. While hardware
diversity leads to no or only few additional costs as a result support of COTS
hardware, N-Version programming is often not considered due to the extra effort
necessary for the implementation of the individual versions.

As a result of these considerations several requirements are posed to the Zer-
berus Language. First of all the language must support the replica determinism:
during the system execution it must be possible to compare the states of the
individual Zerberus units for error detection. Especially due to the support of
N-Version programming this is not a trivial requirement.

Another requirement that arises due to the voting is the existence of deter-
ministic points in time when the voting should be performed. The existence of
deterministic points in time is on the one hand the main requirement to allow
the implementation of a distributed voting algorithm, on the other hand it also
allows the implementation of a distributed clock synchronization algorithm.

The voting in the Zerberus system is performed in two rounds to additionally
support the usage of a non-reliable communication network and is based on the
voting algorithms as suggested by Klaus Echtle [18]. The voting messages are
also used for the synchronization algorithm [19,20,21]: by means of the expected
and the actual arrival time of the voting messages a logical global clock can be

106 C. Buckl, A. Knoll, and G. Schrott

computed. The initial clock synchronization at start up is based on the algorithm
implemented in the TTP/C [6] protocol.

To support the re-integration of a previously excluded Zerberus unit, the
system must offer facilities for state synchronization. Since the algorithms are
realized automatically by the system a derivation of the state of the individual
units must be possible out of the functional model.

Finally, in order to achieve a reduction of the implementation effort for N-
Version programming the code that has to be implemented by the developer
should be restricted to the pure application dependent code.

3.3 Implementation of Application Dependent Code

In this step the developer has to implement code for the application. As already
implied in the previous section this code is restricted to the pure application
dependent functionality of the main parts which were identified within the design
process of the formal model. By this restriction, the implementation effort can
be reduced to a minimum.

The implementation step is platform dependent. This implies that for every
platform used, the code has to be reimplemented by the developer.

3.4 Selection of Run-Time Systems

Run-time systems realize the execution of the application on the individual plat-
form and provide the fault-tolerance mechanisms. Several run-time systems are
provided by the Zerberus System, but to guarantee the generality of our ap-
proach the developer can also design his own run-time system, e.g. if the desired
platform is not supported. To avoid a repeated implementation of such run-time
systems, Zerberus offers a way to code such run-time systems application inde-
pendent. By the use of other means, the Zerberus tags, locations in the code
that have to be replaced with application dependent data can be marked. The
replacement takes place in the code generating process.

To enable the simultaneous use of run-time systems implemented by the
developer and of run-time systems provided by Zerberus in a N-Version pro-
gramming system all protocols for the fault-tolerance mechanisms are provided.
Thus the design effort for a new run-time system is also minimized.

3.5 Code Generation

The transformation of the functional model, the application dependent code and
the selected fault-tolerance mechanisms into executable code is performed au-
tomatically by the Zerberus code generator. The whole code generation process
is depicted in fig.2. Both the functional model and the run-time systems are
parsed by the code generator and syntactic and semantic checks are performed.
Afterwards the code generator replaces the Zerberus tags by application data
and produces executable code.

The Zerberus Language 107

Application Data

ZF-Parser

Zerberus
File

Zerberus File
Runtime

Files

RTF-
Parser

AD-
Checker

RTF-
Checker

Code-
Generator

Application
dependent

code

Executable
Code

Fault-
tolerance
mecha-
nisms

Fig. 2. Code generation process

3.6 Certification of the Zerberus System

The certification of an application developed with the Zerberus System can be
split up into three distinct parts:

1. Certification of the Zerberus System approach
2. Certification of the Zerberus run-time system
3. Certification of the application-dependent code

Certification of the Zerberus System Approach. In a first step the Zerberus Sys-
tem approach has to be certified. This certification includes the Zerberus Sys-
tems concept (including voting, synchronization, integration algorithms), the
Zerberus Language, the code generator and the Zerberus Tags. All tools are
currently available as prototypes. For a successful certification these tools have
to be re-engineered according to the standards proposed by the certification
authorities (RTCA,FDA,TÜV).

Certification of the Zerberus Run-Time Systems. In the second step the certi-
fication of the run-time systems is performed. This includes tests of the suc-
cessful implementation of the proposed algorithms, the successful execution of
functional models and the conformance with the proposed standards of the cer-
tification authorities. Currently two prototype implementation for VxWorks 5.5
and the programming languages C and C++ are available.

108 C. Buckl, A. Knoll, and G. Schrott

Certification of the Application Dependent Code. For the certification of an ap-
plication developed with the Zerberus System only a certification of the func-
tional model, the code implemented by the user and the compliance with the
Zerberus run-time system should be necessary. To achieve this minimization a
strong partitioning among the different integrated modules must be ensured.
This separation is another requirement towards the Zerberus Language.

For a successful certification the system must of course apply to the certi-
fication standards. These standards differ from the fields of application [22]. In
general this means that the system must be re-engineered for each such stan-
dard. In case a certification is achieved the system can be reused for applications
of the same domain without a repeated certification of the steps one and two.
We intend to achieve such a certification by the German certification authority
TÜV for the medical domain.

4 Informal Description of the Zerberus Language

In the previous section the requirements on the Zerberus Language were dis-
cussed in the context of the different development process steps. In this section
the Zerberus Language is described informally and it is shown that the require-
ments can be satisfied by the Zerberus Language. The language was influenced
by the language Giotto introduced in Berkeley [10]. Giotto was changed and
extended in a way that the resulting Zerberus Language was suited for the use
for fault-tolerant applications.

The main attribute to support voting, synchronization and integration al-
gorithms is replica determinism. This is a non-trivial issue since different plat-
forms can be used to achieve fault-tolerance. This includes the simultaneous use
of different hardware, operating systems, programming languages and control
algorithms in one control system. To achieve replica determinism nevertheless
the Zerberus Language is based upon the time-triggered paradigm [5]. Similar to
the approach in [23] replica determinism can be achieved by using the knowledge
about the execution times. In the context of control applications the execution
times can be related to the frequency of control cycles.

Basing the voting, synchronization and integration algorithms on the fre-
quency of control cycles has different positive outcomes: by specified frequencies
of control cycles in the functional model there exist on the one hand determin-
istic points in time, when the synchronization and voting algorithms can take
place. On the other hand the execution and scheduling of the different processes
can be carried out in different ways on the Zerberus units between these points.

The existence of deterministic points in time allow the application of distrib-
uted voting and synchronization algorithms. In this way a single point of failure
can be avoided.

To achieve the claimed simplicity of the language, the Zerberus Language
consists of only seven different object types: ports, actors, sensors, guards, modes
and modechanges. In this section the different object types are explained infor-
mally.

The Zerberus Language 109

4.1 Port

All communication in the Zerberus System is performed via ports. A port is a
unique space in memory with a predetermined size and a specified representation.
Port types are the only element of the Zerberus Language, that refer directly
to a specific platform. To guarantee the platform independence the port types
are platform independent, but are based on the fundamental types of the most
common programming languages.

The values of the ports represent the state of the Zerberus units. There-
fore a comparison of the different Zerberus units can be based on the values of
these ports. It is required that there are no spaces in memory to store internal
states besides the ports. Thus the state synchronization can also be based on
the values of the ports during the reintegration of a Zerberus unit. The platform
independent specification of the size and the representation of the port values
is the foundation to enable the use of N-Version programming using different
programming languages and operating systems.

In the following the attributes of ports are described. Ports are persistent,
that means a port keeps its value over time until the port is updated. The update
access has to be performed deterministically: it is not allowed that more than one
write access is performed at a certain point in time. This condition is checked
by the code generator while parsing the functional model and in addition at
run-time (necessary due to the possible usage of guards, see section.4.6).

Replica non-determinism can also be the result of small clock differences
(since the synchronization algorithm can only guarantee a deviation of the local
clock from the global clock smaller than ε) or of N-Version programming. Due
to these effects the correct port values are typically situated in a small interval.
To support this fact the comparison of ports can also be based on an interval
decision. This can be done by declaring a voting function for the port that has
to be implemented by the developer. In case no voting function is specified the
voting of the port values is based on the bit-by-bit comparison.

The voting on the value of a specific port takes place at least every time an
output is performed based on this port value. For a faster detection of errors the
developer can also specify shorter voting intervals.

4.2 Task

The separation of the pure functionality of the application and the run-time
system including the fault-tolerance mechanisms is realized by tasks. Tasks are
periodically called functions and realize the actual control system functionality.
The simultaneous execution of different tasks is allowed, but to achieve deter-
minism in the execution the tasks have to be independent of each other and
synchronization points are not allowed. Thus the implementation of the task
functions is simplified and accelerated since they represent only sequential pro-
grams and the requirement of the strict partitioning of the integrated modules
to reduce the certification effort is satisfied.

The communication of the tasks between each other and with the environ-
ment is exclusively performed via ports. The access of tasks on ports occurs in a

110 C. Buckl, A. Knoll, and G. Schrott

time-triggered manner. At the beginning of every invocation the task reads the
values of the input ports, at the end of the invocation the results are written into
the output ports of the task. Here the begin and the end refers to the invocation
period as specified in the functional model. The port access is realized by the
Zerberus run-time system and is performed in logical zero time.

The actual execution of the task on the CPU is scheduled by the Zerberus
run-time system and is transparent to the developer. Nevertheless the developer
has to guarantee that the worst-case execution times (WCETs) of the tasks allow
a completion of the tasks satisfying the temporal restrictions as specified in the
functional model.

4.3 Sensor and Actor

Sensors and actors realize the communication of the application with the en-
vironment and should not be mistaken for the hardware devices. Sensors are
functions that are executed to read values from the environment and to write
these values into ports, actors are functions to read values from the port and
write these values to the environment.

The execution of the sensor and actor functions is also performed time-
triggered. The execution frequency has to be specified by the developer. The
sensor execution takes thereby place at the begin of each interval, the actor exe-
cution at the end of each interval. Both executions are regarded as instantaneous.
To legitimate this assumptions the functions must represent short sequential code
without synchronization points and blockages. For example in case of a network
device the sensor functions may check the arrival of a message and copy the
message into a port but a blockage until the receive event of a new message is
not allowed.

4.4 Mode

Applications can have different operation modes. To support this feature the
Zerberus Language introduces modes. A mode is a set of tasks, sensors and
actors that is currently active on the Zerberus units. In addition, a mode cycle
duration is assigned to every mode. Within each mode cycle the tasks, sensors
and actors are executed according to their frequency as specified in the mode
declaration.

mode m
{

task= t1 1,t2 2;
actor= a 2;
sensor= s 1;
duration= 50000000 ns;

}

Fig. 3. Mode declaration

The Zerberus Language 111

t t+25 ms t+50 ms

Sensor s

Actor a

Task t1

Task t2

(a) Formal execution model

t t+25 ms t+50 ms

Sensor s

Actor a

Task t1

Task t2

Run-time
system

(b) Actual execution

Fig. 4. Execution model for mode m

Figure 3 shows the declaration of an example mode m in the Zerberus Lan-
guage. m contains two tasks t1 with frequency 1 and t2 with frequency 2, a
sensor s with frequency 1 and an actor with frequency 2. The duration of one
mode cycle is set to 50 ms.

The formal execution model is depicted in figure 4(a) under the assumption
that the mode cycle starts at time t. At time t the function of sensor s is executed
and the tasks t1 and t2 are started. At time t+25ms the task t2 is stopped and
the actor function is executed. Afterwards the task t2 is started for a second
time. At the end of the mode cycle at t+50ms both tasks are stopped and the
actor a is executed a second time. The execution of the sensor and actor functions
appear instantaneous in the execution model.

Figure 4(b) shows a possible actual execution of the mode cycle on the ma-
chine. In addition to the task execution also the time required for the actor and
sensor function execution, as well as the time consumed for run-time system
execution have to be considered. The run-time system realizes the scheduling of
the tasks, the port accesses and the voting and synchronization with the other
Zerberus units.

The scheduler used in the example of fig. 4(b) uses a Earliest-Deadline-First
strategy for the task execution. Sensors and actors are executed within the run-
time system context.

4.5 Modechange

To enable the switch between different operation modes modechanges can be
used. A modechange is a function implemented by the developer that evaluates
if a mode should be switched or not. The developer has to specify the target
mode and a non-empty set of source modes within the modechange declaration.
The evaluation of the function, which is based on the values of the assigned
ports, takes always place at the end of the source mode cycles.

Mode switches must be deterministic, this means that for every achievable
configuration (port values and modes) at most one assigned modechange can
reach a positive evaluation for a modechange. This condition is checked in the
Zerberus System at run-time.

112 C. Buckl, A. Knoll, and G. Schrott

4.6 Guard

Guards are another possibility to change the behavior of a Zerberus program.
Guards are similar to modechanges functions based on port values, but while
modechanges should be used for different operation modes, guards can be used
to control individual tasks. Thereto the guard is assigned to a certain tasks. At
the begin of every invocation of this task, the guard function is evaluated and
only in case of a positive evaluation the according task is started. The main
advantage of guards over modechanges is therefore their flexibility. A guard can
be used also within a mode cycle and not only at the end of the mode cycle.

5 Formal Description of the Zerberus Language

The concrete language specification is given in [24]. In this chapter we describe
the language in a more abstract way. A Zerberus program computes on the
base of some inputs by the environment the output to the environment. In the
following we refer to Input for the values of the environment inputs and Output
for the values of the output to the environment.

A Zerberus program consists of:

1. A set of port declarations: A port declaration (p, type, init, comp) consists of
a port name p, a type type, an initial value init ∈ type and a compare mode
comp. The set of allowed types are the basic types of common programming
languages (abstracted to achieve platform independence) and arrays of fixed
size of these types. Every port declaration must also contain an initial value
to achieve a common start configuration for all units.

The developer can specify how a port is treated within the voting algo-
rithm. These possibilities range from the denial of comparisons, a bit-by-bit
comparison to an user-defined comparison (typically an interval test). The
denial of comparisons is only valid if the port is not read by an actor.

Port names must be uniquely declared: that means if (p, ∗, ∗, ∗) and
(p′, ∗, ∗, ∗) are distinct port declarations, then p �= p′.

We refer to the set of declared ports by Ports, to the initial value of a
port p by init[p] and to the values of a set of ports P ⊆ Ports by V als[P].

2. A set of actor declarations: An actor declaration (a, f, P) consists of an actor
name a, an actor function name f and a set P ⊆ Ports of input ports. Actor
names must be uniquely declared: that means if (a, ∗, ∗) and (a′, ∗, ∗, ∗) are
distinct port declarations, then a �= a′.

The developer has to implement an actor function with the name f for
each platform used. The function must be of the form f : V als[P] → Output
and is executed every time the actor is invoked synchronously within the
system’s context. We write Actors for the set of declared actors and fa for
the function of an actor a.

3. A set of sensor declarations: A sensor declaration (s, f, P) consists of a sensor
name s, a sensor function name f and a set P ⊆ Ports of output ports.
Sensor names must be uniquely declared.

The Zerberus Language 113

The developer has to implement a sensor function with the name f for
each platform used. This function must be of the form f : Input → V als[P].
The sensor function is executed every time the sensor is invoked synchro-
nously within the system’s context. We refer to Sensors for the set of de-
clared sensors, to fs for the function of a sensor s and to ress[p] for the
results regarding port p ∈ P of the sensor function.

4. A set of guard declarations: A guard declaration (g, f, P) consists of a guard
name g, a guard function name f and a set P ⊆ Ports of evaluation ports.
Guard names must be uniquely declared.

The developer has to implement a guard function with the name f for
each platform used. This function must be of the form f : V als[P] → B.
Guard functions are invoked every time the assigned task should be started.
The execution of the guard function takes place synchronously within the
systems context. We write Guards for the set of declared guards, fg for the
function of a guard g, p[g] for P and resg(V als[P]) for the results of one
function invocation based on the current values of the assigned ports.

5. A set of task declarations: A task declaration (t, f, g, In, Out, Inout) consists
of the task name t, the task function name f , optionally a guard g ∈ Guards
and a set of Ports In ∪ Out ∪ Inout ⊆ Ports. Task names must be uniquely
declared.

The set of assigned ports is subdivided into three classes: In, Out and
Inout. These classes refer to the access type of the task to the port. Every
port used in the task must belong to exactly one class.

The developer has to implement the task function with the name f for
each platform used. The function must be of the form f : V als[In∪Inout] →
V als[Out ∪ Inout] and is performed every time the task is invoked by the
system. The execution takes place asynchronously to the system’s context.

We write Tasks for the set of declared tasks, rest[p] for the results of the
current function invocation of task t concerning one assigned output port
p ∈ In ∪ Out and ft for the function of a task t.

6. A set of mode declarations: A mode declaration (m, start, T, A, S, d) con-
sists of a mode name m, a boolean value start, task assignments T , actor
assignments A, sensor assignments S and a duration d. Mode names must
be uniquely declared.

Within the application exactly one mode must be declared as start mode
mstart, that means start = true. The system will start the operation in this
mode.

A task assignments (t, freq) consists of a task t ∈ Tasks and a related
frequency freq ∈ N. The frequency determines the number of the task invo-
cations within one mode cycle (except if a related guard evaluates false). In
the following we will refer to the frequency freq of a task t in mode m by
freq(t, m). The sensor and actor assignments are similar.

The duration (s, ns) consists of the number of seconds s ∈ N and the
number of nanoseconds ns ∈ N (to confirm with the POSIX standard) and
determines the duration of one mode cycle.

We write Modes for the set of declared modes.

114 C. Buckl, A. Knoll, and G. Schrott

7. A set of modechange declarations: A modechange declaration (mc, f, P,
Source, target) consists of the modechange name mc, a modechange function
name f , a set P ⊆ Ports of evaluation ports, a set of source modes Source ⊆
Modes and a target mode target ∈ Modes. Modechange names must be
uniquely declared.

The developer has to implement a modechange function with the name f
for each platform used. The function must be of the form f : V als[P] → B.
A modechange is evaluated always at the end of a mode m ∈ Source. If the
function result is true the new mode executed by the system will be target.
We write Modechanges for the set of declared modechanges, fmc for the
function of a modechange mc, p[mc] for P and resmc(V als[P]) for the results
of one function invocation.

In the following the semantics of the Zerberus Language are described. The
realization of the fault-tolerance mechanisms is mentioned but the focus lies on
the functional semantics.

The voting algorithm has three results: the state of the system ressys ∈ B,
the state of the own unit resunit ∈ B and the acting unit id act ∈ N. The result
of the synchronization is the temporal correction value Δcor. In addition we
assume that the developer has decided to use the port values for voting only in
case they are used for an actor output.

For simplicity reasons possible occurrences of errors during the application
execution are ignored. These errors can be time violations or simultaneous write
attempts on one port. In all such cases the normal execution is aborted at once
and fault reaction algorithms are executed.

A program configuration C = (id, s sys, s unit, m, δ, v, σactive,, τ) consists
of the unique Zerberus unit ID id, states of the system s sys and of the own
unit s unit, a current mode m ∈ Modes, a mode unit δ ∈ N, a valuation v ∈
V als[Ports] for all ports, a set of active tasks σactive ⊆ Tasks and a time
stamp τ ∈ Q. The set of active tasks σactive contains all tasks that are logically
running, whether or not they are physically running by expending CPU time.
The mode unit δ represents the current internal point of the mode cycle. The
number of internal points within one mode cycle of mode m is determined by the
least common multiple ω[m] of the frequencies of the tasks, actors and sensors
assigned to m.

At start-up each Zerberus unit has to determine if the system is currently run-
ning or if an initial synchronization procedure must be started. This is realized
by a function of the run-time system that observes the network. An operating
system can be recognized by voting and synchronization messages.

In case the system is already running another run-time system function is
executed that allows to obtain the states of the other Zerberus units. One require-
ment for a state synchronization is that the system is currently at the beginning
of one mode cycle (δ = 0). In this case no tasks are active on the other units and
an integration can be successful. Another requirement is that the majority of
Zerberus units agrees in their states. If both requirements are met the configu-
ration is updated to the state of the majority and the integration was successful.

The Zerberus Language 115

If on the other hand the system is not running an initial synchronization
procedure is started. The goal of this procedure is to obtain a global time
base. In case of a successful synchronization the initial configuration is set to
Cinit = (id, true, true, mstart, 0, vinit, ∅, τi) where τi is the result of the initial
synchronization and vinit[p] = init[p].

The internal points represent the points in time, when the synchronization
and voting algorithms are executed. At each internal point the following steps
are performed by the run-time system on the basis of the current configuration
C = (id, s sys, s unit, m, δ, v, σactive,, τ):

1. Copying of task results: Let σcompleted be the set of tasks t ∈ Tasks that
are completed. A task t is completed if t ∈ σactive and if δ is an integer
multiple of ω[m]/freq(t, m) at configuration C. For all ports p ∈ Ports: if
p ∈ inout[t]∪out[t] of a task t ∈ σcompleted then define vstop[p] = rest[p], else
vstop[p] = v[p]. Let Cstop be the new configuration that agrees with vstop in
the values of ports and with the set of active tasks σstop = σactive\σcompleted

and otherwise agrees with C.
2. Voting and synchronization: Let aexecute be the set of actors to be executed.

An actor a is executed if δ is an integer multiple of ω[m]/freq(a, m) at config-
uration Cstop. Let pvote be the set of all ports read by the actors a ∈ aexecute.
The voting and synchronization algorithms are then invoked with the para-
meters vstop[pvote], the mode m and the mode unit δ. Let ressystem, resunit

and act be the results of the voting algorithms and Δcor be the result of the
synchronization algorithm. If ((ressystem ∧ resunit) = false) ∨ |(Δcor| > ε)
then the normal system execution is aborted and error reaction and recovery
algorithms are invoked. Otherwise let Cvote be the new configuration that
agrees with s sysvote = ressystem, s unitvote = resunit, actvote = resact and
τcor = τ + Δcor and otherwise agrees with Cstop.

3. Execution of actors: Let aexecute be the set of actors to be executed. For
all actors a ∈ aexecute the actor function fa is executed if id = actvote. If
id �= actvote the unit only controls the correct output (performed by another
unit). In case errors are detected by the system error recovery algorithms are
executed. The execution of the actor functions takes places synchronously
within the run-time system execution that means that the run-time sys-
tem waits for the completion of the actor function. Let Cactor be the new
configuration that agrees with Cvote.

4. Evaluation of modechanges: If δ = 0 modechanges have to be evaluated. The
set of modechanges mcevalthat needs to be considered consists of all mod-
echanges mc with m ∈ source(mc). For each modechange mc ∈ mceval

the corresponding function is evaluated and if fmc(vstop[p[mc]]) = true
then m′ = target(mc). The developer has to guarantee that at most one
modechange evaluates true at a time. The run-time systems checks this
condition and creates an internal error in case of a violation of this rule.
In the latter case the system execution is stopped and fault reactions are
started.

116 C. Buckl, A. Knoll, and G. Schrott

If no modechange evaluates true, then m′ = m. Let Cmodechange be the
new configuration that agrees in m′ as new operating mode and otherwise
with Cactor.

5. Execution of sensors: Let sexecute be the set of sensors s to be executed. A
sensor is executed if δ is an integer multiple of ω[m′]/freq[s, m′]. Let psensor

be the set of ports that are written by a sensor s ∈ sexecute. For each port
p ∈ Ports: if p ∈ psensor vsensor [p] = ress[p], else vsensor [p] = vstop[p]. Let
Csensor be the new configuration that agrees with vsensor in the values of
the ports and otherwise with Cmodechange.

6. Invocation of tasks: Let tstart be the set of tasks t to be started. A task
t is started if δ is an integer multiple of ω[m]/freq[t, m′]. In addition if
the task has a guard the evaluation must be positive: resg(vsensor [p[g]]) =
true. For every task t ∈ tstart the function ft is invoked with the specified
parameters based on the values vsensor . Let Cstart be the new configuration
that agrees with the set of active tasks σstart = σstop ∪ tstart and otherwise
with Csensor .

7. Advance time: If δ = ω[m] − 1 then δ′ = 0 otherwise δ′ = δ + 1. Let
τ ′ = τcor + d[m′]/ω[m]. The next time the program is invoked with step 1
is at time τ ′. Let Csucc be the new configuration that agrees with δ′ and τ ′

and otherwise with Cstart.

6 Case Study

For demonstration we have implemented a system to balance a rod under the
control of switched solenoids, see figure 5. For a stable control sample rates in
the range of few milliseconds are necessary. As device an AD/DA-board was
used to connect the experimental setup with the three computer units. The
computers were equipped with AMD Athlon processors and they were connected
by switched ethernet. As real-time operating system we used VxWorks and as
programming language C.

Fig. 5. Balanced rod

The Zerberus Language 117

/* Code for the rod control*/

/*ports*/
port input
{

type=INT16;
compareTIME=NEVER;
initialValue=0;

}

port param
{

type=INT16[2];
compareTIME=NEVER;
initialValue=0;

}

port output
{

type=INT16;
compareTIME=compare();
initialValue=0;

}

/*actors and sensors*/
sensor sens
{

function=read();
out=input;

}

actor act
{

function=write();
in=output;

}

/*tasks*/
task control
{

function: contron();
in= input;
inout=param;
out=output;

}

mode control_cycle
{

startmode;
task: control 1;
sensor: sens 1;
actor: act 1;
duration: 1000000 ns;

}

Fig. 6. Functional model

The implementation of the control program was done by two students. It
took two weeks to implement the PID controller on a single computer. The
conversion of the code to the Zerberus System and the addition of the fault-
tolerance mechanisms could be realized within two hours using the code for
the single-machine version. The code that had to be implemented for the fault-
tolerant controller was less than 100 lines of code.

For describing the functional model of the control application 30 lines of code
in the Zerberus Language were needed. The code is depicted in figure 6. Three
ports had to be declared: one port for the systems input (the deviation of the
current position from the desired position), an array of two integer values for the
differential and integral part and one port for the result. Only the port for the
result was used for the voting algorithm. Also the rest of the functional model
was very simple: a sensor was used to read the current position of the rod, a

118 C. Buckl, A. Knoll, and G. Schrott

task was needed for the control computation and an actor was used for writing
the output to the environment.

In addition to the functional model four functions were needed for the control
program:

– read(): The sensor function was used to read the current value from the
AD/DA-board.

– control(): This function implemented the PID controller. As input the func-
tion uses the current position of the rod. The function computes the neces-
sary control output for stabilizing the rod at the desired position. To achieve
this goal the function uses two further ports to obtain also the differential
part and the integral part of the controller.

– compare(): The function compare() is used within the execution of the voting
algorithm of the run-time system. Due to synchronization differences and to
sensor imprecision a binary compare of the result of the control() function
was not possible. Therefore the two students implemented an interval deci-
sions: two results were assumed to be correct if the difference between both
values was less than 0.1 V (allowed voltage range was -10..10 V).

– write(): The actor function was used to write the value of the port output
to the AD/DA-board.

The code for these functions consisted of less that 70 lines of code.
The addition of the fault-tolerance mechanisms (voting, synchronization, in-

tegration), the communication between tasks, sensors and actors, as well as the
scheduling was realized by the system. The sample rate for this control example
was 1000 Hz.

This example proves the applicableness for small control applications. How-
ever we are currently working on two pilot projects with the industry. The goals
of these projects are on the one hand to point out the feasibility, but on the other
hand also to adopt industrial standards in the Zerberus System to increase the
acceptance rate in the industry.

7 Conclusions and Future Research

In this paper we have introduced the Zerberus Language. This language enables
the developer to design the functional model of the control application. The
design of the language was guided by the different requirements on the language
and the development system.

To achieve a general applicability the constraints by the language should be
minimized. This was realized by the independency from a certain platform and
by the time-triggered approach which is suitable for most control systems.

For the use with fault-tolerance mechanisms and especially with active re-
dundancy the language must provide features for replica determinism. By the
time-triggered approach this requirement is satisfied. In addition determinis-
tic points in time for the execution of voting algorithms are available and also a
synchronization of the different units can be achieved. The state synchronization

The Zerberus Language 119

during the reintegration phase is enabled by separating the inner state (ports)
from the functionality (tasks).

One main aspect of supporting the acceleration of the certification process
is the strict separation of the different integrated modules. This separation is
realized by the task concept of the Zerberus Language. In case operating systems
are used that support memory protection, it can be guaranteed that the run-time
system is not influenced by the tasks except in the predefined way.

The Zerberus Language is therefore suited for the use within the Zerberus
System. A code generator is available to support the transformation of the func-
tional models designed in the Zerberus Language into executable code. Within
one small case study we demonstrated the usage of the Zerberus System.

To point out the applicableness within industrial projects we are currently
working on two pilot projects with the industry. Within these projects we also
plan to adopt the recommended development process and the tools to industrial
standards. In addition we want to support further fault-tolerance mechanisms
despite active structural redundancy. Therefore we intend to introduce another
language to specify points within the execution when fault-tolerance mechanisms
should be executed (events) and exception handlers to address the occurrence of
failures. The goal is to provide a set of standard fault-tolerance mechanisms to
the user. To assist the developer in choosing adequate mechanisms, guidelines
will be developed.

Another research area will be an advanced support of the user in the certifi-
cation process. Document output automated by the used tools and the compli-
ance of tools and run-time systems with the relevant development standards are
planned. Within one project for a medical control system in cooperation with
the German certification authority TÜV we want to exemplify our approach.

References

1. Pradhan, D.K.: Fault-Tolerant Computer System Design. Prentice Hall (1996)
2. Lee, P.A., Anderson, T.: Fault Tolerance: Principles and Practice. Springer-Verlag

New York, Inc., Secaucus, NJ, USA (1990)
3. RTCA DO-178B: Software considerations in airborne systems and equipment cer-

tification (1992)
4. International Electrotechnical Commission: IEC 61508: Functional safety of elec-

trical/electronic/programmable electronic safety-related systems. (1998)
5. Kopetz, H., Bauer, G.: The Time-Triggered Architecture. Proceedings of the IEEE

91 (2003) 112 – 126
6. TTTech Computertechnik AG: Time Triggered Protocol TTP/C High-Level Spec-

ification Document. (2003)
7. Kopetz, H., G.Grnsteidl, J.Reisinger: Fault-tolerant membership service in a syn-

chronous distributed real-time system. In: Dependable Computing for Critical
Applications. (1991) 411–429

8. Kopetz, H., Fohler, G., Grünsteidl, G., Kantz, H., Pospischil, G., Puschner, P.,
Reisinger, J., Schlatterbeck, R., Schütz, W., Vrchoticky, A., Zainlinger, R.: The
distributed, fault-tolerant real-time operating system mars. IEEE Operating Sys-
tems Newsletter 6 (1992)

120 C. Buckl, A. Knoll, and G. Schrott

9. Website DECOS: (http://www.decos.at/)
10. Henzinger, T.A., Horowitz, B., Kirsch, C.M.: Giotto: A time-triggered language

for embedded programming. Proceedings of the First International Workshop on
Embedded Software (EMSOFT) (2001) 166 – 184

11. Henzinger, T.A., Horowitz, B., Kirsch, C.M.: Embedded control systems devel-
opment with giotto. Proceedings of the International Conference on Languages,
Compilers, and Tools for Embedded Systems (LCTES) (2001) 64 – 72

12. Berry, G., Gonthier, G.: The esterel synchronous programming language: Design,
semantics, implementation. Science of Computer Programming 19 (1992) 87–152

13. Caspi, P., Pilaud, D., Halbwachs, N., Plaice, J.A.: Lustre: a declarative language
for real-time programming. In: POPL ’87: Proceedings of the 14th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages, ACM Press (1987)
178–188

14. Amnell, T., Fersman, E., Mokrushin, L., Pettersson, P., Yi, W.: Times - A Tool
for Modelling and Implementation of Embedded Systems. In: Joint European
Conferences on Theory and Practice of Software, ETAPS 2002. Lecture Notes in
Computer Science, Springer-Verlag (2002)

15. Krcal, P., Yi, W.: Decidable and Undecidable Problems in Schedulability Analysis
Using Timed Automata. In: Joint European Conferences on Theory and Practice
of Software, ETAPS 2004. Lecture Notes in Computer Science, Springer-Verlag
(2004)

16. Armstrong, J.: Erlang — a Survey of the Language and its Industrial Applications.
In: INAP’96 — The 9th Exhibitions and Symposium on Industrial Applications of
Prolog, Hino, Tokyo, Japan (1996) 16–18

17. Armstrong, J.: The development of erlang. In: ICFP ’97: Proceedings of the second
ACM SIGPLAN international conference on Functional programming, New York,
NY, USA, ACM Press (1997) 196–203

18. Echtle, K.: Fehlertoleranzverfahren. Springer Verlag (1990)
19. Lamport, L., Melliar-Smith, P.M.: Synchronizing clocks in the presence of faults.

J. ACM 32 (1985) 52–78
20. Lundelius, J., Lynch, N.A.: A new fault-tolerant algorithm for clock synchroniza-

tion. In: Symposium on Principles of Distributed Computing. (1984) 75–88
21. Schmid, U., Schossmaier, K.: Interval-based clock synchronization. Real-Time

Systems 12 (1997) 173–228
22. Saglietti, F.: Licensing reliable embedded software for safety-critical applications.

Real-Time Systems 28 (2004) 217–236
23. Poledna, S., Burns, A., Wellings, A., Barrett, P.: Replica determinism and flexible

scheduling in hard real-time dependable systems. IEEE Transactions on Computers
49 (2000) 100–110

24. Buckl, C.: Zerberus Language Specification Version 1.0. Technical Report TUM-
I0501, TU München (2005)

C.A. Maziero et al. (Eds.): LADC 2005, LNCS 3747, pp. 121 – 130, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Soft Error Mitigation in Cache Memories of Embedded
Systems by Means of a Protected Scheme

Hamid R. Zarandi and Seyed Ghassem Miremadi

Department of Computer Engineering, Sharif University of Technology
zarandi@ce.sharif.edu, miremadi@sharif.edu

Abstract. The size and speed of SRAM caches of embedded systems are in-
creasing in response to demands for higher performance. However, the SRAM
caches are vulnerable to soft errors originated from energetic nuclear particles
or electrical sources. This paper proposes a new protected cache scheme, which
provides high performance as well as high fault detection coverage. In this
scheme, the cache space is divided into sets of different sizes. Here, the length
of tag fields associated to each set is unique and is different from the other sets.
The other remained bits of tags are used for protecting the tag using a fault de-
tection scheme e.g., generalized parity. This leads to protect the cache without
compromising performance and area with respect to the similar one, fully asso-
ciative cache. The results obtained from simulating some standard trace files
reveal that the proposed scheme exhibits a performance near to fully associative
cache but achieves a considerable fault detection coverage which is suitable to
be used in the dependable computing.

1 Introduction

Designer of embedded microprocessors have to compromise between performance,
cost and energy. Memory hierarchy is one of the most important elements in modern
embedded systems. In particular, cache memories are simple cost-effective elements
to achieve higher memory bandwidth, which significantly affects the peak throughput
[12]. The performance of the cache depends on several factors such as cache size,
block size, mapping function, replacement algorithm, and write policy [18]. Recent
modern processor designs often devote a large fraction of on-chip transistors (up to
80%) to caches [15]. Consequently, the reliability of caches affects the dependability
of the overall system. The purposes of integrating an error checking scheme in the
memory system such as caches are to prevent errors to propagate to other components
and to overcome the effects of errors locally. This contributes the overall goal of
achieving failure-free computation.

There are two important error checking schemes: parity codes [22] and error-
correcting codes (ECC) [9]. Parity codes can detect odd number of errors and their
power consumption is much less than ECC [4], however, ECC can correct errors.
Each of these codes has a serious problem, i.e., the parity codes have low error detec-
tion capability [25], and the ECC codes incur low performance [17]. Moreover, using
each of them in a uniform structure may occupy significant area space [7], [11]. It is

122 H.R. Zarandi and S.G. Miremadi

due not to flexible in terms of chip area requirements as the area occupied by them is
directly proportional to the cache size. For example, 12.5% area overhead is needed to
store a parity for 8-bit data and the same overhead is required for an 8-bit SEC-DED
(single error correction, double error detection) for a 64-bit entity. It should be noted
that these codes could detect or correct only single error and have not good efficiency
in the applications that are more prone to multiple-errors e.g., space applications.

This paper introduces a new placement scheme for cache memories based on a
variable associativity degree. This scheme is a generalized version of the HBAM
cache (Hierarchical Binary Associative Mapping), which is previously introduced in
[23], [35]. In this scheme, using a division parameter k, cache space is divided into
sets of different sizes, similar to set-associative one, but organized in a hierarchical
structure where the size of the set at a given level is k times larger than that of the set
in the next level of hierarchy. Thus, this new scheme is called Hierarchical Multiple
Associative Mapping (HMAM). Unlike set-associative mapping with a fixed modulo-
based address translation from CPU address into cache sets, HMAM uses an address
translation function that behaves based on a variable modulo system. This characteris-
tic leads to increase hit ratio and to decrease both area and power consumption re-
garding to the fully-associative caches. Using this algorithm, a new solution to the
mentioned problem can be obtained since it enables us to provide a protection code
such as generalized parity for every tag of cache line to detect multiple faults without
compromising the performance or increasing significant area.

The remained of the paper is organized as follows. Section 2 presents some related
work. Section 3 gives overview of the problem, the proposed cache architecture and
fault detection method. Section 4 experimentally studies performance and fault detec-
tion of our method. Section 5 discusses hardware complexity. Finally, section 6 con-
cludes the paper.

2 Related Work

A uniprocessor may have a large miss penalty when it has only a first-level cache and
the gap between processor and memory speed is large. Increasing associativity also
has the advantage of reducing the probability of thrashing. Repeatedly accessing m
different blocks that map into the same set will cause thrashing. A cache with an as-
sociativity degree of n can avoid such thrashing if mn ≥ and LRU replacement pol-
icy is employed [27]. A hash-rehash cache [1] uses two mapping functions to deter-
mine the candidate location with associativity of two and by sequential search, but
higher miss rate results from non-LRU replacement.

Agarwal et al. [2] proposed the column-associative cache that improves the hash-
rehash cash by adding hardware to implement LRU replacement policy. The predica-
tive sequential associative cache proposed by Calder et al. [6], uses bit selection, a
sequential search and steering bit table, which is indexed by predictive sources to
determine search order. However this approach is based on prediction, which may be
incorrect and has slightly longer average access time. Skewed-associative cache [16]
increases associativity in orthogonal dimension using skewing function instead of bit
selection to determine candidate locations. The major drawbacks of this scheme are a
longer cycle time and the mapping hardware necessary for skewing. Ranagathan [15]

 Soft Error Mitigation in Cache Memories of Embedded Systems 123

proposed a configurable cache architecture useful for media processing which divide
the cache into partitions at the granularity of the conventional cache. The key draw-
back of it is that the number and granularity of the partitions are limited by the asso-
ciativity of the cache and also it causes to modify the hardware of the cache to support
dynamic partitioning and associativity.

Another configurable cache architecture has been proposed in [26], which intended
for some specific applications of embedded systems. The cache mapping function can
be configured by software to be direct mapped, 2-way, or 4-way set-associative
caches.

Also, several studies have been done to provide fault-tolerance in caches memories
[11], [17], [25]. In [11], a very small cache was proposed to store parity information
or to duplicate recently used data with a very good hit rate. In [17], a programmable
address decoder was proposed to disable faulty blocks and to remap their references
to non-faulty blocks. But area overhead for a typical 16KB cache is 11% of total
cache area. Replicating data in the cache to enhance reliability was proposed in [25].
The fault detection scheme was either parity or ECC, and in the case of detecting
faults, one of the replications of the affected word in the cache was used. However,
this scheme can detect only single transient faults and has significant effects on the
performance of the cache such that miss rate of the cache increases up to 4 times.

3 Problem Overview

Use of lower voltage levels, high speed data read/write operations and extremely
dense circuitry increase the probability of transient fault occurrence, resulting in more
bit errors in cache memories. Moreover, external disturbances such as noise, power
jitter, local heat densities, and ionization due to alpha-particle hits can also corrupt the
information [10], [13].

Most of transistors in a cache are in memory cells. Hence, the probability that a
given defect is in a memory cell (a bit in the data or tag field) is higher than the prob-
ability of it being in the logic circuitry.

Furthermore, the faults occurred in a tag field are more serious than those affect on
the data field. It is due to 1) the size of a CAM cell is about double as that of a RAM
cell [14], 2) each tag entry is responsible for storing/retrieving several words in its
corresponded block. This means that a given fault in the tag has B (block size) times
crucial effects more than the similar one occurred in a word of the corresponded
block, and 3) bit changes in the tag cause the improper cache hit and miss decisions
i.e., pseudo-hit, multi-hit, and pseudo-miss, and make the memory references to be
invalid. In the case of a pseudo-hit, the processor gets wrong data on a read and up-
dates the data in the wrong location on a write. A pseudo-miss generates an unneces-
sary main memory access. The multi-hit may be detected by the cache controller but
handling is not simple. The controller cannot distinguish between the multiple hit
lines to service the processor’s request.

Parity codes are extensively used in cache memories of today’s modern processors.
As an example, the parity checking employed in data cache in the Pentium® processors
[20] are: 1) parity bit per byte in the cache storage RAM, and 2) parity per entry in the

124 H.R. Zarandi and S.G. Miremadi

tag array. However, parity can only detect odd number of errors (coverage of 50%) and
is not suitable for the applications which need high reliability. For example, a relatively
large fraction of the transient faults caused by alpha-particle radiation or heavy-ion [10]
manifests as multiple-bit errors i.e., single-event multiple upsets [3] [21].

4m+1

Block 8

Set# 1

Set# 2

Set# 3

4m + 3

4m+2

Block 12

Block 13

Block 14

Block 15

Set# 4

Set# 5

Set# 6

Set# 7

Block 9

Block 10

Block 11

Block 4

Block 5

Block 6

Block 7

Block 0

Block 1

Block 2

Block 3

Block Tag

Hierarchy
level# 1

Hierarchy
level# 2

Fig. 1. The 4HMAM organization of a 16-block cache in a system with a 128-block main
memory

Table 1. Address mapping and required bits for tag in each set

Set #
Logical condition in
address decoder

Tag storage bits
Bit length of
tag array

set
Asso.

1 11 =+ bb AA
21 +− bn AdowntoA 2−− bn C/4

2 11 =+ bb AA 21 +− bn AdowntoA 2−− bn C/4

3 11 =+ bb AA 21 +− bn AdowntoA 2−− bn C/4

4 1123 =+++ bbbb AAAA 41 +− bn AdowntoA 4−− bn C/4

… … … … …

3log3 4 −C 1...
4log2

3log2
4

4 =
−+−+ bb

b AAA C
C

2log21
4 −+− Cbn AdowntoA)1(log2 4 −−− Cbn 4

2log3 4 −C 1...
2log21log2 44

=
−+−+ bbb

AAA CC

Cbn AdowntoA
4log21 +−

 Cbn 4log2−− 1

1log3 4 −C 1...2log2
1log2 4

4
=−+−+ bb

b
AAA C

C

Cbn AdowntoA
4log21 +−

 Cbn 4log2−− 1

C4log3 1...
2log2

1log2
4

4 =
−+−+ bb

b AAA C
C

Cbn AdowntoA
4log21 +−

 Cbn 4log2−− 1

1log3 4 +C 1...2log21log2 44 =−+−+ bbb AAA CC Cbn AdowntoA
4log21 +−

 Cbn 4log2−− 1

 Soft Error Mitigation in Cache Memories of Embedded Systems 125

3.1 HMAM Organization

In the HMAM organization the cache space is divided into several variable size asso-
ciative sets in a hierarchical form. Let C be the cache size in blocks and k be division
factor used for dividing the cache space. In HMAM, the cache space is divided into k
different sets with numbers of 1, 2, …, k-1, k, with associativity of C/k located in
hierarchy level of 1. However the last set i.e., k-th set, is then divided to k different
associative sets in hierarchical level of 2 and with number of k, k+1, …, 2k-1. Nowthe
last set i.e., 2k-1 is then divided to k associative sets. This procedure is performed
until the divided sets consist of only one block each. Hence, in HMAM cache, the
cache size C should be power of k.

In this scheme, size of sets varies in power of k and number of sets is
1log)1(+− C

kk . Each set in this scheme with a hierarchy level of h has associativity of
hkC / blocks. The first k-1 sets have the largest size of C/k blocks while the last k sets

contain a minimum of 1 block.
In this scheme, k is a parameter to adjust the associativity used in the cache. In

other words, if k is 1 then the HMAM cache is a fully-associative cache and if k is C
then the HMAM cache is a direct-mapped cache. Also, the HBAM cache [23] is a
HMAM cache with k of 2. For typical size of k (i.e., 2, 4, 8, 16), the cost of this
scheme is less than the cost of fully-associative scheme. Due to the separated logic
associated to each set, its operation is relatively faster compared to fully-associative
mapping and slower than set-associative mapping [33, 34]. In this scheme, address
translation is performed dynamically (value based) instead of statically (bit selection)
in the direct mapping scheme. This means that there is no predefined specified
format to determine set number of a memory address in the cache. The set number
should be determined using the address pattern coming from the CPU. As an example,
Fig. 1 shows the set organization of a 16-block HMAM cache with k equal to 4
(4HMAM), for a main memory of 128 blocks. Table 1 portrays the address mapping
and required bits for tag storage in the 4HMAM cache where its block size is

b2 words. The number of sets in 4HMAM cache is 1log3 4 +C .

3.2 Proposed Protection Code

In the HMAM cache, the reduced area, related to tag storage, was used for a protec-
tion code. The utilized protection code is named generic parity (GParity). A general-
ized parity in radix r, which also includes the even-parity when the radix is two, is
sum of 1’s in the word modulo r. It behaves as a checksum for the word and can de-
tect any simultaneously single-event faults where number of faults is not divisible by
r. As an example, the following figure show a 4HMAM tag of a memory address
whose 4 bits are not necessary for storing. Its GParity in radix 16, which used for
protecting this tag has been shown, as well. Its GParity is 5 since the number of 1’s in
the memory address is 5.

memory address GParity tag in the 4HMAM
0100 1001 1000 0100 0101 0 100 1001 1000

Fig. 2. A generalized parity in radix 8 for a memory address used in the 4HMAM cache

126 H.R. Zarandi and S.G. Miremadi

This protection code is more suitable for the HMAM because: 1) it can be easily
adjusted to any length of bits, 2) it only depends on the number of 1’s in the tag (or
memory address) and hence can be calculated in parallel with address decoding, and
3) it can detect more portion of faults due to multiple effects of transient faults are all
in the same event e.g., single-event multiple upsets [21].

In kHMAM cache, all tags of a set whose number is i, has ⎣ ⎦i
k

k log.log2 bits

length GParity. The cost of adder needed for calculating sum of 1’s is negligible in
total cost of the cache [8]. For example, a 32-bit adder synthesized via a common
synthesis tool, use only 32 LUTs. Using the GParity in the HMAM cause the fault
detection coverage to be improved and makes it to be suitable for dependable comput-
ing systems such as dependable embedded systems which have serious limitations in
the area space.

4 Experimental Study

The cache simulator in [5] was modified to simulate the proposed HMAM cache
scheme. Benchmarks used in this trace-driven simulation included several different
kinds of programs of SPEC2000 benchmarks [19], namely bzip2, apsi, swim, vortex,
eon_cook, eon_rush, gcc, gzip, parser, sixtrack, and vpr. Each file contains at least
100000000 references. Both data and instruction references are collected and used for
the simulation. Three well-known placement schemes, i.e., the direct, set-associative,
and fully-associative mapping are chosen for performance comparison and evaluation.

The cache miss-ratios for the conventional fully-associative (FA), 4-way set asso-
ciative (4WSA), direct-mapped (DC) and the proposed HMAM cache with several
values of k are shown in Fig. 3. For the fully-associative cache denoted as FA in the
figure, the notation “32k-8byte” denotes an 32KB full-associative cache with a block
size of 8 bytes. Notice the average miss ratio of the HMAM cache for a given size
(i.e., 32KB) is very close to the FA. The HMAM cache is approaching to 4WSA
when k is grown. The HMAM scheme outperforms the set-associative and direct
mapping schemes for a wide variety of cache configurations.

4.1 Fault Injection and Fault Detection Coverage

For evaluation of the proposed protection code, we have simulated the scheme using
the benchmarks in the presence of randomly injected faults and fault detection cover-
age of the protection code has been calculated. The fault model which has been used
in the experiments was single bit-flip and multiple bit-flips. The number of bits af-
fected had a uniform distribution. A typical cache size 32Kbyte with block size of 8
byte has been used. In this evaluation six cache schemes, 4WSA, 16HMAM,
8HMAM, 4HMAM, 2HMAM, and FA were equipped by GParity with the same
hardware cost, and their performance and coverage were evaluated.

Table 2 portrays the number of bits and radix of GParity used in these caches and
also shows their experimentally calculated fault coverage. All the single bit errors are
detected by the protected code in every considered cache. The coverage of GParity
when the radix is high (in set-associative), is near to 99% while for the 2HMAM and
fully-associative caches are close to 83% and 50%, respectively. It shows that GParity
behaves as a good protection code for detecting transient faults.

 Soft Error Mitigation in Cache Memories of Embedded Systems 127

Table 2. Fault detection coverage with same hardware cost for 32Kbyte cache

Fig. 3. Miss ratio (%) of fully-associative, several HMAM and direct mapped cache for various
benchmarks

-1

1

3

5

7

9

11

13

15

17

19

bzip2_s7 apsi sw im vortex_tw o eon_cook eon_rush gcc gzip parser sixtrack vpr_route avg

32k-8byte (FA)

32K-8byte (2HMAM)

32K-8Byte (4HMAM)

32K-8byte (8HMAM)

32K-8byte (16HMAM)

32K-8byte (4WSA)

32K-8byte (DC)

Fig. 4. Fault detection coverage per miss-ratio for direct mapped, 4-way set-associative,
2HMAM, 4HMAM, 8HMAM, 16HMAM and Fully-associative caches

Though fault detection coverages of the considered HMAM caches are less than
set-associative cache, but their miss ratio is less than that of set-associative cache, as
shown in the Fig. 3. Conversely, the fault coverage of the considered HMAM is more
than fully-associative cache while their performance is less than it.

For more precisely consideration, we compared their fractions of coverage by
miss-ratio as a good metric which incorporates both of fault-tolerance and perform-
ance metrics. Designers like that fault coverage as well as hit-ratio to take high value.
This leads designs to have a high value for the coverage per miss-ratio. Fig. 4 shows
the coverage per miss-ratio for the mentioned cache architectures. As shown in the
figure, the HMAM caches, specially in the average case, outperforms both of the
fully-associative and 4-way set-associative cache.

128 H.R. Zarandi and S.G. Miremadi

In addition, as shown in Fig. 4, the 4HMAM cache has the best coverage per miss-
ratio regarding to other considered HMAM caches. This implies that increasing the
division factor in HMAM caches does not always increase the coverage per miss-
ratio. Although it causes to increase the fault detection coverage, but in contrast, the
miss-ratio would be increase, as well. By considering the fault detection coverage and
miss-ratio trade-off, the 4HMAM cache is the best cache configuration for the given
configuration.

5 Cost Analysis

In order to reduce latency of tag comparison in fully-associative caches, these memo-
ries are constructed using CAM (content addressable memories) structures. Since
each CAM cell is designed as a combination of storage and comparison logic, the size
of a CAM cell is about double as that of a RAM cell [14]. For fair

CostePerformanc / analysis, the performance and cost for various direct, set-

associative and HMAM caches are evaluated. The metric used to normalize cost-area
analysis is rbe (register-bit equivalent).

We use the same quantities used in [12], where the complexity of PLA (program-
mable logic array) circuit is assumed to be 130 rbe, a RAM cell as 0.6 rbe, and a
CAM cell as 1.2 rbe. The RAM area can be calculated as [14]

[]sense amplifiers driverRAM= 0.6 #entries + #L (#databits + #statusbits)+W⎡ ⎤⋅⎣ ⎦ (1)

where #entries is the number of rows in tag array or data array, sense amplifiers#L is

the length of a bit-line sense amplifier, #data bits indicates the number of tag bits

(or data bits) of one set, #status bits is the state bit of one set, and driverW is the data

width of a driver.
The area of CAM can be given by [14]

sense amplifiers driverCAM = 0.6 2 #entries + #L 2 # tag bits+ W⎡ ⎤ ⎡ ⎤⋅ ⋅ ⋅⎣ ⎦ ⎣ ⎦
 (2)

where # tag bits is the number of bits for one set in the tag array. The total area can

be given by

Area = RAM + CAM + PLA (3)

The area of HMAM cache was calculated by assuming that it is composed of sev-
eral fully-associative caches, each of which has its specified size and tags. Table 3
shows CostePerformanc / for various cache sizes. According to the Table 3, the

HMAM cache (8HMAM, 4KB with 8-byte block size) shows about 40% area reduc-
tion compared to the conventional direct-mapped cache (DC, 8KB with 8-byte block
size) while showing almost equal closed performance gains. Moreover, higher per-
formance for HMAM scheme may be achieved by increasing the size of caches, com-
pared to direct mapping schemes.

 Soft Error Mitigation in Cache Memories of Embedded Systems 129

Table 3. Performance and cost of direct-mapped, 4-way set associative and HMAM caches

Cache
Configuration

Area (rbe)
Avg. Miss
ratio (%)

Avg. memory access
time (cycles)

1K-8B (DC) 8168.1 46.87 5.6944
2K-8B (DC) 15491.1 40.34 6.4112
4K-8B (DC) 29840.35 33.82 7.4544

8K-8B (DC) 57934.45 29.34 8.4992
2K-8B (4WSA) 16125.9 35.64 6.7024
4K-8B (4WSA) 31089.5 30.21 5.8336

1K-8B (2HMAM) 8957.357 38.15 7.1040
8K-8B (2HMAM) 69635.27 22.02 4.5227
2K-8B (4HMAM) 17385.71 32.27 6.1632
4K-8B (8HMAM) 34218.59 28.39 5.5424

6 Conclusions

This paper proposed a fault detection scheme namely GParity and a cache architecture
based on hierarchical Multiple associative mapping, called HMAM, which provides
sets of different sizes. This architecture enabled designers to utilize the proposed
protection code for every tag of cache line to improve fault detection coverage with-
out compromising the performance or increasing significant area relative to the other
cache schemes. Results obtained using a trace-driven simulator and soft-error injec-
tion revealed that HMAM can provide significant performance improvements with
respect to traditional schemes and error detection coverage has been improved as
compared with the already available single parity microprocessors.

References

1. Agarwal A., Hennessy J., Horowitz M.: Cache Performance of Operating Systems and
Multiprogramming. ACM Trans. Computer Systems, Vol. 6, No. 4 , (1988) 393-431.

2. Agarwal A., Pudar S. D.: Column-Associative Caches: a Technique for Reducing the Miss
Rate of Direct-Mapped Caches. Int’l Symp. on Computer Architecture (1993) 179-190.

3. Asadi G., Miremadi S. G., Zarandi H. R., Ejlali A. R.: Evaluation of Fault-Tolerant De-
signs Implemented on SRAM-based FPGAs. Proc. IEEE/IFIP Pacific Rim International
Symposium on Dependable Computing, French (2004) 327-333.

4. Bertozzi D., Benini L., De Micheli G.: Low Power Error Resilient Encoding for On-chip
Data Buses. Proc. of Design, Automation and Test in Europe Conference, France (2002)
102-109.

5. Brigham Young University: BYU Cache Simulator. http://tds.cs.byu.edu
6. Calder B., Grunwald D.: Predictive Sequential Associative Cache. Proc. 2nd Int’l Symp.

High performance Computer Architecture (1996) 244-253.
7. Faridpour A., Hill M.: Performance Implications of Tolerating Cache Faults. IEEE Trans.

on Computers, Vol. 42, No. 3 (1993) 257-267.

130 H.R. Zarandi and S.G. Miremadi

8. Farooqui A. A., Oklobdzija V. G., Sait S. M.: Area-Time Optimal Adder with Relative
Placement Generator. Proc. of Int. Symp. on Circuits and Systems, Vol. 5, (2003) 141-
144.

9. Imai H.: Essentials of Error-Control Coding Techniques. Academic Press, San Diego,
(1990)

10. Karlsson J., Liden P., Dahlgern P., Johansson R., Gunneflo U.: Using Heavy-Ion Radia-
tion to Validate Fault-Handling Mechanisms. IEEE Micro, Vol. 14 (1994) 8-23.

11. Kim S., Somani A.: Area Efficient Architectures for Information Integrity Checking in the
Cache Memories. Proc. Intl. Symp. Computer Architecture (1999) 246-256.

12. Lee J. H., Lee J. S., Kim S. D.: A New Cache Architecture based on Temporal and Spatial
Locality. Journal of Systems Architecture, Vol. 46 (2000) 1452-1467.

13. Miremadi G., Torin J.: Evaluating Processor-Behavior and Three Error-Detection Mecha-
nisms Using Physical Fault Injection. IEEE Trans. Reliability, Vol. 44 (1995) 441-453.

14. Mulder J. M., Quach N. T., Flynn M. J.: An Area Model for On-Chip Memories and its
Applications. IEEE journal of solid state Circuits, Vol. 26 (1991) 98-106.

15. Ranganathan P., Adve S., Jouppi N. P.: Reconfigurable Caches and their Application to
Media Processing. Proc. Int. Symp. Computer Architecture (2000) 214-224.

16. Seznec A.: A Case for Two-Way Skewed-Associative Caches. Proc. Intl. Symp. Computer
Architecture (1993) 169-178.

17. Shirvani P., McCuskey E. J.: PADded Cache: A New Fault-Tolerance Technique for
Cache Memories. Proc. 17th IEEE VLSI Test Symp. (1999) 440-445.

18. Smith A. J.: Cache memories. Computing Survey, Vol. 14, No. 4 (1982) 473-530.
19. Standard Performance Evaluation Corporation: SPEC CPU 2000 benchmarks.

http://www.specbench.org/osg/cpu2000
20. Intel Corporation: Pentium® Family Developer’s Manual. http://www.intel.com
21. Reed R.: Heavy Ion and Proton Induced Single Event Multiple Upsets. IEEE Nuclear and

Space Radiation Effects Conference (1997)
22. Swazey P.: SRAM Organization, Control, and Speed, and Their Effect on Cache Memory

Design. Midcon/87 (1987) 434-437.
23. Zarandi H., Sarbazi-Azad H., “Hierarchical Binary Set Partitioning in Cache Memories,”

to appear in The Journal of Supercomputing, Kluwer Academic Publisher, 2004.
24. Zarandi H., Miremadi S. G., Sarbazi-Azad H., “Fault Detection Enhancement in Cache

Memories Using a High Performance Placement Algorithm,” IEEE International On-Line
Testing Symposium (IOLTS), 2004, pp. 101-106.

25. Zhang W., Gurumurthi S., Kandemir M., Sivasubramaniam A.: ICR: In-Cache Replication
for Enhancing Data Cache Reliability. In Proceedings of the International Conference on
Dependable Systems and Networks (DSN) (2003) 291-300

26. Zhang C., Vahid F., Najjar W.: A Highly Configurable Cache Architecture for Embedded
Systems. Int. Symp. on Computer Architecture (2003) 136-146.

27. Zhang C., Zhang X., Yan Y.: Two Fast and High-Associativity Cache Schemes. IEEE mi-
cro (1997) 40-49.

On the Effects of Errors During Boot�

Mário Zenha-Rela1, João Carlos Cunha2,
Carlos Bruno Silva1, and Lúıs Ferreira da Silva2

1 University of Coimbra, 3030-290 Coimbra, Portugal
{mzrela, cbsilva}@dei.uc.pt

2 DEIS/ISEC, 3030-199 Coimbra, Portugal
{jcunha, lmferrao}@isec.pt

Abstract. We present the results of injecting errors during the boot
phase of an embedded real-time system based on the ERC32 space proces-
sor. In this phase the hardware is initialized, and the processor executes
the boot loader followed by kernel initialization. For this reason most
system support is not yet available and traditional fault-injection tech-
niques such as swifi cannot be used. Thus our study was based in the
processor’s IEEE 1149.1 (boundary-scan) infrastructure through which
we injected about 5000 double bit-flip errors. The observations show that
such system will either crash(25%) or execute correctly(75%), since only
2 errors eventually lead to the output of wrong results. However about
10% of faults originated latent errors dormant in memory. We also pro-
vide some suggestions on what can be done to increase robustness during
this system state, in which most fault-tolerance techniques are not yet
setup.

Keywords: dependability evaluation, embedded systems, fault-tolerance,
fault-injection, boundary-scan.

1 Introduction

Reset is the most common error-recovery mechanism present in embedded com-
puter systems. When some non-permanent error is detected, a simple hardware
or software module triggers a reset that has the ability to bring the system from
an erroneous state into an error-free state. This last-resort technique is used from
the smallest embedded device (e.g. smart cards, mobile phones) to complex com-
puter control systems provided with high degrees of redundancy to detect and
tolerate a large class of errors [1].

After a reset the system is assumed to be clean from errors (both detected and
latent) and may resume execution, rolling back to a previous state or jumping
forward into a new one. However, bringing a system from a hard reset into a
fully operational state implies a long series of complex and sensitive operations,

� This work was partially supported by the R&D Unit 326/94 (Center for Informatics
and Systems, CISUC), and the Portuguese Agency for Innovation (AdI) through
project BSCAN4FI.

C.A. Maziero et al. (Eds.): LADC 2005, LNCS 3747, pp. 131–142, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

132 M. Zenha-Rela et al.

where the occurrence of a fault can lead to immediate drastic effects or stay
latent until much later, with a high potential to induce a system failure.

This point is exacerbated by the fact that the dependability issues of most
critical systems are based on a single failure model or that the mean time between
failures (MTBF) is much longer than the recovery process. This requirement
is mandated both by economic reasons and to make the dependability issues
tractable.

However in many circumstances faults occur in ’bursts’, i.e. they are clustered
in the time domain: while the MTBF may be large the occurrence of successive
faults (the phenomenological cause that originates errors [2]) may be very close
followed by long periods of inactivity. This problem is particularly acute in space,
where cosmological events such as solar flares may affect an on-board satellite
computer during a recovery [3]. In most situations this problem can be acceptably
managed as a single ’long’ fault. In such cases the system restarts operating as
soon as the disturbance intensity goes down a specified threshold. However, in
many situations the fluctuations of the disturbance can lead to successive nearby
non-overlapping faults affecting the computer system.

The problem of dealing with multiple errors can be handled very satisfactorily
by resetting the system: after a hardware reset the system is considered to be
in an error-free state so the potentially multiple errors are simply wiped out.
However, if an error generated during boot manages to pass undetected, it may
not be sufficient to simply reboot the system until all tests pass (boot is not an
atomic activity). Then, if another error occurs in operation, the consequences
may be dramatic as the system may not be able to handle a multiple error
situation.

To the best of our knowledge this problem has never been addressed in the
literature, most probably due to the lack of proper tools. During boot the sys-
tem kernel is not loaded, device handlers and monitoring software are not yet
operational. Thus, the use of dedicated hardware monitoring tools is manda-
tory, but the complexity of modern processors makes this approach unfeasible
or extremely complex. A recently proposed fault-injection approach based on
the IEEE 1149.1 (boundary-scan) standard [4] associated with on-chip debug-
ging facilities seems to overcome this problem since it is orthogonal to the chip
functionalities, and is permanently available whenever the chip is powered [5, 6].

This paper presents the undergoing research aiming at clarifying the effects
of transient faults that occur during a system boot. Permanent faults are not
considered in this study, since they can be more easily detected by diagnostics
hardware.

The remainder of the paper is organized as follows: in the next section we
preset the methodology used in this study, namely the testbed, the workload,
the faultload and the measurements that were performed. In section 3 the activ-
ities performed during the boot sequence that eventually lead to the application
launch are described. Section 4 contains the experimental results and in the fol-
lowing section possible ways to avoid failure are discussed. Section 6 closes the
paper.

On the Effects of Errors During Boot 133

2 Experimental Methodology

Figure 1 depicts the main entities involved: the target system with the workload
burned into its ROM, the fault-injection controller, the access to the target
system boundary-scan port through its JTAG interface, and the database with
the faultload and the outcomes.

The target hardware is the single board computer eVAB695 [7], built around
the TSC695F (ERC32) 32-bit RISC space processor implementing the SPARC
V7 architecture specification. This board includes 512K of radiation-hardened
Flash ROM and 4096K of parity protected SRAM.

The TSC695F processor includes an integer unit (IU), a floating point unit
(FPU), a memory controller (MEC) and a direct memory access (DMA) arbitrer.
It also includes a watchog, two timers, an interrupt controller, one parallel and
two serial interfaces. It supports on-chip debugging and boundary-scan testing
accessible through the JTAG interface connected to a test access port (TAP)
in the eVAB695. The TSC695F development was supported by the European
Space Agency (ESA) aiming the space environment. This processor is currently
on board the International Space Station and has also been adopted by the
Brazilian and Chinese Space Agencies.

The application gravity v1.2, is a program that calculates the trajectory
of a mass (e.g. a satellite) attracted by a bigger mass (e.g. a planet) using New-
ton’s gravity law. This workload, used extensively by ESA for testing purposes,
outputs the successive satellite positions, in x-y coordinates.

The experimental workload gravity runs on top of the RTEMS v4.6 kernel [8]
ported to this specific hardware. RTEMS is an open source kernel designed to
support applications with real-time requirements while being compatible with

Fig. 1. The experimental testbed

134 M. Zenha-Rela et al.

open standards, namely the POSIX 1003.1b API and TCP/IP. The development
of the board support package for the eVAB695 has also been supported by ESA
and is available for download at the ESA web site [9].

The TSC695F was designed to stand the harsh space environment, so a num-
ber of error detection capabilities are built into the hardware, namely parity in
the internal registers and data buses [10]. Thus, if we used the common single-
bit fault model, this would generate easily detectable parity errors. Instead we
adopted an adjacent double-bit flip error model to emulate SEU (single event
upset) transients generated by cosmic radiation. In practice, this means that we
are emulating bit-flips induced by the more energetic SEUs capable of flipping
two adjacent bits.

The fault trigger is temporal: faults are injected following a uniform dis-
tribution during the boot phase, i.e. from the first clock cycle after reset to
the moment the scheduler starts executing the first user application instruction.
During this time frame we disturbed only processor registers (IU, FPU, control
and status) since these could also emulate memory faults (e.g. erroneous values
copied from ROM to RAM or into a wrong memory address). Moreover, the
memory and buses are parity protected.

The injection of faults during system startup is not easily achieved with tra-
ditional techniques. Processor pin-level fault injection is currently an unfeasible
option due to the ever-growing pin-hidden operations (e.g. prefetching and inter-
nal caches), as well as high clock frequencies. Radiation induced techniques, al-
though applicable during system startup, pose known limitations of location and
time control. Software induced fault injection (swifi) offers a level of control and
efficiency hardly achievable by other techniques targeting processors. However,
its dependence on specific routines that use the operating system resources while
reacting to programmed breakpoints makes it unusable during system startup,
the time frame focused in this study. In addition, practical swifi implementa-
tions have injection cores and operation (e.g. setup fault, collect data) highly
dependent on the operating system design turning virtually impossible the de-
velopment of an independent and pre-operating system solution. Moreover, the
presence of potentially dangerous instrumentation code inside the target makes
this kind of approaches less interesting for aeronautic and space applications
where it is mandatory to ’test what you fly, fly what you test ’.

In recent years the boundary-scan infrastructure and its successors have been
successfully used for fault injection [5, 6, 11] providing standard low level access
without giving up from the flexibility recognized to software fault injection tools.
Through this standard test interface port, the target processor offers an access
path to its internals, allowing injecting faults even in state elements not accessible
to the instruction set, like parity bits or pipeline registers. Moreover, the control
of breakpoint resources and running status, both mapped to test registers, enable
to program and perform fault injection and observations from the very first
machine instruction executed, i.e. at any instant, an approach that is completely
operating system independent.

On the Effects of Errors During Boot 135

The fault injection campaigns presented in this study were performed using
an improved version of Xceptiontm [12, 13]. This is an automated fault injection
environment designed to accommodate a variety of fault injection techniques
namely the target processor on-chip debugging facilities available through the
standard boundary-scan infrastructure.

The metrics collected were devised to provide a meaningful view of the target
system robustness in face of faults injected during the boot phase:

Crash - the processor halted or was trapped in an endless loop. A hardware
reset was needed to resume the experiments, so the watchdog timer could
reboot the system.

OK/Clean - the system terminated correctly the boot sequence, the applica-
tion was launched, and no errors were observed neither in the kernel nor
in the application outputs. This involved a full scan of the target system
memory segments (text, data, heap and stack) and processor registers after
the boot and when the application terminated. We also collected the boot
execution time in clock cycles.

OK/Latent - the boot sequence finished, the application was launched and
no errors were observed in the outputs produced. However, internal (latent)
errors which did not come to light during the experiment duration were
present in the memory effectively used (errors in unused memory areas were
not considered).

Wrong - the boot sequence finished and the application was launched but ter-
minated with errors in the outputs produced.

The experiments were much simplified because the workload was being run
in a controlled environment so the system state was deterministic. Through
the boundary-scan port we could freeze the processor to modify and collect
system data. Nevertheless, due to the low bandwidth of the IEEE 1149.1 interface
each single injection run lasted more than 5 minutes, which meant that the
experiments have taken several weeks running unattended.

3 The Boot Sequence

When a computer system is powered-on a long series of sensitive events occur
before the target applications starts executing. These events aim at checking
if hardware components are functional, configuring them, and loading software
from a non-volatile storage media (ROM, flash RAM or hard disk) into main
memory. Non-trivial embedded systems normally make use of a kernel which,
after being loaded, must run through a complex initialization process. While
this sequence of events is system specific, it usually follows these major steps
(Fig. 2):

1. Power-on self test (post) — when the processor is turned on the hardware
performs a built-in self-test and some registers are initialized to a default
value, namely the program counter (pc). Its default value points to a fixed

136 M. Zenha-Rela et al.

Fig. 2. Boot sequence

memory address in ROM where is located the very first machine instruc-
tion executed by the processor. The subsequent tasks are performed under
software control: configuration and status registers are initialized, interrupts
are disabled and common registers (IU and FPU) are cleared. Board specific
code detects the hardware configuration (e.g. the number of serial ports and
the top of memory to initialize the stack), performs diagnostics to check
if the basic components are in perfect condition (e.g. test and clear RAM
memory), and initializes some hardware components (e.g. I/O ports).

2. Kernel and application load — as happens in most embedded systems, the
kernel is loaded as an application library and the different segments (text
and initialized data) of the kernel and workload are copied from ROM into
the RAM areas. Usually the ROM images are compressed so the copy also
involves decompressing those segments. If this software resides on disk, a
loader application is first copied from ROM and then loads the kernel and
workload.

3. Initialize and start kernel — the kernel data structures are initialized, the
most complex parts of the hardware are configured (e.g. co-processor, if
present) and the device drivers are installed. Finally, the kernel scheduler
starts executing by enabling interrupts.

4. Launch application — the ’main’ routine in the user application code is
entered and starts executing.

In figure 3 we present the time×space execution profile of the boot sequence
for the target workload used in our experiments with time (clock cycles) in the
horizontal axis and the address of instructions executed in the vertical axis.

Instead of being spread all over the address space, the memory accesses seem
almost continuous (dark) horizontal bars. This indicates a tight access locality of
the machine instructions executed, i.e. most of the system activity is centred in
very few lines of code that are either clearing the memory or decompressing the
application segments from ROM into RAM. We can see that the boot program
starts executing in the ROM (lower addresses) followed by a long (about 4 million
clock cycles) clearing of RAM memory. Then, the application and kernel code are
copied into RAM (another 3 million clock cycles) followed by the initialized and
uninitialized data areas (the ’uninitialized’ data areas are effectively initialized to
zero). This code fragment is loaded into RAM because fetching this code directly
from ROM would be much slower. This temporary area is located near the

On the Effects of Errors During Boot 137

Fig. 3. Trace of instruction addresses accessed during boot

RAM top (Fig. 4) in the future stack area prior to the stack initialization, thus
not conflicting with the boot operations being performed. Finally, the different
kernel initialization routines are called to prepare the application launch by the
scheduler (Fig. 3, ’kernel init’).

The boot duration depends on the application size: the larger it is, the longer
it takes to reboot. Moreover, if a large number of libraries were used, the longer
it would be. In such embedded systems, services which are not required by the
application are not even linked into the ROM image (e.g. if the workload did
not use real arithmetic the floating point libraries would not be loaded).

In the presented testbed the kernel initialization code starts execution around
the 7.500.000th clock cycle. This means that for about 70% of the boot time
the hardware is performing extremely tight code (cycles of about 10 machine
instructions). As we shall see later this has a direct impact on the system’s
behaviour under faults.

Finally, around the 12.000.000th clock cycle after reset, the application is
started. At 20MHz clock frequency this means that 0.6 seconds are required
for boot. While this seems a negligible fraction of time in missions lasting for
decades, an error occurring during a reboot can have a dramatic impact on
dependability, since it is manipulating extremely sensitive parts of the system,
such as memory (code and data segments), pointers, kernel data structures,

138 M. Zenha-Rela et al.

Fig. 4. The initial boot code is executed near the RAM top

device handlers, hardware configurations, etc. Furthermore, all this functions
are executed in privileged mode, and for most of this time no error handlers are
active and hardware based fault-tolerance support may not be configured yet.

4 Experimental Observations and Discussion

Table 1 presents an overview of the target system behaviour after the injection
campaign involving 4997 effectively injected faults. It depicts the final system
behaviour (columns) versus the system state observed when boot terminated
(rows).

The most significant observation is its resilience to failure: the system either
produces correct outputs (OK/75%) or no output is generated at all due to
crash(25%). A residual 2 faults lead to the production of wrong outputs. It must
be stressed that this behaviour is clearly distinct from what we have observed
in previous research dealing with faults injected during steady-state operation
in similar embedded systems (figures were around Clean(50%), Crash(48%),
Wrong(2%) [14, 15]).

As would be expected the observations show that every OK/Clean outcome
arises from a clean boot environment. The large number of samples where the
system was unaffected (65%) indicates the presence of a significant intrinsic
hardware redundancy. In fact, as was referred in section 3, during about 70% of
the boot time the processor is performing extremely tight code (cycles of about
10 machine instructions, using only 5 of its 256 windowed registers), checking

On the Effects of Errors During Boot 139

Table 1. Overview of the target system behaviour

State after boot Final System Behaviour
Crash OK/Clean OK/Latent Wrong

Clean 3250 0 3250 0 0
Corrupted 490 1 0 487 2
Crash 1257 1257 0 0 0
Totals 4997 1258 (25%) 3250 (65%) 487 (10%) 2 (0.04%)

and clearing memory (POST) and moving the data from ROM into the RAM
space. This means that most of the processor resources are effectively idle and
thus unused, which explains its resiliency to failure. Whenever a resourceful state
machine (such as a processor) uses very few of its resources, the probability of
a disturbance affecting the active functional units is reduced. This observation
agrees with previous observations on the correlation of system load and the
occurrence of errors [16].

Crashes are dominant from errors occurring during the transfer of the appli-
cation image from ROM into RAM (Fig. 5, ’load SW’). Note that the decompres-
sion of the RAM image is parity protected, but since we are injecting adjacent
double bit flip-faults, this mechanism is not enough to prevent the corruption
of the memory image. It was observed that only one fault eventually leading to
crash managed to reach the application entry point. This fault corrupted a global
register (used as frame pointer) during the kernel initialization. The remaining
1257 faults crashed the system when the corrupted kernel code was executed, so
the boot phase never terminated.

About 10% of all faults (490) lead to a corrupted system after boot termina-
tion and to the presence of (487) latent errors despite the production of correct
outputs. The characterization of these errors show a prevalence of faults injected
during the final phases of the boot, i.e. during the kernel initialization. These
errors were resident in kernel structures which have not been used.

A most undesirable behaviour of any computer system is the production of
wrong outputs without being detected by any error detection mechanism being
rather preferable a crash (no outputs produced). This is known as the fail silent
model [17], an assumption under which most dependable systems are designed.
The fail-silent behaviour is usually associated with the evaluation of dedicated
error detection mechanisms [14].

By tracing the executions that generated wrong outputs we observed that
these two faults corrupted fixed data areas (static data) during the memory
initialization phases. This behaviour agrees with the research performed on [15,
18] on the resiliency of errors and checkpoint corruption.

The analysis of the error impact versus fault profile showed a slightly higher
correlation between the trigger address, i.e. what the processor was doing at
the injection instant, rather than a specific target register. Obviously corrupting
the PC lead to crash and the most sensitive address was at the long segment
transfer routines, but beyond these exceptional cases no particular dependency
was observed.

140 M. Zenha-Rela et al.

Fig. 5. Distribution of fault outcomes along the boot phases

5 Tolerating Boot Errors

Based on the previous observations we shall now suggest possible ways to tolerate
errors that may arise during boot.

5.1 Detection of Timing Deviations

The initial boot phase is a deterministic sequence that is not interrupted or
subject to different execution threads. In fact, since interrupts are disabled,
there are no external events that could cause diverse control flow sequences.
The processor itself does not have any indeterministic characteristic, such as
speculative execution. Interrupts and thus the scheduler are only enabled at the
very end of boot. This means that we can know precisely the boot sequence
duration, be it in real time or clock cycles. Since a clean environment after boot
implies a correct timing, then the boot duration may be used for error detection.
Effectively the observations show that about 13% of latent errors are associated
with incorrect boot timing.

These observations have immediate applicability for error detection purposes:
if a watchdog timer is set to the boot duration (plus a minor margin, since it
is asynchronous relative to the processor clock), and a small routine at the end
of boot checks the watchdog counter for an early boot termination, they will
detect every crash and 13% of boot corruptions leading to latent errors (despite
the fact that these would seem like false alarms since the outputs would be
correct). In the current target, up to 62 out of 487 latent errors would have been
detected. The two samples leading to the production of wrong outputs would
not be detected since they showed a correct timing.

On the Effects of Errors During Boot 141

5.2 Detection of State Corruption

Since the boot sequence is fully deterministic, we can collect the system state
in advance. Later in operation, during boot, the full system state (memory and
relevant hardware configuration registers) is checked for corruption using (e.g.)
a resident CRC check, and if any deviation is found a reboot is forced. The
point is that in systems where there is no memory protection (as is the case)
the check itself can corrupt memory areas which have already fed the CRC
calculation. This suggests that –despite the additional power required and the
time execution overhead– the use of ROM for the code segments and fixed data
areas should be considered. Alternatively there could be some form of blocking
the write accesses to such ’fixed content’ areas.

It is mandatory to complement this approach with the watchdog timer re-
ferred above, since the CRC check itself may be bypassed by a control flow error.
If, for some reason, this check were not executed, then the watchdog timer would
expire and force a reset.

6 Conclusion

In this paper we presented an experimental study on the behaviour of an em-
bedded real-time system under the occurrence of faults during boot. During this
time frame operating system support is not yet available and traditional fault-
injection techniques cannot be used. Thus, our research was based in a fault-
injection approach based in the IEEE 1149.1 (boundary-scan) standard, since
this infrastructure is orthogonal to the chip functionalities, and is permanently
available whenever the chip is powered.

The activities performed during boot show that the system either produces
correct outputs (75%) or no output is generated at all due to crash (25%).
However, about 10% of the faults caused latent errors in the system despite the
production of correct outputs. Only 2 faults lead to the production of wrong
outputs.

The insights achieved from this study provide clues on what can be done
to increase robustness during this system state in which most fault-tolerance
techniques are not yet setup. The determinism of the boot, both in time and in
the actions performed, indicate that the boot resiliency to failure can be signif-
icantly increased by i) a watchdog timer finely tuned to the boot duration, ii)
preventing writes to addresses with fixed contents and iii) associating a watchdog
timer to a crc check of the system memory and relevant hardware configuration
registers.

Acknowledgements

We acknowledge Professor Algirdas Aviz̆ienis as the source of inspiration for this
work as he remarked during the EDCC4 conference that no SWIFI tool could
be used to inject faults immediately after a reset.

142 M. Zenha-Rela et al.

References

[1] J. Cunha, A. Correia, J. Henriques, M.Z.-Rela, J. Silva, Reset-Driven Fault Tol-
erance, 4th European Dependable Computing Conference (EDCC-4), Toulouse-
France, October 23-25 2002, LNCS 2485, A. Bondavalli, P. Thevenod-Fosse (Eds.),
Springer-Verlag Heidelberg 2002, pp. 102 - 120.

[2] J.-C. Laprie, A. Aviz̆ienis, H. Kopetz (Eds.), Dependability: Basic Concepts and
Terminology, Springer-Verlag, ISBN:0-3878229-6-8, 268 pages, New York 1992.

[3] S. Potteck, La conception de systèmes spatiaux, Éditions du Schèmectif, Juillet
2001, ISBN 2-9513724-0-X (2 Tomes).

[4] IEEE Std 1149.1-2001, IEEE Standard Test Access Port and Boundary-Scan Ar-
chitecture, ISBN: 0738129445, New York, 2001.

[5] P. Folkesson, S. Svensson, J. Karlsson, A comparison of simulation based and scan
chain implemented fault injection, In Proc. of 28th Symposium on Fault Tolerant
Computer Systems (FTCS-28), Munich, Germany, IEEE Computer Society 1998,
pp. 284-293.

[6] L. Santos, M.Z.-Rela, Constraints on the use of boundary-scan for fault injec-
tion, in Proc. First Latin-American Dependable Computing Symposium, S. Paulo,
Brazil, Oct. 2003, Lecture Notes in Computer Science, LNCS 2847, Springer-
Verlag Heidelberg 2003.

[7] TSC695 Evaluation Board User Guide Manual, Rev.C 01/00, ATMEL Corp.2000
http://www.estec.esa.nl /microelectronics /presentation/ERC32.pdf

[8] RTEMS: Real-Time Executive for Multiprocessor Systems http://www.rtems.
com/

[9] http://www.estec.esa.nl/wsmwww/erc32/freesoft.html
[10] J. Gaisler, Evaluation of a 32-bit Microprocessor with Built-In Concurrent Error-

Detection, in Proc. FTCS-27, June 25-27, IEEE Computer Society 1997, pp. 42-46.
[11] P. Yuste, J.-C. Ruiz, L. Lemus, P. Gil, Non-intrusive Software-Implemented Fault

Injection in Embedded Systems, in Proc. First Latin-American Dependable Com-
puting Symposium, S. Paulo, Brazil, Oct. 2003, LNCS 2847, Springer-Verlag 2003,
pp. 23 - 38.

[12] Xceptiontm-Enhanced Automated Fault-Injection Environment, 2002,
http://www.xception.org.

[13] J. Carreira, H. Madeira, J.G. Silva, Xception: A Technique for the Experimen-
tal Evaluation of Dependability in Modern Computers, IEEE Trans. on Software
Engineering, February 1998.

[14] H. Madeira, J.G.Silva, Experimental Evaluation of the Fail-silent behaviour in
Computers without Error Masking, In Proc. FTCS-24, Austin-USA, IEEE Com-
puter Society 1994, pp. 350-359.

[15] J. Cunha, R. Maia, M. Z.-Rela, J.G. Silva, A Study of Failure Models in Feedback
Control Systems, in Proc. DSN’2001, July 1-4, 2001, Göteborg-Sweden, IEEE
Computer Society 2001.

[16] R. K. Iyer, D. Tang, Experimental Analysis of Computer System Dependability,
Chap. 5 in Fault-Tolerant Computer System Design (ed. D.K. Pradhan), ISBN
0-13-057887-8, Prentice Hall 1996, pp. 282-392.

[17] D. Powell, G. Bonn, D. Seaton, P. Verissimo, et. al, The Delta-4 approach to
dependability in open distributed computing systems, in Proc. FTCS18, Japan,
June 1988.

[18] J. Vinter, A. Johansson, P. Folkesson, J. Karlsson, On the Design of Robust Inte-
grators for Fail-Bounded Control Systems, DSN2003, ISBN 0-7695-1952-0, IEEE
Computer Society 2003, pp. 415-424.

C.A. Maziero et al. (Eds.): LADC 2005, LNCS 3747, pp. 143 – 153, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Fault Tolerant Approach to Object Oriented Design
and Synthesis of Embedded Systems

M. Fazeli, R. Farivar, S. Hessabi, and S.G. Miremadi

Department of Computer Engineering,
Sharif University of Technology,

Azadi Street, Tehran, Iran
{m_fazeli, r_farivar}@ce.sharif.edu

{hessabi, miremadi}@sharif.edu

Abstract. The ODYSSEY design methodology has been recently introduced as
a viable solution to the increasing design complexity problem in the ASICs. It is
an object-oriented design methodology which models a system in terms of its
constituting objects and their corresponding method calls. Some of these
methods are implemented in hardware; others are simply executed by a general
purpose processor. One fundamental element of this methodology is a network
on chip that implements method invocation for hardware-based method calls.
However this network is prone to faults, thus errors on it may result into system
failure.

In this paper an architectural fault-tolerance enhancement to the ODYSSEY
design methodology is proposed which covers this problem. It detects and
corrects all single event upset errors on the network, and detects all permanent
ones. The proposed enhancement is modeled analytically and then simulated.
The simulation results, while validating the analytical model, show very low
network performance overhead.1

1 Introduction

The potential ASIC design complexity has grown at a rate of 58% per year for the last
two decades, while the designer productivity at the same time has only raised 21% per
year [1]. This has led to a growing design productivity gap between manufacturing
capability of chips and the functionality that designers can implement in unit time.
The manufacturing capability is predicted to grow at the same rate for another decade
and hence the gap must be filled by increasing designer productivity rate.

To fill in the gap, new design methodologies and tools are quite necessary. Object-
oriented design, successfully used for several years by the software community, is a
rather different approach to complexity management compared to traditional
hardware design methodologies that has received much attention recently. The Object
Ooriented methodology suggests modeling the system in terms of its constituting data
objects and their corresponding method calls, while traditional methodologies
concentrate on structurally decomposing the target architecture of the system.

1 This work is supported by a research grant from the Department of High-Tech. Industries,

Ministry of Industries and Mines of the Islamic Republic of Iran.

144 M. Fazeli et al.

As an example of the usage of object oriented design methodology in hardware
design, the Object-oriented Design and sYntheSiS of Embedded sYstems
(ODYSSEY) methodology has been recently introduced [2, 6]. It is a system-level
synthesis methodology for embedded systems that begins from an object-oriented
code in C++ and synthesizes it into an Application Specific Instruction-set Processor
(ASIP) and software that runs on it. Virtual-method calls are implemented as packets
sent over a Network on Chip (NoC) [5] from the caller module to the called one,
carrying the parameters of the call as the packet data payload. The Functional Units
(FU) addresses and object numbers are assigned such that routing of a packet is
equivalent to dynamic binding of the corresponding virtual-method call.

As technology scales, however, errors and faults are becoming increasingly
common in the NoCs. Crosstalk interferes with signal transmission, while soft errors
result in random bit-flips throughout the design [3]. Critical leakage currents and high
field effects will also lead to more transient and permanent failures of signals, logic
values, devices, and interconnects [4]. Since the area resources available on the chip
are limited, implementing traditional fault tolerant algorithms and architecture such as
modular redundancy in the NoC domain is infeasible. Therefore, other techniques
must be developed if fault tolerant NoCs are to become possible. Previous work in
this area is limited [7, 8, 9] as NoC design is still in its infancy. Guerrier et al. [10]
presented a NoC design called SPIN that was based on fat-tree topology. They also
presented the router architecture and cycle accurate performance model for their NoC
design. Sgroi et al. [11] discussed a platform based SoC design methodology that
proposed the inclusion of NoC for supporting on-chip communication. Dally et al.
[12] demonstrated the feasibility of the NoC and estimated that the NoC places an
area overhead of 6.6%. Benini et al. [13] in their conceptual paper on NoC, predict
that packet switched on-chip interconnection networks will be essential to address the
complexity of future SoC designs. Kumar et al. [14] presented a conceptual system-
level architecture that allowed a mesh-based NoC to accommodate large resources
such as memory banks, FPGA areas, or high performance multi-processors. Note that
in the nanoscale regime, crosstalk in long global communication wires is expected to
be the major source of errors. [2]

It should also be noted that this problem gets worse in ODYSSEY design
methodology since there is a great probability of system failure in case of an error in
the packets traversing the NoC between functional units and the traditional CPU in
the ODYSSEY methodology, since these packets contain the functional units
addresses and object numbers.

In this paper, a fault tolerant architectural enhancement to the ODDYSEY
methodology is proposed, which adds transient NoC fault detection and tolerance, as
well as permanent fault detection, and is based on the principle of packet re-
transmission. The idea is to introduce redundancy into the system by sending each
packet twice, the original packet is sent first and the complement of the packet is
sent next. However, the amount of time overhead is far lower than what one might
predict first, because of the potential overlapping of the second transmission time

 Object Oriented Design and Synthesis of Embedded Systems 145

with the processing time in the called FU. The simulation results show very
negligible overhead figures in the abundance of faults, while not exceeding 51%
overhead with a 100% fault probability in each packet transmission. In addition, the
amount of imposed hardware is rather low, as just a buffer stage and a comparator
and two very simple state machines are required per FU. On the other hand, the
transient fault detection coverage and tolerance for the Single Event Upset (SEU)
transient fault model is 100%. All of the permanent faults in the NoC will also be
detected.

The structure of this paper is along these lines: following the introduction the
ODYSSEY design methodology will be introduced in section 2. Section 3 discusses
the proposed fault tolerance architectural enhancement and an analytical model for the
time overhead will be obtained in Section 4. The simulation results for time overhead
of the proposed scheme are shown in Section 5. Finally, Section 6 concludes the
paper.

2 ODYSSEY Design Methodology

The ODYSSEY design methodology is a system-level synthesis methodology for
embedded systems that starts from an object-oriented (OO) system model and
implements it as an application specific processor, called Object-Oriented
Application-Specific Instruction Processor (OO-ASIP), and the software for it. A
method of a class is the minimum unit that is assigned to either hardware or
software partition and is accordingly called hardware or software method. To
efficiently dispatch virtual method calls to hardware as well as software methods, a
network-based mechanism has been proposed [5] that dispatches virtual method
calls as packets sent over an on-chip network to which all possible functional units
are connected. The method dispatching via network routing is identified by the
inherent NoC architectures; this realizes polymorphism for free and is used in this
research.

Fig. 1. The internal architecture of the OO-ASIP. Note the NoC connecting the functional units
and the traditional processor.

OO-ASIP Hardware

Data
Memory

(Object Data)

Instruction
 Memory

a1-
()

a2-
()

d1-
()

m1 method from
class A, FU1

m1 method from
class B, FU2

m2 method from class
D, FU3

Object
Managem
ent

 Cache

O
n-chip

N
etw

ork

Traditional
Processor

146 M. Fazeli et al.

The embedded system architecture is depicted in Figure 1. The system is a
Network-on-Chip (NoC) architecture that consists of a processor core along with a set
of hardware functional units. The architecture is specifically designed to suit object-
oriented (OO) applications.

A typical OO application defines a library of classes, instantiates objects of
those classes, and invokes methods of those objects. The implementation approach
for each of these three major components of an OO application is described below.
For presentational purposes, we follow the C++ syntax in describing each
component.

• Class library: Each class consists of variable declarations and method
definitions. Variable declarations are compile-time information and do not
require a corresponding component in the implementation. Methods of the
OO class library are either implemented in software or in hardware (e.g. A-

>m1, B->m1 and D->m2 are implemented in hardware).
• Object instantiations: these are specified in the main() function. A memory

portion should be reserved for each instantiated object to store the values of
its data items. This memory portion is allocated in a data memory (the gray
box at the left-hand side of Figure 1) that is accessible to the processor core
as well as all FUs.

• Method invocations: the sequence of method invocations is specified in the
main() function of the application. The executable code of this function
comprises another part of the instruction memory (see Figure 1). The
processor core starts by reading the instructions specified in the main()
function of the application. Whenever a method call instruction is read, the
corresponding implementation is resolved and invoked. This may result in
calling a software routine or activating an FU (e.g. A->m1 in Figure 1). Each
method implementation (be it in hardware or software) can also call other
methods. Each method call is assumed as a network packet. Each method
call is identified by a method, an object, and the parameters of the call;
hence, the bit-field concatenation of these items represents the method call
and comprises the packet to be sent; i.e. <method-id.object-id.params>.

The details on resolving method calls, passing parameters, synchronizing hardware
and software, and other details of the architecture can be found in [2].

3 The Proposed Fault Tolerance Architectural Enhancement

As mentioned in the previous section, the ODYSSEY methodology exploits an NoC
to distribute packets among different functional units. Polymorphism is achieved as a
side effect of this design. It was also assumed that only one functional unit can access
the network at each time; i.e, there could be one sender and one receiver functional
units present on the network, the other functional units may be busy processing
previous method calls, or may simply be free.

 Object Oriented Design and Synthesis of Embedded Systems 147

The fault model considered in this research is Single Event Upset (SEU). The
occurrence of each fault on the NoC in this methodology will most probably result in
a system failure due to the fact that a packet sent over the network has two fractions,
one is the address of the caller and the called functional units and the other one
contains some parameters; hence incorrectness of each data could cause result errors.
To protect the system against such failures, a fault tolerant architectural enhancement
is proposed which is based on the principle of packet retransmission. After the
transmission of a packet, the complement of that packet is sent to the same receiver.
Sending the complement of a packet is selected because it would rarely be possible
that a transient SEU fault could alter the same bit in a packet and its complement in an
unrecognizable manner. Also a permanent fault such as a stuck-at fault can also be
detected. Since a packet contains the destination address field, the routing operation
would get disturbed by complementing the packet in the second transmission. To
address this issue an inversion bit is appended to each packet. For the original packet
transmission this bit is cleared, so the routing logic of the network does not alter the
address field, on the other hand during the transmission of the complemented packet
the inversion bit; is set automatically, when the packet is complemented. The routing
logic complements the address field of a transmitted packet when it encounters a set
inversion bit so that the complemented packet can reach its correct destination. When
the original packet and its complement are present in the destination functional unit, a
comparison is performed. To avoid unbounded waiting for arrival of a complement
packet an internal watchdog timer is included in the receiving portions of all
functional units.

In the case of a mismatch, a dis-acknowledgement packet (Nack) would be sent
and these steps would be repeated once more; otherwise the acknowledgement packet
(Ack) would be sent to the sender functional unit. If there was a mismatch again in the
second round, the occurrence of a permanent fault would be reported. It should be
noted that the processing of the packet in the receiver functional unit starts by the end
of transmission of the original packet; the transmission time of the complemented
packet could be overlapped with the processing time of the original packet. In other
words, if the processing time exceeds the transmission time of the complemented
packet, which is obviously the case in OO-ASIP, there would be no time overhead in
the absence of the faults (the normal case).

The state transition diagrams of the Moore FSMs of the control circuitry in the
sending and receiving part of a functional unit are shown in Figures 2.a and 2.b. The
Ack, Nack and Packet_ready are the input signals in the sending part FSM. The
activation of the T(p) output signal triggers the transmission of an original packet and
The activation of the T(-p) output signal triggers the transmission of a complemented
packet. In the receiving part of a functional unit, R(a) and R(-a) input signals
represent the reception of an original or a complement packet respectively. The C
input signal shows the result of the comparison and TO input signal shows the time
out event of the internal watchdog timer. The TT output signal resets and starts the
internal watchdog timer, the Ack and Nack output signals are also generated in
this FSM.

148 M. Fazeli et al.

0)(,1)(== aRaR 0)(,1)(== aRaR

0,0)(,0)(=== TOaRaR

0S
1

1

=TT

S

0
2

=TT

S

1
3

=Ack

S

Ack=0,Nack=0

(a) Sending part FSM

(b) Receiving part

1)(

0)(
3

=
=

pT

pT

S

0)(

1)(
4

=
=

pT

pT

S

0)(

1)(
2

=
=

pT

pT

S

1)(

0)(
6

=
=

pT

pT

S

0)(

0)(
0

=
=

pT

pT

S

Error

Packet_Ready=1

Ack=1,Nack=0

Ack=0,Nack=1Ack=1,Nack=0

Ack=0,Nack=1

Ack=0,Nack=0

1
2

=Nack

S0=C

1=C

=TO

1)(,0)(== aRaR

0)(,1)(== aRaR

0)(,0)(== aRaR

Packet_Ready=0

Fig. 2. The state transition diagram of the Moore FSMs of the control circuitry in the sending
and receiving part of a functional unit

Timing diagrams of the sender and receiver functional units in the case of two
different functional units, the first one with a one clock processing delay and the
second one with a two clock processing delay, are depicted in Figure 3.a and 3.b.
Note the concurrency of the complemented packet with the processing of the original
packet.

Due to the nature of the SEU errors it is impossible for an SEU to corrupt both
the original and the complement packet in an undetectable manner. By giving
another chance of retransmission, all of the SEU errors can be tolerated. It is in the
nature of ODYSSEY methodology that more complex methods of a class are
implemented in hardware. The hardware overhead imposed by the presented
scheme, which consists of a buffer, a comparator and a simple finite state machine
(FSM) per functional units, is negligible compared to the complexity of the
functional units.

 Object Oriented Design and Synthesis of Embedded Systems 149

System
clock

Sender

Receiver

Receiver

Sender

Packet

Process

Process

ACK

ACK/NACK

ACK/NACKPacket C-Packet

Packet

Packet C-Packet

Receiver

Receiver

Sender

Sender

Process

Process Process

Process

Packet

Packet C-Packet

Packet ACK

ACK

ACK/NACK

ACK/NACK

C-Packet

Packet

System
clock

(a) Processing time of the functional is one clock cycle. 1- without
fault tolerant mechanisms 2- with fault tolerant mechanisms.

ACK
1

2

1

2

(b) Processing time of the functional is 2 clock cycles or more. 1- without
fault tolerant mechanisms 2- with fault tolerant mechanisms.

Fig. 3. Timing diagrams of the sender and receiver functional units

4 An Analytical Evaluation of the Time Overhead

As mentioned before the hardware overhead of the proposed scheme is negligible
compared to the complexity of the functional units. Furthermore the number of
transistor is no more a bottleneck in modern VLSI fabrication [1]. On the other
hand, the time overhead of a fault tolerance enhancement scheme is its most
important aspect. To extract the time overhead of the proposed scheme an
analytical model is introduced in this section. The following parameters are used in
the model:

• n : The number of available functional units.

• faultP : The probability of fault incidence in the NoC.

• iOneClockP , : The probability that functional unit i has a one-clock

processing-time.

150 M. Fazeli et al.

• α : The time overhead, in clock cycles, of a one-clock processing-time
when a fault happens, this is equal to 7 in the proposed scheme.

• β : The time overhead, in clock cycles, of a two-clock or more processing-
time when a fault happens, this is equal to 6 in the proposed scheme.

• γ : The time overhead, in clock cycles, of a one-clock processing-time in
the absence of faults, this is equal to 1 in the proposed scheme.

• θ : The time overhead, in clock cycles, of a two-clock or more processing-
time in the absence of faults, this is equal to zero in the proposed scheme.

• μ : Network overhead per packet transmission in the unprotected

architecture, which is assumed to be 4 in the proposed scheme (according to
figure 3).

• iξ : (Usage Factor) the probability of functional unit i being used in each

method invocation.

• ix : A stochastic variable that represents the processing-time, in clock cycle,

of functional unit i.

•)(ii xΓ : The probability density functions of the ix stochastic variable.

•)(ixE : The expected value of the ix stochastic variable, which can be

computed as Γ=
k

iiii xxxE)(.)(, where k is the range of values ix can

take.
• T : The imposed Time overhead

Using the preceding parameters the time overhead can be modeled by the
following expression:

=

=

+

−+−+−+
=

n

i
ii

n

i
iiOneClockiOneClockfaultiOneClockiOneClockfault

xE

PPPPPP
T

1

1
,,,,

.])([

.]).)1(.()1().)1(.([

ξμ

ξθγβα

The first term of the addition operator in the numerator shows the extra clock
cycles the proposed scheme necessitates when a fault happens, and the second term
represents the overhead cycles in the absence of faults. The addition operator in the
denominator demonstrates all of the clock cycles required in the transmission of an
unprotected packet.

For the sake of simplicity, it is assumed that the usage factors iξ , the

iOneClockP , and the)(ii xΓ are the same for all functional units (iξ =1/n,

iOneClockP , = OneClockP and)(ii xΓ =)(ixΓ). Considering these simplifications and

substituting the α , β ,γ and θ parameters with their respective numerical values the

following simplified expression can be deducted.

 Object Oriented Design and Synthesis of Embedded Systems 151

4)(

.6

4)(

])()1()6.)1(7.([

+
+

=
+

−+−+
=

xE

PP

xE

PPPPP
T faultOneClockOneClockfaultOneClockOneClockfault

It is evident from the latter expression that the time overhead is linearly
proportional to the fault incidence probability and has inversely proportional to the
distribution of functional units’ processing-times. In the next section the correctness
of this model is validated by simulation results.

5 Simulation Results

To validate the analytical model introduced in the previous section, a simulation of
the NoC portion of an OO-ASIP based system was performed. The simulation results
show that under transient fault injection in the NoC, the time overhead of the
proposed architectural fault tolerance enhancement relies heavily on the distribution
of the functional units’ processing time. The results of the simulation for different
fault probability values are depicted in Figure 4. To discover the time overhead three
different scenarios were simulated with thirty functional units:

• In the best case, all of the functional units posses the maximum processing
time allowable. As expected, in the best case there is no time overhead in the
absence of faults, since retransmission of all the complemented packet is
fully overlapped with functional unit processing times. In presence of faults
the time overhead remains low because for transmitting each corrupted
packet transmission an overhead of six-clock cycle would be imposed, and in
the case of maximum processing time remains less than 20%. In this case

OneClockP =0 and)(xE =30 (maximum allowable clock cycle per FU in this
simulation).

• All of the functional units had a processing time of one clock cycle in the
worst case. This would be rare case in actual implementations. In this case
the overhead does not exceed 140%. Note that the worst case that is
simulated here is much exaggerated. A fault probability of one is not usually
experienced in physical systems. In addition the functional units in an actual
OO-ASIP implementation will consume more than one clock cycle to
complete their operation. In this case OneClockP =1 and)(xE =1.

• In the average case the functional units processing times had a uniform
distribution between one clock cycle and the maximum processing time

• allowable. The highest time overhead in this case is 30% under a fault
incidence probability of 1, which of course does not happen in physical
systems. Thus the overhead figures in a physical system are much lower. In

this case
30

1=OneClockP and 5.15)(=xE .

Due to the accurate matching of the extracted simulation and analytical results, it is
apparent that the proposed expression models the system behavior precisely.

152 M. Fazeli et al.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

140.00%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Transient Fault Probability

T
im

e
O

ve
rh

ea
d

Best Case Average Case Worst Case

Fig. 4. The Simulation results demonstrating the Time Overhead vs. the transient fault
probability

6 Conclusions and Future Works

An architectural fault-tolerance enhancement to the OO-ASIP design methodology
was proposed in this paper. It is designed in such a way that it could detect and
correct all Single Event Upset errors on the network, and could detect all permanent
ones. The proposed enhancement was modeled analytically, the consistency of
simulation and analytical results validate the model. The results also show very low
levels of network performance overhead, hence suitability to be used in actual
implementations.

The authors are currently working towards physical implementation of a few
application specific systems with the enhanced, fault tolerant ODYSSEY
methodology. When implemented, they will be objected to physical fault injection
campaigns to evaluate the reliability of the proposed scheme.

Acknowledgement

Authors would like to acknowledge Maziar Gudarzi for his invaluable advices in the
course of this research.

References

[1] International Technology Roadmap for Semiconductors (ITRS)-Design, 2001. http://
public. itrs. net/ Files/2002Update/2001ITRS/Design.pdf

[2] P. Vellanki et al. "Quality-of-service and error control techniques for mesh-based
network-on-chip architectures", INTEGRATION, the VLSI journal 38 (2005) 353–382
380

 Object Oriented Design and Synthesis of Embedded Systems 153

[3] W. Dally and J. Poulton. Digital Systems Engineering. Cambridge University Press,
1998.

[4] Y. Taur and et. al. CMOS scaling into the nanometer regime. In Proc. of the IEEE,
volume 85, April 1997.

[5] Goudarzi, M., Hessabi, S., Mycroft, A., “Overhead-free Polymorphism in Network-on-
Chip Implementation of Object-Oriented Models,” Proc. of Design Automation and Test
in Europe (DATE’04), Feb. 2004, Paris.

[6] Goudarzi, M., Hessabi, S., “Object-Oriented Embedded System Development Based on
Synthesis and Reuse of OO-ASIPs,” Journal of Universal Computer Science (JUCS), In
Press, Sep. 2004.

[7] T. Dumitras, S. Kerner, and R. Marculescu. Towards onchip fault-tolerant
communication. In Proc. Asia and South Pacific Design Automation Conference, 2003.

[8] S. M. Hedetniemi, T. Hedetniemi, and A. L. Liestman. A survey of gossiping and
broadcasting in communication networks. NETWORKS, 18:319–349, 1988.

[9] D.W. Krumme, G. Cybenko, and K. N. Venkataraman. Gossiping in minimal time. SIAM
J. Comput., 21(1):111–139, 1992.

[10] P. Guerrier, A. Greiner, A generic architecture for on-chip packet-switched
interconnections, in: DATE, Paris, France, March 2000.

[11] M. Sgroi, M. Sheets, A. Mihal, K. Keutzer, S. Malik, J. Rabeay, A. Sangiovanni-
Vincentelli, Addressing the system-on-a-chip interconnect woes through communication-
based design, in: Proceedings of Design Automation Conference, June 2001, pp. 667–672.

[12] William J. Dally, Brian Towles, Route packet, not wires: on-chip interconnection
networks, in: Proceedings of DAC, June 2002.

[13] Luca Benini, Giovanni De Micheli, Networks on chips: a new SoC paradigm, IEEE
Comput. (2002) 70–78.

[14] S. Kumar, A. Jantsch, M. Millberg, J. Oberg, J.P. Soininen, M. Forsell, K.T.A. Hemani,
A network on chip architecture and design methodology, in: IEEE Computer Society
Annual Symposium, on VLSI, Pittsburg, Pennsylvania, April 2002.

Scheduling Fixed-Priority Hard Real-Time Tasks
in the Presence of Faults

George Lima1 and Alan Burns2

1 Distributed Systems Lab (LaSiD),
Department of Computer Science (DCC),

Federal University of Bahia (UFBA),
Salvador, BA, Brazil
gmlima@ufba.br

2 Real-Time Systems Research Group,
Department of Computer Science,

University of York, York, UK
burns@cs.york.ac.uk

Abstract. We describe an approach to scheduling hard real-time tasks
taking into account fault scenarios. All tasks are scheduled at run-time
according to their fixed priorities, which are determined off-line. Upon
error-detection, special tasks are released to perform error-recovery ac-
tions. We allow error-recovery actions to be executed at higher priority
levels so that the fault resilience of the task set can be increased. To
do so, we extend the well known response time analysis technique and
describe a non-standard priority assignment policy. Results from simula-
tion indicate that the fault resilience of the task sets can be significantly
increased by using the proposed approach.

1 Introduction

Hard real-time systems are those that have to produce correct results within
specified deadlines. A flight control system is an example of such a system.
Should it fail to produce correct or timely results, an accident may happen. In
other words, high costs, in terms of human lives or monetary loss, are usually
associated with failures in such a kind of system.

Due to the criticality level of their computation, dealing with hard real-time
systems is not simple. In order to provide fault tolerance, the system must be
designed making use of redundant components. In order to provide timeliness,
the system computation must be organized so that its timing specifications are
met. Also, there must be ways of proving the system timeliness given the char-
acteristics of both the system and the environment it is subject to, which must
take the presence of faults into account. Preferably, this timeliness checking must
be carried out before the system is operational.

Certainly, the use of active components, replicated and distributed across
the system is of great help to build fault-tolerant real-time systems. In this case,
there must be a robust protocol to coordinate the replicas in a timely fashion,

C.A. Maziero et al. (Eds.): LADC 2005, LNCS 3747, pp. 154–173, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Scheduling Fixed-Priority Hard Real-Time Tasks in the Presence of Faults 155

which means that extra computational efforts must be spent even in the absence
of faults in order to make the system fault tolerant. An alternative approach
is to have passive redundant components which can be activated upon error-
detection. Since fault scenarios are exceptions, extra computational effort due
to fault tolerance can be minimised. Although there is a higher time delay for
detecting the error and recovering the system, the latter approach can be effec-
tive. Indeed, it is possible to introduce a greater level of flexibility in the system
since the redundant component, when activated, may carry out alternative ac-
tions to recover or compensate the system from the specific detected error. Also,
several modern programming languages allow for error-detection and recovery
mechanisms to be programmed at the application level (e.g. exception handler)
[4] so that the application needs are taken into account. Most importantly, both
active and passive redundancy approaches can be jointly employed and in fact
they may be designed to complement each other. For example, a transient fault
may cause an active component to produce incorrect results. This error can be
detected and a passive component can be activated to undo or redo the faulty
component actions or even to silence it (e.g. shutting it down).

When applying the passive redundancy approach in the context of hard real-
time systems a problem to be solved is how to compute the extra time required
to execute the component actions when errors are detected. This is the focus of
this paper. More specifically, we structured the system as a set of tasks, some
of which execute only when errors are detected. Our goals are to: (a) determine
whether the execution of system tasks meet their deadlines in the presence of
faults; and (b) increase the system fault resilience by providing an appropriate
task scheduling mechanism. To do so, we have developed a scheduling mechanism
that can be adjusted (by priority assignment) to increase the fault tolerance
capacity of the system and have derived a set of equations that are used to
verify the system schedulability.

Our approach is based on determining (off-line) which priorities can be as-
signed to tasks so that more errors can occur without compromising the specified
deadlines. As priority represent the urgency of execution, a task that has to be
recovered (preferably) should have its recovery actions executing with higher pri-
ority. Determining the task priorities off-line is attractive because it provides a
simple on-line scheduling criterion (i.e. the scheduler, at run-time, needs only to
choose the highest priority task to execute). Also, complex and perhaps timing-
consume criteria to determine the (best) priority assignments can be used.

The approach described in this paper is an extension of our former work
[15], where a less restricted fault model is assumed. Indeed, here we assume that
errors may take place at any time instead of considering that errors take place
periodically in worst case.

The remainder of this paper is structured as follows. A brief literature review
is given in the next section. The computation model is described in Section 3.
Then, Section 4 presents some basic concepts on hard real-time scheduling and
illustrates the addressed problem. Section 5 derives the schedulability analysis.
The problem of searching for a priority assignment that improves the fault re-

156 G. Lima and A. Burns

silience of the system is addressed in Section 6. Some simulation results are also
presented in this section. Then, in Section 7, our final comments are given.

2 Related Work

We identify two branches of work on providing fault tolerance in hard real-time
systems, distributed protocols and scheduling. The former deals with coordinat-
ing the computation between different nodes when a distributed architecture is
necessary [21,20,10]. On the other hand, for hard real-time systems, one has also
to be concerned with the (local) computation carried out in the system nodes.
Indeed, independently of whether the system is distributed or not, scheduling is
a fundamental problem for real-time systems. In this section we sumarise only
approaches focused on scheduling.

Scheduling for fault tolerance can further be divided into two categories: those
approaches that take into account task replicas running in different nodes and
those that focus on the execution of tasks considering only local computation.
There are several examples of the former approach [11,2,9,10,16,17]. In this
paper we deal with scheduling from the point of view of local nodes with the
goal of providing fault tolerance within each node (if the system is distributed).
Approaches to doing so usually consider two types of tasks running in the nodes,
primary and alternative. Primary tasks represent the usual computation that
needs to be performed in error-free scenarios. Alternative tasks contain actions
that must be executed when some error is detected.

One of the first such a mechanism to schedule primary and alternative tasks
was described by Liestman et al. [13]. This mechanism only deals with periodic
tasks, whose periods have to be multiples of each other. The approach presented
by Ghosh et al. [7] limits the recovery of faulty tasks to re-executing them.
Only transient faults can be tolerated (e.g. design faults are not considered).
An interesting approach to tolerating transient faults which is independent of
the schedulability analysis being used has been described by Ghosh et al. [6].
However, only the re-execution of faulty tasks as a means of fault tolerance is
assumed. Kandasamy et al. [8] describe a recovery technique that tolerates tran-
sient faults in an off-line scheduled distributed system. It is based on taking
advantage of task set spare capacity. The amount of spare capacity is distrib-
uted over a given period so that task faults can be handled. Although tasks are
assumed to be preemptive and their precedence relations are taken into account,
only periodic tasks, whose periods are equal to deadlines, are considered.

Recently, an EDF (Earlier Deadline First) based scheduling, which takes the
effects of transient faults into account, has been proposed [12]. Its basic idea is to
simulate the EDF scheduler and to use slack time for executing task recoveries
given a fault pattern. Fault patterns, which are the assumed maximum numbers
of errors per task, must be known a priori. Task recoveries can be modelled
as alternative tasks that are released after error-detection. Another EDF based
scheduling approach for supporting fault-tolerant systems has been proposed by
Caccamo et al. [5]. Their task model consists of instance skippable and fault-

Scheduling Fixed-Priority Hard Real-Time Tasks in the Presence of Faults 157

tolerant tasks. The former may allow the system to skip one instance once in
a while. The latter is not skippable (i.e. all instances have to execute by their
deadlines) and is composed of a primary and an alternative part. The primary
part is scheduled on-line and provides high-quality service while the alternative
one is scheduled off-line and provides acceptable services.

The approach presented by Ramos-Thuel et al. [19] is based on the transient
server concept. Its basic idea is to explore the spare capacity of the task set to
determine the maximum server capacity at each priority level. A server is an
a priori created task used to service aperiodic requests. In their approach such
requests are the detection of errors. The spare capacity allocated to the server is
used for on-line dispatching decisions in the case of error occurrences. Although
this approach seems interesting since higher priority levels are used to execute
alternative tasks, a reasonable way of determining the server periods has not
been presented.

A flexible approach that makes use of fixed-priority scheduling and response
time analysis has been proposed by Burns et al. [3] and Punnekkat [18]. No
restriction on alternative tasks is assumed. This approach shows that response
time analysis can be straightforwardly adapted to take the execution of alterna-
tive tasks into account. Making use of this results, we have recently showed that
non-standard priority assignments can be used to increase the fault resilience of
the system [15]. Like Burns et al. we have restricted the fault model by assuming
that there is a minimum time between consecutive errors.

In this paper we extend our former work [15] by removing this restriction on
time between consecutive errors. By doing so, we take into consideration more
general situations where errors may affect the execution of tasks at any time.

3 Computation Model

We assume that there is a set Γ = {τ1, . . . , τn} of n tasks, called primary tasks,
that must be scheduled by the system in the absence of errors. Any primary task
τi in Γ has a period, Ti, a deadline Di (Di ≤ Ti), and a worst-case computation
time, Ci. Tasks can be periodic or sporadic. For sporadic tasks the period means
the minimum inter-arrival time. Each primary task τi can have some alternative
tasks associated with it. Each alternative task corresponds to a given action
taken to recover τi from a given error. Any alternative task has a worst-case
computation time, also called worst-case recovery time. For the sake of simplicity
we denote τ i as the alternative task of τi whose worst-case recovery time is the
largest one. Also, we assume that all alternative tasks associated with τi run
at the same priority level. Hence, hereafter we do not include the details of
individual alternative task per primary in the description we present. We only
need to refer to τ i as the worst-case alternative task in case of errors in task τi.

Primary tasks are scheduled according to some fixed priority assignment
algorithm, which attributes a distinct priority to each task τi in Γ . We consider
n different priority levels (1, 2, . . . , n), where 1 is the lowest priority level. The
alternative tasks of τi are assumed to execute at priority levels greater than or

158 G. Lima and A. Burns

equal to τi’s priority. We denote the priority of τi and τ i as pr(τi) and pr(τ i),
respectively. When a primary task, say τi, and an alternative task, say τ j , are
ready to execute at the same priority level, we assume that τ j is scheduled first.

Alternative tasks represent some extra processing that is necessary to recover
a task from a given erroneous state caused by a fault. Errors are detected at the
task level. When an error interrupts the execution of a task, the system must
schedule an appropriate alternative task, which is responsible for carrying out the
error-processing procedure and has to finish by the deadline of its primary task.
If other errors take place in the alternative tasks, we assume that it is scheduled
again for re-execution. We also assume that there is no cost associated with any
scheduling of primary or alternative tasks. These costs are assumed to be taken
into account by the value of Ci and Ci, respectively. Further, we assume that all
errors are detected by the system and there is no fault propagation in the value
domain (i.e. faults affect only the results produced by the executing task).

The kinds of fault with which we are dealing are those that can be treated
at the task level. Consider for example design faults. It may be possible to use
techniques such as exception handling or recovery blocks to perform appropriate
recovery actions [3], modelled here as alternative tasks. In addition, one may
consider some kind of transient faults, where either the re-execution of the faulty
task or the execution of some compensation action is effective. For example,
suppose that transient faults in a sensor (or network) prevent an expected signal
from being correctly received (or received at all) by the control system. This kind
of system fault can easily be modelled by alternative tasks, which can be released
to carry out a compensation action. However, it is important to emphasise that
we are not considering more severe kinds of fault that cannot be treated at
the task level. For example, if a memory fault causes the value of one bit to
be arbitrarily changed, the operating system may fail, compromising the whole
system. Tolerating these kinds of fault requires spatial redundancy (perhaps
using a distributed architecture) and is not covered in this paper. Our work fits
the engineering approach that uses temporal redundancy at the processor level
and spacial redundancy at the system level.

We derive the schedulability analysis of the system as a function of a fault
resilience metric, denoted by NE . The value of NE represents the assumed max-
imum number of errors that task set may suffer. The goal of the analysis is to
show: (a) whether or not the system is schedulable for a given value of NE ; and
(b) whether or not a more resilient system can be built by assigning priorities
to (alternative) tasks appropriately.

4 Initial Concepts

The schedulability derived in this paper is based on the well known response time
analysis [1]. The basic idea is to compute the worst-case response time of each
task in the system, Ri, and compare with its deadline. If Ri ≤ Di for all tasks,
then the system is schedulable. In the next two subsections we introduce some
basic concepts in response time analysis and show how the effects of faults can

Scheduling Fixed-Priority Hard Real-Time Tasks in the Presence of Faults 159

be easily incorporated into the analysis. At the end of the section we illustrate
potential advantages of having some alternative tasks running at higher priority
levels.

4.1 Fault Free Scenarios

To compute Ri one has to consider the worst-case scenario. This happens when
all other higher priority tasks τj are released at the same time as τi and the
execution of τi and all higher priority tasks τj take Ci and Cj to complete,
respectively. In this scenario, the value of Ri is given by Ci plus the sum all njCj ,
where nj is the maximum number of instance of τj that can occur during the
execution of τi. Note that nj depends on the response time of τi, i.e. nj = Ri

Tj
�.

Thus, Ri can be written as [1]:

Ri = Ci +
∑

j∈hp(i)

⌈
Ri

Tj

⌉
Cj , (1)

where hp(i) is the set of tasks that have higher priority than τi and x� returns
the smallest integer that is greater than or equal to x.

Since the term Ri appears in both sides of equation (1), it is solved iteratively
applying the relation given by equation (2) [1]. The iteration can start with r0

i =
Ci, where rk

i is the kth approximation to the true value of Ri. The interactions
can be halted when rk+1

i > Di or earlier if rk+1
i = rk

i . In the former case, the
task is not schedulable, while the latter means that Ri = rk

i .

rn+1
i = Ci +

∑
j∈hp(i)

⌈
rn
i

Tj

⌉
Cj . (2)

4.2 Fault Scenarios

If an error occurs, from the point of view of τi, the worst case is when this error
interrupts the execution the task with which is associated the longest alternative
task among all tasks τk that can cause the interference in the execution of τi

(including τi itself). Considering NE errors and the fact that alternative tasks
run with the same priority as their primary tasks, equation (1) can be extended
as a function of NE:

Ri(NE) = Ci +
∑

τj∈hp(i)

⌈
Ri

Tj

⌉
Cj + NE max

τk∈hpe(i)
Ck , (3)

where hpe(i) is the set of tasks that have priorities higher of equal to the priority
of τi. Indeed, for each error occurrence Ck time units are incorporated into the
computation of Ri.

As an illustration, consider a set of 3 tasks and their alternative tasks shown
in Table 1. The values in its last column are the worst-case response times for
NE = 1. To illustrate this, the following is what the iterative computation of R3
looks like:

160 G. Lima and A. Burns

Table 1. A task set and the derived worst-case response times

Task set NE = 1
Task Ti Ci Ci Di pr(τi) Ri(1)
τ1 13 2 2 13 3 4
τ2 25 3 3 25 2 8
τ3 30 5 5 30 1 22

time

time

Di

Di

Dj

Dj

Dj

Dj

(a)

(b)
pr(τi)

pr(τi) = pr(τ i)

pr(τj)

pr(τj)

pr(τ i)

τ τ PreemptionError

Fig. 1. Priority assignment in fault-scenarios

r0
3(1) = 5

r1
3(1) = 5 +

⌈
5
13

⌉
2 +

⌈
5
25

⌉
3 + 5 = 15

r2
3(1) = 5 +

⌈
15
13

⌉
2 +

⌈
15
25

⌉
3 + 5 = 22

r3
3(1) = 5 +

⌈
22
13

⌉
2 +

⌈
22
25

⌉
3 + 5 = 22

R3(1) = 22

The alternative tasks of Table 1 inherit the priorities of their primary tasks,
which are given by some conventional priority assignment (e.g. DM - Deadline
Monotonic). However, when errors take place, it may be advantageous to execute
alternative tasks at higher priority levels. The intuition is that, after an error,
tasks (or their recovery/compensation actions) certainly have a shorter period
of time to meet their deadlines.

Consider Fig. 1, where the execution time line of two tasks, {τi, τj}, is shown.
The priorities of τj and τi are assigned by the deadline monotonic approach, i.e.
pr(τj) > pr(τi), since Dj < Di. An error interrupts τi just before the end of
its execution, as illustrated. In scenario (a), it is assumed that τ i is executed
with priority level pr(τi) whereas in scenario (b) the priority of τ i is greater than

Scheduling Fixed-Priority Hard Real-Time Tasks in the Presence of Faults 161

the priority of τj . As can be seen, in Fig. 1(a) τi is not schedulable due to the
preemption caused by the execution of the second release of τj . This preemption
is avoided by executing τ i at a higher priority level, as illustrated in Fig. 1(b).
In the next section, a new set of equations is derived to take into consideration
this kind of priority assignment.

5 Schedulability Analysis: A More General Approach

Let Γ be a given task set and NE ≥ 0 an integer. The main goal of this section
is to develop schedulability analysis to check whether or not Γ is schedulable if
up to NE errors take place during the execution of any task in Γ . Unlike the
previous section, we assume here that alternative tasks may have higher priorities
than their respective primary tasks. This assumption, as will be seen, makes the
analysis much more complex. The problem of determining the priorities of the
alternative tasks is postponed to Section 6. Here we focus only on the analysis
by assuming that the priority assignment is known.

The strategy to derive the analysis is the following. First, in Section 5.2, we
consider that τi is fault-free. In this case we say that there are only external
errors regarding τi (i.e. errors take place in other tasks but τi). Thus, any task
(primary or alternative) that has priorities higher than or equal to the priority of
τi may interfere in its execution. Then, we consider the case of some error in τi,
i.e. there is some internal error. This case, addressed in Sections 5.3 and 5.4, is
characterised by the fact that the execution of τ i may interfere in the execution
of higher priority tasks. As will be seen, this case is more complicated because
there are two phases during the response time of τi: before and after the release
of τ i. Because of this, the problem of finding what the distribution of errors
leads to the worst-case scenario has to be considered. This problem is addressed
in Section 5.5. Before describing the analysis, we present some definitions in the
next section.

5.1 Definitions

A particular choice of priorities for alternative tasks, named priority configura-
tion, is defined as follows:

Definition 1 (Priority configuration). A priority configuration Px is a tuple
〈hx,1, hx,2, . . . , hx,n〉, where 0 ≤ hx,i < i and hx,i = pr(τ i) − pr(τi).

Note that hx,i represents the priority increment for task τ i in relation to the
priority of its primary task τi. The definition of hx,i bounds the priority of τ i from
τi’s priority to the highest priority level. Lower priority levels are not considered.
For example, consider Px = 〈0, 0, . . . , 0〉 a priority configuration. This means
that any alternative task executes at the same priority level as the primary task
with which it is associated. For Px = 〈0, 0, . . . , 0, 1〉, all tasks execute at their
original priority level apart from τn, which executes one priority level above its
primary task.

162 G. Lima and A. Burns

Given a priority configuration Px, the following subsets of Γ regarding the
priority of task τi ∈ Γ can be defined:

– ip(x, i). These are the tasks that may interfere in the response time of τi as
regards priority configuration Px if an error occurs. More formally, ip(x, i) =
{τj ∈ Γ | hx,j + pr(τj) ≥ pr(τi)}.

– sp(x, i). Tasks that belong to such a subset do not suffer any extra interfer-
ence when errors interrupt the execution of τi as regards priority configura-
tion Px. This is because their priorities are superior to pr(τ i). More formally,
sp(x, i) = {τj ∈ Γ | pr(τj) > hx,i + pr(τi)}.

– ipe(x, i). This subset is defined as follows. If hx,i = 0, then ipe(x, i) = ip(x, i).
Otherwise (when hx,i > 0), ipe(x, i) = ip(x, i) − {τi}. This subset is partic-
ularly useful for modelling cases where errors may interrupt task τi since
the maximum interference its recovery suffers depends on whether or not
pr(τi) = pr(τ i). The meaning of this subset will be clearer later on when we
describe the effects of internal errors.

5.2 External Errors

The computation of Rext
i (x, NE), the worst-case response time of task τi due to

external errors, is straightforward. This is because τ i does not need to be consid-
ered. In this situation, the worst-case scenario, as for task τi, can be described
as follows: (a) every task that executes requires its worst-case execution time;
(b) errors take place just before the end of the execution of tasks; (c) just before
the release of τi some alternative task with maximum recovery time among all
tasks in ip(x, i) − {τi} is released; and (d) all tasks in hp(i) are released at the
same time as τi. Therefore, one has to take into account the time to execute τi

plus all tasks in hp(i) and the time to recover the faulty task times the max-
imum number of errors that may occur over Rext

i (x, NE). This scenario yields
equation (4):

Rext
i (x, NE) = Ci +

∑
τj∈hp(i)

⌈
Rext

i (x, NE)
Tj

⌉
Cj + NE max

τk∈ip(x,i)−{τi}
(Ck) , (4)

It is not difficult to see that if Ci < maxτk∈ip(x,i)(Ck), equation (4) gives
the worst-case response time of τi. Indeed, if only external errors take place, the
meaning of equation (4) is similar to equation (3). Also, it is not difficult to see
that if some internal error happens, Ci cannot cause higher interference than
task τk. Thus, the lemma bellow follows [14]:

Lemma 1. Let Γ be a fixed-priority set of primary tasks and their respective
alternative tasks. Suppose that Γ is subject to faults so that there are at most
NE ≥ 0 errors during the execution of any task. Also, let Px be a priority
configuration for the alternative tasks. If Ci < maxτk∈ip(x,i)(Ck), Rext

i (x, NE)
represents the worst-case response time of τi regardless of whether or not the
execution of τi is interrupted by some error.

Scheduling Fixed-Priority Hard Real-Time Tasks in the Presence of Faults 163

5.3 Internal Errors: Some Intuition

Note that the input parameter NE does not say much about how the error
occurrences are distributed. For example, assume that NE = 2. In this case
there are two scenarios that must be considered regarding task τi ∈ Γ : (a) an
error interrupts the execution of some other task τj before the first internal error
hits τi; or (b) the second error takes place after τi suffers the internal error. The
problem is that it is not possible to know beforehand which of these scenarios
represent the worst-case. Thus, it is convenient to define NE as follows. For each
task τi ∈ Γ :

NE = N0
i + N1

i (5)

The terms N0
i and N1

i stand for the maximum number of errors that may take
place before and after (or at) the time the first internal error hits τi, respectively.
Hence, if NE = 2, the possible combinations are: N0

i = 1 and N1
i = 1 for scenario

(a); and N0
i = 0 and N1

i = 2 for scenario (b). The combination N0
i = 2 and

N1
i = 0 does not need to be considered since it would imply that all NE errors

are external. Therefore, in general, if NE = k, there are k different scenarios that
must be analysed in order to determine which one represents the worst-case.

The worst-case response time of a task τi considering the occurrence of
some internal error is now a function of Px, N0

i and N1
i and is denoted by

Rint
i (x, N0

i , N1
i). The approach to computing its value is divided into two steps.

This is because the procedure to calculate Rint
i (x, N0

i , N1
i) has to take into ac-

count two levels of priorities (before and after the first internal error) when
pr(τ i) > pr(τi).

It is important to emphasise that the values of both N0
i and N1

i must be
set such that they lead to the worst-case value of Rint

i (x, N0
i , N1

i). A simple
procedure for determining the appropriate values of N0

i and N1
i is iterative

and must evaluate all scenarios. This procedure is explained shortly after the
descriptions of the equations that give Rint

i (x, N0
i , N1

i).

5.4 Internal Errors: The Derivation

Assume that the values of N0
i and N1

i are known and that at least an internal
error takes place at some time t (see Fig. 2). What has to be computed is the
maximum time τ i lasts if it is subject to both other possible errors and the
interference due to tasks in sp(x, i) from t onwards. This time is represented in
the figure by Rint1

i (x, N1
i).

In the worst case there may be N1
i errors over the period Rint1

i (x, N1
i). The

first error accounts for Ci, while the others may cause the release of the recovery
of any task in sp(x, i) ∪ {τi}. The worst case is when all N1

i − 1 other errors
interrupt a task in sp(x, i)∪{τi} that has the longest recovery time.1 Therefore,
the value of Rint1

i (x, N1
E) can be computed iteratively by

1 Note that here a generic situation is assumed. However, in practice one can consider
that all errors from t onwards are internal, due to lemma 1.

164 G. Lima and A. Burns

Rint0

i (x, N0
i , N1

i)

t ≡ τ i is released time

Rint1

i (x, N1
E)

pr(τi)

pr(τ i)

ττ Error

pr(τi) = pr(τ i)

pr(τi) < pr(τ i)
hp(i)

sp(x, i)
sp(x, i) = hp(i)

Fig. 2. Illustration of the derivation of Rint
i

Rint1

i (x, N1
i) = Ci +

∑
τj∈sp(i)

⌈
Rint1

i (x, N1
i)

Tj

⌉
Cj +

(
N1

i − 1
)

max
τk∈sp(x,i)∪{τi}

(Ck) .

(6)
The computation of Rint0

i (x, N0
i , N1

i) is slightly more complex. Let us analyse
it considering two cases depending on the values of pr(τi) and pr(τ i):

When pr(τi) < pr(τ i). This means that τ i executes at a higher priority level.
Note that, in this case, knowing Rint0

i (x, N0
i , N1

i) is equivalent to knowing
the relative earliest possible release time of τi so that it suffered the first
internal error at time t, as illustrated in Fig. 2.
During Rint0

i (x, N0
i , N1

i), τi may suffer the preemption of tasks in hp(i) and
possibly the recoveries of tasks in ip(i) − {τi} due to other errors. It is im-
portant to note that τi has to be removed from the set of tasks that may
suffer errors in this phase because, by assumption, the first internal error
occurs at time t. Indeed, if there was an earlier internal error, then τ i would
be released earlier and so it would finish earlier. It is clear that this situation
does not represent the worst-case scenario.

When pr(τi) = pr(τ i). Unlike the former case, the maximum interference during
the period Rint0

i (x, N0
i , N1

i) can take place when all errors are internal since
both τi and its alternative task run at the same priority level. This situation
happens, for example, when Ci = maxτk∈ip(x,i)(Ck). As a result, instead of
considering errors in ip(x, i) − {τi}, one should consider errors in the whole
ip(x, i).

In summary, as far as possible errors during Rint0

i (x, N0
i , N1

i) are concerned,
when pr(τi) = pr(τ i), one has to consider errors in ip(x, i)−{τi}. Otherwise, errors
in ip(x, i) should be taken into account. This is the main difference between the
cases analysed above. In order to join both cases together in a single equation,

Scheduling Fixed-Priority Hard Real-Time Tasks in the Presence of Faults 165

the set ipe(x, i) can be used. Indeed, errors during the interval Rint0

i (x, N0
i , N1

i)
may take place in any task in ipe(x, i).

The equation that gives Rint0

i (x, N0
i , N1

i) can now be derived. It has to take
into account: the worst-case execution time of τi (Ci); the interference due to
tasks in hp(i); and possible recoveries of tasks in ipe(x, i). Note that some releases
of tasks in sp(x, i) may already have been taken into account when computing
Rint1

i (x, N1
i). This means that one has to take care not to include the same task

in sp(x, i) twice. In other words, one has to subtract for each task in sp(x, i) and
each error occurrence the interference already computed in Rint1

i (x, TE).
From the description above, equation (7) gives the value of Rint0

i (x, N0
i , N1

i).
Note that instead of computing the worst-case interference due to tasks in hp(i),
this computation is split as for two complementary subsets, hp(i) − sp(x, i) and
sp(x, i). This is to avoid the computation of tasks in sp(x, i) more than once, as

previously mentioned. This is done by subtracting Rint1
i (x,N1

i)
Tl

�Cl for each task
τl ∈ sp(x, i).

Rint0

i (x, N0
i , N1

i) = Ci +
∑

τj∈hp(i)−sp(x,i)

⌈
Rint0

i (x, N0
i , N1

i)
Tj

⌉
Cj +

∑
τl∈sp(x,i)

(⌈
Rint

i (x, N0
i , N1

i)
Tl

⌉
−

⌈
Rint1

i (x, N1
i)

Tl

⌉)
Cl +

N0
i max

τk∈ipe(x,i)
(Ck) . (7)

The final value of Rint
i (x, N0

i , N1
i) is given by summing up Rint0

i (x, N0
i , N1

i)
and Rint1

i (x, N1
i):

Rint
i (x, N0

i , N1
i) = Rint0

i (x, N0
i , N1

i) + Rint1

i (x, N1
i) . (8)

5.5 Number of Errors

The problem of finding out appropriate values of N0
i and N1

i is solved iteratively.
The idea is to use the schedulability analysis to check which combination of N0

i

and N1
i leads to the worst-case scenario. The algorithm to do so is described

in Fig. 3.
The idea of the algorithm is to distribute NE error occurrences during the

worst-case response time of a task τi. One error hits task τi (by assumption).
The other NE − 1 errors are considered to be either in Rint0

i (x, N0
i , N1

i) or in
Rint1

i (x, NE), depending on which choice gives higher values for Rint
i (x, N0

i , N1
i).

If the task set is unschedulable in some iteration, then the task set does not
tolerate NE errors. Otherwise, the final values of N0

i and N1
i are given by N0

and N1, respectively. At the end of the algorithm, the value of variable R contains
the worst-case response time considering internal errors as long as the task set
is schedulable in Px with NE errors (some of them internal).

166 G. Lima and A. Burns

// This algorithm needs to be executed for each task τi ∈ Γ that has:
// (a) Rext

i (x,NE) ≤ Di; (b) pr(τ i) > pr(τi); and (c) Ci > maxτk∈ip(x,i)−{τi}(Ck).

(1) N0 ← 0; N1 ← 1; k ← 1
(2) R ← Rint

i (x, N0, N1)
(3) while k < NE ∧ Γ is schedulable do
(4) R0 ← Rint

i (x,N0 + 1, N1)
(5) R1 ← Rint

i (x,N0, N1 + 1)
(6) if (R0 > R1) then
(7) R ← R0

(8) N0 ← N0 + 1
(9) else
(10) R ← R1

(11) N1 ← N1 + 1
(12) endif
(13) k ← k + 1
(14) endwhile
(15) if Γ is schedulable then
(16) // R is the solution for Rint

i (x, N1
i , N1

i)
(17) // where N1

i = N0 and N1
i = N1

(18) else
(19) // Task set cannot cope with NE errors
(20) endif

Fig. 3. Procedure to determine the values of N0
i and N1

i

Initially, N0 = 0 and N1 = 1. The initial value of N1 accounts for the first
assumed internal error. Then, in each iteration, either N0 or N1 is increased
by 1 depending on which one makes the value of Rint

i (x, N0, N1) bigger. The
strategy of increasing the number of errors by one at each time is for the sake
of performance. Indeed, equations (6) and (7) are monotonically non-decreasing
in function of the number of errors and they are also solved iteratively. Hence,
the initial value to solve them for a particular choice of N0 and N1 can be
the solutions obtained in the previous iteration. For example, let the values of
Rint

i (x, 1, 1) and Rint
i (x, 0, 2) be calculated in iteration it, say. If the task set is

schedulable and it < NE , either Rint
i (x, N0 + 1, N1) or Rint

i (x, N0, N1 + 1) will
be computed in the (it +1)th iteration. If so, such a computation can start from
the previously computed values in iteration it (variable R in the algorithm). The
implementation details to do so are not explicitly expressed in the algorithm
of Fig. 3 but it can easily be carried out by integrating the algorithm with the
iterative procedure that solves equations (6) and (7).

Clearly, the computational effort to calculate Rint
i (x, N0

i , N1
i) is higher when

compared to the computation of Rext
i (x, NE). Therefore, it is important to ob-

serve some aspects related to the need for performing the algorithm of Fig. 3. In-
deed, one only needs to calculate Rint

i (x, N0
i , N1

i) if the following conditions hold:

Scheduling Fixed-Priority Hard Real-Time Tasks in the Presence of Faults 167

Table 2. An illustrative task set and the values of worst-case response times (in bold)

Task set NE = 2
〈0, 0, 2〉

Task Ti Ci Ci Di Rint
i Rext

i

τ1 13 2 2 13 − 12
τ2 25 3 4 25 − 17
τ3 30 5 5 30 21 20

(a) ∀τi ∈ Γ : Rext
i (x, NE) ≤ Di; (b) pr(τ i)>pr(τi); and (c) Ci >maxτk∈ip(x,i)−{τi}

(Ck). If condition (a) or (c) does not hold, the computation of Rint
i (x, N0

i , N1
i)

is irrelevant because either the task set is already unschedulable or by lemma 1
it is known that Ri(x, NE) = Rext

i (x, NE). Moreover, should pr(τ i) equal pr(τi),
any solution of equation (5) can be used. For example, N1

i = 0 and N1
i = NE .

This is because under this condition ipe(x, i) = ip(x, i).
Should the values of N0

i and N1
i be determined by the algorithm of Fig. 3

for some task τi ∈ Γ , its worst-case response time is given by

Ri(x, N0
i + N1

i) = max
[
Rext

i (x, N0
i + N1

i), Rint
i (x, N0

i , N1
i)

]
. (9)

Otherwise, it is given simply by taking Ri(x, NE) = Rext
i (x, NE).

5.6 An Illustrative Example

Consider the task set in Table 2. This task set, with three tasks, is the same
as that given in Table 1 but with C2 = 4 time units. Assume that the priority
of primary tasks are given according to DM and let Px〈0, 0, 2〉 and NE = 2.
The values of Rext

i (x, 2) for each of the three tasks are iteratively calculated by
equation (4), similarly to the explanation given in Section 4. The found values
are 12, 17 and 20, as indicated in the table.

As can be seen, considering only external errors, the task set is schedulable.
However, as C3 > maxτk∈ip(x,3)−{τ3}(Ck), Rint

3 (x, N0
3 , N1

3) needs to be com-
puted since Rext

3 (x, NE) may not give the worst-case response time. In order to
do so, the algorithm of Fig. 3 is performed. Firstly, the values of Rint1

i (x, 1)
and Rint0

i (x, 0, 1) are calculated (observe that sp(x, 3) = ∅). We have that

rint1
0

3 (x, 1) = rint1
1

3 (x, 1) = 5 and so Rint1

3 (x, 1) = 5. The value of Rint0

3 (x, 0, 1)
equals 10:

rint0
0

3 (x, 0, 1) = 5 ,

rint0
1

3 (x, 0, 1) = 5 +
⌈

5
13

⌉
2 +

⌈
5
25

⌉
3 = 10 ,

rint0
2

3 (x, 0, 1) = 5 +
⌈

10
13

⌉
2 +

⌈
10
25

⌉
3 = 10 .

Consequently, Rint
3 (x, 0, 1) = 15. Then, the iterative procedure starts (lines 3-14

of Fig. 3), where the values of both Rint
3 (x, 1, 1) and Rint

3 (x, 0, 2) are computed.

168 G. Lima and A. Burns

52 13 time15 16 219

52 13 time15 20 2210

pr1

pr1

pr2

pr2

pr3

pr3

Px = 〈0, 0, 2〉

Px = 〈0, 0, 2〉
N0

E = 0

N1
E = 2

N0
E = 1

N1
E = 1

Rint
i (x, 1, 1) = 21

Rint
i (x, 0, 2) = 20

τ τ Error Preemption

(a)

(b)

Fig. 4. Two possible fault scenarios for task τ3 and NE = 2

First, consider Rint
3 (x, 1, 1), which is obtained by equation (8), i.e. Rint0

3 (x, 1, 1)+
Rint1

3 (x, 1). Rint1

3 (x, 1) = 5 has been computed earlier. The computation of

Rint0

3 (x, 1, 1) is as follows. Since Rint0

3 (x, 0, 1) = 10, rint0
0

3 (x, 1, 1) = 10. Car-
rying out the iterative procedure, one can see that Rint0

3 (x, 1, 1) = 16 since

rint0
2

3 (x, 1, 1) = rint0
3

3 (x, 1, 1) = 5 +
⌈

16
13

⌉
2 +

⌈
16
25

⌉
3 + 1 × 4 = 16 .

Thus, Rint
3 (x, 1, 1) = Rint0

3 (x, 1, 1)+Rint1

3 (x, 1) = 21. Then, Rint
3 (x, 0, 2) is com-

puted. The value of Rint1

3 (x, 2) is equal to 10 since rint1
0

3 (x, 2) = rint1
1

3 (x, 2) =

5+(2−1)5 = 10. Also, starting from rint0
0

3 (x, 0, 2) = 10 since Rint0

3 (x, 0, 1) = 10,
one will find that Rint0

3 (x, 0, 2) = 10. Hence, Rint
3 (x, 0, 2) = Rint0

3 (x, 0, 2) +
Rint1

3 (x, 2) = 20.
The algorithm stops after the first iteration since NE = 2. As can be seen,

the worst-case scenario for τ3 with Px = 〈0, 0, 2〉 and NE = 2 is when one
error hits τ2 before the internal error in τ3. This is because when N0

i = 1, τ3
suffers interference from an extra release of τ1. Fig. 4 illustrates this behaviour,
where the two scenarios are presented. Scenario (a) represents the worst case
and scenario (b) is when both errors are internal.

6 Priority Assignment and Evaluation

Once one can find the worst-case response time of each task given NE errors,
there is another problem to be solved: determining which priority configuration

Scheduling Fixed-Priority Hard Real-Time Tasks in the Presence of Faults 169

Px leads to the maximum value of NE without making any task missing its
deadline. Our approach to solving this problem is iterative. For the sake of space,
only the general idea of the priority configuration search algorithm is presented
here. The algorithm is very similar to the one previously published [15]. More
details can be found in this or in other publication [14].

6.1 Searching for the Priority Configuration

Let Ne(x) denote the maximum NE that the task set can cope with in prior-
ity configuration Px. Ne(x) can be implemented as a binary search using the
equations previously described in Section 5. The interval of the search can be
set to [0, min(1, �Di−Ci

Ci
�)], for example. Clearly, no task τi can cope with more

than Di−Ci

Ci
(in the worst case). Note that by definition, no task set is schedu-

lable in Px if Ne(x) + 1 errors take place. The sketch of the algorithm is as
follows:

1. Initially, let Px = 〈0, 0, . . . , 0〉 and let NE = Ne(x).
2. Repeat

(a) Compute Ri(x, NE), i = 1, . . . , n.
(b) If the task set is schedulable, make NE = NE + 1. Save the value of Px.
(c) Otherwise

i. If there is some unschedulable task due to external errors, stop
searching priority configuration.

ii. Look for the lowest priority task τj ∈ sp(x, i) so that

⌈
Rint

i (x, N0
i , N1

i)
Tj

⌉
>

⌈
Rint0

i (x, N0
i , N1

i)
Tj

⌉
. (10)

iii. If there is such τj , make pr(τ i) = pr(τj) and NE = max(NE , Ne(x)).
Otherwise stop searching priority configuration.

3. The last saved priority configuration is returned.

Once Ne(x) is determined, the goal of the algorithm is to find out another
priority configuration by raising the priority of some alternative task so that the
task set is schedulable with NE = Ne(x)+1. To do so, one needs to decrease the
values of Rint

i (x, Ne(x) + 1) by increasing priorities of their alternative tasks if
Rint

i (x, Ne(x) + 1) > Di. However, these priorities only need to be raised if it is
possible to decrease the number of preemption of higher priority tasks τj without
making them unschedulable. In other words, if there is a task τj ∈ sp(x, i) which
is executed over the period of time Rint1

i (x, N0
i , N1

i) - see condition (10) - then
making pr(τ i) = pr(τj) will decrease the worst-case response time of τi due to
internal errors. Carrying out the described procedure until it is no longer possible
to decrease the values of Rint

i (x, Ne(x) + 1) > Di, one will find the best priority
configuration for fault tolerance purposes [14,15].

170 G. Lima and A. Burns

6.2 Results of Experiments

Some experiment results are shown in Fig. 5. These results were collected from
carrying out the approach for a large number of task sets. The task sets, with
10 tasks each, were randomly generated as follows. The values of worst-case
computation time were generated according to an exponential distribution with
mean U/10, where U is the processor utilisation. The periods and deadlines
of tasks were assigned according to a uniform distribution with minimum and
maximum values set to 50 and 5, 000, respectively. Deadlines were allowed to

**** * ***** ********* * ****** * ** ****** ***** ***** ** ** ** ******* *** *** ** ** * ********** ** ****** **** *** ******* *** ** ** *** **** **** * ** ** **** **** ******* ***** ***** ** ** *** *** *** ****** **** **** ** ***** ****** ***** ****** ********** ***** ******* **** ****** ** ****** ** *** * ** ** *********** ** **** *** ** *** **** *** **** * *** *** ** *** * *** *** **** * ** * ****** *** ******** ******** ** **** **** ***** **** ** **** **** *** * ****** * *** ***** ******* ***** **** *** ***** ***** * ****** ** ** ***** ***** ** **** ** **** *** ***** *** **** *** **** * **** ** *** **** *********** **** * *** ** ***** *** ******* **** ****** **** * *** **** ** ** ** ** **** *** ** *** ******* ** ** **** *** ** ** *** *** ** **** *** *** ** ***** *** *** ** *** *** ****** **** ******* ****** ** **** ** *** **** ******* **** ***** *** ** * ** ***** ***** ** ***** ********* ** ** ******* ***** **** **** *** *** ***** * ***** *** **** * **** *** *** ** ** *** *** ** *** ** *** *** ** **** ************ ** ** ** **** ******** *** ** ** ***** **** *** ******* ** *** ********* **** *** *** * ** * ** ** *** *** *** **** **** **** *** **** * **** ** ****** ****** ***** ** **** *** ***** ** ****** *** * ** ** **** ***** *** ** ***** **** **** **** * ****** **** ** *** ** *************** *********** ***** *** ***** ** ******* **** ****** *** *** *** ** *** * *** ** **** ** ** ******* ** **** **** **** **** ** **** *** * ****** ** * **** *** *** ** ****** ** ***** **** * ** ***** *** *** *** ** ** *** *** *** ** ****** **** *** *** ******* *** * *** ** ****** *** *** ** ** * ** ** ***** **** ****** *** ** *** * *** ** ** ** ** **** ** ***** *** *** * ** *** ** ***** ****** *** *** * ****** ** ** ******** ** **** *** ** ***** **** ** **** ****** *** **** ***** ** *** ** ***** *** *** *** ** ** *** ***** *** ***** * ** ** ** * ** * ** **** ** ****** *** ** * *** ********* ** ** ** **** ** **** ** ** ** ***** *** ** * **** ** ***** **** ******** **** * ** ** *** ** * ** * ** ** * *** * *** **** *** ** *** ******** *** ** * ** ** *** **** *** *** *** ****** ****** *** ** ** ******* ***** ** **** *** * ** ** ** * **** *** **** ****** *** ***** ** ** ** *********** * ***** * ** *** *** **** ** ** ******* **** * ** ******* *** * ******* ***** *** *** ***** ** *** *********** ** *** **** **** ***** *** *** **** * *** *** *** ****** ****** ****** *** ** *** *** ** ******* ***** **** *** ** ***** *** **** ***** *** *** ******* *** *** ***** **** **** **** *** ***** * *** ***** *** *** ** **** ** **** * ****** ** * *** **** ** *** *** ** *** ** **** *** ** ** ** * ** **** ** *** ** ** **** * **** ** ** *** ** * **** **** ** ***** **** ** ****** *** ** ****** ***** *** ** **** **** ** *** ** *** ***** * ***** *** ******** **** ** ***** ** **** *** **** *** ****** *** ** *** **** **** ******* * *** *** *** ******** ******* ** *** ** *** ***** ** ** ** *** * **** * *** **** ** *** *** ******* * ** * ** * *** ** *** * *** * ** ***** **** ** *** ** * ** *** *** ** ** *** ** ** * ****** *** * ******* * ** **** ****** * ***** *** *** * ** **** **** ** *** ** ** ** *** *** ** ** ** *** * *** * ** ** ** * ** * ****** **** **** *** *** *** * ****** ***** ** ******* ** ** ****** ** ** ***** ******* **** *** ** ***** ** ** **** **** *** *** ** ** ** ******* *** *** *** ** ** ** * ** **** *** *** ****** * ** ***** ** *** ******* *** ** ** ** *** **** * ** *** *** * *** *** ** *** ** * **** ***** * ****** ** ** *** ** ** ** ** *** *** **** **** ** ** *** ***** *** ** * ** ** ** **** ** ***** **** ****** **** ** *** *** *** ** ** **** *** * ***** ** ******* * **** *** **** ** *** **** * * *** * ** ***** *** *** ** *** ********* ** ** ** *** ******** * *** *** *** **** ** **** *** *** ** *** ** *** **** *** * ** *** *** ** *** ******** **** ** * **** ** ** * ****** * ***** *** **** *** ******* ** ** **** * **** ****** ** **** **** ***** ** ***** **** **** *** ** ** ****** ** ** * *** ***** **** ** ** ** *** * ****** * ** **** **** ** ***** * ***** ** ****** * ** *** ** ***** *** ** **** **** *** *** **** * ** ** ** ** **** * ** ***** ** *** ** * ** **** *** **** *** ** ** *** ***** * **** *** *** *** ******* ***** * **** *** *** **** *** ** * ** * *** ** *** ** *** *** ***** *** ** ** ***** ********* **** **** ** **** ** *** ** *** * *** ** ** ** *** *** * ********* **** ** ** *** **** *** *** ** * ****** ** * ** * *** **** **** *** ** ****
*

** ** ** ***** ** ** * * ** ** *** *** * ** ****** *** ** **** *** *** ** *** *
*

** ******* * *** * ******** ******** ** *** ****
*

* *** ** ** **** *** * ***** ******* **** ** ** ** **** **** ** *
*

** ** * ****** ***** * ** ****** ** *** ** **** ***
*

********* **** *** ****** * * ***** *** ** ** **** ** *** *** ***** ***** ** *** * ******* ** ** ** ** ** ** ** ** ** ****** ***** **** ******* **** *** ** ** **** * ******* ** *** ****** ** ** ** * *** ** ** **** ** * *** * *** ** * ****** *** *** ** ** **** *** **** ****** ** * * ** ******* ** *** ****** *** ** **** ****** *** ********** * **** ** ** ** *** ***** * **** ***** ** ***** *** * ** *** *** *** ** *** *** ** ** ** *** ******** ** *** **** *** * ** ** ***** *** *** ** ** ********* **** * * *** *** * *** ** ** *** ** **** *** ** ** *** ***** ** *** **** ** **** *** ** ** *** ****** ** **** ** *** ** **** ****** * * * ** ** ** **** * ** ** **** **** ** ***** ** **** ******* **** ** ****** ** **** ** ** **** * ** ** * ** ** *** **** *** **** *** ******** **** ** *** *** ** ** ** **** **** ** * ****** *** *** * **** *** ** *** ** ** ** ***** ** **** **** ****** * *** ** *
*

* * **** ******** ******* **** *** * ** *** ***** **** *** ** ***** *** **** *** *** ** ******* *** *** ** ** **** *** ** ** ** ***** ***** ** *** ** *** ** ***** ** * ** * *** ***** *** * **** ** ***** *** ** ** * ** *** *** **** ******* * ****** *** ** ****** **** *** ** *** * ***** *** *** *** * * ** ****** *** ***** *** *
*

* * ****
*

* **** *** ** *** *** *** ***
*

* *** * *** ** ** *** * **** **
*

*
** * ** *** **** * * **** ** **** **** *

*
* ******* *** * **

*
*** ** *** * ** ** **** ** * ** ** ** *

**
** *** ** *** ** * ** ** *** *** **** ***

*
**** ** ** ***

*
*** *** **** *** * *** ** * ** ******** * **** *** ***** **** ** ** ** * ** **
*

******* ** ** ** **
*

* *** * *** **

*

******* * ** **
*

* **** ** * **** * *** ** *** *** ***** * *** **** **** ** **** * ** *** *** ****** * * *** ** ** **** ** ** ***** * *** **
*

* *** **
*

*** ** ** *** ** *** ** *** * ****** ** *** *** ** **
*

*** ** *
*

* ****** ***** *** ****
*
* ****

*
** *** * *** **
*

**** **** ** ****** ** ** **
*

** ** ** * ******* ** *
*

** **** **
*

* ** *** *** **** ****
*

*** ** ** **** *
*

** ** *** ***** ** *** ********** * ** ** ******* ** ** ** ** ** * ** **** ** * **** **** *** **** *** *
*

*** ** *** ***** *** *** ****
**

* *****
*

*
*

**** ****
*
*** * ****

*

*** ** ** *** *** * *** ** * ** ****** ******* *
*

** * *** * **
**

* *** *** * **** *** ****** ** ****** * **** *** **** ** *** ** ***** ** * *** * **** ** *** * **** ** * **** ** **
*

* *** * ***** * *** ** *** ** *** ** *
*

* * *** **** *** ** ** *

*

*** **** ** *** *** ** *** **
*
**** *

*
* *** * ****** *** ***
*
** ** **** *** ******* *** * ** *

*
** * *** **** *

*
** * *

*

* ***** ** ** *** * **** ** *** ** **** ** * ** ** **
*

* **** ** * ***** *

*

* ** ** *** *** * ** * ** ** ***** *****
*

**** *** * ** * **** ****

*

*** ** *** *** *** **
*

***** ** ** **** ** ** **** ** ** **

*

*** * ****
*
* *

*
* *** *** ** ***
*

** **
*

** ** *** * **
*

* **
*

* ****
*

*

*
* *

*

* ** * ***

*

*** ** *

*

* **
**
* ** ***
*

* ** ** *** ***
* *

*
** * ** **** ** *** ** *
* *

***** ** ** *
*
*
*

**

*

** **** *

*

*
*

**** * ** **

*

* ** **
*

*

* ** ** **** ** *
*

** *
*
*** *

*
** **** ** ** *

*
* * ** *

*

****** *
*

** ** ** * *

*

* ** *

*

* *** ** ** ******

*
**

*
* ** *** *** ** **

*
*

* *
*** ** *** *

*
** *** * *** ** *** **

*

*** ***
*

**** ** *
*
*

*

****** *** **
*

*** *** ** *
*
* ** ***** **

*

* * *
*

** **** **
** * ** ** ****** **

**
** ****

*

*

* *** *** ** ** *** ** **** ***
*

** *** ** * **

*

**
*
** **** ****** **** ** ** * **** *** *** ******** * ** *** * *

*
****** *** **

*
**** ** ** * *** **** ** *** * ** **** *

*
*

*

* * **** ***** ****
*

* *
*

**

*

* **
*

** * ** ** *** *** * **** ** ***

*

*

*

** ****** ** *** ***** *** ** ** ** ** *** ** *** ** *** *** **

*
*

* *** **** ** *** **
*

*** * *** *** ***** ** ** ***
*

*

*

*** *
*

* *

*

*

*
****** *** *** ** *** ** ** **

*
*** **

*

**** *** ** *** ** ** *

*
*

* ** ****

*

*

** ***
*

** *

*

** **
*

**

*

** ** * ** **** ******** ****
*

** *
*

* ** ** *** ** ** **** ***** * *** ** ***** ** *** *

*

**** * ** *** *** * *

*

**
*

** *** *
*

* *
*

***** ** ***
*

* * **

*
*

*** ** *
*

** *** **
*

*
*

** * *** ** ****
*

** *** ***
*

** ** * * **** * ***** **
*
*

**** *
** ** **** ****** **

*

*** * ***
*

*

*

* * **** ** ****** *

*

*** ***** *
*

*** ***
*
* ** ** * * ** *
*

* ** ** *** *
*
* ** *

*
* * *

*
* **** *** * **
*

*** ** *** *
*
*** *** **** **

*
** *

*
*

*

*
*

** ***
*

*** ** ****

*

**

*

*
*

* *
*

*** ** ** **** *
*

*
*

** ** *
*

*** ** *** **
*

* *

*

* * **

*

* *** *

*

*
*** **

*

* ** * **
*

*

*** **** * ***
*

*

*

*

*

*
*

*

*
** ** * ** ***** *** ***

*

*

* ***

*

*
**

*
*

*** ***

*

** *** ** ** ** **** * *** ** * *

*
*
* ** ** *** * *** **** *** *
*

** ****

*

** *** ** ***

*

* *

*

*** **

*

*

*

* **** **
*

** *

*

*

*

**

*

** ** *** *** ** **
*

*

*** *

*

*

** *

*

**
*

*

*

* *

*

* *** ****

*

*

*

*

* ** *** * *** *

*

*
*

**
*

* ***** ** ***

*
*

**
*

*

** *

*

*

*

* ****

*

*** * **** * ***** ** ** ** **

*

** **

*

*

*

* ***** ** * *** * * **** **
*
* ***

*

** **
*

*

* *** *

*

* **** ***

*

**

*

**

*

* **** *** *** *** ** **

*

* ***

*

*

*

*
* **** **** * ***

*

*** *

*

*
*

* ***

*

*
*

* **
*

***** ** *
*
** * **

*
*
*

**** *

*

* ****** ** * ** **** **

*

** *** **
*

*

*
** ** *** *** *

*
*

*
*

*

**** ** *** **

*

* * *
*

**** ** * **

*

*
**

*

** ** **

*

** **** *** ** * **
*

**** *** *****
*

*

*

*
*

*

**

*

* ***
*

* * *

*

* *** * * ** *** **** ***** ****** **** ** ** ** ***

*

*
*

* *

*

*** * ** ** *

*

** * *

*

*** ** ** ***

*

* *

*
*

** **** **

*

* *
*

*
*
**** *

*
*

***** ** *
*

* ** * ** *** **
* *

*** **
*
**

* *

**
*

*

*

** *** ** **

*

*
*

*
*

*** ***

*

** * *

*

* *
*

** *
*
*

*

* ****

*

*
*

*

*
**

* ** **
*

* *** ** ** *
*
*** *

*

*

*

* ***

*

*
*

*

*

**

*

*

** ****

*

*** ********
*

*

*

*

** ****

*

* *
*
*** ** ****** ***** **

*
*

*
* ** **

*

**

*

* *

*
**

**

*

* **
*
*
*
* **

*

*

*

*

**

*

* **** *
*

* ***

*

*

*

*

** *

*

** *** *

*

*
** *****

*

* ** ** * ** *

*

*
*

*

*

*
*
**** *** *** ** * ***** ** *

*

* **** ****
*

*

*

*

*

* *** **
*
**

*

*

*

*** ** * * **

*

*
*

* *

* **** * *
*

** ****

*

*
*

*

* * **
*

*

*

*** ***

* *

** ***

*

* * ** *
*

**

*

* * *** *

*

*

**** **

*

*

*

*

**** ** *** **** * ***

*

* ******

*

**** *** *** **** * ** *

*

**

*

*
* *

*** ** *
*
*

*
*

*

**

*

*** *** * **

*

* **

*

*

*

* *** **

*

*

* **** ** * ** *
*

*

*

**

* *** ******* * *** **

*

* ****** *** *

*

*

*

*
**

*

** ***** ** * ******** ** *
*

**** ** **

*

* ***
*
** *

*

*** ***** ***

*

*

*

*

*

*

*** ***

*

*

* *

*

**

*

*

*

** ** ***** *** *

*

** ** **

*

*

**
*
*** ** *

*

** ***** ***
*

* *

*

*

*
*

* *
*

*
*

*

** *

*

*

*

* ** ** *

*

* ** ** *

*

* *** **

*

*

*
*

*

*

* ** *

*

* *
*
*

* ** *

*

** **** *** ***** ** * ** *

*

** *
*

*

** * **

*

** ** *

*

*
*

* *

*

** ** *** *** ****
*
*

*

***** ** *

*

*** ** **** *

*

*
*

**

*

**

*

**

*

*** ** *

*

** * **

*

**

*

*

**** *** *** *** ** ** * ** *

*

*
*

* *
*

* **

*

*** **

*

*

** *** ***** * **
*

*

*

* *

*

*

*

**

*

*

*** ***

*

* **

*

**** *
*
* ** ** *

*

* * *

*

**
*

* *

* *

** *

*

* ***

*

*
**

*

**

*

** * **** * **

*

*

*

*

*

*

*

*

*

*** ** ** ***

*

** *

*

** *

*

**** * **
**

**

*

*

*

*

* *

*

* **** ** *

*

*

*

* **

*

*
*

* ** *** * **
**
*** **

*

** ** *

*

*

*

* ** ***

*

*
* *

*

*

* *
*

*

*

*

*
*
* *** *****

*

* *
**

*

*

**

*
*

*

*

*
* ***** *

*
**

*

*

*
*

*

*

*** *** *** * *
*

*

* ** ** * *
*

*

*

*

*

**** **

*

* **

*

*
**

*

*

*

*

*

*

*

* ** ** ** *
*

* ** ***

*

*

*

*

*
*

*

*

*

*

** ****

*

*

* *****

*

** * **** * **
*

*** *** * ** * *

*

*

*

**

*

*

*

*** * ** ** *
**

*

*

*

*

* ** ***** ** *
*

*

*

*
* *

**

*

* *** ** ***

*

* ** **

*

** * *** * **

*

**

*

** *** * *** ***** ** ** **

*

** **

*
* *

* ** *

*

**** ***** ** ** ** *** ***

*

**

*

* *

*

*

*

*

*

**

*

*** **** **

*

*

*

*** *

*

*

*

** *

*

*

*

*** **

*

*

* ** *

*

*

* *

*

* ** * **

* *

**

*

** ******

**

*

** *

*

*

*

* ** *** **

*

* ****

*

**

* * *

**** ** *
*

*

* *
*

*

** **** *** *

*

* *

*

** ***

*

*
* ** **** *** *** ***

*

*

*

*** **

*

**

*

** ** ***

*

***** **** ** *

*

**

*

***** *** **

*

*

*
*

*

*

*

**

*

**

*

*

*** *** *

*

*

*

*

***** **

*

**

*

** ** **

*
*

*

*

*

**

*

*

* *** ***

*

**
* ******* ****** ***

*

*

*

*** ** ***

*

*

*

** *** * ** **** *** *

*

* ********

*

* *****

*

*** *****

*

** ** ***

*

**** *** *

*

* **

*

*

**

*

**

*

* *** **************** ***** **** ****

*

** *** ***

*

*

*

*

*

*

*

*

* ***** *
*

****** *

*

* ****
*

*

*
** ***** ** **

*

***** *

*

* *

*

*

* **

*

*

*

*

*

** ***

*

*

** *

*

*

*

*

**

*

*

*

*

*

*

*

**

*

** *

*

*

*

**

**** ** ***** *

*

*

** ** ***
*

*
*
* *

0 20 40 60 80

0
10

0
20

0
30

0
40

0
50

0 500

**** ****** * ****** ******* ** ******** ** *** ***** ***** ***** *** ** ******* * **** **** ******* ** **** **** ******* ***** ** ** ** ** ** *** *** *** *** *** ** ***** *** *** ***** *** ***** *** **** **** **** *** ***** **** ** ** ** ** *** *** ** ** ** ** *** **** ** ** ****** ** *** *** ** ***** ******* * *** * ***** ** **** *** ***** ***** ** * ******** ** * ** *** ****** ****** ** *** ******** ***** **** ** * *** ** *** *** **** *** ** ** **** *** * ****** ******* ****** ** **** ** *** ****** **** *** **** *** ** ** ***** ******* ** ********* ******* ** ***** *********** ******* ** *********** ** ** * ****** ******* **** *** **** *** ***** **** *** ** ****** ** **** **** ******* ***** * ** ****** ** *** ***** ** ** ***** ** ***** ** ** ********* **** *** ***** * ***** * ** ** *** ******** ** *** ** *** *** *** * ** ******* *** ********** ********** ** ***** **** *** **** *** *** ** **** *** ******* ***** * ** *** *** ** ** **** *** ** ********* ***** ** ******* ***** ** *** ** * *** **** **** *** **** ** **** ********* **** *** *** *** **** **** ** **** *** *** ******** **** ** ** *** ***** ** *** ** **** ** ** ** ***** ** **** ** *** **** ****** * ***** *** * ** **** ** *** *** * *** *** ********* **** ***** *** ***** *** ** ***** ***** ****** **** * ** ********** ** ***** ******** ** **** ** ******** ***** *** **** *** ********* **** **** ****** ** ** ***** ********* *** *** ** ** ** ** ** ** *** ** ****** * ** **** * ** ** * ** ***** **** * ** ** **** * *** **** *** *** ****** *** *** **** *** ******** * ** *** ** * ****** ***** *** **** ********* *** ** ***** * ** ****** * ** ***** ****** *** **** ****** ***** ****** * **** **** ** * ** *** ** **** **** **** *** ** ** ** *********** **** ****** **** *** ** * *** * *********** * *** ** ******* *** ** ** * *** ** *** **** ** *** ** *** * ******* ** ** * *** ** *** ***** ** ** *** ** *** ** ********* * *** *** ** ** **** ***** **** * *** *** ***** ** **** ***** ******* ** *** * ** ** * *** **** ***** ****** *** ** ***** ** * ***** *** ** **** *** ***** **** ** ******** *** **** *** ** ***** * ** *** ** ** *** ** ** **** *** ** * ** * ***** * **** * ****** *** *** ** ** ********* ** ** ** ** ** ** ** *** ******* ** ** ***** ** ** ******** ***** ** * ** ***** * ** ****** ***** *** *** **** **** ** ******** * ** * *** ** ** ***** * *** ** ***** ** *** ** ** **** *** ** *** ** ** ***** ** ****** ** *** *** *** *** ** *** ** ** ** *** ** ******** **** ******* *** ** ** ** ***** *** ****** * **** ** **** ** ** * * *** *** * ******** *** * ** *** * *** **** ***** * ** *** * **** *** *** **** ** ** ** ** * *** ****** * **** *** * ** ** *** ***** ***** ***** **** *** ** *** ** ********* * **** **** ** **** **** **** **** *** *** * *** ** **** ** *** ** ** * ***** ** * ** *** ** ****** ** * ****** *** ** * ***** * *** ** ** *** * ** *** **** ** ***** ** *** **** ** *** **** ******** *** ** ** ** ** * ** * **** ** ** ** ***** *** *** *** *** **** **** ****** *** **** **** **** ******* * ******* *** ** ** ** ****** **** ** **** ** **** ** ** ** ** *** ***** ** * **** *** ** **** ***** ****** *** ***** ** ***** * *** ** *** ** *** ** **** ** * ** ** **** *** ** * **** ** **** *** ** ** ***** *** *** ***** ** **** ***** ** ** **** *********** ** **** *** * ** ** ** ** **** **** ** * *** ***** *** ** ** ** **** ***** * **** * ** *** *** ** ** *** ***** ***** ** **** **** *** ******* ****** ********** *** ** ** ***** ** ** ** * *** **** ******* ***** ** ** * *** **** **** ***** *** ** ** ****** *** * *** ** ** ** *** *** **** ** ****** ** ***** ** *** * **** ** **** ******* *** ******** ** **** ** *** *** **** ** **** ** *** *** ** ** *** * **** ** ** * ** * ** ** ** ** * **** ***** **** *** ** *** ** ** ** ************ ******* ***** ***** ***** ** ** ** ** ** * ** ** ** *** ****** **** ** *** ********** ** *** ***** *** * * ****** * ** ****** *** *** *** **** * ** * ** *** ** ***** * ****** * **** *** ** ** ** **** * *** ** ******* ***** ** * ** **** **** * **** **** ** * *** *** ** ** ** * *** ** **** *** *** * *** *** *** * ** ***** **** **** ***** ***** ****** ** ***** * ****** * * **** ** * *** ** ** **** *** ** ** *** *** ** ** * *********** ** *** * ** **** ** *** ** *** *** **** ** ** *** * ** *** **** **** ** ** ******* **** ** **** **** * ** *** *** ** ** ** ** *** *** ** ** **** ******* * ** *** ****** *** ** ** *** * ** ** *** ** ** **** ******** **** ** * *** *********** *** ***** ***** ***** ** ***** ** *** ** *** * **** ** **** *** * ***** ** ** *** * ***** *** * *
*

** ** ** * ** *** **** ** ** ** **** *** * *** ** ** * *** ** ** ** ***** **** *** *** ** * ****** ****** ** **** ******** ***** **** ** ** * *** ** **** ** ***
*

*** **** ** **** *
*

**** *** ** * **
*

* *** * ******** ** * ***** ** ** *** ** **
*
** **** **** ****** *** ** ** * ****** ****** * ******** *** *** ** *** ** * ***** ** ** ** **** *** **** **** *** **** ** **** *** * ** ***** *** ** ** ****** ** **** *** ** **** ** ** ***** ** ** *** ********* *** **** ** **** ** ** ** ** *** * ** *** ** **** **** **** ** ** ** ** ** ** ******* ** ** * ** ** ** *** **** **** ** **** * **** ***** *

*
**** * *** **** *** ** ***** **** **** ** ** ***** **** ** ** ***** * *** ** ** *** *** ******* ** ****** ************ ** ***** *** ***** *** *** ***

*
***** ** * ******* *** ** ******* ***** ** *** *** * ******** * *** * ** *** **** * *** *** *** ** *** *** ****** ** ** ****** * *** **** ***** * ******* * ** ** * *** ** ***

*
*** ** *** ** *** ** ***** *** ** ** ** ** ** * ** ** ** ** **** * ** *** ** ** ** * ******* ** **** ******** *** ***** *

*
** **** ** **** **** ** * ***** ** ** *
*

*

*

** * * ** ** ****** * *** *** * *** *** ***** ** * ** *** ** *** *** *** ** * ********* *
*

** **** ***** *** *** ** *** **** *** ** *** ** ***** ***
*
* *** ** *** *** *** **** ** ** * ** *** ** *** *** *** **** ** ***** **** ** *** ** ** ** ** ** * **** ** *** ** * **** ** ***** ** ** * ******* **

*
* ** * ** ** ** *** ****** ** *

*

* *** *
*

*** *** ** **** * ***
*

* *** ** ** * ***** ***** *** *** **** *********** *** *** *** ** ** ** ** *
*
** *

*

** * *** *** ** ** *
*

*

* **** ** ** ****** * *
*
* ***** ** **** ******* **** ** * *** ** *** * ***** *** *** *** * *** ** *** * *

*

*
*

** ** *****
*

** *** *** ** *** ********* ** ***** ** ***

*

* ***** ** *
*

*** ** * **
*
* *

*
* * **** ** * ** ** ** ****** **** **** ** *** ** ** ** ** *

*

*

*

*** *** *
*

**** * ** **** *** ** **** *** *** **
*

*

* * ** ** **** **** *** *** **
*

**
*

* ** *******
*

** ** ****** *** **** *** ***

*

* ** **** **
*

*** *
*

**** *
*

* ****** *
*
****** *** ** ** *** **

*
**** ** * ***

*
* *** *** **** ****

*
*** ** * **** ** ***** ** ** * *** * ** ***** ** ** * **** **** *** *** ** *** **** **** **** * ** ** ****** ***
*

** ** ** **** ** ** ** **

*

*

*

* *** ***** ** ***** *
*

* ** *** **** ******
*

***** ** *** **** **
*
*** *** **** ******

*
****** *** ***

*

* ***** * ***** *** ** ***** *** *** *****
*
*** * ***** ** **** **** ***** *** ***

*
* * ** *** *

*
*** ** ***** * *** **** *** ** *

*
* *

*
***** **** **** ** **

*
*** **** *** *** ***** **** **** ****** *** ** ** * **** **** ** ** ** **** ** * *** *** **** **** ** *** **** ** * ******* * ** *** *** ** ***

* *
* *
*

*** *** *** * ***
*

* *** ** **** *** * *** ***

*

*** *** *** ** **** * **
*

* ** **** *
*

* **** ** *** **

*

******* * ** * **** ** ** ** ****
*

* *** ***** * ** ***** *** * ** **** *** * *
*

*** **** ** **** *** ** *** ** ** ** *** * ** **** **
*

* **** ****** ** ** **** ****** * ** *********

*

** ***

*

*** * ***** *
*

* * ** * **** **** ** *

*

*
*

*** ** *** *** **** *

*

**

*

** ** *** *** ** ***** **
*

** *****

*

* ** * * **** **
*

** ** ***
* **

** *** **** ****

*

*** *** ** *
*

* ***** *** *** *** *** *** ** *

*

** *

*

** ** ** ** * ***

*

** *** **** ** *
*
** ** ** *** ** ** **** ** **

* *
**

*

*

*

* * *

*

** ***

*

** ** **
*

** *** ***** * ** **

*

**** ** *** *** ***** **** ** * *
*

** ** **
*

* * * * *** ** **** *** * *** * ** *** *****
*
* *** *

*

* * ******** **** **** *
*
* **

*
*

**** **** ** * ** ** ** *** *

*

**
*

* ** *** * ** *

*

** ** * *** **** ** *

*

****** *
*

*** * **

*

*

*

** ** ****
*

** ***

*

******** ** ** **** **
*

* *** **

*

* ** **** **

*

*

*

*

*

* **

*

* *** **
*
*** ** **** ***** *

*

*

*

** ** * *** ** ** ** **** * ***
*
* **

*
* *
*

*

*** *** *
*
**
*

** ***** ** **
*

** * *** ***

*

** ***

*

* * *** ** **** ** ** * ** **** **** * *****

*

**
*

* *

*

*** *

*

*

** *
*
* *

*

** *
*

**** * *** * ***
*
* ** ** ** **** ** *** ***** ***

*
** *** *****

** * **

*

* *
*

*

** *

*

**

*

* **** **** **** ***

*

** ** ** **** *

*

** ** **** *** *** *****
*

*
*

** ***

*

* *** ** ** ** **
*
*

*
*

* *** *

*

*** ***

*

** ** ***

*

*** ** **
*

*

** ** *** *

*

* **
* *
* *

*

*

**** ** *** ** **** *** ***
* *
** ***** * ***** *** ***

*

* * *** * *** **
*

** *** *** ***

*

* ***

*

*
* **** ****

*

* *** ** **** *** *** *** * **

*

**** *** **** *

*

** ****

*

* ** ** ** **** ** *
*

**
*

******* ***** ***

*

*
*

* * *** * ** ** * ******* *
*

*

**
*
****** ** *** * *

*

* *
*
*** * *

*
* *

*

** *** ** ** * ** *

*

*** * *
*

*** * *

*

*

** ***
*
* * *** * ***

*

*** *

*

**

*

* * * **** *
*
** * *** ** ***

*

*** ** ** ** *** **** *

*

*** ** *
*

*

*

* ** **** *

*

*** *** *

*

** * *** *** *** * *

*

*

** ** *

*

* *
*

** * ** * *

*

* **

*

** **** ** *

*

** *

*

** *** *

*

* ***

*

*** ***

*

* ** *** **

*

*** * ** ****
*
* **

*
*

*

*

*

** ** *** ** *** **

*

**

*

* **** **** **** ** **** *

*

* *****

*

*
*

*

** *

*

** *** **
*

** *

*

*

*

* ** ********** **** ****
*

** ** **

*

*

*

*** *****

*

* **** ** *** ***** *

*

* ** ** *** *** ** *

*

*

*

* *
*
* *** *

*

** **** **

*

* *

*

** ** * *

*

*

*

*

*

* *** **

*

*** ** ** *
*

**

*

*
******* ****

*
**
*

* *
*

*** ** ***** *

*

*

*

** * **

*

*

**

*

*** ** ** * ** ** *

*

*

*

*

** *

*

*

*

*

** **** *** ** ** **

*

**

*

* ***

*

* * ***** ** *** ** ***
*
* *** *

*

** ** ****

*

*
*

*

*

** **

*

* **

*

* ** ** **

*

*

*

*

** *

*

* *

*

**

*

**

*

* ** ** **

*

*

** **
*

**

*

* * ** * *

*

***** ** ** *** *** * *** ** ** *

*

*

** * *****

*

*** **
*

* ** **

*

**** ** * *** ** *** *
*

* **** ** ****** *** ** ** ** **
*

* **

*

* ** *** **

*

* ** **

*

*

*

*

*

**

*

* **** ***

*

** **** *** ** *** *** ** **

*

*

*
*

*

* **

*

*

* *** ******

*

* ** * **** ** ** * ** *

*

*

*
*

*

*

** ****** **
**

* *** *

*

** * ** * ** ***

*

** *** * **

*

*** *** ** ***** **** ** **

*

*

** ** *****

*

* ** ** *

*

* ** ****

*

**

*

*

*
**

*

** ****

*

** * **** * *** ** **** * ***** ******* *** **

*

** *** *
*

* *** *

*

****** * **

*

*

*** * ** * *

*

** * *** ***

*

*

* *
*

*** ** * ****

*

** * *** *
*

**

*** *** * ******
*

** **** ****** **** ** **

*

*
*

** **

*

***** ** *** ** **

*

* **** *** **** *
**

* ******* * ** *

*

* *

*

*

*

* *** *****

*

**

*

*** **** *

*

** **** *** * ** *** **** *

*

*

*

*

*

**** * **** ** **** **

*

** **

**

**

*

** **

*

*** *

*

***** ** *** **** * *

*

** *

*

* **** **
*
* *** ******** *

*

** *

*

**

*

*** *****

*

*
** * ** ***

*

*

* **

*

* ** **

*

*

*** *

*

* **** *

*

*

*

** ** ** ** ** ***

*

*

*

** ** ** *

*

***** *** **

*

*

** *** **** *****

*
*

* *** **

*

* *** ****

*

*
*

*

** ** **

*

*

*

**

*

**

*

***** *

*

*** *** *** ****** ** ** ** *

*

*

* *
*

*
*

*

*

* *

*

*** ** *** **** ** *

*

*** ** *

*

** ** ** **

*

** **

**

**** *

*

*

*

*

**

* * ****

*

*** ** ****

*

*** ** ** *****

*

*** **

*

*

*

** **

*

* **** ***

*

**** ** *

*

** **** ********** * **** ******* **

*

*

*

*

*

*** **** *** ** **

*

***** * ***

*

* *** ** *** ** ** ** **** *** * *

**

*

*

**

*

*

***** **

*

* ******** ****** **** *
*
*

*

*

*

** ****
*

*** *

*

*

*

* ***** ***** * ** ** *
*

* ** **** ***

*

**** * *** * **

*

** * ***

*

*** ***

*

*

*

*** *** ** ***** ****** * **

*

* *

*

*

*

*** **

*
*

* ** ** *

*

*

* *

*

* ****** *** *** *** *** ** *** **

*

**

*

*

** ** *** ** *

*

** ** ***

*

**** **** **

*

**

*

* ***

*

*

** ********
*

*

*

*

* *

*

**

*

**** *

*

*

* ****

*

*

*

* ****

*

** **** ** *** **

*

*

*** ***

*

*** ** **

*

**

*

*

**** ** ******* ** ********

*

** **** **

*

**** ****** * *

*

* *
*
* ** * *
*

* *** *** ** ** ** ** **** * *** * *** ** ** *** ** **
*

* ** **

*

*** * *** *

*

*** ** *** *** ******

*

*

*

** **** ** ** *

*

** ** ** * ***** *****

* *

* ******** **** ** **

*

* **** ** **

*

*

**** ** *

*

*

*

* ***

*

*

*** *
*

*

** *** ****

*

*

*

*

* ** **** *** **

*

*

*

****** *** **

*

*

*

*

*

*

*

* *
*

** ***

*

* ** **** *** **
*
* * *** ** *** ** ** **

*

*** ** ** * *

*

*** *** ** *** *

*

*

**

*

** ** **

*

** **** ****** * ***

*

* ***** *** *** ****

*

* *

*

**** *** ****

*

*

*

* ** *** **

*

** *** *** ** **

*

*** ** ** *** **
*

*

*

**** *

*

**** ****

*

* *

*

* **

*

*

*

** * ** *** ** ** *** **** ***
*

*

*

** *** *** *** ***** *** **** *** * **

*

* * ** ***

*

*

*

*

*

* * *** **** *

*

**

*

*** *** ** *** **

*

*** ** *** **

*

** ** ** ***** ***

*

* * ******* * ******

*

* **

*

**

*

* ** *****

*

**** ****

*

** ** ***** **** ***********
*
*

*

*

*

*

*

**

*

** **

*

* ***

*

** **** **** *******

*

*** *****

*

*

** **

*

** *

*

** ** **

*

*** ** *

*

**** **

*

* **** ** ** *

*

** **** ****

*

* **

*

* ** *** ** * ** * *** **
*

** ******** ***

*

* ***

*

* ** **

*

*

*

* ** *** **** ** *** ***** ** ****** ** *** * ***** ** * *****

*

** *

*

**** **** *** ***** ** *

*

* *

*

*

*

** *

*

****** * ***

*

** ** *** **** *** *****

*

* * ***

*

*** *** ** ** *

*

*

* ** **

*

** ***** *

*

*

*

** *** ******** ***** *

*

* ****** *******

*

* * ** ***** *** *** ****
*

*

*

* ***** ***** ** ********** **** *** ****** ****** ***** *

*

*

*

* **** **** *********** ** *** ******

*

** ** *

**

* ******* ** ********* * **

*

* ** ** ***** * ** *** * *** *****

*

** ** *

*

*

** *

*

*** **** **

*

******* ** *

*

* ******* * ** **

*

** *** ** *** ** ** **

*

***** ** *

*

* ***

*

*

**** ***** ** *****

*

* **** *

*

* ** *** ** ** ****** *

*

* *

*

**** *** ****

*

* *** *** *** **** *** ** ***

*

*

*

*

** **** **** ************ *** **

*

* ** **** *

*

* ***

*

**** ***** ** ** ***** *** *** **

*

** *** ***

*

*

* ********* *** **** *** ** **** **** ** * *

*

0 20 40 60 80

0
10

0
20

0
30

0
40

0
50

0

300

***** **** **** ******* *** ******** ****** **** ******* ** *** ***** *** **** ** ** **** ** ** **** ******** ********* ***** **** *** **** *** *** ** ***** *** **** **** *** ***** *** *** ******* *** **** **** ** ** **** ** ** ******** ******** ********* ** *** ********** *** ** **** *** * **** *********** ** ** *** ** * *** *** * ***** *** *** * ** ** ** ****** ***** *** **** * *** ***** **** ** ****** *** ***** ***** ** **** ** *** **** ***** ** *** ******* ** ** ** ********* **** ** ******* ** **** **** **** ** *** **** **** **** ** *** ****** ** *** *** ** ******** *** ** ***** ***** ********** **** **** **** ** ****** **** ** **** ** **** ** * **** **** ***** * ** ** ***** ****** ***** * **** ** * *** **** ****** **** ****** ****** ****** *** *** ***** ** ***** *** ** *** *** * ***** ** *** ** **** *** *** ** ******* ** ***** *** ******* ** ** ** ** ** ** **** ** ** *** ** ***** ******** **** ** **** *** *** *** ** ****** ** ** **** ** **** * ** *** * **** **** *************** ** ** ****** ***** ** ****** ** ****** ***** ***** * ***** **** *********** **** ** **** **** ** ***** ** *** ****** **** **** ** ** ** *** **** ***** ** ***** * ******* **** ** ********* ** **** ** ** ******* *** *** ******* ****** *** ** ** *** *** **** * ***** ** *** *** *** ** ******* *** ** ******* ******* ** **** ******* ***** *** *** ** ** ** ****** ** *** ****** ***** ** * ******** ** ***** * *** **** ** **** *** ** *** *** *** ** *** ** ** ** ** *** **** *** * *** *** **** ***** ** ** ** ** ** ** **** ** *** * ** ** * ** *** ** *** *** *** ***** * **** *** ****** *** * **** ***** ** ** ** **** **** * ****** **** *** ** ****** **** ******* ***** ***** *** * ** ** ** ** * *** *** *** ** *** *** * **** ** *** **** *** ******** * **** **** **** *** * **** * ****** * *** ** **** ** ********* ** ******* ** *** ******* ***** * ****** **** ******* **** * ****** *** **** **** ** ** ** ** **** **** ** * ** *** ** **** ** *** ** *** ** *** *** ** ****** **** *** **** ** * ******** ** *** * ** * ****** *** ****** * ******* ** ****** * ***** ** ******* *** ** ** ****** ***** *** ** * ** ** ** *** ** * ******** ** *** ** ***** ******* *** *** ** *** ******** *** ** ** ***** ** ** ********** **** * ** **** ** **** * ***** **** ** **** ***** ** ** **** *** * *** *** * ** * ****** *** **** **** ** *** ***** **** ** *** *** **** ** ****** ****** ** *** ******** * ** **** **** ** ***** ** *** ** ***** *** **** *** ** *** **** **** ********* ** * *********** *** ** ** ** ** ** *** ** **** **** **** ******* ** ******** *** ** **** **** ***** ****** ** **** ******** ** * **** **** **** ** ** ** ****** **** ****** ** *** *** ** ******* ** * ** ** *** **** ** ** **** ********* **** **** **** ******* *** ***** *** ***** ** ** *** *** ** **** ** ******* ** *** ***** *** ** **** * **** ** **** ** ****** * **** *** ** *** *** *** * *** * *** *** * **** * *** **** ** *** ***** *** **** ***** **** ** *** ******* ******* * ** ******** * ******* * *** ** *** ** ** **** ** **** ** ** ** **** ** *** ** ** * **** **** *** * **** ****** ********** *** *** ** *** * *** *** *** **** *** **** **** ** ** **** **** * ** ** ** * *** ***** ** ** *** ** ** **** * **** ** * **** * ** *********** *** ***** *** **** ****** * ** *** ** ** ** *** ** * ***** ** ** * ************ ** ** * ** ******* *** *** **** **** **** *** ** *** ** **** *** ** ** * ******** * * ******** ****** *** * **** ** ***** **** *** **** **** **** ***** *** ** ** **** **** ***** * *** ***** ** ***** ** ** *** **** ****** *** **** * **** *** *** ******** *** ** *** ** ** *** * **** ** * **** **** *** *** ** ******* ** ** **** *** ****** ******** ** ** ** ** * ** * *** *** ** ** *** *** ** ** **** *** ** *** ***** **** **** *** *** *** ******* ** ** * ** * *** *** ****** **** ** ** **** ** ** ** ** *** **** ***** *** ** ** ****** ** ** *** *** ****** * ******* ***** ** **** ** ** * *** **** ** ** ** ** *** ***** *** ** *** **** ****** ********* ***** *** ** * **** ****** *** ** **** ******** **** **** ****** ** ****** ***** * **** ***** ** ** ** ***** *** ** ** * ** ** **** ** ** ** ***** *** *** ** *** ** ** * ** *** ***** ** **** **** ******** *** **** *** *** **** ** * ***** * *** ** ** ******** ** * *** ** ** ** *** **** **** *** *** ****** ** * **** *** ** ********* ***** **** ***** *** *** *** **** *** ** ***** * ** ****** *** **** ** ****** *** *** **** * ***

*

** * *******
*
** ** ** ***** ** ** ** **** * ** *** * ** ** ** *** *** * *

*
****** *** ******* ***** **** ** *** ** ** **** *** ******* ** * *** *** **** ** * *** *** ** *** *** *** *** ***** * ***

*
***** ** ***** ** ** ** ** *** *** *** *

*
***** *** ****** **** ** **** ** ** *** **** ** **** ** * **** * ***** ****** **** **** *** *** ** * *** * *** ** *

*
**** **** *** *** * ** ***** ** *** ***** ** * ****** * ** *** *** ** ** ******* *** ** ** *** ******* ***** ** * **** * *** ****** **** *** ** ****** * *** * ** * ****** *** ** * ** ** ** *** ** *** * ******* ** *** ****** **** ***** **** *** *** *** ** **** *** ***** ** ***

*
*** *** ** ***** **** *** ***************** ** **
*
* **** *** * *** **

*

****** **** ******* * *** ** **
*

*
**

*
********** * **** ** ** ***** ** *** **** *

*
* ** * *** ****** * ****** ** * * **** ** ** ****** *** ********** *** * **** ** *** **** ***

*
**** ** *** ***** *** *

*
* ** **** ** *
*

** *** **** ** **** * *** *** ** *** **** ****** ***** ***** ***
*

* ** *** ******** *** ***** * ****** ** ***

*

* *** *** ** ** ***** ***** **** ** ** ** * ******* **** *** ********* * ** **** ** **** *** *** **** ******* ** **** ***** * **** * *** * *** **** * *** *** ** ** **** * **** ** ** *** **** ** *** ** **** ** * ***** ** *** ** *** * *** * *** ** ** *** ***** * ** ****** *** **** ** * * ***** ** * ****** ** *** **** ***** * **** ** **** **** ***** **** **

*

** ** ** ** *** *** * *** * ** ** ** * ** *** **** * *** *** ** *** * ** ***** ** ***** * ** **
*

*
*

** ***** * ** ******
*

*
** **** **

*

* **** **** ** **** ** **** **** ****** ** ** **
*
**** *** ***** **

*

** *** *** ***** *** ** *** ** ** * *** **
*

* ** ** *** *** ********

*

* *** * **** * *** ****** ** * * ** * *** *** ****** ***** *** ** ** *** *** **** **

*

* ** ** ** ******* * ** ***** ******* **** ** **** * ** * *** *** ***** * **** *** ** **** ** **** ***** ** ** *** * *** * *

*

*

*

*

* **** *** ** *** *** * *** ** ** ** * ***

*

****** * *** *** ***** **** ** **** ** *** *** ******* ** ** ** **
*

* ** * *****

*

**** *** ******* **** ***** ** *
*

* ** **** *** **** *** ***** *** *** *
*

* *** *** **** ** * ** * *
*

* ** ** *** *** ** *** * *** **** * ***** ** *** *** *** * *** **** ******* ***** ** *** ** *** *** **** * ** ** ** *** ** *** *
*

*
*** * **** ** ** **** * * *****

*

** *** ** *** *** **** ***
*

*

** **** **** * **** ** **** **** ** * **** *
*

**** **** * ******* * *** *** *** *** *******
*

** *** *** *** *** * ******* **
*

*** **
*

** ** ** *****
*
* **

*

*

*** * **** ** ** *** ** *** * **** ***** * *** ** **

*

* **** ** *** *** *** *** **

*

*** *
*

***** *** ** ** *** * ****** ** * ** **** ***** *** ** * ** * ********* ** ** ** ** ** ***** * ** **** ** ****
*

* * *
*

** ** ******* ** *** ** ** ******
*

** * *
*

*

*** **** *** ** ** ** *** **
*

* **
*

* ** ***** ***** ** ** *** ** ***

*

**
*

* * **** ** ** ** ** *** ** ** ** ** * ** *** *

*

** * **** *** *** *** ****
*

***** * *** ** * **** ** *** * ****** ** ** ** **** *** ** *
*
* ** *** *** ******* **** **** *** ** *

*
* **** * ** ** * * *** *** ** ** *** * *** *

*
*

*

*** * ** ** ***** ****

*

*** ***** **** ** ** *** *** ** **

*

* **** **
*
* **** ** *** **** *** ***** *** ** *** *

*

* **

*

*

*

* ******** * * *

*

*

*

* *****
*
** **

*

*

** *** *** ** *** ***** ** ** ** *** *** ***** ** ****
*

**** ** ** ** ** *
*

** *

*

* ** * *** *** * ** ** *** *** ** **

*

** *

*

*

*
** ** *********

*
*

*

*

** ** ***** ** *

*

* ****

*

** *****

*

* **** *

*

*

***** ** *
*

** **** **
*

**** * ***
*
* * *****

*

* ****** ** *** *

*

*** **

*

* **

*

** * ***

*

** ** **** *** *
*

** **** **
*

******** ** **** *** ** **** *

*

** ***** * *** * ***** ***** ** **** ****
*

**

*

** **** *
*

**** * *** **** *** ********* ***** ** ******** *** *

*

*

****** ** ** ** **** ***** ******* *** ****

*

* ** ** *** **** ** *

*

****** * ****** ** **** **** *

*

* * *
*

*

**

*

**

*

* * ***** *

*

*** ** * ***** ** ** **
*

** * *
*

*** ** * ********** * **
*
*

*

* ** **

*

**

*

*** ****** ** *** *** ** **** * ** **** * **** **** **
*

*** **
*

** **** *** * ** ** *** **** ** * *** **** * **** ***

*

*
** *** *** *** ** ***** *** ****

*

*** **
*

* ** * *** **

*

** ** * *
*

*
*** **

*

*
**

*

**** *

*

*** *
*
*** **** ** *** ***

*
* *

*

*

**

*

*

*

*
*

*** *** ***

*

**

*

*

*

* *
*

**

*

**** *

*

**
*
** ** **

*

**
*
** **

*

* *** ** *** * ** *
*

*

** ** ** **

*

*
*

** *

*

** ******

*

* **

*

* **

*

* ** *** ** ** ** ** ** ** ** *******

*

**

*

*

*

***** ** **

*

*

*** ********* * ***

*

* *
*

*** ** ****** **
*

* * ** *** * **** ** ***
*
*

*

* ******* **
*

** ** *
*

* ** * ** *** * ** *

*

**** *

*

*

*

**
*
**

*
* **** ** **** *** ***** ** *** **

*

** *** * *** * *

*

*

*

** ***** ** ** ******* *** **** *** *

*

*** ***** * **

*

**** ***
*

*

*

* *** * *

*

**
*

* ** *** ** ***** ***

*

** ****** * ** *

*

**

* *** ****** ***

*

**** ******
*

***** ***

*

* *

*

*

*** *** ** *

*

** ** * *

*

** ** **** ** ****** ***

*

* *** ** ** **** *** **** *** *** *** *** ** ** *** * *** * ** **** **** ****

*

* * *** ** ***** ** * ** *

*

* * ******** **** ****

*

* * ** ** *** **** * ** *** ** **** ***** * **** ** ***** *
*

********** ** **** **** * **** ** ** ***
*
*** ** *** *****

*

* **

*

** *** ** ** ** * ** *** * ***** ** *****

*

*

** ***** *

*

*
*
** ***

*

**** *** * **** **

*

* ** ** ****** ** ** ** *** ** **
*
* **

**

**

*

*
** *** *** ***** ** ** ****

*

* ** *** **** **

*

**** **** *** ** ****** ** ****** *

*

** ** ******** * *** ***** *

*

*

*

** ****

*

*

*** *

*

*** *** ***** *** ** * **

*
*

** *

*

*

**** *

*

*

**

** ** ** * **** ** **** *

*

*

*** **
*

* *** ** **** ** ** ***

*

** *** *** **

*

** **
*

* *
*

* ** ** *** ** ** * ** **** * ** **

*

** ** **** ***

*

* *

*

*** **** **

*

*

*** *

*

*** ** ** **** ** * ** *

*

*

*

*** ***** *

*

**

*

***** *** **** *****
*

* ****

*

** *** *** ** *** ********* *

*

** *

*
*

***** *** **

*

* ** **** ** *

*

*** ***

*

*** * ***

*

**** ** * * ** * **** ** ** **** ***

*

*

*

* ** *

*

**** ** * **** * ** ** ***

*

*

**** ** *** *** ********* **** *

*

*** *

*

** *** ** *** **

*

*** **

*

* *****

*

* ** ** * **

*

*** *** ** ** * ** *** **** ** ** *** * *** *** ***

**

* * ** **** ** ******** **

*

*

*

* *

*

*

*

*

** ** ***

*

*

* **** *

*

* *** *

*

** * ** ** *** ** *

*

*** * ****** ** ** *

*

*** **

*

*

*

*** ** *

*

* ** ***** *

*

*

** *** *** ** ** ** ** ** ********* ***

*

*

** ****** *** *** ** **

*

* * **

*

*

** *

*

**

*

** *

*

*** ****

*

*

* * ***

*

* ** ** *** ***** ** **

*

*** *** **** **** * ** ** *** **

*

***** *** *

*

* **** * ** ******* ****

*

* **

**

*

** ** ** *** ** **** *

*

* * ***

*

**** ** *** *** *** ***

*

*** ** *

*

*** *** **

*

*** * *******

*

**** *** * *

*

* ****** **** ***** ***** ** ****** ****

*

****** *** ****

*

* ***

*

* ***

*

*** **********

*

**** ***** ** ** ** ******

*

* ** ***

*

* **

*

**** *

*

* **** **

*

**** ******

*

*

* *

*

* *** ****

*

** * **

*

* *** **

*

0 20 40 60 80

0
10

0
20

0
30

0
40

0
50

0

300

** ** **** *** **** ** ** * ** ** ***** **** ** ** * ***** ***** ***** **** *** **** ** *** *** ** *** ** * ** ******** **** ******* **** **************** * *** *** ********** ** *** ****** * ** ** ** **** * ** ** **** ** *** *** ** **** ** *** ******** ******** *********** ***** ** ** * **** **** ** *** * ******** ** *** **** ********* *** * ******** *** **** *** * ****** * *** * ** *** *** ***** ** ** ** *** ***** **** ** *** **** ** * ***** **** ** ******* ** ** ** **** ** ***** ** ** ** * **** ***** *** ** ** ** *** ** ** ** ** ** **** ***** **** ******** ******* ******** ** *** ***** ***** ***** ** ** *** *** ** *** ** ********** **** **** **** *** * *** ***** *** * *** * *** ** * **** **** * *** **** ** **** * **** ******** **** ** ***** ********** *** *** *** ** *** *** ***** ******** *** ** *** ** **** ** ** ** *** * **** ******* ** * ** **** *** ******* ****** *** **** *** ** ** *** ** ** **** ****** *** **** ** ** **** ****** ** **** ***** **** **** * ** ***** *** ** ** **** ***** *** ***** *** **** ** *** ******* ** ** ***** **** ******** * ****** *** ***** *** *** **** ** *** *** ****** ** *** **** *** **** *** ** ********* **** **** ********* * *** **** ***** **** ***** ******** ** ***** * ******** ****** ** *** **** ** ** * ***** ** ***** ** *** *** ****** *** *** ******** ***** **** *** *** ** *** **** *** ********** ** * *** ********** **** **** ** * *** *** * **** ***** * ** *** ** **** ** ** ***** **** ****** *** * *** **** ****** ** *** ** ******* * *** * *** **** ***** ****** * ** * **** *** * ** ** ** ** ** *** ***** * ** ***** **** ***** ** ***** *** **** ** * *** *** ******* *** * *** ** **** ** ** ** ** *** **** * *** ** *** ** ***** *** **** ** * ** **** *** * *** *** ***** *** * ** *** ** ** ***** ** ** ***** ** ***** * ***** **** * *** ****** * ****** *** * ******* ******** ***** ** *** ***** *** ** ** *** ** **** **** *** * *** ** ****** ***** ** **** **** ***** ****** ** ******* * ***** * ****** *** *** ******* ** *** * ************ ** ** ** ****** * ** ** * * **** *** ** ***** ***** ** *** **** *** * ** *** * ** ***** ** *** ******* *** ** ***** * *** *** ***** *** *** **** ** ****** ***** **** *** ****** ******** ****** ***** *** ***** ** ** *** ** *** *** ****** **** ******* ** ******* *** ***** **** **** **** *** ** *** **** ******* *** *** *** * ** ** *** ** ** *** ***** ** *** ******** ** ******** ** **** ***** ** *** **** ** * ** *** * **** *** ** ****** ***** ** *** *** * *** *** **** ****** ** *** ** ****** *** ****** *** ** ********** * ** ** ** **** *** ***** * ******** ** *** * ************ * ** **** * **** *** ***** ** ** ******* * **** *** ** ********* ** **** * ******* *** *** ** * **** ***** ******** *** ** *** ***** * ** ****** ** ** ** **** ** **** **** ****** ** ** ** **** ** *** ** ** **** ** ********** **** * *** * **** *** **** ** *** * *** ** ****** ** ** **** ** ** * * *** ** ** * ** *** ** ** *** *** ** *** **** * *** *** ** ** * ***** *** **** ** *** * ******** ** ** * ** ******** ** ** * *** *** *** ***** * ** *** *** *** **** **** *** ******* * ** *** * ** ** ****** ****** ** *** *** ** *** *** **** *** **** **** ********* ******* *** ****** ** ** *** ***** ** **** ** ** ** *** ** * ** ** ** **** *** ** ** ** ** * ** ** *** **** **** * ******* ****** *** *** * **** ** ** ** ** ** ** ** ** *** ** * ** *** **** ** *** *** * **** **** *** *** *** *** ********* ** ** *** ***** **** ** ***** * ******

*

*** ** **** ** ********* *** ** * **** ** * ** ** *** * *** ** ********** ** *** *** ** ***** ** ***** * *** *** *** ***** **** **** ** **** ** **** ***** * **** *** **** ** *** *** ***** * *** * *** **** **** ******** * ***** *** * **** ** ** ****** ** ** *** ** ** **** * ***** ** ** ****** ** **** ** *** ***** **** ** ** ** **** ** ** ****** * ***** ***** * *** *** * *** *** *** *** ** * **** ** ** *** * **** ** ****** *** *** *** *** ******** *** ** *** **** ****** **** **** ******* ** ** **** * ****** *** ****** ****** **** **** *** ** ***** **** *** * **** ** **** *** * ** ****** **** *** **** **** * ** *** ******* ** * ********** ** *** *** * **** ** ** *** ** **** ** ** ****** ** **** * *** *** *** * ***** *** ** *** * *** ** * **** ***** ***** *** * ** ** *** *** **** ***** ******* ** *** ******* * ** ** ** ** * ** *** *** *** ** * *** * ** ** ** * *** ** *** *** **** ***** ** **** *** **** ** **** * *** *** ** **** *** ** ** ** * **** ** ** * **** * ******* **** *** ** **** ** ** *** ** *** ** * ***** *** *** **** * **** **** ****** * **** ** ** ** ****
*
** *** **** * *** ** ** *** * ** *** *** ** ** ** * *** *** * *** ** **** *** **** *

*
*** *** ***** ** ** * **** * ** ** ** * * ** *** ***** *** ** ** ** **** ** *** ***** **** ***** **** *** *** ** ****** ***** *** ** * ** ** *** ** ** **** ** **** ** *** ** ** ** *** ** **** * * *** **** ** ** ** ** ****** ** ** ** ****** ** *** *** *

*

*** ** *** ** **** **** ** *** ** ******* **** **** ** * ** ** **
*
** ** ** *** *** ****** ** ** * ******** *** ** ** ***** ******* *** ****** *** ** ***** **** ** *** ** ** **
*

* ** ** *** ** * **** * ** ** ** *** **** **** **** *** ****** ******* **** **** *** *** *** *** ** ** **** **** * *** ******* ** ** ** ****** ** *** *** ** ** ** *
*

* *** ** *** * ****** * ** ** ***** ** *** **** * *** ** **** *** ** **
*
** * ****** ** ** **** ******** *

*
*

*
*

*

*
** *** *** ****** *** *** * *** ***
*

** ** ** * **** **** *** ** ****** **** *
*

******** *** * ****

*

** * *** ** ****** * ****** *** **** * ** ** ** **** ** *** **** *** * *** * **** ** * **** ** ***** ** *** ****** *** *** ** * *** ***** ** * ***** **** * ** ** ** ** ** * ** *** **** ** ** **** ** ** *
*

** **** ** *** ** *** ** ** ******* * ***** ** **** *** * **** ** *** **** ** **** * ***** **** *** ** ** *
*

**** ** ***** ** *** ******* *****
*
***** ** ** **** *** *** * ** * ** ** ****

*
* ** *** ** *** ****** * *** ******

*
*** ** ***** ** ** ** *** * ** ** **** ** * ** ** ***

*

* ***** ** ***
*

* **
*
*** * **** *** **** ** * ***

*
* **
*

** ** ** *** * *** **** **** ** *** *

*

* ** **** ** * *** *** *** **
*

****** **** ** ** **

*

* ** **** ** ****** *** **** ** ** **** *** *** **** ** **** ** * *** *** ** **
* *
* ** ***** ** *** ** * * *** **
**

* ****** *** * *** *** ** ** **
*

** ****

*

* ***** ** * **** * ** **** *** ****

*

*** *** ** ********* ** * **
*
** ** * *** ** ***

*

** * ******** **** *

*

*
*
* ****
*

** ** *** ** ** ***** ***** * ** ** * *** *** *** **

*

** *** *** ** **** *** * * ** *** **** *** **** ***** ***** *** ** **** *** * *** *****

*

** **** **** * ** ***** ***** ***** *** ** *** * * ****** ***** * ****** ** *** **** ** ***** ** *** ** *** * ***** ***** ******** ** * ** *** ** *** ** ****** **** *** **

*

*
**

* *** *** *** *** * **** *** * **** ********* **
*

** ***
*

**** *** ** *
*

* **** *** ** ** *
*
* **
*
***** * *** *** * ****** * **** *****

*
** ** ** ***** ** *** * ** ** * *

*

* **** *** * ** ****** ******* ****** *** * ******* ******** **** ****
*

* * **** *

*

* ****
*

* **

*

*

*

* **** * **** ** *** ***** * *** **** ** * ** ********
*
* * **
*

**** ** *** ***
*

** *** **** * *** ** *** * ** *** *** ** ** ** *** *** **

*

* **** ** *

*

*** **** **** *
*

* ****** *** *** ** * ** ** ***
*

** ** **** ***** *** **** **** ** ** ** *

*

* ** ** *

*

** ** ** ***** ** **** ** ** **

*

* ***** *** ** *** * **** **** *** ****

*

* ** ***** **** ** ** **** * ****** ** ** **** *** ** *****
*

* * **** **** *** ** *** * **

*

* ** **** * ** **** * ** * **
*

***** **

*

** *** **
*
* *** *** *** ******* **** ** *** *** *

*

* *

*

* ** *

*

*** ** **** **** *** *** *

*

**

*

** ******* *** ** *** ***** *** ** *** **** *
*

** ***** ** **

*

** ** * ****

*

** **** **

*

* * * ** **** ** **
*

* *** *** * *

*

*

*

*** * ****** **** *
*

** * *** ** *** * **** * **** ** * *** ****** ****** ** * ** ** * *** ** ** *** ***** ***** * *** ****

*

* *** ** *** *** *

*

** * *** ** ** *** ** ** * *** ** *
*
*** *

*

****** ****** ** **** **** ** ** ** **

*

*** ** **** *** ** *
*
* *** ** *** ** ** ****** *

*

***** ***** ** ** ****

*

* * *** *** ** ***** * *** *** ** ** ** * ***

*

** **

*

* *** * *** *** * **** ** **** *

*

* *** *** *

*

*** *******

*

** ** *

*

* *** **

*

* ** *** **** *** *

*

** * ***

*

*** * **

*

****** *** * ** **** * **

*

* *

*

****** *** **

*

*

*

*

** **
*
* ** ** **** ** *** * **

*

* * *** **

*

* * *

*

***** **** ** ** **** ** * *

*

**** *** **

*

* *** *** * *

*

* ** ** **

*

*

*** * ***** * ***** * ********* ** * ****** ** **** **** ** * ** ** ****** *

*

** ** **** *** ** **** * ***** ** ** *** * ** ***** **

*

* *** *

*

*

***** ****** *** ** ** **** ** *** ** *** * ** * **** **** **** **** * *** ***** * *** ***** * **
*
* *** *

*

*

* *** ** ** ** * ** * ***
*

**** *** * ** * ****** **** ** *

*

* ** ** ** *

*

* ***** **** ** *

*

* *** ** ** **
*

** *** ** ****** * *

*

*

*** *** ** *** **** ** * *

*

*
** * ** ** *** **** *** *** *

*
* * *** **

*

**** * ********

*

* * ** ** ** * * *
*

** **
*

** ** *** ** *** ** *

*

** ** ******* *

*

*
*

**

*

*

*

*

* **** * * *** * *** *** ****** *

*

*** * ** ** ** *** ******* ****
*
** *** ** *** * **** *

*

*** **** **** ** *

*

*** *** *** *** **

*

* *

*

*** ** ***** **

*

* * *** *

*

****** **

*

** *
*

* * **** **

*

** ****** *** ** ***** *

*

* *** *** ** *

*

** **** ****** ***** **** *** ** **** *** ** *** *****

*

* *******
*

*

**** ** *** ***

*

* ** ** ** ** ** *** *** ** **** **

*

**** ***** ** *** *** ****

*

*

** * ** ****** ** *

*

* ** **

*

** ** *** *

*

* ** ** ***

*

*** ** ** * ***

*

**** *

*

*

***** *** * **** **** ** * ** * ** ** **** **** ** ** ** *** ** *** * ***
*

*

* ** ***

*

*

* ***

*

** **

*

**** *** ** ** *** **** * ** * *** ** **** ** *** * **** * **

*

*** * ** * ****
*

********* ***** ** *** **** *** **** *** *** **** **** * **** ** * ** **** ** ** *

*

* *******

*

*

*** **

*

* ** *** * ***

*

**** ** ** **** *** ********* *** ** ** * ** ** ** ** **** * *** ** **** ** *** **** **** *** ** ** *** * ** **** ** *** * *****

*

***** ** ** **** *

*

*

*

*

*

*

*

** * ***** ** **** **** **** **

*

** *** * *** ** *** *** **

*

** **

*

* ** *** *** *** **** ***** *** **** ******* ***** *** *** *** *

*

* *** *

*

** ** ** ***** *

*

****** ** *

*

** *** ***** *** *** **** **** **

*

* *** *** *** * *** *** * *** ** ****

*

*** *

*

*** ****** *** ** * **** **
*
**** ** **** ** *** ** *

*

* *

*

*

***** ** * ******* ********** *

*

* ** ** ** *** **** * **** **** * ***** ** ** * *** ****

*

* *
*

** **

*

*

* *
*

*

*

* **** *

*

*
* **** ** ** *** ****

*

** * **** ** **** ***** *****

*

**** * ** ** ****** *** ** ** **

*

** ** * **** ** ** *** * ** ** **

*

**

*

** *** *** ** ** **

*

** ** **** *** *** * **

**

** **** **** *** * * * *** ** ***

*

** *** ***** * ***** ***** ** *** ***** *** ****** ** ** ***** ******* **** **** *** ** *** ** *********** *** **** * *

*

*** ********** **

*

* *** **** *

*

** ** *

*

*** ** ** *** ***

*

** ** ** **

*

*

**** ** ** ***

*

* *** * **** ***** ** **

*

** ** *

*

*

*

* *** **

*

***** *** ** ** *****

*

**** *

*

** **** ** ** * ** ** *** *** *

*

* *** *** **** ***** ******

*

* *** * *** * ** ** ******* * **** ** ** *** * *

*

*

* *** **** *** ** *

*

** **** **** *** ** * ** **** *****

*

* *** ***

*

* *** ****** ***** **

*

*** ** *** ****** ** *** **** ** ****** *

*

** * * ******* **

*

** *

*

*

*

** *** **

*

** ***** ** *****

*

* ** ** **** **

*

**** ********

*

** * *** ** *

*

*

*

* **

*

* ** ****** ****** *** *** * ** *** **

*

*

** **** ****** *** ** *** *** **** **** ** *

*

** *** ***** *** **** *** **** ** *

*

*** **** **** ** **

*

** ******* ** **** * ** *** *** *

*

*** ** ** ** ***** **** ******** *** **** *** ******* *** ** ** **

*

*** *** *** ****** ** ***** ** *** **** *** *

*

* ***** *

*

**

*

* *** * *** **** *** **** ** ***** **** ****

*

*** ***** *

*

** *****

*

** ** **** **** **** **

*

*** **** **** **** **** * **

*

* * ***** *** **** *

*

** ***

*

** *

*

* **

*

** *** ** ***** * ***** **

*

*

** **** * ****** ***

*

*** * **

*

*** ** **** * ** ** *** **

*

*

** ** *** ** ** ***** ** * ** *** ** *

*

*** **

*

*

*

*** *** ** ** *** ** *** * *** **

*

*

*
*
*** ***** ** ** **** **** * *** ****

*

* ****** *** ** ****** ** ** ** *** * *** **** *** * ******* * *** ***** ** ** ** *** ** ******* ****** * * **** *********** **** ********** ** * *** ***** ***** ** **** *

*

******* ** *** ** *******

*

** ******* *** ******** ** *** ********** ** *** ****** ******* *** ** *** **** **** ** *** **

*

*

*

** ** * *** ** ****

*

**** **** **** ** ** ****** **** ** ****** **

*

*

*
* ***

*

* ***** *** ** * *** * ** **

*

*** ****

*

** *** *** **

*

*

*

** **** **** * ****** *** ** ** **** *********

*

*

********* *

*

***** ***** *** *** *

*

** ** **** *********

*

**** ** ***** **

*

*

*

**** ***** ***** ** **** ***

*

*

*

*

******* ***

*

* * *** *****

*

** ** *** ** *** ** ****** ***** ****** ***** ** *** ** *** **** **** ****** ****** * ******* **** **** **

*

*** ***** ** ** ** * *** **

*

****** *****

*

** ** * **

*

*

*

* * ***

*

****** * *****

*

* *** ****

*

***** **** *** *** **** ** *************

*

** ** ** ********** ***** ******** *** *

*

** **** **** ** **** *** *** *** **

*

*** *** *** **** ***** *

*

**** ** ***

*

********* * ** **** **

*

* ***** *** **** ***

*

**** **** ** ***** ********** ********* ******

*

** ** *********

*

*** ** *** ****

*

****** *****

*

** *** ****** ** ***** * ** ******* * **

*

**** *** **** ******* **

*

** ** * ** ***

*

*

*

*

*

* ***** *** ** *** *****

*

*** ** *** ** *** ***

*

* ***

*

*

* *** **** **** ***

*

** ***** ** * **** *** **

*

* **** ** **** **** ** *** **** *** ** ***** * ** ** ********* ******* *

*

*** ***** ***** **** *

*

**** ** *** ****** ** ** *****

*

** **

*

**** ***** ************ **** **

*

**** **

0 20 40 60 80

0
10

0
20

0
30

0
40

0
50

0

300

fC = 0.25 fC = 0.50

fC = 0.75 fC = 1.00

%
G

ai
n

in
Fa

ul
t

T
ol

er
an

ce
R

es
ili

en
ce

%
G

ai
n

in
Fa

ul
t

T
ol

er
an

ce
R

es
ili

en
ce

%
G

ai
n

in
Fa

ul
t

T
ol

er
an

ce
R

es
ili

en
ce

%
G

ai
n

in
Fa

ul
t

T
ol

er
an

ce
R

es
ili

en
ce

% Processor Utilization% Processor Utilization

% Processor Utilization% Processor Utilization

Fig. 5. Improvement in terms of fault resilience measured as obtained increase in NE

Scheduling Fixed-Priority Hard Real-Time Tasks in the Presence of Faults 171

be less than or equal to periods. We used the deadline monotonic algorithm to
assign the priorities of primary tasks. We did not consider processor utilisation
higher than 0.9 since it is difficult to guarantee the schedulability of the task set
under error occurrences (i.e. most of the time it is not possible to tolerate even
one fault at these higher processor utilisations).

Each one of the graphs represents the obtained gains in terms of increasing in
NE for 18,000 task sets. For each of the four graphs, a different value of recovery
factor (fC) was used. The recovery factor is an input parameter of the simulation
and was used to bound the worst-case execution time of the alternative tasks so
that the values of Ci were generated according to a uniform distribution between
1 and fCCi. For example, if fC = 1, Ci ≤ Ci.

As can be seen from Fig. 5, the gains obtained in terms of fault resilience as
measured by NE can be significant (up to 500% for fC = .25) and, as expected,
is higher for lower values of fC . We can also observe that there were lower gains
for lower processor utilisations. This can be explained by the fact that in these
cases there is higher spare time available. This spare time can be used to carry
out fault tolerance assuming higher values of NE. Promoting the priority of
alternative tasks for these cases, therefore, has lower impact in fault resilience
since it is already high.

As illustration, consider Table 3, which shows the values of the worst-case
response time due to external and internal errors of each task of a task set
collected from the simulation. The values of the worst-case response time are
in bold. It is worth emphasising the fact that in practice one does not need to
perform algorithm 3 to compute the values of worst-case response time due to
internal errors for all tasks. This is because of the reasons mentioned in Section
5. For example, for Px = 〈0, 0, . . . , 0〉 making N0

i = 0 and N1
i = NE for all tasks

suffices. Also, for Px = 〈0, 0, . . . , 0, 9〉 the algorithm 3 only needs to be carried
out with respect to τ10 (by lemma 1). Nevertheless, all values of Rint

i (x, N0
i , N1

i)
are shown in the table for the sake of illustration.

Table 3. Illustration of the improvement in fault tolerance resilience

Task set Px = 〈0, 0, . . . , 0〉 Px = 〈0, 0, . . . , 0, 9〉
Ne(x) = 1 Ne(x) = 3

Task Ti Ci Ci Di Rint
i Rext

i Rint
i Rext

i

τ1 4016 205 81 4011 286 205 448 1303
τ2 4056 304 84 4031 593 590 761 1607
τ3 4279 528 46 4034 1083 1121 1251 2135
τ4 4363 99 88 4042 1224 1220 1400 2234
τ5 4980 9 1 4061 1146 1233 1322 2243
τ6 4164 17 2 4138 1164 1250 1340 2260
τ7 4341 181 96 4197 1439 1431 1631 2441
τ8 4518 90 49 4273 1482 1529 1674 2531
τ9 4487 136 112 4305 1681 1665 1905 2267
τ10 4643 1768 366 4490 3703 3449 4435 3673

172 G. Lima and A. Burns

7 Conclusion

In this paper we have presented an approach to increasing the fault tolerance re-
silience of hard real-time task sets in the context of fixed priority scheduling. The
priorities of tasks are determined off-line so that the system can cope with more
errors during their execution. To do so, a new framework to analyse the system
under fault scenarios and an algorithm to search for the best priority configura-
tion were derived. Both the analysis and priority configuration search algorithm
were an extension of our former work [15], which assumed that there is a known
minimum time interval between consecutive errors. Here this assumption was
removed.

The proposed approach was extensively evaluated by simulation. Results
from the experiments indicate that there are benefits in applying our approach.
Indeed, for some cases significant gains (up to 500%) in terms of fault resilience
was obtained for some cases.

The approach described in this paper takes into consideration the worst-case
scenario to derive the priority assignments. It would be interesting to investi-
gate ways of varying priorities dynamically in order to take advantage of spare
capacities in the system. This will be part of our future work.

References

1. N. C. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J. Wellings. “Applying
New Scheduling Theory to Static Priority Pre-Emptive Scheduling”. Software
Engineering Journal, 8(5):284–292, 1993.

2. A. A. Bertossi, L. V. Mancini, and F. Rossini. “Fault-Tolerant Rate-Monotonic
First-Fit Scheduling in Hard-Real-Time Systems”. IEEE Transaction on Parallel
and Distributed Systems, 10(9):934–945, 1999.

3. A. Burns, R. I. Davis, and S. Punnekkat. “Feasibility Analysis of Fault-Tolerant
Real-Time Task Sets”. In Proc. of the Euromicro Real-Time Systems Workshop,
pages 29–33. IEEE Computer Society Press, 1996.

4. A. Burns and A. J. Wellings. Real-Time Systems and Programming Languages.
Addison-Wesley, 3rd edition, 2001.

5. M. Caccamo and G. Buttazzo. “Optimal Scheduling for Fault-Tolerant and Firm
Real-Time Systems”. In Proc. of the 5th Conference on Real-Time Computing and
Applications (RTCSA), pages 223–231, 1998.

6. S. Ghosh, R. G. Melhem, and D. Mossé. “Enhancing Real-Time Schedules to
Tolerate Transient Faults”. In Proc. of the 16th Real-Time Systems Symposium
(RTSS), pages 120–129. IEEE Computer Society Press, 1995.

7. S. Ghosh, R. G. Melhem, D. Mossé, and J. S. Sarma. Fault-Tolerant Rate-
Monotonic Scheduling. Real-Time Systems, 15(2):149–181, 1998.

8. N. Kandasamy, J. P. Hayes, and B. T. Murray. “Tolerating Transient Faults in
Statically Scheduled Safety-Critical Embedded Systems”. In Proc. of the 18th
IEEE Symposium on Reliable Distributed Systems (SRDS), pages 212–221, 1999.

9. R. M. Kieckhafer, C. J. Walter, A. M. Finn, and P. M. Thambidurai. “The MAFT
Architecture for Distributed Fault Tolerance”. IEEE Transactions on Computers,
37(4):398–405, April 1988.

Scheduling Fixed-Priority Hard Real-Time Tasks in the Presence of Faults 173

10. H. Kopetz. Real-Time Systems Design for Distributed Embedded Applications.
Kluwer Academic Publishers, 1997.

11. C. M. Krishna and K. G. Shin. “On Scheduling Tasks with a Quick Recovery from
Failure”. IEEE Transactions on Computers, 35(5):448–455, 1986.

12. F. Liberato, R. G. Melhem, and D. Mossé. “Tolerance to Multiple Transient Faults
for Aperiodic Tasks in Hard Real-Time Systems”. IEEE Transactions on Comput-
ers, 49(9):906–914, 2000.

13. L. Liestman and R. H. Campbell. “A Fault-Tolerant Scheduling Problem”. IEEE
Transaction on Software Engineering, 12(11):1089–1095, 1986.

14. G. M. A. Lima. “Fault Tolerance in Fixed-Priority Hard Real-Time Distributed
Systems”. PhD thesis, Deptartment of Computer Science, University of York,
2003.

15. G. M. A. Lima and A. Burns. “An Optimal Fixed-Priority Assignment Algorithm
for Supporting Fault Tolerant Hard Real-Time Systems”. IEEE Transaction on
Computers, 52(10):1332–1346, 2003.

16. S. Poledna. Fault-Tolerant Real-Time Systems: The Problem of Replica Determin-
ism. Kluwer Academic Publishers, 1996.

17. S. Poledna, A. Burns, A. J. Wellings, and P. Barrett. “Replica Determinism and
Flexible Scheduling in Hard Real-time Dependable Systems”. IEEE Transsactions
on Computers, 49(2):100–111, 2000.

18. S. Punnekkat. “Schedulability Analysis for Fault Tolerant Real-Time Systems”.
PhD thesis, Department of Computer Science, University of York, 1997.

19. S. Ramos-Thuel and J. K. Strosnider. “The Transient Server Approach to Schedul-
ing Time-Critical Recovery Operations”. In Proc. of the 12th Real-Time Systems
Symposium (RTSS), pages 286–295. IEEE Computer Society Press, 1991.

20. F. Schneider. “Replication Management Using the State-Machine Approach”. In
Sape Mullender, editor, Distributed Systems, chapter 7. Addison-Wesley, 2nd edi-
tion, 1993.

21. P. Veŕıssimo and L. Rodrigues. Distributed Systems for Systems Architects. Kluwer
Academic Publishers, 2001.

On the Monitoring Period for Fault-Tolerant
Sensor Networks�

Filipe Araújo and Lúıs Rodrigues

Universidade de Lisboa, Departamento de Informática, Faculdade de Ciências,
Campo Grande, Edif́ıcio C6, 1749-016 Lisboa, Portugal

{filipius, ler}@di.fc.ul.pt

Abstract. Connectivity of a sensor network depends critically on tol-
erance to node failures. Nodes may fail due to several reasons, including
energy exhaustion, material fatigue, environmental hazards or deliberate
attacks. Although most routing algorithms for sensor networks have the
ability to circumvent zones where nodes have crashed, if too many nodes
fail the network may become disconnected.

A sensible strategy for increasing the dependability of a sensor net-
work consists in deploying more nodes than strictly necessary, to replace
crashed nodes. Spare nodes that are not fundamental for routing or sens-
ing may go to sleep. To ensure proper operation of the sensor network,
sleeping nodes should monitor active nodes frequently. If crashed nodes
are not replaced, messages follow sub-optimal routes (which are energy
inefficient) and, furthermore, the network may eventually become parti-
tioned due to the effect of accumulated crashes. On the other hand, to
save the energy, nodes should remain sleeping as much as possible. In fact,
if the energy consumed with the monitoring process is too high, spare
nodes may exhaust their batteries (and the batteries of active nodes)
before they are needed.

This paper studies the optimal monitoring period in fault-tolerant
sensor networks to ensure that: i) the network remains connected (i.e.,
crashed nodes are detected and substituted fast enough to avoid the
network partition) and, ii) the lifetime of the network is maximized (i.e.,
inactive nodes save as much battery as possible).

1 Introduction

Sensors have long since been used for monitoring processes where humans are
either endangered by hazardous environments, too costly to be an option, or
simply not able to effectively perform the sensing task. Recent progresses in
miniaturization and networking technologies are empowering the use of sensors
in self-organizing wireless networks, where nodes cooperate to more effectively
achieve some goal. Wireless sensor networks have a wide range of applications,
such as military, commercial, industrial, home or health.
� This work was partially supported by the LaSIGE and by the FCT project P-SON

POSC/EIA/60941/2004 via POSI and FEDER funds.

C.A. Maziero et al. (Eds.): LADC 2005, LNCS 3747, pp. 174–190, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On the Monitoring Period for Fault-Tolerant Sensor Networks 175

In this paper we study techniques to increase the dependability of sensor
networks. Nodes that crash can reduce the accuracy or completeness of the in-
formation being collected. Additionally, if too many nodes fail, the network may
become disconnected. Therefore, we are particularly concerned with techniques
that extend the lifetime of the network by postponing disconnection. A sensible
strategy for increasing the dependability of a sensor network consists in deploy-
ing more nodes than strictly necessary. In this way, nodes collectively decide
which ones remain active and which ones may go to sleep. To ensure proper
operation of the sensor network, sleeping nodes should monitor active nodes fre-
quently. Crashed nodes may cause sub-optimal routing (which wastes energy) as
well as a network partition. On the other hand, to save the energy, nodes should
remain sleeping as much as possible. If the energy consumed with the monitoring
process is too high, spare nodes may exhaust their batteries (and the batteries
of active nodes) before they are needed.

In this context, we would like to select a value for the monitoring period that
maximizes the system availability. This task can be prohibitively complex due to
the multiple combinations of factors that affect the system lifetime such as the
initial energy available to nodes, power consumption, network topology, etc. The
paper addresses this complexity by making the following contributions: in first
place, it proposes a methodology of analysis that simplifies the reasoning about
the network behavior and, in second place, it proposes two new metrics that
capture the importance of the relative values of different system parameters. The
first metric, called “Failure Weight Factor”, F , relates the Mean Time Between
Failures, MTBF , with the maximum lifetime of the network, in ideal monitoring
conditions. The second metric, called “Power On-off Consumption Factor”, P ,
relates the energy spent powering nodes on and off with the energy spent by
other sources of energy consumption. Using simulations, we show that these two
metrics are useful to reason about the impact of faults in the network lifetime.

The rest of the paper is structured has follows. Section 2 overviews related
work. Section 3 presents our reference cell-based algorithm for energy conserva-
tion. Section 4 describes our metrics and the analysis methodology. The simula-
tion results are presented and discussed in Section 5. Finally, Section 6 concludes
the paper.

2 Background

The benefits gained from having more nodes than necessary have to be balanced
against the (energy) costs of managing the nodes. In this section, we overview re-
lated work that helps to answer the following questions: How can the lifetime of a
sensor network be precisely defined? How is energy consumed in a sensor network?
Which are the best techniques to tolerate node failures? Should some redundant
nodes be kept idle or, on the contrary, should all redundant nodes be kept sleeping
most of the time? How to replace nodes whose energy has been exhausted? Which
routing algorithm should be adopted? Previous work on the above topics helps us
to define our strategy to build a fault-tolerant sensor network.

176 F. Araújo and L. Rodrigues

Network Lifetime. In the literature, there are several definitions of network life-
time [25,30,7], like time to first node that dies. In this paper, we adopt the defini-
tion from [3], which considers that network life ends when the first partition occurs.
For the scenarios considered in this paper, this metric offers a good measure of the
availability of the network, because partitions typically occur little after half of the
space where the sensor network lies becomes empty of nodes1.

Energy Consumption. In a sensor network, tasks that typically consume more en-
ergy are: sending and receiving messages, listening to the channel when idle, and
processing. In this paper we do not consider sensing energy, because it depends
mainly on the sensing task.

Several papers report that nodes consume a significant amount of energy in idle
mode [23,12,8]. According to [12], the ratio of power needed in receive (transmit)
mode against idle mode can be as low as 1.15 (1.56) 2. This order of magnitude for
idle power consumption paves the way to selectively powering down nodes, to con-
serve energy, because nodes consume only a small amount of energy while sleeping.
One aspect that is often overlooked in literature is the cost of powering on and off
a node. We believe that any algorithm that selectively powers down nodes to save
energy must address this cost. In fact, there are two issues to consider: the time it
takes to wake up and the large spike in energy consumption, due to the wakeup ac-
tion alone plus a traffic announcement. The exact figures for both of these depend
on the communication card and controlling software.

Fault-TolerantWirelessNetworks. Resilience to node failures and energy efficiency
must be addressed simultaneously, because an energy-efficient routing algorithm
should be fault-tolerant and fault-tolerance can not come at a high energy cost. For
this reason, several authors focused on algorithms that are both fault-tolerant and
energy efficient (e.g, [10] and [11]). Several authors propose heuristics to ensure
k-vertex connectivity [13,5,17]. Unfortunately, this construction requires nodes to
be active when they are not strictly required. The amount of energy consumed this
way results in an effective loss of network lifetime. Therefore, most approaches to
extend the network lifetime try to power down redundant nodes.

PoweringDownNodes. There aremanyprotocols that explore the idea of powering
down redundant nodes, both at network and MAC layers (e.g. [22]). Attacking the
problem at the network layer typically enables longer sleeping periods, because de-
cisions are more informed. Instead of powering down a node for a single message or
for some predefined number of time slots, knowledge of the routing algorithm can
be used to selectively put some (almost) redundant nodes to sleep. For instance,
this is the case of Span [8] that allows some nodes to sleep if node density is high
enough. In [26], authors address the integration of the connectivity with the cov-
erage problem. Other authors propose to selectively power down nodes in cluster-
based routing schemes [30,29,28]. In cluster-based algorithms, a good policy to se-
lect the cluster-heads is the available energy (e.g., [28,29]), instead of other criteria,
1 More precisely, most partitions occur after half of the network cells become inactive.

A precise definition of the concept of cell can be found ahead in this text.
2 In a Lucent IEEE 802.11 WaveLan PC Card.

On the Monitoring Period for Fault-Tolerant Sensor Networks 177

like node id (e.g., [27]), or node degree (e.g., [9]). Due to their very well-structured
organization and predictable behavior, division of the space into cells constitutes
the ideal scenario to analyze the impact that the monitoring period has on the life-
time. In fact, we will show that this division allows us to evaluate precisely the effect
of each input variable on the lifetime and, consequently, on the ideal monitoring
period setting. For this reason, in this paper, we will adopt a modified version of
Geographical Adaptive Fidelity, GAF [30], which we present in Section 3.

Routing Algorithm. Several proposals for energy-aware routing strategies can be
found in the literature [21,6,25]. While some of these strategies aim to prolong as
much as possible the lifetime of the first node to die [6,25], others try to avoid the
exhaustion of the entire network [21]. To reduce power needed to transmit, nodes
might adjust their transmission range. Using this technique, two papers [25] and [2]
showed that the best strategy to deliver a message over a total distance D is to
use equally spaced hops. Although in practice networks do not have nodes ideally
located to relay a message, this result allows to derive upper bounds on network
lifetime [2] and to build power-aware routing algorithms [25]. In [7,25] authors si-
multaneously try to minimize power consumption as a whole and avoid exhaustion
of nodes short of energy. Often, avoiding individual node depletion is not an issue
in a sensor network, where fairness is less important than maintaining the network
functioning.

The use of positional information is also important to conserve energy. As
pointed out in [24,14], positional routing algorithms make a more efficient use of
resources than other routing algorithms like AODV [18], DSDV [19] or DSR [15] in
large networks, because they use much fewer control messages. Additionally, posi-
tional information for the routing algorithm, in a scenario where a cell-based con-
serving energy algorithm is in use, comes for free, because a GPS receiver or an
equivalent mechanism already exists. These facts motivated us to use, for the pur-
pose of this study, a position-based routing algorithm. By avoiding algorithms that
require configuration of several parameters, we also avoid the risks of having our
results biased by inappropriate settings.

Therefore, we selected the Greedy Perimeter Stateless Routing (GPSR) algo-
rithm [4,16], because it is localized, and efficient. Furthermore, since GPSR has a
very simple configuration and very few dedicated control messages, its operation
has very little interference in our results. When possible, GPSR uses the greedy
strategy of forwarding messages to the neighbor closest to destination. When it
finds a local minimum, GPSR switches to perimeter mode and routes around faces.
As soon as it finds a node closest to destination than the previous local minimum,
GPSR goes back to greedy mode.

3 An Approach to Build Fault-Tolerant Sensor Networks

To build a fault-tolerant sensor network we include more nodes than strictly re-
quired. This allows replacement of failed nodes. To save battery, nodes collectively
decide which ones are not fundamental for routing or sensing. These nodes should

178 F. Araújo and L. Rodrigues

be sleeping most of the time, and only wake up with the minimum frequency re-
quired to replace failed nodes before the network disconnects. There are several is-
sues that have to be defined in order to implement this strategy. In first place, nodes
have to agree on some strategy to define which nodes should sleep, and which nodes
must remain in idle state to maintain the network connectedness. In second place,
one needs to define a strategy to perform the monitoring of idle nodes. Finally, one
needs to define how often the monitoring procedure should be performed. This pa-
per tackles the latter two issues, with particular emphasis on the importance of the
monitoring period. As motivated in the previous section, we base our architecture
in a GAF [30]-like cell based network running GPSR [16].

3.1 Node Monitoring in Geographical Adaptive Fidelity

Geographical Adaptive Fidelity (GAF) [30] is a cell-based energy-conserving al-
gorithm. GAF aims to maintain all but one node sleeping in each cell. It assumes
that nodes are aware of their location (for instance, using GPS receivers) and uses
this information to divide the two-dimensional space into a grid. The two farthest
points in any two adjacent cells must be within communication range, as depicted
in Figure 1a. This bounds the cell side, r, to r ≤ R/

√
5, where R is the communi-

cation range of the nodes. In scenarios where it is worthwhile using GAF, because
more than one node exists per cell, resulting graph is very likely to be connected.

In GAF, nodes can be in one of three states: active, discovery or sleeping.
Changes from one state to another are controlled by discovery messages and by
timers. A node uses discovery messages to inform other nodes of its presence and
of its application-dependent rank. In [30], authors propose as a ranking criterion,
first, the state of the node (active > discovery) and then the expected lifetime, enat
(higher ranks correspond to longer expected lifetimes). Hence, discovery messages
consist of the following tuple: {node id, grid id, estimated node active time (enat),
node state}. As depicted in Figure 1b, timers can change state of a node from sleep-
ing to discovery (after Ts), from discovery to active (after Td) and from active to
discovery (after Ta). Nodes send discovery messages in any of the following situa-

rR

(a) Division in cells

ActiveDiscovery

Sleeping

(b) State transition in GAF

ActiveWait

Sleeping

(c) State transition in SQA

Fig. 1. GAF and SQA algorithms

On the Monitoring Period for Fault-Tolerant Sensor Networks 179

tions: i) when they enter the discovery state, ii) when they enter active state after
timeout Td takes them from discovery to active; iii) periodically, after each period
of Td seconds in active state; iv) in active state when they receive a discovery mes-
sage from a node with lower rank. Whenever a node in discovery or active states
receives a discovery message from a node with higher rank it immediately resets its
ongoing timers, sets up a timer to wake up and changes to sleeping state.

If nodes are put to sleep for too long, it mayhappen that the node occupying the
cell either exhausts its battery or abandons the cell (if it is mobile) leaving it unat-
tended. On the other hand, if sleeping nodes wake up too early, they will consume
everybody’s resources without further improving routing fidelity, thus defeating
the goal of maximizing network lifetime. To achieve a good trade-off, GAF dynam-
ically sets the sleeping period of a node, Ts, to depend on the estimated lifetime of
the cell leader. In GAF, Ts is set to a fraction (50%) of the estimated lifetime of
the leader. Hence after the Ta timer of the leader expires, it switches from active
to discovery state, thus having an opportunity to be replaced in the cell. This is
important for load balancing purposes (see [30] for further details).

3.2 Sleep-Query-Active Algorithm

Unlike [30], in this paper we consider some additional characteristics that make a
more realistic scenario: i) nodes can fail and ii) waking up and putting nodes to
sleep has fixed non-negligible cost. Furthermore, since we only consider sensor net-
works of fixed nodes, load balancing is not an issue. These differences motivated
us to develop a variation of the GAF algorithm, which we call Sleep-Query-Active
Algorithm (SQA), specifically suited to our setting. The states of SQAare depicted
in Figure 1c. SQA is a pretty simple algorithm where nodes can only be in one of
two states: either sleeping or active. The purpose of the wait state is only to desyn-
chronize nodes that start at the same time. In our experiments, Tw was randomly
set between 0 and 1 with uniform probability.

SQA nodes send discoverymessages in the following situation: i) when they en-
ter active state, ii) periodically when they are in the active state (to overcome the
loss ofmessages) and iii) in active statewhen they receive a discovery message from
a node with lower rank. Differences to GAF in the exchange of discovery messages,
mainly reflect the way the rank is determined. In SQA the rank of the node is deter-
mined by the enat alone. Despite not providing any additional protection against
node failures, nodes with larger supplies of energy will give an additional degree of
protection against unexpected energy consumption caused by some peak of traffic.
Perhaps the most important difference between GAF and SQA is that in SQA the
sleeping timeout, Ts, which we deem as the monitoring period, is randomly cho-
sen from an interval that is fixed beforehand. When we say that Ts = c, we really
mean that Ts is selected from the interval [0.5× c, 1.5× c]. Then, each time a node
goes to sleep, it picks the value for Ts from that interval with uniform probability.
Our experimental evaluation shows that this choice is appropriate, because more
often that not, the sensor networks will tend to behave in a very predictable way
and using an optimal fixed value for Ts will yield longer lifetimes than the dynamic
approach of GAF. The reader should notice that tuning SQA resumes to determin-

180 F. Araújo and L. Rodrigues

ing Ts. Selecting the most appropriate Ts is a challenging task that we address in
the next sections. In fact, as we show in Section 5, for an appropriate choice of the
monitoring period, SQA can successfully replace GAF in sensor networks.

4 Proposed Metrics and Analysis Methodology

When using SQA, we would like to determine the monitoring period Ts that max-
imizes network lifetime. Unfortunately, following a theoretical approach to deter-
mine Ts is a task of great difficulty. An example of such an attempt can be found
in [3], where a theoretical bound for the network lifetime in a scenario where dead
nodes are replaced at once without spending energy (we will call this the “ideal sce-
nario” or “ideal network”) is derived. However, that work does not account for all
the parameters we consider in this paper (e.g. faults) and, as noted in [3], it can-
not be easily extended to capture practical scenarios. Hence, in this paper we have
opted to use simulations to evaluate the effect of different parameters on the Ts.
Unfortunately, without a correct methodology, the process of determining the ef-
fect of Ts on a network using simulations is also a daunting task. In fact, there are
many factors that can influence network lifetime and consequently, Ts, including
initial energy of nodes, idle energy consumption, transmission power, consumption
power, sleep energy consumption, not tomentionpower onconsumptionand faults.
Furthermore, these factors can be combined in multiple ways and often can not be
completely isolated in order to analyze their impact on network lifetime. Finally,
but not the least, a single ns-2 [1] simulation of a given configuration (i.e., for a sin-
gle monitoring period), even when in executed on a Pentium IV 2.8 GHz with 2Gb
of RAM, takes more than 100 seconds to complete.

To handle this complexity, the paper makes two contributions. In first place we
propose a new set of metrics to reason about the influence of faults in the network
lifetime. An interesting feature of these metrics is that they capture the relative
weight of different factors, and highlight that networks with different absolute val-
ues of some parameters may exhibit a comparable behaviour. In second place, we
propose a methodology of analysis that allows to reason about the impact of these
metrics before assessing the impact of network topology in the final system avail-
ability. We will address these two contributions in the following paragraphs.

4.1 The P and F Metrics

Our metrics are motivated by the insight that, in the context of assessing the net-
work availability, time intervals – in particular the monitoring period – should be
analyzed in a relative sense: a monitoring period of 1 second has a different impact
on a network whose lifetime is just 10 seconds than on a network whose lifetime is
1000 seconds. In a similar manner, the magnitude of values like power needed to
transmit or to receive should also be measured in a relative way.

To reason ina genericmanner about the fault-tolerance andpower-on consump-
tion of sensor networks, we start by defining the notion of ideal lifetime, LTI . LTI

is the network lifetime in a scenario where i) there are no faults, ii) switching nodes

On the Monitoring Period for Fault-Tolerant Sensor Networks 181

on and off has no cost and iii) nodes in the cells are omnisciently replaced at once
(if replacement is available). LTI is determined by simulation and measures the
available initial energy versus average consumption of the network. Using LTI we
propose the following metrics to assess the network behavior:

– The power on-off consumption factor, P , measures the impact of the energy
spent powering nodes on and off. We define it as the ratio between the energy
needed for one power on-off operation versus remaining energy spent in 1 time
unit. This is determined as P = POE/(TE0/LTI), where POE is the power
on-off energy and TE0 is the total energy available in the beginning of the net-
work life (if we assume that all N nodes have the same energy, E0, in the be-
ginning, TE0 = N × E0). This makes P a function of all remaining energies of
the system but not of node failure rate.

– The failure weight factor, F , measures the impact of faults in the network.
We define it as the lifetime of the ideal network, LTI , relative to MTBF , i.e.,
F = LTI/MTBF . This makes F a function of all energies except power on-off
energy. Large F means many node failures (possibly due to a long network life-
time), while large P means a lot of energy needed to power a node on and off
(at least compared with remaining energies, like idle and traffic energies).

4.2 From Cell Level to Network Level Simulation

We propose and use the following methodology to evaluate the lifetime of the wire-
less network. Instead of always running simulation on a complete network, we first
perform a careful study of the behavior of each network cell. Then, by estimating
how many cells are required to maintain the connectivity of a given topology, we
extrapolate the impact of the parameters in the entire network. We illustrate this
methodology in Figure 2. The approach has both conceptual and practical advan-
tages. From the conceptual point of view, it allows to separate the analysis of the
influence of topology from other factors. From the practical point of view, cell level
simulations i) allow to isolate factors that influence network lifetime and ii) run
much faster. Therefore, cell simulation allows a much richer analysis of different
combinations of factors in practical time. We validate our methodology by compar-
ing the results obtained using this method with the results obtained by simulating
the entire network. An additional advantage of the cell simulations is that its re-
sults can be used to assess other system properties. For instance, although outside

...

C
e
l
l

s
i
m

u
l
a
t
i
o
n

Inputs Outputs

Idle energy

Power on-off en.

Faults

Topology

Topology-

independent

Topology-

dependent

Idle energy

Power on-off en.

Faults

...

Topology

N
s
-
2

s
i
m

u
l
a
t
i
o
n

Inputs Outputs

Topology-

dependent

Fig. 2. Cell Based Methodology vs Network Simulation

182 F. Araújo and L. Rodrigues

the scope of this paper (where we focus on network lifetime) the analysis of cell sim-
ulations could be easily extended to study the problem of assessing the coverage of
the sensor network in presence of faults.

5 Experimental Results

In this section we present our simulation results. We start by describing the set-
tings used to perform cell level simulations and network level simulations. We then
validate our methodology by comparing results derived from it (based on cell level
simulations)with results obtained bydirectly simulating the entire network. Later,
we show the relevance of the P and F metrics and their impact on the network life-
time. Finally, we illustrate the importance of appropriately selecting the correct
monitoring period.

5.1 Simulation Settings

In our experiments we have used three different types of nodes: a node equipped
with a Lucent IEEE 802.11 2 Mbps WaveLAN PC Card, a Rockwell’s WINS node
and a MEDUSA-II node. Table 1 resumes the consumption of the three different
nodes in the situations considered in our simulations. Figures for the first node were
taken from [12],while values for the other two types of nodeswere inferred from [20].

We assume that failures of nodes follow an exponential distribution. However,
for simulation purposes, we have modeled this as a geometric distribution. After
constant time intervals P , all nodes may fail with a given random probability p
(we set P = 0.5 seconds in our simulator). Hence parameter r of the exponential
distribution is r � − 1

P ln(1 − p), while MTBF = 1/r.
To plot a graphic that represents lifetime relative to LTI against the monitoring

period relative to LTI (e.g., Figure 4), we select a number of monitoring periods,
Ts, not exceeding the ideal lifetime. Then, we fix all the parameters, like power
on-off consumption, idle power, initial energy, etc. and we experimentally analyze
the lifetime achieved for each Ts. We used a square size of 800 × 800 meters with
256 nodes, which we divided into 8 × 8 squares (giving an average of 4 nodes per
cell). Communication range was 250 meters. The main difference between the cell
and the ns-2 experiments is the way in which lifetime is determined. In ns-2 we
run a simulation of the entire network to determine this value, while in the cell
simulations we use a method that we describe next. We have performed additional
simulations that show that these results also apply when other topologies are used
(this aspect is discussed in Section 5.5).

Cell Level Simulation Settings. Todetermine the lifetime for a givenmonitoring pe-
riod, we fix this monitoring period and use time as the independent variable. Then,
as time goes by we assume a constant consumption of energy and observe whether
the cell is awake or sleeping (it is awake if there is any node awake, otherwise it is
sleeping). We used an average of 100 of these trials to approximate a continuous
random variable, function of time t, that represents the probability that the cell

On the Monitoring Period for Fault-Tolerant Sensor Networks 183

Table 1. Consumption of energy for the nodes tested

Node Rx (W) Tx (W) Idle (W) Sleep (W) Initial Energy (J)

IEEE 802.11 0.974072 1.3410736 0.843 0.066303 15
MEDUSA-II 0.01248 0.01565 0.01234 0.00002 1
Rockwell’s WINS 0.7516 1.0805 0.7275 0.064 20

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350

A
w

ak
e

pr
ob

ab
ili

ty

Time (s)

Ts = 8

(a) Probability of a cell being
awake

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0 0.2 0.4 0.6 0.8 1

R
el

at
iv

e
lif

et
im

e
Relative monitoring period

P=0, F=0

(b) Relative network lifetime

Fig. 3. Derivation of network lifetime in cell simulation

is awake. An example of a random variable like this is depicted in Figure 3a, for
a specific value of Ts. To infer network behavior from this, we need to know the
topology of the network. If disconnection occurs when an average number of D out
of N cells are sleeping, we use a rough approximation and assume that when the
awake probability of a cell drops below (N −D)/N , the network gets disconnected.
Taking our grid for example, we used a simple simulation to derive the probability
density function of the number of sleeping cells that cause network disconnection.
This looks like a Gaussian curve centered at 40 and truncated at the 64 cells. There-
fore, in such a topology, the threshold (64− 40)/64 = 0.375 corresponds to a point
where, more often that not, network will be disconnected 3. Figure 3b shows the
relative lifetime graph as a function of the monitoring period for these settings.

Lifetime and monitoring periods represented in this plot are relative to the ideal
lifetime LTI , to abstract away the absolute magnitudes that govern the network
behavior. Note that an entire data series needed to create a graphic like the one
represented in Figure 3a produces a single point in Figure 3b. In this case, this point
should occur around t = 327 seconds (where the line y = 0.375 intersects the
probability curve). In the cell simulations LTI is estimated as the number of nodes
of the cell × the time it takes to consume all the energy of a node4. For the settings
of these figures, this is around 324. Since Ts = 8 and LT = 327, this gives a relative
monitoring period of 8/324 � 0.025 and a relative lifetime of 327/324 � 1.009. It
is not really counterintuitive to have a lifetime greater than the ideal, due to the
large idle power. In fact, this makes it advantageous to let some cells sleeping from
time to time, to prolong their lives. On the contrary the ideal lifetime assumes that
all the cells should be constantly awoken, which is not always the best strategy.

3 In this case, disconnection occurs when a significant proportion of the network is, in
fact, unusable. We also observed this for other grid configurations.

4 The reader should keep in mind that this only refers to the cell simulations.

184 F. Araújo and L. Rodrigues

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 0.2 0.4 0.6 0.8 1

R
el

at
iv

e
lif

et
im

e

Relative monitoring period

P=9, F=7

(a) IEEE80211/Cell simu-
lation

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0 0.2 0.4 0.6 0.8 1

R
el

at
iv

e
lif

et
im

e

Relative monitoring period

P=0, F=0

(b) Rockwell/Cell simula-
tion

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 0.2 0.4 0.6 0.8 1

R
el

at
iv

e
lif

et
im

e

Relative monitoring period

P=19, F=15

(c) MEDUSA-II/Cell
simulation

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.2 0.4 0.6 0.8 1

R
el

at
iv

e
lif

et
im

e

Relative monitoring period

P=8, F=7

(d) IEEE80211/Ns-2 sim-
ulation

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0 0.2 0.4 0.6 0.8 1

R
el

at
iv

e
lif

et
im

e

Relative monitoring period

P=0, F=0

(e) Rockwell/Ns-2 simula-
tion

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

R
el

at
iv

e
lif

et
im

e

Relative monitoring period

P=19, F=15

(f) MEDUSA-II/Ns-2
simulation

Fig. 4. Lifetime estimated using cell level and network level simulations

Network Level Simulation Settings. We used the ns-2 simulator [1], version 2.27, to
perform the network level simulations presented in this paper. This required us to
implement the SQA algorithm as well as port the GPRS routing algorithm to the
sameversion of ns-2.Weused a simulation environment similar to the one described
in [30].Nodesweredivided in trafficand transit nodes.Trafficnodes serve as sources
and sinks of traffic, while transit nodes are only used as intermediate hops for that
traffic. Only transit nodes run the SQA/GPSR protocol. Traffic was generated by
constant bit rate (CBR) traffic sources. In all our experiments we fixed the number
of trafficnodes to 10.To prevent trafficnodes to stop generating traffic, their supply
of energy was infinite.

5.2 Validation of the Methodology

To validate our methodology, we compare the results obtained from the applica-
tion of the methodology, with the results obtained from complete network level
simulations, using ns-2. Samples of several simulation we have performed for three
different concrete node characteristics are depicted inFigure 4. Although the shape
of the lines is slightly different, the peak in the relative lifetime plots is comparable,
despite huge differences in power figures of nodes. This is very important, because
in this peak lies the answer to the main question of this paper: what is the optimal
selection of Ts? The fact that its width is similar in both types of simulations, al-
lows us to use the simpler cell simulations to reason about the impact of the P and
F metrics.

5.3 Relevance of P and F Metrics

Impact of thePowerParameters on theLifetime Weobserved that the impact of the
power parameters, like idle, transmission or reception, can be hidden by plotting

On the Monitoring Period for Fault-Tolerant Sensor Networks 185

curves relative to the ideal lifetime. This was a surprising result of our simulations.
Experiments made both with cell level simulations and in ns-2 confirmed this ob-
servation. Figure 4 allows to confirm this, because the three types of nodes have
similar curves despite the differences in their power ratings (note for instance that
MEDUSA-II consumptions are orders of magnitude away from the other types of
nodes). Hence, the effect of the absolute values of the power consumptions are al-
most entirely ruled out, by using the simple technique of plotting lifetime curves
relative to the ideal lifetime. This considerably simplifies the analysis of the metrics
P and F to be done ahead.

The parameters that have larger impact on relative network lifetime curves are
the power on consumption (assessed by P) and the faults (assessed by F). Impact
of the node density is discussed in Section 5.4.

Impact of the Metrics P and F on the Lifetime. We now use cell level simulations
to discuss the impact of faults (represented by F) on the network lifetime consid-
ering a non-negligible replacement cost (represented by P). For most values of P
and F , the stability of the lifetime peak still holds. Since several combination of
input parameters are captured by the two metrics, a precise determination of these
metrics should be enough to qualitatively determine the behavior of the network.
Figure 5 shows extreme as well as typical values forP andF . We can see that results
confirm the initial intuition: large values of F tend to require smaller monitoring
periods (thus shrinking the curve at the right and making the peak start slightly
earlier). On the other hand, larger values of P will penalize small monitoring pe-
riods (thus shrinking the curve at the left). Hence, as these two metrics grow, the
curve tends to become thinner. Moreover, the growth of these metrics also makes
the curve shorter as they impact network lifetime. To conserve space we only depict
results for the IEEE 802.11 adapter. However, results for the other types of nodes
show similar behaviors. Together with other simulations that we have done, this
shows that very different operational conditions have similar behaviors, as long as
the metrics P and F are similar (this effect also occurs in Figure 4).

Table 2, which summarizes the results obtained, offers a qualitative analysis of
this issue. Outside the parenthesis we describe the system parameter that domi-
nates network lifetime (other energies refers to idle and traffic energies), while in-
side we describe the shape of the peak that exists in the monitoring period (earlier,
normal or later, respectively means that peak starts closer, in the normal place
or farther away from the origin). Given the values of Table 1 and the huge idle
mode power, we expect current technology to operate in the first line of the ta-
ble (“Small P”). If with technological improvements idle energy decreases, P will
depend mainly on data traffic generated on the network. In this case, the network
will operate in a zone captured by the bottom line of the table (“Large P”), when-
ever average traffic becomes low. In such scenarios, the appropriate choice ofTs will
make an even more significant impact on the network lifetime.

In our simulations, including results depicted in Figures 4 and 5, longest life-
times are almost always achieved when monitoring period is in the range of 10 to
20% of the ideal lifetime, for most values of P and F . This stability has to do with
the fact that a perfect monitoring algorithm should ensure that network has as few

186 F. Araújo and L. Rodrigues

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 0.2 0.4 0.6 0.8 1

R
el

at
iv

e
lif

et
im

e

Relative monitoring period

P=0, F=0

(a) Small P/ Small F

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.2 0.4 0.6 0.8 1

R
el

at
iv

e
lif

et
im

e

Relative monitoring period

P=0, F=43

(b) SmallP/ Intermediate F

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.2 0.4 0.6 0.8 1

R
el

at
iv

e
lif

et
im

e

Relative monitoring period

P=0, F=434

(c) Small P/ Large F

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 0.2 0.4 0.6 0.8 1

R
el

at
iv

e
lif

et
im

e

Relative monitoring period

P=37, F=0

(d) IntermediateP/Small F

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

R
el

at
iv

e
lif

et
im

e

Relative monitoring period

P=37, F=43

(e) Intermediate P and F

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0 0.2 0.4 0.6 0.8 1

R
el

at
iv

e
lif

et
im

e

Relative monitoring period

P=37, F=434

(f) Intermediate P/ Large F

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0 0.2 0.4 0.6 0.8 1

R
el

at
iv

e
lif

et
im

e

Relative monitoring period

P=366, F=0

(g) Large P/ Small F

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0 0.2 0.4 0.6 0.8 1

R
el

at
iv

e
lif

et
im

e

Relative monitoring period

P=366, F=43

(h) LargeP/ Intermediate F

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0 0.2 0.4 0.6 0.8 1

R
el

at
iv

e
lif

et
im

e

Relative monitoring period

P=366, F=434

(i) Large P/ Large F

Fig. 5. Impact of P and F

Table 2. Dominating parameter (and peak shape) for variations of F and P

Small F Intermediate F Large F
Small P Other en.

(earlier)
Other en. &

Failures (earlier) Failures (earlier)

Intermediate P All en. (normal) None (normal)
Failures (slightly

earlier)

Large P On-off (later) On-off (later)
Depends rel.

magnitude (later)

active nodes as possible (fewer than the number of cells, in practice), but preserving
the minimum required to prevent disconnection from occurring. Hence, substitu-
tion of nodes depends on the rate nodes die, which on its turn will determine life-
time. This explains why better strategies for (potentially) longer lifetimes, should
use longer monitoring periods. Nevertheless, if this period goes over some threshold
(30 to 50%), the relative lifetime sharply decreases, because nodes that die are not
replaced and many cells become empty. This reveals a thin line between optimal
and disastrous configuration.

On the Monitoring Period for Fault-Tolerant Sensor Networks 187

5.4 Impact of Node Density on the Lifetime

One aspect of our results that is difficult to understand with the ns-2 simulations,
but evident in cell simulations is the impact of node density. Cell experiments (that
we omit to conserve space), have shown that the peak of the lifetime curve shrinks
when thenumber ofnodesper cell increases.This is consistentwith results obtained
in ns-2 (IEEE 802.11) and depicted in Figure 6a, where this effect is quite subtle.
In this experiment we fixed all parameters and varied the number of nodes from 64
to 512 (density d = 1 represents 256 nodes). The gain in lifetime (relative to the
lifetime of density 1) is depicted in Figure 6b for different network densities. We
have studied two scenarios of independent interest: ideal replacement policy with
and without node failures. The approximately linear growth of lifetime when there
are no failures is consistentwith [3]. However,when we consider failures of nodes, as
absolute lifetime increases, failures become more important (F grows).This makes
lifetime (relatively) shorter as density increases.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.2 0.4 0.6 0.8 1

R
el

at
iv

e
lif

et
im

e

Relative monitoring period

d = 0.5, P=17, F=26
d = 0.75, P=15, F=35
d = 1.25, P=11, F=42
d = 1.5, P=11, F=50

d = 1.75, P=10, F=56
d = 2, P=9, F=57

(a) Varying node densities

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

L
ife

ti
m

e
bo

os
t

Relative density

Ideal w/ failures
Ideal w/out failures

(b) Lifetime boost

Fig. 6. Relative lifetime and lifetime boost with varying node densities

5.5 Impact of Topology on the Lifetime

Other experiments that we have made with ns-2 for the topology settings origi-
nallydescribed in [30] didnot showsignificant changes to the results presentedhere.
This scenario is of particular interest, because nodes are scattered in a rectangle of
1500 × 300 meters with 100 × 100 meters for each cell, which gives only 3 cells
in one of the directions. Cell simulations with thresholds different from 0.375 also
have also produced similar results. Nevertheless, we believe that it is still an open
problem to know if there are configurations that considerably impact the lifetime
of the network and how can that impact be predicted.

5.6 Practical Relevance

We finally show in Figure 7 the benefit from adequately selecting the monitoring
period Ts. We illustrate this by using several different replacement policies in sce-
narios with increasing node failure rates, simulated for 256 nodes in ns-2 (IEEE
802.11 adapter). F = 0 means that there are no failures, i.e., MTBF = ∞. First,
we determine an upper bound for the lifetime using an ideal scenariowith node fail-
ures (“Ideal w/ failures”). Next, we use a worst-case setting where Ts is so long that

188 F. Araújo and L. Rodrigues

no actual substitution ever occurs (“Pessimal”). The third intermediate scenario
consists of keeping all nodes awake. In this case, no idle energy is conserved (“All
active”). The y-axis of the graphic is normalized to the ideal lifetime, LTI (which
does not vary along the x-axis, as it does not have node failures).

Thenweplot two additional curves in the graphic: lifetime obtainedby theGAF
algorithm and lifetime obtained by SQA. For SQA we select the monitoring period
using the results from the analysis presented in Subsection 5.3: we selected smaller
monitoring periods for larger values of F , starting at 20% of LTI , for small values
of F and decreasing for 15%, 10% and finally 5% as F grew larger. From the figure
we can reach the following conclusions:

– Not adjusting the monitoring period (for instance, using the pessimal or the all
active approaches) offers a network lifetime that is much worse than the ideal.

– Using the analysis presented in this paper, SQA can be tuned to achieve a life-
time that is frequently between 80 and 90% of the ideal.

– SQA offers, for most values of F , a much longer network lifetime than GAF,
that can be as high as 25%.

As a promising future research topic, we envision to combine the advantages
of SQA and GAF. The resulting algorithm could have the ability to dynamically
set the monitoring period, according to the importance of faults existing on the
network or to the power on-off consumption.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 200 400 600 800 1000 1200 1400 1600 1800

R
el

at
iv

e
lif

et
im

e

F

Ideal w/ failures
All active

GAF
SQA

Pessimal

Fig. 7. Lifetime for Different Replacement Methods

6 Conclusions

In this paper we studied the dependability of sensor networks, considering energy
constraints and fault-tolerance requirements. We aimed at determining the ideal
monitoring period for cell-based energy conserving techniques, to maximize net-
work lifetime, here defined as time to the first network partition. To simplify this
task, this paper made two contributions: a methodology of analysis, which con-
sisted of inferring network behavior from inspection of individual cells; and two
metrics, P and F that are able to capture the operational conditions of the sensor
network.

On the Monitoring Period for Fault-Tolerant Sensor Networks 189

Experimental results demonstrated the appropriateness of using these metrics
to assess network behavior, by showing that, often, P and F strongly determine
network operation. Furthermore, results have shown that it is possible to achieve
a lifetime close to the ideal by selecting the monitoring period adequately and ac-
cording to P and F . More precisely, we have shown that network lifetime can be
within 80 and 90% of that provided by an (non-implementable) ideal replacement
policy, even for very large failure rates.

References

1. The ns Manual. http://www.isi.edu/nsnam/ns/ns-documentation.
2. M. Bhardwaj, A. Chandrakasan, and T. Garnett. Upper bounds on the lifetime of

sensor networks. In IEEE International Conference on Communications, pages 785–
790, 2001.

3. D. Blough and P. Santi. Investigating upper bounds on network lifetime extension
for cell-based energy conservation techniques in stationary ad hoc networks. In ACM
Mobicom, 2002.

4. P. Bose, P. Morin, I. Stojmenović, and J. Urrutia. Routing with guaranteed delivery
in ad hoc wireless networks. In International Workshop on Discrete Algorithms and
Methods for Mobile Computing and Communications (DIALM), pages 48–55, 1999.

5. G. Calinescu, I. Mandoiu, and A. Zelikovsky. Symmetric connectivity with minimum
power consumption in radio networks. In 17th IFIPWorld Computer Congress, pages
119–130, 2002.

6. J. Chang and L. Tassiulas. Routing for maximum system lifetime in wireless ad-hoc
networks. In 37-th Annual Allerton Conference on Communication, Control, and
Computing, Monticello, IL, September 1999.

7. J.-H. Chang andL. Tassiulas. Energy conserving routing in wireless ad-hoc networks.
In INFOCOM (1), pages 22–31, 2000.

8. B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris. Span: An energy-efficient co-
ordination algorithm for topology maintenance in ad hoc wireless networks. Wireless
Networks, 8(5):481–494, 2002.

9. G. Chen and I. Stojmenovic. Clustering and routing in wireless ad hoc networks.
Technical Report TR-99-05, Department of Computer Science, SITE, University of
Ottawa, Ottawa, Ontario K1N 6N5, Canada, June 1999.

10. S. Chessa and P. Santi. Crash faults identification in wireless sensor networks. Com-
puter Communications, 45(2):126–143, November 2002.

11. A. Datta. Fault-tolerant and energy-efficient permutation routing protocol for
wireless networks. In International Parallel and Distributed Processing Symposium
(IPDPS’03), 2003.

12. L. M. Feeney and M. Nilsson. Investigating the energy consumption of a wireless
network interface in an ad hoc networking environment. In IEEE INFOCOM, 2001.

13. M. Hajiaghayi, N. Immorlica, and V. S. Mirrokni. Power optimization in fault-
tolerant topology control algorithms for wireless multi-hop networks. In Proceed-
ings of the 9th annual international conference on Mobile computing and networking,
pages 300–312. ACM Press, 2003.

14. R. Jain, A. Puri, and R. Sengupta. Geographical routing using partial information
for wireless ad hoc networks. IEEE Personal Communication, pages 48–57, February
2001.

190 F. Araújo and L. Rodrigues

15. D. B. Johnson and D. A. Maltz. Dynamic source routing in ad hoc wireless networks.
In Imielinski and Korth, editors, Mobile Computing, volume 353. Kluwer Academic
Publishers, 1996.

16. B. Karp and H. T. Kung. GPRS: Greedy perimeter stateless routing for wireless
networks. In ACM/IEEE International Conference on Mobile Computing and Net-
working, 2000.

17. X.-Y. Li, P.-J. Wan, Y.Wang, and C.-W. Yi. Fault tolerant deployment and topology
control in wireless networks. In Proceedings of the 4th ACM international symposium
on Mobile ad hoc networking & computing, pages 117–128. ACM Press, 2003.

18. C. Perkins. Ad-hoc on-demand distance vector routing, 1997.
19. C. Perkins and P. Bhagwat. Highly dynamic destination-sequenced distance-vector

routing (DSDV) for mobile computers. In ACM SIGCOMM’94 Conference on Com-
munications Architectures, Protocols and Applications, pages 234–244, 1994.

20. V. Raghunathan, C. Schurgers, S. Park, and M. B. Srivastava. Energy-aware wireless
microsensor networks. IEEE Signal Processing Magazine, pages 40–50, March 2002.

21. V. Rodoplu and T. Meng. Minimum energy mobile wireless networks. In 1998 IEEE
International Conference on Communications, ICC’98, volume 3, pages 1633–1639,
Atlanta, GA, June 1998.

22. S. Singh and C. Raghavendra. Pamas: Power aware multi-access protocol with sig-
nalling for ad hoc networks. ACM Computer Communication Review, July 1998.

23. M. Stemm and R. H. Katz. Measuring and reducing energy consumption of net-
work interfaces in hand-held devices. IEICE Transactions on Communications, E80-
B(8):1125–31, 1997.

24. I. Stojmenovic. Position-based routing in ad hoc networks. IEEE Communications
Magazine, July 2002.

25. I. Stojmenovic and X. Lin. Power-aware localized routing in wireless networks. IEEE
Transactions on Parallel and Distributed Systems, 12(11):1122–1133, 2001.

26. X. Wang, G. Xing, Y. Zhang, C. Lu, R. Pless, and C. Gill. Integrated coverage and
connectivity configuration in wireless sensor networks. In SenSys ’03: Proceedings of
the 1st international conference on Embedded networked sensor systems, pages 28–39,
New York, NY, USA, 2003. ACM Press.

27. Y. Wang and X.-Y. Li. Geometric spanners for wireless ad hoc networks. In The
22nd IEEE International Conference on Distributed Computing Systems, 2002.

28. J. Wu,B. Wu, and I. Stojmenovic. Power-aware broadcasting and activity scheduling
in ad hoc wireless networks using connected dominating sets. Wireless Communica-
tions and Mobile Computing, 4(1):425–438, June 2003.

29. Y. Xu, S. Bien, Y. Mori, J. Heidemann, and D. Estrin. Topology control protocols
to conserve energy inwireless ad hoc networks. Technical Report 6, University of
California, Los Angeles, Center for Embedded Networked Computing, January 2003.
submitted for publication.

30. Y. Xu, J. S. Heidemann, and D. Estrin. Geography-informed energy conservation for
ad hoc routing. In Mobile Computing and Networking, pages 70–84, 2001.

Adapting Failure Detectors to Communication
Network Load Fluctuations Using SNMP and

Artificial Neural Nets

Fábio Lima� and Raimundo Macêdo

Distributed Systems Laboratory – LaSiD,
Computing Science Department, Federal University of Bahia,

Campus de Ondina, CEP: 40170-110, Salvador-BA, Brazil
{framon, macedo}@ufba.br

Abstract. A failure detector is an important building block for fault-
tolerant distributed computing: mechanisms such as distributed consen-
sus and group communication rely on the information provided by failure
detectors in order to make progress and terminate. As such, erroneous
information provided by the failure detector (or the absence of it) may
delay decision-making or lead the upper-layer fault-tolerant mechanism
to take incorrect decisions (e.g., the exclution of a correct process from
a group membership). On the other hand, the implementation of failure
detectors that can precisely identify failures is restricted by the actual
behaviour of a system, especially in settings where message transmis-
sion delays and system loads can vary over time. In this paper we ex-
plore the use of artificial neural networks in order to implement failure
detectors that are dynamically adapted to the current communication
load conditions. The training patterns used to feed the neural network
were obtained by using Simple Network Management Protocol (SNMP)
agents over MIB – Management Information Base variables. The output
of such neural network is an estimation for the arrival time for the failure
detector to receive the next heartbeat message from a remote process.
The suggested approach was fully implemented and tested over a set of
GNU/Linux networked workstations. In order to analyze the efficiency of
our approach, we have run a series of experiments where network loads
were varied randomly, and we measured several QoS parameters, compar-
ing our detector against known implementations. The performance data
collected indicate that neural networks and MIB variables can indeed be
combined to improve the QoS of failure detectors.

1 Introduction

A distributed system is defined as a collection of processes running on a set of
networked, possibly geographically spread, computers. Nowadays, mainly after
the widespread use of the World Wide Web, the dependence of society on such
systems have become commonplace. This reality has pushed researchers to find
� Master Student of the Mechatronics Program at UFBA.

C.A. Maziero et al. (Eds.): LADC 2005, LNCS 3747, pp. 191–205, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

192 F. Lima and R. Macêdo

out techniques for building reliable distributed systems, which can deliver the
specified services despite failures of some of its components. In particular, dis-
tributed consensus has been considered by many researchers as the basic building
block to construct other fault-tolerant mechanisms such as non-blocking atomic
commitment protocols, replication, and even group membership [1,2]. However,
implementing such mechanisms on settings where message transmission delay
and processing times cannot be known and bounded (the so-called time-free or
asynchronous systems), it is not an easy task. As a matter of fact, it has been
proved that consensus is not solvable in such systems when failures may occur
[3]. Therefore, no deterministic consensus based fault-tolerant mechanism can
be implemented in such scenarios if no extra assumption is considered. That is
why many researchers progressively started adopting alternative system models
to solve fault-tolerant problems [4,1,5,6]. One of the most referred of such models
is the asynchronous system model augmented with unreliable failure detectors
proposed by Chandra and Toueg [1,7]. They defined failure detectors in terms
of axiomatic properties and proved that consensus problem is solved for some
classes of such failure detectors. Nonetheless, in practice, due to variations in
the communication transfer delays and in the execution speed of processes in
some typical settings (such as computers equipped with time-sharing operating
systems connected by a shared Ethernet), the difficulty in implementing failure
detectors remains. Even if the required properties are eventually satisfied in a
partially synchronous system (and, accordingly, consensus eventually solvable),
the uncertainties of unreliable failure detectors may have unacceptable impact
on real applications: for instance, consensus decisions may be postponed for an
arbitrary amount of time.

Consequently, with the aim of improving the QoS of failure detectors, many
authors have proposed different techniques to dynamically estimate the timeout
values used in failure detection [8,9,10,11,12,13], and Chen, Toueg, and Aguilera
proposed a set of metrics that can be used to specify and measure the related
Quality of Service [14]. In another work, Bertier, Marin, and Sens showed how
to build a hierarchical failure detector service that can be customized to distinct
applications [15].

Different from existing work, we propose an implementation of failure detec-
tors based on a neural network 1. Neural networks have successfully been used
to pattern recognition in a variety of applications [17]. They possess an adaptive
feature that allows each cell within the neural network to modify its state in
response to experience. Thus, the neural network can learn and mimic the ac-
tual behaviour of a system. In few words, a neural network is an interconnected
assembly of simple processing elements. The processing ability of the network is
stored in the inter-unit connection strengths, or weights, obtained by a process
of adaptation to, or learning from, a set of training patterns. In our work, the
training patterns used to feed the neural network were obtained by SNMP (Sim-
ple Network Management Protocol) agents over a set of data from a local area

1 A summary and preliminary version of this paper (4 pages) appeared in the pro-
ceedings the Brazilian Symposium on Computer Networks [16].

Adapting Failure Detectors to Communication Network Load Fluctuations 193

network MIB – Management Information Base [18]. We chose SNMP because it
has become the de facto standard for network management [19], and therefore,
our implementation can be used and interoperate in a variety of system settings.
The output of our neural network is an estimation for the time for the failure
detector to receive the next heartbeat message from a remote process. Using
neural networks over MIB data renders our approach a number of advantages.
First, as we are not relying on previous received heartbeat messages in order
to estimate the arrival time of an expected heartbeat message, we are able to
tolerate message omission failures. Second, as an estimation is a function of a
given MIB pattern, this solution scales well in terms of the number of monitored
processes (i.e., the communication pattern given in terms of MIB variables is
not a direct function of the number of monitored processes).

The proposed failure detector was fully implemented and tested over a set
of GNU/Linux networked workstations. In order to analyze the efficiency of our
approach, we have run a number of experiments where network loads were varied
randomly, and we measured several QoS parameters, comparing our detector
against known implementations. The experiments show that our failure detector
performed well when compared with such existing approaches.

The remaining of the paper is organized as follows. In Sect. 2 it is discussed
related work. In Sect. 3 it is presented the neural network based failure detector
and in Sect. 4 it is analyzed its performance. Finally, in Sect. 5 some conclusions
are drawn.

2 Related Work

Failure detection is an important issue for the design of dependable distributed
systems. In particular, in the partial synchronous model of the unreliable failure
detectors introduced by Chandra and Toueg [1,7], it was presented for the first
time a formal definition of failure detectors and related conditions for solving
fundamental problems of fault tolerant computing in such a model.

Due to load variations, both in the communication links and in the runtime
system, a failure detector can be too slow, that is, it may take too much time to
suspect a crashed process, and it can make mistakes by erroneously suspecting
some process that is actually operational. As failure detectors are unreliable, a
failure detector may “change its mind” by stopping suspecting a process from
which a new message has been received. Thus, a failure detector working on
behalf of a process p may alternate by suspecting and trusting a remote process q
for an arbitrary period of time. To be useful, however, a failure detector has to be
reasonably accurate (i.e., must avoid wrong suspicions) and fast (i.e., must avoid
unnecessary delays in suspecting a failures). In order to evaluate how fast and
accurate a failure detector is, as mentioned before, Chen, Toueg, and Aguilera
proposed a set of metrics for the QoS specification [14]. The aim of these metrics
is to describe the failure detector’s speed (how fast it detects crashes) and its
accuracy (how well it avoids mistakes). They defined the following three basic
metrics and showed how to fully qualify the service of failure detectors based on
these metrics.

194 F. Lima and R. Macêdo

1. Detection Time: defines the failure detector’s speed, which is the time
that elapses from the moment when a process p crashes to the time when
the failure detector starts suspecting p permanently.

2. Mistake Recurrence Time: defines the time between two consecutive
mistakes. That is, the time that elapses from the moment when a process is
erroneously suspected to next time it is again erroneously suspected.

3. Mistake Duration: defines the time it takes the failure detector to correct
a mistake. That is, the time that elapses from the moment a process is erro-
neously suspected to the time this suspicion is removed (it stops suspecting
the process).

With the aim of improving the QoS of failure detectors, many authors have
proposed different techniques to dynamically estimate the timeout values used
in failure detection. These techniques are either based on the probabilistic be-
haviour of the system [14] or on monitoring data for control message transmission
delays (heartbeat or I-am-alive messages) [8,9,13], or even a combination of both
[10]. The main drawback of some of these approaches lies in the fact that it is
not always possible to find out a probabilistic distribution that captures the ac-
tual behaviour of the network, especially when communication and load patterns
can change in a random fashion. In most of these works, the authors have not
measured the QoS of their implementations using the metrics formerly defined
for the failure detectors in [14].

To the best of our knowledge, two previous works explicitly provided im-
plementations and related QoS performance analyzes for their failure detectors.
Chen, Toueg, and Aguilera [14], presented implementations for failure detectors
that rely on clock synchronization and a probabilistic behaviour of the system.
Bertier, Marin, and Sens [10] extended the failure detector developed by Chen,
Toueg, and Aguilera, by introducing a safety margin dynamically calculated ac-
cording Jacobson’s algorithm [20], which resulted in a detector with a better
detection time average (though, slightly sacrificing the quality of other metrics).
None of the existing work has explored the use of neural networks to estimate
the arrival time of heartbeat messages.

3 The Neural Network Based Adaptive Failure Detector
(NN-AFD)

3.1 System Model and Assumptions

It is assumed a distributed system of processes that are able to communicate
with each other through channels that deliver uncorrupted messages. Messages
may be lost from time to time, but if an infinite amount of messages m is trans-
mitted, at least one message m will reach its destination (fair loss assumption,
or quasi-reliable assumption as in [15]). Processes fail only by crashing (halt-
ing execution) without producing any further actions. We consider the model of
partial synchrony proposed by Chandra and Toueg in [1], which defines that, in
every execution there are bounds on process speeds and on message transmission

Adapting Failure Detectors to Communication Network Load Fluctuations 195

times, but these bounds are not known and they hold only after some unknown
time (the Global Stabilization Time – GST).

The algorithm presented in this paper is based on the push model. That is,
it is assumed that all processes will be permanently sending heartbeat messages
with a time interval, named HP (heartbeat period), between the emissions of
two consecutive heartbeat messages. To monitor a process q, a process p uses
an estimated value, named TO (timeout), which tells p how much time it has
to wait for the next heartbeat message from q. Then, if after TO p does not
receive the next heartbeat message from q, it suspects that q has crashed. In
order to be adaptive to the actual communication loads, we allow TO values to
vary over time. TO is composed by the sum of two values, the estimated time
for the arrival of the next heartbeat message (EA) and the safety margin α. The
safety margin is added to avoid false detections.

3.2 The Implementation of the NN-AFD

Our failure detector is adaptive with respect to the current communication load,
and we use a neural network to achieve the required adaptation. As mentioned
earlier, a neural network is an interconnected assembly of simple processing
elements. The basic unit of a neural network represents a neuron. A neuron
receives a set of signals from the neurons connected to it and produces an output
response. In our work, we use a special kind of neural network called Feedforward
Multilayer Perceptron (MLP). In the MLP Neural Network, the neurons are
grouped in layers and they are interconnected in the following way: a neuron is
connected through links to all neurons of previous and next layers (if any); the
neuron of a layer is not linked with another neuron of the same layer; there are
three basic type of layers: input, middle and output; the input layer receives the
input signal and the number of neurons in it corresponds to the number of data
attributes; middle layers interconnect the input layer with the output layer; the
quantity of layers and the number of neurons for each layer are unknown and
depend on the application; finally, the output layer shows the result of processing.
The feedforward means that the amount of data flows in one direction only, from
the input to the output.

In order to define the configuration of the neural network and the list of MIB
variables to be used, we tried distinct neural network configurations (from simple
ones, with less layers and neurons, to more complex ones) and also distinct sets
of MIB variables (from smaller to larger sets), measuring always the level of
adaptation achieved (reflected in the related failure detection QoS). The final
configuration was then chosen when the adaptation observed remained virtually
the same as in the previous configuration.

The neural network we implemented has four layers: an input layer with six
neurons corresponding collected data from the MIB – Management Information
Base [18]; two middle layers, one layer with nine and the other with four neurons,
respectively; and an output layer with a single neuron, the estimated timeout for
the arrival of the next heartbeat message. This neural network, which was fully
implemented using the Java – GNU/Linux environment, is depicted in Fig. 1.

196 F. Lima and R. Macêdo

Fig. 1. The four-layer neural network for estimating heartbeat timeouts

3.3 The Use of SNMP to Monitor Communication Loads

Nowadays, computer networks have become complex systems, involving soft-
ware and hardware components from a variety of vendors. To interoper-
ate, the management protocols used to monitor such systems must comply
with some standard. SNMP, an open framework developed by the TCP/IP
community, is the de facto standard for network management protocols, as
it has been adopted by many organizations. SNMP is based on the man-
ager/agent paradigm where management applications (the managers) mon-
itor network devices (or simply components) through agents. Communica-
tion between the managers and agents is carried out by the SNMP pro-
tocol that runs on top of UDP (User Datagram Protocol). Each agent
replies to SNMP queries according to the MIB maintained by the agent
(A given MIB holds a collection of objects, each one representing a char-
acteristic of the related managed component). In order to model the sys-
tem and communication loads we used the six MIB variables [18] listed be-
low.

1. IfInUcastPkts - the number of subnetwork-unicast packets delivered to a
higher-layer protocol;

2. ifOutUcastPkts - the total number of packets that higher-level protocols
requested be transmitted to a subnetwork-unicast address, including those
that were discarded or not sent;

3. ifOutQLen - the length of the output packet queue (in packets);
4. udpInDatagrams - the total number of UDP datagrams delivered to UDP

users;
5. udpOutDatagrams - the total number of UDP datagrams sent from this en-

tity; and,
6. udpNoPorts - the total number of received UDP datagrams for which there

was no application at the destination port.

Adapting Failure Detectors to Communication Network Load Fluctuations 197

3.4 Training and Querying the Failure Detector

Adaptation of NN-AFD is achieved by using the neural network in two distinct
phases, namely the training and estimation phases. During the first phase, the
Neural Network is trained through the backpropagation algorithm [17]2 to asso-
ciate patterns of communication loads (represented by MIB patterns) with the
timeout value for the arrival of the next heartbeat message (for a fixed frequency
for sending heartbeats).

Fig. 2. Training the failure detector

Fig. 3. Querying the failure detector

The pairs communication load/timeout were collected in a real experiment
where processes exchanged a number of heartbeat messages, as follows. When
a heartbeat message arrives, say hbk, the current MIB pattern3 is read and
stored together with the arrival time for hbk say Ak. Afterwards, when the next
heartbeat hbk+1 arrives, the timeout is calculated by the difference between the
arrival time of hbk+1, Ak+1, and the stored arrival time of hbk, Ak. Then, the pair
pattern/timeout is built into the neural network. In this phase, we run 19 exper-
iment rounds and for each round we collected pattern/timeout values for 1000
heartbeat messages received (it took approximately 5hours or 19 x 1000 seconds).
At this point we observed that the training phase could be stopped as the level
of adaptation observed (i.e., the QoS of the failure detector) remained virtually
the same as in the previous round.

During the second phase, the neural network is queried to estimate the arrival
time of the next heartbeat message for a particular pattern of the MIB. In both
phases, the same time interval between heartbeat messages is used (the heartbeat
period, HP). Below it is illustrated the behaviour of the neural network, related

2 In such an algorithm, the input is presented to the network, the calculated output
is compared with the expected result and the calculated error is back propagated
until the input layer, changing the weight of each link to adjust the network.

3 Actually, we only considered pattern modifications since the reception of the previous
heartbeat.

198 F. Lima and R. Macêdo

to the training (Fig. 2) and estimation (Fig. 3) phases, respectively. The time Ak

in Fig. 3 refers to the time instant when the network is queried to produce the
estimation for the timeout of the next heartbeat and δ is the time spent by the
trained network to produce the estimation.

4 The QoS Analysis of NN-AFD

4.1 The Failure Detector Implementations

To allow a comparative analysis of the NN-AFD performance, we implemented
in our system the Bertier-Marin-Sens’ detector [10], which is, to the best of our
knowledge, the only adaptive failure detector previously published and analyzed
under the same metrics we utilise. Bertier-Marin-Sens’ detector implements a
push style adaptive failure detector and through experiments they showed that
their failure detector produced, in some circumstances, better QoS compared
with the Chen-Toueg-Aguilera’s detector [14,11]. However, as the safety margin
used in Chen-Toueg-Aguilera’s detector is constant during an execution, cal-
culated according to a specified application QoS requirement, comparing both
detectors without considering distinct safety margins is meaningless. Hence, we
first carry out a thoroughly comparison with Bertier-Marin-Sens’ detector. Af-
ter that, we fix a given safety margin for the Chen-Toueg-Aguilera’s detector
and show some data comparing the three approaches altogether. Before describ-
ing the experiments and data analysis, let us present the Bertier-Marin-Sens’
detector we implemented.

Bertier-Marin-Sens’ Detector. This detector uses the heartbeat strategy,
defined by the heartbeat period, HP , and the timeout delay, TO, to receive the
next heartbeat message. In case TO expires, the sending process is suspected of
crash until a heartbeat message is received from it.

Bertier-Marin-Sens’ detector is a combination of Chen-Toueg-Aguilera’s de-
tector and the Jacobson’s estimation. Jacobson’s estimation has been used in
the protocol TCP to estimate the delay after which a node retransmits its last
message [20]. To calculate the estimation for the next heartbeat message arrival
time, named TO(k+1), the Bertier-Marin-Sens’ estimation is calculated by adding
the Chen-Toueg-Aguilera’s estimation EA(k+1), to the safety margin given by
the Jacobson’s estimation, α(k+1). That is

TO(k+1) = EA(k+1) + α(k+1) (1)

The details of both formulas are given below.

Chen-Toueg-Aguilera’s Estimation. This implementation estimates the
time for the arrival of the next heartbeat message (EA) based on the recep-
tion time of the last n heartbeat messages. The estimation for the arrival time
of the next heartbeat message (EA(k+1)) is given below, where Ai is the arrival

Adapting Failure Detectors to Communication Network Load Fluctuations 199

time for the ith heartbeat and HP is the time period between the emissions of
two heartbeats:

EA(k+1) ≈ 1
n

(
k∑

i=k−n

Ai − HP · i
)

+ (k + 1) · HP (2)

Jacobson’s Estimation. In Jacobson’s algorithm, the estimation presumes
that the behaviour of the system is not constant. Thus, it adapts the safety
margin each time it receives a message. The adaptation of the safety margin α
uses the error in the last estimation. The parameter γ represents the importance
of the new measure with respect to the previous ones. delay represents the
estimate margin, and var estimates the magnitude between errors. β and φ
permit to ponder the variance; typical values are β = 1 and φ = 4.

The original algorithm is:

error(k) = Ak − EA(k) − delay(k) (3)

delay(k+1) = delay(k) + γ · error(k) (4)

var(k+1) = var(k) + γ · (|error(k) | − var(k)
)

(5)

α(k+1) = β · delay(k+1) + φ · var(k+1) (6)

The NN-AFD Detector. We have implemented two versions of our failure
detector. The first version is purely based on the neural network described in
Sect. 3. In order to evaluate the application of a safety margin together with the
neural network, we also measured the its QoS using a constant safety margin α,
varied α from 0 to 2ms (α = 0 means no safety margin). Thus, after receiving
the kth heartbeat hbk, the estimation for the timeout TO(k+1) meant for the
arrival of the heartbeat hbk+1, is given by:

TO(k+1) = EA(k+1) + Ak + α (the Pure NN-AFD, see figures 2 and 3) (7)

Based on the observation that the pure NN-AFD performed better than
the Bertier-Marin-Sens’ detector when the network load varied randomly (as
we show subsequently in our experiments), and slightly worse in stable peri-
ods (namely, in the detection time metric), we designed a second version of our
failure detector, combining the pure NN-AFD with the Bertier-Marin-Sens’ de-
tector, switching between both detectors depending on the network load pattern
variation observed. The key point was then to establish the conditions upon
which to switch the detectors. For this we calculated the real arrival time for the
last three heartbeat messages, say Ak, Ak−1 and Ak−2 and calculated whether
the sum of the time differences for consecutive messages was larger than a given
threshold, defined by us as μ + HP · 2, as below:

200 F. Lima and R. Macêdo

if ((Ak − Ak−1) + (Ak−1 − Ak−2)) > μ + HP · 2 then
use NN-AFD, as in (7)

else
use Bertier-Marin-Sens’ Estimation, as in (1)

The rationale behind the above threshold is to capture a variation on the
network load that would delay the last two heartbeat messages for more than μ.
Note that in perfect conditions,

((Ak − Ak−1) + (Ak−1 − Ak−2)) = HP · 2 (8)

In the experiments we set μ to 10.

4.2 The Experiments

After the NN-AFD detector has been appropriately trained as described in
Sect. 3.4, we run a series of experiments in order to evaluate the QoS obtained. The
experiments were performed at the Distributed Systems Laboratory (LaSiD) over
three Pentium-III 800Mhz hosts connected by an Ethernet 10/100 Base-T net-
work. The Conectiva Linux 8.0 Operational System with SNMP service and Java
(j2sdk 1.4) was used. The network and the hosts were not dedicated to our exper-
iments. That is, we allowed the other users and services to make use of both the
hosts (including the three mentioned above) and network during the experiments.

We carried out two kinds of experiments: one with the ordinary network load
and another one with an extra load introduced randomlyby a third process, named
the overloader. As the Bertier-Marin-Sens’ detector uses the n most recent heart-
beat messages to calculate the (n + 1)th estimation, we first run the system until
n (n = 1000) messages were received without calculating the QoS information (it
took approximately 16.7min). Afterwards, the system starts collecting the nec-
essary information to calculate the QoS performance. The dynamic estimation of
the Bertier-Marin-Sens’ detector was parameterized, in all experiments, as given
in [10]. That is, γ = 0.1, β = 1, φ = 2, and n = 1000. The variables error, delay,
var, and α had their initial values set to 0.

We also calculated the average time and related standard deviation for the neu-
ral network to produce estimations (δ) for all experiments, including, within this
measure, the access to the MIB. These figures were 2.141 ms and 0.062 ms, respec-
tively. Considering only the calculations realized by the neural network (without
the access to the MIB), the average time was 0.053ms with standard deviation of
0.005ms.

We have chosen to transmit heartbeat messages every second (i.e. HP =
1000ms). In the experiments showed in [10], HP was set to 5000ms. By choosing
a five time smaller heartbeat transmission period, we are closer to a more realistic
model for most applications (as the detection time is necessarily larger than the
heartbeat transmission period).

The Experiment with Varied Communication Loads. the overloader pro-
cess continuously transmitted messages. In the remaining 50 seconds of every

Adapting Failure Detectors to Communication Network Load Fluctuations 201

Table 1. QoS performance with random load variation

Pure NN-AFD Bertier-Marin-Sens Combined NN-AFD

False detections 14.17 17.00 16.33

Mistake duration (ms)�

26.05 31.85 31.87

22.25 24.92 24.17

24.41 19.34 22.21

Detection time (ms)�

1010.03 1032.17 1010.45

1006.33 1003.67 1004.00

17.87 33.22 20.18
� average / median / standard deviation

minute, the overloader process transmits no messages. For each host, there were
two overloader processes (in total, six of them: two in the host transmitting heart-
beats, two in the host executing the failure detectors, and two in the other host used
in the experiments).

These experiments were carried out for six rounds. In each round, after sending
1000heartbeatmessages as required by the adaptation phase of the Bertier-Marin-
Sens’ detector, a process in a given host, say p, sent heartbeat messages for about
10 minutes, with the frequency of 1 message per second (HP = 1000 ms). Then, a
process in another host tries todetect the failure ofpby running inparallel the three
detectors: thePureNN-AFD, the combinedNN-AFD,and theBertier-Marin-Sens’
detector.

The data collected in each round included the arrival time for the heartbeat
messages, according to local clock, the estimated heartbeat arrivel time for each
detector, the time that a detector starts suspecting p and the time that a detector
corrects a mistake (i.e., stops suspecting p as a message from p arrives). We then
calculated for each round, the number of false detections, the average,median, and
standard deviation for the detection time and mistake duration. Table 1 shows the
results. The mistake duration, the detection time, and the number of false detec-
tions are the average for the six rounds.

We also run the experiments above for distinct safety margins applied to the
NN-AFD and combined NN-AFD (that is, for α = 1 and α = 2). The performance
data showed that the averagedetection time was worse in both experiments (which
is expected), without improvements regarding the number of false detections and
average mistake duration.

Experiment with Ordinary Communication Load. This experiment is sim-
ilar to the previous one. The only difference is that the overloader processes were
not running. The aim of this scenario is to compare the performance of the failure
detectors in a stable communication link.

The Experiment with the Chen-Toueg-Aguilera’s Detector. In order
to evaluate the influence of the use of a safety margin within the Chen-Toueg-

202 F. Lima and R. Macêdo

Aguilera’s detector, we carried out another experiment where the three detec-
tors were run together with ordinary communication load. For the Chen-Toueg-
Aguilera’s detector, we defined a constant safety margin of 30 milliseconds and 500
heartbeat messages were transmitted. Table 3 show the data colleted comparing
the four detectors.

Discussion. When we consider a network with load variations (Tab. 1), our ex-
periments clearly show that the pure NN-AFD performed better than the detector
of Bertier-Marin-Sens for all metrics. Indeed, when compared with Bertier-Marin-
Sens’ detector, this result contradicts the common intuition that shorter detection
time, which favours faster recovery procedures for fault-tolerant computing, leads
to a less accurate detector.

Still considering the experiment with load variation, the combined NN-AFD
outperformed Bertier-Marin-Sens’ detector, being only slightly worse in the mis-
take duration metric (in fact, practically the same values). As expected, NN-AFD
slightly outperformed the combined NN-AFD. Indeed, these results validate the
technique used to switch between the detectors.

As for the experiments with ordinary loads, the data in Tab. 2 show that the
NN-AFD detector is more accurate than the Bertier-Marin-Sens’ detector as it
presents a better mistake duration and a smaller number of false suspicions. How-
ever, it had a slightly worse performance regarding the third metric (detection
time). On the other hand, the combined NN-AFD had a very similar performance
to the Bertier-Marin-Sens’ detector, which is an indication that the technique used
to switch between the detectors properly detected stable load patterns, switching
to the Bertier-Marin-Sens’ detector properly.

In order to compare our results with the detector of Chen-Toueg-Aguilera, let
us recall the figures published in [10] comparing Bertier-Marin-Sens’ and Chen-
Toueg-Aguilera’s detectors, for HP = 5000 ms, in two experiments (one with con-
stant load and another with ordinary load). In both experiments, Bertier-Marin-
Sens’ detector performed better in terms of detection time, but it was less accurate
regarding the other metrics. We have confirmed this result with the experiment
showed in Tab. 3. Notice that in this particular experiment, the NN-AFD detector

Table 2. QoS performance with ordinary load

Pure NN-AFD Bertier-Marin-Sens Combined NN-AFD

False detections 8.50 9.00 9.50

Mistake duration (ms)�

25.36 27.33 26.82

16.50 18.50 17.50

22.25 22.35 21.85

Detection time (ms)�

1005.23 1003.80 1003.71

1005.00 1002.50 1002.50

0.66 6.22 3.75
� average / median / standard deviation

Adapting Failure Detectors to Communication Network Load Fluctuations 203

Table 3. Performance with constant safety margin

Pure NN-AFD Bertier-Marin-Sens Combined NN-AFD Chen-Toueg-Aguilera

False detections 3 6 6 –

Mistake duration
(ms)�

17.33 17.83 17.83 –

21.00 20.50 20.50 –

3.86 3.89 3.89 –

Detection time
(ms)�

1010.72 1003.21 1003.66 1031.69

1007.00 1002.00 1002.00 1032.00

15.03 6.68 5.22 5.74
� average / median / standard deviation

was more accurate than the Bertier-Marin-Sens’ detector (less false detections),
with a worse detection time (consistent with the data showed in Tab. 2). The high
detection time of the Chen-Toueg-Aguilera’s detector was due to the safety margin
of 30 milliseconds. By choosing smaller safety-margins, this average will decrease
accordingly. It is left open, however, how smaller this safety-margin can go without
affecting the QoS of the other metrics.

A justification to choose the Bertier-Marin-Sens’ detector, instead the Chen-
Toueg-Aguilera’s detector, it is to achieve a better detection time (as showed in
[10]). On the other hand, our experiments show that even in the situations where
the Bertier-Marin-Sens’ detector performed better than NN-AFD (Tab. 2), the
combined NN-AFD had virtually the same QoS as Bertier-Marin-Sens’ detector.
Therefore, by using the combined NN-AFD and choosing the proper technique to
switch between the detectors, one can take full advantage of the good characteris-
tics of NN-AFD, which clearly has the best performance in situations where load
patterns very randomly, still keeping the good QoS of the Bertier-Marin-Sens’ de-
tector in stable periods.

5 Concluding Remarks

Being able to detect failures is a fundamental issue in designing fault-tolerant dis-
tributed systems. However, the actual behaviour of a distributed system limits the
ability of providing such a mechanism. Whereas synchronous systems allow for the
construction of perfect failure detection based simply on fixed timeouts, accurate
failure detection cannot be achieved for fully asynchronous systems or even par-
tially synchronous systems, as it is the case for the partial synchronous model of
unreliable failure detectors of Chandra and Toueg [1,7].

To precisely define the failure detector QoS requirements, Chen, Toueg, and
Aguilera, proposed a set of metrics and showed an implementation of an adaptive
algorithm that performed well under the given metrics. Bertier, Marin, and Sens,
extended the failuredetector developedbyChen,Toueg,andAguilera,by introduc-
ing a safety margin dynamically calculated according Jacobson’s algorithm [20],
which resulted in a detector with a better detection time average.

204 F. Lima and R. Macêdo

In the present paper we explored the use of artificial neural networks in order
to improve the quality of service of failure detectors. The training patterns used
to feed the neural network were obtained by using SNMP agents over MIB data
related to a local area network. The output of the neural network is an estimation
for the arrival time for the failure detector to receive the next heartbeat message
from a remote process. The failure detector was fully implemented and tested over
a set of GNU/Linux networked workstations. In order to analyze the efficiency of
our approach, we have run a series of experiments where network loads were var-
ied randomly, and we measured several QoS parameters according to the metrics
introduced in [14], comparing the introduced detector against known implementa-
tions. The experiments show that the presented detector performed well compared
with existing approaches and, therefore, it is an indication thatneural networks and
MIB variables can be combined together to improve the QoS of failure detectors.
Whereas the specific neural network chosen and the related MIB variables yield
a good QoS performance, it is left open, however, how much improvement can be
archived considering distinct types of neural networks with distinct combinations
of MIB variables.

In the next step of our work, we are going to develop an adaptation layer, also
based on a neural network, which will take distinct application failure detection
QoS requirements and produce the adequate heartbeat period for given system set-
tings.Moreover, wewill exploreMIBdata collected fromremotenetwork segments.
This will allow us to use our approach in a wider variety of application scenarios,
including the Internet.

Acknowledgments

The authors would like to thank the anonymous referees whose comments helped
us to improve the paper presentation, and the financial support of SANMINA-SCI
(project ‘Service Integration and Failure Monitoring’ a collaboration project be-
tween LaSiD/DCC/Federal University of Bahia and SANMINA-SCI).

References

1. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. Journal of the ACM 43 (1996) 225–267

2. Hurfin, M., Macêdo, R., Raynal, M., Tronel, F.: A general framework to solve agree-
ment problems. In: SRDS ’99: Proceedings of the 18th IEEE Symposium on Reliable
Distributed Systems, Washington, DC, USA, IEEE Computer Society (1999) 56–65

3. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. Journal of the ACM 32 (1985) 374–382

4. Dwork,C., Lynch,N., Stockmeyer, L.: Consensus in the presence of partial synchrony.
Journal of the ACM 35 (1988) 288–323

5. Verissimo, P., Casimiro, A., Fetzer, C.: The timely computing base: Timely actions
in the presence of uncertain timeliness. In: DSN ’00: Proceedings of the 2000 Inter-
national Conference on Dependable Systems and Networks, Washington, DC, USA,
IEEE Computer Society (2000) 533–542

Adapting Failure Detectors to Communication Network Load Fluctuations 205

6. Gorender, S.,Macêdo,R.,Raynal,M.: Ahubrid and adaptivemodel for fault-tolerant
distribuded computing. In: DSN ’05: Proceedings of the 2005 International Con-
ference on Dependable Systems and Networks, Yokohama, Japan, IEEE Computer
Society (2005) 412–421

7. Chandra, T.D., Hadzilacos, V., Toueg, S.: The weakest failure detector for solving
consensus. Journal of the ACM 43 (1996) 685–722

8. Macêdo, R.: Failure detection in asynchronous distributed systems. In: II WTF:
Workshop on Tests and Fault-Tolerance, Curitiba, PR, Brazil (2000) 76–81

9. Nunes, R., Jansch-Porto, I.: A lightweight interface to predict communication delays
using time series. In: LADC ’03: Proceedings of the Latin-American Symposium on
Dependable Computing, São Paulo, SP, Brazil (2003) 254–263

10. Bertier, M., Marin, O., Sens, P.: Implementation and performance evaluation of an
adaptable failure detector. In:DSN ’02:Proceedings of the 2002 InternationalConfer-
ence on Dependable Systems and Networks, Washington, DC, USA, IEEE Computer
Society (2002) 354–363

11. Devianov, B., Toueg, S.: Failure detector service for dependable computing. In: DSN
’00: Proceedings of the 2000 International Conference on Dependable Systems and
Networks, Washington, DC, USA, IEEE Computer Society (2000) B14–B15

12. Larrea, M., Fernández, A., Arévalo, S.: Optimal implementation of the weakest fail-
ure detector for solving consensus (brief announcement). In: PODC ’00: Proceedings
of the nineteenth annual ACM symposium on Principles of distributed computing,
New York, NY, USA, ACM Press (2000) 334

13. Sotoma, I., Madeira, E.R.M.: Adaptation - algorithms to adaptive fault monitoring
and their implementation on corba. In: DOA ’01: Proceedings of the Third Interna-
tional Symposium on Distributed Objects and Applications, Washington, DC, USA,
IEEE Computer Society (2001) 219–228

14. Chen, W., Toueg, S., Aguilera, M.K.: On the quality of service of failure detectors.
IEEE Trans. Comput. 51 (2002) 13–32

15. Bertier, M., Marin, O., Sens, P.: Performance analysis of hierarchical failure detec-
tor. In: DSN’ 03: Proceedings of the 2003 International Conference on Dependable
Systems and Networks, San-Francisco (USA), IEEE Society Press (2003) 635–644

16. Macêdo, R., Lima, F.: Improving the quality of service of failure detectors with snmp
and artificial neural networks. In: Simpósio Brasileiro de Redes de Computadores,
SBRC’2004 (short-paper track, Gramado-RS, Brazil, SBC - Brazilian Computer So-
ciety (2004) 583–586

17. Haykin, S.: Neural Networks: A Comprehensive Foundation. 1 edn. MacMillan Pub-
lishing Company (1994)

18. McCloghrie, K., Rose, M.: Management Information Base for Network Management
of TCP/IP-based internets:MIB-II. RFC 1213 (Standard) (1991) Updated by RFCs
2011, 2012, 2013.

19. Case, J., Fedor, M., Schoffstall, M., Davin, J.: Simple Network Management Protocol
(SNMP). RFC 1157 (Historic) (1990)

20. Jacobson, V.: Congestion avoidance and control. In: SIGCOMM ’88: Symposium
proceedings on Communications architectures and protocols, New York, NY, USA,
ACM Press (1988) 314–329

Parsimony-Based Approach for Obtaining
Resource-Efficient and Trustworthy Execution�

HariGovind V. Ramasamy, Adnan Agbaria, and William H. Sanders

Coordinated Science Laboratory, University of Illinois at Urbana-Champaign,
1308 W. Main Street, Urbana, IL 61801, USA

{ramasamy, adnan, whs}@crhc.uiuc.edu

Abstract. We propose a resource-efficient way to execute requests in
Byzantine-fault-tolerant replication that is particularly well-suited for
services in which request processing is resource-intensive. Previous ef-
forts took a failure-masking all-active approach of using all 2t+1 execu-
tion replicas to execute all requests, where t is the maximum number of
failures tolerated. We describe an asynchronous execution protocol that
combines failure masking with imperfect failure detection and check-
pointing. Our protocol is parsimony-based since it uses only t +1 execu-
tion replicas, called the primary committee or pc, to execute the requests
normally. Under normal conditions, characterized by a stable network
and no misbehavior by pc replicas, our approach enables a trustworthy
reply to be obtained with the same latency as in the all-active approach,
but with only about half of the overall resource use of the all-active ap-
proach. However, a request that exposes faults among the pc replicas
will incur a higher latency than the all-active approach mainly due to
fault detection latency. Under such conditions, the protocol switches to
a recovery mode, in which all 2t + 1 replicas execute the request and
send their replies. Then, after selecting a new pc, the request latency
returns to the same level as that of all-active execution. Practical obser-
vations point to the fact that failures and instability are the exception
rather than the norm. That motivated our decision to optimize resource
efficiency for the common case, even if it means paying a slightly higher
performance cost during periods of instability.

1 Introduction

The trustworthiness of a networked information system (NIS) is judged by its
ability to provide security and fault tolerance despite software errors, operator
errors, and malicious attacks [1]. Since it is difficult to constrain the behavior
of a compromised node that is under the control of an adversary, the Byzantine
failure model is an attractive way to model such behavior. By using redundancy
to mask the effects of up to a threshold number of security-compromised or failed
nodes, Byzantine fault tolerance (BFT) is a promising approach to enhance

� This material is based upon work supported in part by the National Science Foun-
dation under Grant No. CNS-0406351 and DARPA contract F30602-00-C-0172.

C.A. Maziero et al. (Eds.): LADC 2005, LNCS 3747, pp. 206–225, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Parsimony-Based Approach 207

the trustworthiness of NISs. In BFT replication, the replicas of a service run
deterministic state machines [2] and execute client requests in the same order
to ensure state consistency. Execution of requests is preceded by an agreement
among the replicas on the request-delivery order using Byzantine agreement (or,
equivalently, atomic broadcast).

While Byzantine fault tolerance (BFT) as an area has existed for more than
two decades, much of the earlier work had significant but mainly theoretical
implications. More recent work has focused on removing the barriers that limit
the widespread use of BFT to improve security and reliability.

Castro and Liskov’s BFT library [3] showed that BFT replication systems can
be built that add only modest extra latencies relative to unreplicated systems.
They also showed that proactive recovery can be used to significantly increase
the coverage of the assumption that there are at most a threshold number (one-
third) of replicas that can be corrupted by the adversary.

A drawback of BFT replication that limited its applicability in many real-
world settings was the requirement that all replicas should run the same service
implementation and update their states deterministically. If all replicas ran the
same service implementation, then an adversary could exploit the same vul-
nerabilities or software bugs to cause all replicas to fail simultaneously. The
determinism requirement is non-trivial to satisfy in many real-world services.
Rodrigues et al. [4] proposed an extension of the BFT library called BASE,
which uses abstraction to address that drawback. Specifically, BASE enables the
use of diverse COTS-based replica implementations, thereby reducing the pos-
sibility of common-mode failures. Their technique uses wrappers to ensure that
diverse and non-deterministic implementations of the replicas of a service satisfy
a common abstract specification.

Yin et al. [5] improved BASE by enforcing a clean separation between agree-
ment on the request delivery order and execution of requests in the agreed-upon
order. Figure 1(b) gives a high-level view of the separation, and contrasts it
with traditional BFT (Fig. 1(a)), which tightly couples agreement and execu-
tion. While the agreement cluster has the usual 3t + 1 replicas (we call them
agreement replicas), the separation allowed the number of replicas in the exe-
cution cluster (we call them execution replicas) to be decreased from 3t + 1 to
2t+1, where t is the number of simultaneous replica faults that have to be toler-
ated. The separation also opened up the possibility of including a privacy firewall
between the two phases that could be used to enhance confidentiality by pre-
venting a malicious replica in the execution cluster from disclosing unauthorized
information to users.

This paper proposes a resource-efficient way to execute requests in BFT
replication that is particularly well-suited for services in which request execution
is resource-intensive (e.g., computation-intensive). The previous best way was
the one proposed by Yin et al. that used 2t+1 execution replicas. Previous work
followed an all-active approach (Figures 1(a) and (b)), in which all execution
replicas executed the request. We observe that while 2t + 1 execution replicas
is the minimum number of replicas needed to mask t corrupt ones, the client

208 H.V. Ramasamy, A. Agbaria, and W.H. Sanders

Replica Cluster

A

A

A

A E

E

E

E1

2

request certificate

reply certificate
Cm

request certificate

reply certificate

request certificate

reply certificate

C

C

(a) Tightly coupled agreement
& execution

all replicas active

C

E

E

1

2

request certificate

reply certificate
Cm

request certificate

reply certificate

request certificate

reply certificate

C

Replica Cluster

A

A

A

A

Agreement

agreement
certificate

reply
certificate

E

Execution
Replica Cluster

(b) Separate agreement & execution: Only 2t+1
(not 3t + 1) execution replicas

active

C

E

E

1

2

request certificate

reply certificate
Cm

request certificate

reply certificate

request certificate

reply certificate

C

Replica Cluster

A

A

A

A

Agreement

agreement
certificate

reply
certificate

E

Execution
Replica Cluster

set

(c) Parsimony-based resource-efficient execution:
t + 1 active replicas normally

Fig. 1. Successive Steps for Obtaining Efficient Execution in BFT Replication

needs only a set of t + 1 identical replies (we call this set the reply certificate)
before considering the reply to be trustworthy. The reason is that identical replies
from t + 1 execution replicas will always include the reply from at least one
correct replica. Hence, that reply value must be correct. We leveraged the above
observation and designed an optimistic protocol for the execution cluster replicas.
The protocol is parsimony-based since normally only a fraction of the available
resources (i.e., t + 1 out of 2t + 1 replicas) are used for request execution.

Our protocol is based on the optimistic hope [6] that normally the network is
well-behaved and a designated set of t + 1 replicas function properly. When the
optimistic hope is satisfied, reply certificates are obtained with the same latency,
but with only about half of the overall resource use of the all-active approach.
Overall resource use is the average resource use at a replica times the number
of replicas.

The approach does have a price: in situations when the optimistic hope is
not satisfied, the latency for obtaining the reply certificate is higher than it is
in the all-active approach due to failure-detection latency. However, even under
such situations, our protocol guarantees safety and liveness, subject only to the
condition that messages are delivered eventually. Even in NISs that are high-
value attack targets, such situations are expected to be rare. Hence, it makes

Parsimony-Based Approach 209

sense to optimize for the common case, and be prepared for the rare situations
in which a higher price may be paid.

The rest of this paper is organized as follows. Section 2 presents the system
model and assumptions. Section 3 describes an abstraction of the agreement clus-
ter that simplifies our protocol presentation. Section 4 presents our parsimony-
based execution protocol in detail. Section 5 specifies the properties that our
protocol is expected to satisfy. We have implemented our protocol and evalu-
ated its performance through fault injection experiments, the results of which are
described in Sect. 6. Section 7 lists some practical applications for our protocol
and compares it with related work. Finally, Sect. 8 presents our conclusions.

2 System Model

We consider an asynchronous distributed system model in which nodes may
operate at arbitrarily different speeds. Every pair of nodes is connected by a
secure asynchronous channel that provides authenticity. Authenticity can be
easily ensured using cheap message authentication codes (MACs) [7]. Asynchro-
nous channels mean that there are no a priori bounds on message transmission
delays.

The BFT-replicated service consists of na replicas forming an agreement
cluster and ne replicas forming an execution cluster. Agreement cluster replicas
and execution cluster replicas may occupy different nodes (i.e., there is a physical
separation between agreement and execution) or may share nodes (i.e., there is
only logical separation between agreement and execution). Clients and replicas
occupy different nodes.

Figure 1 shows the dataflow from the clients to the replicated service and
back. Clients send authenticated request certificates to the agreement cluster
replicas. The request certificates will carry some validating information show-
ing that the clients do have the privilege to issue the requested operations. The
agreement cluster replicas run a Byzantine agreement or BFT atomic broadcast
protocol (e.g., Castro-Liskov’s BFT protocol [3] or Cachin et al.’s atomic broad-
cast protocol [8]) to agree on the order of request execution. The agreed-upon
order is conveyed to the execution cluster replicas through agreement certificates
that show that a sufficient number of agreement cluster replicas approved the
order. The execution cluster replicas start with the same initial service state
and implement deterministic state machines; they convey the result of executing
the requests through reply certificates that contain evidence showing that the
result is indeed correct. The reply certificates are sent to the agreement cluster
replicas, which then forward the reply certificates to the client.

A computationally bounded adversary controls up to t agreement cluster
replicas and up to t execution cluster replicas. We call the replicas controlled by
the adversary corrupt ; other replicas are correct. Corrupt replicas may behave
in an arbitrary (i.e., Byzantine) manner. Further, it is well-known that to mask
t faults, the minimum number of agreement cluster replicas needed is 3t + 1
and the minimum number of execution cluster replicas needed is 2t + 1. Thus,

210 H.V. Ramasamy, A. Agbaria, and W.H. Sanders

na ≥ 3t + 1 and ne ≥ 2t + 1. Figure 1(c) depicts the situation where t = 1,
na = 4, and ne = 3.

The adversary controls the network and determines the scheduling of mes-
sages on all the channels. Timeouts are messages a replica sends to itself; hence,
the adversary controls the timeouts as well. However, the parsimony-based ex-
ecution protocol’s properties are guaranteed only to the extent that messages
exchanged between correct replicas are eventually delivered without any change
in contents.

Besides MAC-authentication for implementing secure channels, we also use
public-key signatures [7]. A recipient of a signed message that is convinced of
the message’s authenticity can convince a third party about the message’s au-
thenticity. However, MAC-authentication is not provable to a third party. For
the public key signature scheme, each replica possesses a public key, private
key pair. The public key of a replica is known to all other replicas. We assume
that the signature scheme is secure in the sense of the standard security notion
for signature schemes of modern cryptography, i.e., existential forgery against
chosen-message attacks [9].

3 The Agreement Cluster Abstraction

In the description of the parsimony-based execution protocol, we consider the
agreement cluster as an abstract service that guarantees certain properties relat-
ing to the ordering of client requests. We use AC to denote that service. Abstract-
ing the na agreement cluster replicas as one logical entity allows us to keep the
focus on the execution cluster replicas with whose behavior the parsimony-based
execution protocol is concerned. The functionality provided by AC is the binding
of sequence numbers (starting from 1 and without gaps) to request certificates,
and the conveying of the bindings to the execution cluster through agreement
certificate messages. The AC does not require any information about what ex-
ecution cluster replicas constitute the pc and sends the agreement certificate
messages to all the replicas. An agreement certificate message binds a sequence
number s to a client’s request certificate. In our protocol description, the message
has the form (agree, s, o,flag), where the retransmit flag is either true or false.
For notational simplicity, we include only the service operation o contained in
the client’s request certificate rather than the full certificate. First, AC sends an
agree message with the flag value false. If AC does not receive a reply certifi-
cate before a timeout, then it retransmits the agree message with the flag value
true. We use the term first-time agree(s) to denote the agree message with
sequence number s and flag value false. We use the term retransmit agree(s)
to denote the agree message with sequence number s and flag value true.

The AC provides the following guarantees to the execution cluster replicas:

Agreement: If a correct execution replica receives an agreement certificate
binding sequence number s to request certificate rc, then no other correct ex-
ecution cluster replica receives an agreement certificate binding s to another
request certificate rc′, where rc′ �= rc.

Parsimony-Based Approach 211

all replicas exchange replies

NORMAL
PARSIMONY PARSIMONY

unresponsive

correct, timely replies from

or corrupted

all replicas

checkpoint request
agreement cluster timeout or

correct, timely replies
agreement cluster gets

replicast+1from

RECOVERY

AUDIT

pc

pc replica(s)pcchange

Fig. 2. The Three Modes of Protocol Operation

Liveness: If a client sends a request certificate r to AC, then all correct exe-
cution cluster replicas eventually receive an agreement certificate binding some
sequence number s to rc.

The above properties of the AC allow the BFT-replicated service to tolerate
an arbitrary number of corrupt clients: even if corrupt clients’ requests are exe-
cuted, those clients cannot cause the service states of correct execution cluster
replicas to become inconsistent. Client access control and request-filtering poli-
cies [3,5] can be enforced in the implementation of AC; the policies can effectively
limit the number and scope of requests from corrupt clients.

4 The Protocol

To generate a reply certificate for one client request, the execution cluster replicas
may go through at most three modes of protocol operation, as shown in Fig. 2.
We now describe the protocol’s operation in each of those three modes and the
triggers that cause the transitions among the modes.

In the following description, we use E1, E2, . . . , Ene to denote the execution
cluster replicas. The rank of replica Ei is i. 〈m〉σi is used to denote a message
m signed by replica Ei. Ei maintains a local sequence number variable s, where
s − 1 indicates the highest sequence number for which Ei is sure that AC has
obtained a reply certificate.

Each replica maintains two sets, slow and corrupt , initialized to empty sets.
The (t + 1) lowest-ranked replicas that are neither in slow nor in corrupt con-
stitute what we call a primary committee, or pc for short. We call the t non-pc
execution replicas backups. Hence, initially, the primary committee at all replicas
consists of the (t + 1) lowest-ranked replicas, namely {E1, E2, . . . , Et+1}. If two
replicas have the same slow and corrupt sets, then their respective primary com-
mittees will also be the same. For example, if t = 3, then the primary committee
at all replicas would initially be {E1, E2, E3, E4}. If replica E2 was later added

212 H.V. Ramasamy, A. Agbaria, and W.H. Sanders

to replica E4’s slow or corrupt set, then the primary committee at replica E4
would become {E1, E3, E4, E5}.

To simplify the description of the parsimony-based execution protocol, we
assume that AC sends its next request after receiving the reply certificate for
its previous request, i.e., the AC has only one outstanding request. It is easy
to extend the protocol to the case where AC has any fixed constant number of
outstanding requests.

4.1 Parsimony-Based Normal Mode

When Ei receives a first-time agree(s+1) message, the protocol at Ei moves to
the parsimony-based normal mode. Ei maintains a queue of requested operations
called requests, and adds the service operation indicated in the agree message
to the queue. Because of our assumption that AC has at most one outstanding
request, Ei can be sure that AC has obtained a reply certificate for agree(s)
when it receives the first-time agree(s + 1) message. Hence, Ei increments its
sequence number variable s.

If Ei �∈ pc, then it does nothing more in this mode. On the other hand, if
Ei ∈ pc, then it executes the service operation indicated in the agree message,
and sends the result r of the execution to the AC in a reply message of the form
(reply, i, s, r). Ei also adds its reply message to replies , a data structure that
all replicas have to store reply messages from themselves and other replicas.
Since the replicated state machines are deterministic and the request execution
is done in sequence number order, the r values in the reply messages sent by
all correct replicas will be identical.

In the normal case, the reply messages from the pc replicas will be sufficient
for the AC to obtain a reply certificate, which it then forwards to the respective
client. AC can then issue the agree message with the next sequence number s+1.

Transition from Normal to Audit Mode. The protocol at Ei transitions to
the parsimony-based audit mode from the parsimony-based normal mode when

1. Ei receives a retransmit agree(s) message from AC and thereby learns that
AC did not get a reply certificate for agree(s) in a timely manner, or

2. Ei receives a checkpoint request.

A checkpoint request is a message of the form (agree, s + 1, o, true), where
s + 1 is divisible by the checkpoint interval δ. After every δ − 1 agree messages,
AC generates a special agree message in which the requested operation o is a
checkpoint operation1. When Ei receives the checkpoint request, Ei knows that
AC must have received a reply certificate for agree(s), and hence increments s.
Executing a checkpoint operation involves taking a snapshot of the replicated
service states and computing the digest of the snapshot. The result field r of the
reply message for a checkpoint request will contain the checkpoint digest. If Ei

1 Alternatively, execution cluster replicas can self-issue a checkpoint request after δ
requests from AC.

Parsimony-Based Approach 213

has obtained a reply certificate for a checkpoint request with sequence number
s, we say that the (s/δ)th checkpoint is stable at Ei. Checkpointing, as will be
shown later, is useful for the efficient update of a backup’s state when it has to
switch to the recovery mode. Checkpointing also allows the garbage collection
of reply and agree messages with sequence numbers less than that of the last
stable checkpoint.

4.2 Parsimony-Based Audit Mode

Upon switching to the audit mode, an execution cluster replica Ei starts a timer
and expects to obtain a reply certificate before the timer expiry. If progress is not
being made, the replicas collectively switch the protocol to the recovery mode,
in which all correct replicas generate their own reply messages (if they hadn’t
done so previously) and ensure that the AC obtains a reply certificate. If, on
the other hand, the replicas indeed receive a reply certificate in a timely manner
from the pc, they forward the certificate to AC and the protocol will switch back
to the parsimony-based normal mode.

To enable the monitoring of progress, the pc replicas are required to send
signed reply messages to all execution cluster replicas. A pc replica Ej retrieves
the result value of the reply message from the replies data structure if it had
previously sent a reply message to AC in the parsimony-based normal mode.
Otherwise, Ej obtains the result value by executing the operation specified in
the corresponding agree message from AC.

Transition from Audit to Recovery Mode. An execution cluster replica
Ei may not be able to obtain a reply certificate before its local timer expiry for
one or both of the following reasons:

1. Slow Replies: A pc replica is (deliberately or unintentionally) slow in sending
its reply message.

2. Wrong Replies: A pc replica did send its reply message, but with the wrong
result value.

Slow Replies. If Ei does not receive the reply message from a pc replica Ek in a
timely manner, then Ei sends a signed suspect message for Ek to all execution
cluster replicas. The suspect message has the form 〈suspect, i, k, s, c〉σi , where
s is the sequence number and c is a variable called the reset counter. The reset
counter is an artefact of imperfect failure detection and is used to keep track of
the number of times the slow set is reset to account for that imperfection. We
discuss this in detail in Sect. 4.5.

If a correct replica Ej (has received or) later receives Ek’s reply message
with sequence number s, then Ej simply forwards Ek’s reply message to Ei

upon receiving Ei’s suspect message. This reply forwarding ensures that if at
least one correct replica has received Ek’s reply message for agree(s), then all
correct replicas will eventually receive Ek’s message.

On the other hand, if no correct replica has received Ek’s reply message
for agree(s) in a timely fashion (determined by the replicas’ respective local

214 H.V. Ramasamy, A. Agbaria, and W.H. Sanders

timers), then each of the n − t correct replicas will generate a suspect message
for Ek. Ei keeps track of all the suspect messages it receives by storing them
in a data structure, suspects.

After receiving 〈suspect, j, k, s, c〉σj messages from n− t distinct Ejs (possi-
bly including itself), replica Ei adds Ek to its slow set. Ei then sends an indict
message of the form (indict, k, s, c, proof) to all replicas, where proof contains
the signed suspect messages. Ei also adds s to a set mustDo that is used to
keep track of the sequence numbers of those requests that caused the protocol
to switch to recovery mode; the set is so named because all replicas, whether
pc or backup, must send their own reply messages for those requests. Having
added the pc replica Ek to its slow set, Ei updates its pc accordingly. Ei then
switches to the recovery mode. Any replica Ej at which Ek �∈ slow that receives
Ei’s indict message will add Ek to its slow set, send its own similar indict
message for Ek to all replicas, and switch to the recovery mode.

Wrong Replies. Since the state machines are deterministic and request execution
is done in sequence number order, any difference in the result values of reply
messages from two replicas indicates that at least one of them is corrupted.
However, to be able to pinpoint in a provable manner which of those two replicas
is corrupt, a reply certificate is needed; any replica whose reply message contains
a result value different from that in a reply certificate is corrupt. Replica Ei

sends an implicate message of the form (implicate, s, proof) to all replicas,
where proof contains two or more reply messages with differing result values. A
recipient Ek of Ei’s implicate message will not know which of the implicated
replicas is actually corrupt, but will be convinced of the need to switch to the
recovery phase and add s to the mustDo set.

Repeated Transitions from Normal to Audit Mode. A corrupt pc replica
can cleverly degrade protocol performance by repeatedly refraining from sending
a reply message to the AC, thereby forcing a transition from the normal to audit
mode, while behaving properly in the audit mode. That would result in frequent
transitions from the normal to audit mode and back to normal mode, without a
change in the pc.

The protocol addresses the above problem as follows. If the fraction of re-
quests that resulted in a transition from the normal to audit mode exceeds a
fixed threshold, the protocol operates semi-permanently in the audit mode until
the next transition to the recovery mode. After the pc is changed in the recovery
mode, the protocol reverts back to the normal mode.

4.3 Recovery Mode

Only the pc replicas send reply messages in the normal and audit modes. In the
recovery mode, however, backups are also required to send signed replymessages
to other replicas. Because at least t + 1 replicas are correct, the recovery mode
guarantees that a reply certificate for agree(s) will eventually be obtained. As in
the audit mode, the reply certificate is then forwarded to the AC. The execution

Parsimony-Based Approach 215

replicas then change the pc, and switch back to the parsimonious normal mode
for the next request.

To send a reply message, a backup first has to determine the result value
corresponding to the request contained in agree(s). As before, the result is
obtained from a reply certificate (if previously received), or otherwise by actual
execution of the request. Before executing the operation specified in the agree(s)
message, however, a backup Ei has to ensure that its state is up-to-date. For this
purpose, all replicas maintain a variable updated to keep track of how up-to-date
their state is. Only when updated becomes equal to s − 1 can Ei execute the
operation specified in the agree(s) message. Bringing the state up to date may
involve two steps:

1. If updated < stable at Ei, where stable is the sequence number of Ei’s last sta-
ble checkpoint, then Ei first obtains the state corresponding to the execution
of all requests with sequence numbers up to stable . Ei determines the t + 1
replicas whose reply messages form the reply certificate for agree(stable).
Ei then requests the state corresponding to that checkpoint by sending a
message of the form (state, stable) to those t + 1 replicas. Since at least
one of the replicas is correct, Ei is guaranteed eventually to obtain the state
corresponding to that checkpoint. Ei can easily verify whether the state
transferred is correct; Ei computes the digest of a copy of the state obtained
after it has applied the updates indicated in the state transfer, and then
compares the digest with the one present in the certificate for the stable
checkpoint. If the two digests are equal, then the state transferred is correct.
Ei then changes the value of updated to be equal to stable .

2. Ei updates its state to reflect the execution of requests with sequence num-
bers from updated + 1 to s − 1. To perform the update, Ei retrieves those
requests from the agree messages stored in the local requests queue, and
then actually executes those requests.

Computation of checkpoint digests and state transfer can be made efficient
through the use of incremental checkpointing techniques described in [3].

Once a reply certificate has been obtained, it is easy to pinpoint which of
the previously implicated replicas (if any) are actually corrupt. A correct replica
Ei adds such replicas to its local corrupt set, and updates its pc accordingly. Ei

also shares this information with other replicas, by sending a convict message
to all replicas. The convict message has the form (convict, k, s, proof), where
proof contains the reply certificate and replica Ek’s reply message for agree(s).
Once a correct replica has added Ek to its corrupt set, it discards any further
protocol messages received directly from Ek.

4.4 Primary Committee Changes

At a correct execution cluster replica, any pc change is the result of a change in
the sets slow or corrupt and is always accompanied by the sending of indict
or convict messages respectively. Thus, it is not possible for corrupt replicas to

216 H.V. Ramasamy, A. Agbaria, and W.H. Sanders

force a change in the pc when the pc replicas are indeed correctly functioning.
Those messages contain sufficient proof to convince any other correct execution
cluster replica to effect the same change in its own local slow or corrupt sets. As
a result, even though correct replicas may temporarily differ in their perspectives
of the primary committee, their perspectives will eventually concur.

4.5 Failure Detection and Its Effect on Protocol Operation

What the parsimony-based audit mode and the recovery mode accomplish when
the pc is not able to produce a reply certificate is the distributed identification
of pc replicas that are not functioning properly. The identification is essentially
a form of failure detection and is done with the goal of eventually making the
pc consist only of correct replicas.

In our formal system model, the adversary controls the scheduling of messages
and hence the timeouts; thus, the adversary can cause a correctly functioning pc
replica to be added to the slow sets of correct replicas.

Unlike the adversary in our formal model, the network in a real-world set-
ting will not always behave in the worst possible manner. The motivation for
an optimistic protocol such as ours is the hope that timer values that are set
based on stable network conditions have a high likelihood of being accurate.
Such a hope is not unrealistic since practical observations point to the fact that
network behavior alternates between long periods of stable conditions and rela-
tively short periods of stability; this indicates that unstable network conditions
are the exception rather than the norm. During periods of stability and when
the pc replicas do not actively misbehave, the optimistic hope will be satisfied
and our protocol will provide resource-efficient request execution with roughly
the same latency as the all-active approach.

Even if the optimistic hope is not satisfied, our protocol guarantees safety and
liveness. Safety mainly relates to replica state consistency. Since replicas always
execute a request bound to sequence number s only after a state update that
reflects the execution of all lower-sequence-numbered requests, safety is never
violated. Liveness, which is the ability to obtain a reply certificate eventually,
is also guaranteed; inaccurate failure detection can, at worst, cause correct pc
replicas to be added to the slow sets at correct replicas, but then the protocol
will switch to the recovery mode, which guarantees that a reply certificate will
be obtained.

Neutralizing the Effect of Inaccurate Failure Detection. Since the ad-
versary corrupts at most t replicas and the only replicas added to the corrupt
set are those that actually exhibited malicious failures, the corrupt set at a cor-
rect replica never exceeds t. However, due to inaccurate failure detection, it is
possible that correct replicas will get added to the slow set, and subsequently,
|slow ∪ corrupt | may exceed t. To allow the next pc to be chosen, whenever
|slow ∪ corrupt | = t+1, the slow set is reset to the empty set, ∅. A reset counter
c is used to keep track of the number of resets. Both suspect and indict mes-
sages carry an indication of the reset counter value. This allows the garbage

Parsimony-Based Approach 217

collection of all indict and suspect messages with lower reset-counter values,
whenever c is incremented.

Since a correct replica Ei sends an indict message for each new entry to
its local slow set and a convict message for each new entry to its local corrupt
set, if Ei encounters a situation in which |slow ∪ corrupt | > t, then any correct
replica Ej will also eventually encounter a situation |slow ∪ corrupt | > t. Thus,
if the reset-counter c at replica Ei is incremented, then eventually all correct
replicas will also increment their respective reset-counters to c + 1.

5 Protocol Properties

Any replication protocol is required to guarantee safety and liveness. Safety
is specified by the total order, update integrity, and result integrity properties
described below. Liveness is specified by the termination property described
below. Parsimony characterizes the resource efficiency obtained under perceived
stable conditions, and distinguishes our protocol from the all-active approach.
Due to space constraints, we omit the proofs here; they can be found in the full
version of the paper [10].

Termination: If the AC sends agree(s), it eventually receives a reply certifi-
cate.

Total Order: At any two correct execution cluster replicas Ei and Ej , the
updates to their internal states due to execution of the request indicated by
agree(s) are the same.

Update Integrity: Any correct execution cluster replica updates its internal
state in response to the request indicated by agree(s) at most once, and only
if AC actually sent that message.

Result Integrity: If r is the result value in the reply certificate received by
AC for agree(s), then at least one correct execution cluster replica sent a reply
message with result value r.

Parsimony: A correct execution cluster replica Ei that is not part of the
primary committee will execute the request indicated by the agree(s) message
and then send a corresponding reply message to other replicas only if (1) Ei

has not yet obtained a reply certificate for the request, and (2) Ei added s to
its local mustDo set due to a corrupt or slow replica.

6 Experimental Evaluation

We implemented and experimentally evaluated the parsimony-based execution
protocol under both fault-free conditions and controlled fault injections. We com-
pare the results for our protocol with those obtained for the all-active execution
approach. All implementations were done in C++.

218 H.V. Ramasamy, A. Agbaria, and W.H. Sanders

The fact that the execution phase of a BFT-replicated service will be service-
specific poses a challenge to obtaining useful results. The resources involved
during request processing will be service-specific, and even request-specific. In
our experiments, we have tried to account for that fact by varying the range of
service-specific parameters, like the resource intensity of request processing. The
specific resource type that we emphasized in our experiments is the CPU, but
the conclusions we draw are also an indicator of the trends for other resource
types (e.g., network bandwidth) that may be involved in request processing. Our
intention was to give a flavor of how parsimony-based execution compares with
all-active execution for different service types.

We conducted our experiments for execution cluster sizes ne = 3, 5, 7, 9, and
11 that can tolerate t = 1, 2, 3, 4, and 5 simultaneous replica faults, respectively.
In a real-world setting, the AC would consist of a set of 3t+1 agreement replicas;
however, to keep the focus on the execution phase of BFT replication, the clients
and the agreement cluster replicas were represented by a single AC process that
generated requests and provided the properties given in Sect. 3.

The setup consisted of a testbed of 12 otherwise unloaded machines. Each
machine had a single Athlon XP 2400 processor and 512 MB RAM running
RedHat Linux 7.2. One machine was devoted to running the AC process. At
most one execution replica ran on the other machines. The computers were
connected by a lightly loaded full-duplex 100 Mbps switched Ethernet network.
Digital signatures and MACs were generated using 1024-bit RSA and SHA-
1 respectively. Each replica maintained about 1 MB of service-specific state,
organized into 1 KB blocks and loaded into its main memory at initialization
time.

The AC sends two kinds of requests: retrieve-compute requests and update-
compute requests. Additionally, for the parsimony-based execution protocol,
every 200th AC request is a checkpoint request. A retrieve-compute request speci-
fies a block to be retrieved. A replica performs some computation on the contents
of the block, and returns the result in a reply message; there is no change to the
replica state. An update-compute request specifies a block and new contents for
the block. A replica updates the specified block with the new contents, performs
some computation on the new contents, and returns the result. The argument
field of a retrieve-compute request is only a few bytes specifying the block num-
ber; for an update-compute request, the argument field has the size of a block
(1 KB). The result field of the reply message for either type of request contains
the result of the computation and has the size of a block (1 KB). The AC sends
a new request after obtaining a reply certificate for its last request.

6.1 Behavior in Fault-Free Runs

We conducted two sets of experiments that were differentiated by the amount
of computation involved in request processing. For the first set of experiments,
processing a request involved computation of a public key signature on a specified
block of the service state twice; we call such requests computation-level 2 or CL-
2 requests. For the second set of experiments, processing a request involved

Parsimony-Based Approach 219

computation of a public key signature on a specified block of the service state
100 times; we call such requests CL-100 requests. Obviously, one would be hard-
pressed to find a real-world application that computes digital signatures 100
times for a request. The intention was to simulate compute-intensive request
processing (e.g., an insurance web service that has to solve multi-parameter
insurance models to obtain results for auto insurance quotation requests), in
which the cost of computing one digital signature (in the audit mode of our
protocol) is an insignificant part of the actual request processing overhead.

We measured request latency, which is the time elapsed from when the AC
sends a request until it obtains a reply certificate for the request. Figure 3(a) com-
pares the request latencies of the parsimony-based and the all-active execution
approaches for CL-2 requests. Figure 3(b) does the same for CL-100 requests.
The latencies were obtained as the average of the last 5,000 values from 20 sep-
arate runs, where a run consisted of the AC sending about 10,000 requests. The
AC generated retrieve-compute and update-compute requests alternately. The
latency for a checkpointing request in parsimony-based execution was amortized
among all the requests in the corresponding checkpointing interval.

Figures 3(a) and (b) show only a small difference in the request latencies be-
tween all-active and parsimony-based execution. For CL-2 requests (Fig. 3(a)),
the request latencies for all-active execution are slightly higher than those for
parsimony-based execution. The reason is that in all-active execution, even
though the AC needs only t + 1 reply messages with identical result values
to accept the result, it will receive reply messages from all replicas (i.e., 2t + 1
messages), since the runs were fault-free. Though the AC fully processes only
t+1 of those messages and discards the other t, there is overhead involved in re-
ceiving the additional unnecessary messages and examining their headers. Thus,
one can expect higher latencies for all-active execution if the reply message sizes
are increased. For compute-intensive CL-100 requests (Fig. 3(b)), the latencies
for all-active execution are slightly lower than those for parsimony-based execu-
tion. The reason is that all-active execution allows the AC to choose the fastest
t + 1 replies among the 2t + 1 replies that will eventually be received at the AC.

Since in our experiments the CPU is the dominant resource used at a replica
in processing AC requests, we used the UNIX ‘ps -aux’ command to measure
the percentage of CPU utilization on a replica’s host machine that is due to
request processing. The CPU utilization percentage at a replica was obtained as
the average of samplings made every 5 seconds in each run (a run spanned the
time it took to process 10,000 AC requests). The CPU utilization percentages for
pc replicas in parsimony-based execution and those for any replicas in all-active
execution were roughly the same (in the 75%-85% range for CL-2 requests and
in the 85%-95% range for CL-100 requests). The CPU utilization percentages for
backups in parsimony-based execution were negligible for both CL-2 and CL-100
requests.

After obtaining the average CPU utilization percentages at the individual
replicas, we computed the overall CPU utilization factor, which we obtained
by summing over all replicas the product of the CPU utilization percentage

220 H.V. Ramasamy, A. Agbaria, and W.H. Sanders

0

2

4

6

8

10

3 5 7 9 11

Number of Replicas

R
es

p
o

n
se

 L
at

en
cy

 (
m

se
cs

)

Parsimony-Based All-Active

() CL R(a) CL-2 Requests

252

254

256

258

260

262

3 5 7 9 11

Number of Replicas

R
es

p
o

n
se

 L
at

en
cy

 (
m

se
cs

)

Parsimony-Based All-Active

(b) CL R(b) CL-100 Requests

Fig. 3. Request Latency

0

10

20

30

40

50

60

3 5 7 9 11

Number of Replicas

O
ve

ra
ll

C
P

U
 U

ti
liz

at
io

n
 F

ac
to

r
(m

se
cs

)

Parsimony-Based All-Active

()(a) CL-2 Requests

0

1

2

3

3 5 7 9 11

Number of Replicas

O
ve

ra
ll

C
P

U
 U

ti
liz

at
io

n
 F

ac
to

r
(s

ec
s) Parsimony-Based All-Active

(b) CL-100 Requests

Fig. 4. Overall CPU Utilization Factor Per Request

and the time taken to process a request. Figures 4(a) and (b) show the overall
CPU utilization factor for CL-2 and CL-100 requests. The utilization factor for
parsimony-based execution is roughly half of that for all-active execution, and
the reduction is more pronounced as the number of replicas increases. This is a
practically significant result. For example, in the Application Service Provider
(ASP) business model (see Section 7.1), the overall CPU utilization factor would
be an indicator of the total amount of CPU resources spent by the ASP servers
per request, and could form the basis for pricing, especially if request processing
is compute-intensive.

6.2 Behavior in the Presence of Fault Injections

We conducted fault injection experiments on our protocol. We did not fault-inject
the implementation of all-active execution, since its behavior in the presence of
faults would not be much different from its behavior when there are no faults.

Figure 5(a) shows the different factors that contributed to the AC request
latency when a pc member was fault-injected after servicing a sufficiently large
number of CL-2 requests (about 5,000). We injected both muteness faults and
malicious faults in our protocol. A muteness fault injection was done by crashing

Parsimony-Based Approach 221

0

0.5

1

1.5

2

2.5

3

3.5

3 5 7 9 11
Number of Replicas

T
o

ta
l R

eq
u

es
t

L
at

en
cy

 (
se

cs
)

M
ute

nes
s F

au
lt

M
ali

cio
us F

au
lt

M
ute

nes
s F

au
lt

M
ali

cio
us F

au
lt

M
ute

nes
s F

au
lt

M
ali

cio
us F

au
lt

M
ute

nes
s F

au
lt

M
ali

cio
us F

au
lt

M
ute

nes
s F

au
lt

M
ali

cio
us F

au
lt

Protocol Overhead Normal-to-Audit Latency Audit-to-Recovery Latency
State Transfer Latency Execution Latency

(a) Request Latency when a pc Member is Faulty

0

1

2

3

4

5

6

7

8

9

10

5 7 9 11
Number of Replicas

S
et

tl
in

g
 L

at
en

cy
 (

se
cs

)

Malicious Faults Muteness Faults

(b) Settling Latency for Multiple Correlated Faults

Fig. 5. Behavior Under Fault Injections

a pc member upon receipt of a specified AC request. A malicious fault injection
was done by making a pc member send wrong values in its reply messages.

The highest latency is obtained when a muteness fault injection is done. The
latency comprises two timeout values, state update latency, and the protocol-
specific overhead. The first timeout value of 1 second (represented by “normal-to-
audit latency” in the graph) is used at the AC before the AC sends a retransmit
message for the request. Receipt of that message will cause the protocol to switch
from parsimony-based normal mode to parsimony-based audit mode. The sec-
ond timeout value of 1 second (represented by “audit-to-recovery latency” in the
graph) causes a replica to send a suspect message for the crashed pc member,
as the replica would not have received a reply message from the pc member for
the request. Once n − t suspect messages for the crashed pc member have been
received, the protocol switches from the parsimony-based audit mode to recovery

222 H.V. Ramasamy, A. Agbaria, and W.H. Sanders

mode. In the recovery mode, backups bring their states up to date in two steps
before sending their own reply messages for the AC request. The first step (rep-
resented by “state transfer latency” in the graph) is the transfer of state from a
correct pc member up to the last stable checkpoint. The second step (represented
by “execution latency” in the graph) is the actual execution of all the requests
after the checkpoint request up to the request for which AC sent a retransmit
message. To bring out the worst-case behavior, we injected the muteness fault
into a pc member upon receiving the request just prior to the checkpoint request
(so that δ − 1 requests would actually have to be executed), and all backups
requested state transfer from the same correct pc member. The portion marked
“protocol overhead” in the graph includes a round-trip transmission time from
the AC to the replica (for the request message from the AC and the reply
message from the replica) plus other overhead related to the parsimony-based
protocol (such as exchange of suspect and indict messages, and selection of a
new pc). We see that an overwhelmingly large portion of the request latency
when a muteness fault is injected depends on tunable system parameters (like
timeout) and service-specific values, such as the size of the application state,
the checkpointing technique used, the number of requests beyond the last stable
checkpoint that have to be executed to bring the state up to date, and the nor-
mal request processing latency. The actual overhead due to the parsimony-based
protocol is less than 20 milliseconds.

The AC request latencies for malicious fault injection are essentially the AC
request latencies for muteness fault injection minus the timeout value used at
replicas (i.e., the audit-to-recovery latency). Fault detection is much faster for
malicious faults because it is based on examination of the contents of the reply
message rather than on timeouts.

Figure 5(b) quantifies the effect that multiple correlated fault injections have
at the replicas. After servicing a sufficiently large number of requests (about
5,000), we injected multiple faults at the replicas so that a new pc member
fault was activated every time an AC request arrived until the fault resiliency t
of the replication group was exhausted. As before, the AC sent a request only
after accepting a result for its previous request. We injected both muteness and
malicious faults, and thus there are two rows of bars in the graph. The first fault
was activated at a checkpoint request to bring out the worst-case behavior. At
each correct replica, we measured the settling latency, i.e., the time from when
the first fault is detected at a replica until the time when the pc consists only of
non-fault-injected replicas. The time includes the fault detection latency for t−1
faults (i.e., for all faults except the first fault), the state update latency, the time
to execute t AC requests, and the overhead due to the parsimony-based execution
protocol. Since the multiple faults are activated at consecutive requests, backups
have to bring their state up to date only once, after the first fault detection.

As expected, both rows of bars in the graph show an increase in the settling
latency as the number of replicas (and hence the number of fault injections, t)
increases. For a given t, the settling latency for muteness faults is higher than
that for malicious faults. The reason is that the fault detection latency for t

Parsimony-Based Approach 223

muteness fault injections includes 2(t − 1) timeouts (the factor of 2 being due
to the AC timeout plus the timeout at replicas), as opposed to only (t − 1) AC
timeouts for t malicious fault injections.

7 Discussion

In this section, we give examples of applications that would benefit from our
protocol and compare our protocol with related work.

7.1 Practical Applications

Our protocol can yield significant benefits in many applications. Below are two
examples:

1. The web service infrastructures for many companies are no longer operated
by the companies themselves, but are outsourced to third parties called Ap-
plication Service Providers or ASPs. The ASPs own, operate, and maintain
the servers running the applications that provide the companies’ web ser-
vices, saving the companies the cost burden of having to set up specialized
information technology infrastructures. The ASPs’ servers may be shared
among several companies. Usually, an ASP charges an outsourcing company
a consumption fee based on the actual resource use. In such a situation,
BFT replication can be very useful in enhancing the trustworthiness of com-
putations, and our protocol can be used to obtain significant reductions in
overall execution costs and thereby the fee that the outsourcing company
has to pay to the ASP. The benefits are especially pronounced if the web
service application is resource-intensive. An example of a web service for
which request processing is computation-intensive would be a financial web
service that has to solve multi-parameter financial models to predict stock
trends.

2. In the computational Grid, many services are computation-intensive. BFT
replication can be used to obtain a trustworthy system from untrusted par-
ticipating Grid nodes. Since Grid nodes may be shared among several Grid
services, our protocol can help significantly reduce the performance impact
that one service has on other services running in the same Grid node.

7.2 Related Work

BFT replication techniques are of two categories: quorum replication and state
machine replication. Quorum replication (e.g., [11]) uses subsets of replicas
(called quorums) to implement read/write operations on the variables of a data
repository, such that any two subsets intersect in enough correct replicas. State
machine replication can be used to perform arbitrary computations accessing
arbitrary numbers of variables; quorum replication is less generic and cannot
handle concurrent requests by clients to update the same information. Our pro-
tocol is similar to quorum systems in that it uses a subset of replicas to perform

224 H.V. Ramasamy, A. Agbaria, and W.H. Sanders

operations. However, the similarity is only superficial; our protocol is concerned
with the execution phase of state machine replication, our use of a (t+1)-subset
of replicas to execute requests is based on whether the system is stable or not
(a distinction that quorum systems do not make), and (unlike quorum systems)
we do not use different subset sizes for read and write operations.

Our protocol is both unique and novel. While most work on BFT repli-
cation has focused on the hard problem of Byzantine agreement (e.g., [3,12]),
our work focuses on the often-overlooked but practically significant execution
phase of BFT replication. Yin et al.’s work reduces the deployment costs of BFT
replication by reducing the number of execution replicas from 3t + 1 to 2t + 1.
However, our work deals with reducing the run-time or operational costs of BFT
replication, which are likely to be at least as important as deployment costs in
many long-lived and resource-intensive applications. While the parsimony prin-
ciple has been routinely used in primary-backup systems that tolerate benign
faults (e.g., [13]), our protocol is novel in that it is the first to apply parsimony
to Byzantine fault tolerance.

Since our protocol is for the execution cluster, our work is complementary
to the BASE work [4] and the BASE extension by Yin et al. [5]. In particular,
one could combine our protocol with (1) the proactive recovery and abstraction
techniques of BASE to overcome the drawbacks of state machine replication in
many applications (namely, the determinism requirement and the assumption
that at most one-third of the replicas are corrupt), and (2) the privacy firewall
architecture of [5] to obtain BFT confidentiality.

In the context of parallel computing, Sarmenta [14] proposed mechanisms
for tolerating erroneous results submitted by malicious volunteers in the Grid,
SETI@home, and other volunteer computer systems. The mechanisms, called
credibility-based fault-tolerance mechanisms, estimate the credibility of a node
and use these probability estimates in limiting the amount of redundant compu-
tations necessary to meet desired error rates. However, their scheme trades off
correctness for performance and is not relevant to applications that are stateful
or cannot tolerate any errors at all (e.g., banking or financial applications). Also,
their mechanisms operate in a system and fault model that is very restrictive
(e.g., it requires synchronous computations and non-collusion among malicious
nodes) and less generic than our system and fault model.

8 Conclusion

We described a protocol for executing requests in a resource-efficient way while
providing trustworthy results in the presence of up to t Byzantine faults. Previ-
ous best solutions were based on the all-active approach, which requires at least
2t+1 replicas to execute a request. Our protocol reduces service-specific resource
use costs to about half of what they are for all-active execution under perceived
normal conditions by using only a pc consisting of t+1 execution replicas to ex-
ecute the request. The benefits are more pronounced for larger group sizes, and
when request processing is resource-intensive. The trade-off for the benefits is

Parsimony-Based Approach 225

the higher latencies during perceived failure or instability conditions due to fault
detection and service-specific state update latencies. It is reasonable to expect
that a system’s operation will alternate between long periods of normal condi-
tions and short periods of instability. That motivated our decision to optimize
our protocol for the common case, even if it means paying a slightly higher cost
during periods of instability.

Acknowledgments. We thank Christian Cachin, Kaustubh Joshi, and Ryan
Lefever for many insightful discussions and valuable suggestions for improving
the quality of the paper. We thank Jenny Applequist for her editorial comments.

References

1. Schneider, F.B., ed.: Trust in Cyberspace. National Academy Press (1999)
2. Lamport, L.: Time, Clocks and Ordering of Events in Distributed Systems. Com-

munications of the ACM 21 (1978) 558–565
3. Castro, M., Liskov, B.: Practical Byzantine Fault Tolerance and Proactive Recov-

ery. ACM Transactions on Computer Systems (TOCS) 20 (2002) 398–461
4. Rodrigues, R., Castro, M., Liskov, B.: BASE: Using Abstraction to Improve Fault

Tolerance. In: Proceedings of the 18th Symposium on Operating System Principles.
(2001) 15–28

5. Yin, J., Martin, J.P., Venkataramani, A., Alvisi, L., Dahlin, M.: Separating Agree-
ment from Execution for Byzantine Fault Tolerant Services. In: Proc. 19th Symp.
on Operating Systems Principles. (2003) 253–267

6. Kursawe, K.: Optimistic Byzantine Agreement. In: Proc. 21st Symposium on
Reliable Distributed Systems. (2002) 262–267

7. Vanstone, S.A., van Oorschot, P.C., Menezes, A.: Handbook of Applied Cryptog-
raphy. CRC Press (1996)

8. Cachin, C., Kursawe, K., Petzold, F., Shoup, V.: Secure and Efficient Asynchronous
Broadcast Protocols. In: Advances in Cryptology: CRYPTO 2001 (J. Kilian, ed.),
LNCS-2139, Springer (2001) 524–541

9. Goldwasser, S., Micali, S., Rivest, R.L.: A Digital Signature Scheme Secure Against
Adaptive Chosen-Message Attacks. SIAM Journal on Computing 17 (1988) 281–
308

10. Ramasamy, H.V., Agbaria, A., Sanders, W.H.: A Parsimonious Approach for Ob-
taining Resource-Efficient and Trustworthy Execution. Submitted for publication
in the IEEE Transactions on Dependable and Secure Computing (2005)

11. Malkhi, D., Reiter, M.: Byzantine Quorum Systems. Journal of Distributed Com-
puting 11 (1998) 203–213

12. Reiter, M.K.: The Rampart Toolkit for Building High-Integrity Services. In: Se-
lected Papers from the International Workshop on Theory and Practice in Distrib-
uted Systems, LNCS 938, Springer-Verlag (1995) 99–110

13. Budhiraja, N., Schneider, F., Toueg, S., Marzullo, K.: The Primary-Backup Ap-
proach. In Mullender, S., ed.: Distributed Systems, ACM Press - Addison Wesley
(1993) 199–216

14. Sarmenta, L.F.G.: Sabotage-tolerance mechanisms for volunteer computing sys-
tems. Future Generation Computer Systems 18 (2002) 561–572

Generating Fast Atomic Commit from Hyperfast
Consensus�

Fab́ıola Gonçalves Pereira Greve1 and Jean-Pierre Le Narzul2,3

1 Computer Science Department, Federal University of Bahia, Brazil
fabiola@ufba.br

2 GET/ENST-Bretagne, 35512 Cesson-Sévigné, France
JP.LeNarzul@enst-bretagne.fr

3 IRISA, Campus de Beaulieu, 35042 Rennes, France

Abstract. This work introduces a highly modular derivation of fast
non-blocking atomic commit protocols. Modularity is achieved by the
use of consensus protocols as completely independent services. Fast de-
cision is obtained by the use of consensus protocols that decide in one
communication step in good scenarios. Two original non-blocking atomic
commit protocols are presented. One of the presented protocols outper-
forms existing equivalent solutions that are based on the use of failure
detectors. In the presence of a low resiliency rate, f ≤ 1, it behaves as
the classical 2PC and 3PC, exhibiting the same message complexities.
In the general case, when one considers the number of tolerated crashes
as f < n/2, it exhibits a complexity of 2nf +3n point to point messages.
The best known algorithm exhibits a complexity of 4nf + 3n point to
point messages.

1 Introduction

The concept of transaction is used in distributed systems or databases to en-
sure consistent actions on distributed data. An atomic commit (AC) protocol is
at the heart of a transactional system; such a protocol guarantees, in the pres-
ence of failures, the failure atomicity (also called all-or-nothing) property of the
transaction: either every process commits or every process aborts. Of course, the
outcome of a transaction depends on the local conditions at every process’ site.
When a process can locally make permanent the modifications to data (e.g. no
concurrency control conflict has been detected), it reveals its intention by voting
yes. The outcome of a transaction depends on the collected votes. If all processes
vote yes, the outcome will be commit. Otherwise, the outcome will be abort.

The well-known two-phase commit protocol (2PC) [J78] is the simplest
atomic commit protocol and the one that exhibits the best performance: three
communication steps and 3n point to point messages are enough to commit.
Unfortunately, in presence of faults, it blocks. A non-blocking protocol allows

� This work is supported by CNPQ/Brazil and by the cooperation project
CAPES/COFECUB 497/05.

C.A. Maziero et al. (Eds.): LADC 2005, LNCS 3747, pp. 226–244, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Generating Fast Atomic Commit from Hyperfast Consensus 227

correct processes to take decisions even in the occurrence of faults. Three-Phase
Commit protocols (3PC) [S81, KD95] are non-blocking, but, besides strong syn-
chrony requirements, they exhibit a high latency to finish: five communication
steps and 5n point to point messages.

The non-blocking atomic commit problem (NB-AC) belongs to the class of
agreement problems where processes belonging to a same group have, from time
to time, to reach an unanimous decision. A weak version of it, namely, non-
blocking weak atomic commit (NB-WAC), can be solvable in an asynchronous
model augmented with unreliable failure detectors [CT96, Gue95]. In this case, it
can be reduced to a more basic problem, known as the consensus problem. The
consensus is defined in terms of two primitives: propose and decide. Each process
proposes an initial value and then executes a consensus algorithm till a unique
value is decided. Protocols solving the atomic commit problem have been pro-
posed from reductions to the consensus [GS95, R97, HT97, GLS96, GL04]. They
are non-blocking and exhibit a lower latency than the 3PC protocols. Unfor-
tunately, in these protocols, modularity competes with efficiency. The modular
solutions require an important number of broadcasted messages to tolerate fail-
ures: O(n2) [GS95, R97, HT97]. The best protocols exhibit a message complexity
of O(nf) messages [GLS96, GL04], if one considers f as the maximum number
of processes that may crash. To reach these good performances, they make use
of ad-hoc protocols, where the consensus and the atomic commit are wrapped in
an unique block in which protocols are inseparable.

The first contribution of this paper is the proposal of an elegant approach
to design modular and efficient non-blocking atomic commit protocols. In our
approach, an atomic commit protocol relies on a hyperfast consensus protocol
that decides in one communication step in good scenarios. When good scenar-
ios do not apply, the hyperfast consensus protocol makes use of an underlying
consensus that allow it to terminate. In this general schema, consensus is used
as a termination protocol for the atomic commit protocol only when necessary,
in case of failures or erroneous suspicions. The main advantage of this approach
is that, when certain good but realistic conditions are satisfied, an efficient solu-
tion to the consensus problem directly leads to fast atomic commit protocols. By
fast, we mean algorithms that decide a transaction (abort or commit) as soon
as possible. This happens when some process votes no (resulting in abort) or all
processes vote yes and there are no failures or erroneous suspicions (resulting
in commit).

From the proposed schema, we have derived two atomic commit protocols,
namely AC-Set and AC-Value. AC-Set (respectively AC-Value) relies on a hyperfast
consensus protocol, called Set-Consensus (respectively Val-Consensus). These two
consensus have been proposed by one of the authors in [BGMR01, Gre02]. They
introduce new consensus assumptions giving rise to hyperfast algorithms, that
allow the learning of decided values within one communication step. This hap-
pens when a sufficient number of processes propose the same value for consensus.
Recently [Lam04], Lamport has pointed out the importance in studying and ap-
plying new pertinent consensus definitions as a way for breaking the limit on

228 F.G.P. Greve and J.-P. Le Narzul

message delays for agreement problems. This article contributes to investigate
this approach by the derivation of high-performance atomic commit protocols.
Besides, it shows that the design of well structured protocols is compatible with
high performance.

Thus, the second contribution of this paper is the proposal of atomic com-
mit protocols that exhibit performances that equal or overcome those of ad-hoc
protocols proposed so far. Both proposed protocols are as efficient as the (2PC)
in terms of latency. They terminate after three communication steps in the ab-
sence of failures. Protocol AC-Set is more efficient than any other failure-detector
based AC protocol published so far. It requires (2nf + 3n) messages (without
a broadcast network) or (n + f + 2) messages (with a broadcast network) to
commit. Thus, in presence of a low resiliency rate (f < 2), it is as efficient as
2PC and 3PC. The best known protocol, proposed by Guerraoui et al. [GLS96]
requires (4nf + 3n) messages (without a broadcast network) or (n + 2f + 2)
messages (with a broadcast network). Protocol AC-Value requires (n(2n + 1))
messages (without a broadcast network) or (2n+ 1) messages (with a broadcast
network). The protocol proposed by Guerraoui et al. in [GS95] exhibits the
same complexity as AC-Value but it requires stronger conditions to early decide.
In the case of AC-Value, decisions are sped up if at least (f + 1) propositions are
for commit in the consensus phase. In the case of [GS95], decisions are taken
only if every correct process proposes commit.

Let us remark that very recently, Dutta, Guerraoui and Pochon in [DGP04]
investigate the time-complexity of the NB-AC problem in a synchronous envi-
ronment. They propose ad-hoc protocols that either fast abort or fast commit
a transaction when no processes crash. Their algorithms are close to our AC-

Value protocol, but for a synchronous model. Our algorithms are built for the
asynchronous model.

The rest of this paper is organized as follows. In Section 2, we define the sys-
tem model and the consensus problem. In Section 3, we present the non-blocking
atomic commit problem. Section 4 introduces two consensus algorithms that can
decide in one communication step: Val-Consensus and Set-Consensus In Section 5,
we describe how we use one-step consensus algorithms to derive two efficient
solutions to the atomic commit problem: AC-Value and AC-Set. In Section 6, we
analyze the cost of our AC protocols. Section 7 compares the performance of our
AC protocols with others in terms of latency and number of messages. Finally,
Section 8 concludes this paper. The appendix contains the correctness proof of
the AC-Set protocol.

2 Distributed System Model

Asynchronous System. The system model is patterned after the one described
in [CT96, FLP85]. It consists of a finite set Π of n > 1 processes, namely,
Π = {p1, . . . , pn}. A process can fail by crashing, i.e., by prematurely halting; a
crashed process does not recover. A process behaves correctly (i.e., according to
its specification) until it (possibly) crashes. By definition, a correct process is a

Generating Fast Atomic Commit from Hyperfast Consensus 229

process that does not crash. A faulty process is a process that is not correct. As
indicated in the introduction, f denotes the maximum number of processes that
may crash. Processes communicate and synchronize by broadcasting and receiv-
ing messages through channels. Communication is reliable: there is no message
corruption, duplication or loss. If a process crashes while broadcasting a message
m, only a subset of processes can receive m. There are assumptions neither on
the relative speed of processes nor on message transfer delays. One communica-
tion step is characterized by the emission and the corresponding reception of a
set of messages.

The Consensus Problem. In the traditional consensus problem, every process
pi proposes a value vi and all correct processes decide on some unique value v,
in relation to the set of proposed values. More precisely, it is defined by the
following properties [CT96, FLP85]:

– C-Termination: every correct process eventually decides some value;
– C-Validity: if a process decides v, then v was proposed by some process;
– C-Uniform-Agreement: no two processes (correct or not) decide differently 1.

Unfortunately, the consensus problem is actually impossible to solve in a de-
terministic way in asynchronous distributed systems when even a single process
may crash. This is known as the Fischer-Lynch-Paterson (FLP) impossibility
result [FLP85].

Unreliable Failure Detectors. To circumvent the consensus impossibility result,
several approaches have been investigated. One of them is based on unreliable
failure detectors proposed by Chandra and Toueg [CT96]. Failure detectors can
be classified according to the properties (completeness and accuracy) they sat-
isfy. A class of failure detectors denoted �S is of particular interest because
it has been proved to be the weakest one that allows to solve the consensus
problem [CHT96]. This class is defined by the following completeness and accu-
racy properties: Any process that crashes is eventually suspected (strong com-
pleteness) and there is a time after which there is a correct process that is no
longer suspected (eventual weak accuracy). Relying on �S failure detectors to
solve agreement problems assumes that a majority of processes within the sys-
tem never fails. Note that in an asynchronous model extended with unreliable
failure detectors, whenever consensus is solvable, uniform consensus is equally
solvable [Gue95].

Reliable Broadcast. A reliable broadcast [HT93] primitive ensures the atomic
delivery of a message by every correct process. Informally, a reliable broadcast
of message m (implemented by function R-Broadcast (m)) guarantees that m is
delivered (implemented by function R-Deliver (m)) by all correct processes if the
sender of m is correct or by all correct processes or none of them if the sender
of m is not correct.
1 We consider here the uniform version of the consensus problem in which agreement

is reached even for faulty processes. In the classical consensus problem, this property
holds only for the correct processes.

230 F.G.P. Greve and J.-P. Le Narzul

3 The Non-blocking Atomic Commit Problem

In Section 1, we have informally defined the NB-AC problem. Now, we give the
formal properties specifying it:

– (i) AC Termination: every correct process eventually decides;
– (ii) AC Uniform Agreement: no two processes decide differently;
– (iii) AC Validity: the decision is commit or abort. Besides, to avoid trivial

decisions where processes decide independently of the collected votes, one
states:

• AC Justification: if a process decides commit then every process has voted
yes;

• AC Obligation: if every process votes yes and there is no failure, the de-
cision is commit.

3.1 Solving the NB-AC Problem in Asychronous Systems

The two-phase commit protocol (2PC) [J78] is the simplest AC protocol and the
one that exhibits the best performance (three communication steps are enough to
commit). The coordinator requests votes from the processes participating to the
transaction. If every process votes yes, the coordinator broadcasts a commit
decision. Otherwise, i.e. one process votes no or one process is suspected to
be faulty, the coordinator broadcasts an abort decision. Unfortunately, in the
presence of failures, 2PC is blocking (i.e. the property AC Termination is violated);
this is due to the fact that it is based on a centralized coordinator. The failure
of the coordinator may prevent non-failed processes, waiting for a decision from
the coordinator, to decide the outcome of the transaction. In such a situation,
non-failed processes are blocked and cannot release resources they previously
acquired.

Consequently, it is desirable to derive non-blocking AC protocols, that are
able to take decisions in the presence of failures. The three-phase commit proto-
cols [S81, KD95] (3PC) are such protocols. However, they are not without serious
drawbacks. Their first drawback is the cost (higher latency than 2PC): they need
five communication steps and the broadcast of 5n messages. The second one is
the complexity of the quorum (majority of processes) based recovery procedure
used to terminate when the coordinator fails [R97]. Moreover, these protocols
require reliable failure detectors.

Guerraoui [Gue95] studied the problem of NB-AC in the context of an asyn-
chronous model extended with unreliable failure detectors. He showed that the
NB-AC problem is more difficult to solve than the consensus. The consensus
problem is solvable in an asynchronous model extended with unreliable fail-
ure detectors whereas the NB-AC problem is not. This result comes from the
AC Obligation property that requires to reliably detect failures (which is impos-
sible with unreliable failure detectors). A solution is to replace the AC Obligation

condition by a weaker condition that leads to the definition of a weaker problem,
called NB-WAC (Non-Blocking Weak Atomic Commit).

Generating Fast Atomic Commit from Hyperfast Consensus 231

3.2 The Non-blocking Weak Atomic Commit Problem

The NB-WAC problem keeps the same definitions for all the properties of the NB-
AC problem but the AC Obligation: if all the processes vote yes and no process is
ever suspected, then the decision is commit. One interesting characteristic about
the NB-WAC problem is its reductibility to the consensus problem [Gue95].
Thus, the results obtained for solving the consensus in an asynchronous model
with unreliable failure detectors apply for solving the NB-WAC problem. Several
protocols solving the atomic commit problem were obtained from reductions to
the consensus [GS95, R97, HT97, GLS96, GL04]. In Section 6 we compare some
of these protocols with the solutions suggested in this paper.

4 Hyperfast Consensus

Theoretical results showed that one cannot solve the classical consensus prob-
lem in less than two communication steps [CBS00, KR01]. An algorithm that
achieves this bound is known as early deciding. In a recent publication [Lam04],
Lamport has pointed out the interest in studying new pertinent consensus defi-
nitions as a way for breaking the limit on message delays. In [BGMR01, Gre02],
one of the authors proposed new consensus assumptions giving rise to hyper-
fast consensus algorithms, that allow the learning of decided values within only
one communication step. Those assumptions basically consist in enriching the
initial knowledge of processes with an a priori agreement, besides the pair
(n, f). The practical interest of these protocols is demonstrated in this paper
through the derivation of very efficient atomic commit protocols. We recall in
this section, these new consensus families that allow one step decision when
f < n/2.

Underlying Principle of Hyperfast Consensus. The idea that underlies the design
of our protocols is very simple. It comes from the following observation: if all
the processes initially propose the same value, then this value is necessarily the
decided value, whatever the protocol and the system behavior. Hence, the sug-
gested protocols execute a first communication step during which the processes
exchange the values they propose. Afterwards, each process checks whether some
of the processes have the same initial value. If it is the case, this value is decided.
If it is not, an underlying consensus protocol is used.

Underlying Consensus Protocol. Our aim is to provide a consensus protocol
that terminates in one communication step in good scenarios but also termi-
nates in bad scenarios. So, we consider that the underlying asynchronous dis-
tributed system allows to solve the consensus problem. More precisely, we as-
sume it is equipped with a black box solving the consensus problem, and we
provide a protocol that decides in one communication step in good scenarios
and uses the underlying consensus protocol in the other cases. A process pi

locally invokes it by calling Underlying Consensus(vi) where vi is the value it
proposes.

232 F.G.P. Greve and J.-P. Le Narzul

4.1 Consensus Guided by a Privileged Value

Condition. Let α be a distinguished value in the set of values that can be
proposed. Moreover, let us assume that α is initially known by each process.
The a priori knowledge of such a value can help expedite the decision when
f < n/2 as shown in Fig. 1. The idea of the protocol is simple: a process is
allowed to decide α in one communication step as soon as it knows that α has
been proposed by at least f + 1 processes.

Function Val Consensus(vi, α)

Task T1:
% —————- Phase 1: Early Deciding
(1) send proposed(vi) to all pj : pj ∈ Π ;
(2) wait until (proposed messages received from (n − f) processes)

or (received f + 1 values equal to α);
(3) if (f + 1 of the received values are equal to α) then
(4) R-Broadcast (c-decision(α));

% ————— Phase 2: Deciding by Underlying Consensus
(5) else
(6) if (α received from a process) then vi ← α endif;
(7) return(Underlying Consensus(vi));
(8) endif

Task T2:
(9) upon R-Deliver of c-decision(v) do return(v);

Fig. 1. Consensus Guided by a Privileged Value (Val Consensus)

Behavior. A process pi begins execution by calling Val Consensus(vi, α). The func-
tion ends when it carries out the return command with the decided value (lines 7
or 9). As usual, in order to prevent the blocking of a process (waiting for a value
from another process that has already decided), a process that decides, uses a re-
liable broadcast to disseminate its decision value. So, the function Val Consensus()
is made up of two tasks: T 1 and T 2. T 1 implements the core of the protocol.
Line 4 and T 2 make use of the reliable broadcast functions. Task T 1 begins by
a first phase, where processes broadcast and collect their proposals (lines 1-2).
When a process pi learns that α has been proposed by at least (f +1) processes,
then pi can safely decide α (lines 3-4). To decide at this phase, processes do not
have to call upon a failure detector service.

Processes that do not decide in one step can adopt α as their proposal value
in a second phase (line 6). This is possible because, being given that (f +1) pro-
posals with α exist, then, any process necessarily receives at least 1 proposed
message carrying out the α value. So, whenever (f + 1) process proposes the
same value α, all the processes which do not decide in line 4, call upon Under-

lying Consensus in line 7 with the same value α. Therefore, necessarily, α is the
decided value for everyone.

Generating Fast Atomic Commit from Hyperfast Consensus 233

4.2 Consensus Guided by a Set of Participants

Condition. Let us consider the existence of a set S ⊂ Π , whose composition is
known a priori by every process. In other words, there is a group of processes
which are not anonymous for the computation. If all the processes belonging to S
propose the same value, then it is possible to decide in one communication step
when f < n/2. The protocol described in Fig. 2 uses this strategy and requires
|S| > f . In practice, the set S should be chosen in order to gather the most
reliable servers of the system or the fastest ones, since they will be responsible
for the early deciding.

Function Set Consensus(vi, S)

Task T1:
% ————— Phase 1: Early Deciding
(1) if (pi ∈ S) then send proposed(vi) to all pj : pj ∈ Π ; endif
(2) wait until

((∀ pj ∈ S : pj ∈ suspected i or proposed message received from pj))
and (∃ pj ∈ S : proposed message received from pj))

(3) if (the same value v has been received from each process ∈ S) then
(4) R-Broadcast (c-decision(v));

% ————— Phase 2: Deciding by Underlying Consensus
(5) else vi ← a value from a process ∈ S;
(6) return(Underlying Consensus(vi));
(7) endif

Task T2:
(8) upon R-Deliver of c-decision(v) do return(v);

Fig. 2. Consensus Guided by a Set of Participants (Set Consensus)

Behavior. The protocol is shown in Fig. 2. It behaves as Val Consensus() (Fig. 1).
However, only the processes belonging to S take part in the broadcast of the
suggested value (line 1). Then, all the processes await for values coming from
S (line 2). In order to unblock the protocol, we called upon the failure detector
service. Since |S| > f , at least one value from a member of S will be received
by all processes. Whenever pi certifies that a same value v was proposed by all
the processes belonging to S, then it can safely decide v in a single communica-
tion step (lines 3-4). As the previous protocol, the safety properties are assured
because, since there is at least (f + 1) processes in S (|S| > f), any process nec-
essarily receives at least (1) proposed message coming from a process of S. So,
these processes can adopt v as their proposition value in line 5. Therefore, when
all processes of S propose the same value v, all the processes that do not decide
in line 4, invoke Underlying Consensus in line 6 with the same value v. Necessarily,
v is the settled value.

234 F.G.P. Greve and J.-P. Le Narzul

5 Fast Atomic Commit Protocols

In this section, we describe the design of a generic and modular solution to the
atomic commit problem based on the hyperfast consensus algorithms presented
in Section 4. We have derived two efficient AC algorithms from this generic so-
lution: (1) atomic commit guided by a value, (2) atomic commit guided by a
set of participants. The functions involved in the implementation of the atomic
commit protocols are shown in Fig. 3. The Transaction() function relies on an
Atomic Commit() function that relies itself on a Hyperfast Consensus() function.
Each of these modules accesses a list suspectedi given by a failure detector as-
sociated to the process.

suspected_i

Atomic_Commit()

Transaction

Hyperfast_Consensus()

Underlying_Consensus

Failure Detector

Fig. 3. Hierarchy of the Functions Involved in the Atomic Commit Protocols

Transaction’s Module. This module (see Fig. 4) implements a transaction. It is
run by every process. One of those processes, known as the leader, is in charge of
coordinating the decision procedure for the transaction. The leader initiates the
protocol by asking every process pi to declare its intention to validate operations
on data (lines 1-2). A process pi sets its vote vi to yes (line 6) if it is locally
ready to make the updates permanent; it sets its vote to no if it is not locally
ready (line 7) or if it suspects the leader (line 8). Then, every process pi returns
the result of the call to Atomic Commit(votei) (line 9).

This function implements a NB-AC protocol and ensures a unique result for
the transaction.

Atomic Commit’s Module. The Atomic Commit() protocol uses the consensus ser-
vice as a black box. It is made of two phases. During the first phase, every
process broadcasts its vote and collects the votes from the other processes (votes
yes or no). Depending on the collected votes, every process starts a second phase
by running a hyperfast consensus algorithm to early decide. They broadcast a
commit or abort proposition for the transaction. The algorithm can terminate
immediately after this second phase if some “good conditions” are met. These
conditions are specific to each consensus protocol and depend on the collected
votes. Processes that have not been able to terminate start a third phase and
run an underlying consensus to decide a uniform result.

Generating Fast Atomic Commit from Hyperfast Consensus 235

Procedure Transaction
(1) if (pi = leader) then
(2) send Request Vote<> to all pj : pj ∈ Π ; endif
(3) wait until (Request Vote<> received from leader

or leader ∈ suspectedi);
(4) if (Request Vote<> received from leader) then
(5) if (able to make updates permanent)
(6) then votei ← yes;
(7) else votei ← no; endif
(8) else votei ← no; endif
(9) return Atomic Commit(votei);

Fig. 4. Transaction’s Module

By using the principle given above and the early decision ability of the con-
sensus algorithms, we have derived two solutions to the NB-WAC problem. The
first reduction to Val Consensus(), called AC-Value(), is shown in Fig. 5. The privi-
leged value α being selected to commit, it decides as soon as a sufficient number
of processes choose commit. A second reduction to Set Consensus(), called AC-

Set(), is shown in Fig. 6. A subset S of processes is selected in advance; the
decisions are taken as soon as all the processes from S propose the same value
for the outcome of the transaction.

Behavior. During the first phase, every process broadcasts its vote to others.
If a process pi cannot locally commit to make the updates permanent (votei =
no), it reliably broadcasts its decision and immediately decides to abort the
transaction (line 2) in a unilateral way. This decision is legitimate because abort
is the only acceptable decision with respect to the properties of the problem. A
reliable broadcast is necessary to ensure the agreement and the termination of
the computation (Line 2 and the concurrent task T 2 make use of the reliable
broadcast functions). A process that is ready to validate the transaction (votei =
yes), after a first phase of vote exchanges, starts a second phase with one of the
consensus algorithms presented in Section 4. These algorithms early terminate
in the first phase (that corresponds to the second phase for the atomic commit
protocol).

5.1 Atomic Commit Guided by a Value

The function AC-Value (Fig. 5) has an intuitive behavior. During the first phase,
every process broadcasts its vote and collects the votes from the others (lines 1
and 3). During the second phase, every process starts Val Consensus(v, α) and
proposes a value v that depends on the collected votes. If a process was able
to collect positive votes from all the others, it proposes v =commit (lines 4-5),
otherwise it proposes v =abort (line 6) as the first parameter to the consensus.

In most of the runs, processes are able to validate the transaction and succeed
in gathering the positive votes from the others. So, in such runs, commit is the

236 F.G.P. Greve and J.-P. Le Narzul

Function Atomic Commit(votei)

Task T1:
% ————— Phase 1: Exchange of Votes
(1) send vote< votei > to all pj : pj ∈ Π ;
(2) if (votei = no) then R Broadcast ac-decision <abort>; endif
(3) wait until (votej received from all pj ∈ (Π − suspectedi));

% ————— Phase 2: Exchange of propositions
(4) if (∀ pj ∈ : Π (votej received) and (votej = yes))
(5) then return Val Consensus (commit, commit);
(6) else return Val Consensus (abort, commit); endif

Task T2:
(7) upon R-Deliver of ac-decision < v > do return(v);

Fig. 5. Atomic Commit by Value (AC-Value)

value proposed by every process. We can take benefit from this observation to
ensure early termination and thus consider commit as the privileged value α
for the consensus. So, if a sufficient number of processes (f + 1) vote commit,
it is possible to decide at the first phase of Val Consensus() (lines 1-4, Fig. 1).
The processes that do not decide, start in a third phase, the Underlying Consensus

algorithm in order to obtain a uniform result for the transaction.

5.2 Atomic Commit Guided by a Set of Participants

A participant that is ready to locally commit (votei = yes) initiates the protocol
only with the members of set S. So, during the first phase, every participant

Function Atomic Commit(votei)

Task T1:
% ————— Phase 1: Exchange of Votes
(1) send vote< votei > to all pj : pj ∈ S ; % |S| > f, S ⊆ Π %
(2) if (votei = no) then R Broadcast ac-decision <abort>; endif
(3) if (pi ∈ S) wait until (votej received from all pj ∈ (Π − suspectedi));

% ————— Phase 2: Exchange of propositions
(4) if (pi ∈ S) then
(5) if (∀ pj ∈ Π : (votej received) and (votej = yes))
(6) then return Set Consensus (commit, S);
(7) else return Set Consensus (abort, S); endif
(8) else return Set Consensus (⊥, S); endif

Task T2:
(9) upon R-Deliver of ac-decision < v > do return(v);

Fig. 6. Atomic Commit by a Set (AC-Set)

Generating Fast Atomic Commit from Hyperfast Consensus 237

sends its vote to the members of S (line 1); members of S wait for the votes
from the non-suspected (line 3). During the second phase, depending on the
collected votes, processes belonging to S start the consensus with commit or
abort (lines 5-7). The other processes (Π − S) do not participate to the initial
proposal for Set Consensus(vi) (line 1, Fig. 2). So, they call the function with a
non significant value (v =⊥) (line 8). If every process from S proposes the same
value (commit or abort), then it is possible to decide during the first phase of
Set Consensus() (lines 1-5, Fig. 2). In Section 6, we show that the selective broad-
cast of votes to the members of S leads to good performances for our protocol.
The processes that do not decide, start, in a third phase, the Underlying Consensus

algorithm.

6 Cost of Atomic Commit Protocols

We present the cost of our protocols in a favorable scenario: there is neither fail-
ures, nor erroneous suspicions and all processes validate the transaction (vote
yes). It is the most frequent case in practice. As we explained previously (Sec-
tion 3), in the presence of crashes, our solutions enjoy the same advantages
associated with the use of the consensus as a termination protocol. We measure
the number of communication steps and the number of necessary sent messages
to decide. We are interested in the exchange of messages in two different envi-
ronments: i) point to point network and ii) broadcast network. In our model, a
message broadcasted to all in environment (i) has cost n2. In environment (ii)
it has cost 1.

Fig. 7 illustrates the phases and the number of communication steps achieved
by the atomic commit protocols3. Both of them decide in three communication
steps. The first step is necessary to start the transaction (execution of the trans-
action service). Then, every module Atomic Commit() finishes in two communi-
cation steps: one step to distribute the votes (yes or no) and another step to
distribute the propositions (commit or abort). The computation ends in the
following conditions: (i) protocol AC-Value() requires that (f +1) propositions are
equal to commit; (ii) protocol AC-Set() requires that all processes in S adopt the
same proposition (they have identical values, either for commit, or for abort).
These conditions are perfectly achieved when the favorable scenario described
in the previous paragraph occurs.

Protocol AC-Value (Fig. 7 (a)), exhibits a number of point to point messages
equal to n(2n+1) (or 2n+1 in a broadcast environment). This result is obtained
by the sum of the following values:

2 The actual complexity is n − 1 instead of n. But, for the sake of clarity, we are not
considering this absolute value.

3 When taking into account the complexity of these protocols, we do not consider the
message complexity due to the use of the reliable broadcast primitive[CT96] which is
inherent to consensus protocols. This is the current practice in the literature since
in a fault free scenario, asymmetric protocols do not rely on the reception of this
message to decide.

238 F.G.P. Greve and J.-P. Le Narzul

Step 1
(1 to n)

p1

p2

p3

p4

p5

Step 2
(n to n)

Broadcast Vote
Phase 1

Commit

Step 3
(n to n)

Phase 2

Step 1
(1 to n)

p1

p2

p3

p4

p5

Ask for Vote Broadcast Vote

Step 2
(n to S)

Step 3
(S to n)

Phase 1 Phase 2
Commit

(b) AC−Set

Ask for Vote

(a) AC−Value

Fig. 7. Communication Steps of Protocols with leader = p1 and S = {p1, p2, p3}

– first step: n point to point messages (or 1 broadcast message), that represents
the demand of votes by the transaction leader to all;

– second step: n2 point to point messages (or n broadcast messages), that
represents the exchange of votes between everybody;

– third step: n2 point to point messages (or n broadcast messages), that rep-
resents the first phase of the consensus in which all the processes exchange
their propositions.

Recall that the cardinality of S is > f , therefore for the sake of efficiency,
one can consider |S| = f + 1. Thus, protocol AC-Set (Fig. 7 (b)) exhibits a
number of point to point messages equal to 2nf +3n (or n+f +2 in a broadcast
environment). This number is the sum of the following values:

– first step: n point to point messages (or 1 broadcast message), that represents
the demand of votes by the transaction leader to all;

– second step: n(f + 1) point to point messages (or n broadcast messages),
that represents the sending of votes from everybody to processes belonging
to S;

– third step: n(f + 1) point to point messages (or f + 1 broadcast messages),
that represents the first phase of the consensus in which processes in S send
their propositions to everybody.

7 Related Work and Comparison

Several works considering the use of the consensus service as a terminating pro-
tocol to deal with crashes and solve this problem have been suggested else-
where [GS95, R97, HT97, GLS96, GL04]. In the following, we compare the AC-

Value and AC-Set protocols with some of these works. Table 1 summaries the
complexities exhibited by the classical 2PC, 3PC and by consensus-based proto-
cols that decide in three communication steps. We consider the same favorable
scenario and the same communication environment as the one described in Sec-
tion 6.

Generating Fast Atomic Commit from Hyperfast Consensus 239

Table 1. Performance Measurements of Atomic Commit Protocols

Class Protocol # Comm. # Point-to-Point # Broadcast
Steps Msgs Msgs

Classical 2PC 3 3n n + 2
3PC 5 5n 2n + 3

Failure Detector- [GS95] 3 n(2n + 1) 2n + 1
AC-Value 3 n(2n + 1) 2n + 1

Based [GLS96] 3 4nf + 3n n + 2f + 2
AC-Set 3 2nf + 3n n + f + 2

Leader-Based FasterPaxosCommit 3 2nf + 3n n + f + 2

Latency and Message Complexity. The 2PC [S81] requires only three communi-
cation steps and the emission of 3n point to point messages to decide. However,
it does not solve the NB-WAC problem. The non-blocking 3PC [KD95] proto-
cols accomplish the decision with two extra communication steps but require
the sending of 5n point to point messages. Protocols presented by Hurfin and
Tronel [HT97] and Raynal [R97] terminate in at least four communication steps
and require O(n2) messages to commit.

The protocol proposed by Guerraoui and Schiper [GS95] presents the same
performance results as AC-Value. In favorable conditions, they early decide in
three communication steps and they require the sending of n(2n + 1) point
to point messages. To the best of our knowledge, the work of Guerraoui et
al. [GLS96] is the failure-detector-based protocol which presents the best perfor-
mance in a good scenario. It finishes in three communication steps and requires
the sending of 4nf+3n point to point messages (or n+2f+2 broadcast messages).
Our protocol AC-Set outperforms [GLS96] results. It has the same latency but
requires the diffusion of 2nf +3n point to point messages (or n+f +2 broadcast
messages). So, in relation with [GLS96], it saves 2nf point to point messages4.

Recently, Gray and Lamport have published Paxos-based commit proto-
cols [GL04, Lam98, Lam01] exhibiting good performance results. One algorithm,
called Paxos Commit requires one more message delay than 2PC, so it decides in
four communication steps. On the other hand, it requires to send less messages
than AC-Set: only nf + 3n + f messages are necessary to commit. Another al-
gorithm, called Faster Paxos Commit [GL04], is an optimized version to reduce
message latency. It exhibits the same message complexity as AC-Set.

Similarities and Differences. The recent commit protocols proposed by Gray and
Lamport [GL04] are based on a Paxos consensus [Lam98, Lam01]. The Paxos
consensus assumes some method of choosing a leader. So, differently from fail-
4 The definition of message complexity adopted by Guerraoui et al. in [GLS96] takes

into consideration the necessary number of received messages to reach commit. Differ-
ently, we count the number of sent messages. We think that in this way we reproduce
more faithfully the number of messages that effectively transit in the net. Therefore,
in their paper, instead of showing the complexity of 4nf +3n sent messages, [GLS96]
shows a complexity of 3nf + 3n received messages to decide.

240 F.G.P. Greve and J.-P. Le Narzul

ure detectors consensus, liveness properties are satisfied if the leader-selection
algorithm ensures that a unique non faulty leader is chosen whenever a set of
enough processes are non faulty during a sufficient period. AC-Set is based on
a one-step consensus algorithm which ensures termination if a sufficient num-
ber of processes propose the same value for the agreement. In both solutions,
progress is assured if at least f + 1 coordinating processes are active. So, even if
these protocols are based on different consensus approaches, they need the same
conditions to converge.

In spite of the similarities of protocols [GS95] and AC-Value, we can verify that
the first one requires strong conditions to early decide. In the case of AC-Value,
decisions are speed up if at least (f + 1) propositions are for commit. In the
case of [GS95], decisions are taken only if every correct process proposes commit.
Protocols [GLS96] and AC-Set adopt the same strategy: the early termination is
guided by a special set of participants. In [GLS96], a set of processes, named
SetNB is chosen a priori and is responsible for leading the protocol to an early
decision. SetNB plays the same role as the set S in protocol AC-Set. Protocols
can be distinguished in the way the set is used and in the way the decision is
accomplished. In both solutions, the messages from the first phase (exchange of
votes yes or no) are only broadcasted to the processes belonging to the set (S or
SetNB). Afterwards, in a second phase, only processes in the set broadcast the
propositions to validate the transaction (commit or abort). At this point, in
both solutions, the processes can decide if they gather the good conditions for
this. If they do not early decide, they start a third phase, calling upon a consensus
service. In the case of AC-Set, every process can participate in the consensus. In
protocol [GLS96], only the processes belonging to SetNB will participate. Thus,
to ensure liveness, |SetNB| ≥ 2f+1. This distinction carries the secret of the best
performance results of protocol AC-Set, which requires S ≥ f + 1. Interestingly,
this lower bound coincides with the lower number of coordinators necessary to
make Faster Paxos Commit progress. It uses multiple coordinators and make
progress if a majority of them are alive. So, 2f +1 coordinators are required and
they can make progress even if f of them are faulty.

Protocol [GLS96] early decides only if processes belonging to SetNB vote for
commit. AC-Set allows an early decision in a more general situation: if processes
in S vote equally, either for commit or for abort. Let us observe that this is
very desirable in presence of erroneous suspicions or process faults after the first
phase (after the exchange of votes). That means, all processes are for validating
(vote yes) at the time of the first phase, but thereafter, due to suspicions or
faults, they propose abort to the consensus. Even in the presence of such a
scenario our solution anticipates the decision.

Highly Modular Derivations. The design strategy used to derive our AC proto-
cols is highly modular. The consensus is a completely independent service that
should be regulated by specific parameters, in order to guarantee hyperfast de-
cisions in favorable conditions. Additionally, if the early decision phase does not
succeed, any other underlying consensus can be used to continue the compu-
tation. This modular structure is not observed in most AC protocols because,

Generating Fast Atomic Commit from Hyperfast Consensus 241

generally, modularity competes with efficiency. This is the case for [GLS96] and
Faster Paxos Commit. Their design integrate the consensus and the atomic com-
mit in an unique block in which protocols are inseparable. Moreover, the frame-
work obtained from the proposed resolution of the atomic commit is generic
enough to be used in the solution of other agreement problems (such as, atomic
broadcast [CT96], group membership [GHRT01], etc.). That is currently being
investigated by the authors.

General Evaluation. In general, consensus-based protocols exhibit point to point
message complexities of kn2+ G(n) and broadcast messages of k′n. The best
know protocols ([GLS96], AC-Set, Paxos Commit and Faster Paxos Commit have
results that are dependent on the number f of tolerated faults. In the case f <
n/2, it is interesting to note that AC-Set requires n2+ G(n) point to point mes-
sages and 3/2n broadcast messages, whereas the others, except Paxos Commit,
require 2n2+ G(n) and 2n. Besides, in the presence of a low resiliency rate, AC-Set

is as efficient as 2PC (in a failure free scenario) or 3PC, in presence of one fault.

8 Conclusion

The problem of atomic commit is essential in the implementation of distributed
transactions, since it is in charge of guaranteeing the data consistency in spite
of the occurrence of faults. In this work, we presented original atomic commit
protocols based on new fast deciding consensus algorithms. One of the obtained
protocols is more efficient than any other failure detector-based protocol pro-
posed so far [GLS96].

In the absence of faults, it exhibits the same behavior as 2PC and in the pres-
ence of 1 fault, it exhibits the same message complexity as 3PC. We succeeded
in defining both efficient and modular protocols. Modularity is obtained thanks
to the organization of the consensus as a completely independent block of the
atomic commit that uses its service. Moreover, we think that the framework de-
signed for our solutions is generic enough to be adapted to other specializations in
order to solve other agreement problems in which the proposed values are similar.

Acknowledgments

The authors would like to thank Michel Hurfin from IRISA Labs at Rennes
(France) for its valuable contribution to this work.

References

[BGMR01] F. Brasileiro, F. Greve, A. Mostefaoui and M. Raynal, Consensus in One
Communication Step is Possible. In PaCT (International Conference on
Parallel Computing Technologies), Springer-Verlag LNCS 1800, pp. 1258-
1265, September 2001.

[CBS00] B. Charon-Bost and A. Schiper, Uniform Consensus is Harder than
Consensus. Technical Report, École Polytechnique Fédérale de Lausane,
Switzerland, DSC/2000/028. May, 2000.

242 F.G.P. Greve and J.-P. Le Narzul

[CHT96] T. Chandra, V. Hadzilacos and S. Toueg, The Weakest Failure Detector
for Solving Consensus. Journal of the ACM, 43(4):685–722, July 1996.

[CT96] T. Chandra and S. Toueg, Unreliable Failure Detectors for Reliable Dis-
tributed Systems. Journal of the ACM, 43(2):225-267, March 1996.

[DGP04] P. Dutta, R. Guerraoui and B. Pochon, Fast non-blocking atomic commit:
an inherent trade-off. Inf. Process. Lett. Vol. 91, no 4, pages 195–200.
2004.

[FLP85] M. Fischer, N. Lynch and M. Paterson, Impossibility of Distributed Con-
sensus with One Faulty Process. Journal of the ACM, 32(2):374–382,
April 1985.

[GHRT01] F. Greve, M. Hurfin, M. Raynal, F. Tronel, Primary Component Asyn-
chronous Group Membership as an Instance of a Generic Agreement
Framework. ISADS’2001: 5th International Symposium on Autonomous
Decentralized Systems, pp 93-100, March 2001.

[GL04] J.Gray and L. Lamport, Consensus on Transaction Commit, Technical
Report, Microsoft Corporation, MSR-TR-2003-96, January, 2004.

[GLS96] R. Guerraoui, M. Larrea and A. Schiper, Reducing the Cost for Non-
Blocking in Atomic Commitment. In 16th International Conference on
Distributed Computing Systems, pp. 692-697, Hong-Kong, May 1996.

[Gre02] F. Greve, Réponses efficaces au besoin d’accord dans un groupe, PhD
Thesis, Univ. of Rennes I. Nov. 2002.

[GS01] R. Guerraoui and A. Schiper, The Generic Consensus Service. IEEE
Transactions on Software Engineering, 27(1), pp. 29-41, January 2001.

[GS95] R. Guerraoui and A. Schiper, The Decentralized Non-Blocking Atomic
Commitment Protocol. In 14th IEEE International Symposium on Par-
allel and Distributed Processing, pp. 2-9, San Antonio, October 1995.

[Gue95] R. Guerraoui, Revisiting the Relationship Between Non-Blocking Atomic
Commitment and Consensus. In 9th Int. Workshop on Distributed Algo-
rithms, Springer-Verlag, LNCS 972, pp. 87–100, (J-M. Hélary and M.
Raynal Eds), Le Mont-Saint-Michel (France), September 1995.

[HT93] V. Hadzilacos and S. Toueg, In Distributed Systems, ch Fault Tolerant
Broadcasts ans Related Problems. pp. 97-145, 1993

[HT97] M. Hurfin and F. Tronel, A Solution to Atomic Commitment Based on an
Extended Consensus Protocol. In 6th IEEE Workshop on Future Trends
of Distributed Computing Systems, pp. 98-103, 1997.

[J78] J. Gray, Notes on Database Operating Systems. In Operating Systems
An Advanced Course, pp 10-17. Lecture Notes in Computer Science (60),
Springer-Verlag. 1978.

[KD95] I. Keidar and D. Dolev, Increasing the Resilience of Atomic Commit, at
No Additional Cost. In ACM PODS’1995: Principles of Database Sys-
tems, pp 245-254, May 1995.

[KR01] I. Keidar and S. Rajsbaum, On the Cost of Fault-Tolerant Consensus
when There are No Faults: a Tutorial, MIT Technical Report, MIT-LCS-
TR-821, 2001. Preliminary version in SIGACT News, Distributed Com-
puting Column (2001), 32(2):45-63.

[Lam98] L. Lamport, The part-time parliament, In ACM Transactions on Com-
puter Systems, pp 133-169, 16(2), May 1998

[Lam01] L. Lamport, Paxos Made Simple, ACM SIGACT News,Distributed Com-
puting Column, 32(4):18-25. Dec. 2001.

[Lam04] L. Lamport, Lower Bounds for Asynchronous Consensus, Technical Re-
port, Microsoft Corporation, MSR-TR-2004-72, July 2004.

Generating Fast Atomic Commit from Hyperfast Consensus 243

[R97] M. Raynal, Revisiting the Non-Blocking Atomic Commitment Problem
in Distributed Systems. In 2nd Workshop on Fault-Tolerant Parallel and
Distributed Systems, 1997.

[S81] D.Skeen,NonBlockingCommitProtocols. InACMSIGMODInternational
Conference on Management of Data, pp 133- 142. ACM Press. 1981.

A Correctness Proof

We sketch here a brief correctness proof of AC-Set (see Fig. 6). Correctness proof
of AC-Value is similar and thus it will not be described here. In the following, we
are assuming the correction of Set Consensus [BGMR01, Gre02].

Theorem 1. AC Validity: the decision is commit or abort.

Proof. In function Atomic Commit processes decide for abort in task T 2 (line 9)
and T 1 (line 2). All the other decisions are a consequence of the execution of the
Set Consensus in lines 6, 7 and 8. The C Validity of the consensus guarantees that
a decided value is a proposed one. From line 1 of Set Consensus, only processes
belonging to S propose a value. Thus, from lines 6 and 7 of Atomic Commit, only
commit or abort will be proposed. This proves the Theorem. �Theorem 1

Theorem 2. AC Justification: the decision is commit only if all participants
voted yes.

Proof. In task T 2 (line 9) and T 1 (line 2), the function Atomic Commit only
decides for abort. Other decisions are a consequence of the execution of the
Set Consensus in lines 6, 7 and 8. The value commit is proposed to the consensus
only in line 6. This happens if all of the processes of Π vote yes (line 5). The
C Validity of the consensus guarantees that a decided value is a proposed one.
This proves the Theorem. �Theorem 2

Theorem 3. AC Obligation: if every process votes yes and there is no failure
supicion then the decision is commit.

Proof. To accomplish the proof, we will show that the value abort can only be
decided if some process votes no or if it suspects the failure of another process.
In function Atomic Commit, a participant decides abort in lines 2, 9 and in the
execution of the Set Consensus function (lines 6-8). In this case,

– pi decides in line 2 only if it votes no;
– if pi decides in line 9, another process pj has executed line 2. Thus, pj has

voted no;
– when ones executes function Set Consensus and decides for the abort value,

somebody must have proposed abort; this comes from the C Validity prop-
erty of consensus which states that a decided value must have to be a
proposed value. In this case, a process must have executed line 7 propos-
ingabort. From lines 3-5, this process must have suspect some other process.
This proofs the Theorem. �Theorem 3

244 F.G.P. Greve and J.-P. Le Narzul

Theorem 4. AC Uniform Agreement: No two participants decide differently.

Proof.

– In the Atomic Commit function, a process decides abort in task T 2 (line 9)
only and only if another process pj voted no in task T 1. In consequence, pj

has decided for abort in the task T 1 (line 2).
– If some process decided abort in line 2, from lines 5-7, those processes that

continue the execution invoke the Set Consensus proposing abort (if they are
in S) (line 7) or ⊥ (those not belonging to S). Once only propositions from
processes in S are considered in the execution of Set Consensus (lines 1, 2 and
6), the processes that decide in the consensus unit, will decide for abort.

– If no process decides in line 2, all the correct processes continue the ex-
ecution and invoke Set Consensus. From the C Uniform Agreement property
of consensus, two processes do not decide differently. So, the Theorem
follows. �Theorem 4

Theorem 5. AC Termination: all of the correct processes decide in a definitive
way.

Proof. The only instructions that could block a correct process to keep the
protocol’s execution are:

– Lines 3 (from the transaction unit Transaction) and 3 (from the Atomic Commit

function). However, from the strong completeness property of the failure de-
tector �S, every faulty process will be eventually suspected. Moreover, every
process begins the Atomic Commit function by broadcasting its vote(line 1).
Since channels are reliable, every vote from a correct process will eventually
be received. Thus, the correct processes do not block in the execution of
these instructions.

– Calling the Set Consensus (line 6- 8) service. From property C Termination

of consensus, every correct process definitely decides. Thus the Theorem
follows. �Theorem 5

Group-Based Replication of On-Line Transaction
Processing Servers�

A. Correia Jr., A. Sousa, L. Soares, J. Pereira, F. Moura, and R. Oliveira

Computer Science and Technology Center,
Computer Science Department, University of Minho

Abstract. Several techniques for database replication using group communica-
tion have recently been proposed, namely, the Database State Machine, Postgres-
R, and the NODO protocol. Although all rely on a totally ordered multicast for
consistency, they differ substantially on how multicast is used. This results in
different performance trade-offs which are hard to compare as each protocol is
presented using a different load scenario and evaluation method.

In this paper we evaluate the suitability of such protocols for replication of
On-Line Transaction Processing (OLTP) applications in clusters of servers and
over wide area networks. This is achieved by implementing them using a com-
mon infra-structure and by using a standard workload. The results allows us to
select the best protocol regarding performance and scalability in a demanding but
realistic usage scenario.

1 Introduction

Synchronous database replication provides both transparent distribution and fault tol-
erance. By keeping data strictly up-to-date in all replicas, application programmers do
not have to manage complex reconciliation procedures and fail-over can happen with-
out causing any committed updates to be lost. Recently, replication techniques based
on group communication have been proposed as a means to overcome performance
bottlenecks and make synchronous replication cost-effective [1,12,11,17,15,20].

In contrast with replication based on distributed locking and atomic commit proto-
cols, group communication based protocols minimize interaction between replicas and
the resulting synchronization overhead by relying on total order multicast to ensure con-
sistency. Generically, the approach builds on the classical replicated state machine [19]:
The exact same sequence of update operations is applied to the same initial state, thus
producing a consistent replicated output and final state. The problem is then to ensure
deterministic processing without overly restricting concurrent execution, which would
dramatically reduce throughput, and avoid re-execution in all replicas.

These concerns have been addressed by several proposals based on group commu-
nication [14,15,17,13]. Although all rely on a totally ordered multicast for consistency,
they differ mainly in whether transactions are executed conservatively [14,15] or op-
timistically [17,13]. In the former, by a priori coordination among the replicas, it is
assured that when a transaction executes there is no concurrent conflicting transaction

� Supported by FCT, project STRONGREP (POSI/CHS/41285/2001).

C.A. Maziero et al. (Eds.): LADC 2005, LNCS 3747, pp. 245–260, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

246 A. Correia et al.

being executed remotely and therefore its success depends entirely on the local database
engine. In the latter ones, execution is optimistic, each replica independently executes
its locally submitted transactions and only then, just before committing, sites coordinate
and check for conflicts between concurrent transactions.

This difference results in multiple and often subtle performance and resiliency trade-
offs. Namely, how does each protocol cope with a large share of update transactions,
conflicting updates, high latency in wide area networks, and symmetric load to multiple
replicas. Unfortunately, each protocol is presented using a different load scenario and
evaluation method which makes it very hard to clearly highlight the main consequences
of the approach.

In this paper we evaluate the suitability of group based replication protocols
for replication of On-Line Transaction Processing (OLTP) applications in clusters of
servers and over wide area networks (WAN). This evaluation compares the protocols
using a common infrastructure which rests on a novel common database interface suit-
able for the implementation of group based replication protocols. Using the same set-
tings for all protocols and the workload of the industry standard TPC-C benchmark [23]
it is possible to establish relative strengths and select the best protocol for each scenario.

The rest of the paper is structured as follows. In Sect. 2, we briefly review the main
group-based database replication approaches. Section 3 introduces the common im-
plementation and evaluation framework. Section 4 presents and discusses performance
measurements. Finally, Sect. 5 concludes the paper.

2 Replication Protocols

In this study, we consider three replication protocols: CONS, a protocol that imple-
ments the conservative execution approach (similar to those proposed in [14,15]) and
two protocols that exploit optimistic execution, Postgres-R (PGR) [13] and the Data-
base State Machine (DBSM) [17]. All of these protocols are multi-master, transactions
can be submitted to and executed by several replicas, and follow the passive replication
paradigm [4,8], each transaction is executed by one of the replicas and its state changes
propagated to the other replicas.

At the core of these protocols is a total order (or atomic) multicast primitive [10].
Some of the proposed algorithms [16,14,15,20] have been presented using total order
primitives with optimistic delivery. The goal is to compensate the inherent ordering
latency by allowing tentative processing in parallel with the ordering protocol. If the
final order of the messages matches the predicted order then the replication protocol can
proceed, otherwise the results obtained tentatively are discarded. We opted, however,
not to consider such optimization. In a local area network (LAN), the small message
delays discourage any optimistic processing and, in WAN, an algorithm such as the
one presented in [21] is required to compensate the large differences and variability of
point-to-point latencies. The use of such an algorithm would evenly benefit all of the
replication protocols under study but would not contribute to expose the key factors that
differentiate them.

The database engine considered implements a multi-version concurrency control
mechanism [3]. While locally, the database engine does not provide serializability as its

Group-Based Replication of On-Line Transaction Processing Servers 247

correctness criterion, globally the replication protocols under study are able to do so. In
our tests, we will consider and compare both the global 1-copy-serializability [3] and
the snapshot-isolation [2] versions of the protocols.

Only update transactions are handled by the replication protocol. Queries are simply
executed locally at the database to which they are submitted and do not require any
distributed coordination.

In the following, we describe the conservative and optimistic execution approaches
and the required interfaces with the database engine.

2.1 Conservative Execution

In the conservative approach, data is a priori partitioned in conflict classes, not necessar-
ily disjoint. Each transaction has an associated set of conflict classes (the data partitions
it accesses) which are assumed to be known in advance. While the conflict classes for
a transaction could be determined at runtime, this would require to know the whole
transaction before its execution precluding the processing of interactive transactions.

t

T reply

r1

r2

r3

Execution

Update

Classification

atomic mcast reliable mcast

Fig. 1. Conservative replication protocols: CONS

When a transaction is submitted (Figure 1), its id and conflict classes are atomically
multicast to all replicas obtaining a total order position. Each replica has a queue asso-
ciated with each conflict class and, once delivered, a transaction is classified according
to its conflict classes and enqueued in all corresponding queues. As soon as a transac-
tion reaches the head of all of its conflict class queues it is executed. Transactions are
executed by the replica to which they are submitted.1

Conflicting transactions are executed sequentially. Clearly, the conflict classes have
a direct impact on the performance. The fewer the number of transactions with overlap-
ping conflict classes, the better the interleave among transactions. As we shall discuss
in Sect. 2.3, conflict classes are usually defined at the table level but can have a finer
grain at the expense of a non-trivial validation process to ensure that a transaction does
not access conflict classes that were not previously specified.

When the commit request is received, the outcome of the transaction is reliably
multicast to all replicas along with the replica’s state changes and a reply is sent to

1 When isolated conflict classes exist, dedicating a distinguished replica to the execution of all
transactions of such classes, results in a faster processing of those transactions [15].

248 A. Correia et al.

the client. Each replica applies the remote transaction’s updates with the parallelism
allowed by the initially established total order of the transaction.

It is worth noting that, despite the use of a multi-version database engine, since con-
flicting transactions are totally ordered and executed sequentially, the protocol ensures
1-copy-serializability as long as transactions are classified by the application taking into
account read/write conflicts. Relaxing the correctness criterion to snapshot-isolation
would simple require the reclassification of the transactions taking into account just
write/write conflicts.

2.2 Optimistic Execution

In the optimistic approach, transactions are immediately executed by the replicas to
which they are submitted without any a priori coordination. Locally, transactions are
synchronized according to the specific concurrency control mechanism of the database
engine.

Upon receiving the commit request, a successful transaction is not readily commit-
ted. Instead, the tuples read (read-set) and written (write-set) are gathered and a termi-
nation protocol initiated. The goal of the termination protocol is to decide the order and
the outcome of the transaction such that the global correctness criteria is satisfied. This
is achieved by establishing a total order position for the transaction and certifying it (i.e.,
checking for conflicts) against concurrently executed transactions. The certification of
a transaction is done by evaluating the intersection of its read-set and write-set (or just
write-set in case of the snapshot-isolation criterion) with the write-sets of concurrent,
previously ordered transactions.2 The fate of a transaction is therefore determined by the
termination protocol and a transaction that would locally commit may end up aborted.

The two optimistic protocols, PGR and DBSM (Figure 2), ensure global serializ-
ability, but differ in their termination protocols. Both use the transaction’s read-sets for
the certification procedure. Basically, in PGR the transaction’s read-set is not propa-
gated and thus only the replica executing the transaction is able to certify it. In the
DBSM, the transaction’s read-set is propagated allowing each replica to autonomously
certify the transaction.

In detail, upon the reception of the commit request for a transaction t, in PGR the
executing replica atomically multicasts t’s id and t’s write-set and write-values (the val-
ues of the tuples in the write-set). As soon as t is ordered, the executing replica certifies
t and reliably multicasts the outcome to all replicas. The certification procedure consists
in checking t’s read-set and write-set against the write-sets of all transactions commit-
ted locally since t’s commit request.3 The executing replica then commits or aborts t
locally and replies to the client. Upon the reception of the remote transaction’s commit
outcome each replica applies t’s state changes through the execution of a high priority

2 The formal definition and detailed explanation of the certification procedures can be found
in [13,16,24].

3 In the original protocol [13], a locking concurrency control mechanism was considered for the
database engine which allowed to carry the certification process inside the database as part of
the normal execution of the transaction. The read-set was not actually extracted and it consisted
of the read locks granted to the transaction.

Group-Based Replication of On-Line Transaction Processing Servers 249

t

T reply

r1

r2

r3

Execution Certification

Update

atomic mcast reliable mcast

(a) PGR

T

t

reply

r1

r2

r3

(b) DBSM

Fig. 2. Optimistic replication protocols

transaction consisting of updates, inserts and deletes according to t’s previously multi-
cast write-values. The high priority of the transaction means that it must be assured of
acquiring all the required write locks, possibly aborting any locally executing transac-
tions.

The termination protocol in the DBSM is significantly different and works as fol-
lows. Upon the reception of the commit request for a transaction t, the executing replica
atomically multicasts t’s id, the version of the database on which t was executed,4 and
t’s read-set, write-set and write-values. As soon as t is ordered, each replica is able to
certify t on its own.

For the certification procedure, in the DBSM each replica compares its database
version with that of t: if they match t commits, otherwise t’s read-set and write-set are
checked against the write-sets of all transactions committed locally since t’s database
version. If they do not intersect, t commits, otherwise t aborts. If t commits then its
state changes are applied through the execution of a high priority transaction consist-
ing of updates, inserts and deletes according to t’s previously multicast write-values.
Again, the high priority of the transaction means that it must be assured of acquiring
all the required write locks, possibly aborting any locally executing transactions. The
executing replica replies to the client at the end of the transaction.

Of particular relevance for the performance of these two protocols is the definition
and representation of the transaction’s read-sets. First, read-sets determine the outcome
of a transaction certification. If the considered read-set is larger than the set of tuples
actually read by the transaction then spurious aborts may arise. On the contrary, if the
read-set does not contain the tuples actually read, then serializability may be compro-

4 The database version is a counter maintained by the replication protocol that is incremented
every time a transaction commits.

250 A. Correia et al.

mised. Second, in the DBSM protocol the size of the read set may have a serious impact
on the network bandwidth. PGR avoids the propagation of the transaction’s read-set at
the expense of an additional communication step.

When considering the snapshot-isolation correctness criterion, then both protocols
can be simplified and end up being the same. To satisfy snapshot-isolation, certification
does not need to check read-write conflicts and thus the transactions’ read-sets are not
required. As such, the PGR protocol can be simplified by enabling a simpler write-write
certification at all the replicas and eliminating the second communication step convey-
ing the outcome of the transaction [24]. The DBSM protocol can also be simplified by
not propagating the read-sets and using the simpler certification procedure.

2.3 Database Interface

The replication protocols just described require specific interactions with the adopted
database engine. Despite their differences, their interaction with the database engine is
similar and the interface can be generalized.

Transactions are submitted to the database engine and evolve through three differ-
ent phases (Figure 3): the pre-execute phase which includes the “begin transaction”
command and extends up to the transaction’s first statement, the execute phase encom-
passing the whole transaction execution up to the “commit transaction” command, and
the commit phase from the "commit transaction" command until the reply to the client
application. Interactions between the database engine and the replication protocol hap-
pen between these three phases and require extended functionality from the database
engine.

In the CONS protocol, at the pre-execute phase the database engine needs to be in-
formed about the conflict classes of the transaction. Usually, such classes are defined at
the table level to ease the validation process that occurs at the execution phase to ensure
that no other classes beyond those specified at the pre-execute phase are accessed. For
finer grains, the process would be more complicated. If instead of whole tables, conflict
classes were defined using table partitioning such as filters over attributes, guaranteeing
that the accessed items are a sub-set of the conflict classes would ultimately lead to a
satisfiability problem [9].

Replication

Protocol
DBMS

Pre-Execute

Execute

Commit

Priority

Classification

RWV Sets

Commit/Abort

Fig. 3. Interface between the replication protocol and the database engine

Group-Based Replication of On-Line Transaction Processing Servers 251

In the optimistic protocols, just before entering the execution phase, a remote trans-
action is assigned high priority allowing it to break any locks currently granted to other
transactions. This interaction is required to ensure the successful execution of the up-
dates of remote transactions. Thus, the concurrency control mechanism of the database
engine needs to be extended to distinguish these high priority transactions.

After the local execution of the transaction, before the commit phase, the database
engine is required to provide the read-set, write-set and write-values (RWV sets). The
write-set and write-values are easily extracted from any database engine but the extrac-
tion of the read-set requires close coupling with it. While for simple SPJ statements
(i.e., statements that involve Select, Project and Join operations) one extraction step is
sufficient, more complex queries require the analysis of the optimizers execution plan,
multiple extraction points and further read sets combination. Both PGR and the DBSM
protocols rely on the transaction’s read-set. A judicious characterization and extraction
of the read-set is due to avoid unnecessarily large read-sets and consequent spurious
aborts, and to reduce network consumption in the case of the DBSM protocol.

Finally, while naturally the outcome of a transaction is decided inside the database
engine, with the optimistic replication protocols the fate of a local transaction ultimately
depends on the certification procedure. Therefore, it is required that the database engine
allow the replication protocol to determine the commit or abort of the transaction.

With respect to the implementation of the necessary functionality of the database
engine most of it needs to be done in core. While one could be tempted to implement
these interfaces using a middleware approach through the use of triggers, some, such as
the pre-execute and commit interfaces, are not possible with current database engines,
and others, such as the extraction of the read-sets would lead to unbearable performance
hits.

3 Experimental Procedure

This section presents the simulation environment used to evaluate the protocols. We use
a centralized simulation model that combines real software components with simulated
hardware, software and environment components to model a distributed system. This
allows us to setup and run multiple realistic tests with slight variations of configuration
parameters that would otherwise be impractical to perform, specially if one considers
a large number of replicas and wide-area networks. The centralized nature of the sys-
tem allows for global observation of distributed computations with minimal intrusion
as well as for control and manipulation of the experiment. All tests are conducted un-
der an implementation that mimics the industry standard on-line transaction processing
benchmark TPC-C [23].

3.1 Simulation Infrastructure

To evaluate the protocols we use a hybrid simulation environment that combines sim-
ulated and real components [22]. The key components, the replication and the group
communication protocols, are real implementations while both the database engine and
the network are simulated.

252 A. Correia et al.

In detail, we use a centralized simulation runtime based on the standard Scalable
Simulation Framework (SSF) [6], which provides a simple yet effective infrastructure
for discrete-event simulation. Simulation models are built as libraries that can be reused.
This is the case of the SSFNet [7] framework, which models network components (e.g.
network interface cards and links), operating system components (e.g. protocol stacks),
and applications (e.g. traffic analyzers). Complex network models can be configured
using these components, mimicking existing networks or exploring particularly large
or interesting topologies.

To combine the simulated components with the real implementations the execution
of the real software components is timed with a profiling timer [18] and the result is
used to mark the simulated CPU busy during the corresponding period, thus preventing
other jobs, real or simulated, to be attributed simultaneously to the same CPU. The
simulated components are configured according to the equipment and scenarios chosen
for testing (Sect. 3.2).

The database server handles multiple clients and is modeled as a scheduler and a
collection of resources, such as storage and CPUs, and a concurrency control module.
The database provides the interfaces described in Sect. 2.3 (Fig. 3) and implements
multi-version concurrency control.

Each transaction is modeled as a sequence of operations: i) fetch a data item; ii) do
some processing; iii) write back a data item. Upon receiving a transaction request each
operation is scheduled to execute on the corresponding resource. The processing time
of each operation is previously obtained by profiling a real database server (Sect. 3.2).

A database client is attached to a database server and produces a stream of trans-
action requests. After each request is issued, the client blocks until the server replies,
thus modeling a single threaded client process. After receiving a reply, the client is then
paused for some amount of time (thinking time) before issuing the next transaction
request.

To determine the read-set and write-set of a transaction’s execution, the database is
modeled as a set of histograms [5]. The transactions’ statements are executed against
this model and the read-set, write-set and write-values are extracted to build the trans-
action model that is injected into the database server. In our case, this modeling is rather
straightforward as the database is very well defined by the TPC-C [23] workload that
we use for all tests. Moreover, as all the transactions specified by TPC-C can be reduced
to SPJ queries, the read-set extraction is quite simple.

3.2 Test Parameters

Each database request is generated according to the TPC-C benchmark [23]. TPC-C
is the industry standard on-line transaction processing benchmark. It mimics a whole-
sale supplier with a number of geographically distributed sales districts and associated
warehouses. TPC-C specifies a precise set of relations (Warehouse, District, Customer,
Item, Stock, Orders, OrderLine, NewOrder and History) and the size of the database
as a function of the number of desired clients. The benchmark determines 10 clients
per warehouse and, as an example, for 2000 clients, the database contains around 109

tuples, each ranging from 8 to 655 bytes. The traffic is a mixture of read-only and
update intensive transactions. A client can request transactions of five different types:

Group-Based Replication of On-Line Transaction Processing Servers 253

NewOrder, adds a new order into the system (with 44% of the occurrences); Payment,
updates the customer’s balance, district and warehouse statistics (44%); OrderStatus,
returns a given customer latest order (4%); Delivery, records the delivery of products
(4%); StockLevel, determines the number of recently sold items that have a stock level
below a specified threshold (4%). The NewOrder, Payment and Delivery are update
transactions while the others are read-only.

The database model has been configured using the transactions’ processing time of
a profiled version of PostgreSQL 7.4.6 under the TPC-C workload. From the TPC-C
benchmark we only use the specified workload, the constraints on throughput, perfor-
mance, screen load and background execution of transactions are not taken into account.

We consider a LAN and a WAN scenarios, both with 9 replicas. In the LAN con-
figuration the replicas are connected by a network with a bandwidth of 1Gbps and a
latency of 120μs. The WAN configuration consists of 3 LANs (with 1Gbps and 120μs
as before) each with 3 replicas, connected by a network with a bandwidth of 100Mbps
and a latency of 60ms. Each replica corresponds to a dual processor AMD Opteron at
2.4GHz with 4GB of memory, running the Linux Fedora Core 3 Distribution with ker-
nel version 2.6.10. For storage we used a fiber-channel attached box with 4, 36GB SCSI
disks in a RAID-5 configuration and the Ext3 file system.

For all the experiments that follow, we varied the total of clients from 270 to 3960
and distributed them evenly among the replicas.

4 Experimental Results

4.1 Simple Configuration

The first scenario evaluates the conservative and the DBSM approaches without ex-
ploiting any application specific details and thus in a configuration that can easily be
automated. In the conservative approach, we use the simple definition of a conflict class
for each table, which can actually be easily extracted from the SQL code. The resulting
conflict classes and conflict relations among transactions types are shown in the “Se-
rializable” column of Table 1. Regarding the DBSM, we need to pay special attention
to read-set sizes since the propagation of large read-sets may be impractical. An im-
mediate workaround to this problem is to set a limit for the read-set size over which
the whole table is used. In the TPC-C, this results in transactions of type Delivery al-
ways being marked as reading the entire OrderLine table. All others access only a small
number of items.

Figure 4 presents performance measurements in the LAN scenario. It can be observed
in Fig. 4(a) that the DBSM protocol with optimistic execution apparently scales much
better to a large number of clients than the conservative protocol. As shown by Fig. 4(b)
the bottleneck in the conservative protocol translates in very large queueing latencies.

However, as seen in Fig. 4(c), the good throughput of the DBSM is achieved at the
expense of a number of aborted transactions. This is especially worrisome since the 4%
of transactions being aborted overall are in fact all Delivery transactions as shown in
Fig. 4(d). Therefore, even if such transactions can be resubmitted, there is a very low
probability of ever being executed. These results show that neither of the approaches scale
to a large number of clients with an OLTP load, even with plenty of resources in a LAN.

254 A. Correia et al.

Table 1. Definition of conflict classes for each transaction type in TPC-C

Class./Trans
Warehouse

District
Customer

Item
Stock

Orders
OrderLine
NewOrder

History

Serializable
New Order Payment Delivery

x x
x x
x x x
x
x
x x
x x
x x

x

Snapshot Isolation Level
New Order Payment Delivery

x
x x

x x

x
x x
x x
x x

x

 0

 4000

 8000

 12000

 0 1000 2000 3000 4000

T
P

M

Clients

DBSM G
Cons G

(a) Throughput

 0

 5

 10

 15

 20

 0 1000 2000 3000 4000

La
te

nc
y

(m
s)

Clients

DBSM G
Cons G

(b) Latency

 0

 1

 2

 3

 4

 5

 0 1000 2000 3000 4000

A
bo

rt
 R

at
e

(%
)

Clients

DBSM G
Cons G

(c) Abort rate

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000

A
bo

rt
 R

at
e

(%
)

Clients

DBSM G

(d) Delivery abort rate

Fig. 4. Performance measurements in a LAN with coarse granularity

4.2 Fine Granularity

To reduce the number of conflicts, we resort to a finer granularity when defining con-
flict classes for the conservative approach and the read-set extraction in the DBSM. Fine
grained conflict classes are obtained by taking advantage of the fact that all tables except
Item have references to the Warehouse table and that clients connected to the same node
have high locality regarding a specific subset of warehouses.

Although this may seem to easily translate in a definition of conflict classes for the
conservative protocol, in practice it is not possible because transactions Payment and

Group-Based Replication of On-Line Transaction Processing Servers 255

NewOrder, which account for a large majority of traffic, may access multiple warehouses.
Despite the suitability of this assumption to the TPC-C workload, it must not be general-
ized since most of the time one cannot be certain of which subset of a table a transaction
will access, rendering the approach impractical.

In the optimistic protocol, one uses the same observation to avoid a huge read set
without escalating to table level by using only the warehouse attribute and then encoding
it as part of the table identifier.

 0

 4000

 8000

 12000

 0 1000 2000 3000 4000

T
P

M

Clients

DBSM g
Cons g

PGR

(a) Throughput

 0

 5

 10

 15

 20

 0 1000 2000 3000 4000

La
te

nc
y

(m
s)

Clients

DBSM g
Cons g

PGR

(b) Latency

 0

 1

 2

 3

 4

 5

 0 1000 2000 3000 4000

A
bo

rt
 R

at
e

(%
)

Clients

DBSM g
Cons g

PGR

(c) Abort rate

Fig. 5. Performance measurements in a LAN with fine granularity

We compare also these optimizations with the PGR protocol which can use the ex-
act read-set by centralizing certification of each transaction. The results are presented in
Fig. 5. It can be observed that all approaches produce approximate results with minimal
differences in latency and abort rate. Network usage is also very close, showing that the
overhead incurred by the DBSM when sending the read-set is offset by requiring only a
single communication step. These results show that with an appropriate granularity, all
these group communication based protocols are equally appropriate for an OLTP load in
a cluster.

4.3 Snapshot Isolation

An alternative approach to avoid synchronization conflicts is to relax the correctness
criterion to snapshot isolation [2] which only considers write-write conflicts.

256 A. Correia et al.

In the DBSM approach, all the concerns previously discussed about the size of the
read-set are avoided. As Fig. 6 shows, it turns out that this alternative has also a be-
nign impact on the performance of the DBSM approach, reducing the number of aborted
transactions. Moreover, this is a very appealing alternative, as it avoids all configuration
issues. As explained in Sect. 2.2, under snapshot isolation the DBSM and PGR protocols
become the same.

Unlike the DBSM, the conservative approach does not benefit from the snapshot iso-
lation criterion, exhibiting the same latency as before. In the “Snapshot Isolation Level”
column of Table 1 the new conflict relations among the transactions are depicted. Re-
gardless of their type, all update transactions still conflict and thus have to be sequentially
executed.

 0

 4000

 8000

 12000

 0 1000 2000 3000 4000

T
P

M

Clients

DBSM SI
Cons SI

(a) Throughput

 0

 5

 10

 15

 20

 0 1000 2000 3000 4000

La
te

nc
y

(m
s)

Clients

DBSM SI
Cons SI

(b) Latency

 0

 1

 2

 3

 4

 5

 0 1000 2000 3000 4000

A
bo

rt
 R

at
e

(%
)

Clients

DBSM SI
Cons SI

(c) Abort rate

Fig. 6. Performance measurements in a LAN with snapshot isolation

4.4 Wide Area

Finally, we are interested in observing how the proposed approaches scale also to inter-
connected clusters in WAN. The best performers in the previous scenarios were chosen
and their performance in this environment is presented Fig. 7. Although Fig. 7(a) shows
that throughput scales equally well, Fig. 7(b) shows that the additional communication
step, incurred by PGR, when centralizing certification results in a large increase in la-
tency. This has also an impact in the overall abort rate in Fig. 7(c), which is higher than
with other optimistic approaches. Note however that, in contrast with the results of Fig. 4,
Fig. 7(d) shows that no single transaction type exhibits high abort rates, hence, if one
chooses to resubmit the aborted transactions there is a high probability of a successful
execution.

Group-Based Replication of On-Line Transaction Processing Servers 257

 0

 4000

 8000

 12000

 0 1000 2000 3000 4000

T
P

M

Clients

DBSM g
DBSM SI

Cons g
PGR

(a) Throughput

 0

 100

 200

 300

 400

 500

 0 1000 2000 3000 4000

La
te

nc
y

(m
s)

Clients

DBSM g
DBSM SI

Cons g
PGR

(b) Latency

 0

 5

 10

 15

 0 1000 2000 3000 4000

A
bo

rt
 R

at
e

(%
)

Clients

DBSM g
DBSM SI

Cons g
PGR

(c) Abort rate

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000

A
bo

rt
 R

at
e

(%
)

Clients

DBSM g
DBSM SI

Cons g
PGR

(d) Delivery abort rate

Fig. 7. Performance measurements in a WAN

4.5 Discussion

The key issue in obtaining close to linear scalability of a distributed system is reducing
synchronization overhead. In practice, one can measure this overhead by the time the
computation in a node is suspended waiting for interaction with remote nodes. In a tradi-
tional protocol based on distributed locking, this can potentially be very large, if a node
has to wait that all other nodes enter and leave a critical section plus the time it takes to
pass the authorization around.

In contrast, when using active replication [19,8], the only overhead is encapsulated in
the total order multicast protocol and no additional synchronization is required. Ideally,
a database replication protocol based on total order multicast would be able to achieve
the same goal. We now examine in turn each of the protocols to determine how this goal
is achieved.

Figure 8 depicts the conservative and optimistic protocols handling the execution
of two concurrent non-conflicting transactions. In the CONS protocol (Fig. 8(a)), once
the transactions are ordered all steps of the protocol are executed concurrently therefore
corresponding to the desired behavior.

Regarding the optimistic approaches, we can see that in the DBSM (Fig. 8(b)) the
transactions’ execution can always be carried in parallel while the certification procedure
needs to be done sequentially. Once the certification is finished, since the transactions do
not conflict, the updates may be incorporated concurrently. The DBSM therefore incurs in
the certification procedure overhead. However, the certification execution time is usually
negligible though.

Group-Based Replication of On-Line Transaction Processing Servers 259

adequate definition of read-set granularity. Notice that this can be achieved by a database
administrator with no modification of sources and with no impact on correctness, which
provides maximum flexibility and safety.

In short, group communication based database replication protocols provide a spec-
trum of configurability, generality and performance trade-offs that fit the most demand-
ing applications. The wide availability of such protocols therefore demands improved
database interfaces that efficiently provide the functionality identified in Sect. 2 of this
paper.

References

1. D. Agrawal, A. El Abbadi, and R. C. Steinke. Epidemic algorithms in replicated databases
(extended abstract). In Proc. ACM Symp. Principles of Database Systems (PODS), 1997.

2. H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil. A critique of ANSI
SQL isolation levels, 1995.

3. P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in Data-
base Systems. Addison-Wesley, 1987.

4. N. Budhiraja, K. Marzullo, F. Schneider, and S. Toueg. The primary-backup approach. In
S. Mullender, editor, Distributed Systems, chapter 8. Addison Wesley, 1993.

5. A. Correia, A. Menezes, and R. Oliveira. Off-line test automation for database replication
based on group communication. Technical report, Universidade do Minho, 2005.

6. J. Cowie. Scalable Simulation Framework API Reference Manual, March 1999.
7. J. Cowie, H. Liu, J. Liu, D. Nicol, and Andy Ogielski. Towards realistic million-node in-

ternet simulation. In Proc. Int’l Conf. Parallel and Distributed Processing Techniques and
Applications (PDPTA’99), 1999.

8. R. Guerraoui and A. Schiper. Software-based replication for fault tolerance. IEEE Computer,
30(4), April 1997.

9. S. Guo, W. Sun, and M. Weiss. Solving Satisfiability and Implication Problems in Database
Systems. ACM Transactions on Database Systems (TODS), 1996.

10. V. Hadzilacos and S. Toueg. A modular approach to fault-tolerant broadcasts and related
problems. Technical Report TR94-1425, Cornell Univ., Computer Science Dept., May 1994.

11. J. Holliday, D. Agrawal, and A. El Abbadi. The performance of database replication with
group multicast. In Proc. IEEE Int’l Symp. Fault-Tolerant Computing Systems (FTCS), 1999.

12. B. Kemme and G. Alonso. A suite of database replication protocols based on communication
primitives. In Proc. IEEE Int’l Conf. Distributed Computing Systems (ICDCS), 1998.

13. B. Kemme and G. Alonso. Don’t be lazy, be consistent: Postgres-r, a new way to implement
database replication. In VLDB ’00: Proceedings of the 26th International Conference on
Very Large Data Bases, pages 134–143, San Francisco, CA, USA, 2000. Morgan Kaufmann
Publishers Inc.

14. B. Kemme, F. Pedone, G. Alonso, and A. Schiper. Processing transactions over optimistic
atomic broadcast protocols. In Proc. IEEE Int’l Conf. Distributed Computing Systems
(ICDCS), 1999.

15. M. Patiño-Martínez, R. Jiménez-Peris, B. Kemme, and G. Alonso. Scalable replication in
database clusters. In DISC’00: Proceedings of the 14th International Conference on Distrib-
uted Computing, pages 315–329, London, UK, 2000. Springer-Verlag.

16. F. Pedone. The Database State Machine and Group Communication Issues. PhD thesis,
Département d’Informatique, École Polytechnique Fédérale de Lausanne, 1999.

17. F. Pedone, R. Guerraoui, and A. Schiper. The database state machine approach. J. Distributed
and Parallel Databases and Technology, 2003.

260 A. Correia et al.

18. M. Pettersson. Linux performance counters. http://user.it.uu.se/ mikpe/linux/perfctr/, 2004.
19. F. Schneider. Replication management using the state-machine approach. In S. Mullender,

editor, Distributed Systems, chapter 7. Addison Wesley, 1993.
20. A. Sousa, F. Pedone, R. Oliveira, and F. Moura. Partial replication in the database state

machine. In IEEE Int’l Symp. Networking Computing and Applications, 2001.
21. A. Sousa, J. Pereira, F. Moura, and R. Oliveira. Optimistic total order in wide area networks.

In Proc. IEEE Int’l Symp. Reliable Distributed Systems (SRDS), 2002.
22. A. Sousa, J. Pereira, L. Soares, A. Correia Jr., L. Rocha, R. Oliveira, and F. Moura. Testing the

dependability and performance of group communication based database replication protocols.
In IEEE Intl. Conf. on Dependable Systems and Networks - Performance and Dependability
Symposium (DSN-PDS’2005), 2005. to appear.

23. Transaction Processing Performance Council (TPC). TPC BenchmarkTM C standard specifi-
cation revision 5.0, February 2001.

24. S. Wu and B. Kemme. Postgres-r(si): Combining replica control with concurrency control
based on snapshot isolation. In Proc. of the IEEE Int. Conf. on Data Engineering (ICDE),
pages 422–433, April 2005.

Third Workshop on Theses and Dissertations on
Dependable Computing

Avelino Zorzo1, Ingrid Jansch-Pôrto2, and Fab́ıola Gonçalves Pereira Greve3

1 Pontif́ıcia Universidade Católica do Rio Grande do Sul,
Computing Science Department

zorzo@inf.pucrs.br
2 Institute of Informatics,

Federal University of Rio Grande do Sul
ingrid@inf.ufrgs.br

3 Department of Computer Science,
Federal University of Bahia

fabiola@ufba.br

The Workshop on Theses and Dissertations on Dependable Computing is a stu-
dent forum for bringing together graduate students that research on topics re-
lated to dependable computing. The aim of this meeting is to present and discuss
the proposed contribution, preliminary results and possible directions for their
research. The previous editions of this Workshop were held in Florianópolis in
conjunction with the Brazilian Symposium on Fault Tolerance (SCTF 2001),
and in 2003 in São Paulo with the Latin-American Symposium on Dependable
Computing (LADC 2003).

C.A. Maziero et al. (Eds.): LADC 2005, LNCS 3747, p. 261, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Latin-American Workshop on Dependable
Automation Systems

Herman Augusto Lepikson1 and Leandro Buss Becker2

1 Department of Mechanical Engineering,
Federal University of Bahia

herman@ufba.br
2 Department of Automation and Systems,

Federal University of Santa Catarina
lbecker@das.ufsc.br

Automation systems play an important role in the economy of most industrial-
ized countries. One prominent feature of such systems relates to dependability, as
unexpected crashes can both put human-life in danger and cause massive money
looses. The first Latin-American Workshop on Dependable Automation Systems
(WDAS) aims to provide an opportunity for researchers and industrial part-
ners to discuss problems related to the development of safe-critical automation
systems.

Topics covered in our one-day workshop on Dependable Automation Systems
include the automatic detection of software failures, fault analysis and diagnosis
for dependable automation systems, reliability in real-time automation systems,
dependable real-time control/coordination systems, and safety communication
over wireless networks. The program is composed of regular papers, invited pa-
pers, a key note speech, and a panel.

We expect to promote a pleasant environment for technical discussions, bring-
ing together researchers and practitioners to share research results, practical
experiences, and advances in (or impediments to) the application of depend-
ability concepts for building automation systems. We encourage participation
by professionals with diverse backgrounds who can contribute to advancing the
technology and reflecting the latest trends and who can foster discussing the
implications.

Finally, we want to thank everybody who contributed to this workshop, first
of all, the colleagues which provided the technical contributions to the workshop
program. Our special thank also goes to the members of the program committee
who helped to shape the workshop with their recommendations. Everything is
set for a stimulating and hopefully highly interactive event. Thank you for your
interest and enjoy the technical program and discussions.

C.A. Maziero et al. (Eds.): LADC 2005, LNCS 3747, p. 262, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Software Architectures for Dependable Systems

Rogério de Lemos1 and Paulo Asterio de Castro Guerra2

1 University of Kent, Computing Laboratory,
Canterbury, Kent CT2 7NF, UK

r.delemos@kent.ac.uk
http://www.cs.kent.ac.uk/people/staff/rdl/

2 R. José Santoro, 17, 37480-000 - Lambari, MG, Brazil
asterio@acm.org

Abstract. Although there is a large body of research in dependability,
architectural level reasoning about dependability is only just emerging
as an important theme in software development. This is due to the fact
that dependability concerns are often left until too late in the process of
development. In addition, the complexity of emerging applications and
the trend of building trustworthy systems from existing untrustworthy
components are urging dependability concerns to be considered at the
architectural level.

1 Motivation

The structure of a system is what enables it to generate its intended behaviour,
from the behaviour of its components. The architecture of a software system
is an abstraction of the actual structure of that system. The identification of
the system structure early in its development process allows abstracting away
from details of the system, thus assisting the understanding of broader system
concerns [2]. One of the benefits of a well-structured system is to avoid overly
complex relationships between its components, which in turn should lead to a
more dependable system. Dependability can be defined as the ability of a system
to deliver service that can justifiably be trusted [1].

Reasoning about dependability at the architectural level has lately grown in
importance because of the complexity of emerging applications, and the trend of
building them through the integration of pre-existing software components. This
component-based trend requires trustworthy systems to emerge from the integra-
tion of untrustworthy components, whose actual implementations may even not
be known in advance. For instance, the deployment of a new version of an “off-
the-shelf” (OTS) component in the environment of a trustworthy component-
based system should not represent a risk to the dependability of that system,
even when the new OTS version introduces new faults in that same system. As
a result, these new applications demand for dependability concerns to be consid-
ered at the architectural level, rather than late in the development process. From
the perspective of software engineering, which strives to build software systems
that are free of faults, the architectural consideration of dependability compels
the acceptance of residual and unanticipated faults, rather than relying only in

C.A. Maziero et al. (Eds.): LADC 2005, LNCS 3747, pp. 263–264, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

264 R. de Lemos and P.A.C. Guerra

their avoidance. Thus the need for novel notations, methods and techniques that
provides the necessary support for reasoning about faults at the architectural
level [3]. For example, notations should be able to represent non-functional prop-
erties and failure assumptions, and techniques should be able to extract from
the architectural representations the information that is relevant for evaluating
the system architecture from a certain perspective.

2 Outline

The tutorial presents the current academic research by addressing the following
main topics:

– Introduction to software architectures and dependability
– Basic concepts in software architectures: architectural styles, and architec-
tural description languages (ADLs).
– Basic concepts in dependability: threats, attributes and means.

– Architecting for dependability
– Rigorous design: architectural-based software development, ADLs for de-
pendability, UML as an architectural description language, and wrappers
and protectors.
– Verification and validation: architectural model checking.
– Fault tolerance:exception handling in software architectures, idealized fault
tolerant architectural elements, N-version programming and recovery blocks
at the architectural level, and architectural reconfiguration.
– System evaluation: qualitative analysis, Architecture Analysis Tradeoff
Method (ATAM), quantitative analysis, and stochastic techniques.

– Future trends

References

1. A. Avizienis, J.-C. Laprie, B. Randell, C. Landwehr. “Basic Concepts and Taxon-
omy of Dependable and Secure Computing”. IEEE Transactions on Dependable and
Secure Computing 1(1). January-March 2004. pp. 11-33.

2. P. Clements, et al. Documenting Software Architectures: Views and Beyon. Addison-
Wesley. 2003.

3. C. Gacek, R. de Lemos. “Architectural Description of Dependable Software Sys-
tems”. Structuring Computer-based Systems for Depedanbility. C. Jones, C. Gacek,
D. Besnard (Eds.). Springer. 2005.

Fault-Tolerant Techniques for Concurrent
Objects

Rachid Guerraoui1 and Michel Raynal2

1 Ecole Polytechnique Fédérale de Lausanne,
Département d’Informatique, 1015 Lausanne, Switzerland

Rachid.Guerraoui@epfl.ch
2 IRISA, Campus de Beaulieu, Université de Rennes,

Avenue du Général Leclerc, 35042 Rennes Cedex, France
raynal@irisa.fr

Devising wait-free resilient implementations of concurrent objects from fault-
prone base objects is a fundamental challenge of computer science. Wait-free
means that any process that invokes an operation eventually receives a reply
after executing a finite number of its own steps, even if other processes are ar-
bitrarily slow or even failed. Resilience means that the implementation of the
concurrent object behaves correctly despite the failure of up to t base objects (t
being a threshold parameter a priori defined). The tutorial surveys different tech-
niques to build wait-free resilient implementations of concurrent objects. Three
complementary classes of techniques are presented: (1) fault-tolerance “by repli-
cation”, (2) fault-tolerance “by diversity”, and (3) fault-tolerance “by oracle”,
respectively. The first is the well-known redundancy technique and its applica-
bility depends on the kinds of faults that the objects can suffer. The second
consists in combining the base objects with objects of other types (type refers
here to a programming language notion: the type has to be powerful enough
to allow implementing resilient objects). This technique basically relies on the
universality of consensus objects. The third technique relies on the information
we can obtain about the operational status of the processes.

The aim of the tutorial is to make people familiar with practical and theoret-
ical fault-tolerance techniques and concepts to build resilient concurrent objects.
To illustrate the techniques, the tutorial uses algorithms from the literature or
devises new algorithms. A simple framework to derive a family of consensus
algorithms tolerating process crash failures and asynchronous periods, will be
presented. This framework is based on two independent abstractions, Alpha and
Omega, that cleanly address orthogonal issues: Alpha is devoted to consensus
safety, while Omega is devoted to consensus liveness. Implementations of the Al-
pha abstraction in shared memory, storage area network, message passing and
active disk systems will be presented, leading to directly derive consensus al-
gorithms suited to these communication media. (Interestingly, the algorithms
derived from the framework can be viewed as variants of the Paxos seminal con-
sensus algorithm of Lamport. In this sense, this part of the tutorial can be seen
as guided visit to variants of Paxos algorithms that have appeared recently in
the literature.)

C.A. Maziero et al. (Eds.): LADC 2005, LNCS 3747, p. 265, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Agreement Protocols in Environments with
Temporal Uncertainties

Fab́ıola Gonçalves Pereira Greve

Department of Computer Science. Federal University of Bahia,
Campus de Ondina, 40170-110 Bahia, Brazil

fabiola@ufba.br

Agreement protocols are fundamental for the design of dependable systems. They
ensure consistent cooperation among distributed entities, helping both to keep
the continuity of services in spite of failures and to enhance performance. Con-
sensus is the greatest common denominator among all agreement problems. It
allows a set of processes to agree on a common output value. Theoretical ad-
vances have been reached, thanks to the consensus problem solutions through
the use of unreliable failure detectors, which have been proved to be essen-
tial in solving many other agreement problems in environments with temporal
uncertainties. Such advances have been exploited in order to (i) find efficient
solutions to agreement problems, (ii) identify minimal synchronous conditions
for their solution and (iii) characterize more precisely their behavior (blocking
or progression) in presence of network disturbs. From a software engineering
view point, consensus-based protocols give rise to simple and modular solutions.
Basic components (consensus, reliable broadcast, atomic broadcast, failure detec-
tor, etc.) are identified in order to construct richer ones (group membership, view
synchrony, atomic commit, etc.). These components are in turn the fundamental
pieces of middleware for reliable distributed programming.

This tutorial presents a survey of the latest advances in solving agreement
in environments with temporal uncertainties. Firstly, recent theoretical results
regarding the solutions of agreement problems as well as their algorithms are
presented. Afterwards, it is shown how these algorithms are combined to build
services for fault-tolerant middleware. These are group and replication manage-
ment systems. Finally, through an example of task allocation in a computational
grid, it is shown how these protocols and middleware could be used in both the
design and the implementation of dependable applications.

C.A. Maziero et al. (Eds.): LADC 2005, LNCS 3747, p. 266, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Author Index

Agbaria, Adnan 206
Araújo, Filipe 174

Becker, Leandro Buss 262
Bondavalli, Andrea 35
Brito, Patrick Henrique da S. 61
Buckl, Christian 101
Burns, Alan 154

Castor Filho, Fernando 61
Correia, A. Jr. 245
Cunha, João Carlos 131
Cury, Edson 52

da Silva, Lúıs Ferreira 131
de Lemos, Rogério 263
de Moraes, Regina Lúcia O. 9
Di Giandomenico, Felicita 35
dos Santos, Osmar M. 80
Dotti, Fernando L. 80
Durães, João 20

Falai, Lorenzo 35
Farivar, R. 143
Fazeli, M. 143
Fetzer, Christof 2

Greve, Fab́ıola Gonçalves Pereira 226,
261, 266

Guerra, Paulo Asterio de Castro 263
Guerraoui, Rachid 265

Hessabi, S. 143

Jansch-Pôrto, Ingrid 261

Knoll, Alois 101

Le Narzul, Jean-Pierre 226
Lepikson, Herman Augusto 262
Lima, Fábio 191
Lima, George 154

Macêdo, Raimundo 191
Madeira, Henrique 20
Martins, Eliane 9, 61
Mendes, Naaliel Vicente 9
Mendizabal, Odorico M. 80
Miremadi, Seyed Ghassem 121, 143
Moura, F. 245

Nett, Edgar 4

Oliveira, R. 245

Pereira, J. 245
Poletti, Elaine C. Catapani 9

Ramasamy, HariGovind V. 206
Raynal, Michel 265
Rocha, Camila Ribeiro 61
Rodrigues, Lúıs 174
Rubira, Cećılia M. Fischer 61

Sakugawa, Benedito 52
Sanders, William H. 1, 206
Schrott, Gerhard 101
Silva, Carlos Bruno 131
Soares, L. 245
Sousa, A. 245

Yano, Edgar Toshiro 52

Zarandi, Hamid R. 121
Zenha-Rela, Mário 131
Zorzo, Avelino 261

	Frontmatter
	Invited Talks
	Probabilistic Validation of Computer System Survivability
	Timed Asynchronous Distributed Systems
	WLAN in Automation -- More Than an Academic Exercise?

	Evaluation
	Using Stratified Sampling for Fault Injection
	A Methodology for the Automated Identification of Buffer Overflow Vulnerabilities in Executable Software Without Source-Code
	Quantitative Evaluation of Distributed Algorithms Using the Neko Framework: The NekoStat Extension

	Certification
	Airborne Software Concerns in Civil Aviation Certification

	Modelling
	A Method for Modeling and Testing Exceptions in Component-Based Software Development
	Verifying Fault-Tolerant Distributed Systems Using Object-Based Graph Grammars
	The Zerberus Language: Describing the Functional Model of Dependable Real-Time Systems

	Embedded Systems
	Soft Error Mitigation in Cache Memories of Embedded Systems by Means of a Protected Scheme
	On the Effects of Errors During Boot
	A Fault Tolerant Approach to Object Oriented Design and Synthesis of Embedded Systems

	Time
	Scheduling Fixed-Priority Hard Real-Time Tasks in the Presence of Faults
	On the Monitoring Period for Fault-Tolerant Sensor Networks
	Adapting Failure Detectors to Communication Network Load Fluctuations Using SNMP and Artificial Neural Nets

	Distributed Systems Algorithms
	Parsimony-Based Approach for Obtaining Resource-Efficient and Trustworthy Execution
	Generating Fast Atomic Commit from Hyperfast Consensus
	Group-Based Replication of On-Line Transaction Processing Servers

	Workshops
	Third Workshop on Theses and Dissertations on Dependable Computing
	Latin-American Workshop on Dependable Automation Systems

	Tutorials
	Software Architectures for Dependable Systems
	Fault-Tolerant Techniques for Concurrent Objects
	Agreement Protocols in Environments with Temporal Uncertainties

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

