

Lecture Notes in Computer Science 3319
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Daniel Amyot Alan W. Williams (Eds.)

System Analysis
and Modeling

4th International SDL and MSC Workshop, SAM 2004
Ottawa, Canada, June 1-4, 2004
Revised Selected Papers

13

Volume Editors

Daniel Amyot
Alan W. Williams
University of Ottawa
800 King Edward, Ottawa, ON K1N 6N5, Canada
E-mail: {damyot, awilliams}@site.uottawa.ca

Library of Congress Control Number: 2004118419

CR Subject Classification (1998): C.2, D.2, D.3, F.3, C.3, H.4

ISSN 0302-9743
ISBN 3-540-24561-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11386100 06/3142 5 4 3 2 1 0

Preface

The SDL and MSC (SAM) workshop, held every two years, provides an open dis-
cussion arena on topics related to the modelling and analysis of reactive systems,
distributed systems, and real-time systems (e.g., telecommunications, automo-
tive, aerospace, and Web-based applications). The SAM workshop is a place
for intensive discussions enabling the unfolding of ideas for the future develop-
ment and application of SDL and MSC, and of related languages: ASN.1, eODL,
TTCN, UML, and URN.

The fourth instance of this workshop was held at the University of Ottawa,
Canada, from June 1 to June 4, 2004 (http://www.site.uottawa.ca/sam04/).
It was co-organized by the University of Ottawa, the SDL Forum Society, and the
International Telecommunication Union (ITU-T). SAM 2004 was also sponsored
by SOLINET, SAFIRE-SDL, and Telelogic AB. The workshop welcomed 60
participants from 10 different countries, including SDL Forum members, tool
vendors, standardizers, industrial users, and researchers.

In 2004, the program was composed of 21 papers, two panel sessions, one
tutorial, several posters, and the third edition of the SDL design contest. The
papers were selected by the Program Committee from 46 submissions. After
postworkshop revisions, a second round of review led to the selection of 19 papers
for publication in this volume of Lecture Notes in Computer Science.

Since the theme proposed for 2004 was Security Analysis and Modelling,
the workshop started with a full-day tutorial on black-box security protocols,
given by Sjouke Mauw and Cas Cremers. This tutorial introduced the basics of
security protocols (which are “three-line programs that people still manage to
get wrong”) and ways of preventing many types of attacks based on a security
model, verification, and formal modelling and analysis. Many of the models were
expressed as message sequence charts annotated with security properties.

The invited talk on Model-Driven Software Engineering, given by Bran Selic
(Distinguished Engineer, IBM Rational Software), emphasized that in the hype
surrounding MDA, platform independence does not mean platform ignorance.
Bran noted that engineering is “design with constraints,” and the models need
to incorporate those constraints. The characteristics of the underlying platform
or machinery need to be taken into consideration early in the design process to
address quality-of-service (QoS) issues. The challenge is to introduce technology-
independent specifications of required and offered QoS in our models.

These proceedings contain 19 papers, presented in six different sessions:

1. SDL and eODL
2. Evolution of Languages
3. Requirements and MSC
4. Security
5. SDL and Modelling
6. Experience

VI Preface

Some of these contributions are likely to influence the evolution of ITU-T
languages. In particular:

– Rick Reed presents his contribution on the ASN.1 data encoding for SDL in
Z.104.

– Markus Scheidgen presents a metamodel for SDL-2000 in the context of
metamodelling ITU-T languages. The idea of metamodels for ITU-T lan-
guages gains more and more support, especially with the current trend re-
lated to the development of UML 2.0 profiles for these languages, starting
with SDL (i.e., Z.109).

– Øystein Haugen presents a comparison between UML 2.0 interactions and
MSC-2000, where he discusses the many commonalities between the two
languages, as well as aspects where one language is more advanced than the
other. Three scenarios are envisioned by Haugen: (1) MSC/SDL and UML
both prevail; (2) UML fails; (3) UML succeeds more.

During the workshop, the most active and heated discussions focused on the
future of SDL, especially with these three presentations, followed by a panel
session chaired by Alan Williams:

– Edel Sherratt presented new potential areas of application for SDL. She
emphasized the importance of new trends such as ubiquitous and pervasive
computing, ad hoc networking, and grid computing, and she discussed the
influence of UML 2.0.

– William Skelton presented SIMPL-T (SDL intended for management and
planning of tests), a simple test language for SDL specifications, where he
argued for the use of SDL with minor extensions as a test language to test
SDL models. These extensions include the organization and management
of tests, the checking of responses (e.g., with “Input Via” and matching
mechanisms), and the assigning and handling of verdicts.

– Andreas Prinz reported on the activities and suggestions of the SDL Task
Force on the “simplest useful enhanced SDL-subset.” The need for such a
subset and its nature led to much discussion, which is still continuing on the
SDL Forum and SDL Task Force mailing lists.

The second panel session, chaired by Ostap Monkewich, focused on Security
Analysis and Modelling. Together with the three papers presented in the Secu-
rity session and included in this volume, several challenges and opportunities
regarding security modelling and ITU-T languages were presented, especially in
the context of security vulnerabilities in the IP world.

Again this year, SOLINET/SAFIRE-SDL sponsored an SDL design contest,
this time using an electronic access control system as the problem description
(http://www.safire-sdl.com/sam 04.htm). Three contestants presented their
solutions, and the workshop participants voted for the best one. For the second
year in a row, Alkis Yiannakoulias (National Technical University of Athens)
won the contest. Christian Webel (University of Kaiserslautern) finished second,
followed by Keith Moss (Open University, UK) in third place.

Preface VII

Overall, the 2004 edition of SAM was a success, thanks to many people
involved in this event, including the Local Organization Committee, Program
Committe members, reviewers, speakers, invited speaker (Bran Selic), session
and panel chairs, panellists, tutorial speakers, and contest participants and orga-
nizers. We hope you will enjoy our selection of papers. We are especially grateful
to Jacques Sincennes for his help and technical support, and to Richard van
de Stadt for making his CyberChair software (http://www.cyberchair.org)
available to us.

The workshop presentations are also available online at the following Web
site: http://www.site.uottawa.ca/sam04/.

November 2004 Daniel Amyot and Alan Williams

Organization

Organization Committee

Workshop Co-chairs

Daniel Amyot (SITE, University of Ottawa, Canada)
Alan Williams (SITE, University of Ottawa, Canada)

SDL Forum Society

Chairman: Rick Reed (TSE Ltd., UK)
Treasurer: Uwe Glässer (Simon Fraser University, Canada)
Secretary: Andreas Prinz (Agder University College, Norway)

ITU-T

B. Georges Sebek (TSB Councellor to ITU-T Study Group 17)

Local Organization Committee

Edna Braun
Bo Jiang
Jacques Sincennes
Yang Sun
Yong Xiang Zeng

Program Committee

Daniel Amyot, University of Ottawa, Canada
Rolv Bræk, Norwegian University of Science and Technology, Norway
Laurent Doldi, TransMeth Sud-Ouest, France
Olivier Dubuisson, France Telecom R&D, France
Anders Ek, Telelogic AB, Sweden
Joachim Fischer, Humboldt-Universität zu Berlin, Germany
Uwe Glässer, Simon Fraser University, Canada
Reinhard Gotzhein, University of Kaiserslautern, Germany
Susanne Graf, Verimag, France
Peter Graubmann, Siemens AG, Germany
Ferhat Khendek, Concordia University, Canada
Øystein Haugen, University of Oslo, Institute for Informatics, Norway
Dieter Hogrefe, Georg August University, Göttingen, Germany
Clive Jervis, Motorola, USA

X Organization

Martin von Löwis, Hasso Plattner Institute, Germany
Nikolai Mansurov, Klocwork, Canada
Sjouke Mauw, Eindhoven University of Technology, The Netherlands
Arve Meisingset, Telenor, Norway
Ostap Monkewich, NCIT, Canada
Anders Olsen, Cinderella, Denmark
Andreas Prinz, Agder University College, Norway
Rick Reed, TSE Ltd., UK
Amardeo Sarma, NEC, Germany
Ina Schieferdecker, Fraunhofer FOKUS, Germany
Edel Sherratt, University of Wales, Aberystwyth, UK
William Skelton, SOLINET, Germany
Ken Turner, Stirling University, UK
Thomas Weigert, Motorola, USA
Alan Williams, University of Ottawa, Canada

Additional Reviewers

Harald Böhme
Francis Bordeleau
Humberto Castejón
Robert G. Clark
Cas Cremers
Peter Deussen
George Din
Michael Ebner

Knut Eilif Husa
Xiaoming Fu
Andreas Kunert
Ramiro Liscano
Christophe Lohr
Bill Mitchell
Arjan J. Mooij
Bertram Neubauer

Toby Neumann
Michel Piefel
Rene Soltwisch
Andreas Ulrich
Erik de Vink
Frank Weil
Constantin Werner
Dirk Westhoff

Sponsoring Organizations

Table of Contents

SDL and eODL

Deployment and Configuration of Distributed Systems
Andreas Hoffmann, Bertram Neubauer . 1

eODL and SDL in Combination for Components
Harald Böhme, Joachim Fischer . 17

Applying eODL and SDL-Patterns for Developing TMN Managed
Systems

Margarita de Cabo, Manuel Rodŕıguez . 33

SPT – The SDL Pattern Tool
Jörg Dorsch, Anders Ek, Reinhard Gotzhein . 50

Evolution of Languages

Comparing UML 2.0 Interactions and MSC-2000
Øystein Haugen . 65

Data ncoding for SDL in ITU-T Rec. Z.104
Rick Reed . 80

SDL in a Changing World
Edel Sherratt . 96

Requirements and MSC

Early Validation of Deployment and Scheduling Constraints for MSC
Specifications

Ferhat Khendek, Christophe Lohr, Li Xin Wang, Xiao Jun Zhang,
Tong Zheng . 106

Scenario Synthesis from Imprecise Requirements
Bill Mitchell, Robert Thomson, Paul Bristow . 122

Applying Reduction Techniques to Software Functional Requirement
Specifications

Jameleddine Hassine, Rachida Dssouli, Juergen Rilling 138

E

XII Table of Contents

Security

Proving a Soundness Property for the Joint Design of ASN.1 and the
Basic Encoding Rules

Christian Rinderknecht . 154

Checking Secrecy by Means of Partial Order Reduction
Cas J.F. Cremers, Sjouke Mauw . 171

Finding Covert Channels in Protocols with Message Sequence Charts:
The Case of RMTP2

Löıc Hélouët . 189

SDL and Modelling

A Metamodel for SDL-2000 in the Context of Metamodelling ULF
Joachim Fischer, Michael Piefel, Markus Scheidgen 208

A Flexible Micro Protocol Framework
Ingmar Fliege, Alexander Geraldy, Reinhard Gotzhein,
Philipp Schaible . 224

ICT Convergence: Modeling Issues
Rolv Bræk, Jacqueline Floch . 237

Experience

Dealing with Non-local Choice in IEEE 1073.2’s Standard for Remote
Control

Arjan J. Mooij, Nicolae Goga . 257

Guidelines for Using SDL in Product Development
Frank Weil, Thomas Weigert . 271

Validating Wireless Protocol Conformance Test Cases
Paresh Jain, Amresh Nandan . 290

Author Index . 301

Deployment and Configuration of Distributed
Systems

Andreas Hoffmann1 and Bertram Neubauer2

1 Fraunhofer-Institut FOKUS, Kaiserin-Augusta-Allee 31,
10589 Berlin, Germany

a.hoffmann@fokus.fraunhofer.de
2 Humboldt-Universität zu Berlin, Institut für Informatik,

Rudower Chaussee 25, 12489 Berlin, Germany
neubauer@informatik.hu-berlin.de

Abstract. In order to ease the development and handling of complex
software systems, component models and distributed object technolo-
gies have been developed that allow the decomposition of systems and
the use of software components in a distributed processing environment.
While modelling and development of components is well supported, the
deployment and configuration of component-based distributed systems
lacks proper model reflection and is still a time consuming and difficult
task. Hence, several approaches for supporting the deployment and con-
figuration of component-based distributed systems at the modelling level
have been developed recently and exist in parallel today. In this paper,
the main concepts for deployment and configuration of three of those ap-
proaches are investigated and compared. It turns out that each of them
focuses on different aspects. The approaches considered are ITU-eODL,
UML 2.0 and the Deployment and Configuration Specification of the
OMG. The ultimate goal is to identify the core concepts in this area in
order to facilitate integration with the Unified Language Family of the
ITU (ITU-ULF).

1 Introduction

In order to cope with an increasing software complexity on one hand and the
rise of requirements on the development and usage of such software on the other
hand, component technologies have been developed. The introduction of compo-
nents allows the decomposition of systems on almost all levels, including design,
specification, implementation and runtime level. When using distributed object
technologies, reusable software components can be distributed over a network of
computing nodes. Examples for appropriate technologies are the CORBA Com-
ponent Model [7], Enterprise Java Beans and Microsoft .NET. In parallel to the
introduction of component technologies, the Model Driven Architecture (MDA)
[6] initiative from the Object Management Group (OMG) succeeded in intro-
ducing a new methodology for software development. Although the basic idea
of MDA is not new, it was given a new shape, new terminology and appropriate

D. Amyot and A.W. Williams (Eds.): SAM 2004, LNCS 3319, pp. 1–16, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 A. Hoffmann and B. Neubauer

underlying technologies, like UML [2, 3] and MOF [5]. The basic idea is to focus
the development of software systems on the abstract modelling of such systems
rather than on their concrete implementation. Thus system design information
can be decoupled from implementation technologies, which have shown to suffer
from shorter lifecycles than general modelling concepts. The existence of differ-
ent models on different levels of abstraction allows the distinction between a
Platform Independent Model (PIM) on one hand and a Platform Specific Model
(PSM) on the other. The transformation of models is done with strong tool sup-
port, at best in an automatic manner. This way, different PSMs can be used to
derive different concrete implementations from the same common PIM.

Although modelling and development of components is well supported, de-
ployment and configuration of component based distributed systems is not. De-
ployment and configuration of large-scale distributed systems is still a time con-
suming and difficult task. In order to allow better integration within the software
development process, several approaches for modelling the deployment and con-
figuration of component-based distributed systems have been developed. In this
paper, the main concepts for deployment and configuration of three approaches
are investigated and compared. In the sense of OMG MDA, each approach com-
prises a platform independent language, mainly based on component concepts.
Thus it can be seen as an attempt to identify common concepts for platform
independent modelling of application deployment. With respect to language in-
tegration and ITU-ULF, it should be the aim to find a language that is compliant
or can be aligned with all relevant approaches or standards in order to serve as
an MDA PIM.

2 Deployment and Configuration

In the scope of this paper, the term deployment and configuration addresses
the deployment and configuration of component-based distributed applications.
Given a concrete runtime environment, it designates the process that results in a
running application ready to be used according to the application’s specification.
Obviously, this process has some requirements including information about the
specific runtime environment, the application topology and concrete implemen-
tations of components. The provision of this information determines the degree
of possible automation of the process, which is desired in general. In the context
of component-based applications, deployment and configuration includes

1. the mapping of the application’s topology in terms of interconnected compo-
nent instances onto the runtime environment’s network of computing nodes,

2. the installation of component implementations,
3. the creation of component instances and
4. the set-up of connections as well as the configuration of component proper-

ties.

Actual requirements of the components respecting their implementing arti-
facts have to be taken into account. They have to be met by the specific proper-

Deployment and Configuration of Distributed Systems 3

ties of the actual target environment where the application’s components are to
be deployed. As depicted in figure 1, for each of the application’s components, a
proper artifact implementing this component is to be selected and to be installed
at a particular node that matches the artifact’s specific deployment requirements
(such as operating system, etc.). When the application is started, the deployment
system instantiates the component instances by loading the proper artifacts into
the runtime, and connects and configures them.

Fig. 1. Deployment process overview

Deployment and configuration can be seen as a mapping of the application
from the specification level onto the runtime level. Therefore, appropriate reflec-
tion of the application on one hand and the target runtime environment on the
other hand, are with dedicated deployment points of view required. As to be seen
in figure 2, modelling of applications and target environments can in general be
divided into two dimensions: the specification and the runtime. For each deploy-
ment related point of view a set of common modelling concepts can be identified.
The Application/Component Modelling comprises concepts for component def-
inition, component realization, and a composition or topology of components
as application and its initial configuration. Target Environment Modelling com-
prises concepts for the modelling of computing nodes and communication links
between nodes. Finally the Distribution Modelling allows giving up the distribu-
tion transparency of computational modelling by mapping a component topology
onto a target environment.

While on the specification level, modelling is based on abstract concepts rep-
resenting information, on the runtime level, the application and environment
are reflected by runtime instances. The Application Representation allows the
representation and management of running applications. The Deployment Data

4 A. Hoffmann and B. Neubauer

Fig. 2. Deployment modelling

reflect special formats of data. The Deployment Infrastructure is necessary to
process the deployment data in order to install, launch and configure the ap-
plication. This allows reflecting the process of deployment itself. If here also
common concepts can be found, modelling can be done independently of a con-
crete platform. Configuration as setting the initial state of an application can be
easily modelled with static specifications. Reconfiguration in contrast to configu-
ration is the dynamic change of an existing configuration at runtime. It imposes
stronger requirements on its specification, triggering and processing and is not
in the scope of this paper.

In the area of deployment and configuration of distributed component-based
applications, some different specifications were recently developed in and are
available today in parallel. When looking for a common modelling in this area,
each approach should be considered. Therefore, the respective specifications are
listed subsequently.

2.1 eODL

ITU-eODL is a language for platform independent specification of component-
based distributed systems. It provides several different viewpoints reflecting dif-
ferent but somehow related aspects of a system. Each viewpoint is connected
with dedicated abstraction concepts, which can be used for specific modelling
goals. The central viewpoint is the computational view point for modelling of
components. Here a component concept is introduced that has the ability to de-
fine ports for operational, signal-based and stream interactions. These ports are
directed and allow the composition of components to applications. eODL only
allows the definition of black-box components and does not permit recursive

Deployment and Configuration of Distributed Systems 5

composition of components. Besides the component modelling, the other major
aspect is the deployment and configuration of component-based, distributed ap-
plications. In fact, originally a separate language called Deployment and Config-
uration Language (DCL) was planned, but this was later integrated into eODL.
It includes three additional viewpoints. The implementation viewpoint covers
the modelling of component realizations, including the specification of require-
ments on a runtime environment. The target environment viewpoint covers the
modelling of the target environment. The deployment viewpoint covers the de-
ployment mapping. With eODL there is no modelling of the runtime level. The
language itself is based on a MOF metamodel definition, which allows defining
arbitrary notations.

2.2 UML 2.0

UML in general is a language family for graphical modelling purposes. It can
be used for visualization or specification of arbitrary systems, where different
aspects are modelled with different sublanguages. Each sublanguage defines a
separate set of modelling concepts and offers different graphical diagrams for no-
tation. UML is standardized by the OMG, and version 2.0 was recently adopted.
UML 2.0 is a major revision of the language, introducing a wide range of changes
and advanced concepts in comparison to former versions. This includes the def-
inition of new concepts for the modelling of components like provided and used
interfaces and ports that can be used for the composition of components. In
UML 2.0, components can be specified as black-box or white-box. The decom-
position of components is possible so that a component-based application is
a component in turn. From the viewpoint of deployment and configuration of
component-based applications, essential concepts are defined for modelling the
realization of components, i.e. their implementation, the target environment and
the deployment mapping. With UML 2.0 there is no modelling of the runtime
management of components. The language is based on a metamodel definition
aligned with MOF 2.0. UML is widely accepted and also for version 2.0 a variety
of tools will be available.

2.3 OMG Deployment and Configuration Specification (DnC)

In parallel with UML 2.0 and especially for the purpose of deployment and config-
uration of component-based applications, the Deployment and Configuration of
Component-based Distributed Applications Specification (DnC) was adopted by
the OMG in 2003. This specification is strictly structured according to the OMG
MDA approach. Thus it separates between platform independent and platform
specific modelling. The core of this specification is a MOF-compliant platform
independent metamodel (PIM) for deployment and configuration of component-
based distributed applications. In this model the definitions of a component and
its implementing artifacts are aligned with the respective definitions of UML 2.0.
Thus the OMG DnC specification can be seen as an extension of UML 2.0. The
OMG DnC specification also defines a UML profile supporting the specification

6 A. Hoffmann and B. Neubauer

of applications made up from components as well as the modelling of the appli-
cation’s target environments. This UML profile can be seen as a concrete syntax
for the abstract deployment concepts defined by the PIM.

While eODL and UML2.0 strongly focus on the development phase of
component-based applications, the OMG’s DnC specification does not cover this
phase in the application’s life cycle. How an application is created is out of scope
of this specification. The starting point for the DnC is a complete (implemented)
specification of an application as a result from the development phase. The rea-
son for this is that one of the major objectives of the DnC specification is that it
shall be applicable to any application in a wide range of domains developed by
different methodologies. The major precondition is that the application is based
on distributed component technology. The DnC specification also defines an in-
teroperable deployment machinery. This includes the definition of a deployment
architecture with well-defined interfaces and interchange formats. Both can be
automatically derived from the PIM, since the DnC specification also defines
proper mapping rules.

Beside the platform independent metamodel, one example of a metamodel
for platform specific modelling is enclosed. This is the metamodel for the CCM
platform to be used for specification of CCM applications. In order to transform
a platform independent model into a model for CCM, transformation rules are
defined for automatic processing. From the deployment point of view of com-
ponent based applications, concepts for modelling component implementations,
component assemblies, target environments and application deployment are pro-
vided. In addition to the modelling of these data, there is also a modelling of
deployment processing and infrastructure. The metamodels for platform inde-
pendent as well as platform specific models are based on MOF. Thus each used
concept is provided as a MOF model.

2.4 Platform Specific Component Technologies

Platform independent modelling languages can hardly be used for the implemen-
tation of appropriate applications. In order to implement a component-based
application, its technology dependent specification, for instance based on CCM,
EJB or .NET, is required at least. When following the MDA approach this means
that each concept used in an appropriate platform independent specification of
an application has to be mapped to elements of the technology, which is chosen
for the implementation of the application, including its deployment and runtime
management. In consequence, it is vital for the metamodel of the platform in-
dependent specification, that its concepts are to be aligned with possible target
technologies. This fact justifies having a look at the concepts of specific tech-
nologies in general. The support for deployment and configuration of component-
based applications is reflected in different technologies to very different extents.
The most comprehensive support is provided by CCM, which provides a frame-
work for the development and deployment of CORBA components. In this paper
there is no further study on these technologies.

Deployment and Configuration of Distributed Systems 7

3 Comparison of Common Concepts

Subsequently the approaches of eODL, UML 2.0 and OMG Deployment and
Configuration Specification (DnC) are examined for its reflection of some se-
lected vital concepts for deployment and configuration. For each such concept
the respective modelling elements have to be compared in order to assess the
expressiveness and usability in a PIM.

3.1 Component and Component-Based Application

A component-based application is an application that is realized by a composi-
tion of components. Obviously in this context the concept of component is the
central modelling concept. In general terms it represents a modular part of a
system that encapsulates its contents and whose implementation is replaceable
within its environment. Moreover a component allows the modelling of compo-
sition by defining interaction ports for provided and required interfaces. Thus
connections between components can be modelled by connecting required and
provided ports determining interaction kind and direction. Components can be
reused in different applications. This general concept of component is to be found
in all three languages. As to be seen there are huge differences in the extent of
additional component concepts. Nevertheless there is a set of common concepts
like component, port, interface, connection so that the different representations
of applications can be mapped to each other.

Fig. 3. Component definition in eODL

In eODL, a component is represented by COTypeDef. Since eODL is based on
OMG IDL the reflection of the contained relationship is covered by the concepts
of Container and Contained. A COTypeDef is a Container that may contain
several Contained elements, including PortDef. A PortDef is a Contained and

8 A. Hoffmann and B. Neubauer

can be a ProvidePortDef or a UsePortDef. It has a relation to an InterfaceDef.
As already said, components in eODL are only black-boxes. The modelling of
internal structures of a component is not possible. This means that component-
based applications made as assemblies of components cannot be modelled as
a component, but require an additional concept. This concept is AssemblyDef,
which comprises information about the topology of the component assembly,
required component instances and connections between them.

In UML 2.0, a component is represented by the class Component. It may
provide or require interfaces and inherits the concepts of ports and connections
from the Class EncapsulatedClassifier. A component in UML 2.0 can be mod-
elled as black-box or white-box. UML 2.0 provides a very sophisticated compo-
nent model, where internal structures can be modelled with the concept of part
and connections between parts. Thus, here a component based application is a
component, that in turn results in a recursive decomposition.

Fig. 4. Component definition in UML 2.0

In DnC, a component specification is represented by the modelling element
ComponentInterfaceDescription. In contrast to eODL and UML the modelling
of components is only based on the reflection of component and port. It is not
integrated with a type system or other component concepts. Instead, it is fully
based on strings in order to refer to identifiers for interfaces and types, modelled
outside the deployment and configuration model. This approach on one hand
prevents a close integration of component modelling and deployment modelling,
since relations are not reflected by associations between model elements but by
comparison of attribute values. On the other hand, it provides the opportu-
nity to apply modelling of deployment and configuration to arbitrary compo-
nent models, given that they support the concepts of interface and named ports
as required by DnC. Of course components can this way only be modelled as
black-boxes, and a component based application requires another concept for its
reflection. In DnC an application is modelled as the implementation of a com-
ponent. Using the alternative concepts of MonolithicImplementationDescription
or ComponentAssemblyDescription, the implementation can be monolithic or
recursive, respectively, see figure 6. Recursive implementation means, that the
component is implemented by an assembly of other components. In fact, the in-
dependency of the implementation description from the component specification

Deployment and Configuration of Distributed Systems 9

Fig. 5. Component definition in DnC

Fig. 6. Application definition in DnC

would allow to have an implementation structure that differs from a possibly
given white-box component specification, like with UML 2.0. Actually, in such
cases the implementation structure would be derived from the component struc-
ture.

3.2 Realization of Components

In order to be deployed and instantiated as part of an application, components
have to be implemented and the appropriate information concerning the imple-
mentation, such as the name of the implementation files, and their dependencies
and requirements has to be reflected in the model. All three approaches allow
modelling of component realization in a quite similar way that makes an align-
ment of concepts for component realization possible. A component, potentially
together with other components, is implemented by a software artifact. This is
according to the specification of components in [8]. Unfortunately, the concept
of Artifact is to be found in all models with different meanings. In eODL, a com-
ponents realization is modelled by the concept of SoftwareComponentDef. The
concept of Artifact is used here to reflect the implementation structure in form
of implementation classes. In UML 2.0, the concept of Artifact as the represen-

10 A. Hoffmann and B. Neubauer

tation of an arbitrary file is the manifestation of one or more components. In
DnC, the implementation of a component is modelled by the concept of Compo-
nentImplementationDescription, which can be a monolithic implementation or
an assembly of components. The actual implementation files are then modelled
by ImplementationArtifactDescriptions.

Very important for the determination of the distribution of component im-
plementations on a target environment is the availability of proper information
concerning the properties of the implementation artifacts needed to derive their
requirements. This is reflected in different manners. In both eODL and DnC
requirements on the potential target environment can be attached to compo-
nent implementations. As shown in the left part of figure 7, in eODL a property
has a value and refers to a type definition that inherits its name and type at-
tributes from the class Typed. In the right part of figure 7 the definition of a
requirement in DnC is depicted. As to be seen there a requirement is structured
by several contained properties and typed by the type of resources the require-
ment is specified for. This enables a powerful matching mechanism during the
distribution mapping. As opposed to eODL and DnC, in UML 2.0 there is no

Fig. 7. Deployment requirements in eODL (left) and DnC (right)

special concept defined supporting the definition of deployment requirements.
Instead, one can use the general-purpose annotation mechanism of UML to add
untyped property-value pairs to classes in the deployment diagram stereotyped
with �artifact�. This means, that without profiling, no further semantics for the
specification of requirements is provided.

3.3 Target Environment Description

UML does not define explicitly the term target environment. It basically pro-
vides the concept of Nodes and CommunicationPath connecting nodes. Nodes
have processing capabilities and may be nested. UML defines the concept of De-
vices allowing better substructering of nested nodes. An ExecutionEnvironment
allows the execution of specific types of components. The connecting feature
of CommunicationPath is achieved implicitly by inheritance. The concepts of
Node and CommunicationPath can be used in so-called deployment diagrams
providing a simple notation for static mapping of component implementations

Deployment and Configuration of Distributed Systems 11

(artifacts) to selected nodes. Static mapping means that in the current UML
2.0 version it is not really anticipated to support the distribution mapping of
component’s implementations to different arbitrary target environments by a
generic requirement-property matching mechanism.

Fig. 8. Target environment in UML

As depicted in figure 9, in eODL a target environment is composed of nodes
and links connecting nodes (NodeLink). This model is fairly simple. However, as
opposed to UML it allows the direct attachment of properties (type-name-value
triple) to nodes and links between nodes. This is achieved by inheritance from
the Container class (figure 9) that inherits in turn the ability of having properties
from the Contained class (see figure 3 and figure 7).

Fig. 9. Target environment in eODL

In DnC a target environment is called a domain. As depicted in figure 10, it is
composed of nodes, bridges and interconnects. Nodes are connected by intercon-
nects providing a shared communication path. Bridges are representations for
routers and switches connecting interconnects. Nodes provide processing capa-
bilities. They are the target for executing deployed component implementations.
Features of nodes as well as interconnects and bridges are modelled by resources

12 A. Hoffmann and B. Neubauer

Fig. 10. Target environment in DnC

Fig. 11. Deployment plan in eODL

that are typed. During the deployment process these resources are matched
against the typed requirements of component’s implementations. In addition to
resources owned by nodes or interconnect and bridges, DnC introduces the con-
cept of shared resources that are used by a number of nodes but not owned by
a particular one.

3.4 Deployment

In eODL the DeploymentPlan specifies the mapping of an application onto a
particular target environment. The DeploymentPlan basically consists of the In-
stallationMap and the InstantiationMap. It also refers to one or more Software-
ComponentDefs that are involved in the DeploymentPlan. The InstallationMap
contains a number of ComponentAssignments defining what software compo-
nents are to be installed at what node. An InstantiationMap specifies what
component instances are to be instantiated at what node. Figure 11 provides
a brief overview on eODL’s concept of a DeploymentPlan. The subsequent di-
agrams explaining the InstallationMap and InstanceMap in more details have
been omitted due to the limited paper space.

In contrast to eODL, UML does not provide a concept for a general deploy-
ment plan but only allows modelling of an assignment of artifacts to deployment

Deployment and Configuration of Distributed Systems 13

targets. It is a quite simple model. Deployment targets are mainly Nodes, but
also Parts inheriting from Properties and InstanceSpecifications can be targets
for deployment. Each deployment target owns a set of deployments reflecting
the installation of artifacts or instances of artifacts. Furthermore (not shown
in figure 12), there is the possibility to give additional artifacts containing de-
ployment related information as configuration values, etc., by using the class
DeploymentSpecification.

Fig. 12. Deployment definition in UML

As in eODL, the central concept in the DnC Specification for Distribution
Mapping is the DeploymentPlan. This is a complex structure referring to the de-
scriptions of the application on one hand, and to an actual target environment
that the application has been mapped to on the other hand. Mapping an applica-
tion into a domain (see figure 10) includes, in particular, the mapping of compo-
nent implementations to nodes and connections between component instances to
bridges and interconnects. All requirements of the application’s components need
to be met as a result of this mapping process. The DeploymentPlan records all
these deployment decisions. In more detail, the MonolithicDeploymentDescrip-
tion specifies the deployment of a particular component. It references at least
one ArtifactDeploymentDescription, which specifies that a particular artifact
has to be installed on a selected target node as part of the component deploy-
ment. It also contains execution parameters needed for loading the artifact into
runtime. The application’s initial topology in terms of instances to be created
and connected is described by the InstanceDeploymentDescription and Plan-
ConnectionDescription. Finally, the DeploymentPlan allows the specification of
dependencies to other applications that must have been deployed prior to the
application the DeploymentPlan is for. The DeploymentPlan also references the
ComponentInterfaceDescription describing a component’s set of required and
provided interfaces.

3.5 Runtime Management

As already mentioned, the DnC specification is the only one of the three com-
pared approaches that provides a model for executing a deployment specification,
i.e. for installing and launching a distributed application in its dedicated target

14 A. Hoffmann and B. Neubauer

Fig. 13. Deployment plan in DnC

Fig. 14. Runtime management overview in DnC

environment according to the deployment specification. Figure 14 just shows
the ApplicationManager as an integral part of the deployment infrastructure as
specified by DnC. The ApplicationManager manages the complete installation
and bootstrapping of the application as specified by the DeploymentPlan.

4 Summary

The examination of the languages eODL, UML 2.0 and OMG DnC from the
perspective of modelling deployment and configuration of component-based ap-
plications has shown that these languages are different, but based on a set of
common concepts. These concepts unfortunately are reflected by different mod-
elling elements, but could be aligned. In order to have a common language for
modelling deployment and configuration of component-based applications, espe-
cially with respect to build a uniform language family, this set of concepts has
to be identified in detail. Within this paper an overview was given. Figure 15
shows the comparison of modelling elements of the three languages.

It should be no option to develop a new language but instead adapt and use
one of the existing ones. It is essential for the usability of such a language that it
should cover as much as possible of the concepts used in this area. Furthermore,
mappings to other languages, either platform independent or platform depen-
dent, must be possible. Since all three languages have a MOF-based metamodel,

Deployment and Configuration of Distributed Systems 15

Fig. 15. Concept comparison

mappings can be easily done on this basis. It is hard to determine which lan-
guage should be taken as a common language for the considered purpose and
the choice probably will depend on the context. In the context of ITU-T, the
adoption and further development of eODL would be a good choice, since it is
already an ITU-T language. From the perspective of usability and publicity on
the other hand UML (2.0) is wide spread and prepared to be extended by its
build-in feature of profiles. The specification of UML 2.0 explicitly states, that
the Deployment package supports a streamlined model of deployment that is
deemed sufficient for the majority of modern applications. Where more elab-
orate deployment models are required, it can be extended through profiles or
metamodels to model specific hardware and software environments. Also the
DnC could serve as a base for a common language. Due to its relative indepen-
dence of the used component model, it can easily be combined with a variety
of models. Furthermore DnC already provides a mapping to CCM, one of the
most advanced component technologies. Since technology mappings are very im-
portant for the MDA-approach they will play a key role for the acceptance of a
common PIM.

References

1. ITU-T: Recommendation Z.130 (07/03), Extended Object Definition Language
(eODL). International Telecommunication Union, Geneva.

2. OMG: UML 2 Superstructure Specification. OMG document ptc/03-08-02.
3. OMG: UML 2 Infrastructure Specification. OMG document ptc/03-09-15.
4. OMG: Deployment and Configuration of Component-based Distributed Applica-

tions Specification. OMG document ptc/03-07-08.

16 A. Hoffmann and B. Neubauer

5. OMG: MOF 2.0 Core Final Adopted Specification. OMG document ptc/03-10-04.
6. OMG: MDA Guide Version 1.0.1. OMG document formal/03-06-01.
7. OMG: CORBA Component Model. Version 3.0. OMG document formal/2002-06-65.
8. Szyperski, C.: Component Software - Beyond Object-Oriented Programming. ACM

Press Books, 1999.
9. W3C: Extensible Markup Language (XML) 1.0 (Second Edition). World Wide Web

Consortium, 2000.

eODL and SDL in Combination for Components

Harald Böhme and Joachim Fischer

Humboldt-Universität zu Berlin
{boehme, fischer}@informatik.hu-berlin.de
http://www.informatik.hu-berlin.de/~boehme

Abstract. Today’s software development is component-oriented. We
show how well-established techniques like SDL and component devel-
opment can be combined. This approach will keep the strength of well-
founded formal languages to improve the specification of components.
Moreover, an abstract model notation (eODL) of component based ap-
plications (assemblies) is shown. A first proof of concept is done by a
realisation on top of a standardised component middleware platform of
the OMG (CCM). For the integration of different model abstractions
we use the OMG adopted MDA technology. An overview of the resulting
development process will complete the picture of the proposed approach.

1 Introduction

The process of software development has been changing over the time to react
to current needs and inventions of software design. One important force for the
improvement of the software development process is the search for a better reuse
of already developed and existing software. In the beginning this was done with
libraries. For a long time they were used at linkage stage only. Later, compiler
languages were enhanced by notations for multiple compilation units, where the
library approach was extended in that direction, too. Until recently, the linkage
library solution was the only widespread method for software reuse. Meanwhile,
computer languages have been progressed further, in particular object-oriented
concepts were introduced. On the one hand the use of those languages adds to
the improvement of the software design at all, but on the other hand this does
not really support the reuse. Today the paradigm of component-orientation is
meant to solve the reuse problem. In this perspective component-orientation
elevates the aspect of reuse to the level of software design. This is a big step
forward, because already the designer can pay attention to software reuse. As a
result it is now possible to reuse software components at design level and not
only at engineering level.

For the enforcement of the component-oriented paradigm in the design stage
the availability of suitable design languages is important. eODL [5] is an ITU
language. Its roots are the TINA [15] context, where the language ODL [4] had
introduced concepts for component description for the first time. Like many other
modelling techniques on the abstract level eODL too deals only with structural

D. Amyot and A.W. Williams (Eds.): SAM 2004, LNCS 3319, pp. 17–32, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

18 H. Böhme and J. Fischer

aspects of the software system. Elements to model behavioural aspects are miss-
ing. But the behavioural aspects belong to the basic system design as well as the
structure and should also persist across development iterations and technologi-
cal changes. However, utilities for the preservation of the behavioural aspects at
design level are needed.

One practically used language dealing with behavioural aspects is SDL [3].
Our paper will show in section 3, that the combination of the two description
techniques will overcome the lack of behavioural description for component de-
velopment at abstract level (s. Figure 2).

But the software development process will not stop with abstract models,
real implementations have to be produced. For the transition from abstract
to implementation-oriented models an existing method has to be applied. The
Model Driven Architecture (MDA) [8] defined by the OMG propose such a gen-
eral method for model transformation. This approach is used in our paper to
map models from abstract to implementation level. More detailed information
on MDA is given in section 2. The mapping to implementation level is shown
in section 4. To illustrate several steps of used model transformation and model
enrichment a simple example “Hello World” is given.

2 Model Driven Architecture (MDA)

The Model Driven Architecture is a new software engineering approach devel-
oped and published by the Object Management Group (OMG). One fundamental
observation in the evolution of living software systems over the years is that their
basic design models are mostly unchanged. Most changes to evolving software
systems take place only at engineering level, forced by the introduction of new
technologies and platforms.

MDA promotes simply the usage of models for the whole software system
development. To capture the problem of technology evolution MDA defines two
classes of models. The first one is for abstract modelling of the software systems
at the design level. This model class is called Platform Independent Model (PIM).
The second class is related to specific platforms and/or technologies. It contains
mainly engineering aspects of the software system and is called Platform Specific
Model (PSM). Between these two classes of models MDA defines a relation in
form of several mappings, which insure the structural equivalence of PIM and
PSM (see Fig. 1).

Another key issue of MDA is a technology framework for different kinds of
model handling (storage, exchange, mapping of models, etc.). The Meta Object
Facility [7] is convenient for this purpose. Historically modelling languages are
defined by abstract grammars. MOF instead defines modelling languages on the
base of so called metamodels. Metamodels are models (instances) of built-in
MOF concepts. Using this framework the developer can focus more on the defi-
nition of mappings between models rather than having to struggle with ordinary
model handling. This is due to the fact that MOF comes with a method for the
definition of model classes (metamodels) and for the exchange of models using

eODL and SDL in Combination for Components 19

Fig. 1. Relation between PIM and PSM

the XML Metadata Interchange (XMI) [6]. In addition, MOF provides map-
pings of metamodels to repository interfaces as well. Such a repository holds all
necessary information about model instances.

2.1 Component Model

For the development of component-oriented software a common understanding
of what a component is has to be achieved first. This must be supported by a
component model. Component models are used during the whole development
process from design over implementation until deployment. Components in gen-
eral are selfcontained software units, which export their functionality with the
help of provided interfaces to their environment. The functionality required from
the environment of a component is expressed by used interfaces of that compo-
nent.

A software system based on such a component model can be seen as a con-
figuration of components. The interaction of the single components in this con-
figuration combines their individual functionalities and performs the complex
system functionality. Thus, the division of functional aspects is a main issue in
the software development process.

A component model contains all structural information for the system design,
especially component type with their interfaces and relations, number and types
of component instances and interconnection between component instances.

2.2 Overview on Applied Model Techniques

The MDA approach offers only a road-map for the software development process
and is not connected a priori with component development. That’s why MDA
does not contain a predefined component model. So we have to identify or adapt
modelling techniques and/or languages for component development which are
convenient for PIM and PSM descriptions.

In Figure 2 we give an overview on the languages used in the approach pro-
posed by the authors. At the PIM level of design eODL is used in combination
with SDL. This gives us the strength of a component-oriented technique (eODL)

20 H. Böhme and J. Fischer

Fig. 2. Mappings between involved languages

as well as the power of behavioural description (SDL). Furthermore, SDL has a
formal semantics, which may be very useful to analyse and test at an abstract
design level. The mapping a in Figure 2 is part of the component modelling at
PIM level and results in corresponding model structures in SDL.

As component model for PSM we choose the CORBA Component Model
(CCM) [9]. CCM offers a metamodel for components based on MOF. A more
detailed description is given in section 4.1. The following section describes map-
ping a of Figure 1.

An alternative language for PIM could be UML 2.0. For the PSM other
established component platforms like EJB and .NET are possible.

3 eODL-SDL Mapping

In specialisation of the MDA approach the authors use an eODL-SDL combi-
nation for the description of components at the PIM level. Because eODL is
defined with a MOF metamodel it is well suited for a realisation of the MOF ap-
proach. Furthermore, eODL provides a human-readable notation and a feature
for the model exchange between different eODL-tools based on XMI. The core
modelling concepts of eODL are grouped by different view points1:

– computational view point,
– implementation view point,
– deployment view point,
– target environment view point.

1 view point means here the same as in ODP.

eODL and SDL in Combination for Components 21

For the PIM level only the computational view point is relevant. All struc-
tural aspects of components belong to the computational design. Examples for
structural concepts are component (in eODL called CO-Type) and interface.
Further computational concepts of eODL are port and provided/used.

3.1 Z.130 eODL-SDL Mapping

eODL as pure component technique deals only with structural aspects of compo-
nents, behavioural aspects are not covered. To overcome the lack of behavioural
description we propose the usage of SDL in combination with eODL. SDL is
well suited for the description of behaviour of reactional systems. Components
themselves with their provided interfaces act like reactive subsystems. Signal
and RPC interaction from eODL have corresponding built-in concepts in SDL.
The inheritance relation is covered in SDL as well. eODL has its own data type
system. The data type system of SDL provides other concepts as eODL, but is
powerful enough to build adequate data types for the needed kinds of interaction
in eODL. For behaviour SDL uses the concept of extended state machines, which
is defined by a transition graph.

Starting point of the SDL part of components are SDL structures, which are
generated from the originating eODL structures.

The concept of used port in eODL is a mechanism that enables a CO
to store interface references of other COs.
This concept is mapped onto a set of remote procedures that are declared
in the configuration interface of the CO.
A used port foo of type bar is mapped onto the remote procedure
link_foo that takes an reference to bar as parameter. If the port is
of attribute single and there is already a reference stored at this port,
the predefined exception AlreadyConnected is raised. Moreover, a re-
mote procedure unlink_foo is declared that removes the stored refer-
ence from port foo. If there is no reference stored at foo, the predefined
exception NotConnected is raised. If the port is of attribute multiple,
a sequence of references is stored. The exception is AlreadyConnected
never raised.
...

This mapping defined by Z.130 is able to handle all eODL concepts of all
different view points. In the example above a computational concept is identi-
fied, but the mapping covers concepts from other view points, too. The main
disadvantage of that mapping is the hardwired relation to CCM. This shows up
especially through the usage of RPC in combination with predefined exceptions.
Moreover, the mapping results in an unneeded complexity of the resulting SDL
structures. That’s why in this paper a new mapping is proposed which will only
cover concepts of the computational view point of eODL.

The concepts of the other view points are taken care of by other technology
dependent mappings as shown in Figure 3. Here mapping d’ as technology de-

22 H. Böhme and J. Fischer

Fig. 3. New mappings between involved languages

pendent mapping use not only information from the SDL-model (computational)
additional information from other view points in the eODL-model are obtained.

3.2 Principles of a Revised eODL-SDL Mapping

Now we are able to postulate some requirements for a revised version of the
eODL to SDL mapping:

1. The resulting SDL has to be platform independent.
2. The resulting SDL should be in a shape to be executable for simulation, test

and usage.
3. The mapping should be defined on the base of MOF.

The third requirement assumes definitions of the source (eODL) and target
language (SDL) to use the MOF approach. For eODL such a definition already
exists by the standard. In [12] an ongoing work for a SDL-metamodel is de-
scribed. This metamodel is used in the definition of the mapping rules. To give
an outline of the nature of the new mapping rules an example2 is presented:

Rule: For each element in the eODL model of type COTypeDef (A)
there is an element of type Agent_type_definition (A’) in SDL with
the same name. If the COTypeDef (A) is a specialisation of another
COTypeDef (B) than also the Agent_type_definition (A’) in SDL is
a specialisation of the other resulting Agent_type_definition (B’).

2 It should be remarked that all mappings of the eODL standard are of informal
nature.

eODL and SDL in Combination for Components 23

The rule above refers to concepts of both metamodels, in our case COTypeDef
and Agent_type_definition. This is necessary, because model modifications in
the development process should be reflected in both directions. If for instance
the name of a COTypeDef in eODL is changed also the corresponding name in
SDL for the Agent_type_definition has to be modified.

interface Hel lo {
void say () ;

} ;

interface Manage {
void i n i t () ;

} ;

/∗ ope ra t i ona l s t a t e i s en tered a f t e r i n i t () ∗/

CO Cal l e e {
provides Hel lo t h e h e l l o ;
provides Manage the manage ;

} ;

CO Ca l l e r {
use Hel lo h i ;

} ;

Listing 1.1. eODL example

Another aspect demonstrated by the rule is the fact that there is no 1:1
relation between all non-abstract concepts in eODL and SDL. The mapping
rule defines a relation between the concrete concept COTypeDef and the abstract
concept Agent_type_definition of SDL. But models of SDL do not contain in-
stances of Agent_type_definition as such. While establishing the relation be-
tween eODL and SDL model elements, it has to be decided which actual concept
will be used for Agent_type_definition. For the metamodel of SDL this could
be either Block_agent_type_definition or Process_agent_type_definition,
which both are concrete specialisations of Agent_type_definition. This is il-
lustrated by example listings 1.1 and 1.2. In the eODL specialisation in 1.1 we
define two COTypeDef, which are mapped to SDL in listing 1.2. In the process of
mapping the user and/or the mapping tool has to decide which concrete concept
in the target metamodel should be used. In our example here we use in both
cases Process_agent_type_definition as target concept.

interface Hel lo ;
procedure say ;

endinterface ;

interface Manage ;
procedure i n i t ;

endinterface ;

24 H. Böhme and J. Fischer

process type Cal l e ;
gate t h e h e l l o in with interface Hel lo ;
gate the manage in with interface Manage ,
exported as << interface Hello>> say procedure say ;
endprocedure ;
exported as << interface Manage>> i n i t procedure i n i t ;
endprocedure ;
endprocess type ;

process type Ca l l e r ;
gate hi out with interface Hel lo ;
endprocess type ;

Listing 1.2. SDL structures generated from eODL example

However, not for all concepts of the computational view point of eODL exist
simple mappings to SDL. This shows up if you try to establish a relation between
InterfaceDef and a corresponding concept in SDL. Although SDL contains
interface as a language element this is not a first class concept, it is only a
short hand. So the semantical foundation for interfaces does not exist and the
relation can not be built up3. It would be much more in line with actual used
communication infrastructures to have interface as first class communication
concept in SDL.

3.3 Component Model Enrichment by Behaviour Description

The final step of the development of a PIM related component model is the
enrichment of the generated SDL model by a behavioural description. Using
our eODL-SDL mapping we get agent types with well-defined interfaces. All
signatures of signals and remote procedures are generated too. Now the design
can start to fill out behavioural description in the SDL specification. That means
it has to define all exported procedures, the state machine and the internal
structure of all agent types. In our example (listing 1.3) this is only suggested
by an introduction of a state-oriented behaviour. The enriched model is based
on listing 1.2.

interface Hel lo ;
procedure say ;

endinterface ;

interface Manage ;
procedure i n i t ;

endinterface ;

process type Cal l e ;

3 Note that example listing 1.2 is textual notation for SDL, which contains short hands

eODL and SDL in Combination for Components 25

gate t h e h e l l o in with interface Hel lo ;
gate the manage in with interface Manage ;
exported as << interface Hello>> say procedure say ;

start ;
task ’ say he l l o ’ ;
return ;

endprocedure ;
exported as << interface Manage>> i n i t procedure i n i t ;

start ;
task ’ do i n i t s t u f f ’ ;
return ;

endprocedure ;
start ;

nextstate i n i ;
state i n i ;

input i n i t ;
nextstate running ;

endstate i n i ;
state running ;

input say ;
nextstate −;

endstate running ;
state ∗ ;

input i n i t reject ;
nextstate −;

input say reject ;
nextstate −;

endstate ;
endprocess type ;

process type Ca l l e r ;
gate hi out with interface Hel lo ;
endprocess type ;

Listing 1.3. Enriched SDL specification

A so enriched component model has all information for an automated code
generation, which is described in section 4, where CCM is used as target platform.

The advantage of an enriched SDL model is obvious. A now possible simulation
of the computationalmodel cangive important indications for computational prob-
lems of the component.This leads to feedback for detectingwrong structural layout
in the eODL model and to the improvement of the behavioural description in SDL.
With an iterative process of doing simulation and changes to the eODL and SDL
model the quality of the computational description can be advanced.

4 CCM as PSM

Following the MDA approach not only a PIM related component model is nec-
essary, also one for the PSM has to be provided. In our proposal we use CCM

26 H. Böhme and J. Fischer

as component model for PSM in the development process. More precisely we
select CCM in combination with C++ as target implementation language. An-
other candidate for the CCM implementation language is Java. For a better
understanding a short introduction in CCM is given in the next section.

4.1 CORBA Component Model (CCM)

The CORBA Component Model [9] is a standard published by the OMG. It
provides the metamodel for CORBA Components and the technology and run-
time environment for components developed using that model. It is based on
mature CORBA technologies like the GIOP protocol4 and language bindings for
implementation languages.

The component model of CCM defines two kinds of interactions for compo-
nents. There is a RPC-like interaction with request/response and a signal-like
one with events. For each of these interaction kinds components can declare the
usage or the provision.

For the notation of models CCM extends the IDL25 syntax by rules for com-
ponents. CCM also contains a mapping from IDL3 (IDL2 + components) to the
older IDL2. This was introduced for a compatibility with older, not component-
aware CORBA clients.

An implementation of CCM components in a target language like C++ is
supported by further mappings defined by CCM: The set of interfaces provided
by a component is mapped to local interfaces6. By defined language bindings
of plain CORBA these local interfaces are than translated to C++. Now the
developer can use the same approach to implement the component in the imple-
mentation language as he did with plain interfaces in CORBA.

The runtime environment of CCM covers two parts. The deployment process
and deployment infrastructure belong to the first part. File formats for packages
containing component implementations or whole software systems are defined
here. The meta information in the packages make them selfcontained and pro-
vide additional information about the system structure. This means, it defines
the number and type of component instances which participate in the initial
configuration of the software system. The deployment infrastructure provides
interfaces for the deployment process itself. There are operations to move pack-
ages to nodes of the runtime environment and to build containers, homes and
instances.

The second part of the CCM runtime environment is the runtime functional-
ity for the component instances. So-called containers are the execution environ-
ment for all components. They provide functionality through context interfaces

4 The General Inter ORB Protocol defines the exchange of requests and replies for
RPC interaction.

5 IDL2 is the 2.x version of the Interface Definition Language standardised by the
OMG.

6 local interfaces are used by IDL to express the locality of an interface implementation,
it can be seen as abstract notation for a class.

eODL and SDL in Combination for Components 27

Fig. 4. Steps of the PIM-PSM mapping

to the components. Components can use this functionality during their execu-
tion.

With the support of two interaction kinds CCM is a good choice as a target
platform for components designed with eODL. Stream interaction as the third
interaction kind of eODL will be supported by CCM extensions in future [14].

4.2 PIM-PSM Mapping

With the availability of a concrete PIM in terms of eODL and SDL on one hand
side and a concrete PSM in terms of CCM and C++ on the other hand side
a mapping from PIM to PSM can be defined. As stated in section 4.1 CCM
covers most of the computational concepts of eODL. A simple mapping from
the components in eODL to the components in CCM can be done, even the port
concept from eODL has a counter-part in CCM. In realisation of that mapping
we get an 1:1 relation between the PIM and PSM concepts (see example listing
1.4). This mapping is called b in Figure 4. The usage of the IDL type-system in
eODL is of great help in order to map interfaces from eODL to IDL3.

28 H. Böhme and J. Fischer

The mapping from eODL to CCM respects all identified view points of eODL.
Now we no longer deal with computational concepts only, we are aiming at
component implementation. The model in eODL has to be enriched with new
information in terms of concepts of the implementation view point. Names for
the implementation artefacts7 have to be provided by the developer, because
they are needed by the C++ implementation. Figure 4 describes the complete
scenario of the developer of components as a sequence of following steps.

1. Components are described in eODL, where only computational concepts are
considered.

2. These eODL concepts are mapped onto corresponding ones in SDL.
3. The resulting SDL model from step 2 is enriched by behavioural description.
4. With the introduction of model element for implementation concepts the

PIM modelling is completed.
5. The computational and implementation concepts from the eODL model are

mapped onto the CCM model. There are different representations for the
resulting CCM model possible (IDL3, CIDL8, XML).

6. The CCM model is implemented in C++. Therefore the language mapping
defined by CCM is applied. The resulting implementation does not contain
business logic for all interface operations.

7. From the SDL behavioural description the needed business logic for step 6
is generated. The generation process takes additional information from the
eODL model like names for artefacts (class libraries, procedures, etc.). Now
a complete C++ implementation of the component has been achieved.

8. As a final step the C++ implementation is compiled into executable code.

In listing 1.4 an IDL3 specification is outlined, which can be generated from
listing 1.1.

interface h e l l o {
void say () ;

} ;

interface manage {
void i n i t () ;

} ;

component Cal l e e {
provides h e l l o t h e h e l l o ;
provides manage the manage ;

} ;

7 artefact is a concept from the implementation view point, which is used to denote
implementation language constructs. Here we understand an artefact as a program-
ming language class.

8 The Component Implementation Description Language is defined by CCM and helps
the developer to express structural aspects for the component implementations.

eODL and SDL in Combination for Components 29

home CalleeHome manages Cal l e e {} ;

component Ca l l e r {
uses Hel lo h i ;

} ;

home CallerHome manages Ca l l e r {} ;

Listing 1.4. eODL example mapped to IDL3

4.3 Implementation of the PIM-PSM Mapping

The authors did experiments with the Qedo [11] implementation for CCM. This
is a C++ implementation of the CCM standard of the OMG. The code gener-
ation from IDL3/CIDL to C++ (see step 6 in Fig. 4) produces skeleton classes
for the implementation of provided interfaces. This code contains large sections
of pre-implemented code. On selected places user sections are located: they are
marked areas in the code where the developer has to insert application spe-
cific code fragments to complete the implementation. The contents of user sec-
tions will remain unchanged over multiple runs of the code generation. From a
CCM/Qedo perspective the developer is in charge of providing the behavioural
implementation of the component. The reason for this is that there are no other
sources of information for the behavioural description in the plain CCM devel-
opment model.

As proposed in our paper a full behavioural description of the component in
SDL can be used to fill the user sections. This has to be done by mapping d’
from Figure 4. The authors have expert knowledge for code generation from SDL
to C++ resulting from the development of the SITE tool environment [13][1] for
SDL. As said before, components can always be seen as reactive systems, like
SDL agents too. So providing the behavioural implementation for the component
as an behavioural description in SDL is not a great challenge. The core part of the
generated code is always a dispatch function. This function triggers the different
transitions, based on the current state of the Agent and the signal input. For
the usage of the dispatch function in the context of CCM two main tasks have
to be realised:

– Datatype conversion The data types used in the stimuli of the SDL agent
have to match the types used by the CCM implementation. This problem is
easily solved. We get the basic structure of the SDL agent from the eODL
model and eODL uses IDL types. This means the types in the generated
code from SDL will always correspond to IDL types.

– Inheritance of transition graphs The inheritance of agent types in SDL has
an impact to transition graph definition. This means transitions can be re-
defined in the specialisation. The generated dispatch function have two op-
tions to reflect this kind of redefinitions here: flatten the whole graph over all
inheritance steps or usage of inheritance concepts from the target program-
ming language. SITE use the later approach. Therefore a language construct,

30 H. Böhme and J. Fischer

which supports inheritance has to be used for the realisation of the dispatch
function in the business logic of CCM.

As mentioned above the code generation from SDL to C++ fullfilled by the
SITE tool environment can be adapted for the use in the approach proposed by
this paper. This gives the developer the strength of automatic code generation.
With that on hand the source of many errors are eliminated.

5 Deployment of Components

As shown in Figure 5 not only development is part of the life cycle of a software
system. The usage phase is at least from the perspective of the end user the
most important phase. Here the components building the software systems have
to be moved to action. According to the selected PSM technology CCM two
tasks have to be done:

– Packaging
– Distribution

5.1 Packaging

The Packaging in CCM is the process of producing selfcontained software pack-
ages for later distribution. They contain the implementation of components and
meta information. The implementation could be gained from the step 8 Figure 4.
The meta information has to be obtained from the eODL model. The matching
concepts in eODL belong to the deployment view point. A mapping for this kind
of information onto the meta information has to be defined in future work.

Fig. 5. Basic software life cycle

eODL and SDL in Combination for Components 31

5.2 Distribution

After producing packages distribution of the software system is only a compul-
sory exercise. The infrastructure of the CCM runtime provides necessary inter-
faces on each node in the computing environment for distribution and building of
initial component instances. The deployment tool will extract the metainforma-
tion from the packages distribute the needed packages. Later initial component
instances are builded on the determined nodes and are interconnected following
the plan contained in the metainformation.

5.3 Open Issues

The connection between the deployment process and the needed informations
from the eODL model has to be investigated. Moreover, the whole part of infor-
mation concerning the target environment has to be worked out. Concepts for
these are already defined in the target environment view point of eODL, but the
relation with the selected PSM technology has to be investigated.

6 Conclusion

The application of eODL in combination with SDL for the modelling of com-
ponents enables the behavioural description at design level. Both languages to-
gether are good candidates for the PIM level of MDA. However, this has to
be supported by a mapping for the structure of the component to SDL. The
standardised mapping from eODL to SDL is too complex and technology de-
pendent on CCM. A revised and flexible mapping is proposed. This mapping
enables analysis, test and implementation of components. The provision of a
metamodel based SDL definition will simplify the combination further. It is
proposed that the interface concept should become a first class communication
concept in the metamodel of SDL, because it is a fundamental concept for com-
ponents. The PIM-PSM mapping identifies several working tasks for structural
and behavioural concepts. More research on the deployment of components re-
alised with our approach has to be done.

References

1. Böhme, H.: Objektorientierte Codegenerierung für SDL’92. Diploma thesis,
Humboldt-Universität zu Berlin,
http://www.informatik.hu-berlin.de/sam/diplom/boehme97.ps (1997).

2. Fischer, J., Piefel, M., Scheidgen, M.: A Metamodel for SDL2000 in the Context
of Metamodeling ULF. Amyot, D., Williams, A. (Eds.) Fourth SDL and MSC
Workshop. Volume 3319 of Lecture Notes in Computer Science (2004) 205–230.

3. ITU-T: Recommendation Z.100 (08/02), Specification and Description Language
(SDL). International Telecommunication Union, Geneva (2002).

4. ITU-T: Recommendation Z.130 (02/99), ITU Object Definition Language (ODL).
International Telecommunication Union, Geneva (1999).

32 H. Böhme and J. Fischer

5. ITU-T: Recommendation Z.130 (07/03), Extended Object Definition Language
(eODL). International Telecommunication Union, Geneva (2003).

6. Object Management Group: XML Metadata Interchange (XMI) version 1.1. OMG
document, formal/00-11-02 (2000).

7. Object Management Group: Meta Object Facility, Version 1.3. OMG document,
formal/00-11-02 (2000).

8. Object Management Group: Model Driven Architecture, OMG document, omg/00-
11-05 (2000).

9. Object Management Group: CORBA Components, v3.0 full specification, OMG
document, formal/02-06-65 (2002).

10. Pischel, E.: Extended Object Definition Language. Diploma thesis, Humboldt-
Universität zu Berlin,
http://www.informatik.hu-berlin.de/sam/diplom/pischeldip02.pdf (2002).

11. Qedo-Team: QoS enabled distributed objects. Open source CCM implementation
(2000-2004).

12. Scheidgen, M.: Metamodelle für Sprachen mit formaler Syntaxdefinition, am
Beispiel von SDL-2000. Diploma thesis, Humboldt-Universität zu Berlin (2004).

13. SITE-Team: SDL Integrated Tool Environment. Software project, Humboldt-
Universität zu Berlin,
http://www.informatik.hu-berlin.de/SITE (1996-2003).

14. Stoinski, F.: The CORBA Component Model Streaming Extension. Proceedings
of IASTED International Conference on Software Engineering 2004, Innsbruck,
Österreich (2004).

15. TINA-C: http://www.tinac.com

Applying eODL and SDL-Patterns for
Developing TMN Managed Systems

Margarita de Cabo and Manuel Rodŕıguez

Departamento de Teoŕıa de la Señal, Comunicaciones e Ingenieŕıa Telemática,
University of Valladolid, Spain
{marcab, manrod}@tel.uva.es

Abstract. This paper presents how eODL, in combination with SDL-
patterns, helps to enhance the ITU-T framework for defining CORBA-
based TMN systems. This proposal consists in utilizing eODL, instead
of CORBA IDL, incorporating behavior using SDL-patterns. This leads
to the following advantages: first, eODL models are described from sev-
eral points of view, giving more information about the system modeled.
Second, the models obtained can be deployed on any Distributed Plat-
form Environment (DPE), not only on CORBA. Third, SDL is a formal
language, which is very powerful for modeling the behavior of a system.
Furthermore, SDL-patterns provide a more systematic way of describing
solutions to a concrete problem than ad hoc SDL. The feasibility of this
work is presented with an example.

1 Introduction

Nowadays, there is a strong trend towards combining ITU-T languages and
defining design methods based on metamodels that can be mapped into var-
ious implementation languages and different target environments. The main
idea is to offer a common environment where all the key concepts for devel-
oping distributed systems appear [4]. From this common environment, map-
pings to concrete implementation languages and/or target platforms must be
supplied to deploy the system. Furthermore, the representation of the meta-
model can be achieved by means of several notations, still implementation-
independent.

The ITU-T Rec. Z.130 [16], extended Object Definition Language (eODL)
follows this philosophy. eODL is used for a component-oriented development of
distributed systems. Nevertheless, eODL is not designed either for code imple-
mentation or for behavior description of the components. Code implementation
implies that a standardized target platform will be needed. Without that, it is
not possible to obtain a generic model that can be translated into concrete code
for a target platform, such step being completely dependent on the kind of target
platform. Behavior cannot be expressed with eODL, because it lacks the neces-
sary constructs. Therefore, for this topic, we consider another ITU-T language,
Specification and Description Language (SDL) [15]. We propose joining these

D. Amyot and A.W. Williams (Eds.): SAM 2004, LNCS 3319, pp. 33–49, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

34 M. de Cabo and M. Rodŕıguez

two ITU languages, eODL and SDL, for improving the ITU framework that
defines interfaces for CORBA-based Telecommunication Management Network
(TMN) systems [8].

The paper is organized as follows: Section 2 gives a brief explanation about
eODL and SDL-2000. Section 3 presents the CORBA-based TMN framework.
Then, Sect. 4 deals with the steps to obtain the eODL model from the ITU-
T CORBA-IDL interfaces and how to add pattern-based SDL behavior to this
model. In Sect. 5, an example is given in order to obtain a better view of how to
apply eODL and SDL-patterns. Finally, in Sect. 6, some conclusions are drawn.

2 ITU-T Languages for the Development of Distributed
Applications

2.1 eODL

eODL is a language standardized by ITU-T for developing component-oriented
distributed systems. It provides a model-driven approach with a well-defined
metamodel, and defines the concept space using MOF (Meta Object Facility)
technology [17].

One advantage of the approach is that it allows the use of MOF-related tools
to support the automation of model transitions between the different software
development phases. Another benefit is the ability to instantiate concrete models
from the metamodel, which can be represented by existing languages, so an inte-
gration of different design methods can be achieved. The concept space is built
from different conceptual views [1]: computational, implementation, deployment
and target environment.

eODL can be used for describing a single component or a whole system, but
it does not constrain the deployment of the components to a concrete target
platform. As we said before, eODL cannot be used for behavior specification so
we propose the use of SDL-2000.

2.2 SDL-2000

ITU-T Rec. Z.130 includes a representation of eODL-relevant concepts into SDL.
The use of SDL-2000 is presented as an alternative way of obtaining a real
running system in [2].

This alternative has been chosen due to two main reasons. First, SDL has
proven its usefulness regarding behavior modeling. SDL is a formal description
technique that allows simulation and validation of specifications without building
a prototype. SDL does not restrict the target platform, and specifications can be
automatically translated into code using existing tools. The code has to follow
the restrictions imposed by eODL deployment and target environment views.
Second, SDL can be used for defining patterns of behavior.

When comparing with use of SDL ad-hoc descriptions or SDL descriptions
using inheritance and specialization, SDL-patterns improve reuse and sharing of

Applying eODL and SDL-Patterns for Developing TMN Managed Systems 35

expertise gained in other projects [5]. Furthermore, SDL-patterns are formalized
reuse artifacts They are formalized because they are described by a formal de-
scription technique, SDL; and they can be reused because they are not a concrete
SDL specification but the guidelines to obtain a context-dependent description
which follows the rules given by each pattern template. This template represents
the generic form of some kind of behavior that has to be adapted to the concrete
context.

There is a need for supporting the description of such artifacts, since SDL
alone is not sufficient to describe generic solutions, which depend on the context
of application. Pattern Annotated-SDL (PA-SDL) appears as the notation for
describing syntactically incomplete SDL components and for capturing genericity
in a flexible way [6]. In the case that a collaboration structure also appears, it
can be represented using CoSDL (Collaborative SDL) [18].

3 Field of Application: Developing TMN Systems

A Telecommunication Management Network (TMN) [8] is an infrastructure,
standardized by ITU-T, which provides interfaces for interconnection between
various types of Operation Systems (OSs) and/or telecommunications equip-
ment to manage telecommunication networks and services. The management
information is exchanged through those standard interfaces.

The TMN architecture consists of three components: the Functional Archi-
tecture, referring to the distribution of TMN functionality into categories of
”function blocks” interconnected via ”reference points”; the Information Archi-
tecture based on the ISO systems management model and defined using GDMO
[13]; and the Physical Architecture, which maps combinations of functional blocks
to physical blocks based on non-functional requirements such as performance,
ownership etc.

To deal with the complexity of telecommunications management, manage-
ment functionality may be considered to be partitioned into logical layers. The
Logical Layered Architecture (LLA) is a concept for the structuring of manage-
ment functionality which organizes the functions into groupings called ”logical
layers” and describes the relationship between layers. A logical layer reflects
particular aspects of management arranged by different levels of abstraction [8].

At each level, there is an Operation Systems Function (OSF) block. OSFs
processes information related to the telecommunications management for the
purpose of monitoring/coordinating and/or controlling telecommunication func-
tions including management functions (i.e. the TMN itself). The grouping of
management functionality implies grouping OSF function blocks into layers. A
specialization of OSF function blocks based upon different layers of abstrac-
tion is: Business, Service, Network and Element. These layers of abstraction are
depicted in Fig. 1, (this figure is extracted from [8]).

The element management layer manages each network element on an individ-
ual or group basis and supports an abstraction of the functions provided by the
network element layer. The network management layer has the responsibility for

36 M. de Cabo and M. Rodŕıguez

q

q

q

q

x

x

x

Bussiness
Management
Layer

Service
Management
Layer

Network
Management
Layer

Element
Management
Layer

Network
Element
Layer

Element
NEF

Network

Element OSF
E−OSF

Network OSF
N−OSF

Service OSF
S−OSF

Bussiness
OSF
B−OSF

Fig. 1. Suggested model for layering of TMN management functions

the management of a network as supported by the element management layer.
Service management is concerned with, and responsible for, the contractual as-
pects of services that are being provided to customers or available to potential
new customers. The business management layer has responsibility for the total
enterprise, and it comprises proprietary functionality.

A telecommunication network is, in essence, distributed, so there was a trend
to bring together TMN and middleware principles, specially CORBA ones. The
result was the definition of a framework for CORBA-based TMN systems.

Such framework consists of several ITU-T recommendations: TMN guidelines
for defining CORBA managed objects (Rec. X.780) [14], CORBA-based TMN
services (Rec. Q.816) [12], and CORBA generic network and network element
level information model (Rec. M.3120) [9].

This framework presents two main limitations. First, it is constrained to the
use of CORBA as target platform. Second, it does not give a formal description

Applying eODL and SDL-Patterns for Developing TMN Managed Systems 37

of the behavior of the elements managed. We hence propose addressing these lim-
itations using eODL and SDL. eODL gives the advantage of having a description
with a well-defined metamodel. This description can be mapped to several nota-
tions -the most useful in each case- and can be deployed on any target platform,
including component-oriented ones. SDL will be used for formally describing the
behavior and applied by means of SDL-patterns developed for managed systems.
Those patterns can be stored and organized in a pool to make it easier to find
out which patterns are adequate for a concrete situation. SDL-patterns can be
improved from experience as long as projects are developed using the pattern
pool. Deficiencies or new cases can be detected while using the patterns, so they
have to be re-engineered [6].

This work starts from the CORBA-based TMN framework, not from the
original TMN infrastructure, because the former defines CORBA-IDL interfaces,
which are easily translated into eODL. Furthermore, we focus on the information
model at network element level [9], and its technology-independent hierarchical
structure of the network managed objects, see Fig. 2.

N t o k Software Equipment

SNC Trail

Fabric

GTP

Access
Group

Alarm
Severity

Assignment
Profile

Arc
Interval
Profile

Circuit
EndPoint

Sub
Group

Cross
Connection

MP
Cross

Connection

Managed
Element

Sub
Network

Managed
Element
Complex

Trail
95

TP
Pool

Layer
Network
Domain

Logical
Link
End

Top
Link
End

Logical
Link

Top
Link

Link
End

Link Pipewe r
Abstract Abstract

Equipment
Holder

Circuit
Pack

Link
Connection

Managed Object

TP

Fig. 2. Hierarchical organization of managed objects (excerpt)

Any new network managed object must be defined as a specialization of
some object of this hierarchical structure. At least it has to specialize Managed
Object (MO), offering all the MO features and may add new ones that are not
included in other object of the presented hierarchy. This way, managed objects
may share certain features, and they can be dealt with in a similar way, with at
least a group of identical functionalities. Indeed, it is possible to add new ones
as necessary. This organization gives a suitable structure to apply our SDL-
patterns. For instance, if a managed object is a specialization of Termination
Point (TP) object, it will inherit all the characteristics (interfaces and behavior)
from MO and TP objects, therefore SDL-patterns for MO and TP have to be
applied. Then, its particular characteristics will be added.

38 M. de Cabo and M. Rodŕıguez

4 Improving ITU-T Framework by Means of eODL and
SDL-Patterns

4.1 Overview

This proposal consists in reusing and improving the ITU framework for defin-
ing CORBA-based TMN systems, such that the framework allows development
of TMN managed systems that can be deployed on any platform. The new
framework will include formally specified behavior. An overall view of the steps
involved is presented in Fig. 3.

SDL skeletons
(structure)

SDL−patterns
(behavior)

choose
patterns

pattern
pool

SDL specification

generated SDL code

software component

real system running
on target environment

eODL model
VIEW: target environment

eODL model
VIEW: deployment

CORBA−IDL interfaces from the ITU−T framework

see Subsect. 4.2

eODL model

implementation
VIEWs: computational

+
see Subsect. 4.3

SDL compiler

mapping from Annex C of ITU Rec. Z.130

Fig. 3. Steps of the proposed design procedure

The first step is to map the defined ITU-T CORBA-IDL interfaces into eODL,
see Subsect. 4.2. The second step is to use the mapping defined in Annex C of
Rec. Z.130, to obtain SDL skeletons (structural aspects) corresponding to the
mapping of eODL definitions. The third one is to enrich these skeletons with the
SDL-patterns presented in the pattern pool, see Subsect. 4.3.

Once the complete SDL specification (structural and behavioral parts) is
finished, the last step is to create the software components. The SDL specification

Applying eODL and SDL-Patterns for Developing TMN Managed Systems 39

must be translated into code, taking into account the eODL deployment view [2].
The software components obtained must be deployed in the target environment
in order to have a real system running on the chosen platform. The eODL target
environment view provides the modeling concepts that allow the description of
the topology and properties of the target environment.

4.2 Translating CORBA-IDL into eODL

Mapping the elements that appear in the CORBA-IDL definition into eODL is
straightforward, because all data types and constructs (operations, attributes,
exceptions and interface types) of CORBA-IDL are part of the eODL metamodel.
In order to complete the eODL definition, other constructs that do not appear in
CORBA-IDL, have to be added. These are: Computational Object type (COs), for
the structural view, and the artifact concept for the eODL implementation view;
the deployment and target environment views are not supported in CORBA-IDL.

The concept of CO type is used to specify the functional decomposition of a
system. The instances of a CO type (COs) are autonomous interacting entities,
which encapsulate state and behavior. COs interact with their environment via
well defined interfaces. The artifact is used to describe a programming language
context in a model. The instances of the concept artifact implement the behavior
of COs. They therefore provide the business logic of CO types.

We propose the following steps to obtain an eODL model, involving several
interfaces and classes as defined in the ITU-T framework:

1. Mapping CORBA-IDL data types and constructs into eODL concepts, ob-
taining operations, attributes, exceptions and interface types;

2. Defining one CO for every class as it appears in any of the recommendations
given by ITU-T [9, 14, 11, 10]. This CO will support every interface of the
class, as stated by the ITU framework, and will require any other interface
it has to use for the foreseen interactions. Every CO will be implemented by
as many artifacts as interfaces it provides;

3. Defining one artifact for each interface. This artifact will implement all the
interaction elements (operations and signal exchange) of the interface.

Deployment and target environment views cannot be derived from the ini-
tial CORBA-IDL interfaces. They come from the actual needs of the concrete
system to be developed. The designer has to decide how to compose the soft-
ware components with the COs obtained (deployment view), and how to model
the installation and environment where the model is going to be used (target
environment view).

The eODL definition is then mapped to SDL-2000 skeletons, following the
guidelines given in Annex C of ITU Rec. Z.130 [16].

4.3 Applying SDL-Patterns

The mapping from an eODL model to a SDL-2000 skeleton produces several SDL
agent types that are empty or half complete: these are mainly coming from the

40 M. de Cabo and M. Rodŕıguez

mapping of artifacts. eODL does not support any way to model that behavior,
as we said before, so the obtained agent types do not offer this feature either.
This is the behavior that an SDL-pattern pool will help to construct.

SDL-patterns help to specify the behavior of the artifacts corresponding
to management CORBA-IDL interfaces defined by ITU-T for a TMN system.
These patterns allow the development of a complete SDL model (interfaces and
formally-defined behavior) of a TMN system compliant with the ITU-T frame-
work. Some advantages of using SDL-patterns are:

1. Development is less error-prone, because the pattern gives the schema of a
well-know solution, and the rules for applying it;

2. Development is less time-consuming, the elements required for specifying
the behavior are already provided; there is only a need to add and customize
them to the specific context;

3. When applying patterns, it is known what other related patterns have to be
applied, so the related behavior cannot be skipped by a mistake;

4. Patterns are easily reused and adapted to construct our own system.

We are developing a pattern pool for storing the obtained patterns with the
aim of having a central repository from where it is easy to find and choose the
adequate patterns for the managed system being modeled. At this time, the
pool is only populated with the generic-MO and the ARC patterns, (see [3] for a
description of them). Patterns are being constructed from the generic function-
alities for the objects defined in Rec. M.3120. This recommendation gives the
characteristics that generic objects at network and network element level must
offer, including optional features like Alarm Reporting Control. These charac-
teristics have to be adapted to every concrete object and context. Therefore, the
generic functionalities are mapped to SDL-patterns. These will guarantee the
functionalities when implementing the SDL specification of a concrete object
into a concrete context. The pattern template will restrict the way the pattern
can be customized in order not to lose the generic functions described by the
pattern that the concrete object must offer.

Patterns are described by means of PA-SDL and are depicted using a pattern
template [7]. The template shows how the pattern has to be used, and in which
cases it can be applied and how. Therefore, it is easy to determine whether a
pattern is useful in any given situation.

5 Applying eODL and SDL-Patterns to a Generic TMN
Managed Object Class

This section presents a brief example of how to apply eODL and SDL-patterns
for defining a generic MO (Managed Object) with the ARC (Alarm Reporting
Control) feature [11]. A generic MO, as defined in [14], is the simplest class that
can appear in a managed system. The example will show how the IDL definition
of MO can be translated into an eODL definition, and how this leads to SDL
skeletons. The skeletons are completed with behavior using SDL-patterns. As an

Applying eODL and SDL-Patterns for Developing TMN Managed Systems 41

example of the use of patterns, the ARC pattern has been chosen. This is the
pattern that adds the ARC feature to a generic MO. Once the patterns related
to generic behavior of an MO are applied, the ARC pattern can be easily used
to add this feature to the MO. Then we have to choose an adequate tool that
transforms SDL into code following the deployment view of eODL definition.

5.1 Translating Generic MO CORBA-IDL Interface into eODL

This section presents how to translate the generic MO CORBA-IDL interface
and the ARC feature into eODL. The deployment and target environment views
are not taken into account, because they have only sense in a full specification. In
that particular case, there are several objects that interact with each other, and
there is a need for specifying how they are going to be assembled to render soft-
ware components, and where they have to be deployed. In this simple example,
there is only one object, so different software components cannot be constructed,
and we are not taking into account any target environment restrictions regarding
where to deploy our single object.

The original IDL is shown in Fig. 4, and the eODL obtained can be seen in
Fig. 5.

In this simple case, one CO is defined o MOARC.
This CO supports interface i MO, which represents the CORBA-IDL generic

MO interface, and interface i ARC, which represents the ARC feature.
We are defining a generic MO, so the corresponding CO does not use any other

interface. When modeling several MOs with different needs, they may require

void arcManagementRequestedIntervalSet (in ArcTimeType time)
raises (ApplicationError,NOarcPackage);

...

boolean arcControl (in ArcControlRequest request)
raises (ApplicationError,NOarcPackage);

/* Value types and exceptions no included for the sake of simplicity*/

/**Managed Object interface, Rec. X.780*/

interface ManagedObject{

NameType nameGet() raises (ApplicationError);

...

void destroy() raises (ApplicationError, DeleteError);

}; //end of interface MO

/** The following are additional operations for an interface that supports
the ARC function. Rec. M.3120*/

Fig. 4. IDL definition of MO and ARC feature (excerpt)

42 M. de Cabo and M. Rodŕıguez

};

provide i_ARC arc;
/*requires nothing*/
implemented by a_MOImpl with Singleton, a_ARCImpl with Singleton;

};

/*Definition of the interface, as defined in X.780 (excerpt)*/
interface i_MO{

NameType nameGet() raises (ApplicationError);

/*Data types and exceptions not included for the sake of simplicity.*/
...

module itut_x780{

...

void destroy() raises (ApplicationError);
};

/*Definition of the artefact corresponding to the implementation of the
generic MO*/
artefact a_MOImpl{

nameGet implements supply i_MO::nameGet;
...

};
destroy implements supply i_MO:destroy;

interface i_ARC {
boolean arcControl() raises (ApplicationError, NOarcPackage);

void arcManagementRequestedIntervalSet(in ArcTimeType time)

};
artefact a_ARCImpl{

...

raises (ApplicationError, NOarcPackage);

arcControl implements supply i_ARC::arcControl;
...

arcManagementRequestedIntervalSet implements supply
i_ARC::arcManagementRequestedIntervalSet;

};

/*Computational object definition for generic MO with ARC feature*/
CO o_MOARC{

supports i_MO, i_ARC;
provide i_MO mo;

Fig. 5. eODL definition for MO with ARC feature

other interfaces; this condition will appear in the CO definition, (requires clause).
Furthermore, CO o MOARC provides two ports for accessing the interfaces, mo

Applying eODL and SDL-Patterns for Developing TMN Managed Systems 43

a_ARCImpl i_MOARCo_MOARC_data

use eODL;

artifact_a_ARCImpl(0,1):a_ARCImpl

factory(1:1):
o_MOARC_factory

factoryi_MOARC o_MOARC

package MOARCPackage_interface

artifact_a_MOImpl(0,1):a_MOImpl

package itut_x780

a_MOImpl

o_MOARC_factory

block type o_MOARC_CO

package MOARCPackage_definition

Fig. 6. SDL skeleton for eODL definition of MO with ARC feature

and arc. Every interface is supposed to be implemented by one artifact, so we
define such artifacts, a MOImpl and a ARCImpl, respectively.

The eODL definition leads to the SDL skeleton in Fig. 6 by applying the
rules in Annex C of Rec. Z.130 [16].

In this example, automatically generated code, as explained in Sect. C.8 of
[16], has not been chosen. Our choice allows defining artifact artifact a MOImpl
and artifact a ARCImpl as separate processes at block type o MOARC CO level,
so they are concurrently executed. This concurrency is mandatory; while the
MO is executing its generic behavior, it has to manage alarms at the same time.
With automatically generated code, these artifacts should be inside a process
type, o MOARC, therefore they will be executed interleaved.

5.2 Applying SDL-Patterns to Provide MO Skeletons with
Behavior

In our example, we assume that the patterns giving MO its generic behavior
have already been applied. Now, Alarm Reporting Control (ARC) functionali-
ties are going to be added, as defined in [11, 9]. Therefore, we present our ARC
specification based on patterns. The specification consists in several related pat-

44 M. de Cabo and M. Rodŕıguez

NALM−CD(d)

NALM−NR

ALM NALM(d)

NALM−QI(d)

NALM−TI(d)

stated

qualified
problem

free of
qualified
problem(b)

management
request

management
request or
free of
qualified problem(c)
or expired timer(b)

management
request

management
request

free of
qualified
problem(c)

management
request

management
request

management
request

management
request

management
request

management
request or
expired timer

modify
interval

modify
interval

ALM Alarm signaling authorized/activated
CD Reverse Count

NR Not Ready
NALM Alarm signaling disabled/deactivated

QI Qualified Inhibition
TI Timed Inhibition

(b) if NALM−CD is supported
(c) if NALM−CD is not supported
(d) Support of this state is mandatory
 at the generic level

expired timer(b)

Fig. 7. UML state diagram for ARC functionality

terns. They specify the way of using them to add the desired characteristics of
ARC functionality to the non-ARC behavior of such MO. The ARC specification
formally defines the behavior of ARC functionality, including all the optional fea-
tures. The specification is customizable to fit the behavior of any MO that is
going to offer ARC.

The generic MO can easily offer ARC by applying our patterns. We are not
going to present how to add the rest of the MO behavior, but the steps are
similar using the relevant patterns.

The full process of designing the pattern is not explained here, because it is
quite complex, and we are mainly interested in its application. In a nutshell, we
started from the UML state diagram for ARC (see Fig. 7) [11].

We obtained four possible SDL composite states, one for each state in the
UML diagram: ALM (ALarM), NALM (No ALarM), NALM-TI (No ALarM-
Time Inhibited) and NALM-QI (No ALarM-Qualified Inhibited).

Depending on what state the MO is in, the behavior is different. The alarm
control is executed while the MO is sending notifications, changing its state,
simply living. So, the ARC pattern is modeled, in a first stage, as an SDL process
in order to provide concurrency with the behavior of the MO without ARC. The
set of all four states is not mandatory; MO has to incorporate at least two of

Applying eODL and SDL-Patterns for Developing TMN Managed Systems 45

SPEC process type ARC;

SPU MO_ARC p−specializes MO

ARC
procedure arcTimeRemainingGet
procedure arcRequestIntervalSet

procedure arcControl

dcl ArcStateType P;

/*Every data type from ITU−T
M.3120 regarding ARC*/

signal nexstate (ArcStateType);

arcTimeRemainingGet

wait

‘report alarm‘

wait

‘alarm‘

entry

nexstate(P)

Astate

arcManagement
RequestedIntervalSet

arcControl

ALM

state ALM;

InsertionPoint1

1−3

A

Fig. 8. ARC pattern (SDL fragment, excerpt)

them, one of them being the ALM state. Each MO has to add to its behavior
the corresponding ARC states that it will support.

The main body of the ARC functionality has been separated from the optional
states, putting each one into a different pattern (ARC, NALM, NALM-TI and
NALM-QI patterns). So, to obtain an MO with ARC, it is necessary to apply
at least two of the patterns related to ARC: one for the main functionality,
ARC pattern that includes ALM state by default, and one of the others. This is
clearly stated in the pattern template. This way, the overall complexity of MO’s
behavior and the complexity of the model is reduced.

Figure 8 presents an excerpt of the generic ARC solution defined by the
SDL-pattern: ARC pattern. The excerpt is taken from the SDL fragment, the
syntactical part of the design solution defined by the pattern, and shows the
context and the specification of the ARC process.

Solid symbols denote design elements that are added to the context specifi-
cation as a result of the pattern application.

46 M. de Cabo and M. Rodŕıguez

As a general rule, names may be changed. However, names in italics must be
new, they refer to fresh design elements for which the names can be arbitrarily
chosen when applying the pattern. Names in standard mode denote the role of
existing design elements and must be identified with names from the embedding
context when being instantiated. Although we are following the template given
by [7], it has to be pointed out that we are using SDL-2000, not SDL96 as in [6].

Because we are following the ITU recommendations, there are some data types,
variable names and procedure names that cannot be renamed, in order to maintain
compatibility of interfaces with ITU recommendations. These elements that are
new when applying the pattern but cannot be renamed appear in bold-italics.

SPU (Structural Process Unit) refers to a diagram type that can contain
agents of type process, as process type ARC; SPEC (SPECific) indicates that
the state machine has to be in a specific diagram type, process type in this case.

Scissor symbols indicate the possibility of refinements, for instance by adding
further actions to a transition, without disrupting the control flow.

P

ALM

NALM_TI

ALM NALM_TI

arcTimeRemainingGet

arcControl

/*Data type ArcStateType comes from ITU−T M.3120*/

signal nexstate(ArcStateType);
dcl P ArcStateType;

NALM_TI patternARC pattern NALM pattern

arcManagementRequestedIntervalSet

ALM

NALM

NALM

ALM

process type a_ARCImpl

=arcStateAlm =arcStateNalm =arcStateNalmTimeInhibited

T

=arcStateAlm =arcStateNalm =arcStateNalmTimeInhibited

nexstate(P)

P

NALM

NALM has been chosen as initial state

nextstate(P)

=arcStateAlm else

NALM

P

NALMALM

nexstate(P)

Fig. 9. Example application: ARC with ALM, NALM and NALM-TI states

Applying eODL and SDL-Patterns for Developing TMN Managed Systems 47

The box named A is a border symbol, an annotation denoting replications. The
direction is given by the arrow, the number of replications is specified by the mul-
tiplicity. It gives an opportunity to add up to three new states to ARC pattern,
those deriving of ARC-related patterns: NALM, NALM-TI and NALM-QI.

The shadowed decision symbol denotes a cascade symbol, it may be substi-
tuted by a cascade of decisions.

Finally, the three procedures are defined in [9] as part of the interface for
ARC feature. They are exported remote procedures called by an external entity,
the manager that controls the MO. They are used by the manager to change
the ARC state of the MO, arcControl, to set the timers internally used, arc-
ManagementRequestedIntervalSet, or to inquire the remaining time of a timer,
arcTimeRemainingGet. To apply a pattern, the context has first to be iden-
tified. In case of the ARC pattern, the embedding context is a generic MO,
because the SPU MO ARC p-specializes this kind of SDL agent. The block type
o MOARC CO, see Fig 6, represents the MO, so this block is the context of
the ARC pattern. Furthermore, the ARC pattern is the behavior of process
artifact a ARCImpl.

The added process type has to be adapted, renaming the elements that can
be renamed, choosing the correct decisions for the cascade symbol, and deciding
if any other transition is inserted at insertionPoint1. Further refinement is also
needed to replace the comments ’alarm’ and ’report alarm’ in the ALM state
with a real variable that is set when an alarm is produced, and a real mechanism
to report this alarm, according to the designer’s needs. The application of the
ARC pattern, plus the NALM and NALM-TI patterns, yields the SDL process
type shown in Fig. 9.

6 Conclusions

The proposal of mapping the ITU-T CORBA-IDL interfaces for TMN systems
into eODL offers the advantage of defining the concept space using MOF (Meta
Object Facility) technology. That allows the use of MOF-related tools to sup-
port the automation of model transitions between the different software devel-
opment phases. Another benefit is the ability to instantiate concrete models
from the metamodel, which can be represented by existing languages, so an in-
tegration of different design methods can be achieved. Such approach allows one
to obtain managed systems according to the ITU-T standards for distributed
management systems, in addition to the means of deploying them into any tar-
get environment, not only CORBA. Furthermore, this proposal lets designers
define behavior in a formal way without doing all the work from scratch, but
using syntactically incomplete generic solutions (SDL-patterns). Using SDL as
the description language offers a formal specification of behavior. In addition,
SDL-patterns improve reuse and sharing of expertise gained in other projects,
when comparing with use of SDL ad hoc descriptions or SDL descriptions using
inheritance and specialization. SDL-patterns are not closed solutions, they are
flexible and powerful enough to really simplify the development of new manage-

48 M. de Cabo and M. Rodŕıguez

ment systems. They allow the addition of business logic to the eODL artifacts
in a semi-automatic way. SDL-patterns are formalized reuse artifacts.

The main shortcoming of the eODL to SDL-2000 mapping proposed in Rec.
Z.130 is the lack of flexibility for expressing concurrent behavior within a CO.
The automatic translation forces the alternating execution of the artifacts which
implement the interfaces of the CO. So as to maintain the automatic translation,
more flexibility to choose between concurrent and alternating behavior would be
desirable.

New rules for mapping would be needed, they should allow choosing the
insertion of SDL agents into the most appropriate context (process inside process
or inside blocks). These changes have to be included while providing a smooth
transition between the two languages.

There is another drawback as well: the current lack of tools for the autom-
atization of the described process. Automatizing the overall process of obtain-
ing a complete SDL description and then generating code to achieve real soft-
ware components and a running system on a platform, involves two main steps.
First, eODL translation into SDL-2000. Second, choosing and customizing SDL-
patterns. This process heavily relies on the development of adequate tools. These
tools may mix the information given by eODL deployment and target envi-
ronment views, with the ability of integrating them with SDL specifications,
obtained from SDL-patterns customization, and generating code from all the
information given to the tool.

References

1. Böhme, H.: Z.130 Extended ODL. http://www.omg.org/docs/telecom/02-04-
05.pdf (2002).

2. Böhme, H.: Integrated Application of eODL. ITU-T Integrated Applica-
tion of Formal Languages Workshop, Geneva (2003) http://www.itu.int/ITU-
T/worksem/iafl/documents/iafl 006.ppt.

3. de Cabo, M., Rodŕıguez M.: The generic-MO and the ARC patterns.
http://www.rest.tel.uva.es/˜marcab/technicalReports/patterns.pdf.

4. Dubois, F., Born, M., Böhme, H., Fischer, J., Holz, E., Kath, O., Neubauer, B.,
Stoinski, F.: Distributed Systems: From Models to Components. Reed, R., Reed,
J. (Eds.), 10th SDL Forum. Volume 2078 of Lecture Notes in Computer Science,
Springer (2001) 250–267.

5. Geppert, B., Rößler, F., Gotzhein, R.: Pattern Application vs Inheritance in SDL.
IFIP, International Conference on Fomal Methods for Open Object-Based Dis-
tributed Systems, FMOODS’99 (1999).

6. Geppert, B.: The SDL Pattern Aproach. A Reuse-Driven SDL Methodology for
Designing Communication Software Systems. PhD thesis, Fachbereich Informatik
der Universität Kaiserslautern, Germany (2001).

7. Geppert, B., Rößler, F.: The SDL pattern approach - a reuse-driven SDL design
methodology. Computer Networks 35 (2001) 627–645.

8. ITU-T: Recommendation M.3010 (02/00), Principles for a Telecommunications
Management Network. International Telecommunication Union, Geneva (2000).

Applying eODL and SDL-Patterns for Developing TMN Managed Systems 49

9. ITU-T: Recommendation M.3120 (02/00), CORBA Generic Network and Net-
work Element Level Information Model. International Telecommunication Union,
Geneva (2000).

10. ITU-T: Recommendation M.3100 (07/95), Generic Network Information Model.
International Telecommunication Union, Geneva (1995).

11. ITU-T: Recommendation M.3100 (1995), Amendment 3 (08/01) Definition of the
management interface for a generic alarm reporting control (ARC) feature. Inter-
national Telecommunication Union, Geneva (2001).

12. ITU-T: Recommendation Q.816 (01/01), CORBA-based TMN Services. Interna-
tional Telecommunication Union, Geneva (2001).

13. ITU-T: Recommendation X.722 (01/92), Information Technology - Open Systems
Interconnection - Structure of Management Information: Guidelines for the Defini-
tion of Managed Objects. International Telecommunication Union, Geneva (1992).

14. ITU-T: Recommendation X.780 (01/01), TMN Guidelines for Defining CORBA
Managed Objects. International Telecommunication Union, Geneva (2001).

15. ITU-T: Recommendation Z.100 (08/02), Specification and Description Language
(SDL). International Telecommunication Union, Geneva (2002).

16. ITU-T: Recommendation Z.130 (07/03), Extended Object Definition Language
(eODL): Techniques for distributed software component development - Conceptual
foundation, notations and technology mappings. International Telecommunication
Union, Geneva (2003).

17. Object Management Group: Meta-Object Facility (MOF), version 1.4 (2002).
18. Rößler, F.: Collaboration-Based Design of Communicating Systems with SDL. PhD

thesis, University of Kaiserslautern, Germany (2002).

SPT – The SDL Pattern Tool�

Jörg Dorsch1, Anders Ek2, and Reinhard Gotzhein3

1 joerg.dorsch@web.de
2 Telelogic AB, Malmø, Sweden

anders.ek@telelogic.com
3 Computer Science Department, University of Kaiserslautern

Postfach 3049, D-67653 Kaiserslautern, Germany
gotzhein@informatik.uni-kl.de

Abstract. In 1997, the SDL pattern approach, consisting of a specific
design process, notation for the definition of generic design fragments,
rules for the definition of patterns, and a pattern pool, has been intro-
duced. While the approach is now consolidated and has been applied in
industry, a major issue still is the provision of tool support. In this paper,
we present SPT, the SDL Pattern Tool, which focuses on the application
of a selection of SDL patterns. SPT is fully integrated with TTD G2
(Telelogic Tau Developer Generation 2), the new tool environment from
Telelogic, which supports UML 2.0 as well as an SDL profile.

1 Introduction

Reuse of project results and developer know-how are receiving growing atten-
tion both in industry and academia. There is a broad range of reuse approaches,
which can be classified according to the artefacts – e.g., frameworks, patterns,
components – they are based on. In previous work, we have introduced and
consolidated the SDL pattern approach [4][5][6]. SDL patterns combine the tra-
ditional advantages of the well-known design patterns [3] – reduced development
effort, quality improvements, and orthogonal documentation – with the precision
of a formal design language for pattern definition and pattern application.

Recently, the SDL design pattern approach has been applied and evaluated
in an industrial environment, the development of a UMTS call processing system
[8]. In the course of this work, we have analysed a substantial part of the available
SDL design, and have discovered eight SDL patterns that capture and document
the most frequent design decisions. We have then assessed the benefits of these
project-specific SDL patterns by evaluating a large number of trouble reports
raised during project development and maintenance. As it turned out, 37% of
these trouble reports could have been avoided by correctly applying six of the

� This work has been supported by the Deutsche Forschungsgemeinschaft (DFG) as
part of Sonderforschungsbereich (SFB) 501, Development of Large Systems with
Generic Methods, and by Telelogic AB in Malmo/Sweden.

D. Amyot and A.W. Williams (Eds.): SAM 2004, LNCS 3319, pp. 50–64, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

SPT – The SDL Pattern Tool 51

project-specific SDL patterns, and that up to 47% could have been avoided by
adding further patterns to the pool. These figures correspond to a reduction of
the total development effort by 4.7% and 6%, respectively. We note that this
is a conservative estimate, since defects discovered after deployment, which are
particularly expensive in terms of rework, have not been available at the time of
the evaluation.

In subsequent discussions, it has been an important concern to what degree
these benefits are achievable. In particular, given the project-specific SDL pat-
terns, what can be predicted about their correct application by system develop-
ers? In order to find an answer to this question, we have conducted a controlled
experiment with a group of 18 students, forming six development teams [15].
Prior to the experiment, the participants had attended a course about protocol
engineering, where they were introduced to SDL and the SDL pattern approach.
As it turned out, the teams working with the SDL pattern approach avoided
59% of the design errors where suitable patterns were available. This is remark-
able, in particular since the participants hat no practical experience with SDL,
SDL patterns or the SDL tool environment when the experiment started. We
conclude that experienced developers in industry who are familiar with SDL,
SDL tools, and the SDL pattern pool will outperform these results. Also, in the
industrial environment, pattern-specific checklists to be used in design reviews
were provided in addition, which should further improve the correct application
of SDL patterns.

Our industrial partners pointed out that to fully exploit the benefits of the
SDL pattern approach, and to fully incorporate it into development projects,
graphical tool support is indispensable. Tool support should address the defini-
tion and application of SDL patterns on the one hand, and the documentation
of pattern applications on the other hand. Furthermore, it should be integrated
with tool environments that are used in industry. In a previous effort, we have
developed a tool called SPEEDI, a pattern-enhanced SDL editor [1] [14]. While
SPEEDI provided complete functionality for pattern application, documenta-
tion, and navigation, it was still based on SDL-PR, which turned out to be a
major obstacle to a broader dissemination.

In a recent effort, we have developed another tool called SPT, the SDL Pat-
tern Tool. SPT has a graphical user interface, and is fully integrated with TTD
G2 (Telelogic Tau Developer Generation 2), the new tool environment from
Telelogic, which supports UML 2.0 as well as an SDL profile. Currently, SPT
supports three SDL patterns from two different pattern categories, namely ar-
chitecture and interaction patterns. The results clearly show the feasibility of
the tool concept.

The paper is structured as follows. In Section 2, we briefly summarize the
SDL pattern approach. Section 3 identifies and details areas of tool support
for SDL patterns. In Section 4, we present SPT, the SDL Pattern Tool, and
illustrate how SPT supports the application of SDL patterns. Section 5 addresses
implementation issues of SPT, in particular, the integration into TTD G2, the
new tool chain from Telelogic. Status and outlook are reported in Section 6.

52 J. Dorsch, A. Ek, and R. Gotzhein

2 Survey of the SDL Pattern Approach

The SDL pattern approach [4][5][6] consists of the SDL pattern design process,
a notation for the description of generic SDL fragments called PA-SDL (Pat-
tern Annotated SDL), a description template and rules for the definition of SDL
patterns, and an SDL pattern pool for distributed systems in general, and com-
munication systems in particular. The approach has been applied successfully to
the engineering and reengineering of several communications systems (cf. [6] for
further references). In [8], results of an industrial application are reported.

AnSDLpattern is a reusable software artefact that represents a generic solution
for a recurring design problem with SDL as the design language. The main argu-
ment for this choice is that SDL [10] is one of the few formal description techniques
that are widely used in industry, with commercial tool support being readily avail-
able. SDL patterns are collected in a pattern pool, which can be seen as a repository
of experience from previous projects that has been analyzed and packaged.

The definition of SDL patterns is organized following a description template
(cf. [8]). In an informal part, the intent of and the motivation for the pattern
are explained. Structure and message scenarios identify the involved design com-
ponents and their relationships, and specify typical generic behavior. The syn-
tactical part of the design solution is captured by the SDL fragment together
with syntactical embedding rules. A specific notation called PA-SDL (Pattern
Annotated SDL) is used to constrain the context in which the pattern may be
applied, and describes some of the modifications resulting from its application.
Further entries are refinement, cooperative usage and known uses.

The SDL pattern design process is part of an overall development process,
and may be integrated in methodologies such as SOMT [17], SDL+ [12] or TIMe
[1]. The starting point for the communication system design activity is a set of
communication requirements, which is partitioned into a sequence of subsets.
For each of these subsets, several steps are performed. Firstly, an analysis of
the requirements is executed. This leads to an analysis model, consisting of
a structural part and a set of collaborations described by message scenarios.
Based on this analysis model, the designer searches the SDL pattern pool for
suitable SDL patterns, which he then selects, adapts, and composes into an
embedding context. The selection step is supported by the definition of SDL
patterns, which contains a generic analysis model. Adaptation is restricted by
constraints on the SDL context, and by renaming and refinement rules in the
pattern definition. Finally, the pattern instance is embedded into the context
specification, leading to a may modified SDL specification. Note that patterns
may be applied simultaneously and/or sequentially.

3 Areas of Tool Support for SDL Patterns

To fully exploit the benefits of the SDL pattern approach, pattern-directed tool
support is required. This tool support can be classified according to the pattern-
related activities addressed in the following subsections.

SPT – The SDL Pattern Tool 53

3.1 Definition of SDL Patterns

SDL patterns are the result of analyzing system designs with the objective to
identify and document frequent generic design decisions. They form part of a
full-scale, evolutionary product-line experience base, improving the quality of the
system design and reducing the loss of know-how inflicted by staff fluctuation.

The definition of SDL patterns follows a description template, which deter-
mines the items as well as the rules of pattern definitions (see Section 2). Tool
support should provide special-purpose editors for each of these items, aggrega-
tion of items into pattern definitions, and the management of pattern definitions
in a repository including versioning. As different description techniques are used
to define structure (UML class diagrams), message scenarios (MSC), and SDL
fragments (SDL, PA- SDL), a major effort is needed to integrate these fragments
into a homogeneous document.

3.2 Application of SDL Patterns

The application of SDL patterns consists of several steps. Firstly, an SDL pattern
is selected from a pattern pool. The selection is based on the concrete analysis
model resulting from the analysis of the communication requirements, the generic
analysis model of the SDL pattern, and background knowledge of the system
developer. It may be assisted by a tool that reduces the choice of patterns to
those that are compatible with the concrete analysis model, and by an interactive
resolution in case of alternatives.

Once the pattern has been selected, the design context where the pattern
instance is to be embedded is identified. This is usually an interactive process,
which may take advantage of information from the pattern selection step. For
instance, the involved design components may appear in the concrete analysis
model. Further constraints are expressed in the pattern definition and are to be
enforced by the tool.

Next, the (generic) SDL pattern is adapted to the (concrete) design context.
As before, choices may be resolved automatically, based on the analysis model
and the design context determined before. Any remaining choices are then re-
solved interactively. Again, constraints are to be enforced by the tool.

Finally, the resulting pattern instance is embedded into the design context,
i.e., into the SDL specification. Before this, all variation points have been re-
solved, so the embedding of a pattern instance can be automated, yielding a
modified SDL design. It should be noted that pattern-based design steps have
to be mixed with ad-hoc design steps. As a general requirement, the pattern-
oriented tool support therefore has to be integrated with the ad-hoc tool support
for editing SDL specifications.

3.3 Documentation of SDL Pattern Applications

The application of SDL patterns leads to an orthogonal structure of the sys-
tem design. Application of an interaction pattern, for instance, modifies the
state graph of different SDL components. Furthermore, it represents a partic-

54 J. Dorsch, A. Ek, and R. Gotzhein

ular abstract design decision. The pattern application history thus becomes an
important part of the design documentation, because this information can not be
retrieved from the SDL design afterwards. Tool support for the documentation
of SDL pattern applications can range from a simple pattern application log up
to labelling individual language elements such that the complete design history
can be reconstructed. Furthermore, individual pattern instances may be high-
lighted by suitable coloring, and navigation support between pattern instance
fragments may be provided.

3.4 Generation of Tool Support

It is expected that pattern-oriented tool support will be partially independent
of individual SDL patterns. For instance, pattern definitions all follow the same
description template and all use the same notations, therefore, it suffices to
have one pattern editor. However, application of SDL patterns is highly pattern-
specific. Therefore, it is necessary to integrate each SDL pattern individually
into existing general-purpose SDL editors, especially in cases where syntactical
embedding rules are expressed in natural language. To improve this situation,
portions of the tool code may be derived automatically on the basis of PA-SDL
constructs, and from the knowledge about the steps of applying SDL patterns.

4 The SDL Pattern Tool SPT

SPT – the SDL Pattern Tool – has been developed with the support of Telelogic.
It is fully integrated with Telelogic Tau Developer Generation 2 (TTD G2), the
new tool environment from Telelogic, which in the future will replace the former
Telelogic Tau SDL Suite [16]. SPT is focused on the application of SDL patterns
(see Section 3). Currently, SPT supports the application of three SDL patterns
from two different pattern categories, namely architecture patterns and inter-
action patterns, and produces a simple pattern application log. Furthermore,
the generation of pattern application scripts from pattern definitions has been
studied. We will illustrate the results in this section.

At this point, we note that TTD G2 is primarily targeted to UML 2.0 users.
However, SDL-2000 and UML 2.0 are converging on a conceptual level [9]. To
cover SDL, TTD G2 offers several SDL packages that can be included on a
case by case basis. As TTD G2 provides a flexible tool developer interface that
supports the integration of pattern-oriented functionality, we have converted
the SDL pattern pool to UML 2.0 – which has been straightforward –, and have
implemented the tool support accordingly. In the following, we will sometimes
refer to SDL patterns, although they are illustrated using the syntax of UML
2.0 in this section.

4.1 SDL Pattern Selection

In Section 3, it has been pointed out that the selection of SDL patterns can be
sup- ported, e.g., by reducing the choice of patterns to those that are compatible

SPT – The SDL Pattern Tool 55

Fig. 1. Menu bar of the TTD G2 screen with entry ”UML2 Patterns” and pull-down
menu

Fig. 2. Sequence diagram ”successful connection setup”

with the analysis model. As this option has not yet been implemented, pattern
selection is per- formed autonomously by the system designer, who then enters
his choice by marking the pattern in a pull-down menu. For this purpose, an entry
”UML2 Patterns” has been added to the menu bar of the TTD G2 screen (see
Fig. 1). When clicking this entry, a pull-down menu with a list of all supported
patterns appears. Furthermore, the menu offers a list of pattern-specific editing
tools.

4.2 Identification of the Design Context

Following the SDL pattern design process (cf. Section 2), an analysis of the
require- ments is performed, leading to a concrete analysis model that consists
of a structural part and a set of collaborations. The sequence diagram shown in
Fig. 2 and taken from the pattern-based development of the InRes-system [6] is
part of an analysis model for the connection setup. It identifies the involved de-
sign components – Initiator, InRes- Provider, Responder – and their interaction

56 J. Dorsch, A. Ek, and R. Gotzhein

Fig. 3. Intermediate architecture of the InRes-system

to successfully establish a connection. Once the analysis model is available, the
SDL pattern pool is searched for suitable candidates. In this particular case, it is
straightforward to see that the SynchronousInquiry pattern [7] is a suitable
candidate, and has to be applied twice to capture the nested two-way handshake
detected during requirements analysis.

Next, the design context where the pattern instance is to be embedded is iden-
tified. In this case, the architectural design components as well as start states
already appear in the sequence diagram, and can be associated with the corre-
sponding components in the SDL design. To enter this information into SPT,
a sequence of user dialogues (see Figs. 4-6) is initiated, based on the selected
pattern. We assume the architectural context shown in Fig. 3, resulting from the
previous application of patterns ServiceArchitecture and Synchronous-
Inquiry (first instance).

Firstly, the inquiry automaton1 is selected by clicking on the corresponding
design element, the statechart diagram of InResProvider in the model view of
TTD G2 (see Fig. 4).

Next, the trigger of the confirmed interaction – in this case the input signal
ICONreq – is marked, which also defines the outgoing state. Following is a user
dialogue to determine the reply automaton (Fig. 5) as well as the sender and
the receiver ports (Fig. 6). Note that this context information appears in the

1 The SynchronousInquiry pattern introduces a confirmed interaction between two
automata. After a trigger, the InquiryAutomaton sends an inquiry and is blocked
until receiving a reply. This signal is eventually received by the ReplyAutomaton,
which sends a reply finally releasing the InquiryAutomaton from its waiting state.

SPT – The SDL Pattern Tool 57

Fig. 4. SynchronousInquiry pattern: context identification (InquiryAutomaton)

Fig. 5. SynchronousInquiry pattern: context identification(ReplyAutomaton)

sequence diagram in Fig. 2 and in the architecture diagram in Fig. 3, and could
therefore be extracted automatically in a more advanced version of SPT.

58 J. Dorsch, A. Ek, and R. Gotzhein

Fig. 6. SynchronousInquiry pattern: context identification (ports)

4.3 Pattern Adaptation

Once the design context has been identified, the (generic) SDL pattern is adapted,
yielding a (concrete) pattern instance. In particular, the SDL fragments of the
design solution are completed by resolving all variation points as expressed in
PA-SDL. In case of the SynchronousInquiry pattern, adaptation concerns the
input of signal names (inquiry, reply1..n), the corresponding next states, and the
resolution of the generic decision symbol. Choices may be restricted by specific
annotations, prescribing, for instance, that all occurrences of ”name” are to be
replaced uniquely, or that a ”fresh” name is to be used. SPT offers a pattern-
specific sequence of user dialogues to enter this information, and immediately
checks whether all constraints are satisfied (see Fig. 7). In an advanced version,
this information may be extracted from the sequence diagram, which is part of
the analysis model.

Fig. 7. SynchronousInquiry pattern: adaptation

SPT – The SDL Pattern Tool 59

4.4 Embedding into the Design Context

Finally, the resulting pattern instance is embedded into the design context. In
SPT, this step is automated, as all variation points have been resolved interac-
tively in the previous steps (context identification and pattern adaptation).

Figs. 8 and 9 show the statecharts of InResProvider and Responder after
the second application of the SynchronousInquiry pattern, which completes
the connection setup phase. In comparison to the design context in Fig. 4, the

Fig. 8. SynchronousInquiry pattern: embedding (InResProvider)

Fig. 9. SynchronousInquiry pattern: embedding (Responder)

60 J. Dorsch, A. Ek, and R. Gotzhein

non-deterministic choice expressed by ”any” has been replaced by interaction
with Responder, where ICONind, ICONresp, and IDISreq substitute the generic
signal names inquiry, reply1 and reply2 of the generic SDL fragment in the
pattern definition, respectively.

5 Implementation of SPT

In this section, we give a brief overview of the current implementation of SPT
(Section 5.1), and outline future extensions (Sections 5.2 and 5.3).

5.1 Overview

SPT is based on a tool developer API – called basic API – of TTD G2, which
provides flexible access to SDL design elements and their graphical represen-
tation. For instance, model and diagram elements may be created, modified,
or deleted, and tool bars, menus and dialogue boxes may be added. Since this
basic API is written in Tcl (Tool command language [11]), we have decided to
implement SPT by pattern- specific Tcl scripts that are interpreted under the
control of TTD G2. The code of SPT is collected in a Tcl file with the following
structure:

• Include part : inclusion of packages with basic dialogue support and basic
commands (basic API)

• Menu part : code for the menu bar item ”UML2 Patterns” and the pull-down
menu (s. Fig. 1)

• Menu procedures: common procedures for the creation of SPT menus
• Dialogue procedures: common procedures for SPT user dialogues
• Pattern procedures: common Tcl procedures that are used to structure pat-

tern scripts, e.g., to properly arrange SDL symbols that are added in the
course of a pattern application

• Pattern scripts: Tcl scripts for the application of SDL patterns. Pattern
scripts are structured according to the phases of a pattern application, i.e.,
context identification, adaptation, and embedding.

• Tool scripts: Tcl scripts for user support tools (arrangement of symbols,
management of the pattern log etc.)

5.2 Enhancements of the Basic API

TTD G2’s basic API can be used to define further abstractions for the develop-
ment of SDL pattern tool support:

• Basic user dialogues. The application of an SDL pattern consists of several
steps, including design context identification and pattern adaptation, which
require intensive interaction with the system designer. It should be possible
to base this interaction on graphical dialogues of the model view and the
representation view, in addition to text dialogues (edit fields, combo boxes).

SPT – The SDL Pattern Tool 61

In particular, it should be possible to navigate in the model and to select
model elements during a user dialogue. Furthermore, the dynamic update of
combo boxes based on intermediate user input should be supported.

• Auto-layout. The application of SDL patterns leads to extensions and/or
modifications of the SDL context specification. Syntactically, this amounts
to adding graphical and textual SDL symbols. These extra symbols should
be laid out automatically, with some possibilities for adjustments according
to specific project guidelines.

• Automatic refresh of the representation view. When an SDL pattern instance
is embedded into the context specification, all open diagrams that are af-
fected should be refreshed automatically. Currently, these diagrams have to
be closed and reopened manually in order to visualize the embedding.

• Abstract manipulation of the model view and the representation view. Ma-
nipulation of the model view and the representation view should be based
on larger units, and should maintain consistency between these views auto-
matically. E.g., creation of an input symbol should be defined relative to a
particular state, without having to deal with connectors, layout, and model
elements.

• Search functionalities for the model view and the representation view. Some
basic search operations in order to support the user dialogues are needed.
E.g., it should be possible to find all parts and ports reachable through
connectors from a given part. Or, it should be straightforward to collect all
ports where a given signal may potentially be delivered.

• Addition of object attributes. The application of SDL patterns yields an or-
thogonal structure of the design specification. Additionally, design decisions
are made explicit. To preserve this knowledge, pattern applications have to
be documented by the development tool, which requires additional object
attributes.

• Dynamic coloring of SDL symbols. To make SDL pattern applications visi-
ble, some highlighting of SDL symbols is needed. This can be achieved by
providing coloring of SDL symbols, as supported, e.g., by SDT. To be flex-
ible, it should be possible to couple coloring to object attributes, and to
switch it on and off dynamically.

• Navigation support. The application of SDL design patterns may lead to
modifications and extensions of the design specification in several places. To
find these places and to move back and forth, basic navigation support will
be needed.

• SDL pattern view. To visualize system designs, TTD G2 currently offers
a model and a representation view. These views can be augmented by an
SDL pattern view (another tab in the work space) that visualizes the pat-
tern application history and the design elements addressed by each pattern
application, and serves as a user interface for quick navigation.

5.3 Provision of an SDL Pattern Command Package

With the additional features of the basic API described in Section 5.2, it will be
feasible to define an SDL pattern command package providing high-level support

62 J. Dorsch, A. Ek, and R. Gotzhein

for the development of tool support for SDL pattern application and documenta-
tion. In particular, the SDL pattern command package may provide the following
functionalities:

• Generic user dialogues for the selection of SDL patterns. Selection of SDL
patterns can be based on an additional menu bar item, possibly hierarchical,
to show the pattern categories and, on the next level, the patterns in that
particular category. Selection of a pattern triggers its application.

• Generic high-level user dialogues for the application of SDL patterns. Con-
text identification and pattern adaptation can be based on the analysis model
that captures the involved design units as well as typical message scenarios.
This may be assisted by user dialogues, if the analysis model leaves choices,
e.g., which portions of a message scenario to cover by applying a particular
pattern. Graphical user dialogues, based on the model view and the represen-
tation view, would simplify these steps significantly. For instance, it should
be possible to navigate in the model and to select model elements during a
user dialogue.

• Developer guidelines to conceive and implement tool support for SDL pat-
terns. Tool support for SDL patterns is based on the SDL pattern command
package. Guidelines could be supplied how to use this command package
and how to conceive and implement tool support for a particular pattern.
In particular, script templates for specific PA-SDL constructs (e.g., generic
trigger symbol, generic decision symbol, border symbol) may be defined.

• Dynamic coloring of SDL design pattern instances. With basic coloring fea-
tures of SDL symbols being available, aggregated features to support the
documentation and highlighting of SDL pattern instances can be conceived
and implemented.

• Generic high-level navigation support for SDL patterns. Basic navigation
support is aggregated to obtain pattern-specific, still generic, support.

• Generic features for the management of the SDL pattern view. The SDL pat-
tern view (another tab in the work space) is derived from the documentation
of SDL pattern applications. It visualizes the pattern application history, and
serves as a user interface for quick navigation. Further functionality, e.g., an
undo-function, is conceivable in a future release.

6 Status and Outlook

In this paper, we have presented SPT, the SDL Pattern Tool. SPT has a graphical
user interface, and is fully integrated with TTD G2, the new tool environment
from Telelogic. Currently, SPT supports three SDL patterns: ServiceArchi-
tecture, AsynchronousNotification, and SynchronousInquiry. In [6],
these patterns have been applied manually during the pattern-based develop-
ment of the InRes- service. With SPT, we have been able to repeat this devel-
opment, which provides evidence for the feasibility of the tool concept.

SPT – The SDL Pattern Tool 63

The development of SPT has been triggered by our industrial partners, who
pointed out the need for graphical tool support in order to fully exploit the ben-
efits of the SDL pattern approach. Tool support should address the definition
and application of SDL patterns on the one hand, and the documentation of
pattern applications on the other hand. Furthermore, it should be integrated
with existing tool environments. The development of SPT shows that these re-
quirements can be met. However, there is still a lot of room for improvements. In
particular, an SDL pattern command package should be provided, with suitable
abstractions for the development of SDL pattern tool support as well as guide-
lines to conceive and implement tool support for project-specific SDL. This will
enable development teams to define and maintain their own, project-specific SDL
pattern pool and customized tool support.

The SDL pattern approach has been introduced in 1997, and has been im-
proved, applied, consolidated and transferred to industry since. These activities
have so far been driven by a small group of people from academia, in cooperation
with industry. With this experience being available, the future development of
the approach and, in particular, the definition of a set of standard SDL pat-
terns, should be pursued by an SDL pattern task force with broad membership,
to trigger wider discussion and exposure.

References

1. R. Bræk, Ø. Haugen: Engineering Real Time Systems. Prentice Hall, 1993.
2. D. Cisowski, B. Geppert, F. Rößler, M. Schwaiger: Tool Support for SDL Patterns.

Y. Lahav, A. Wolisz, J. Fischer, E. Holz (Eds.), Proceedings of the 1st Workshop
on SDL and MSC (SAM’98), Berlin, 1998.

3. E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading, Massachusetts,
1995.

4. B. Geppert, R. Gotzhein, F. Rößler: Configuring Communication Protocols Using
SDL Patterns. A. Cavalli, A. Sarma (Eds.), SDL’97 – Time for Testing, Proceedings
of the 8th SDL Forum, Elsevier, Amsterdam, 1997, pp. 523-538.

5. B. Geppert: The SDL Pattern Approach – A Reuse-Driven SDL Methodology for
Designing Communication Software Systems. Ph.D. Thesis, University of Kaiser-
slautern, 2000.

6. R. Gotzhein: Consolidating and Applying the SDL Pattern Approach: A Detailed
Case Study. Journal of Information and Software Technology, Vol. 45, Issue 11
(727-741), Elsevier Sciences, 2003.

7. R. Gotzhein: .The SDL Design Pattern Approach – A Tutorial. SFB 501 Report
07/2003, Technical University of Kaiserslautern, Germany, 2003.

8. R. Grammes, R. Gotzhein, C. Mahr, P. Schaible, H. Schleiffer: Industrial Appli-
cation of the SDL Pattern Approach in UMTS Call Processing Development –
Experience and Quantitative Assessment. R. Reed and J. Reed (Eds.), SDL 2003:
System Design, Volume 2708 of Lecture Notes in Computer Science, Springer, 2003,
pp. 102-116.

9. R. Grammes, R. Gotzhein: Towards the Harmonisation of UML and SDL – Syn-
tactic and Semantic Alignment. Technical Report 327/03, Technical University of
Kaiserslautern, Germany, 2003.

64 J. Dorsch, A. Ek, and R. Gotzhein

10. ITU-T: Recommendation Z.100 (11/99) Specification and Description Language
(SDL). International Telecommunication Union, Geneva.

11. J. Ousterhout: TCL and the Tk Toolkit. Addison-Wesley, 2002.
12. R. Reed: Methodology for Real Time Systems. Computer Networks and ISDN

Systems, Special Issue on SDL and MSC, 28 (1996), pp. 1685-1701.
13. F. Rößler, B. Geppert, P. Schaible: Re-Engineering of the Internet Stream Proto-

col ST2+ with Formalized Design Patterns. Proceedings of the 5th International
Conference on Software Reuse (ICSR5), Victoria, Canada, 1998.

14. F. Rößler: Collaboration-Based Design of Communicating Systems with SDL.
Ph.D. Thesis, Computer Science Department, Technical University of Kaiser-
slautern, Germany, 2001.

15. P. Schaible: Reuse-based Development of Communication Systems. Ph.D. Thesis,
Computer Science Department, Technical University of Kaiserslautern, Germany,
2004 (in german).

16. Telelogic AB: Tau 4.4 SDL Suite, 2002.
17. Telelogic AB: Tau 3.4 SDT Methodology Guidelines – Part 1: The SOMT Method,

1998.

Comparing UML 2.0 Interactions and MSC-2000

Øystein Haugen

Department of Informatics, University of Oslo, Norway
oysteinh@ifi.uio.no

Abstract. This paper is a brief comparison between the Interactions of
UML 2.0 as defined by the Final Adopted Specification (OMG ptc/03-
07-06) and MSC-2000 as defined by Z.120 (ITU 1999). The comparison
investigates whether UML 2.0 has serious shortcomings relative to MSC-
2000. The paper also discusses whether MSC-2000 is still needed in the
future or should be retired.

1 Introduction

Message Sequence Charts emerged from the SDL (ITU-T Specification and De-
scription Language) community leading to its first ITU-T recommendation in
1992 [9]. Later there have been revisions of MSC in 1996 [10], in 2000 [11], and
more recently in 2004 [12].

UML 1.0 appeared in 1999 [20] and it did have some simple sequence diagrams
similar to those found in MSC-92. UML went through small revisions leading
to UML 1.5 in 2003. Still over the last three to four years a major revision of
UML has taken place leading to UML 2.0 [21] which will become an available
technology from OMG (Object Management Group) in 2004. In UML 2.0 also
sequence diagrams (or Interactions) have been thoroughly revisited and revised.

Having led the work towards MSC-2000 as ITU-T Rapporteur, and towards
UML 2.0 Interactions as the editor of that chapter, we think it may be of interest
to give a comparison between the two. For obvious reasons many of the same
requirements have affected the direction of the developments, but the differences
in standardization style between ITU-T and OMG have also had influence [4, 7].
The first version of this paper has been input to the ITU SG17 discussions, but
we thought the comparison could also be useful for a wider audience.

To read this paper it is helpful to have good knowledge of either MSC or
UML sequence diagrams. This paper is not a tutorial for any of these languages.

The paper is organized as follows. First we give a comparison table that will
give the readers a quick summary of the differences between MSC and UML
Sequence Diagrams, and present the terms used. Then we present the diagrams
and show examples of similarities and differences. We go in some detail into
the important fragment concepts. Details of messages are commented before
the areas of data and time are considered at greater length. Finally there is a
summary and conclusion.

D. Amyot and A.W. Williams (Eds.): SAM 2004, LNCS 3319, pp. 65–79, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

66 Ø. Haugen

Table 1. Comparison of central concepts

MSC-2000 UML 2.0 Comments
MSC (Message
Sequence Chart)

Interaction (Sequence Di-
agram; Communication
Diagram; Timing Dia-
gram; Interaction Overview
Diagram)

The individual scenarios. MSC and
UML have different approaches to
language.

Event EventOccurrence
MSC Document Class (or Collaboration) The context of the scenarios.
Instance Lifeline Notice that a lifeline refers to a prop-

erty (part) of a composite structure,
while the instance is a part of a struc-
ture.

Message Message Both distinguish between asyn-
chronous and synchronizing message.

Method call Operation call
Method (area) ExecutionOccurrence
Action ExecutionOccurrence
Suspension (area) No direct counterpart
Gate Gate In UML we have only message gates,

while in MSC there are also general
ordering gates.

No direct counter-
part

Interaction fragment See section 3.1.

Inline expression Combined Fragment UML 2.0 has introduced more opera-
tors.

Coregion Coregion In MSC this is a basic concept from
1992, but in UML 2.0 this is only
presented as a shorthand for the par-
operator. No semantic difference.

MSC reference Interaction Occurrence The ability to refer to another inter-
action. See also section 3.4.

Decomposition PartDecomposition How the aggregate hierarchy of the
structure is reflected in interac-
tions/MSCs.

General Ordering General Ordering UML does not have general ordering
gates.

Condition (global
state)

Continuation This concept is basically a label being
a syntactic way to combine pieces of
the specification that are distributed.

Condition (predi-
cate)

Interaction Constraint

Relative time Duration
Absolute time Time
Time measure-
ment

TimeObservationAction,
DurationObservationAction

Timer No counterpart

Comparing UML 2.0 Interactions and MSC-2000 67

2 Comparison Table

The comparison in Table 1 is intended to give overview of the different central
concepts in the field of Interactions / MSC such that those only familiar with
one of the languages can see what terms have been used in the other language.

3 Diagrams and Concepts

MSC, in the tradition of the ITU languages, considers the graphical syntax
tightly coupled to the concepts. In UML, however, one has tried (not always
successfully) to distinguish between the concept and the presentation forms. The
latter approach resembles what was done for SDL, where there was an abstract
syntax on which the semantics was explained. In UML the abstract syntax is
defined by what is called a metamodel. The metamodel is described in a subset
of UML itself called MOF (Meta Object Facility).

MSC has two graphic forms, simple message sequence charts (Fig. 1) and
high-level message sequence charts (Fig. 4). MSC also has a supposedly equiva-
lent textual form.

In UML the concept referred in this paper is called Interaction. UML Inter-
actions come in several graphic forms with different foci. The most expressive
form is the sequence diagram (Fig. 2) and every concept of Interactions can be
expressed in sequence diagrams.

The Fig. 1 shows an MSC-2000 diagram which is a piece of the specification of
an access control system. We see initial global condition, a reference, messages,

msc UserAccess

User ACSystem

when Idle

EstablishAccess(“Illegal PIN”)

CardOut

when PINOK

Mesg (“Please Enter”)

OpenDoor

Idle

opt

Fig. 1. Simple MSC-2000 diagram

68 Ø. Haugen

:ACSystem
ref AC_UserAccess

sd UserAccess

EstablishAccess ("Illegal PIN")
ref

opt

OpenDoorref

Idle

Idle

:User

msg("Please Enter")

CardOut

PIN OK

Fig. 2. Simple UML 2.0 sequence diagram

an optional inline expression including yet another initial condition, a message
and a reference. The diagram ends with a setting condition.

An almost exact UML counterpart is shown in Fig. 2. A continuation is at
the top of the diagram followed by an interaction occurrence and a combined
fragment that includes another continuation, a message and another interaction
occurrence. The whole diagram ends with a continuation. The reader may notice
that continuations do not distinguish between setting and guarding as is done
with MSC conditions.

Then there is the communication diagram (Fig. 3) that gives an overview
of how simple communication goes between the lifelines. It is overloaded on a
composite structure diagram (which closely resembles an SDL-96 block diagram
[8]) where the messages are numbered and shown on the connectors (communi-
cation lines). In UML 1.x the communication diagram was called a collaboration
diagram, but the term “collaboration” was inadequately overloaded and it was
decided to rename the type of diagram that actually described an interaction.
In UML 2.0 “collaboration” is a term for a special kind of classifier - a kind of
generic class concept.

UML 2.0 has also a counterpart for the HMSC diagrams (Fig. 4), and it
is called Interaction Overview Diagram (Fig. 5). For detailed interactions, the
specification of each individual event is important, but there is often a larger
picture where the general control flow is the most significant. For this purpose

Comparing UML 2.0 Interactions and MSC-2000 69

sd M

:r s[k]:B

s[u]:B

1a:m1

2:m21b:m3

1b.1:m3 1b.1.1:m3,
1b.1.1.1:m2

Fig. 3. UML 2.0 communication diagram

HMSC is a graphical form of MSCs that can be referred from simple MSCs and
can themselves refer simple MSCs.

The HMSC in Fig. 4 has the same semantics as the plain MSC in Fig. 1 We
notice that the conditions serve as nodes in the flowgraph. Other nodes are MSC
references and the start and end symbols (triangles). In addition there is a circle
that only serves as a join for graphical lines.

HMSC and Interaction Overview Diagrams are quite similar. The UML 2.0
variant can also have inline interaction diagrams (of any kind) as nodes. This is
slightly more general than MSC.

We see this in Fig. 5 where continuations come in place of MSC conditions,
and interaction occurrences or inline sequence diagrams replace the MSC refer-
ences. Since the UML Interaction Overview diagrams follow the UML activity
diagram syntax there are other supplementary symbols to describe branching,
start and end.

In UML 1.x there was already activity diagrams that on a very rough abstrac-
tion level served the same purpose as HMSC. Therefore it was natural to try and
reuse notation from activity diagrams when designing the UML 2.0 Interactions
counterpart of HMSC (Fig. 5).

Still UML 2.0 Interaction Overview Diagrams are understood as Interactions
rather than activities. This is important since activities are understood through
Petri-net-like semantics while Interactions are understood through trace seman-
tics.

Finally UML 2.0 has the timing diagram included for the purpose of focusing
on timing issues. It is an interaction diagram even though the timing concepts
have been made applicable not only for interactions.

70 Ø. Haugen

msc Overview

EstablishAccess(”Illegal PIN”)

CardOut

MsgPleaseEnter

OpenDoor

when Idle

when PIN OK

Idle

Fig. 4. HMSC - High Level MSC

In UML concepts may even exist without syntax, which means that it is up
to the tool how to present the concept to the user - and this will often result
in values given in a dialogue box. In MSC on the other hand, every concept has
concrete syntax.

In UML 2.0 unlike in UML 1.x, the diagrams have a frame and a name like
in MSC. UML has a textual form (XMI) which is the standardized format for
model exchange.

3.1 Interaction Fragment

The UML concept Interaction fragment is only implicitly present in MSC. The
more specific concept of MSC Inline Expression corresponds to UML 2.0 Com-
bined Fragment.

Comparing UML 2.0 Interactions and MSC-2000 71

sd OverviewDiagram lifelines :User, :ACSystem

ref
EstablishAccess("Illegal PIN")

sd

:User :ACSystem

CardOut

sd

:User :ACSystem

Msg("Please Enter")

ref
OpenDoor

Idle

PIN ok

Idle

Fig. 5. UML 2.0 interaction overview diagram

This is a minor point, but introducing “interaction fragment” makes it a little
easier to explain the semantics in a compositional way. The interaction fragment
is the central recursive concept.

72 Ø. Haugen

Table 2. Operators of combined fragments

MSC-
2000

UML 2.0 Comments

Loop Loop Iteration construct.
Opt Opt Optional behavior.
Seq Seq Weak sequencing.
Par Par Parallel merge.
Alt Alt Alternatives.
Exc Break Exception as a special case of alternative. There

is no semantic difference between MSC and UML
here.

Strict For traces where the order is given by vertical
coordinates also between lifelines.

Neg Negative traces. Introduces a more complex se-
mantics.

Critical Critical region.
Ignore/consider Filtering of message types.
Assert A way to define what has to happen in a given

situation.

3.2 Combined Fragments / Inline Expressions

Table 2 is a summary of operators of combined fragments. The reader will have
to look up the detailed definition of an operator in the standards.

Furthermore in UML 2.0 it is possible to combine operators directly in the
operator area as shorthand for nesting.

The operators are as the table above shows almost identical, but UML 2.0
has added a few. Neg and assert are introduced to make sequence diagrams
more suitable to express requirements that are more absolute. The neg operator
defines those traces that should not occur, and the assert defines the traces that
should (mandatory) occur at a given point in the scenario. These operators are
intended to bring the essence of Live Sequence Charts [2] into the compositional
semantics of UML 2.0 interactions.

In the future we will probably see even more operators. One suggestion has
been to distinguish between specifying potential alternatives and mandatory al-
ternatives [6]. Others want to make interactions able to describe Java exceptions
properly.

3.3 Conditions / Continuations

Already in MSC-92 we had the concept of “conditions”. The term indicated that
we were talking about predicates that had to be true for some behavior to take
place. This turned out to be a slightly incorrect intuition and in MSC-2000 the
condition concept came in two variants: the MSC-92 variant, which is really a
label, and the guarding condition (predicate).

Comparing UML 2.0 Interactions and MSC-2000 73

UML did already in its version UML 1.x have constraints and guards. The
constraints could be put anywhere in the model, and guards could be put on
messages to indicate when the executions could follow that message.

In UML 2.0 we have in the spirit of MSC-2000 included both the labeling
variant of conditions called “continuations” and the predicate, guarding variant
called “interaction constraints”.

Disregarding the difference in terms, the concepts are comparable. The UML
2.0 concept “continuation” is deliberately made more narrow than the MSC-2000
concept “global state condition”, but in practice they will serve the same pur-
pose, namely to combine parts of the specification that are distributed for other
reasons. Typically such combination is needed when the branching of control
occurs within one diagram, and this branching should be continued in another
diagram without having to check again for the same condition

3.4 Referring Another Interaction / MSC Diagram

To refer to another interaction from within a diagram is one of the most impor-
tant structuring mechanisms, and the first to be asked for by the users.

The concept of MSC reference of Z.120 and Interaction Occurrence of UML
2.0 are almost identical. In its basic form they can both be understood by sub-
stituting the referred diagram into where the reference was.

MSC also features “reference expressions” where the text of the MSC refer-
ence can designate an expression like an inline expression. This may be under-
stood as textual shorthand for more voluminous graphics. UML does not have
a direct counterpart of this feature.

4 Context of the Scenarios

MSC defines a concept of its own “MSC Document” to define the context of an
MSC (the individual scenarios). This context defines a composite structure of
the instances playing in the MSC. The MSCs of the MSC Document are divided
in defining and utilities. The defining MSCs are those intended to define the
semantics of the MSC Document while the utilities are merely used directly or
indirectly by the defining ones.

This is very similar to UML where the context may be a class or a collab-
oration. The latter is for more generic interactions. A class or a collaboration
have a composite structure restricting the possible lifelines of the interactions.
The composite structure of classifiers in UML is an innovation from version 2.0
inspired by SDL block diagrams and ROOM [22] structures. Composite struc-
tures may have ports on the edges and they may also be represented by lifelines
in interactions [5]. To tie Interactions closely to the composite structure was a
significant simplification step relative to earlier versions of UML where the par-
ticipants of Interactions had lived their own life relatively unaffected by those
specified in other parts of UML.

74 Ø. Haugen

In UML there is no distinction between defining and utility behaviors, but
a class may define a “classifier behavior” which is that designated behavior of
an object of that class. This would be similar to a defining MSC. A classifier
behavior in UML may be any behavior, which means it can be a state machine
or an activity.

In UML, the class (collaboration) has a number of other purposes than serv-
ing as the context for interactions, and as such defines the bridge between the
interaction part of the language and other parts like state machines and activi-
ties. With MSC, it is necessary to assume a mapping between concepts in MSC
and corresponding ones in SDL. This mapping is, however, mostly trivial.

4.1 Decomposing the Structure

In MSC, the MSC Documents represent an aggregate hierarchy of structure, and
in UML 2.0 classes and collaborations may have composite structures which also
represent an aggregate structure.

The natural question is what happens to a scenario specified for a high ag-
gregate level when the constituents are decomposed.

The concept in MSC and that of UML are designed to be as similar as possible
since the UML concept was modeled according to the MSC counterpart.

As a graphical option, in UML 2.0 lower aggregate levels can be shown di-
rectly inline under a Lifeline representing a higher aggregate level. Thus a se-
quence diagram may contain lifelines on different aggregate levels, which is im-
possible in MSC.

4.2 Messages

UML 2.0 and MSC do not have exactly the same tradition with respect to what
kind of scenarios they have been used to describe. While UML has a tradition
of using interactions to describe the control flow of a sequential program, MSC
considers a set of entirely concurrent instances where the method calls are con-
sidered remote procedure calls.

This difference in tradition does make some difference in requirements, but
neither language should have any restriction limiting their usage in this respect.

Technically MSC considers method calls and replies a concept area of its
own, UML 2.0 considers operation calls as just one kind of message. However,
in both cases the semantics is given by the traces of the events leading from the
initiation of the operation call (MSC: method call) to the reception of the reply.

The difference in tradition is also highlighted by UML usage of interactions
where also passive objects are depicted as lifelines. In MSC passive objects would
always be modeled as variables of the active instances.

Therefore what UML users sometimes describe using messaging, MSC users
would only consider as operations on variables. In the UML community we have
therefore experienced a very strong need to have data guards for alternatives
that cover more than one lifeline since it is in practice possible to determine
that the covered lifelines are never concurrently executing.

Comparing UML 2.0 Interactions and MSC-2000 75

4.3 Suspension Area

The suspension area is a part of the lifeline where no events should appear (with
certain strict restrictions). This is given explicitly and is not always the case
when there are method calls. This is because method calls can appear from
different sub-lifelines if the lifeline represents a composite structure. That would
mean that even when there is a method call the whole object will not have to
wait for the reply.

In UML 2.0, the suspension region concept was considered, but removed at
a late stage of the process.

4.4 Data Concepts

The approaches to data in MSC and in UML are both similar and different.
In both languages it is considered desirable that the users can choose to apply

the data manipulation language of his preference rather than a standard data-
manipulation sub-language of the modeling language. This is contrary to SDL
(Z.100), which does have a data language of its own.

Data in MSC-2000. The data concepts of MSC-2000 is characterized by a
rather elaborate scheme designed to give the user the necessary freedom of ex-
pression without sacrificing precision and formality.

In order to let the users write the data portions without being hampered
by all kinds of escape notation, there is a way to define parts of the syntax of
the preferred data language within MSC-2000. Through declarations it is pos-
sible to define characters for parentheses etc. It is recognized that most data
languages have a nested structure where parenthesizing is important. It is possi-
ble to declare syntax for nestable as well as non-nestable parentheses. Through
these “meta” declarations of syntax, it is possible for the user to write data
expressions in his favorite data language without any extra wrapping syntax,
and still the MSC analyzer can extract the appropriate data strings in a general
way.

For the MSC analyzer to “kick down” to analyzing the extracted data strings,
a number of interface functions are defined. Some of these functions controls the
static requirements of the data language such that the MSC analyzer can apply
these functions which must be defined for the data language used.

Finally there are a few functions that are required to define the dynamic
semantics of the combined MSC and Data language. These functions represent
a way to parameterize the semantics of the MSC language modulo different data
languages.

The ITU has standardized such a binding between SDL data language and
MSC in Recommendation Z.121 [14]. This formally combines the data aspects
of SDL and MSC tightly together.

Data in UML 2.0. Data is in principle an integrated part of the UML modeling
language, but there is little UML-specific rules for concrete syntax. Most of this

76 Ø. Haugen

must be found through examining the chapters on Actions (and Activities) in
UML 2.0.

There is no UML concrete syntax for actions, and there is no counterpart to
the language specific way in which the syntax can be defined within the language
as one can find in MSC.

There has been talk about defining concrete syntax for an action language,
but nothing concrete has come out of this yet.

Data Summary. MSC has a reasonably well founded formalization of how
different action/data languages can be combined with core MSC, but this is a
relatively elaborate scheme not easily conceived by the users. Furthermore the
MSC approach to data is not directly aligned with SDL (representing the more
imperative style of modeling within the same tradition). The connection to SDL
is taken care of through defining the necessary interface functions for SDL as
required by MSC described above. This task is done but still not implemented
in any publicly available tool.

Formally associating data with the lifelines of the interaction is necessary
to produce any formal analysis or model transformation for practical purposes.
In practice both MSC and UML 2.0 tools are adapting programming languages
(such as Java or C) as their action language. The connection with the rest of the
standard language is done ad hoc and not necessarily following the principles of
the standards.

5 Time Concepts

MSC-2000 defines time concepts and mechanisms to define constraints on ab-
solute and relative time related to events. This is also the case in UML, but in
UML time constraints are found not in the section on Interactions, but in the
section on Common Behavior intended to hold for all of UML, not only for the
Interactions.

For the user MSC-2000 and UML 2.0 will appear as close to identical when
it comes to specifying timing constraints.

Some users of UML will want to use a more elaborate time model than
the simple one included with UML 2.0 proper. There is a profile (i.e., exten-
sion) of UML 1.4 called “UML Profile for schedulability, performance and time
specification” that comprises a more comprehensive understanding of time. One
important point is that the simple time model is close to assuming one global
time. There will be an update of that profile to match UML 2.0.

Timers are not included in UML 2.0, but they exist in MSC. In UML 2.0
the user is recommended to use separate lifelines within Interactions to model
timers. This does work reasonably well for Interactions, but there is definitely
the argument that timer is such a common concept that it deserves to become a
concept of the language. This has resulted in that, for instance, the UML Testing
Profile [19] augments UML 2.0 by timers and time zones.

Comparing UML 2.0 Interactions and MSC-2000 77

6 Generics

MSC-2000 has the possibility to parameterize the charts with data, instances,
message types and timers. In UML 2.0 the Interactions are also general Behaviors
that may have normal value parameters corresponding to data parameters of
MSC-2000.

Message types as well as instance parameters must be dealt with in UML 2.0
through the mechanism of template parameters. Lifelines as parameters are not
discussed in UML 2.0.

Timers are not included as separate concepts of the UML language.

7 Formal Semantics

It has been customary to argue that UML has no (formal) semantics. And from
MSC people it has been commonplace to note that MSC does have a formal se-
mantics. Both of these statements are dubious. The practical difference between
UML and MSC regarding formality is not as big as the SDL/MSC community likes
to pretend. The determining interpretations come in both languages from reading
the informal specification and adjusting it to the situation where it is going to be
applied. It is still the case that MSCs / Interactions are used more for illustration
and discussion than formal requirements specification and verification [3].

Historically, in the mid-1990ies there was a lot of exploratory academic work
on MSC [1, 15, 16, 17, 18], while recently academics in general are turning more
towards UML for the same opportunistic reasons as does the industry. We will
probably see contributions in the UML community that corresponds well with
results in the SDL/MSC community in the previous century [6].

Even though the semantics of MSC may be slightly more formally defined
through the early work on MSC-96 [13] and the precision of the Z.120 standard,
than the UML 2.0, the average user will not notice.

8 Discussion

The purpose of this paper was to examine whether there is a need for both MSC
and UML 2.0 Interactions. Should the ITU retire MSC, or should MSC become
a profile of UML 2.0?

The question is clearly not only to be settled on technical grounds. We have seen
no tools yet, neither for the full MSC-2000 nor UML 2.0 Interactions. MSC-2000
has been around for about 4 years, why should there suddenly be a renewed interest
from the tool vendors? Possibly the reason lies in the challenge from UML 2.0?

Technically the following statements summarize the main issues:

1. MSC-2000 is a language in its own right. This is an advantage and a disad-
vantage since MSC on its own is seldom enough.

2. UML 2.0 Interactions are dependent upon other parts of UML 2.0. This
means in principle that if you choose UML 2.0 Interactions over MSC, you

78 Ø. Haugen

will need to take the whole UML 2.0 to go with it. This would in practice
mean also substituting SDL with UML 2.0 in your development process.

3. Assuming that tools existed for both MSC-2000 and UML 2.0, there are few
technical reasons for choosing one before the other provided scenarios are
your only interest.

4. There may be need for UML profiles that focus on extending Interactions
and also making specific choices for the semantic variation points. We have
already the forthcoming UML Testing Profile [19]. A specific MSC profile
of UML 2.0 could add the innovative data mechanism which possibly could
make it easier to handle Interactions formally.

9 Conclusion

MSC-2000 and UML 2.0 Interactions are very similar, which is exactly what was
expected and intended.

Proper tool support and how those tools integrate with SDL and UML 2.0
respectively, will determine which language will survive. There is also the pos-
sibility that the languages will co-exist and cross-pollinate as we have seen SDL
and UML do over the last years.

From a pure market view it seems probable that the next couple of years
will choose a winner. If the UML community can reach real code generation
and machine-supported verification, their market position will make them the
winners. On the other hand if UML users are unable to reach the level of au-
tomatic support that is commonplace in the SDL community, UML will vanish.
Whether new products and languages will take their place or SDL/MSC will
again be fashionable, remains to be seen.

References

1. Baeten, J.C.M. and S. Mauw: Delayed choice: an operator for joining Message
Sequence Charts. FORTE’94, Bern, Switzerland.

2. Damm, W. and D. Harel: LSCs: Breathing Life into Message Sequence Charts.
Third International Conference on Formal Methods for Open Object-Based Dis-
tributed Systems (FMOODS), 1999.

3. Haugen, Ø. Using MSC-92 Effectively in SDL’95 with MSC in CASE. Seventh SDL
Forum, North-Holland, Elsevier, 1995.

4. Haugen, Ø: Converging MSC and UML Sequence Diagrams. Beyond the Standard
UML’99 – The Unified Modeling Language. Fort Collins, USA, 1999.

5. Haugen, Ø., B. Møller-Pedersen, and T. Weigert: Structural Modeling with UML
2.0. L. Lavagno, G. Martin, and B. Selic (Eds.) UML for Real. Kluwer Academic
Publishers, 2003.

6. Haugen, Ø. and K. Stølen: STAIRS - Steps To Analyze Interactions with Refine-
ment Semantics. P. Stevens, J. Whittle, G. Booch (Eds) UML’2003 – Modeling
Languages and Applications. Volume 2863 of Lecture Notes in Computer Science,
Springer, 2003, 388–402.

Comparing UML 2.0 Interactions and MSC-2000 79

7. Haugen, Ø: From MSC-2000 to UML 2.0 - The Future of Sequence Diagrams.
R. Reed, J. Reed (Eds) SDL Forum 2001. Volume 2078 of Lecture Notes in Com-
puter Science, Springer, 2001, 38–51.

8. ITU-T: Z.100 Addendum 1 (10/96). Corrections to Recommendation Z.100,
CCITT Specification and Description Language (SDL), 1996, International
Telecommunication Union, Geneva.

9. ITU-T: Recommendation Z.120 (03/93), Message Sequence Charts (MSC).
E. Rudolph (Ed.), 1993, International Telecommunication Union, Geneva. 36
pages.

10. ITU-T: Recommendation Z.120 (10/96), Message Sequence Charts (MSC).
E. Rudolph (Ed.), 1996, International Telecommunication Union, Geneva. 78
pages.

11. ITU-T: Recommendation Z.120 (11/99), Message Sequence Charts (MSC). Ø. Hau-
gen (Ed.), 1999, International Telecommunication Union, Geneva. 126 pages.

12. ITU-T: Recommendation Z.120 (04/04), Message Sequence Charts (MSC).
C. Jervis (Ed.), 2004, International Telecommunication Union, Geneva.

13. ITU-T: Recommendation Z.120 Annex B (04/98), Formal semantics of message
sequence charts. S. Mauw, et al. (Eds), 1998, International Telecommunication
Union, Geneva. 76 pages.

14. ITU-T: Recommendation Z.121 (02/03), Specification and Description Language
(SDL) data binding to Message Sequence Charts (MSC). 2003, International
Telecommunication Union, Geneva.

15. Mauw, S.: The formalization of Message Sequence Charts. Computer Networks &
ISDN, June 1996, 1643-1659.

16. Mauw, S. and E.A. van der Meulen: Generating tools for Message Sequence Charts.
E.U.o.T. Philips (Ed). Technical Report TD60, ITU-TS SG10 Interims Meeting,
Geneva, Switzerland, 1994.

17. Mauw, S. and M.A. Reniers: An algebraic semantics of Basic Message Sequence
Charts. The Computer Journal, 1994, 37(4).

18. Mauw, S. and M.A. Reniers: Operational Semantics for MSC’96. A. Cavalli and
D. Vincent (Eds) Tutorials of the Eighth SDL Forum (SDL’97), 1997, 135-152.

19. OMG: UML Testing Profile. I. Schieferdecker (Ed.), 2003, Object Management
Group.

20. OMG: Unified Modeling Language 1.4. 2000. Object Management Group.
21. OMG: Unified Modeling Language: Superstructure 2.0. 2003. Object Management

Group.
22. Selic, B., G. Gullekson, and P.T. Ward: Real-Time Object-Oriented Modeling.

Wiley, 1994.

Data Encoding for SDL in ITU-T Rec. Z.104

Rick Reed

Telecommunications Software Engineering Limited,
The Laurels Victoria Road Windermere,

Cumbria LA23 2DL United Kingdom
rickreed@tseng.co.uk

Abstract. When SDL is used for the implementation, different parts of
the system may be implemented by different tools. Data communicated
between different parts needs to be encoded and decoded in the same
way by each part if the information encoded by one part is to be seen as
the same value by another part. The ITU-T Recommendation Z.104 ‘En-
coding of SDL Data’ that is currently being refined for approval, allows
the data encoding to be specified for communication paths or for specific
encoding and decoding expressions. This paper presents the Recommen-
dation in a less formal way than the ITU-T document. The presentation
adds examples illustrating uses. The use of the ASN.1 encoding and text
encoding is shown. One principle of Z.104 is to introduce an implicit data
type that represents all the signals that can be received on a path. The
paper further extends SDL to introduce ways to use implicit data types
associated with interfaces.

Keywords: SDL, Data, Encoding, ASN.1, Text encoding.

1 Introduction

This paper is about the Z.104 [6] Recommendation, which commenced the ITU-T
approval process in July 2004. The SAM 2004 workshop therefore came at an
opportune time to comment on the then current draft, which was being edited
by the author. Feedback from the paper review process and the SAM workshop
itself was valuable in shaping the version submitted to the approval process. This
is therefore a revised version of the paper presented that reflects the feedback
and the submitted Recommendation.

2 The Need for Data Encoding

When SDL [4] is used to implement a system that handles a protocol, there
normally needs be a precise description of how the messages sent and received
should be encoded, so that the bits actually sent in the message are interpreted
as meaning the same abstract value at the sender and the receiver. Without
such a description it is possible that the encoding at one end will be incorrectly

D. Amyot and A.W. Williams (Eds.): SAM 2004, LNCS 3319, pp. 80–95, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Data Encoding for SDL in ITU-T Rec. Z.104 81

decoded at the other end unless both sender and receiver software are generated
using the same tool and implemented on the same kind of platform. Even under
these circumstances the actual encoding may change between versions of the
tool, or variations in the platform.

Of course, it is precisely to overcome these variations that ASN.1 [2] is usually
used, so that the abstract data values can be sent and received using encoding
defined by encoding rules [3]. Alternative mechanisms exist, such as passing
information as text streams, or the use of XML [7] but these still rely on both
sides agreeing the encoding - for example for text it would be safest to stick to the
internationally defined characters with defined encoding as in the International
Reference Alphabet [1]. Whichever choice is taken, at some point encoding has
to be defined. The software will have to make sure the internal representation
of values is transformed to this encoding when information is output and from
this encoding to the internal values when the information is input.

When the encoded data is being passed through a lower layer protocol, the
information is passed to the lower layer rather than a peer entity at the same
level in the hierarchy. In general such a lower layer does not know what the
structure of the information of the higher layer is, so that the data is usually
encoded before it is passed down and the lower layer sees some ubiquitous data
item as a bit or octet or character string. This encoding is (of course) reversed
when the information is passed from the lower layer to a higher layer. If the
higher layer is written in SDL, the encoding needs to be associated with sending
of the message containing the information, and similarly decoding needs to be
associated with receipt of the message at the higher layer. However, there is no
language defined for such encoding and decoding mechanisms in either the SDL
standard [4] or the standard for the use of ASN.1 with SDL [5].

If the lower layer is not implemented in SDL, from an SDL point of view
these peer entities may appear to communicate directly, and no further encoding
or decoding would be needed within the SDL. How communication with the
non-SDL lower layer is effected will have an impact on where in the SDL encoding
and decoding needs to be invoked. If the lower layer is called by a function or
procedure call, the data needs to be encoded/decoded as part of the call. If the
lower layer is called by a signal interface, the encoding/decoding needs to be
part of the OUTPUT and INPUT (respectively). In this case, the two entities
could be shown as in the same SDL system or in separate SDL systems (for
example, in “half call” modelling). If they are shown in the same system, then
this is equivalent to a model where there is no lower layer and two peer entities
communicate directly but there is a requirement that a particular encoding is
used. For example, the channel connecting the two SDL entities could represent
a physical connection on which there is a normative requirement for the encoding
of the protocol data.

Typically ASN.1 is used to specify protocol data units, and the use of SDL
with ASN.1 has become a mature approach for this use both in industry for sys-
tem development as well as within ITU-T and ETSI. This is supported in SDL-
2000 by the combination of ITU-T Recommendations Z.100 [4] and Z.105 [5].

82 R. Reed

When an interface or protocol is designed which carries data using ASN.1, there
can be ASN.1 encoding rules [3] that determine exactly how the information is
encoded. However ASN.1 does not have to be used when SDL is used, and there
are no established standard encoding rules for SDL data.

3 Purpose and Scope of Z.104

The purpose of the ITU-T Recommendation Z.104 [6] with the title ‘Encoding
of SDL data’ is to determine the encoding of data used in SDL descriptions, so
that data values can be communicated between separately implemented pieces
of SDL in an implementation independent way. To achieve this objective, data
can be encoded in a text format or (if and only if the data on the interface is
defined by an ASN.1 CHOICE data type) according to encoding rules defined in
the ITU-T Rec. X.690 series [3]. If the encoding rule is one defined by the X.690
series the result is either a BIT STRING or OCTET STRING.

The restriction to an ASN.1 CHOICE data type for ASN.1 encodings is because
Z.104 is essentially intended for encoding protocol data units. For this reason,
there is a further restriction that the names of the choices shall correspond to
the set of signal names for the signals on a given path and the data items for
the choice be the same as the corresponding signal parameter. When an ASN.1
CHOICE type is used from an ASN.1 module, this can also be used as an implicit
definition of an interface that contains the necessary signals therefore removing
the need for the user to define the signals explicitly.

ASN.1 data types are restricted to sets of values, which in SDL-2000 would
be expressed as a value type definition. There is no mechanism in ASN.1 for
expressing Pid values to reference agents, nor is there a mechanism to express
SDL objects types, that is references to values.

3.1 Object Data Types

Object data types were introduced to SDL in SDL-2000, and are defined by an
object type definition. A definition:

object type Obj3D { struct x, y, z Integer; }
defines the Obj3D data type that references structure values with x, y and z
Integer fields in the referenced values. A variable of type Obj3D does not contain
the structure, but only references it. The main benefit of such types is that the
structure data (which often is larger and more complex than the example) does
not have to be copied from once place to another when an assignment is made,
instead the reference can be assigned to another Obj3D variable which then
references the same data.

However, object data also leads to some complications keeping track of how
many references there are to the data, and creation and deletion of the refer-
enced data items. SDL-2000 is designed so that references can only be exchanged
between two agents if both agents are processes and are both contained within a

Data Encoding for SDL in ITU-T Rec. Z.104 83

common process (which may be one of the two processes). In this case the pro-
cesses never run concurrently and it is safe to share data between the processes.
Otherwise an object data type as a signal parameter, causes the referenced data
to be sent in the signal and a new data object is created to hold the data when
the signal is received.

Because communication of encoded data is only likely to be between agents
that can be concurrent, there is no need for Z.104 to support object data. In any
case, as far as the author is aware, no commercial tools currently support object
data as it is defined in SDL-2000. Moreover, in most SDL models the legacy
newtype syntax is still used to define data types rather than the SDL-2000
value type syntax, and this does not permit object data types to be defined.
For these reasons encoding of object data is not supported by Z.104. In rest of
this paper legacy syntax is used.

3.2 Encoding on Paths

Z.104 focuses on the data communicated by signals. Although it was in the
original study terms of reference to consider the encoding of any data item, a
conclusion of the study was that there is no real need to define the encoding of
data internal to the state machines of agents. Moreover, it is not every signal that
needs its encoding defined: encoding is needed only for signals on communication
paths that are normative, or between parts of a SDL model that are likely to be
implemented separately. The normative paths are most likely to be connected to
the environment of the SDL system, but may also be between parts of the SDL
system. In the latter case, the normative paths would normally be the only way of
passing information between the two parts of the SDL system. Z.104 therefore
defines encoding as a property of communication paths: that is, encoding is
defined for channels and gates.

One objective of encoding is to ensure that messages received on a commu-
nication path can be uniquely decoded. Therefore all the signals carried by the
path have to be encoded. This means that it is a requirement that all the data
types used for parameters of signals on the path are encodable: none of the
parameters should have object data types.

When there is layer to layer communication, the data units received by a higher
layer are often conveyed without change as a data item of the protocol data units of
the lower layer. If the handler for each layer at one end of the protocol is modelled
by a separate SDL agent, the data unit of the higher layer is usually passed to the
lower layer in a signal. In this case, the data unit can be encoded in the higher
layer and passed to the lower layer as a string. This string can then be passed by
the lower layer to the lower layer handler at the other end of the protocol without
change (except possibly encoding and decoding on the actual connection path). At
the receiving end the string is passed back to the higher layer where it is decoded.
To support the use of encoding and decoding in this way, two built-in functions
are provided to encode a data unit and decode a data unit. Like encoding and
decoding for communication paths, these functions are defined only for data types
corresponding to a set of signals attached to a communication path.

84 R. Reed

4 The Extensions to SDL

The proposed standard does not change anything defined by the SDL-2000
standard, but instead adds to the grammar (syntax and semantics) of SDL.
Names for encoding rules are introduced as the elements of an enumerated data
type (see 4.1), communication paths are extended to denote the encoding re-
quired (see 4.2), and the semantics of input and output of signals is extended
to include the encoding (see 4.3). A textual encoding is provided (see 4.4) as
well as encoding based on ASN.1 (see 4.5). The language is extended to allow an
encoded signal to be received as an encoded value (see 4.6), and encoded data
to be output as the corresponding signal (see 4.7). Expressions are provided for
explicit encoding or decoding (see 4.9).

4.1 Encoding Rules Data Type

To be able to refer to encoding rules, a data type is added to the Predefined data
package of SDL. The names for language recognised encoding rules are defined
as:

newtype Encoding
literals text,

BER, CER, DER,
APER, UPER, CAPER, CUPER,
BXER, CXER, EXER;

endnewtype Encoding;

where the set of values denote

text: text encoding rule (see 4.4) and produces a Charstring;
BER: Basic Encoding Rules of ASN.1 and produces an Octetstring;
CER: Canonical Encoding Rules of ASN.1 and produces an Octetstring;
DER: Distinguished Encoding Rules of ASN.1 and produces an Octetstring;

and for each variant of the Packed Encoding Rules of ASN.1 (PER)1

APER: basic Aligned variant of PER and produces an Octetstring;
UPER: basic Unaligned variant of PER and produces an Bitstring;
CAPER: Canonical Aligned variant of PER and produces an Octetstring;
CUPER: Canonical Unaligned variant of PER and produces an Bitstring;

The most common PER variant is assumed to be APER, and for that reason
a synonym is defined in the Predefined data package as follows:

synonym PER Encoding = APER;

4.2 Communication Paths with Encoding

If a channel or gate is to have an encoding rule applied, this is specified after
the gate or channel name as the keyword encode followed by the encoding

1 The name(s) for PER were changed compared to earlier drafts - see section 5.

Data Encoding for SDL in ITU-T Rec. Z.104 85

BLOCK TYPE
Q921_point_to_point

1(2)

Q921_point_to_point_
_procedures

 UserSide:
Q921_point_to_point_
_procedures

 NetworkSide:
Q921_point_to_point_
_procedures

ServiceUser
ENCODE text

 (user_out)

(user_in)

Service_user_in

(user_in)

NetworkUser
 (user_out)

(user_in)

Service_network_in

(user_in)

Service_user_in

Service_user_out
(user_out)

Service_user_out

Service_network_out
(user_out)

Service_user_out Service_user_in

p2p

peer_to_peer_connection
 ENCODE PER

INTERFACE
Peer_to_peer

INTERFACE
Peer_to_peer

p2p Man2p2p

NetworkManagement

(management_out)

(management_in)
nm

um

UserManagement
(management_out)

(management_in)

Man2p2p

Fig. 1. Specifying encoding on paths

rule identifier. In the example based on ITU-T Rec. Q.921 in fig. 1, the gate
ServiceUser has the text encoding rule and the channel peer to peer connection
has the PER encoding rule2.

When a channel is connected to a gate, if they both have encoding rules
these rules must be the same. If only one of them has an encoding rule, this rule
applies to the communication path. The encoding for a communication can be
specified on any channel or gate of the path. Typically encoding will be given
for channels.

If a communication path is bi-directional the same encoding applies in each
direction. To specify different encoding in each direction two paths have to be
specified.

The Q.921 signals for service communication can be defined by:

signallist user in = DL establish req, DL release req,
DL data req, DL unit data req;

signal DL establish req, DL release req,
DL data req(L3PDU), DL unit data req(L3PDU);

signallist user out = DL establish ind, DL establish conf,
DL release ind, DL release conf,
DL data ind, DL unit data ind;

signal DL establish ind, DL establish conf,
DL release ind, DL release conf,
DL data ind(L3PDU), DL unit data ind(L3PDU);

Because encoding is invoked on the gate ServiceUser, there is an implicit
choice data type definition for each direction that corresponds to the signals
defined for the path. For the inward path of ServiceUser using the signals defined
by user in, the implicit data type is (italic used to emphasise it is implied and
not written by the user):

2 ITU-T Rec. Q.921 does not use either ASN.1 or PER encoding. Instead encoding is
specified less formally by text and tables.

86 R. Reed

newtype Implicit Unique Name /*not known by the user*/
choice DL establish req NULL;

DL release req NULL;
DL data req DL data req paramtype;
DL unit data req DL unit data req paramtype;

endnewtype Implicit Unique Name;

where DL data req paramtype and DL unit data req paramtype are implicit data
types with anonymous names defined for the parameters of the corresponding
signals. Such a data type is always a struct even (as in these cases) the signal
has only one parameter. The field names for selecting parameters are 1, 2, 3 etc..
For the user in example, the implicit data types are (italic used to emphasise
they are implied and not written by the user):

newtype DL data req paramtype /*not known by the user*/
struct 1 L3PDU optional;

endnewtype DL data req paramtype;
newtype DL unit data req paramtype /*not known by the user*/

struct 1 L3PDU optional;
endnewtype DL unit data req paramtype;

In the example, the two signals with parameters happen to carry the same
information, but of course this would not normally be the case. All the structure
fields are optional, because it is allowed (though not generally advisable) in SDL
to omit some or all of the the actual parameters of a signal.

The implicit choice introduced above is used in conjunction with encoding
and decoding expressions (see 4.9 below). These implicit types are described in
this part of the paper for two reasons:

1. They are implied whenever encode is specified on a communication path,
even though (as shown below) a user may not need to know they exist;

2. To keep the illustration of the implied definitions near to the associated
definitions for user in that would be given by a user.

4.3 Input and Output Using Encoding

If the intention is merely to ensure that the specified encoding is used on the
communication, the implicit data types are not used, because the encoding and
decoding takes place as part of the input and output of the signals. For ex-
ample, the handling of signals on the gate ServiceUser within the block type
Q921 point point procedures is illustrated in fig.2.

In the block UserSide the information received on gate ServiceUser is to
be decoded from text. The relevant choice data type is given above and it
can be assumed that a text stream received on the gate is a series of encoded
choice values. If the encoding matches the choice for the signal DL establish req,
this signal is decoded and if the process point to point procedures is in the state
1 TEI unassigned the transition shown to 3 establish awaiting TEI will be taken.

Data Encoding for SDL in ITU-T Rec. Z.104 87

PROCESS point_to_point_procedures 2(6)

1_TEI_
_unasigned

DL_establish_
_req from sevice_user_in

MDL_assign_
_ind

3_establish_
_awaiting_TEI

3_establish_
_awaiting_TEI

MDL_error_
_resp

discard_
_iu_queue

DL_release_
_ind to sevice_user_out

1_TEI_
_unasigned

Fig. 2. Input and Output using encoding specified

In the state 3 establish awaiting TEI of process point to point procedures in
block UserSide, when the signal MDL error resp is received the transition shown
is taken and signal DL release ind is output. The signal is encoded as text and
is conveyed to the destination connected to the gate ServiceUser.

Note that coding is not specified for the corresponding input and output in
the block Networkside. This is because (like the channel from which inputs are
received or to which outputs are sent) the encoding rule is dependent on the
context in which a type is used (here block type Q921 point point procedures).

4.4 Text Encoding

The text encoding scheme specified is based on a scheme implemented in the
Telelogic Tau tool. A single signal is encoded as a Charstring enclosed in { and }
braces. The value encoded within these braces corresponds to a choice value for
the implicit data type associated with the communication path. For example,
for the incoming signals on gate ServiceUser the choice data type is defined
above. If the intention is to convey the data as text to another component that
is implemented using the text encoding scheme and the same definition of the
interface between the components, there is no need for the user to know about
the implied data type or the choice data type.

The text encoding rule is defined for Boolean, Character, Charstring (includ-
ing equivalent ASN.1 data types such as IA5String), Integer (including Natural
because it is a syntype based in Integer), Real, Duration, Time, Bit, Bitstring
(denoted BIT STRING in ASN.1) and Octet because it is a syntype based on
Bitstring), Octet and Octetstring (denoted OCTET STRING in ASN.1). The Null
value of the data type NULL is a special case and is simply encoded as a 0 (zero)
character.

The text encoding given for Pid allows six options: ApplicationDefined,
Integer, Octetstring, Bitstring, Charstring and a composite {struct identity
Charstring; instance Natural} option. SDL-2000 also has pid sorts that are sub-
types of Pid and therefore use the same encoding. However, the encoding is not
fully defined for Pid, so it is quite likely that encodings from one tool (or version

88 R. Reed

of a tool) may be incompatible with those from a different tool. It would also be
impractical to pass such values between separately generated systems or across
normative interfaces. For these reasons the use of encoding for pid values should
be avoided.

As well as these basic types defined in the SDL standard, text encoding is
defined for the composite data types String (plus ASN.1 SEQUENCE OF data types
because these map to String), Array, Vector, Powerset and Bag (plus ASN.1 SET
OF data types because these map to Bag).

Finally text encoding is defined for the data type constructors struct (plus
ASN.1 SEQUENCE and SET which both map to struct), choice (plus ASN.1
CHOICE which maps to choice), and enumerated types defined with literals
(plus ASN.1 ENUMERATED which maps to the SDL enumerated types).

Rather than give all the encodings in this paper, an example is given. Assume
that:

syntype L3PDU = Octetstring endsyntype L3PDU;

The encoding of the message for the input primitive DL data req(′12ADCDEF′H)
would be the character string:

{2,{′12ADCDEF′}}
where the whole signal is enclosed in braces. Commas are used to separate values.
White space is ignored. The initial 2 denotes the value belongs to the third choice
(first choice is zero) of the implicit choice data type: that is, in this case the
choice DL data req of the type Implicit Unique Name above. The remainder of
the signal gives actual signal structure value enclosed in another pair of braces
after the comma. In this case there is only one element in the structure, an
Octetstring which is simply encoded as a Character String representing the Octet
string. If the structure has more fields, the values would be separated by commas.
There will always be a pair of braces around signal parameters. If an actual signal
parameter is omitted nothing is encoded. For example:

{2,{}}
represents a DL data req primitive with no actual parameter.

A special case is when the signal has no formal parameter. In this case the
data type is NULL, which has only one value: Null. It therefore makes no dif-
ference if the value is included or not and it is simplest to omit it. For example,
the text encoding below represents a sequence of three DL release req signals:

{1}
{1,}
{1,0}

4.5 Interfaces and Encoding Based on ASN.1

Encoding using ASN.1 defined encoding rules such as PER (packed encoding
rules) can only be used if the set of signals carried by the communication path

Data Encoding for SDL in ITU-T Rec. Z.104 89

that invokes the encoding rule corresponds to an ASN.1 CHOICE definition. To
correspond, the signal names have to be the same as the CHOICE selectors and
data type of the selected choice for a name has to correspond to the signal
parameters for the signal with that name. However, this can be easily achieved
by importing the ASN.1 data type as an interface. In this case an interface of
the same name with the signals equivalent to the CHOICE alternatives is implied.
For example, the package use area

USE Q921ASN1/INTERFACE Peer_to_peer;

attached to the diagram for the system or the block type Q921 point to point,
implies the interface Peer to peer. If the Q921ASN module is defined as:

Q921ASN1
DEFINITIONS AUTOMATIC TAGS ::=

BEGIN
Peer-to-peer ::= CHOICE {

i Information,
rr ReceiveReady,
rnr ReceiveNotReady,
rej Reject,
sabme SetAsynchronousBalancedMode,
dm DisconnectedMode,
ui UnnumberedInfo,
disc Disconnect,
ua UnnumberedAck,
frmr FrameReject,
xid ExchangeIdCode}

- - the data types mentioned above such as Information
- - and ReceiveReady are defined here.
END

the implied SDL interface is (in italic as the user does write this):
interface Peer to peer {

signal i (Information) ,
rr (ReceiveReady) ,
rnr (ReceiveNotReady) ,
rej (Reject) ,
sabme (SetAsynchronousBalancedMode) ,
dm (DisconnectedMode) ,
ui (UnnumberedInfo) ,
disc (Disconnect) ,
ua (UnnumberedAck) ,
frmr (FrameReject) ,
xid (ExchangeIdCode); }

A package use clause that imports an ASN.1 CHOICE data type therefore en-
ables the ASN.1 to be used for signal definitions without writing any further SDL.

90 R. Reed

The ASN.1 CHOICE definition name can then be used as an interface identifier
on a channel to define the set of signals conveyed by the channel in one direction.
In fig.1 Peer to peer is used in both directions on channel peer to peer connection
and the PER encoding rule is associated with the channel.

4.6 Input of an Encoded Message Without Decoding

Instead of automatically decoding messages from communication paths with
encoding, data can be received or stored in a format as if it had been encoded
for a path with encoding. It is allowed to receive the message in a variable
corresponding to the encoding data type: for example, Charstring if the encoding
rule identifier is text, an Octetstring if the identifier is BER, and Bitstring if the
identifier is UPER.

This form is specified by giving in an input the keyword encode then the
name of a variable with the matching sort of data followed by the keyword
as then the communication path the identity of the communication path with
encoding. For example, a variable to hold the Peer to peer messages in encoded
form would be a Octetstring such as:

dcl messagebits Octetstring;

ENCODE messagebits
AS peer_to_peer_connection

Ready

This input handles all the signals that can be received from the specified path,
therefore it is not allowed to mention any of these signals in another save or input
for the same state. The meaning of this construct is defined as first receiving the
signal with decoding and assigning any signal parameters to implicit variables,
then assigning the value of the received variables to the variable given (in this
case messagebits). The definition is given this way so that no extension of the SDL
semantic model was needed. However, it is expected that an implementation will
skip the decoding and use of the intermediate implicit variables and assign the
message directly to the variable with the path based data type. For example,
if the actual message received was i (ivalue) where ivalue is a valid value
expression of type Information, the result would be the same as

messagebits := ENCODE
i(temp) AS

peer_to_peer_connection

 i (temp)

Ready

temp assigned
ivalue

the Octetstring assigned
to messagebits is the
same as the one received
for i(temp)

Data Encoding for SDL in ITU-T Rec. Z.104 91

The meaning of the encode expression is explain in 4.9 below, which also ex-
plains the decode expression, that can be used to extract the signal information
from the string (in this case the Bitstring in messagebits).

4.7 Output of an Encoded Message Without Encoding

One real benefit of not decoding received signals is that they can be output
again without re-encoding3. This is the inverse of the corresponding input except
an expression can be used instead of a variable. The expression has to be of
the appropriate type for the encoding on the communication path: for example
Charstring for text, Octetstring for BER, and Bitstring for UPER. There is a
further constraint that the string if decoded must match one of the valid signals
for output on the path, otherwise an OutOfRange exception is raised. The path
is specified by a via path in the output. For example, to retransmit the message
stored in messagebits the following construct is used

ENCODE messagebits VIA
peer_to_peer_connection

In a similar way to the corresponding input, output with encoding is defined
in terms of first decoding the expression, and then outputting the appropriate
signal. The following declaration and fragment illustrates this using the decode
expression (described in 4.9 below).

dcl peermessage as peer to peer connection;

rr
(peermessage.rr.1)i(peermessage.i.1)

branch according to the
signal from the choice
selection

extract the signal from the
string

peermessage:=DECODE
messagebits AS

peer_to_peer_connection

PresentExtract
(peermessage)

rr
i

Note the peermessage declaration has the data type as peer to peer connection.
This refers to the implicit choice data type for the path (see 2 above). The
decode expression produces a value of this type. Because peermessage is a
choice type, it can store any message format. The PresentExtract(peermessage)

3 For received signals to be re-output without re-encoding the signal list and encoding
for the input and output channel must be the same, otherwise the encodings are (of
necessity) different and re-encoding is essential.

92 R. Reed

expression returns a value that can be used in a decision or a comparison with
the names of the choices: that is, i, rr, rnr, rej, sabme, dm, ui, disc, ua, frmr
and xid in the example. It is therefore possible to selectively branch to different
transition paths. In the above decision fragment, the decision is incomplete and
should have alternatives to output each of the possible signals. In the output of
signal i, the actual parameter value is field 1 of the struct for the choice i of the
peermessage value. The signal is then re-encoded as it is output.

However, it should be emphasised that the above is only an illustration. In
practice the requirement is not to actually decode and re-encode the string, but
will output the string as is after checking that the string is a valid encoding of
a signal for the path.

4.8 Output from a Choice Type

As an alternative to output of a message that is already encoded as a string,
it is also allowed to use an expression that has the implicit choice data type
corresponding to the signals that can be sent on the path. If the path is bi-
directional the data type includes choices for signals for both directions, but a
signal carried both directions has only one choice. Of course, for peer-to-peer
protocols the same signals are usually carried in either direction. In this case
the expression of the choice data type is simply given as the body of the ouput,
for example if peermessage has been assigned a value for a signal, this can be
output by:

(peermessage) VIA
peer_to_peer_connection

4.9 Explicit Encoding and Decoding Expressions

The encode and decode expressions (which are shown above to explain input
and output using encoded strings) can be used within any expression. The im-
plicit choice data type for an encoding path is a useful general data type for
storing messages within the SDL, and could be used to construct messages.

The decode expression allows a string that has been used to store a message
to be converted into the implicit choice data type for an encoding path. It is
therefore possible to receive a generic message, store it as a string, then decode
the string to examine the message details. Coupled with ASN.1 this should be
a major improvement in the way SDL can be used. The pattern for the decode
expression is:

decode matching string expression as path id;

The result of a decode expression is a value of the implicit choice data type
for the path.

Similarly the encode expression allows the string value for an encoded mes-
sage to generated at any point in the SDL. This can be stored and then an output

Data Encoding for SDL in ITU-T Rec. Z.104 93

with encode invoked to send whatever message had been previously stored. The
pattern for the encode expression using a signal identity is:

encode signal id(parameters) as path id;

Alternatively the pattern for for the encode expression using an expression
that corresponds to the implclit choice type is:

encode choice expr as path id;

where choice expr is an expression matching the implicit choice data type for
the path. Note that this avoids the need for decision branches to convert the
choice values into encode strings. The result of a encode expression is a value
of the encoding string data type for the path.

When using the encode and decode expressions, it is possible that no signals
are actually sent on the path that has encoding specified. For example, this path
might represent peer to peer communication at layer 3, whereas the messages are
actually encoded and encapsulated in layer 2 messages. This does not appear to
be a problem for the language, but might cause some warnings from tools that
no signals are being sent on the path.

4.10 User Defined Encoding Rules

The set of encoding rules can be extended by defining a new data type Encoding
that inherits from the Predefined data type Encoding adding a literal for each
user defined encoding rule. The added literal name defines an encoding rule and
can be used in the same way as the names such as text and BER.

However, in this case two procedures have to be supplied for each set of signals
for which the encoding is used: one for encoding and the other for decoding. If
the name of the added literal is myrules for use on the path thegate the procedure
signatures correspond to:

encodemyrules(as thegate) -> Astring;
decodemyrules(Astring) -> as thegate;

where Astring is Charstring, Octetstring or Bitstring
and as thegate is used to denote the implicit choice type.

The actual procedures can be provided as application or tool specific built-in
procedures, external procedures or procedures defined in SDL.

The procedures are called whenever encoding or decoding is required, such as
from an encode or decode expression, or when an input or output takes place
suing a path with the encoding rule.

5 Review Comments and Future Extensions

One objective of this paper for the SAM work shop was to obtain comment
and feedback before the Z.104 is consented for approval. The author thanks the

94 R. Reed

reviewers of the paper for their comments, many of which have been included. For
example, it was noted there are four variants of PER (basic or canonical that
are aligned or unaligned) and neither the original paper nor the contemporary
draft of Z.104 stated which variant should be used. The actual names and most
common variant are now agreed and are consistent with ASN.1 names.

A related issue to the PER variants is whether padding bits are part of the
Bitstring for the encoding. When the result of encoding is an outermost value,
it is required the number of bits in the outermost value is rounded up to a
multiple of eight by adding bits set to zero if necessary. These padding bits are
only needed for an outermost value, and for unaligned PER variants as far as
the SDL Bitstring value is concerned these bits can be ignored and the length
excludes the end padding. The padding bits can be simply added when needed.

One reviewer noted that the SDL Task Force has proposed a similar mech-
anism for the encoding of variables and a tool available supporting this mech-
anism. While there is no specific relationship between these developments, as
Z.104 has been slowly evolving since 2000, it is encouraging that this group has
reached a similar conclusion.

There were a number of comments that the list of encoding rule names should
be extensible. After discussion the scheme outlined above in 4.10 was agreed and
has been included in the standard for approval.

It was pointed out at the SAM-2004 workshop that there needs to be a
mechanism for handling a failure to decode a message. Although at the workshop
this was noted as an item needing attention, in fact this was already included
in the January 2004 version though it had not been mentioned in the paper: a
decode failure raises an InvalidReference exception which can be handled by the
normal SDL exception handling mechanism.

Another issue raised was the use of a number to indicate a choice in the text
encoding rules, rather than the identifier for the choice alternative. The use of
an identifier is certainly a possibility, though usually there is some requirement
for an encoding to be concise and in general a number will be shorter. In SDL
there can be only one definition of the choice type, so the numbers must be
unique. The main purpose of text encoding is to provide a textual form for easier
handling by systems, rather than specifically to make the encoding readable.
The use of a number or an identifier needs to be debated further before Z.104 is
finalised.

It may be a common occurrence that input with encode is used so that the
string can then be decoded and assigned to a variable of the implicit choice data
type for an encoding path. This would probably be useful even if no encoding is
specified for the path. A further extension would be to allow the input encode
variable to have the choice data type and automatically do the conversion.

6 Conclusion

The process of presenting this paper at SAM-2004 was effective both in improv-
ing the quality of the paper and (more important) the standard itself.

Data Encoding for SDL in ITU-T Rec. Z.104 95

The Recommendation consented for approval included only features of data
encoding that had been clearly agreed at standards meetings. Additional lan-
guage features that may be considered essential for effective use of the standard
should be communicated to the author (as Z.104 editor) or to ITU-T Question
N/17 (tsg17qn@itu). However the approval process has already started and it
is expected that the standard will be fully approved by the time this paper is
published.

SDL is already a large language, and it would be undesirable to add features
to the language for which there is no real need. Obviously it would have been
easier to justify the standard if there had been existing tool support from at
least one (preferably more) tool vendor before starting the approval process. The
current situation is that the standard is not supported by any tool. However,
a repesentative of one tool vendor expressed intent to support the standard, so
perhaps tool support will exist in a reasonable amount of time.

References

1. ITU-T: Recommendation T.50 (09/02), International Reference Alphabet (IRA)
(Formerly International Alphabet No. 5 or IA5) - Information technology - 7-bit
coded character set for information interchange. International Telecommunication
Union, Geneva.

2. ITU-T: Recommendations X.680-683, Abstract Syntax Notation One (ASN.1). In-
ternational Telecommunication Union, Geneva.4

3. ITU-T: Recommendations X.690-694, ASN.1 encoding rules. International Telecom-
munication Union, Geneva.4

4. ITU-T: Recommendation Z.100 (08/02), Specification and Description Language
(SDL). International Telecommunication Union, Geneva.4

5. ITU-T: Z.105 (07/03), SDL combined with ASN.1 modules (SDL/ASN.1). Interna-
tional Telecommunication Union, Geneva.4

6. Reed, R.: Encoding of SDL Data. ITU-T Study Group 17 Study Period 2001-
2004, Contribution COM17-C86-E, January 2004. Revised as Delayed Contribution
COM17-D151-E July 2004, and further revised as TD3259 July 2004.

7. http://xml.coverpages.org/xml.html

4 see http://www.itu.int/ITU-T/studygroups/com17/languages/ for ITU-T language
Recommendations in PDF format.

SDL in a Changing World

Edel Sherratt

Department of Computer Science,
University of Wales Aberystwyth,

Penglais, Aberystwyth, Ceredigion SY23 3DB, Wales UK
eds@aber.ac.uk

http://users.aber.ac.uk/eds/

Abstract. SDL has provided robust and adaptable modelling capabili-
ties through many developments in the world of telecommunications. In
recent years, however, that world has undergone deeper and more fre-
quent paradigm shifts than hitherto. This paper briefly summarises the
emergence of grid computing, pervasive computing and mobile and ad-
hoc communications. It explores developments in modelling, as reflected
by the emergence of SDL-2000 as an ITU standard, and the subsequent
publication of UML 2.0. It considers the relationship between SDL and
UML, including establishment of SDL as a UML profile, work by the
MODA-TEL project and the formation of the ETSI specialist task force
250. It concludes with suggestions for specific tasks in the development of
the next revision of SDL. This does not represent any new development
for SDL, nor does it present any new applications of SDL. Rather it fo-
cuses on the forces affecting the evolution of SDL, and the opportunities
to be grasped and challenges to be faced.

1 Introduction

The Specification and Description Language (SDL), together with Message Se-
quence Charts (MSC) and the related ITU-T notations and languages have
provided a robust and adaptable modelling formalism particularly well suited
to specification, design and simulation in the telecommunications domain over
many years. In recent years, however, the development of new forms of telecom-
munications and networking, and the convergence of software engineering with
telecommunications have presented new challenges.

The following sections briefly review some recent trends in communications
and networking, and explore parallel developments in SDL and the related ITU-T
languages, and in UML, specifically focusing on the emergence of SDL 2000 [12]
and UML 2.0 [16].

Following a discussion of directions that SDL might follow, the paper con-
cludes with some suggestions for specific tasks to be addressed in the develop-
ment of the next release of SDL.

D. Amyot and A.W. Williams (Eds.): SAM 2004, LNCS 3319, pp. 96–105, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

SDL in a Changing World 97

2 Recent Trends in Communications and Networking

Recent trends in communications and networking are giving rise to serious chal-
lenges to our capacity to specify and describe the systems we wish to develop.
This section gives a brief overview of three of the most active areas in this
domain: Grid Computing, Ubiquitous and Pervasive Computing, and Ad-hoc
networking. It draws together common themes that arise from these kinds of
communications, and that place specific requirements on specification and mod-
elling formalisms.

2.1 Grid Computing

A computing grid is essentially a pool of resources that can be used as required
by different applications. Grid computing is a highly active area and has led to
the draft specification of an open grid services infrastructure [23], as well as to
numerous activities, including the Welsh e-science centre [24], with its focus on
distributed service oriented computing to support the sciences.

One of the more recent definitions of a grid is given in the form of a check-
list [8]:

A Grid is a system that
1. coordinates resources that are not subject to centralized control,
2. using standard, open, general-purpose protocols and interfaces,
3. to deliver nontrivial qualities of service.

This constitutes a remarkably succinct definition of what telecommunications
has been working towards since the foundation of the CCITT in 1865!

The demand for shared access to resources that are not subject to centralized
control is a key requirement in modelling grid computing. Grid resources are
essentially active elements, which can be accessed as required, and whose usage is
monitored and managed according to a variety of mutually independent policies.

2.2 Ubiquitous and Pervasive Computing

From an early vision [1], ubiquitous and pervasive computing have now become
an everyday reality. We have personal digital assistants, mobile telephones, smart
vehicles, and even devices that respond directly to biosignals [21].

Ubiquitous computing has implications for both cultural [2] and physical en-
vironments. This area is developing rapidly, with an emerging technical emphasis
on Java-based solutions [22, 14].

The modelling and specification requirements for ubiquitous computing in-
clude a need to describe an enormous variety of different kinds of signal, the
possibility to define interworking communities of different kinds of active entity,
and a host of natural-artificial modes of interaction. The ongoing drive towards
greater interworking of disparate devices also means that pervasive computing
entails networking and communications.

98 E. Sherratt

2.3 Ad-Hoc Networks

Ad-hoc networks allow mobile hosts to communicate with each other whenever
they are close enough to do so. The hosts are assumed to have similar transmis-
sion power and computation capacities [11], and can communicate directly, or
through multihop routing.

Modelling demands implied by ad-hoc networks include the need to be able
to simulate and compare different routing strategies. For example, appropriate
simulation can help compare strategies based on a virtual backbone with those
based on a predefined backbone, and strategies that make use of specialized
nodes whose purpose is to maintain a database of node locations with strategies
where the task of maintaining up-to-date routing tables for portions of the ad-
hoc network is distributed across all nodes.

2.4 Common Demands

Bringing together the concepts of grid computing, ad-hoc networks and pervasive
computing leads to communications where

– nodes are not subject to centralized control, and can form networks on an
ad-hoc basis,

– use of standard, open, general-purpose protocols and interfaces is expected,
– many kinds of devices and interaction are to be found, and
– nontrivial qualities of service are required.

Systems like this place specific demands on modelling formalisms. For example,
in addition to the usual need to model at various levels of abstraction, and
according to various views or aspects, it must also be possible to

– model active entities,
– model exchange of signals and data where the communications infrastructure

is itself subject to dynamic reconstruction.

As the next section discusses, the ITU-T languages, including SDL, address
these issues, and they have also been very effectively tackled by the UML.

3 Specification and Description Languages

3.1 The ITU-T Languages

The ITU-T Z-series recommendations cover a range of languages and software
issues for communication systems. As well as the specification and description
language, SDL (recommendation Z.100), the series includes Message Sequence
Charts, MSC (Z.120), the ITU object definition language (Z.130), Testing and
Test Control Notation version 3, TTCN-3 (Z.140, 141, 142), User Requirements
Notation, URN (Z.150), and many others.

Between them, these specifications address current and emerging modelling
needs identified via the ITU working groups.

SDL in a Changing World 99

SDL has evolved from its first version, released in 1976, through a series of
revisions, of which the most recent major revision is SDL 2000 [4, 17], the ITU-T
standard Z.100 [12].

The fundamental concepts of SDL 96 [5] are ‘system’, ‘block’ and ‘process’.
An SDL specification is a structured as a hierarchy of blocks and processes. At
the lowest level, processes are described as communicating state machines, which
can send and receive signals and whose behaviour in response to external signals
is formally defined. Processes are combined into blocks, blocks into higher level
blocks, and at the top level, the whole is combined as a system. The hierarchy is
quite strict – it is not possible to include a process and a block within the same
diagram.

In SDL 2000 [4], the concept of ‘agent’ is introduced, where an agent can be
a system, or a block or a process. An agent may contain variables, procedures,
a state machine and other agents. A block agent can contain process or block
agents [17], while a process agent can only contain process agents. The active
elements (agents and state machine) within a block agent execute concurrently
and asynchronously [17], while active elements in a process are interleaved with
atomicity at the transition level [4].

The capacity to model active elements in this way represents an important
advantage to anyone wishing to model the kinds of network and communications
that are emerging today. SDL 96 has already proved equal to the challenges of
modelling mobile protocols [3], reactive systems [15], and pervasive heteroge-
neous environments [18], and were suitable tool support available, there would
be further benefits to be derived from the facilities of SDL 2000. These would
provide enhanced capacities for describing and specifying independent interact-
ing entities.

SDL 2000 also provides facilities for structuring and abstraction. These in-
clude the concept of type and interface. Types can form inheritance hierarchies.
For example, agent type has subtypes system type, block type and process type.
Types can be abstract, so that they have no instances, but only subtypes. In-
terfaces are used to group signals, remote procedures and variables, and also
exceptions – in fact, any of the information that can be exchanged between
agents [4].

Further features include packages, which form nested libraries of elements
that can be (re)used, and gates, which appear in block type specifications and
model the connectivity required by block instances. This last is highly suitable
for modelling plug-and-play, a fundamental requirement for dynamic networking
environments.

3.2 The UML 2.0 Family of Languages

The Unified Modelling Language (UML) provides a rich array of modelling no-
tations and formalisms for describing object oriented systems. UML is defined
in several layers, with each level providing rules for defining the next more con-
crete level. The most recent set of specifications, define UML 2.0 [16] using a
four-layer metamodel hierarchy.

100 E. Sherratt

The most concrete level, M0, contains run-time instances of the model ele-
ments used by an engineer to specify and describe a system being designed.

Level M1 defines the classes or types of model elements used in a model. For
example, level M1 might contain class definitions that act as templates for level
M0 run-time instances. These definitions are defined by an engineer in order to
specify a system under design. They define how their instances will be created
and destroyed, and how their instances will behave, and it is in this sense that
level M1 acts as a metamodel for level M0.

Level M2 includes the rules for creating models using the UML 2 constructs.
Level M2 provides the rules for creating the different kinds of diagrams used to
define level M1 classes or types, and so acts as a metamodel for M1.

Level M3 provides rules for level M2 rules. It can be thought of as a meta-
model for a metamodel – that is, a meta-metamodel. The Meta Object Facility
of UML (MOF) is an example of a level M3 meta-metamodel.

The primary purpose of this layering is to allow the creation of families
of languages that can be used together. For example, the Object Constraint
Language (OCL) has now been removed from the UML core, and has been
redefined as a ‘cousin’ of UML that can be used with UML specifications.

3.3 Dynamic Modelling with UML 2.0

The engineer using UML is primarily concerned with the kinds of diagrams that
need to be drawn to specify a system, and the ways that diagrams are organised
into views, each providing a different abstraction of the system under design.
There are many different kinds of diagram in UML, of which the most widely
used are use-case diagrams and static diagrams illustrating the relationships
between interfaces and classes. However, in the current context, the facilities
provided by UML 2.0 for real-time modelling are of most interest.

These include activity diagrams, which have been redeveloped in UML 2.0 to
model dynamic behaviour using a semantics based on Petri Nets. Active classes
and objects can also be modelled, and behavioural state machines and protocol
state machines respectively provide the means to model the complex life cycle of
an object and the environment in which the active entity resides together with
the interfaces to that environment.

The facilities for dynamic modelling in UML 2.0 are derived from ROOM [20]
(Real-Time Object Oriented Modelling) and are also heavily influenced by Harel
state charts, which came to UML via Rumbaugh’s Object Management Tech-
nique (OMT) and, more recently, by SDL.

3.4 SDL and UML

Recent years have seen the convergence of SDL and UML. In particular, the ITU-
T recommendation Z.109 [13] provides a profile that maps UML 1.5 directly to
SDL, and enables the integrated use of UML and SDL.

A further real-time profile, compatible with the OMG Profile for Performance
Scheduling and Real-time, was also developed by the IST project OMEGA, and
adapted to SDL [10].

SDL in a Changing World 101

The Moda-Tel Project (IST-2001-37785) [9], has also reviewed a broad set of
ITU-T languages in the light of the OMG Model Driven Architecture (MDA).

A UML 2.0 profile for communication systems is also currently under devel-
opment by the ETSI Specialist Task Force 250 [7]. The intention is that this
profile will be based on, but not limited to SDL, and will be of interest to users
of SDL, MSC and UML.

The release of UML 2.0 has implications for the positioning of SDL with
respect to UML. In particular, because UML is no longer specified in terms of
UML, but in terms of the more abstract MOF, it is now possible to extend the
UML either by using stereotypes 1, which can be collected into a profile, or by
creating a new instance of the MOF [6].

Extending UML by means of the profiles mechanism provides a clear route
from the newly defined stereotypes back to the underlying metamodel. It is
a relatively lightweight approach to extension that facilitates development of
variants of UML.

Extending by means of the MOF results in a first class extension – a new
member of the UML family of languages. This allows the developers of the
modelling language to focus more clearly on issues of concern in that language.
For example, OCL is clearly focused on constraints, and is not sidetracked into
other modelling issues addressed by UML.

The decision to remain with the profiling approach, updating it to reflect
changes in UML, or to move to a full blown MOF extension is not obvious in
the case of SDL and the other ITU-T languages. Because there is a clear over-
lap between the issues addressed by the ITU-T languages and those addressed
by UML, profiling represents a convenient way to specialize UML for use by
developers who want or need to use SDL and its related ITU-T languages.

However, that same overlap means that one could legitimately ask why the
specialization is needed in the first place. One form of the argument centers
on the desirability of conformance with the OMG recommendation that mod-
els intended for use in conjunction with the model driven architecture should
conform to the UML core, as opposed to the desirability of conformance with
ITU-T standards for languages.

Although this argument would not be resolved by development of a first class
MOF extension for the ITU-T languages, such an extension would certainly make
the ITU-T languages more visible to the UML user community, and would clarify
the advantages of the ITU-T standardisation processes.

4 Specifying and Modelling New Kinds of
Communications

However, the real strengths of the SDL family will become most apparent when
the advantages of these languages for tackling current challenges in telecom-

1 A stereotype extends an existing element of UML. For example, the UML metamodel
can be extended by extending a metaclass to produce a more specialized metaclass.

102 E. Sherratt

munications become apparent. In particular, their benefits for modelling loose
collaborations of active elements that form ad-hoc networks in a pervasive way
must be brought forward.

Both SDL 2000 and UML 2.0 provide facilities for specifying active entities,
but both, at least implicitly, assume a static physical implementation environ-
ment.

This can be overcome by modelling the environment itself as an active entity,
although that is arguably counterintuitive, and certainly goes against the implied
philosophy of the UML 2.0 deployment diagrams.

However, SDL 2000 and the other ITU-T languages, have two major advan-
tages when it comes to modelling new kinds of communications:
– they are primarily designed for the communications domain, and
– they are directly influenced by work of the ITU study groups.

5 Directions for SDL

SDL is currently due for a major revision, and it is important that this revision
takes account of external developments as well as of the more introspective desire
to perfect SDL as a modelling language.

External factors to be taken into account include:

– the emergence and growth of new kinds of communications devices and net-
works,

– the release of UML 2.0, and the position of SDL in the UML family of
languages.

Regarding new kinds of communications, the work of the ITU study groups
must be taken into account. Particular attention needs to be given to the work
of study groups 11 (protocols) and 13 (multi-protocol and IP), the special study
group (SSG) whose area of concern is International Mobile Telecommunications
(IMT) and, of course group 17, the study group that deals with the ITU-T family
of languages.

Regarding UML 2.0, the implications of the emerging profile [7] for SDL
should be taken into account. It will also be important to consider and debate the
desirability or otherwise of creating a first-class instance of the MOF to define
SDL and its related languages as a fully distinct set of modelling formalisms
related to UML.

Internal factors affecting the directions for SDL include:

– economical disincentives and technical challenges that discouraged tool de-
velopers from providing full support for SDL 2000,

– current work on identifying the simplest useful subset of SDL [19].

Following the release of SDL 2000, it became clear that this was a challenging
language to support. This led to the formation of the SDL Task Force, whose chief
aim was to identify the simplest useful subset of SDL. One question we should
ask is whether or not this subset should form an SDL core, whose extensions

SDL in a Changing World 103

constitute full SDL. This is not a trivial issue, since it is not clear at present
whether or not the constructs in the proposed subset will in fact have a semantic
definition compatible with full SDL.

This technical challenge was exacerbated by developments in the tool vendors
market, which effectively removed the incentives to develop support for SDL
2000.

UML 2.0 is also a large and complex family of notations, and it is possible that
the technical challenge of developing tools to support UML 2.0 will likewise prove
too great. However the syntactic definitions required for tool interoperability
have been put in place, and this should facilitate the development of tools.

Moreover, UML has a high visibility, and a very large community, which will
tend to encourage efforts to overcome any challenges posed by the notations.

6 Conclusion

Overall, SDL has proved equal to meeting the challenges posed by developments
in telecommunications and other areas involving networks and distribution over
many years, and it possesses great strengths derived from the structured way in
which its evolution is agreed amongst interested parties.

Nonetheless, complacency is not appropriate, as UML now has sufficient for-
mality to present a real challenge in the world of modelling and specification,
and it also has a large and diverse user base.

Various forces are affecting the whole area of specification and modelling,
and should be taken into account during the coming revision of SDL. Some
suggestions for specific activities in this work are indicated below.

1. Develop exemplars involving grid computing, pervasive computing and ad-
hoc networking for use in evaluating new SDL revisions.

2. Review the output ITU study groups, with particular attention to groups
leading work in protocols, mobility and other emerging areas.

3. Evaluate the relative merits of representing SDL and the related ITU-T
languages as a UML profile as opposed to deriving a new MOF instance to
represent them. This is a substantial and important undertaking.

4. Look into the possibility of defining a kernel SDL, analogous to the UML
core, which comprises the smallest useful subset of SDL, together with anal-
ogous subsets of the other ITU languages.

5. Conduct a serious market study between potential tool users and tool ven-
dors to develop feasible proposals for real tools to support the next version
of SDL.

These represent a formidable and challenging set of tasks, but they also rep-
resent a fine opportunity to retain the position of SDL, MSC and the related
ITU-T languages as the premier specification, description, modelling and simu-
lation formalisms for many years to come.

104 E. Sherratt

References

1. Abowd, G. D., Mynatt, E. D.: Charting Past, Present and Future Research in
Ubiquitous Computing. ACM Transactions on Computer-Human Interaction, vol.
7, no. 1, March 2000, 29–58.

2. Benford, S., Davies, N., Gaver, B.: Art, Design, and Entertainment in Pervasive
Environments. Guest Editors’ Introduction, Pervasive Computing, IEEE (2004).

3. Colás, J., Pérez, J. M., Poncela, J., Entrembasaguas, J. T.: Implementation
of UMTS Protocol Layers for the Radio Access Interface. Edel Sherratt (Ed.)
Telecommunications and Beyond: The Broader Applicability of SDL and MSC.
Volume 2599 of Lecture Notes in Computer Science, Springer (2003), 74–89.

4. Doldi, L.: SDL Illustrated: Visually design executable models. Laurent Doldi 2001,
ISBN 2-9516600-0-6, available through the SDL forum society or directly from the
author.

5. Ellsberger, J., Hogrefe, D., Sarma, A.: SDL: Formal Object-oriented Language for
Communicating Systems. Prentice Hall (1997).

6. Eriksson, H.-E., Penker, M., Lyons, B., Fado, D.: UML 2 Toolkit. Wiley Publishing
Inc., Indianapolis, Indiana, OMG Press (2004).

7. ETSI Specialist Task Force 250: Methods for Testing and Specification (MTS);
UML 2.0 profile for communication systems. Technical Report DTR/MTS-00085
to appear at http://portal.etsi.org/stfs/mts/STF250.asp

8. Foster, I.: What is the Grid? A three point checklist. GRIDToday, July 20, 2002,
available at http://www.globus.org/research/papers.html

9. Gavras, A. (Ed.): Considerations on telecom modelling languages. MODA-TEL
project IST-2001-37785, Deliverable D3.add2, Moda-Tel consortium (2003).

10. Graf, S., Ober, I.: A Real-Time Profile for UML and How to Adapt It to SDL,
R. Reed, J. Reed (Eds.) SDL 2003: System Design, Volume 2708 of Lecture Notes
in Computer Science, Springer (2003) 55–76.

11. Haas, Z. J., Liang, B.: Ad Hoc Mobility Management with Uniform Quorum Sys-
tems, IEEE/ACM Transactions on Networking, vol. 7, no. 2, April 1999.

12. ITU-T: Recommendation Z.100 (08/02), Specification and Description Language
(SDL), International Telecommunication Union, Geneva (2002).

13. ITU-T: Recommendation Z.109 (11/99), SDL combined with UML. International
Telecommunication Union, Geneva (1999).

14. JSLEE and the Jain Initiative Web pages. http://java.sun.com/products/jain
15. Metzger, A., Queins, S.: Model-based Generation of SDL Specifications for the

Early Prototyping of Reactive Systems. Edel Sherratt (Ed.) Telecommunications
and Beyond: The Broader Applicability of SDL and MSC. Volume 2599 of Lecture
Notes in Computer Science, Springer (2003), 158–169.

16. OMG: UML 2 working documents (2004), available from
http://www.omg.org/technology/documents/modeling spec catalog.htm#UML

17. Reed, R.: SDL 2000 for New Millenium Systems. Free for download at
http://www.itu.int/itudoc/itu-t/com17/tutorial/78255.html

18. Schaible, P., Gotzhein, R.: Development of Distributed Systems with SDL by
Means of Formalized APIs. R. Reed, J. Reed (Eds.) SDL 2003: System Design,
Volume 2708 of Lecture Notes in Computer Science, Springer (2003) 317-334.

19. SDL Task Force: SDL’03 Task Force Enhanced Subset of SDL (draft).
http://www.sdl-task-force.org/library.htm

20. Selic, B., Gullekson, G., Ward, P.: Real-Time Object-Oriented Modelling. Wiley
and Sons, New York USA (1994).

SDL in a Changing World 105

21. Stanford, V.: Biosignals Offer Potential for Direct Interfaces and Health Moni-
toring. Editor’s Introduction, Pervasive Computing: Applications, IEEE, January-
March 2004.

22. Tsuei, T.-G., Sung, C.-T.: Ubiquitous Information Services with JAIN Platform.
Mobile Networks and Applications, 8, 655-662, Kluwer (2003).

23. Tuecke, S., Czajkowski, K., Foster, I., Frey, J., Graham, S., Kesselman, C., Maguire,
T., Sandholm, T., Vanderbilt, P., Snelling, D. (Eds.): Open Grid Services In-
frastructure (OGSI) Version 1.0. Global Grid Forum Draft Recommendation,
6/27/2003.

24. Welsh e-Science Centre/Canolfan e-Wyddoniaeth Cymru: http://www.wesc.ac.uk/

Early Validation of Deployment and Scheduling
Constraints for MSC Specifications

Ferhat Khendek, Christophe Lohr, Li Xin Wang, Xiao Jun Zhang, and
Tong Zheng

ECE Department - Concordia University,
1455, de Maisonneuve W., Montreal (QC), Canada H3G 1M8

{khendek, lohr, lxwang, xjzhang, zhengt}@ece.concordia.ca

Abstract. Message Sequence Charts are widely used for the specifi-
cation of functional requirements, including timing requirements. These
requirements can be validated and used as input for the design stage, and
subsequent phases. Deployment constraints are generally taken into ac-
count at the implementation stage only. These constraints may conflict
and invalidate some of the functional/behavioral requirements already
validated at a high level of abstraction in the requirement phase. In this
paper, we propose to take into account some deployment constraints at
the very early stage of development and check if the system functional
requirements will not be impossible to meet at later stages when con-
straints like communication channel delays, process assignment to CPUs,
and scheduling policies are taken into account.

1 Introduction

Messages Sequence Charts (MSC) [11] are widely used for the specification of
functional/behavioral requirements in terms of scenarios. The MSC specification
of a target system is usually used as input to design, which can be automatically
generated from the MSCs or validated against the MSCs. The design specifica-
tion generally given in SDL [12] or other design languages is used as input for
generating the target system code, either manually or using commercial code
generators. The deployment constraints of the target system are usually taken
into account at a very late stage of the development process, i.e., low level
design or implementation. These constraints may invalidate and conflicts with
functional requirements, such as timing requirements. In this paper, we look at
the problem of validating functional requirements while taking into account very
early certain deployment constraints, such as communication channel delays and
scheduling policies. The work presented in this paper builds on previous contri-
butions [22] and tackles the issue of deployment constraints. In other words, our
goal is to validate the MSC while taking into account more constraints than the
usual functional/timing requirements.

For a quick illustration purpose, let us consider, for instance, the example
in Fig.1. Part (a) of the figure describes functional requirements, while part

D. Amyot and A.W. Williams (Eds.): SAM 2004, LNCS 3319, pp. 106–121, 2005.
Springer-Verlag Berlin Heidelberg 2005

Early Validation of Deployment and Scheduling Constraints 107

k

h

g[4,6]

l

j

c

o

n

h

x

ym

[4,7]

e

d[2,5]

b

[1,11]

[2,4]
[0,3]

i

p

a

f

z

t

– i and j assigned to CPU1
– k assigned to CPU2
– Maximum channel delay between

CPU1 and CPU2: 3
– Maximum channel delay inside

CPU1&2: 1

Fig. 1. (a) Functional requirements and (b) Sample deployment constraints

(b) states certain deployment constraints. One may notice the extension to the
action box with time constraints, which intuitively mean a time duration for the
action box. This can also be interpreted as a delay between the first action and
the last action in the box. This extension is not the main purpose of this work
and will be discussed briefly later on. Functional requirements specified by the
MSC in Fig.1a can be checked for consistency using the approach introduced in
[22] for instance. This MSC is (logically) consistent. The next question that can
be asked is: Can these functional requirements still be satisfied by a system in
the context of the deployment constraints given in Fig.1b?

As we can see, one deployment constraint assigns instances i and j to the
same CPU. Therefore, action box c (with time constraint [2, 4]) and action box
d (with time constraint [2, 5]) have to be executed in a sequence. The first ac-
tion box requires a minimum of 2 units of time; the other one also requires a
minimum of 2. Assuming we cannot interrupt action box execution, a minimum
of 4 units of time is needed for the execution of both action boxes in sequence.
However, the constraint [0, 3] in the instance i between the sending of message
x and reception of message m requires that both action boxes are executed
within a maximum of 3 units of time. The MSC is not anymore consistent when
these deployment constraints are taken into account. We also say the functional
requirements cannot be met under the stated deployment constraints.

Our goal in this paper is to answer the aforementioned question. We proceed
in a stepwise manner. For a given MSC specification, we first check the (logical)
consistency of time constraints in the MSC as introduced in [22]. This is a high
level validation assuming processes will have all the resources they need for their
execution, communication channels are instantaneous, etc. In the second step, for
a (logically) consistent MSC, we take into account the communication channel
delays and check the consistency of the functional requirements in light of these
delays. In the third step of the approach, we assign processes instances to CPUs
for execution and check for the feasibility of such an assignment with respect to

108 F. Khendek et al.

the functional requirements. For a given number of process instances assigned to
a CPU, the previous step gives, whenever feasible, a schedule. This schedule does
not take into account any scheduling policy, which we integrate in the last phase
of our approach where an explicit scheduling algorithm is taken into account.

The paper is organized as follows. Our approach for checking the consis-
tency of timed MSCs is briefly reviewed in Section 2. Section 3 discusses the
handling of communication channel delays. Section 4 presents an algorithm for
finding, whenever possible, a schedule when two or more processes are assigned
to the same CPU, without following any specific scheduling algorithm. Section 5
presents early results for finding, whenever possible, a schedule for a predefined
scheduling policy. Section 6 discusses briefly related work. We conclude our work
in the last section.

2 Consistency of Timed MSCs

Zheng, in his thesis [22], addresses the validation of timed MSC specifications
with absolute and relative time constraints for the description of quantified tim-
ing requirements. The validation is necessary to ensure that an MSC specification
does not contain semantic errors, such as timing conflicts and inconsistencies
caused by time constraints. Intuitively, an MSC is consistent if all its events
could be executed with the satisfaction of their time constraints and causal or-
ders. Algorithms have been designed for checking the consistency.

2.1 MSC Action Box with Time Constraints

MSC defines action boxes. Action boxes are drawn as rectangles along instances
(see Fig.2). Action boxes may contain formal or informal actions. Our extension
allows for expressing durations of action boxes. An action box has a starting
event and an ending event. A time constraint between these two events expresses
a duration of the action box. It can also be seen as relative time constraint
between the starting event and the ending one. This second interpretation will
allow for reusing the algorithms in [22] without modifications.

Informal description
of executed action[5,10]

Fig. 2. Action box with a time constraint

We still assume reception or sending events are instantaneous, i.e., do not
consume time. In this paper, we also assume that action boxes cannot be pre-
empted, i.e., every action box is executed from the starting event to the ending
event without any interruption.

Early Validation of Deployment and Scheduling Constraints 109

2.2 Checking Time Consistency

Here we briefly review the algorithm for checking time consistency [22] of a basic
MSC (bMSC).

Event Order Table. Partial orders described by an MSC may be represented
as an event order table. Such a table is indexed by the events of the MSC and
contains the information about event precedence. For instance if event a precedes
event b, the cell indexed by a and b will be set to True (T). Of course when this
specific cell is set to T , the cell indexed by b and a will be set to False (F).

First the table is filled with the explicit precedences such as precedence be-
tween sending and a reception of a message, and for events along an instance as
shown in Fig.3b. Then, the transitive closure is determined as shown in Fig.3c.
Because an MSC defines a partial order, some entries remain with no value.
Notice that the transitive closure will detect inconsistencies. MSC depicted in
Fig.3d for instance is inconsistent.

i

a

c

e

j

b

d

f

x

y

z

(a)

↗ a b c d e f
a T T
b F T
c F T T
d F F T
e F T
f F F

(b)
↗ a b c d e f
a T T T T T
b F ? T ? T
c F ? T T T
d F F F ? T
e F ? F ? T
f F F F F F

(c)

i

c

a

j

b

d
x y

(d)

↗ a b c d
a T
b T
c T
d T

(e)

↗ a b c d
a ? T T
b ? T T
c T T T
d T T T

(f)

Fig. 3. Event order table and transitive closure

Distance Graph and Reduced Absolute Time Constraint. Deciding if
an MSC is time consistent is equivalent to solving the simple temporal problem
in distance graph [8]. A bMSC can be seen as a distance graph, where events
are represented by nodes and causal orders between events are represented by
directed edges labeled by relative time constraints between events. If a precedes
b there exists an edge a → b labeled by the upper bound of the time constraint
between a and b, and another one is b → a labeled by the negative of the lower
bound of the time constraint. A special event (node) e0 is added to the graph;
it occurs causally before all other events, and it occurs at time zero. So absolute
time constraints can be translated as relative time constraints between events
and e0.

An MSC and its corresponding distance graph are shown in Fig.4.
The simple temporal problem is to decide if each node can be assigned to

a value such that the time constraints between nodes are all satisfied. If such

110 F. Khendek et al.

a
m

i j

@[5,10]

@[6,8]
b

[1,2]

a b

e0

8
−6−5

2

−1

10

(a) (b)

Fig. 4. An MSC and its corresponding distance graph

assignments exist, the associated MSC is consistent. As discussed in [8], the
consistency can be decided by using the Floyd-Warshall algorithm to compute
all pairs of shortest paths in a corresponding distance graph. If there are no
cycles with a negative cost in the distance graph, then the MSC is consistent.
If an MSC is consistent, a unique interval for each node e can be obtained, in
which each value can be an assignment to e such that the graph is consistent.
Such an interval is defined as a reduced absolute time constraint.

For instance, events of example in Fig.4 have for reduced absolute time con-
straint: a@[5, 7], b@[6, 8].

3 Communication Channel Delay Constraints

At the deployment stage, the low level design has to be mapped into a real
architecture. Communicating instances, assigned to CPUs, exchange messages
through physical communication channels. These communications channels in-
troduce delays. Therefore, it is important to know very early if those delays will
not invalidate the functional properties already checked.

A communication channel delay is generally given as an interval, with a
minimum and a maximum delay. The minimum being always smaller than the
maximum delay, therefore we only have to worry about the later in our approach.
Therefore, a communication channel is always characterized by its maximum
delay in the rest of this paper.

As mentioned earlier, at this stage we assume we checked the functional re-
quirements as discussed in Sec.2. The distance graph produced in Sec.2 contains
shortest paths, and therefore gives relative time values [m,M] on edges from
send(i,j,x) to receive(i,j,x) events, for all instances i and j and for all messages
x. Therefore, we only have to check if a channel delay D related to instances i
and j is lower or equal to M . If not, then the MSC cannot be deployed with such
a communication delay because functional requirements will not be satisfied.

For instance, the MSC in Fig.5 states that relative constraint between the
sending of message m and its reception is [1, 2] units of time, which means
that message m should be delivered to instance j within [1, 2] unit of time

Early Validation of Deployment and Scheduling Constraints 111

a
m

i j

@[5,10]

@[6,8]
b

[1,2]
[D:1]

Channel delay
D = 1

Fig. 5. Channel delay constraint

after its sending. Consistency of this MSC has been checked previously, and
corresponding distance graph is given in Fig.4b. Assume the communication
channel between instances i and j may take a maximum of 1 unit of time to
convey the message. In this case, the functional requirements are still satisfied.
However, if the communication channel can take up to 3 units of time, the
functional requirements are not satisfied anymore.

The algorithm 1, given below, checks again the functional requirements taking
into account the communication channel delays. It proceeds as follows: relative
time constraints between sending and receiving events of each message are the
shortest paths in the distance graph as computed in Sec.2. The upper bound is
then compared to the corresponding communication channel delay.

Algorithm 1.
Let E be the set of directed constraint graph edges.
For each edge {send(i, j, x), receive(i, j, x), [m,M]} ∈ E loop

If D > M then
Abort(“System not deployable!”)

End if
End loop

4 Processes Distribution

At deployment stage, processes (or instances) of a bMSC are assigned to CPUs.
Also, instances located on one given CPU have to share the CPU resources,
and are not anymore running in true concurrency. This may have an impact on
the functional requirements. Some functional time constraints may be violated,
depending on the order chosen to run instances/events by the CPU. To check
this, we have to try all possible serializations of events/actions/instances running
on the same CPU. Serializing events means adding new order between unordered
events of a bMSC (just a part of a bMSC) that respects specified orders. Once all
events running on a CPU are totally ordered (e.g., serialized), we have again to
check the time consistency of this order using the algorithm presented in Sec.2.2.
For one CPU (and a set of instances assigned to this CPU), we have to explore

112 F. Khendek et al.

ji k

a

c

b@[3,5]

d@[2,10]y

z

x

f@[12,14]

l

CPU1 CPU2

@[1,2]

@[2,3]

e
@[12,14]

Fig. 6. Instances distribution and events serialization

all the possible serializations. If there exists at least one consistent serialization,
we say the set of instances assigned to this CPU is schedulable in this CPU and
we have a schedule of their events/actions. If we have the same for all the CPUs,
then we say the functional requirements can still be satisfied in the given CPU
assignment.

Let us consider the example in Fig.6, where instances i, j and k are assigned
to CPU1 and instance l assigned to CPU2. CPU1 has to execute {a, b, c, d, e}
events one after another. Following the existing order, event b can run before
or after c, and event b can run before or after d. According to time constraints,
event b should run after c. To give a formal answer, we have to build every
possible serialization of events and check its consistency.

In this section we propose an algorithm to build possible serializations of
events. The idea of this algorithm is to try to fill “undetermined” entries in
the event order table, i.e., replace ′?′ symbols by True or False (and replace
their symmetrical entries by False or True). Events are totally ordered when
corresponding rows and columns do not contain any “undetermined” entry. In-
tuitively, Algorithm 2 given below, works as follows:

1. First, find from the beginning to the end of the table each undetermined
ordered pair of events belonging to the CPU under consideration, and replace
it with “True/False” and “False/True”.

2. Then, calculate the partial order transitive closure to create a new event
order table according to the changed condition.

3. Last, if the new event order table has no undetermined orders, then the new
event order table is transferred into distance graph, and the Floyd-Warshall
algorithm is used to check time consistency; or else, recursively call itself
until there is no any undecided ordered event.

Developers have to decide for the CPU assignment. One might also specify
communication channel delays inside and between CPUs. The information may
be provided as follows:

Early Validation of Deployment and Scheduling Constraints 113

– Let P be the set of available CPUs.
– Let I be the set of bMSC instances (or processes).
– Let Φ : I → P be the instance distribution function that associate a CPU

for each instance.
– Let D be the time domain.
– Let Δ : P × P → D be the function that gives maximum channel delays

between each pair of CPUs.
– Let δ : P → D be the function that gives maximum channel delays inside

each CPU.

Algorithm 2.
Let N be the maximum event number.
Let A[N][N] be the event order table.
Let C be the considered CPU.
Procedure TFReplacement(A,N,C) is

For all i ∈ {0 . . . N} loop
For all j ∈ {0 . . . N} loop

If A[i][j] ==′?′ and Φ(i) == C and Φ(j) == C then
Let B = A /* a copy of the event order table */
A[i][j] = ’T’ /* Let’s try a first replacement */
A[j][i] = ’F’
If TransitiveClosureSucced(A,N) then

If TotalyOrdered(A,N,C) then
CheckMSCConsistence(A,N)

Else
recall TFReplacement(A,N,C)

Else /* Let’s try the second replacement */
B[i][j] = ’F’
A[j][i] = ’T’
If TransitiveClosureSucced(B,N) then

If TotalyOrdered(B,N,C) then
CheckMSCConsistence(B,N)

Else
recall TFReplacement(B,N,C)

Else
Exit /* Terminate recursion */

End if
End if

End if
End loop

End loop
End procedure

This algorithm exhibits all consistent serializations of events running on a
given CPU. A serialization takes the form of a lists of events with theirs reduced
absolute time constraints as described in Sec.2.2. If no serialization exists, then
MSC is not deployable with the given constraints.

114 F. Khendek et al.

↗ a b c d e f
a T T T T T
b F ? ? ? ?
c F ? T T T
d F ? F F T
e F ? F F T

f F ? F F F

Serializations:
a@[1,2] c@[2,3] b@[3,5] d@[4,10] e@[12,14]
a@[1,2] c@[2,3] d@[3,4] b@[4,5] e@[12,14]

(a) (b)

Fig. 7. Serialization example

For an illustration purpose, Fig.7a shows the event order table correspond-
ing to the MSC in Fig.6. After 4 iterations the algorithm exhibits 2 consistent
serializations in Fig.7b.

Complexity Estimation. Serializing partial orders of MSCs may lead into a com-
binatorial explosion. These issues has been investigated and discussed in [1, 2, 15]
for instance, for model-checking MSCs. Except for some specific cases like weak
“realizability” defined in [3], this problem has a non-polynomial complexity.

In the best case, all pairs are ordered. To traverse all the cells, we have n2

steps. Therefore, the lower bound is O(n2).
In the worst case, when the n events are unordered, there are n2

2 pairs of
unordered events. (Because O(n2) is bigger than O(n), we omit n in the n2 − n
corresponding to withdrawn matrix diagonal.) The true/false replacement algo-
rithm stated above tries two values for each pair of unordered events. In the
worst case there are 2

n2
2 combinations. Therefore, the upper bound of the worst

case is O(2n2
).

Because log(nn) = n log(n), then log 2
n2
2 = n2

2 log 2. Moreover, n log(n) <
n2

2 log 2 when n � 1. Therefore, nn < 2
n2
2 . And finally, O(nn) < O(2n2

).
So, the algorithm has a non-polynomial complexity. However, in the average

case, transitive closure operation (which is done in O(n2)) drastically divides the
number of remaining unordered events pairs to be checked. This number is the
exponential factor in the above formula (2n2

) and it impacts the most on the
algorithm efficiency. This is why in practice Algorithm 2 is rather efficient.

5 Scheduling Policy

In the previous section we have seen how we can come out with a schedule,
whenever possible, of the events when the instances are assigned to CPUs. This
schedule does not take into account any pre-defined scheduling policy. This is
what we are proposing to take into account in this section. A scheduling policy
defines the rules for sharing the CPUs between the competing instances. This
could be a simple Round-Robin scheduling policy, or scheduling with priorities,
preemptive or non-preemptive, etc. [10].

For instance, let us consider the MSC in Fig.6, and events running on CPU1.
The consistency of this MSC was checked and we obtained the event reduced

Early Validation of Deployment and Scheduling Constraints 115

S1

S2

S3

t mod 6 = 2

t mod 6 = 0

t mod 6 = 4t:=0
S0 9 10 11 12 13 1483210

e@[12,14]d@[2,10]

b@[3,5]

c@[2,3]a@[1,2]

k

j

i

S1

S2

S2
5 5 6 7

(a) (b)

Fig. 8. Scheduling events with a scheduling policy

absolute time constraints. Instance i has events {a@[1, 2], c@[2, 3]}, j : {b@[3, 5]},
and instance k : {d@[2, 10], e@[12, 14]}. We would like, for instance, to check
if these events could be run by the simple scheduler given in Fig.8a: a non-
preemptive Round-Robin scheduling algorithm. The scheduler has three states
(in general it has as many states as competing instances, where every state
would correspond to the execution of one instance), with the same priority, and
it has a time slot of 2 units of time. Whenever the time progresses by two
units, the scheduler moves from one state to the next. This is a Finite State
Machine representation of a scheduling policy. The question can be rephrased as
follows: Can we find a one to one mapping between the scheduler states and the
competing instances? For the specific MSC in Fig.6, a solution can be found as
given in Fig.8b.

5.1 Associating a Scheduler State to Each MSC Instance

In this section, we will assume that a scheduling policy can be described by
a Finite State Machine. The scheduling problem in this case can be stated as
follows: Find a way to associate a scheduler state to each competing instance in
order to run each event within its time constraints. To find such a solution, we
proceed as follows:

1. First, for each event, according to its reduced absolute time constraint, we
list time slots during which the event can be executed. For each time slot, we
mark the corresponding scheduler state. So that we have the list of scheduler
states where we can execute this event. For instance, event a@[1, 2] can run
at time slot ts1=[0,2) or at time slot ts2=[2,4), e.g., by scheduler state S1
or S2 (see Fig.9a).

2. Once we get the list of scheduler states for each event along an MSC instance,
we take the intersection of these lists. This intersection list contains the
scheduler states able to run this instance with its events. Also instance j
for example can be associated to scheduler state list {S2,S3}. If the list is
empty, then the functional requirements cannot be satisfied with scheduling
policy.

116 F. Khendek et al.

ts7
Time slot:

S1
Scheduler:

e@[12,14]

S1, S2, S3

Time slots:

Scheduler:

d@[2,10]

kj

Time slots:

S2, S3
Scheduler:

Scheduler:

ts2, ts3, ts4, ts5

☞

☞

☞

☞

☞

ts2, ts3

➭

➭

➭

➭

ts1, ts2
Time slots:

S1, S2

b@[3,5]

{ }S2 }S1{}S3{S2,

S2
Scheduler:➭

ts2
Time slot:c@[2,3]

a@[1,2]

i

i j k
S1 0 0 1
S2 1 1 0
S3 0 1 0

(a) (b)

Fig. 9. Mapping between scheduler states and instances

3. We repeat point 2 for each instance. If a scheduler state is not listed anywhere
then the system cannot be scheduledwith the policy.Otherwise, wemay obtain
many possibilities for associating one (and only one) scheduler state to an MSC
instance. We also build the list of possibilities. (Algorithm 3 proposed bellow
lists such possibilities.) In our example, the list contains only one possibility
to associate a scheduler state to an MSC instance: {(i,S2), (j,S3), (k,S1)}.

4. Once the mapping between scheduler states and instances is done, we have to
make sure that the order is preserved between the sending and the reception
of each message. Also, for each message exchange inside the considered CPU,
we check that time slot number attributed for sending message is lower
than time slot number attributed for receiving message. For instance, let us
consider message y for c@[2, 3] to d@[2, 10] of our example. Let us assume
the possibility we found previously for associating a scheduler state to an
MSC instance. Also, we plan to run event c at time slot ts2 (S2) and event
d at time slot ts4 (S1). For this case, order is preserved form sending to
receiving message. Otherwise, we would have had to withdraw the possibility
we assumed from the list.

5. Moreover, for each message exchange between instances in different CPUs,
we check that time slot dates attributed for sending message is lower than
time slot dates attributed for receiving message. In the same way, event
e@[12, 14] of our example run at time slot ts7:[12,14), according to the pos-
sibility we retained. When CPU2 schedulability will be checked, we will have
to check if dates of time slot for running f do not precede dates for e : [12, 14).
If this order is not preserved, we have to eliminate this solution.

As described in the aforementioned algorithm, once we get the list of scheduler
states able to run the events for each instance (point 2), we have to build the list
of possibilities to associate one (and only one) scheduler state to each instance
(point 3). We can proceed as follows:

Early Validation of Deployment and Scheduling Constraints 117

Let the matrix M record scheduler states able to run instances as computed
in the aforementioned point 2: M [x, y] = 1 means that instance number x may be
associated to scheduler state number y (See Fig.9b). Matrix M has for dimension
the number of instances (columns) and the number of scheduler states (rows).

Let vector V , of dimension the number of scheduler states, records the in-
stance number associated to each scheduler states. Vector V represents one asso-
ciation possibility. Vector V is initialized with zeros. Following algorithm builds
as many V as possible.

Algorithm 3.
For each instance number #x (column), loop

For each scheduler state #y (row), loop
If V [x] == 0 and M [x, y] == 1 then

V [x] = y
End if

End loop
Print V

End loop

Complexity Estimation. Here we will be briefly sketch a proof for the complexity
of this algorithm. There are several aspects to check. However each aspect has
a polynomial complexity. Let n be the number of events, p the instances (and
scheduler states) number (p � n), h the maximum events number along one
instance (h � n), and m the messages number (m � n).
1. Listing relevant time slots and scheduler states for each event is linear. It

has O(n) complexity.
2. Computing conjunctions of such lists along each instance is O(h.p2).
3. Computing possibilities to associate instances and scheduler states is O(p2).

Let q be the possibilities number (q � n2).
4. Checking such possibilities according to send/receive message order is

O(q.m).

So a pessimistic upper bound complexity is of O(n3), which is better than the
serialization of events proposed in Sec.4, which has a non-polynomial complexity.
This is due to the fact that serialization is a special and a weak constrained
scheduling policy that allows every permutation. In fact, an aspect is not listed
above: the way a given scheduling policy distributes time slots to processes along
the time line. For some scheduling policies (e.g., serialization), this operation can
have a non-polynomial complexity.

5.2 Modeling Scheduling Policies

In this section we have been able to check if the MSC functional requirements can
still be satisfied following a given scheduling policy. In the previous example we
have been able to associate a scheduler state to each MSC instance in order to run
each of its events within the specified functional time constraints. The role of a

118 F. Khendek et al.

scheduling policy is to distribute time slots along the time line. Therefore we need
a way to predict time slots and their corresponding scheduler state. In our case
study we choose a Round-Robin scheduler. For this scheduling policy, predicting
time slots is easy. It is more complex for most of the other scheduling policy used
in practice. Also our approach relies on the modeling of the scheduling policy.

Paper [7] lists different ways to handle scheduling problems. Scheduling policy
may be modeled using Timed Petri Nets extensions: Stochastic Timed Petri Nets
[16, 17, 18], or dedicated Scheduling Extended Timed Petri Nets [13, 19, 20]. With
such models it is possible to generate a state graph, which represents all possible
traces including the fact that deadlines are respected or not.

We decided to handle scheduling problems using timed automata. Real-time
systems, e.g., tasks and scheduler, may be modeled using a dedicated timed au-
tomata extension [6, 14]. Moreover, a scheduling problem can be transformed into
a reachability analysis problem for these timed automata, and thus it is decidable
[10]. In this approach, tasks are modeled as durations. At the opposite, we have
atomic events that occur at absolute time. So we cannot exploit directly this work.

6 Related Works

System development processes use to postpone the performance issues to the last
stages. As a result, performance requirements have to be met at a stage where the
system development is well advanced. Selected solutions may be contradicting
the required performance and the system development has to backtrack to early
phases to come out with other solutions.

The authors in [9, 21] discussed the risks of separating performance evalua-
tions from software development process. To help in solving this problem, the
authors propose a model integrating performance and functional specifications.
They proposed annotations to the MSC-96 language, called Performance Mes-
sage Sequence Charts (PMSC). These annotations allow for the specification of
performance requirements, resource constraints as well as the specification of
the available resources. PMSC is supported by the DO-IT toolbox, which pro-
vides the early evaluation of the performance of SDL systems and an optimized
scheduling policy of tasks at compilation time. The toolbox analyzes the cost of
components using information provided in PMSC specification, proposes code
optimization strategies and generates an efficient code from SDL specifications.

The approach proposed in [4, 5] considers integrating appropriate scheduling
paradigms at the (SDL) specification level of the development process. Aim of
this work is to handle scheduling constraints at the early stage of SDL valida-
tion. The authors use Rate-Monotonic Analysis (RTA) techniques that provide
quantitative methods to analyze and predict the timed behavior of real-time sys-
tems. RTA helps to organize processes and resources during the design phase.
In this approach, SDL has been extended in order to take into account real-
time constraints. Preemptive scheduling with fixed priorities is used. The overall
procedure is to get an SDL-like formalism that fits the real-time modeling re-
quirements up to specific details in the architecture.

Early Validation of Deployment and Scheduling Constraints 119

Our approach shares this point of view: deployment issues (performance re-
quirements, available resources constraints, scheduling policy, etc.) should be
taken into account at a very early stage. However, we strongly feel that using
a single language for expressing functional requirements, performance require-
ments, scheduling constraints, etc. will certainly lead to a very complex and not
intuitive language.

In the previous section we have mentioned the approach proposed in
[6, 10, 14]. It is supported by the tool TIMES. It handles the schedulability anal-
ysis problem of real-time systems using timed automata and a model-checking
technique. The main idea in this approach is to associate each location of an
automaton with a task (an executable program characterized by its worst ex-
ecution time and its relative deadline). An automaton may perform two types
of transitions. Delay transitions correspond to the execution of running tasks
and idling for the other waiting tasks. Discrete transitions correspond to the
arrival of new task instances. Whenever a task is triggered, it is put into the
scheduling queue for execution by the processor. Tasks are executed according
to a given scheduling strategy and removed from the queue, and other idling
tasks decrease their deadline delay of the executed task duration. In practice,
a scheduling strategy is a function that sorts the task queue according to task
parameters whenever a new task arrives. Such a sequence of tasks is schedulable
if all the tasks can be executed within their deadlines. Following these principles,
schedulability can be seen as a reachability analysis problem and proved using
a model-checking technique.

This work reports strong results for schedulability analysis and is certainly
a good candidate to evaluate in our future work. However, there is a big gap
between TIMES and the work reported in this paper. TIMES tasks are char-
acterized by their duration and their deadline relative to their starting point.
On the other hand, MSC events are atomic, with no duration, and their dead-
line cannot be relative to their starting point. Deadlines for MSC events are
expressed as absolute time constraints or relative time constraints.

7 Conclusion

In this paper we have introduced an approach to handle certain deployment
constraints at the very early stage of system specification. We are interested in
checking if the functional requirements can be satisfied when more and more con-
crete deployment constraints are taken into account. This will avoid backtracking
from very late stages in the development to the specification and analysis stage
when the system cannot be deployed.

We have considered only few deployment constraints; other constraints and
resources can be taken into account in the same manner. Our plan is to take
into account more constraints and resources. The main issue, as we have seen
it in Sec.5, will be probably the modeling. With the exception of the Sec.2 and
Sec.3, the work presented here is applicable to bMSCs only. The work presented
in Sec.4 and Sec.5 has to be extended to high-level MSCs.

120 F. Khendek et al.

The other interesting question is to consider this problem the other way
around and solve the following question: given a consistent MSC, is it possible
to find all the possible scheduling policies (or other constraints) with which the
functional requirements can be satisfied?

Acknowledgement

This work has been partially supported by the Natural Sciences and Engineering
Research Council (NSERC) of Canada.

References

1. Alur, R., Holzmann, G., Peled, D.: An analyzer for message sequence charts. Tools
and Algorithms for Construction and Analysis of Systems. Volume 1055 of Lecture
Notes in Computer Science, Springer-Verlag (1996) 35–48

2. Alur, R., Yannakakis, M.: Model checking of message sequence charts. 10th Confer-
ence on Concurrency Theory. Volume 1664 of Lecture Notes in Computer Science,
Springer-Verlag (1999) 114–129

3. Alur, R., Etessami, K., Yannakakis, M.: Realizability and verification of MSC
graphs. 28th International Colloquium on Automata, Languages and Program-
ming. Volume 2076 of Lecture Notes in Computer Science, Springer-Verlag (2001)
797–808

4. Alvarez, J., Diaz, M., Llopis, L., Pimentel, E., Troya, J.: Integrating schedulabil-
ity analysis and SDL in an object-oriented methodology for embedded real-time
systems. 9th SDL Forum, Montréal, Canada, Elsevier Science (1999) 241–256

5. Alvarez, J., Diaz, M., Llopis, L., Pimentel, E., Troya, J.: Schedulability analysis in
real-time embedded systems specified in SDL. Workshop on Real-Time Program-
ming, Palma de Mallorca, Spain, Elsevier Science (2000) 125–131

6. Amnell, T., Fersman, E., Mokrushin, L., Pettersson, P., Yi, W.: TIMES: a tool
for schedulability analysis and code generation of real-time systems. Formal Mod-
eling and Analysis of Timed Systems. Volume 2761 of Lecture Notes in Computer
Science, Springer-Verlag (2003)

7. Braberman, V.: On integrating scheduling theory into formal models for hard
real time systems. In: WorkShop on Formal Methods for the Design of Real-Time
Systems, Villa Olmo, Como, Italy (1997)

8. Dechter, R., Meiri, I., Pearl, J.: Temporal constraint networks. Artificial Intelli-
gence 49 (1991) 61–95

9. Faltin, N., Lambert, L., Mitshele-Thiel, A., Slomka, F.: An annotational extension
of message sequence charts to support performance engineering. 8th SDL Forum,
Every, France, Elsevier Science (1997) 307–322

10. Fersman, E., Pettersson, P., Yi, W.: Timed automata with asynchronous processes:
Schedulability and decidability. Tools and Algorithms for the Construction and
Analysis of Systems. Volume 2280 of Lecture Notes in Computer Science, Springer-
Verlag (2002) 67–82

11. ITU-T: Recommendation Z.120 (11/99), Message Sequence Charts (MSC). Inter-
national Telecommunication Union, Geneva.

12. ITU-T: Recommendation Z.100 (08/02), Specification and Description Language
(SDL). International Telecommunication Union, Geneva.

Early Validation of Deployment and Scheduling Constraints 121

13. Lime, D., Roux, O.: Expressiveness and analysis of scheduling extended time
Petri nets. 5th IFAC International Conference on Fieldbus Systems and their
Applications, (FET’03), Aveiro, Portugal, Elsevier Science (2003)

14. Norström, C., Wall, A., Yi, W.: Timed automata as task models for event-driven
systems. Real-Time Computing Systems and Applications, Hong Kong, China,
IEEE Press (1999)

15. Peled, G.: Specification and verification using message sequence charts. Electronic
Notes in Theoretical Computer Science. Volume 65, Elsevier Science (2002)

16. Robert, P., Juanol, G.: Modélisation et vérification de politiques d’ordonnancement
de tâches temps-réel. 8ème Colloque Francophone sur l’Ingénierie des Protocoles
(CFIP’2000), Toulouse, France, Hermes Science (2000) 167–182

17. Robert, P., Juanol, G.: Modélisation et évaluation de performances d’une archi-
tecture d’ordonnancement hétérogène. Application à un système vidéo à qualité de
service garantie. 9th Conference on Real-time and Embedded Systems (RTS’2001),
Paris, France (2001) 27–42

18. Robert, P.: Contributions à un système vidéo à qualité de service garantie ap-
pliqué à une fonction de guidage (phase finale d’atterrissage) par acquisition de
l’environnement. PhD thesis, Université Paul Sabatier, Toulouse, France (2001)

19. Roux, O., Déplanche, A.: Extension des réseaux de Petri T-temporels pour la
modélisation de l’ordonnancement de taches temps-réel. 3e congrès Modélisation
des Systèmes Réactifs (MSR’2001), Toulouse, France, Hermes Science (2001) 327–
342

20. Roux, O., Déplanche, A.: A T-time Petri net extension for real time-task scheduling
modeling. European Journal of Automation (JESA) 36 (2002)

21. Slomka, F., Zant, J., Lambert, L.: Schedulability analysis of heterogeneous systems
for performance message sequence chart. Workshop on Hardware/software code-
sign, Seattle, Washington, United States, IEEE Computer Society Press (1998)
91–95

22. Zheng, T.: Validation and Refinement of Timed MSC Specifications. PhD thesis,
Concordia University, Montreal, Canada (2004)

Scenario Synthesis from Imprecise Requirements

Bill Mitchell1, Robert Thomson2, and Paul Bristow2

1 Department of Computing, University of Surrey,
Guilford, Surrey GU2 7XH, UK

w.mitchell@surrey.ac.uk
2 Motorola UK Research Lab, RG22 4PD, UK

{brt007, paul.bristow}@motorola.com

Abstract. Discovering faults in requirements specifications for
distributed reactive systems is a challenging problem since many issues
that need to be uncovered are a result of subtle component interactions
that are implied by the requirements, but not explicitly described by
them. A further difficulty is caused by the imprecise nature of industrial
requirements specifications. This makes it difficult to construct valid
models of the possible compositions between the requirements, which
would be a valuable aid in uncovering such interactions. The paper de-
fines a formal semantics that characterizes a particular type of imprecise
compositional semantics derived from industrial case studies, and a pro-
cess algebra that describes the valid requirements compositions for that
formal semantics.

1 Introduction

Telecommunications protocol requirements specifications often consist almost
solely of normative MSC scenarios, together with English text. Requirement
specification MSC scenarios tend not to provide a comprehensive set of exam-
ples, and contain implicit behaviour that can easily be missed, or misinterpreted
by software developers. Studies have shown that approximately a third of all
serious defects are a result of poor requirements [13]. It is therefore important to
derive a comprehensive set of scenarios describing implicit compositions between
the requirements for use in uncovering potential defects in the specifications and
as test purposes for the development process. However, in various case studies at
Motorola it has been shown that although MSC scenarios are precise about mes-
sage definitions and exchanges, industrial requirements specifications are often
imprecise about their compositional semantics. That makes it difficult to con-
struct a valid model of the requirements compositions. The MSC scenarios in
the case studies were annotated with global state like information, which should
make composition straightforward. However, these states were often used impre-
cisely across different requirements scenarios. Therefore not all the compositions
that result from treating the states as if they are precisely defined will be valid.
We will refer to these state like constructs as phases. Intuitively a phase repre-
sents a set of global concurrent states with imprecise compositional semantics.

D. Amyot and A.W. Williams (Eds.): SAM 2004, LNCS 3319, pp. 122–137, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Scenario Synthesis from Imprecise Requirements 123

Where the same phase occurs in two MSC scenarios it is not immediate that
it represents the same global states in both scenarios. They can only safely be
assumed to be the same states if the phase is reached in a consistent manner in
both scenarios.

The paper defines a formal phase semantics for MSC scenarios, which was for-
mulated from an industrial case study involving around three hundred MSC sce-
narios. This formalizes when two occurrences of a phase are consistently reached
and define the same global concurrent states. This leads to a technique for syn-
thesising phase composition processes from a collection of requirements scenarios.
These characterise the ‘valid’ compositions of requirements specifications that
have imprecise compositional semantics. The compositions are a subset of those
given by regarding the phases as precisely defined concurrent global states. Note
we use the term ‘valid’ within the context of the industrial case studies.

Related Work

Preliminary results were first reported in [9], [10]. The current paper differs
in that it allows phases to be simultaneously active, describes how to combine
processes rather than traces and permits a temporal context that controls when
features can be concurrent.

There appears to no work in the literature that attempts to define a formal
semantics for composition of informal MSC scenarios. There are however sev-
eral papers concerned with model synthesis of formal MSC scenarios. In [2] they
describe how to generate some implied scenarios from basic MSCs. In [12], [11]
they address the problem of synthesising statecharts from MSC scenarios. In [12]
they compose synchronous MSC-s into statecharts by using global state names
incorporated in the MSC scenarios. Phases are closely related to global states,
but they are not the same. They have state like semantics when certain be-
havioural constraints hold. This state like semantics is dynamically determined
by the concurrent behaviour described by the requirements. In [3], [4] they de-
fine scenario and program synthesis from live message sequence charts (LSCs).
They do not use global state annotation, however the phase semantics here in-
corporates some of the ideas of mandatory behaviour from LSCs that permits
the state like semantics to be determined dynamically.

2 MSC Phase Transition Scenarios

In this paper we assume MSCs are defined in accordance with the MSC 2000
standard [8]. An MSC scenario describes message exchanges between processes
that achieve a transition between major operational phases of the system. Con-
sider figure 4, which describes how a ‘Browser’ process downloads a Java ap-
plication iteratively from the ‘Air Interface’ process until it receives the ‘EOF’
message, or it detects that the file is corrupted. The shortened hexagonals are
MSC condition symbols that describe which operational phase is active at any
time. To emphasize this point we will refer to them as phase symbols from now

124 B. Mitchell, R. Thomson, and P. Bristow

on. Phase symbol labels will be identified with propositional boolean formulae in
the paper. In figure 4 ‘Browser’ starts the scenario in phase ‘Inactive’, that is the
proposition ‘Inactive’ is given value true and all other phases are made false for
that process. Then phases ‘Active’ and ‘Load File’ become active simultaneously,
hence are given value true and ‘Inactive’ is given value false. The point at which
a phase symbol is introduced into a scenario is defined as a phase transition.
This interpretation of MSC condition symbols is an extension of the MSC 2000
standard where condition symbols have no formal semantics. Common engineer-
ing practise treats MSC condition symbols as global states, but unfortunately in
an imprecise fashion that forces the phase semantics that are discussed in this
paper.

3 Phase Composition Semantics

Each process behaviour described by an MSC scenario can be defined as a pro-
cess algebra term that characterises this behaviour up to strong bisimulation
equivalence [6]. From now on we will identify an MSC with the set of process
algebra terms it defines. For a process P we can extract from each MSC scenario
Mi a process algebra term Qi that defines the behaviour of P in Mi. In section
4 we will define a process algebra that permits us to join together these different
Qi into a process that describes the implicit phase transitions of the require-
ments scenarios. In this section we will motivate the formal semantics with an
informal definition.

For a set of requirements specification scenarios let P be the set of possible
phases that can occur and E be the set of events that can occur. We regard P
as a set of boolean propositions.

Definition 1. A phase trace is a sequence of triples (Si, ei, Si+1), for 0 ≤ i ≤
n−1, where each ei ∈ E and Si, Si+1 ⊆ P. Si denotes the set of phases that are
active before event e, and Si+1 denotes the phases that are active immediately
after e.

In practise Si and Si+1 are usually the same as they represent the major
operational phases of the protocols defined by the requirements, which do not
change after every single event. A triple (Si, ei, Si+1) is referred to as an an-
notated event. When a phase trace ends in an annotated event (S, e,S′) where
S �= S′ we say t is a phase transition trace and (S, e,S′) is a phase transition.

Figure 1 describes a requirements scenario where the mobile handset has a
dedicated key that causes a menu of Java applications that are available for
download to be presented to the user. Once the user selects one of these appli-
cations from the menu the ‘Phone’ process delegates the task of downloading
the application to the (WAP) ‘Browser’ process. Within this scenario it is not
specified how this downloading occurs, it is abstracted away by the action box
‘Download File’.

In figure 1 each process generates a single phase trace. For example the phase
trace t0 for the ‘Browser’ process is:

Scenario Synthesis from Imprecise Requirements 125

User Phone Browser

Java App Download Idle Inactive

key press(java menu)

Java Menu

select(option)

Download

activate

ack

load(URL)

Load File Active

Download File

Download

download OK

InactiveDisplay Notification

Fig. 1. Java application download

({Inactive}, ?activate, {Inactive})
({Inactive}, !ack, {Inactive})
({Inactive}, ?load(URL), {Active})
({Active}, Download File, {Download})
({Download}, !download OK, {Inactive})

3.1 Informal Phase Composition Semantics

Informally we can give requirements scenarios the following semantics, which
will allow us to construct phase composition processes from them. Suppose we
have a scenario M that defines message exchanges between processes, including
the process Q.

Consider two phase transition traces t1 and t2, where t2 is a suffix of t1 and
terminates with a phase transition (S0, e,S1). I.e., t1 = t3 · t2 for some t3. In this
case we say t1 and t2 match and that S1 is reached consistently. Hence we can
suppose each occurrence of S1 defines the same set of concurrent global states.

126 B. Mitchell, R. Thomson, and P. Bristow

This leads us to the idea of phase transition simulation between processes based
on the idea of one process simulating another once a common phase is shown to
be consistently reached.

A process P simulates the phase transitions of Q when the following holds.
If we observe a trace of annotated events of P that leads to a phase transition,
with some suffix equal to a phase trace of Q, then P must be able to simulate
the behaviour of Q from then on. Hence, if there are traces t1 and t2 as above
such that P

t1−→ P1, and Q
t2−→ Q2 then P1 must be able to simulate Q2 (in the

conventional sense). Given a number of specification processes Qi it is possible
to define a canonical process that simulates the phase transitions of them all
as will be defined in section 4. That canonical process captures the legitimate
compositions of the scenarios within an imprecise setting.

Note the above semantics is true if we can assume a phase symbol is a global
state name for some statechart, and is in fact a weakening of such state semantics.
The phase semantics above allows a phase to act as a global state once there
is a match between the behaviour of two different scenarios. By using such an
overlap between scenarios to define when phase symbols can act in a state like
way, we ensure that they can only be used to compose scenarios where they are
consistently applied.

Consider the examples of figures 1 and 2. Figure 2 describes how the ‘Browser’
process downloads a file iteratively once it receives the ?load(URL) message in
the ‘Inactive’ phase. Recall that figure 1 abstracted out the details of how the
Java application is downloaded. We can suppose these two scenarios are defined
by different feature teams, quite likely at different times. Perhaps figure 2 is a
legacy requirement specification. Given the informal semantics we can see how
the two ‘Browser’ processes can be joined together within a single process that
represents some of the phase transitions implied by the two scenarios.

Suppose we observe the initial trace of annotated events for t0 from figure 1
consisting of

t1 =({Inactive}, ?activate, {Inactive})
({Inactive}, !ack, {Inactive})
({Inactive}, ?load(URL), {Active})

In figure 2 the initial annotated event of process ‘Browser’ is
t2 = ({Inactive}, ?load(URL), {Load File})

This causes a phase transition from ‘Inactive’ to ‘Load File’. Let us assume
within the context of receiving load(URL) that whenever ‘Active’ is an active
phase then so is ‘Load File’. Hence the end of t1 matches t2. That means after
the first two annotated events have occurred t1 matches t2 in that they contain
the same events and are consistently annotated.

Therefore whenever process ‘Browser’ initially follows the scenario given by
figure 1 up to the first phase transition, it must be able to simulate the subsequent
scenario given by figure 2. That means we can combine the two scenarios into that
described by figure 4. Note that although figure 1 gave no account of what might
happen if the file being downloaded was corrupted the new scenario describes
this case. This would make a valuable test purpose.

Scenario Synthesis from Imprecise Requirements 127

Phone Browser Air Interface

Download Inactive Channel

load(URL)

Load File

Resolve URL

get handle(file)

Data
file handle(file)

Read File

read(file handle)

send(file handle)

Check For Errors

loop< 0,∞ >

Alternatives

Fig. 2. Download file with browser process

3.2 Formal Semantics of Phase Compositions

We will use a Hennessy Milner style of temporal logic [7] to permit phases to act
as a type of temporal guard. A temporal model M consists of a directed graph
G, with vertex labelling ν : GV −→ 2P , edge labelling ε : GE −→ E, and some
vertex i that represents the initial moment. We can think of M as representing
a model of the system global states and execution traces.

Temporal formulae are defined as usual:

– M, v � 〈e〉φ iff there is an edge (v, w) ∈ GE such that ε(v, w) = e, and
M, w � φ. I.e., there is some execution trace from v starting with e where φ
holds.

– M, v � [e]φ iff for every edge (v, w) ∈ GE where ε(v, w) = e, M, w � φ. I.e.,
for every execution trace from v starting with e, φ holds.

– M, v � �φ iff M, v � φ and M, w � �φ for every edge (v, w) ∈ GE . I.e., for
all execution traces from v, φ holds.

– M, v � ♦φ iff there is some vertex w reachable from v such that M, w � φ.
I.e., for some execution trace from v, φ holds.

128 B. Mitchell, R. Thomson, and P. Bristow

Phone Browser Air Interface

Error Found
corrupt file(file)

Display Failure Notice Inactive

read(file handle)

EOF

DownloadLoad File Channel
download OK

InactiveDisplay Notification

alt

Fig. 3. Alternatives reference for figures 2 and 4

– M, v � ψ U φ iff there is some vertex w reachable from v such that M, w � φ,
and for every vertex u on that path to w M, u � ψ. I.e., there is an execution
trace from v where ψ holds until we reach w when φ becomes true.

The satisfiability of ordinary boolean formulae is defined as usual. Formula
φ is satisfied in M when M, i � φ. φ is valid when it is satisfied in every model,
when we write
 φ. For formulae ψ and φ we write ψ
 φ to denote that
 ψ ⇒ φ.

Definition 2. For a set S ⊆ P, define
∧

S =
∧

x∈S x. For a phase trace t =
(S, e,S′) · t′, define its temporal semantics as

‖t‖ =
∧

S ∧ 〈e〉(
∧

S′ ∧ ‖t′‖)

This formula represents that somewhere within the model M there should
be at least one execution trace with states and events that match those of t.
A context X is any temporal formulae over P and E. It controls how phases
are related across the requirements scenarios. For the example above, where we
assumed that whenever a load(URL) message is received then Active implies ‘Load
File’ until Inactive, the context would be

�([load(URL)](Active ⇒ (‘Load File’ U Inactive)))

The temporal context also permits phases defined by different development
teams to be given a consistent meaning across all the scenarios.

Definition 3. For context X we define phase trace t to match phase trace t′

when
X
 (‖t‖ ⇒ ♦‖t′‖)

Scenario Synthesis from Imprecise Requirements 129

User Phone Browser Air Interface

Java App Download Idle Inactive

key press(java menu)

Java Menu
select(option)

Download activate

ack

load(URL)

Load File Active, Load File

Resolve URL
get handle(file)

Data
file handle(file)

Read File

read(file handle)

send(file handle)

Check For Errors

loop< 0,∞ >

Alternatives

Fig. 4. Synthesized scenario of error checking with Java app download

The matching formula is true when some suffix of the sequence t contains
exactly the same event trace as the whole of t′, and the phase annotations of
the corresponding events are logically consistent within the context defined by
X . Note t1 matches t2 in the informal semantics example since

�([load(URL)](Active ⇒ (‘Load File’ U Inactive)))
 (‖t1‖ ⇒ ♦‖t2‖)

Given processes whose actions are annotated events we define first simulation,
and then phase transition simulation. For annotated events a = (S, e,S′) and
b = (U, g, U ′) define a ⇐X b when e = g, X
 ∧

U ⇒ ∧
S and X
 ∧

U ′ ⇒ ∧
S′.

Definition 4. Define P to simulate process Q within context X , written as

P �X Q, if ∀a such that Q
a−→ Q′ there is some a′ where P

a′
−→ P ′ such

that a′ ⇐X a and

130 B. Mitchell, R. Thomson, and P. Bristow

P ′ �X Q′

This simulation relation forces phases to be compatible as well as ensuring
the events are simulated correctly.

For a phase trace t = a0 · a1 · · · an−1, let P
t−→ P ′ denote that there are

processes Pi, for 0 ≤ i ≤ n, such that Pi
ai−→ Pi+1, P0 = P and Pn = P ′.

Definition 5. Define P to simulate the phase transitions of process Q within
context X , written as P �X Q, when the following holds. For all phase transition
traces t such that Q

t−→ Q′, and for all phase traces τ that match t, whenever
there is a process P ′ such that P

τ−→ P ′ then P ′ �X Q′.

In other words, if after being active for some arbitrary time, P subsequently
generates a trace of annotated events that match a phase transition trace of Q,
then P must be able to simulate Q from that time onwards. This implies that a
phase transition trace of Q acts as a kind of temporal guard. If ever the guard
is triggered, in the sense that P can match the phase transition trace, then the
rest of the behavior of Q is then simulated. Note this is a strict weakening of
the global state semantics as in [12], [11] where the phase symbols of the MSC
scenarios are identified with global state names in UML statecharts.

Let {Mi | 0 ≤ i ≤ n} be a set of scenarios, let Qi be a process from Mi for
each i. That is each Qi defines exactly the observed behaviour of one process in
scenario Mi.

Definition 6. We define process P to represent the phase transitions of pro-
cesses Qi when P �X Qi for each i. The overlaps of P are those phase transition
traces of P that are not contained in any of the Qi.

Figure 4 describes one of the overlaps given by the phase transition represen-
tation of the ‘Browser’ processes in figure 1 and figure 2.

4 Phase Composition Processes

Let A be the set of annotated events. Let + be the usual choice operator over
process terms. Let · be the usual composition operator of atomic actions and
process terms. Let ρ(X) : A −→ B be a boolean valued function that defines
when an annotated event is a phase transition. That is ρ(X)(S, e,S′) = t when
X �
 (

∧
S ⇒ ∧

S′). Note when X is a tautology, then ρ(X)(S, e,S′) denotes
that S and S′ are disjoint. For annotated events a = (S, e,S′) and b = (U, e,U ′)
define a + b = (S ∪ U, e,S′ ∪ U ′). For a set of processes Q consisting of processes
Qi, for 1 ≤ i ≤ n let πQ denote Q0 ‖ Q1 ‖ · · · ‖ Qn.

In figure 5 we briefly describe a process algebra that defines how to synthe-
sise a phase transition representation from a set of processes described by the
requirements scenarios. For this algebra we further define | to be commutative
and (P 〈⇒〉Q) = (Q〈⇐〉P) and the process 0 to act as a multiplicative zero ele-
ment for these two operators, so that (0〈⇐〉Q) = 0, and 0 | Q = 0. Notice that
a + b is equivalent to b + a, hence in the penultimate axiom

Scenario Synthesis from Imprecise Requirements 131

P ‖ Q = (P 〈⇐〉Q) + (P 〈⇒〉Q)
a · P 〈⇐〉b · Q = a · P 〈⇐|〉b · Q when a ⇐X b
a · P 〈⇐〉b · Q = a · (P 〈⇐〉b · Q) when a �⇐X b
a · P 〈⇐|〉b · Q = (a + b) · (P 〈⇐|〉Q) when a ⇐X b and ¬ρ(X)(a)
a · P 〈⇐|〉b · Q = (a + b) · (P | Q) when a ⇐X b and ρ(X)(a)
a · P 〈⇐|〉b · Q = a · P + b · Q when a �⇐X b and ρ(X)(a)
a · P 〈⇐|〉b · Q = a · P when a �⇐X b and ¬ρ(X)(a)
a · P | b · Q = (a + b) · (P | Q) when a ⇐X b
a · P | b · Q = a · P + b · Q when a �⇐X b and b �⇐X a

Fig. 5. Phase composition process algebra

a · P | b · Q = (a + b) · (P | Q)

when a ⇐X b or when b ⇐X a. Finally we assume all the defined compositional
operators in the algebra distribute over summation of processes. The algebra
essentially defines an algorithm for the construction of a minimal phase transition
representation as explained in theorem 8.

The process P ‖ Q will consist of P and Q glued together along traces from
each process that match. The process P 〈⇐〉Q defines joins between the processes
where a trace from P matches a trace from Q. Process P 〈⇐〉Q acts like P until
it reaches an action that Q is able to perform (if there is such a place). It then
changes to the process P 〈⇐|〉Q. This process now allows P and Q to unfold in
lock step. If this continues until there is a phase transition, then we have a match
between a trace in P and Q. The process P 〈⇐|〉Q will now become P | Q. If
there is no such match then essentially Q is discarded. Process P | Q allows P
and Q to unfold in lock step until they diverge, at which point it splits into the
summation of the two processes.

Lemma 7

– There are two traces P
t1−→ P ′ and Q

t2−→ Q′ where t1 matches t2, if and
only if there is a trace

P ‖ Q
t1−→ P ′ | Q′

– If there are no matches between any traces of P and Q then P ‖ Q degener-
ates into P + Q.

– If there is a trace t such that P
t−→ P ′ and Q

t−→ Q′ for some P ′ and Q′

then
P | Q

t−→ P ′ | Q′

– If there are no common actions for P and Q, that is there is no action a
such that both P

a−→ P ′ and Q
a−→ Q′ for some P ′ and Q′ then P | Q is

bisimulation equivalent to P + Q.
– Because it is possible for a process to have a non-degenerate match between

two of it’s own traces, it is not the case that P ‖ P is necessarily equivalent
to P .

132 B. Mitchell, R. Thomson, and P. Bristow

(Read File,
?send(file_handle),
Read File)

(Inactive, !ack, Inactive)

(Inactive,?load(URL), {Active, Load File})

(Inactive, ?activate, Inactive)

(Active,
Download File,
Download)

(Download, !download_OK, Inactive)

({Active, Load File}, Resolve URL, {Active, Load File})

({Active, Load File}, !get_handle(file), {Active, Load File})

({Active, Load File}, ?file_handle(file), Read File)

(Read File,
!read(file_handle),
Read File)

(Read File,
Check For Errors,
Read File)

(Read File, Check For Errors, Error Found)

(Error Found, corrupt_file(file), Inactive)

(Read File, ?EOF, Download)

Fig. 6. ‘Browser’ phase composition process

Theorem 8. Given a set Q of processes Qi from requirements scenarios Mi for
0 ≤ i ≤ n, then

P = πQ

is a phase transition representation of Q.
Process P is canonical upto simulation equivalence. That is if P ′ is another

phase transition representation of Q, then P ′ �X P . Define P to be the phase
composition process for Q.

In general the phase composition process P is built by joining together spec-
ification scenario processes wherever there is a match between phase transition
traces. Suppose there are two specification processes Q0 and Q1, where there
is a phase transition trace t0 within the body of Q0 that matches some phase
transition trace t1 at the start of Q1. Then P will contain a copy of Q0 joined
to Q1 along the end of t1 that corresponds to t0. By exhaustively joining all
such matches together in a single process we construct P . The process algebra
of figure 5 captures this idea formally.

To see how this works consider the two ‘Browser’ processes defined in figures 1
and 2. Figure 6 is the phase composition process of these two ‘Browser’ processes.
The dotted arrows represent the part of the process behaviour that is exclusive
to figure 1. The solid arrows are the behaviour that is defined by figure 2. The
grey box denotes where phase trace t1 matches t2. This match defines where
the two ‘Browser’ processes are joined together. The process is depicted as a

Scenario Synthesis from Imprecise Requirements 133

I = Inactive a = activate
A = Active ack = ack
L = Load File l = load(URL)
D = Download rs = Resolve URL
R = Read File gh = get handle(file)
E = Error Found fh = file handle(file)

df = Download File
r = read(file handle)
s = send(file handle)
c = Check For Errors
e = EOF
d = download OK
cr = corrupt file

Fig. 7. Abbreviations for scenario identifiers

finite state automaton, where the edges are labelled with annotated events. The
temporal context here causes Active and Load File to be simultaneously valid,
hence both phases are included in the relevant annotated events. Where a set
of phases in an annotated event only contains a single phase we leave out the
surrounding braces for that set and just write the phase on its own.

We will now consider in a little more detail how this composition works. In
order to keep the calculation compact we will abbreviate the identifiers in the
scenarios as shown in figure 7. The first column shows phase abbreviations, and
the second shows event abbreviations. From figure 1 using these abbreviations
we can write the ‘Browser’ process for that scenario as

B1 = (I, ?a, I) · (I, !ack, I) · (I, ?l, A) · (A, df, D) · (D, !d, I) · 0

The ‘Browser’ process of figure 2 is recursive and can be written as the
following process algebra term B2, where we have used the context to replace
phase L with the set of phases {A, L}. This makes it much simpler to apply
the rules for the process algebra when considering B1 ‖ B2. When simplified,
B1 ‖ B2 reduces to the automaton in figure 6.

B2 = (I, ?l, {A, L}) · ({A, L}, rs, {A, L})
·({A, L}, !gh, {A, L}) · ({A, L}, ?fh,R) · B3

B3 = (R, !r,R) · B4
B4 = (R, ?e, D) · (D, !d, I) · 0 + (R, ?s, R) · B5
B5 = (R, c, R) · B3 + (R, c, E) · (E, !cr, I) · 0

This algebra term is also depicted by figure 8. Here B2 is shown as a state
automaton, and we label the relevant states with the Bi processes that they
represent. Conveniently there is only one match between traces of B1 and B2.
This is the match between the phase traces t1 and t2 introduced in section 3.1. In
the abbreviated notation we are using in this section we can write these traces as:

t1 = (I, ?a, I) · (I, !ack, I) · (I, ?l, A)
t2 = (I, ?l, {A, L})

134 B. Mitchell, R. Thomson, and P. Bristow

(R, ?s, R)

(I,?l, {A, L})

(D, !d, I)

({A, L}, rs, {A, L})

({A, L}, !gh, {A, L})

({A, L}, ?fh, R)

(R,!r, R)

(R, c, R)

(R, c, E)

(E, !cr, I)

(R, ?e, D)

B3

B2

B4

B5

Fig. 8. ‘Browser’ process from figure 2

Since there will be no traces of B2 that match a trace of B1, B1〈⇒〉B2 will
be the zero process. Hence B1 ‖ B2 reduces immediately to B1〈⇐〉B2 via the
first axiom in the process algebra. This process will act like B1 until it reaches a
point where both B1 and B2 can perform a common action. Hence we can write
B1〈⇐〉B2 as

(I, ?a, I) · ({A, L}, rs, {A, L}) ·
(

((I, ?l, A) · (A, df, D) · (D, !d, I) · 0)〈⇐〉B2

)

The annotated event (I, ?l, A) is a phase transition, so that ρ(X)(I, ?l, A) is
true. From the local context we have

(I, ?l, A) ⇐X (I, ?l, {A, L})

and (I, ?l, A) + (I, ?l, {A, L}) = (I, ?l, {A, L}). Let B′
2 be the process that B2

becomes after action (I, ?l, {A, L}). Hence

((I, ?l, A) · (A, df, D) · (D, !d, I) · 0)〈⇐〉B2

simplifies to

(I, ?l, {A, L}) ·
(

((A, df, D) · (D, !d, I) · 0) | B′
2

)

In this simplification we used the second and forth of the axioms for the
process algebra. The only action B′

2 can perform is ({A, L}, rs, {A, L}). For this
annotated event:

Scenario Synthesis from Imprecise Requirements 135

({A, L}, rs, {A, L}) �⇐X (A, df, D) and
(A, df, D) �⇐X ({A, L}, rs, {A, L})

This trivially holds since the underlying events df and rs are different. There-
fore we can apply the last axiom of the algebra to show that ((A, df, D)·(D, !d, I)·
0) | B′

2 simplifies to
((A, df, D) · (D, !d, I) · 0) + B′

2

These simplifications have reduced B1 ‖ B2 to the automaton of figure 6. As
a process algebra term we have shown that B1 ‖ B2 reduces to

(I, ?a, I) · (I, !ack, I) · (I, ?l, {A, L}) ·
(

B′
2 · +((A, df, D) · (D, !d, I) · 0)

)

The ‖ composition of regular process algebra terms is always regular, and
MSC processes derived from individual instances are always regular. Note it is
not the case that a process that describes the combined behaviour of a group of
instances has to be regular [1], hence the following result is valid for processes
that correspond to instances in an MSC.

Theorem 9. The phase composition process of theorem 8 is regular. That is it
can always be represented by a finite state automaton.

If in fact phase symbols truly are global state names, then the phase compo-
sition process will always be simulated by the resultant statechart. Hence traces
of the phase composition process are also traces of any future refinements of the
scenarios that transform phase symbols to global states.

Motorola Pilot

The process algebra in figure 5 can be implemented in an efficient manner to
provide an automated mechanism for generating phase transition representations
of requirements scenarios. A prototype version of this has been implemented by
Motorola UK Research Labs [9] as an extension of their test generation tool
set [5]. Their current prototype does not allow iterative processes, and has not
implemented temporal contexts. The prototype has been used on various existing
3G requirements scenarios and is currently being used as part of a pilot study
during the development of new products.

Phase Composition Test Purposes

It is possible to automatically generate test purposes from the phase composition
process. The phase composition process can be used to generate new MSC sce-
narios that describe implicit phase transitions within the requirements. Figure
4 is derived in this way from figure 6. Such new MSC scenarios can be used to
generate test suites via tools such as ptk [5]. ptk can derive TTCN2, TTCN3 or
SDL test cases directly from MSC requirements using a number of algorithms
to choose which MSC traces to generate the tests from.

136 B. Mitchell, R. Thomson, and P. Bristow

5 Conclusion

Around a third of significant defects can be traced to requirements specifications.
Hence it is important to be able to construct a model of possible compositions
of the requirements as an analytic tool to facilitate the detection of such defects.
Such a model is also useful in ensuring sufficient coverage of test cases for feature
interactions implied by the requirements, which are often caused by composition
between requirements for different features.

Unfortunately MSC requirements scenarios usually have imprecise composi-
tional semantics that makes it hard to synthesise an analytical model of their
possible compositions. The difficulty arises where different requirements specifi-
cations use global state like constructs (phases), which are not consistently used
across a large repository of scenarios. We have identified a particular formal
semantics that allows us to identify when such state like constructs should be
allowed to have state like compositional semantics.

We have codified the semantics in the form of a process algebra that defines
how such imprecise scenarios can be composed. The semantics for this process
algebra are based on an extensive eighteen month case study conducted by Mo-
torola Research Labs. The resulting process algebra accurately captures the valid
compositions from that case study. The algebra allows phase symbols to have
global state like semantics when there is a suitable overlap of concurrent be-
haviour between scenarios. This ensures composition occurs only where phase
symbols have consistent state like definitions.

References

1. Alur, R., Yannakakis, M.: Model checking of message sequence charts. Proceedings
of the Tenth International Conference on Concurrency Theory, Springer Verlag,
1999.

2. Alur, R., Etessami, K., Yannakakis, M.: Inference of Message Sequence Charts.
Proceedings 22nd International Conference on Software Engineering, 2000, 304–
313.

3. Bontemps, Y., Schobbens, P.-Y.: Synthesis of Open Reactive Systems from
Scenario-Based Specifications. Third International Conference on Application of
Concurrency to System Design (ACSD’03), 2003.

4. Bontemps, Y., Heymens, P.: Turning high-level live sequence charts into automata.
Proc. of Scenarios and State Machines: Models Algorithms and Tools, 24th Inter-
national Conf. on Software Engineering, May 2002.

5. Baker, P., Bristow, P., Jervis, C., King, D., Mitchell, B.: Automatic Generation
of Conformance Tests From Message Sequence Charts. E. Sherratt (Ed.), SAM
2002: Telecommunications and Beyond, Volume 2599 of Lecture Notes in Computer
Science, Springer, 170–198.

6. Gehrke, T., Hilhn, M., Wehrkeim, H.: An Algebraic Semantics for Message Se-
quence Chart Documents. Formal Description Techniques (FORTE), Chapman
Hall, 1998.

7. Hennessy, M., Milner, R.: Algebraic Laws for Nondeterminism and Concurrency.
Journal of the ACM, 32: 137-161, 1985.

Scenario Synthesis from Imprecise Requirements 137

8. ITU-T: Recommendation Z.120 (11/99) Message Sequence Chart (MSC). Interna-
tional Telecommunication Union, Geneva.

9. Mitchell, B., Thomson, R., Jervis, C., Phase Automaton for Requirements Sce-
narios. D. Amyot, L. Logrippo (Eds.), Feature Interactions in Telecommunications
and Software Systems VII, IOS Press, 2003, 77–84.

10. Mitchell, B., Thomson, R., Bristow, P.: Imprecise Synthesis. Proc. of Scenarios
and State Machines: Models Algorithms and Tools, 24th International Conf. on
Software Engineering, May 2002. To appear IEE publications, 2004.

11. Schumann, J., Whittle, J.: Generating Statechart Designs From Scenarios. Pro-
ceedings 22nd International Conference on Software Engineering, 2000.

12. Uchitel, S., Kramer, J., Magee, J.: Synthesis of Behavioral Models from Scenarios.
IEEE Transactions on Software Engineering, vol. 29, no. 2, February 2003.

13. Wong, E., Horgan, J. R., Zage, W., Zage, D., Syring, M.: Applying Design Metrics
to a Large-Scale Software System (Motorola), Proceedings of the 9th International
Symposium on Software Engineering Reliability (ISSRE ’98), Paderborn, Germany,
November 4-7, 1998.

Applying Reduction Techniques to Software
Functional Requirement Specifications

Jameleddine Hassine1, Rachida Dssouli2, and Juergen Rilling1

1 Department of Computer Science, Concordia University, Montreal, Canada
{j hassin, rilling}@cs.concordia.ca

2 Concordia Institute for Information Systems Engineering, Montreal, Canada
dssouli@ece.concordia.ca

Abstract. Requirement Specification is gaining increasingly attention
as a critical phase of software systems development. As requirement de-
scriptions evolve, they quickly become error-prone and difficult to un-
derstand. Therefore, the development of techniques and tools to support
requirement specification development, understanding, testing, mainte-
nance and reuse becomes an important issue. This paper extends the
well-known technique of program slicing to Functional Requirement Spec-
ification based on the Use Case Map notation. This new application of
slicing, called UCM Requirement Slicing is useful to aid requirement com-
prehension and maintenance. In contrast to traditional program slicing,
requirement slicing is designed to operate on the requirement specifi-
cation of a system, rather than the source code of a program. The re-
sulting requirement slice provides knowledge about high-level structure
of a system, rather than its low-level implementation details. In order
to compute a UCM Requirement slice, we provide a three steps slicing
algorithm.

Keywords: Functional requirement specification, program slicing, Use
Case Maps, comprehension, maintenance.

1 Introduction

Over the last several years, requirements specification and engineering is gaining
in importance, as part of the ongoing trend towards improving the software
development and maintenance process. Requirement analysis is the first step in
the development process, capturing the functionalities of systems, often in the
form of scenarios and use cases.

In the early stages of common development processes, system’s functionalities
are captured in terms of scenarios and use cases. Scenario-driven approaches
are widely accepted based on their intuitive syntax and semantics (Amyot and
Eberlein [1] provide an extensive survey of scenario notations). Use Case Maps
(UCMs), can be applied to capture and integrate functional requirements in
terms of causal scenarios representing behavioral aspects at a higher level of
abstraction, to provide the stakeholders with guidance and reasoning about the

D. Amyot and A.W. Williams (Eds.): SAM 2004, LNCS 3319, pp. 138–153, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Applying Reduction Techniques to Functional Requirements 139

system-wide functionalities and behavior. Use Case Maps are part of a proposal
to ITU−T for a User Requirements Notation (URN) [9]. However, a suitable
description notation syntax and semantics alone cannot overcome the problems
caused by inherent system complexity. There is a need for techniques and tools
to simplify requirement specifications in order to support their comprehension,
testing, maintenance and reuse.

In our research we address these issues by introducing a new approach to re-
duce the complexity of the requirement specifications. Our new approach is based
on slicing techniques to guide requirement engineers, designers and programmers
during the comprehension process of requirement specifications. Program slicing
was originally introduced as a technique to simplify programs to provide support
during debugging and program comprehension [18, 19] and has been applied to
a wide variety of problems including: program understanding, maintenance [5],
debugging, differencing, integration, testing [18] and model checking [13]. Pro-
gram slicing, a program reduction technique, allows one to reduce the size of the
source code of interest by identifying only those parts of the original program
that are relevant to the computation of a particular function/output of inter-
est [19]. It is crucial that slicing preserves the semantics of the original program
with respect to the slicing criterion [19].

Our paper introduces a new form of slicing, referred to as UCM (Use Case
Maps) Requirement Slicing, to aid UCM comprehension and maintenance.

The organization of the paper is as follow: in the next section, we briefly
describe the traditional approaches to program slicing. Section 3 introduces
the Use Case Maps notation and presents an UCM example. In section 4,
the UCM slicing approach is presented and an example is given followed by
a discussion on the application of UCM slicing in section 5. Section 6 dis-
cusses the UCM data flow and presents the limitations of the proposed ap-
proach. Section 7 presents related work. Finally the paper concludes with
section 8.

2 Traditional Program Slicing

The notion of program slicing originated in the seminal paper by Weiser [19].
Weiser defined a slice S as a reduced, executable program P′ obtained from a
program P by removing statements such that S replicates parts of the behav-
ior of the program. Informally, a static program slice consists of those parts of
a program that potentially could affect the value of a variable V at a point
of interest. Korel and Laski introduced in [10] the notion of dynamic slicing
that can be seen as a refinement of the static approach. The dynamic slice
preserves the program behavior for a specific input, in contrast to the static ap-
proach, which preserves the program behavior for the set of all inputs for which
a program terminates. Furthermore, different slicing techniques and criteria are
required because various applications require different properties of slices. In
recent years, the application of slicing has been extended to other software ar-
tifacts [16] including: software architecture [20], requirement models [7, 11] and

140 J. Hassine, R. Dssouli, and J. Rilling

formal specification [2, 13, 14]. A detailed survey of different slicing techniques
and their applications can be found in [4, 18].

3 Describing Requirements Using Use Case Maps
Notation

3.1 Use Case Maps

A UCM [8] describes a system in terms of causal relationships between respon-
sibilities (e.g., operation, action, task, function, etc.) along paths allocated to
a set of components. The relationships, representing the UCM control flow, are
said to be causal because they involve concurrency, partial ordering of activities
and they link causes (e.g., preconditions and triggering events) to effects (e.g.,
postconditions and resulting events). A responsibility can potentially be associ-
ated or allocated to a component. In UCMs, a component is generic and abstract
enough to represent software entities (e.g., object, agent, process, etc.) as well as
non software entities (e.g., actors or hardware). With the UCM notation, scenar-
ios are abstracted above the message exchange level, and therefore are to some
extend independent from the underlying implementation level. Path details can
be hidden in sub-diagrams called plug-ins, contained in stubs (containers) on a
path. A stub can be either static (represented as plain diamond) which contains
only one plug-in, or dynamic (represented as dashed diamonds) which may con-
tain several plug-ins whose selection can be determined at run time according to
a selection policy. The main UCM constructs are: OR-Fork (alternative scenar-
ios), OR-Join (merging scenarios), AND-Fork (concurrent scenarios), AND-Join
(synchronizing scenarios). More details on the UCM semantics can be found
in [8].

3.2 Case Study –A Simple Telephony System

Figure 1 shows a UCM model that was originally introduced in [12], describing
the connection request phase in an agent based telephony system with user-
subscribed features.

It contains four components (originating/terminating users and their agents)
and two static stubs. Upon the request of an originating user (req), the origi-
nating agent will select the appropriate user feature (in stub Sorig) that could
result in some feedback. This may also cause the terminating agent to select
another feature (in stub Sterm) which in turn can cause a number of results in
the originating and terminating users. Stub Sorig contains the originating plug-
in whereas stub Sterm contains the Terminating plugin. These sub-UCMs have
their own stubs, whose plug-ins are user-subscribed features.

1. Stub Sscreen:
– OCS (Originating Call Screening): blocks calls to people on the OCS filtering

list.
– Default: used when not subscribed to any other originating feature.

Applying Reduction Techniques to Functional Requirements 141

Fig. 1. UCM model (Root Map)

(a) Originating plug-in (b) OCS plug-in

(c) Terminating plug-in

(d) CND plug-in (e) Default plug-in

Fig. 2. Plug-ins

2. Stub Sdisplay :
– CND (Call Name Delivery): displays the caller’s number on the callee’s device

(display) concurrently with the rest of the scenario (ringing).
– Default: used when not subscribed to any other terminating feature.

The set of global variables for the UCM map are: Busy (the callee is busy),
OnOCSList (the callee on OCS list), subCND (the callee is subscribed to CND),
subOCS (the caller is subscribed to OCS).

Each plug-in (Fig. 2) is bound to its parent stub, i.e., stub input/output
segments (IN1, OUT1, etc.) are connected to the plug-ins start/end points, as
follow:

1. Sorig Stub : Originating UCM. Condition: true.
Binding:((IN1, start), (OUT1, success), (OUT2, fail))
– Sscreen Stub

142 J. Hassine, R. Dssouli, and J. Rilling

• OCS UCM. Condition: subOCS. Binding: ((IN1, start), (OUT1, success),
(OUT2, fail))

• Default UCM. Condition: ¬ subOCS. Binding: ((IN1, start), (OUT1, con-
tinue))

2. Sterm Stub : Terminating UCM. Condition: True. Binding: ((IN1, start), (OUT1,
success), (OUT2, fail), (OUT3, reportSuccess), (OUT2, disp))
– Sdisplay Stub

• CND UCM. Condition: subCND. Binding: ((IN1, start), (OUT1, success),
(OUT2, disp))

• Default UCM. Condition: ¬ subCND. Binding:((IN1, start), (OUT1, con-
tinue))

4 Use Case Map Slicing

Intuitively, a UCM slice may be viewed as a subset of the behavior of a global
UCM. While a traditional slice intends to isolate the behavior of a specified set
of program variables, a UCM slice intends to isolate a set of scenarios that lead
to a specific behavior. When a UCM slicer is invoked, it takes as input:

1. A complete system requirement specification based on the UCM notation
2. A slicing criterion.

Note: The choice of slicing criteria will be discussed in detail in section 4.2.

Depending on the user’s interest, the UCM slicer computes a backward slice
with respect to the selected slicing criterion. While performing the backward
traversal, the slicer collects all the logical predicates, defined on UCM global
variables, leading to the execution of the targeted criterion and produces what we
refer to as reachability expression. The reachability expression is solved by finding
the initial variable values and/or the sequence of inputs that the environment
has to provide to be able to reach the slicing criterion.

4.1 Definitions

In order to focus on the key ideas of UCM slicing, we give the following defini-
tions:

Definition 1 (Use Case Maps). We assume that a UCM Requirement spec-
ification RS is denoted by (D, C, V, G, λ, Bc, S, Bs) where:

– D is the UCM domain, composed of sets of typed elements. D= SP ∪ EP ∪
R ∪ AF ∪ AJ ∪ OF ∪ OJ ∪ Tm ∪ ST ∪ Ab. Where SP is the set of Start
Points, EP is the set of End Points, R is the set of Responsibilities, AF is
the set of AND-Fork, AJ is the set of AND-Join, OF is the set of OR-Fork,
OJ is the set of OR-Join, Tm is the set of Timers, Ab is the set of Aborts
and ST is the set of Stubs.

– C is the set of components in RS (C = ∅ for unbound UCM)
– G is the set of guard expressions over V, where V is the set of global variables

in RS

Applying Reduction Techniques to Functional Requirements 143

Plug-in1 Plug-in2

Fig. 3. A UCM example

– λ is a transition relation defined as: λ=D×D×G
– Bc is a component binding relation defined as Bc =D×C. Bc specifies which

element of D is associated with which component of C.
– S is a plug-in binding relation defined as S = ST×RS×G.
– Bs is a stub binding relation and is defined as Bs =ST×RS×{IN/OUT}×

SP/EP. Bs specifies how the start and end points of the plug-in map would
be connected to the path segments going into or out of the stub.

Note: This definition represents our interpretation of Use Case Maps to pro-
vide the basis setting for our UCM slicing approach.

The UCM of Figure 3 is described as follows:

– D={S}∪{E1, E2}∪{a, c, d}∪{OF1}∪{Stub1}, where OF1 is the OR-Fork.
– C={C1, C2}; V={x, y}; G={x, ¬x, y, ¬y }
– λ={(S, a, true),(a, OF1, true),(OF1, c, x),(OF1, d, ¬x),(d, Stub1, true),

(Stub1, E2, true)}
– Bc={(S, C1),(a, C1),(OF1, C1),(c, C2),(E1, C2)}
– S={(Stub1, Plug-in1, y), (Stub1, Plug-in2, ¬y)}
– Bs = {(Stub1, Plug-in1,IN1, S1),(Stub1, Plug-in1,OUT1, E3),(Stub1, Plug-

in2, IN1, S2),(Stub1, Plug-in2, OUT1, E4)}
Where Plug-in1 is defined as: D={S1, f, E3}; λ= {(S1, f, true),(f, E3, true)};
C=V=G=Bc=S=Bs=∅
And Plug-in2 is defined as: D={S2, g, E4}; λ= {(S2, g, true),(g, E4, true)};
C=V=G=Bc=S=Bs=∅

In order to define a UCM slice, we introduce the concept of: reduced domain,
reduced stub, reduced component, reduced guard set, reduced transition relation
and reduced binding relations.

Definition 2 (Reduced UCM elements).
Let RS = (D, C, V, G, λ, Bc, S, Bs) be an UCM Requirement Specification.

– A reduced domain is a set D′ that is derived from D by removing zero, or
more elements (i.e., D′ ⊆ D).

– Since a plug-in is also a stand alone UCM, a reduced plug-in can be defined
in the same way as a reduced UCM(see definition 3).

144 J. Hassine, R. Dssouli, and J. Rilling

– A reduced stub is a stub that contains reduced plug-ins and may have fewer
plug-ins than the original stub.

– A reduced component c′ is a component that has less functionalities than the
original component.

– A reduced guard set G′ is a set G′ ⊆ G that is derived from G by removing
zero, or more expressions.

– A reduced transition relation λ′ is a relation derived from λ by removing zero
or more tuples (i.e., (d1,d2,e) ∈ λ and (d1,d2,e) /∈ λ′).

– A reduced component binding relation Bc′ is a relation derived from Bc by
removing zero or more couples (i.e., (d,c) ∈ Bc and (d,c) /∈ Bc′).

– A reduced plug-in binding relation S′ is a relation derived from S by removing
zero or more tuples.

– A reduced stub binding relation Bs′ is a relation derived from Bs by removing
zero or more tuples.

Given a UCM, our goal is to compute a UCM slice which corresponds to
a subset of the original UCM that preserves the semantics of the UCM with
respect to chosen slicing criterion.

Note: We can have as a result a set of flat scenarios (i.e., sequential traces where
no concurrency nor choices are involved. However the original UCM semantics
will not be preserved.

Definition 3 (Reduced UCM). Let RS = (D, C, V, G, λ, Bc, S, Bs) and
RS′ = (D′, C′, V′, G′, λ′, Bc′, S′, Bs′) be two UCMs. RS′ is a reduced UCM of
RS if:

– D′ is a reduced set of D
– C′ = c′1, c′2,. . . , c′n is a subset of C such that for k=1, 2,. . . ,n. c′k is a

reduced component of ck
– V′ is a reduced set of V and G′ is a reduced set of G
– λ′ is a reduced transition relation of λ
– Bc′ is a reduced component binding relation of Bc
– S′ is a reduced plug-in binding relation of S
– Bs′ is a reduced stub binding relation of Bs

4.2 Use Case Map Slicing Criteria

The selection of a slicing criterion depends on the particular analysis task. The
focus is frequently on the examining of the requirement with respect to particular
functionality, e.g a particular system feature or a particular behavior.

Definition 4 (UCM Slicing Criteria). Let RS be a Requirement Specifica-
tion. A slicing criterion (SC) for RS may be:

– A responsibility
or

– Start/end point

Applying Reduction Techniques to Functional Requirements 145

The slicing criterion may eventually include a UCM component. Based on
the task and the degree of system understanding a user may choose between
specifying only a responsibility or a start/end point as a slicing criterion (Ig-
noring where the responsibility takes place) or a responsibility and a specific
component (to focus the analysis on one specific component).

For the scope of this paper, we limit ourselves to unbound UCMs since the
reduced architecture (set of reduced components) can be easily added (from the
original UCM) once we obtain an unbound UCM slice.

4.3 Slicing UCM Constructs

Figures 4 and 5 show different UCM constructs and their potential reduced
versions after applying program slicing. E is a generic end point which is added
after the SC to form a valid reduced UCM. In the reduced OR-Fork (Figure
4 (aa)), only one path is included in the reduced UCM.In the reduced OR-
Join (Figure 4 (bb)), the non-determinism is preserved. In the reduced AND-
Fork (Figure 5 (cc)), the interleaving semantics is preserved, since concurrent
responsibilities SC and d may occur in different order(SC ;d or d ;SC).

(a) OR-Fork (aa) Reduced OR-Fork

(b) OR-Join

(bb) Reduced OR-Join

Fig. 4. UCM constructs and its reduced form(1) (SC is the slicing criterion)

Figure 5(gg) shows the slice obtained for a UCM with a dynamic stub. The
selection policy between plug-in1 and plug-in 2 is based on the value of global
variable C:(1) C=true→ Plug-in 1 (connects IN1 to OUT1)(2) C=false → Plug-
in 2 (connects IN1 to OUT2). Plug-in 1 is sliced out because its end point is
bound to end point E2. The resulting stub is a reduced stub with only one exit
point E1 containing plug-in 2. In this case, the reachability expression is reduced
to the plug-in selection condition: C=false.

4.4 UCM Slicing Algorithm

In what follows, we present our UCM slicing algorithm, which is based on a
backward traversal of the UCM specification. Figure 6 describes the high level
schema of the UCM Slicing algorithm.

146 J. Hassine, R. Dssouli, and J. Rilling

(c) AND-Fork (cc) Reduced AND-Fork

(d) AND-Join (dd) Reduced AND-Join

(e) AND-Join (ee) Reduced AND-Join

(f) Stub containing plug-in of Fig.(a)

(ff) reduced stub: contains reduced plug-in
of Fig (aa)

Plug-in1
Plug-in2

(g) Dynamic stub

(gg) Reduced dynamic Stub

Plug-in2

Fig. 5. UCM constructs and its reduced form(2) (SC is the slicing criterion)

Logical conditions are collected as the traversal progresses. Each stub defines
a level of abstraction and is treated separately. Therefore, we obtain reduced
stubs at different abstraction levels. Since a plug-in can be installed in many
stubs according to the chosen scenario, the user is asked to provide the targeted
stub to which the SC belongs. This information is essential because of the ‘many-
to-many ’ association between plug-ins and stubs.

It should be noted that the presented algorithm is not necessarily the most
time and space efficient approach to compute UCM slices. The algorithm will
terminate due to the backward traversal step and the fact that there is a finite
number of responsibilities in the UCM.

4.5 Solving the Reachability Expression

The Boolean Satisfiability Problem (SAT). The resulting slice is consid-
ered to be correct if and only if the set of computed conditions are satisfied.
Given a reachability expression the question is: Exist there any true/false as-
signments that will change the entire expression to true?. Since UCM deals only
with boolean variables, the reachability problem can be reduced to an instance of
the boolean Satisfiability Problem (SAT) [3]. SAT is the first known NP-complete
problem, as proved by Stephen Cook [3] in 1971. There are many approaches for
solving instances of SAT in practice. Just to name few: Davis-Putnam, GRASP,

Applying Reduction Techniques to Functional Requirements 147

Input:UCM + slicing criterion SC(Responsibility or start/end point)
Output: Reduced UCM, Reachability Expression
Step1:(*Searching SC*)

Traversal of the all UCM maps using a depth first algorithm
IF (SC not found) THEN notify the user;exit
ELSE IF (SC part of the root map) THEN Go to step 2

ELSE Read(targetStub) (*User is asked to provide the targeted stub*)
IF (plug in is part of Dynamic stub) THEN

globalReachability := selectionCond (*Selection policy for dynamic stubs*) ENDIF
Point to TargetedStub and start at SC
Go to step 2 ENDIF

ENDIF

Step2:(*UCM Backward Traversal: executed for every single path (recursively); Read
Previous element, collect conditions, etc. use access functions defined over the different
sets of the UCM definition*)

WHILE (not(startPoint)) DO Read_previsous(element)
rootStack := rootStack + ((element) or (stub to which the SC belongs))
IF (OR-Fork) THEN reachabilityExpression:=reachabilityExpression AND (OR-Fork condition)ENDIF
IF (OR-JOIN) THEN FOR (each alternative path i) create new stack (Stack_i)

to handle the alternative path and repeat step2 (recursive traversal)ENDIF
If (AND-Join) THEN FOR (each concurrent path) create new stack (stack_j)

to handle the concurrent path and repeat step2 (recursive traversal)ENDIF
IF (AND-Fork) THEN FOR (each concurrent path) create new stack (stack_k)

perform a forward traversal and save elements in the stack til reaching the end points ENDIF
IF (Static Stub) THEN rootStack := rootStack + StubName ENDIF
IF (Dynamic Stub) THEN select only plugins bound to the exit point

from which the backward traversal entered the stub ENDIFENDWHILE

Step3:(*Construct the UCM slice: Convert stacks into sequences*)

UCMSlice:= (generic end point, SC) // Initialize Slice
FOR (each stack) DO

stack.pop(element)
UCMSlice := UCMSlice + (element.construct)
IF (stack of dynamic plug-in) THEN

Add for each plug-in a new alternative to the reachability expression
global_ReachExp := globalReachExp OR (selection condition)

ENDIF
ENDFOR

Fig. 6. Slicing algorithm for unbound UCMs

WALKSAT, GSAT, CHAFF and SATO. Finding a solution to the reachability
expression is outside the scope of this paper. For a detailed coverage of this
problem refer to [6].

Conflicting Conditions and Non-Determinism. We may obtain unsatisfi-
able reachability expressions in the following situations:

1. Conflicting conditions: unsatisfiable set of conditions in successive alterna-
tives found in OR-Forks (For example: C1 and ¬C1), in selection policies of
nested dynamic stubs, etc.

2. Non-determinism

148 J. Hassine, R. Dssouli, and J. Rilling

Fig. 7. Simple telephony system slice with respect to SC:display

UCMs may contain some non-deterministic behavior due to overlapping
conditions (For example: in an OR-Fork, conditions Cond1:(C1=true) and
Cond2:(C1=true and C2=true) overlap when C2=true. This will result in a
non-deterministic execution. Hence, the resulting initial condition does not
guarantee the execution of the computed slice.

Note: Parnas tables can be applied at specification time to determine, if a
collection of conditions is deterministic and complete [15].

5 Discussion on the Application of UCM Slices

UCM slices help analyse to what extent the behavior and/or architecture of
the system might be affected by a specific maintenance task. For each slice, a
maintainer can identify the part of the particular scenario that contributes to
the slicing criterion (on both architectural and behavioral parts).

5.1 Applying UCM Slicing for the Simple Telephone System

In what follows, we apply the slicing algorithm for the Simple Telephone Sys-
tem presented in Section 3.2. Suppose that we want to perform an upgrade to
the CND feature. The upgrade will involve the display not only of the Caller’s
name but also his/her service provider. This maintenance task cannot take place
until the maintainer understands how the particular feature works and how it
interacts with other system features. Knowing all the details of the requirement
specification is almost never necessary; an experienced maintainer will try to
extract only just enough information to perform the task at hand. The goal is
to extract the scenarios leading to the display function (responsibility). Hence,
the slicing criterion is the responsibility display.

Figure 7 describes the resulting UCM obtained from the original UCM of
figure 1 with respect to the slicing criteria display. Figure 8 shows the corre-

Applying Reduction Techniques to Functional Requirements 149

((subCND = true) AND (Busy =false) AND (subOCS = false)) (1)
OR

((subCND=true) AND (Busy=false) AND (subOCS=true) AND
(OnOCSList=false)) (2)

Fig. 8. Reachability equation for responsibility display

sponding Reachability Expression.The first part of the reachability expression
((1) in Fig 8) illustrates the fact that the default plug-in is selected (subOCS =
false) and the second part of the expression ((2) in Fig 8) expresses the fact that
the OCS plug-in was selected.

In our example the Reachability Expression itself provides the initial values
of global variables leading to the slicing criterion and no further computation is
needed.

6 UCM Data Flow

6.1 Variable Assignment

So far, global boolean variables were assigned values only at initialization time.
However, UCM responsibilities and end points may affect the content of value
identifiers (”←−” denotes the assignment operator). As a result, the reachability
expression may not hold and the correctness of the computed slice is affected.

Case1: Suppose that in the UCM of figure 9, responsibility a:C←− ¬C. Con-
sequently, the new definition of variable C should be considered in the reacha-
bility expression : C = true, C ←− ¬C.

Case2: Suppose that in the UCM of figure 9, responsibility b:C←− ¬C. The
update happened after a path has been taken. The reachability expression should
not be affected and should remain: C=true.

This mixture of predicates and assignment statements should be eliminated
before applying a satisfiability algorithm [6]. In order to obtain a reachability
expression containing only predicates, we substitute the affected variable of the
assignment statement in the logical prediactes(also called unification). For ex-
ample: C = true, C←− ¬C =⇒ true=¬C. This problem is formalised and solved
by the two following rules:

Rule 1. If a variable has been assigned a new value before participating in a
choice condition, then the variables of the choice are are substituted with the
new variable assignment.

Fig. 9. Responsibilities updating boolean variables

150 J. Hassine, R. Dssouli, and J. Rilling

v ←−f(x1,. . .,xn), g(y1,. . .,yn,v)=⇒g(y1,. . .,yn,f(x1,. . .,xn))
where v is a boolean variable, f and g are logical expressions.

Rule 2. If a variable has been assigned a new value after participating in a
choice condition, the predicate condition is retained in the reachability expression
and the assignment is ignored.

g(y1,. . .,yn,v),v ←−f(x1,. . .,xn)=⇒g(y1,. . .,yn,v)
where v is a boolean variable, f and g are logical expressions.

6.2 Limitations

While the underlined rules are easy to apply and help reducing the reachability
expression, they are not applicable in the following circumstances:

Loops. When a UCM contains loops, the number of times a loop is visited
is known only at run time. Such information, which depends on the variable’s
initial values and guard’s evaluation, is needed in order to compute the slice and
to solve the reachability expression. For example, in the simple UCM of Figure
10(a), the number of times the loop is entered (zero or one time) is not available
when the backward traversal is performed.

In a more complex situation, where instead of having only a responsibility
like R2 of Figure 10(a) we have a dynamic stub where the selection of plug-
ins depends on the values of the variables at run-time. Hence, non executable
plug-ins may be part of the resulting slice whereas they should be left out.

Non-Determinism. Figure 10(b) shows a UCM with two interleaving respon-
sibilities R1 and R2. SC is reached only when R2 is executed after R1. One
possible option is to investigate all possible alternatives (i.e., execution paths).
Each alternative will be evaluated separately and considered in the resulting
slice if it is a consistent one. Therefore, the resulting slice will be the union of
all consistent executions. Another option is to keep the non-determinism. Then
the user can analyze the resulting slice and make the appropriate decision.

(a) UCM with a loop (b)Non-deterministic UCM

Fig. 10. Special cases

Applying Reduction Techniques to Functional Requirements 151

7 Related Work

Our work on UCM slicing builds on from prior work in the following two primary
areas: functional requirement slicing and architectural slicing.

7.1 Slicing of Hierarchical State Machines

Heimdahl et al. [7] apply slicing to the requirement specification language RSML
(Requirement State Machine Language). Their proposed method consists on
reducing the requirement specification based on a specific scenario of interest.
The reduced specification contains only the behaviors that are possible when
the operating conditions defining the reduction scenario are satisfied. Such a
reduced specification is called the interpretation of the specification under this
scenario. Next, the produced interpretation is sliced based on different entities
in the model to highlight the portions of the specification affecting an output
variable or a specific transition. This is achieved through a data and control
flow information analysis. The slices can be arbitrarily combined using standard
set of operations to construct a combined slice containing the information of
interests.

7.2 Slicing of State Based Models

Korel et al. [11] presented an approach of slicing EFSM (Extended Finite State
Machines) models. Their approach produces an EFSM slice based on EFSM
dependence analysis. The resulting slice may further be reduced by merging
states and transitions to construct a non-deterministic EFSM. This is called
non-deterministic slicing.

RSML and EFSM slicing emphasizes only the behavioral part of the require-
ment specification. The architectural part is left aside. Use Case Maps scenarios
combine both aspects (i.e., behavioral and architectural) in a single representa-
tion. Our proposed technique took advantage of this dual representation.

7.3 Architectural Slicing

Zhao [20] introduced a new form of slicing called the Architectural slicing to
aid architectural understanding and reuse. He applied slicing to an architectural
specification of a software system written in WRIGHT, which is an Architectural
Description Language (ADL). A Wright architectural specification of a system
is defined by a set of component and connector type definitions, a set of instan-
tiations of specific objects of these types, and a set of attachments. Attachments
specify which components are linked to which connectors. Each component has
an interface defined by a set of ports and each connector has an interface defined
by a set of roles. In order to compute an architectural slice, an Architecture in-
formation flow graph is constructed then a traversal algorithm is applied. The
reduced architectural description contains only the lines of ADL code that could
be associated with a particular slicing criterion. In [17, 20] the slicing criterion

152 J. Hassine, R. Dssouli, and J. Rilling

is either a set of ports of a component or a set of roles of a connector. Stafford
et al. [17] presented a closely related method to Zhao’s work. They introduced a
software architecture dependency technique called chaining. Their work consists
on extracting a chain of dependences (called links) between the specification’s
elements based on a set of ports of a component (slicing criterion).

8 Conclusion

In summary, our approach for slicing Use Case Maps allows an analyst to reduce
a requirement specification based on a selected slicing criterion. Our approach
is two tiered. First, we allow an analyst to reduce a UCM specification accord-
ing to a slicing criterion. Second, a reachability expression is attached to the
slice, which provides insight on the feasibility of the selected scenarios. We illus-
trated potential uses of UCM slicing in testing and requirement comprehension
of complex specification, by reducing the complexity of the given specification.
Furthermore, we see potential application domains for UCM slicing in feature
extraction, impact analysis, and reuse of requirements. In fact, while reuse of
code is important, more significant improvements in productivity and quality
can be expected from reuse of software designs and requirement patterns. By
slicing a UCM requirement, a system designer can extract reusable parts from
it, and reuse them into new system designs for which they are appropriate. As
part of our future work, we will investigate the use of dynamic slicing that may
significantly reduce the size of a UCM slice. Providing inputs helps reducing the
domain of the UCM and only the parts that comply with the input values are
kept in the final slice. Consequently, the reachability expression is also reduced.
We are currently investigating those research directions.

Finally the approach outlined in this paper is not limited to Use Case Maps
specifications. The approach is general enough to be applied to all languages
with guarded transitions such as activity diagrams part of UML.

References

1. Amyot, D., Eberlein, A.: An Evaluation of Scenario Notations and Construction
Approaches for Telecommunication Systems Development. Telecommunications
Systems Journal, 24:1, 61–94, September 2003.

2. Chang, J., Richardson, D.G.: Static and dynamic specification slicing. Proceedings
of the Fourth Irvine Software Symposium, April 1994.

3. Cook, S.: The complexity of theorem proving procedures. Proc. 3rd ACM Symp.
On Theory of Computing (1971) 151–158.

4. De Lucia, A.: Program slicing: Methods and applications. 1st IEEE International
Workshop on Source Code Analysis and Manipulation (Florence, Italy, 2001), IEEE
Computer Society Press, Los Alamitos, California, USA, pp. 142–149.

5. Gallagher, K.B., Lyle, J.R.: Using program slicing in software maintenance. IEEE
Transactions on Software Engineering, SE-17(8): 751-761, August 1991.

Applying Reduction Techniques to Functional Requirements 153

6. Gu, J., Purdom, P.W., Franco, J., Wah, B.W.: Algorithms for satisfiability (SAT)
problem: A survey. DIMACS Volume Series on Discrete Mathematics and Theo-
retical Computer Science, 1996.

7. Heimdahl, M.P.E., Whalen, M.W.: Reduction and Slicing of Hierarchical State
Machines. Proceedings of the 6th European conference held jointly with the 5th
ACM SIGSOFT international symposium on Foundations of software engineering,
Zurich, Switzerland, 1997, pp. 450–467.

8. ITU-T, URN Focus Group (2002): Draft Rec. Z.152 - UCM: Use Case Map Nota-
tion (UCM). Geneva. http://www.UseCaseMaps.org/urn/

9. ITU-T: Recommendation Z.150 (02/03), User Requirements Notation (URN) -
Language Requirements and Framework. International Telecommunication Union,
Geneva.

10. Korel, B., Laski, J.: Dynamic program slicing. Process. Letters, 29(3), Oct. 1988,
pp. 155–163.

11. Korel, B., Singh, I., Tahat, L., Vaysburg, B.: Slicing of State-Based Models. Pro-
ceedings of the International Conference on Software Maintenance 2003. IEEE
Computer Society, Washington, USA.

12. Miga, A., Amyot, D., Bordeleau, F., Cameron, C., Woodside, M.: Deriving Message
Sequence Charts from Use Case Maps Scenario Specifications. Reed, R., Reed, J.
(Eds) 10th SDL Forum (SDL’01), Copenhagen, 2001. Volume 2078 of Lecture Notes
in Computer Science, 268–287.

13. Millett, L., Teitelbaum, T.: Slicing Promela and its applications to model checking.
Proceedings of the 4th International SPIN Workshop, 1998.

14. Oda, T., Araki, K.: Specification slicing in formal methods of software engineering.
Proceedings of the Seventeenth International Computer Software and Application
Conference, November 1993.

15. Parnas, D.L., Madly, J., Iglewski, M.: Precise Documentations of Well-Structered
Programs. IEEE Transactions on Software Engineering, Volume 20, Number 12
(December 1994), 948–976.

16. Sloane, A.M., Holdsworth, J.: Beyond traditional program slicing. Zeil, S.J. (Ed)
Proceedings of the 1996 International Symposium on Software Testing and Anal-
ysis, 180–186, New York, January 1996. ACM Press.

17. Stafford, J.A., Wolf, A.L.: Architecture-Level Dependence Analysis in Support
of Software Maintenance. Proceedings of the Third International Workshop on
Software Architecture, November 1998, pp. 129–132.

18. Tip, T.: A survey of program slicing techniques. Journal of programming languages,
3:121–189, 1995.

19. Weiser, M.: Program slicing. IEEE Transactions on software Engineering, SE-
10(4):352–357, July 1984.

20. Zhao, J.: Applying slicing techniques to software architectures. 4th IEEE Int. Conf
on Engineering of Complex Computer Systems, 1998, Monterey, California, and
5th European Conf. on Software Maintenance and Reengineering (CSMR01).

Proving a Soundness Property for the Joint
Design of ASN.1 and the Basic Encoding Rules

Christian Rinderknecht

Groupe Léonard de Vinci, École Supérieure d’Ingénieurs Léonard de Vinci
D.E.R. Génie Informatique, F-92916 Paris La Défense Cedex (France)

Christian.Rinderknecht@devinci.fr

Abstract. The Abstract Syntax Notation One (ASN.1) can be used to
model types of values carried by signals in SDL or MSC but is also di-
rectly used by network protocol implementors. In the last few years, the
press has reported several alleged vulnerabilities of ASN.1 and the Ba-
sic Encoding Rules (BER) related to network protocols like SNMP and,
more recently, OpenSSL. In reality it has been shown that the security
issues (theoretically denial of service attacks) were due to low-quality
and poorly-tested compiler implementations. We use some formal meth-
ods to go further. We review formally the design of the BER themselves
and prove that, under some assumptions, it is flawless whatever the net-
work protocol is and whatever the values to be transmitted are. More
precisely, we start with a formal modeling of the BER which abstracts
away low-level details but captures the design principles. Then we de-
fine a soundness property stating that the composition of encoding and
decoding yields a value which is equivalent to the original. Finally we
prove that this property holds for all values specified with ASN.1.

Keywords: Abstract Syntax Notation One, ASN.1, Basic Encoding
Rules, BER, protocol, specification, vulnerabilities, formal methods.

1 Introduction

The wide variety of software and hardware architectures in distributed systems
and telecommunications makes it valuable to use a common high-level data nota-
tion in protocol specifications. To fulfill this need, the ISO organization and the
International Telecommunication Union (ITU) defined the Abstract Syntax No-
tation One (ASN.1) series of standards. ASN.1 [1,2,3,4,5] is a language for data
types allowing the protocol designer to capture numerous networking concepts,
such as protocol data units, without worrying about the possible environment
and implementation heterogeneity of the peers. The peers share a set of ASN.1
modules and agree upon a set of encoding rules, such as [6,7], which is a method
for encoding values produced at run-time by the communicating applications,
into series of bits. ASN.1 has been adopted for a wide range of applications, such
as network management, secure e-mail, mobile telephony, air traffic control etc.

D. Amyot and A.W. Williams (Eds.): SAM 2004, LNCS 3319, pp. 154–170, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Proving a Soundness Property for the Joint Design of ASN.1 and BER 155

In the last few years, the press has reported several alleged vulnerabilities
of ASN.1 and the Basic Encoding Rules (BER) related to network protocols
like SNMP and, more recently, OpenSSL. Each time, an accurate description
of the problem has been finally published, showing that the weakness lay in
implementations poorly written and insufficiently tested. The real vulnerabilities
were almost all related to improper decoding of ill-formed BER encodings (or
codes) causing buffer overflows, unspecified (non-deterministic) behaviours, stack
corruptions and, in the end, a possible denial of service.

From now on, it is important to understand and remember that ASN.1 and
the BER, intrinsically, have nothing to do with security or cryptographic pro-
tocols. Both are used for modeling and handling the data part of protocols, not
the control. As a consequence, the soundness property we aim at in this article
must not be considered as a security property about control but as mere correct-
ness of composition of encoding and decoding with the BER of values specified
by means of ASN.1. For instance, there are no attackers, no nonces etc. here.
Nevertheless, the difficulty is not lesser.

More precisely, in this work we want to prove that the design of the BER
themselves is flawless, whatever the network protocol is and whatever the values
to be transmitted are. To achieve this goal we need the support of formal meth-
ods. We start by a formal modeling of the BER which abstracts away low-level
details but captures the design principles. Then we define a soundness prop-
erty representing the security warranty we require and finally we prove that this
property holds for all values that can be specified with ASN.1.

2 Modeling

An ASN.1 compiler accepts a set of ASN.1 modules representing the Protocol
Data Unit (PDU) and, according to a given set of encoding rules and a peer-
specific target programming language, produces a set of data type definitions
in that programming language, together with a codec (encoder/decoder) for the
values to be exchanged. Then these pieces of source code are compiled and linked
separately against the communicating application. Let us make some remarks
and assumptions.

• The peers share a set of ASN.1 modules and the assumption that the encod-
ing rules are the BER. Without loss of generality, we can reduce the common
knowledge to one module and even a unique ASN.1 type.

• In order to be independent from the application programming languages,
we shall assume that both peers express directly their values in ASN.1 (in
reality they are produced in memory at run-time).

• At this stage, it is important not to be drawn into too much details due to
encoding and decoding series of bits. Instead, we chose to represent codes
with a more abstract syntax than bits, which will allow us to easily reason by
induction. That way we can convince ourselves that the underlying principles
of the BER are sound. In a second stage we can study separately the encoding
and decoding between our abstract codes and the transmitted bits.

156 C. Rinderknecht

• The standard document specifying the BER [6] says nothing about the de-
coding procedure except “It is implicit in the specification of these encoding
rules that they are also used for decoding.” We shall then explicitly pro-
pose a decoding from our abstract codes to ASN.1 (accordingly with the two
previous assumptions).

• The BER encodings may not be unique for a given value. Indeed the BER al-
low the sender to choose independently from the receiver different encodings
for a class of types. For instance, the encoding of the boolean value TRUE can
be any non-zero octet [6, §8.2.2] and the encoding of a SET value imposes
no order on the component encodings [6, note in §8.11.3]. Mathematically,
the BER define an application, not a function. (The restricted form of the
BER, called the Canonical Encoding Rules (CER) and the Distinguished
Encoding Rules (DER), are functions.) This leads us to require an equiva-
lence relationship between codes which would be enough discriminative but
would nevertheless make equivalent all the encodings of a value.

Proposition 1. All the BER encodings of a given value, according to a given
type, are equivalent.

Network. We assume that the network transfer does not alter the codes, despite
the publicised vulnerabilities mentioned in the introduction being due to possibly
forged BER codes. We ignore this point precisely because it has been shown that
these vulnerabilities were due to non-robust decoders, and our aim here is to
prove that the BER themselves are not flawed.

Well-Formedness. The front-ends of the ASN.1 compilers must check that the
type T and the value v are well-formed. These properties are intrinsic to ASN.1
and include, for the types, the uniqueness of names and tags of component types.
For instance T ::= CHOICE {a INTEGER, a REAL} and U ::= CHOICE {a INTEGER,

b INTEGER} are not well-formed. Indeed, the encoding of t T ::= a : 0 would be
ambiguous (i.e. non-deterministic) since 0 can denote either an INTEGER or a REAL

value and u U ::= a : 0 would make the decoding non-deterministic because the
tags of fields a and b are identical (INTEGER’s tag). In both examples, there would
be no way for the encoder or the decoder to solve the ambiguity.

Value Equivalence and Soundness. As we mentioned previously, the stan-
dard says little about the receiver’s behaviour, but, since the BER embed all
the tags in the codes, the uniqueness of tags is clearly intended to make the
decoding a function, i.e. it returns always the same value on the same code. This
is not stated explicitly in the standard and it is imaginable that the decoder
sorts some decoded parts before passing the whole input to the application, but
the standard seems to favour an asymmetric model in which the sender may
spend some time reorganising the encoded data (i.e. not following strictly the
order of the ASN.1 specification) and the receiver fastly decodes them as they
arrive, without any subsequent processing. With the same asymmetrical focus,
we believe that the receiver is the peer who is mostly concerned with security:
the soundness property we propose consists in defining an equivalence relation-

Proving a Soundness Property for the Joint Design of ASN.1 and BER 157

zx equivalent to y and z y

v

T

T

T

T T

x

v’ equivalent to v’’

T

ASN.1

Transfer assuming identity

Soundness: v’ equivalent to vv and T are well−formed

Network

Sender Receiver

type T

BER codes

Fig. 1. Soundness property with equivalence entailment

ship between ASN.1 values (therefore independent from the BER) and in stating
that the decoded value is equivalent to the (unknown) one the sender emitted.

Theorem 1 (Soundness). Let v be a well-formed value of the well-formed type
T. Then the BER decoding of any BER encoding of v is equivalent to v.

Code Equivalence. The figure 1 shows the model we described so far. We
understand better now why it is important for the equivalence on codes to be
enough discriminative: otherwise many codes would be equivalent despite their
ASN.1 values not being related. As we said, the BER embed all the tags (collected
from the type of the value) in the codes, so, if the type is well-formed, the codes
would capture enough structure (from the type) to allow a rather natural and
discriminative equivalence relationship to be defined. Moreover, the equivalence
will not need the knowledge of the type to be decided (tags in the codes suffice).
We already identified the need for an equivalence relation on ASN.1 values in
order to express a soundness property, and since, according to our method, we
define separately an equivalence relation on codes, we need the following property
to be satisfied.

Proposition 2 (Equivalence entailment). Let c1 and c2 be two equivalent
codes. Then the decoding of c1 is equivalent to the decoding of c2 assuming the
same type.

This way, we can maintain the soundness property despite the encoding pro-
cedure is not a function. In particular we suggest that the decoding is a non-
injective function (decoding of two different codes can lead to the same value,
e.g. TRUE).

Typing. In figure 1 we annotate the arrows between the “ASN.1” and the “BER
codes” layers with T to mean that a value is encoded following the type T or

158 C. Rinderknecht

a code is decoded assuming the type T. The encoding and decoding of a value
assumes that this value is of a given type. This does not imply that we need
to formalise the typing relation independently, it actually means that part of
the typing is embedded in the encoding and decoding relations. In other words,
the encoding only does the type-checking needed to allow the decoding with the
same typing assumption.

Subtyping. The BER do not take into account the subtyping constraints. Since
these constraints restrict the set of values of a given type, the set of values
considered by the BER is greater than the specified PDU. The Packed Encoding
Rules [7] (PER) consider the subtyping constraints and define a notion of PER-
visibility upon them. This also amounts to making an approximation of the exact
set of values. These behaviours are not a design flaw. Indeed, when the encoder
receives a value from its application, it should first check whether this value fits
the PDU and, if so, it would be encoded after. The decoder, on the other hand,
when receiving a code, decodes it first, then checks whether the value fits the
PDU and, if so, passes it to its application. Keep in mind also that the encoding
rules try to minimise the length of the codes according to different strategies
(contrast BER and PER), so they must approximate the data in order to find
some regularities — as a cloud of points can be compactly approximated by its
convex hull.

It is up to the ASN.1 compiler, not to the encoding rules themselves, to gen-
erate the code checking whether a value fits the PDU. The great expressiveness of
the ASN.1 subtyping paradigm makes it very difficult to calculate the exact set
of values of a subtype, even in particular to detect and reject empty PDUs [8].
However, the attacks mentioned earlier were based on forged BER codes which
were not out of the PDU but merely ill-formed or took advantage of recursive
types in order to overflow the receiver’s stack. In any case, the decoders (gener-
ated by ASN.1 compilers) must be robust and the limits we just mentioned about
determining the exact set of values of the PDU has more to do with ASN.1 mod-
ules validation rather than soundness of data transmission — at least until now.
Thereupon, the BER can take into account the structural subtyping constraints
(requiring a component to be ABSENT, PRESENT or to remain OPTIONAL).

Core ASN.1 Next, we note that the BER only apply to a subset of ITU-T Rec.
X.680 [2] (X.680 does not contain information objects, non-subtyping constraints
and parameterization). For instance, the BER standard does neither consider
COMPONENTS OF clauses in ASN.1 types nor selection types as well. The tagging
policy (EXPLICIT, IMPLICIT or AUTOMATIC) is not considered either. Another
example is BIT STRING values which are supposed not to be specified with named
bits. All this suggests that the whole ASN.1 can be reduced to an inner subset
which has the same expressivity, i.e. a sub-language which can express all what
can be expressed with the whole language and nothing more. For the sake of
brevity, in this paper we shall cope with X.680 and show that a simpler sub-
language exists by giving a series of rewriting rules which preserves the set
of values of a given type. In fact, it is even useful to reduce further our sub-

Proving a Soundness Property for the Joint Design of ASN.1 and BER 159

ReceiverSender

Network

Transfer assuming identity

z yx~ ~

type T

v~~

T T

~~

y x

T T

ASN.1
Core ASN.1

BER codes

Soundness: v’

v# v* v v’’v’

BER domain

T*

Fig. 2. Core ASN.1 and soundness property

ASN.1 (we call it BER domain in figure 2) into a smaller one that we call core
ASN.1. The purpose is to get rid of some more syntactic constructs which are
not fundamental, but are mere facilities, and thus to ease the formalisation and
ensure some properties. One technical side effect is that the equivalence on values
does not require the knowledge of their type, because the values in core ASN.1
are not syntactically ambiguous (e.g. 0 is a value for both REAL and INTEGER
types in full ASN.1, but in core ASN.1 it is only of INTEGER type — in the other
case it is rewritten 0.0). Another very interesting property is the following.

Theorem 2 (BER termination). The encoding of core ASN.1 values with the
BER always terminates.

The reason is that we detect and reject as illegal the infinite values, i.e. the
recursive values, during the reduction phase. If we want to convince ourselves
that the design of the BER is sound, we need to understand well ASN.1 and
how to reduce it to a manageable kernel.

Figure 2 gives the final model we arrived at. We note now v# and T# the
values and types in X.680, v∗ and T∗ the values and types in the BER domain,
and simply v and T when they are in core ASN.1. Let us note v′ ≈ v the
proposition “Value v′ is equivalent to value v.” Let us note c′ ∼ c the proposition
“Code c′ is equivalent to code c.” The figure 2 makes it clear that we need to
guarantee that all the encodings of v∗ are equivalent to all the encodings of v.

3 Core ASN.1

ASN.1 syntax is involved because it aims at allowing the specification of as
many networking concepts as possible. For instance types, values and subtyp-
ing constraints may depend on each other: a type may contain constraints (on

160 C. Rinderknecht

components) and values (e.g. default values), a value has a type and constraints
rely upon types (e.g. inclusion constraint) and values (e.g. value constraint). We
define core ASN.1 such that

• the default tagging mode of the module is EXPLICIT TAGS;
• tags obey the standard rules, like alternative types in CHOICE having distinct

tags etc.;
• the built-in types are explicitly tagged IMPLICIT and UNIVERSAL;
• tags are explicitly either IMPLICIT or EXPLICIT;
• IMPLICIT tags apply only to untagged types;
• tag values are numeric INTEGER values (not value references);
• there are no DEFAULT component types;
• there is no COMPONENTS OF clause;
• there are no ABSENT, PRESENT or OPTIONAL component constraints;
• there is no selection type, e.g. no T ::= i < U;
• the BIT STRING and INTEGER type do not define constants, e.g. no INTEGER {c(1)}

or BIT STRING {a(x)};
• the only BIT STRING values are series of bits, e.g. ’1110’B;
• ENUMERATED types define constants with explicit numeric integers;
• REAL values are not legal tokens for INTEGER values and conversely (e.g. 0 is

only of type INTEGER);
• REAL values do not use the (mantissa, base, exponent) form;
• there are no references in values (thus no recursive values).

We relax the first assumption we made in section 2 and assume now that
we have one ASN.1 module, syntactically correct with respect to X.680. It is
reduced to core ASN.1 by applying the following series of rewritings which do
not commute in general. For we lack of room to give the formal rewriting rules,
we only illustrate the process on short examples.

1. We remove the selection types, taking care of tags:
⎧⎪⎪⎨
⎪⎪⎩

A ::= [0] i < [1] B
B ::= [2] C
C ::= [3] CHOICE{i [4]D}
D ::= [5] INTEGER

→

⎧⎪⎪⎨
⎪⎪⎩

A ::= [0][4][5] INTEGER
B ::= [2] C
C ::= [3] CHOICE{i [4]D}
D ::= [5] INTEGER

Note that the selection types that do not define a unique type lead to recur-
sive type definitions whose pattern is X ::= X, as in

T ::= CHOICE {a a < T}

−→
{
T ::= CHOICE {a A}
A ::= a < T

−→
{
T ::= CHOICE {a A}
A ::= A

2. The top-level type references are unfolded, i.e. the type references at the
declaration level are replaced by the type they reference, as in

{
T ::= U (C)
U ::= REAL (D)

−→
{
T ::= REAL (D ^ C)
U ::= REAL (D)

Proving a Soundness Property for the Joint Design of ASN.1 and BER 161

Beware of the case of constrained references to SET OF types:
{
A ::= SET OF C
B ::= A (SIZE (7))

−→
{
A ::= SET OF C
B ::= SET (SIZE (7)) OF C

The result B ::= SET OF C (SIZE (7)) would be wrong!
This step is difficult because it removes all recursive types declarations that
do not lead to a uniquely defined type, like T ::= T or T ::= CHOICE {a a < T}

etc. (See step 1.)
3. The default values are expanded and the DEFAULT annotation is replaced by

OPTIONAL, like in the following example
{
v T ::= {}
T ::= SET {a U DEFAULT w}

→
{
v T ::= {a w}
T ::= SET {a U OPTIONAL}

4. The COMPONENTS OF clauses are expanded:
{
T ::= SET {COMPONENTS OF [6] A}
A ::= SET {a REAL}

→
{
T ::= SET {a REAL}
A ::= SET {a REAL}

If the tagging mode is AUTOMATIC TAGS, we must previously compute the cur-
rent component tags and then insert the components referred by COMPONENTS

OF.
⎧⎪⎪⎨
⎪⎪⎩

PDU DEFINITIONS AUTOMATIC TAGS ::=
A ::= SET {a SET OF B, COMPONENTS OF B}
B ::= SET {b [2] INTEGER}

END

−→

⎧⎪⎪⎨
⎪⎪⎩

PDU DEFINITIONS AUTOMATIC TAGS ::=
A ::= SET {a [0] SET OF B, b [1][2] INTEGER}
B ::= SET {b [2] INTEGER}

END

5. INTEGER and BIT STRING constants are replaced by their definition and re-
moved from their defining type:

{
T ::= INTEGER {c(x)}
v T ::= c

−→
{
T ::= INTEGER
v T ::= x

This step may reveal some recursive values, as in
{
T ::= INTEGER {c(v)}
v T ::= c

−→
{
T ::= INTEGER
v T ::= v

6. For BIT STRING values which are specified by means of a series of bit names,
we unfold their associated references and replace the value by an equivalent
string of bits:

{
T ::= BIT STRING {msb(x),lsb(y)}
v T ::= {msb,lsb}

→
{
T ::= BIT STRING
v T ::= ’10000001’B

162 C. Rinderknecht

assuming the excerpt x INTEGER ::= 7 y INTEGER ::= 0

Also, values in hexadecimal form are translated into binary form:

x U ::= ’A’H −→ x U ::= ’1010’B

7. We unfold the value references, disallowing at the same time the recursive
values, like v T ::= {v}

8. We unfold the ENUMERATED constants and add the missing integers:
{
T ::= ENUMERATED{a(v),b}
v INTEGER ::= 3

→
{
T ::= ENUMERATED{a(3),b(4)}
v INTEGER ::= 3

9. We unfold the tag values (this always terminates because there are no more
recursive values since step 7), checking that they are syntactically integers:

{
T ::= [APPLICATION v] IMPLICIT REAL
v INTEGER ::= 3

−→
{
T ::= [APPLICATION 3] IMPLICIT REAL
v INTEGER ::= 3

10. The tagging mode becomes EXPLICIT TAGS, like
⎧⎪⎪⎨
⎪⎪⎩

PDU DEFINITIONS IMPLICIT TAGS ::=
A ::= SET {a [0] SET OF B}
B ::= [1] CHOICE {b [2] REAL}

END

−→

⎧⎪⎪⎨
⎪⎪⎩

PDU DEFINITIONS EXPLICIT TAGS ::=
A ::= SET {a [0] IMPLICIT SET OF B}
B ::= [1] EXPLICIT CHOICE {b [2] IMPLICIT REAL}

END

11. We make explicit the tags of the built-in types:

A ::= INTEGER −→ A ::= [UNIVERSAL 2] IMPLICIT INTEGER

12. We reduce the IMPLICIT tags, as

T ::= [0] IMPLICIT [1]EXPLICIT [UNIVERSAL 9]IMPLICIT REAL −→
T ::= [0] IMPLICIT REAL

13. We apply and reduce the structural subtyping constraints ABSENT, PRESENT

and OPTIONAL, like

T ::= CHOICE{a REAL,b REAL} (WITH COMPONENTS{a(PRESENT)}) →
T ::= CHOICE {a REAL} (General case complex but tractable.)

It is important to understand that in core ASN.1 it is still possible that

• types have only infinite values: T ::= SET {a T}
• values are ill-typed: v REAL ::= ""

• values do not conform to all additional X.680 requirements, like

Proving a Soundness Property for the Joint Design of ASN.1 and BER 163

{
T ::= SEQUENCE {a BOOLEAN, b INTEGER}
t T ::= {b 7, a TRUE} -- illegal

• subtyping constraints are inconsistent: T ::= REAL (SIZE(7))

• subtypes are empty: T ::= SET ((SIZE(1))^(SIZE(2))) OF REAL

• subtypes have no value set: T ::= REAL (ALL EXCEPT T)

The reason why this is not a problem is that core ASN.1 has been defined
with the BER modeling in mind, in particular we do not aim here at a full
validation of ASN.1.

Abstract Grammar. We formally define the constructs of core ASN.1 by means
of an abstract grammar implemented with the algebraic data types of the func-
tional programming language Objective Caml (O’Caml, for short) [9], which is a
full-fledged programming language, as well as, historically, a logic meta-language.
The core ASN.1 parser output is a pair of a type environment and a value en-
vironment. The former is a mapping from type names to types, corresponding
to the type declarations in the ASN.1 specification, and the latter is a map-
ping from value names to values, corresponding to the value declarations. The
types and values are abstract syntax trees, complying with the abstract grammar.
We except from the abstract grammar the OBJECT IDENTIFIER and RELATIVE-OID

types and values for the sake of brevity. We also ignore the extension markers
and the subtyping constraints because they play no role in the BER [6, §8.1.1.4]
(however we considered some constraints at step 13).

Values. The abstract grammar for core ASN.1 values is defined as follows.
Firstly, we assume that the parser removes the ambiguity between enumera-
tion constants [2, §19] and value references [2, §11.4]. For instance, in a T ::=
b, the token b can denote either an enumeration constant or a value reference,
depending on the definition of type T. The ambiguity can always be removed
just by looking at the type definition (this is easy in core ASN.1). The type item
is used later in the enumerated constants and the type label denotes component
names.

type item = string and label = string
type core value = [‘SetOf of core value list | ‘SeqOf of core value list | ‘Set
of (label × core value) list | ‘Seq of (label × core value) list | ‘TRUE | ‘FALSE
| ‘Enum of item | ‘Int of int | ‘Real of float | ‘NULL | ‘MINUS INFINITY | ‘Chosen
of label × core value | ‘String of string | ‘BitStr of bool array | ‘PLUS INFINITY]

where ‘SetOf corresponds to values of SET OF and ‘SeqOf to values of SEQUENCE

OF types [2, §25, §27]; ‘Set models values of the SET type and ‘Seq models val-
ues of SEQUENCE types [2, §24, §26] (the argument is a mapping from labels to
values); ‘TRUE and ‘FALSE are obvious; ‘Enum models enumerated constants;
‘Int and ‘Real stand for INTEGER and REAL values (for simplicity, we assume they
fit the built-in arithmetic of O’Caml); ‘NULL models the special NULL value [2,
§23]; ‘PLUS INFINITY and ‘MINUS INFINITY correspond to PLUS-INFINITY and
MINUS-INFINITY; ‘Chosen corresponds to CHOICE values [2, §28] (thus its argument
is a pair of a label and a value); ‘String concentrates all kinds of character strings;

164 C. Rinderknecht

‘BitStr represents BIT STRING constants [2, §21] and OCTET STRING values [2, §22].
O’Caml values of type core value will be noted v.
type tagged type = tag list × core type
and tag = (tag class × int) × tag mode
and tag class = UNIVERSAL | PRIVATE | APPLICATION | Context
and tag mode = EXPLICIT| IMPLICIT
and core type = [‘CHOICE of label → tagged type | ‘OCTET STRING
| ‘SET of components | ‘SEQUENCE of components | ‘BIT STRING
| ‘SET OF of tagged type | ‘SEQUENCE OF of tagged type | ‘NULL
| ‘ENUMERATED of item → int | ‘INTEGER | ‘BOOLEAN | ‘REAL
| ‘String | ‘TRef of string]
and components = (label × tagged type × [‘OPTIONAL] option) list

The type tagged type models the tagged types of core ASN.1, in which a type
(core type) can be preceded by a list of tags. Constructor names of type core type
are almost self-explanatory, except ‘TRef which denotes type references. The type
components defines the components of SET and SEQUENCE core ASN.1 types: it is
a triple made of a label, a tagged type and an optional OPTIONAL component’s
attribute. O’Caml values of type core type are noted T and tagged type values
T. The mapping of type label → tagged type, which is the argument of ‘CHOICE,
is noted F . Values of type components are lists noted Φ of components noted ϕ,
e.g. ‘SET (ϕ ::Φ). An ASN.1 module is modeled by a type environment which is
modeled by a function Γ from type names to tagged types, since there are no
more value references in core ASN.1. Values of type tag are noted ψ and lists of
tags Ψ .

4 Coding and Decoding

BER codes. The structure of a BER code is based on the triple (tag, length,
contents). The tag field corresponds to the tag of the value type in ASN.1, the
length is the length of the contents field and the contents field is either another
code (in which case the code is said constructed) or the encoding of a primitive
type (in which case the code is said primitive). A primitive type is an ASN.1
built-in type which is not defined in terms of other types, e.g. the INTEGER type. If
the contents length is unknown at the encoding-time, it is possible for the coder
to provide a special dummy length and then close the code with an ending octet,
in which case the code is said to be in indefinite form, as opposed to definite form.
Definite form requires that the sender computes the whole code before sending it
(in order to be able to compute the contents length) and it allows the receiver to
allocate a bounded amount of memory to store the incoming code. The indefinite
form allows the sender to encode the value coming from the upper application as
it comes throughout a buffer (i.e. faster encoding within a bounded space) but
it requires the receiver to handle carefully the incoming stack size. Indeed, the
BER codes have a recursive structure and one of the advertised vulnerabilities
was due to a deeply embedded code in indefinite form which overflowed the
receiver’s stack because the implementation was mishandling the memory.

Proving a Soundness Property for the Joint Design of ASN.1 and BER 165

Abstract BER codes. A complete formalisation of the BER first requires a
model of the codes at the octet level, by means of a context-free grammar for
instance, and the proof of some relevant properties on it. For example, from
a soundness point of view, it is important to prove that the grammar is not
ambiguous, i.e. a given code cannot be described in more than one way (exactly
one derivation tree); from the decoder’s efficiency point of view, it is important
to prove that the grammar can be recursively analysed without backtracking and
with a small constant amount of look-ahead. Unfortunately, due to the limited
room, we have to skip this interesting stage. We shall assume that we already
deal with abstract codes, which correspond to the abstract syntax trees of the
compilers: an abstract code does not model the octets, but rather the structure
of the codes. As a consequence, the length field is not included in an abstract
code since, conceptually, an abstract code is a tree, not a series as the original
codes. Moreover, the concepts of definite and indefinite form are not relevant for
abstract codes, since they apply to octet streams only. The abstract codes are
thus modeled with an O’Caml type since these types correspond to trees with
user-defined nodes and leaves.

type primitive code = Pint | Preal | Pminus inf | Pplus inf| Pstring
| Pbit str | Pbool of int | Pnull

type code = (tag class × int) × contents
and contents = Primitive of primitive code | Constructed of code list

The type primitive code captures the codes of the values from types INTEGER,
REAL, BIT STRING, OCTET STRING, BOOLEAN, NULL and the numerous character string
types. The abstract primitive codes carry little discriminative information for a
given type; for example, all the INTEGER values are encoded into the same abstract
code Pint, but codes of REAL values are still different (Preal). This way we abstract
away octet-level details which would otherwise bring us too far. We nevertheless
keep the BOOLEAN standard encoding: value FALSE is encoded as (Pbool 0) and
TRUE is encoded as (Pbool n) for any n > 0. This allows to maintain the non-
determinism of the BER in the modeling. A code is a triple made of a tag class,
a tag number (int) and contents. The latter is either a primitive or a constructed
code. A constructed code is a list of codes.

Inference Rules. We define the encoding with a system of inference rules.
These are logical implications P1 ∧ P2 ∧ . . . ∧ Pn ⇒ C graphically represented as

P1 P2 . . . Pn

C

where the Pi are the premises and C is the conclusion. When there is no premise,
C is an axiom and is simply noted C. An inference rule can be interpreted also
from a computational point of view: in order to compute C, we need to compute
the Pi first (order is not specified). The rules and axioms can contain unquantified
variables (free variables). In this case they are implicitly universally quantified

(∀) at the beginning. For instance
P1(x) P2(y)

P (x, y)
Prop actually denotes the

166 C. Rinderknecht

property Prop which is ∀x, y.P1(x) ∧ P2(y) ⇒ P (x, y). A system of inference
rules is a non-ordered set of rules. A theorem is a judgement, i.e. a formal
statement. A demonstration is a proof tree whose root (the conclusion) is the
theorem, the inner nodes are the conclusions of its subtrees and the leaves are
axioms.

Abstract BER. Let us note Γ
 v : (Ψ, T) → c the judgement “In the environ-
ment Γ , the value v is encoded into the code c, following the type T with the
tags Ψ .” The environment models the module and is mandatory because recur-
sive types are allowed, thus type references do exist. Given a type name x, the
referred type is Γ (x). Using a system of inference rules to define the encoding
relation means that the successful encoding of a value matches a proof tree made
with the following rules:

n > 0
Γ
 ‘TRUE : ([τ, p], ‘BOOLEAN) → (τ, Primitive (Pbooln))

True

Ref
Γ
 v : Γ (x) → c

Γ
 v : ([], ‘TRef (x)) → c

π is a permutation on components
Γ
 v : (Ψ, ‘SEQUENCE (π(Φ))) → c

Γ
 v : (Ψ, ‘SET Φ) → c
Set

Γ
 v : (Ψ, T) → c

Γ
 v : ((τ, EXPLICIT) ::Ψ, T) → (τ, Constructed [c])
Tags

ϕ = (l, T, Some ‘OPTIONAL)
Γ
 ‘Seq M : ([ψ], ‘SEQUENCE Φ) → c

Γ
 ‘Seq ((l, v) ::M) : ([ψ], ‘SEQUENCE (ϕ ::Φ)) → c
SeqOptOut

ϕ = (l, T, Some ‘OPTIONAL) Γ
 v : T → c
Γ
 ‘Seq M : ([ψ], ‘SEQUENCE Φ) → (τ, Constructed C)

c = (τ, Constructed (c ::C))
Γ
 ‘Seq ((l, v) ::M) : ([ψ], ‘SEQUENCE (ϕ ::Φ)) → c

SeqOptIn

Due to the lack of space, we only presented the more interesting rules, of which
we shall comment the conclusions before the premises. Lists are noted between
brackets and a :: A is a list whose head is a and sub-list is A. A pair is either
noted (a, b) or a, b. Rule True illustrates a primitive encodings which is non-
deterministic (variable n is free). Pattern [τ, n] matches a list of a single element
which is a pair whose first projection is named τ and the second is named n. Since
we operate on core ASN.1, this tag is compulsorily the predefined UNIVERSAL and
IMPLICIT tag of INTEGER. Rule Ref matches the encoding of a type reference
‘TRef(x) with no tags: we encode the referenced type Γ (x). Rule Tags apply
when an EXPLICIT tag occurs first. Note that Ψ cannot be empty, i.e. [], since an
IMPLICIT tag only apply to a core type. Rule Set models the non-determinism
of the BER with respect to the SET type: any permutation of the sub-codes is
allowed.

Proving a Soundness Property for the Joint Design of ASN.1 and BER 167

Rules SeqOptOut and SeqOptIn model another non-deterministic be-
haviour: a component value whose type is OPTIONAL may not be encoded, as
a sender’s option. Hence these two rules have the same conclusion (it is the only
case), contrary to rule Set in which non-determinism is modeled by a free vari-
able (π). We did not model the encoding errors: at any time, given an environ-
ment Γ , a tagged type (Ψ, T) and a value v, if no conclusion Γ
 v : (Ψ, T) → �
matches then it is a run-time error (we can build no code c in place of �) and
the implementation must handle properly this situation in an unspecified way.
If the typing is statically done by the ASN.1 compiler, this should not happen,
but since we decided not to model the typing, the typing is partly included in
the encoding (i.e. at run-time).

Abstract Decoding. As we said in section 2, the BER decoding process is not
published, is up to the ASN.1 compiler implementors and can be modeled by a
non-injective function. We propose the following equational definition we expect
to be faithful. Let us note D(Γ, c, (Ψ, T)) the decoding of c in the environment
Γ according to type T tagged Ψ .

D(Γ, (((UNIVERSAL, 1), Primitive(Pbool 0))), ([], ‘BOOLEAN)) = ‘FALSE

D(Γ, (((UNIVERSAL, 1), Primitive(Pbool n))), ([],‘BOOLEAN)) = ‘TRUE

for all n > 0

D(Γ, c, ([], ‘TRef (x))) = D(Γ, c, Γ (x))
D(Γ, (τ, Constructed [c]), ((τ, EXPLICIT) ::Ψ, T)) = D(Γ, c, (Ψ, T))

D(Γ, (τ, κ), ([], ‘CHOICE F)) = D(Γ, (τ, κ), F (l))
where F (l) = ((τ, m) ::Ψ, T)

We do not provide the full definition for we lack of space and do not wish to
drown the reader into too much technical details anyway.

5 Equivalences and Soundness

Value Equivalence. It is possible to present a complete definition of the value
equivalence because we shaped core ASN.1 with this goal in mind. We note A@B
the catenation of lists A and B. We have

v ≈ v Reflexivity
v1 ≈ v2 ‘Seq M1 ≈ ‘Seq M2

‘Seq ((l, v1) ::M1) ≈ ‘Seq ((l, v2) ::M2)
Seq

Transitivity
v1 ≈ v2 v2 ≈ v3

v1 ≈ v3

∃l, v2, M
′
2, M2.M = M ′

2@ (l, v2) ::M2
v1 ≈ v2 ‘Set M1 ≈ ‘Set M2

‘Set((l, v1) ::M1) ≈ ‘Set M
Set

168 C. Rinderknecht

v1 ≈ v2

v2 ≈ v1
Symmetry

v1 ≈ v2

‘Chosen (l, v1) ≈ ‘Chosen (l, v2)
Choice

v1 ≈ v2 ‘SeqOf V1 ≈ ‘SeqOf V2

‘SeqOf (v1 ::V1) ≈ ‘SeqOf (v2 ::V2)
SeqOf

∃v2, V2, V
′
2 .V = V ′

2@ v2 ::V2 v1 ≈ v2 ‘SetOf V1 ≈ ‘SetOf (V ′
2@ V2)

‘SetOf (v1 ::V1) ≈ ‘SetOf V
SetOf

Our value equivalence amounts to a structural equality modulo permutations
on sub-values of SET and SET OF types.

Code Equivalence. The BER embed a lot of the type information into the
codes through the use of tags and a structure isomorphic to types. This makes
possible to define an equivalence relationship between codes that relies on two
codes only — no further context is needed.

Reflexivity
c ∼ c

Symmetry
c1 ∼ c2

c2 ∼ c1

Transitivity
c1 ∼ c2 c2 ∼ c3

c1 ∼ c3

m > 0 n > 0
(τ, Primitive (Pboolm)) ∼ (τ, Primitive (Pbooln))

True

τ = (UNIVERSAL, 16) c1 ∼ c2
(τ, Constructed C1) ∼ (τ, Constructed C2)

(τ, Constructed (c1 ::C1)) ∼ (τ, Constructed (c2 ::C2))
Seq/SeqOf

τ = (UNIVERSAL, 16)
(τ, Constructed C1) ∼ (τ, Constructed C2)

(τ, Constructed (c1 ::C1)) ∼ (τ, Constructed C2)
SeqOptOut

Contrary to value equivalence, there are too many cases and hence we can-
not present them all. Rule True defines the equivalence of two possibly different
encodings of the value TRUE. Rule Seq/SetOf specifies when (and how, in fact)
codes from values of types SEQUENCE and SEQUENCE OF are equivalent. By the way,
note that the tags of these two types are identical, hence, in theory, this rule
makes equivalent the encodings of, say, values of types SEQUENCE {a INTEGER}
and SEQUENCE OF INTEGER, as soon as the integer value is the same. Rule Se-
qOptOut is dual to the homonym rule of the abstract BER where an optional
value component is not encoded. Here, it is allowed to skip a sub-code when
decoding. We do not specify when a sub-code has to be skipped or in which code.
We leave this to a more refined specification and/or algorithm.

Equivalence Properties. The properties we expect to hold in our BER model
can now be restated in a formal way. First of all, proposition 1, which states that

Proving a Soundness Property for the Joint Design of ASN.1 and BER 169

all the BER encodings of a given value, according to a given type, are equivalent,
becomes through the use of formal notations:

Proposition 3. If Γ
 v : T → c1 and Γ
 v : T → c2 then c1 ∼ c2.

Next, proposition 2 which states that the decoding of two equivalent codes
lead to two equivalent values is now restated in the following way:

Proposition 4 (Equivalence entailment).
c1 ∼ c2 =⇒ D(Γ, c1, T) ≈ D(Γ, c2, T)

Finally, the soundness theorem 1, which says that the encoding and decoding
of a core ASN.1 value v, following a core ASN.1 tagged type T, leads to a value
which is equivalent to v, is now formally rephrased:

Theorem 3 (Soundness). If Γ
 v : T → c then v ≈ D(Γ, c,T).

We have no room to show the proofs of these properties because they contain
a great number of cases. One tricky aspect is the correct handling of sub-code
permutations when dealing with SET OF and SET values: for a given unknown
permutation on the sender’s side, we must explicitly construct the reverse per-
mutation on the receiver’s side.

6 Conclusion

We presented a formal review design of the BER. On purpose, we abstracted
away many low-level details in our model in order to understand, capture and
formalise what are, according to us, the main characteristics of the BER. There-
fore the further step would be to refine our model, by explicitly providing the
coding and decoding functions for the primitive types, by reckoning with the
various string types etc. Also we did not present evidences that the rewriting
from the BER domain to its core ASN.1 subset conserves code equivalence, as
pointed out in figure 2: this was a matter of room. We nevertheless think that
our work dispels clouds of suspicion — if any — about the soundness of ASN.1
and the BER. More precisely, we mean that the composition of encoding and
decoding yields a value which is equivalent to the original. The aim of our for-
mal review design is to raise user’s confidence on a solid ground and we doubt
whether twenty more pages of formulæ would have been a stronger argument for
the casual reader. Indeed, making explicit as many as possible assumptions and
checking their consistence is inherently reassuring. The mere fact that we had
to understand the rationale of the BER and put it into mathematical formalæ
really brought to the fore a new understanding. Also the interest in choosing a
system of inference rules to define our relationships is that this formalism closes
the gap between specifications and algorithms. Besides, the suggested use of
O’Caml as an implementation language is motivated because, as a descendant
of a logic meta-language, it is precisely suited to implement algorithms specified

170 C. Rinderknecht

by means of inference rules. The way of deducing them consists mainly in pro-
viding a deterministic and constructive refinement which is sound and complete
with respect to the initial specification. By constructive we mean for instance to
replace existential quantifiers, the symmetry rule etc. by explicit procedures, and
determinism means, in the context of this work, having no backtracking implied
(e.g. no overlapping conclusions).

References

1. Dubuisson, O.: ASN.1 — Communication Between Heterogeneous Systems.
Academic Press (2000) ISBN 0-12-6333361-0, http://www.oss.com/asn1/
dubuisson.html.

2. ITU-T Rec. X.680 (2002) or ISO/IEC 8824-1:2002: Information technology —
Abstract Syntax Notation One (ASN.1): Specification of basic notation. (2002)
http://www.itu.int/ITU-T/studygroups/com17/languages/X.680-0207.pdf.

3. ITU-T Rec. X.681 (2002) or ISO/IEC 8824-2:2002: Information technology —
Abstract Syntax Notation One (ASN.1): Information object specification. (2002)
http://www.itu.int/ITU-T/studygroups/com17/languages/X.681-0207.pdf.

4. ITU-T Rec. X.682 (2002) or ISO/IEC 8824-3:2002: Information technology —
Abstract Syntax Notation One (ASN.1): Constraint specification. (2002) http://
www.itu.int/ITU-T/studygroups/com17/languages/X.682-0207.pdf.

5. ITU-T Rec. X.683 (2002) or ISO/IEC 8824-4:2002: Information technology —
Abstract Syntax Notation One (ASN.1): Parameterization of ASN.1 specifi-
cations. (2002) http://www.itu.int/ITU-T/studygroups/com17/languages/
X.683-0207.pdf.

6. ITU-T Rec. X.690 (2002) or ISO/IEC 8825-1:2002: Information technology —
ASN.1 Encoding Rules: Specification of Basic Encoding Rules (BER), Canon-
ical Encoding Rules (CER) and Distinguished Encoding Rules (DER). (2002)
http://www.itu.int/ITU-T/studygroups/com17/languages/X.690-0207.pdf.

7. ITU-T Rec. X.691 (2002) or ISO/IEC 8825-2:2002: Information technology —
ASN.1 Encoding Rules: Specification of Packed Encoding Rules (PER). (2002)
http://www.itu.int/ITU-T/studygroups/com17/languages/X.691-0207.pdf.

8. Rinderknecht, C.: An Algorithm for Validating ASN.1 (X.680) Specifications using
Set Constraints. The Computer Journal 46 (2003)

9. Chailloux, E., Manoury, P., Pagano, B.: Programmation d’applications
avec Objective Caml. O’Reilly France (2000) 700 pp. English version at
http://caml.inria.fr/oreilly-book/.

Checking Secrecy by Means of Partial Order
Reduction

Cas J.F. Cremers and Sjouke Mauw

Eindhoven University of Technology,
Department of Mathematics and Computer Science,

P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands
{ccremers, sjouke}@win.tue.nl

Abstract. We propose a partial order reduction for model checking se-
curity protocols for the secrecy property. Based on this reduction, we
develop an automatic tool that can check security protocols for secrecy,
given a finite execution scenario. We compare this tool to several other
tools.

1 Introduction

The transformation of our society into an information society proceeds faster
than many have ever expected. Current society already relies heavily on net-
worked information systems with the associated security risks. Digital informa-
tion is not any more processed within a physically shielded environment, since
networked computers are susceptible to attacks and information has to be con-
veyed over possibly insecure communication channels.

Such communications may represent a value, which can be of a direct or in-
direct nature. Purchasing, for instance, a piece of music over the internet has
a clear direct value, while the indirect value of establishing one’s identity in an
e-banking application may be even larger. This value of information is closely
connected to the classical quality factors of information, which are confiden-
tiality, integrity and availability. Viewed in a different way, these three factors
are the possible security goals to be achieved by a security-aware application.
The most studied security goals are authentication (which counts as a form of
integrity) and confidentiality (or secrecy). In contrast to authentication, the no-
tion of secrecy does not leave much room for different interpretations. However,
there is still no definitive answer as to verify secrecy effectively.

Security protocols are communication protocols dedicated to achieving such
security goals. They can play a role at application level (e.g., establishing a user’s
identity in an electronic auction), but also at lower network levels (such as IPSec,
which is the internet protocol enhanced with security features for authentication
and confidentiality). Experience shows that it is not hard to develop a security
protocol that appears correct at first sight, but shows security breaches when
assessed more thoroughly. The reason is that it is very hard to protect against
all possible attacks of every possible intruder.

D. Amyot and A.W. Williams (Eds.): SAM 2004, LNCS 3319, pp. 171–188, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

172 C.J.F. Cremers and S. Mauw

Several decades ago, it was recognized that formal analysis of security pro-
tocols is imperative to establish secure information systems. Although formal
methods suffer from the well-known problem of scaling up to large systems,
security protocols have the advantage of being rather small, at least in their ab-
stract form. Many formal methods have been developed for or made applicable
to the area of security protocols.

Although the relatively small size of a security protocol makes it amenable to
formal analysis, the complexity of the verification problem makes computer sup-
port essential. Theorem provers and model checkers are the two major branches
of tool support in this area. Theorem provers assist the user in constructing
a formal correctness proof for the protocol. They often need human guidance
during the verification process. Model checkers, on the other hand, process the
provided input automatically. While theorem provers provide full evidence of the
correctness of a protocol, model checkers often only increase the confidence in the
protocol. A model checker searches through all possible behaviours (or rather,
states) of the protocol and checks whether they all satisfy the required security
property. In general this state space grows exponentially with the size of the in-
put problem, or may even be infinite. Therefore, much research is performed on
reducing the explored state space. A prominent approach is the so-called partial
order reduction [11]. It makes use of the fact that when exchanging two events
in a trace it sometimes will not influence the property checked for in this trace.
These traces are equivalent with respect to the checked property and only one
of these equivalent behaviours has to be explored by the model checker.

The goal of this paper is to study the development of a dedicated model
checker based on partial order reduction for verifying security protocols with
respect to confidentiality. This may seem a rather trivial research goal, and in-
deed there are many general purpose model checkers that have been successfully
applied to verifying secrecy in security protocols. However, we conjecture that
these general purpose model checkers cannot make full use of the structure un-
derlying the problem and thus are not fully optimized for this specific task.
Therefore, the underlying assumption which we want to validate here is that
a model checker dedicated to verifying confidentiality of security protocols will
outperform a general purpose model checker instantiated for the chosen setting.
We expect that studying the specific security goal, the specific intruder model,
the specific agent execution model, the specific agent communication model, etc.
gives insight in how to considerably reduce the explored state space. As a side ef-
fect, developing a dedicated model checker also allows us to develop a dedicated
input and output format. This makes it easier to support formats that are most
suited for displaying security protocols (and attack traces), such as Message Se-
quence Charts (MSCs). In this paper we make use of MSCs to express security
protocols, scenarios and attack traces. The first two are manually crafted, but
the attack traces are generated in an MSC format by our model checker.

This paper is structured in the following way. First we will discuss the general
setting of security protocols in Section 2. In Section 3 we will show an algorithm
for model checking secrecy, and propose a new algorithm. In Section 4 we discuss

Checking Secrecy by Means of Partial Order Reduction 173

Scyther, a tool we developed on the basis of the new algorithm. Section 5 is
reserved for discussing related work and some experiments. Finally, in Section 6
we indicate some future work and conclude.

Acknowledgments. We thank Erik de Vink for the discussions on security pro-
tocol semantics and Ingmar Schnitzler for programming a prototype implemen-
tation of our model checking algorithm. Lutger Kunst is acknowledged for his
contribution on displaying attack traces as Message Sequence Charts.

2 Security Protocols

In this section we will review some security protocol terminology and present
an example of a security protocol, the Bilateral Key Exchange Protocol (BKE,
see [1]). The goal of BKE is that two parties agree upon a freshly generated
secret key. Secrecy of this key is only one of the requirements of this protocol,
but we will not discuss the other requirements.

Figure 1 shows this protocol in a Message Sequence Chart. The two vertical
axes represent the two roles of the protocol, which are the initiator role I and
the responder role R. We list the initial knowledge of each of the roles above the
headers of the roles. Thus, the initiator has an asymmetric key pair (SKi,PKi)
and knows the public key of the responder PKr. Likewise, the responder has
asymmetric key pair (SKr, PKr) and knows the public key of the initiator. The
way in which this initial knowledge was established is not made explicit. The
initiator starts by creating a fresh nonce ni. This is a random, unpredictable value
which is used to make the exchanged messages unique and thus helps to counter
play-back attacks. The first message sent by the initiator consists of the pair
ni, I which is encrypted with the public key of the intended responder, denoted
by {ni, I}PKr. Encryption is used to guarantee that only the intended recipient
can unpack the message. Upon receipt of the message, the responder creates
his own fresh nonce nr and a fresh symmetric key kir that he wants to share
with the initiator. Goal of the protocol is to transfer this key to the initiator in a
secret way. Therefore, the responder replies with the message {h(ni), nr, kir}PKi.
With this message he proves that he was able to unpack the previous message
(by showing that he knows nonce ni, witnessed by sending a hash h(ni) of this
nonce). Furthermore, this message contains the key kir and a challenge nr. The
complete message is encrypted with the public key of the initiator to ensure that
only I can unpack the message. Finally, the initiator responds to R’s message by
sending a hash of nonce nr encrypted with key kir. Herewith he acknowledges
receipt of the previous message. At the end of the two roles we have listed the
security claims as a special kind of event. Both participants claim that whenever
they reach the end of their protocol the value of kir is not known to the intruder.
The meaning of such an event is that in every trace of the system in which this
event occurs the value of kir is not in the knowledge set of the intruder.

A system executing this protocol consists of a number of agents, each of which
may execute one or more instances of both roles (in parallel). When an agent

174 C.J.F. Cremers and S. Mauw

SKi, PKi, PKr

I
SKr, PKr, PKi

R

nonce ni

{ni, I}PKr

nonce nr
key kir

{h(ni), nr, kir}PKi

{h(nr)}kir

secret kir secret kir

msc BKE

Fig. 1. The Bilateral Key Exchange protocol with public keys

executes a role from a protocol, we call this a run. Therefore, a system consists
of a collection of runs exchanging messages to each other.

This simple model is not complete without describing the threats to which the
system is exposed. Thereto, we assume the so-called Dolev-Yao intruder model
(see [6]), which is considered the most general model of an adversary. This model
implies that the intruder has complete control over the network and that he
can derive new messages from his initial knowledge and messages received from
honest agents. Hereby we assume that the intruder can only decrypt messages if
he is in possession of the appropriate cryptographic key. Furthermore, we assume
that a number of agents may conspire with the intruder and try to mislead the
honest agents as to learn their secrets. Due to the capabilities of the intruder to
intercept any sent message and to insert any message which can be constructed
from his knowledge, we can model the existence of conspiring agents by assuming
that their secret keys are in the initial knowledge of the intruder.

Now we come back to the Bilateral Key Exchange protocol. The specification
from Figure 1 is correct if for any number of agents, executing any number
of runs, in presence of a Dolev-Yao intruder, whenever an honest run enters a
secrecy claim, the corresponding key kir is never exposed to the intruder.

We explain this in more detail using Figure 2. This Figure describes a sample
scenario of the BKE protocol consisting of three runs, involving three agents a,
b, and e, of which we assume that e conspires with the intruder. Thus we assume
that the intruder has knowledge of the secret key SKe of agent e.

Checking Secrecy by Means of Partial Order Reduction 175

SKa, PKa, PKb

a : I(a, b)
SKa, PKa, PKe

a : I(a, e)
SKb, PKb, PKa

b : R(a, b)

nonce na
var U, K

nonce na′

var V, L

nonce nb
key kab
var W

{na, a}PKb

b
{na′, a}PKe

e
{W, a}PKb

a

{h(na), U, K}PKa

b
{h(na′), V, L}PKa

e
{h(W), nb, kab}PKa

a

{h(U)}K

b
{h(V)}L

e
{h(nb)}kab

a

secret K secret kab

msc BKE scenario

Fig. 2. Sample scenario for the BKE protocol

Each run is an instantiation of one of the two roles specified in Figure 1. The
first run describes the behaviour of agent a performing the initiator role, expect-
ing to be engaged in an execution of the BKE protocol with responder b. Notice
that the incoming information (nonce nb and key kab) are stored in local vari-
ables (named U and K, respectively). The secrecy claim is therefore expressed
with respect to the contents of variable K. The second run is also a run of agent a,
performing the initiator role, but this time involved in a session with (conspiring)
agent e. The third run is a run of agent b as a responder, involved with initiating
agent a. In the second run, we did not include any secrecy claim. The reason for
this is that if an agent starts a protocol session with an untrusted partner, his
secrecy claim is bound to be violated and we will not consider this a protocol
flaw. It is not required that within a scenario there is a matching responder role
for every initiator role (or the other way around). The reason is that the intruder
may abuse such non-matching runs to break secrecy of one of the involved keys.

Looking at the scenario, we see that there are three different types of events (ig-
noring the declaration of constants and variables). The first type is a send event. A
send event may contain variables, but we require from the protocol that whenever
a send is executed all its variables have already been assigned a value to. This does
not hold for the second type of event, a read. Upon execution of a read event, its
variables become bound to a concrete value. Finally, we have the secrecy claims,
which, like a send event, have no uninstantiated variables upon execution.

176 C.J.F. Cremers and S. Mauw

The events on each run are executed from top to bottom. Because of the
chosen intruder model sending a message has no direct effect on a message re-
ception. Execution of a send merely means that the contents of the sent message
are added to the intruder knowledge. For instance, if the first run executes its
first event, this means that the intruder learns message {na, a}PKb. Since the
intruder does not possess the corresponding key SKb he cannot unpack this
message, so he can only store the complete message in his knowledge base. The
intruder can decide to route this message through to the third run. Executing
the first event of the third run then results in assigning value na to local vari-
able W and the protocol proceeds as expected. If the second run sends its first
message, the intruder will be able to unpack it and learn nonce na′, which he
may be able to use to his advantage. Nevertheless, the secrecy claims of the first
and third run will be valid in all possible execution orders.

In order to formally prove BKE correct for this scenario, we will have to
check every possible interleaving of the included runs. And in order to prove
BKE correct in general we have to do this for every finite scenario. Since this
is rather complex we will explain how model checking can be used to prove
correctness of BKE for a fixed set of runs.

3 Model Checking Secrecy in Security Protocols

We will develop our model checking algorithm in three steps. The first step yields
a simple algorithm which naively searches through the complete state space. In
the second step we transform this algorithm into an equivalent format that makes
it possible to analyse which parts of the state space can be pruned. Finally, we
present the reduced and efficient model checking algorithm.

In order to formulate our abstract algorithms we will need to formulate some
of the notions from the informal explanation in the previous section a bit more
precise.

Intruder Knowledge. The knowledge of the intruder is modeled as a set of
closed terms. If he learns a term, he can unpack it and learn all its sub terms.
The only restriction is that he can unpack encrypted terms only if he knows
the corresponding key. Adding a term to the intruder’s knowledge is denoted
by the operator ⊕.

Enabled. Executing a scenario boils down to executing the events of the runs
in a given order. For each run we keep track of which event is to be executed
next. This is the set of enabled events, with the restriction that a read event
is only enabled if the intruder can construct a matching term. Whenever
enabled, a send event and a secrecy claim contain closed terms, but a read
event may still contain variables. When executing a read event its contents
will be bound to a closed term.

Match. The match function determines which closed terms match a given read
event. When developing the algorithms below we had no specific match func-
tion in mind as long as it yields a finite number of matching closed terms for
every open term. It is a parameter of the algorithm. A straightforward match

Checking Secrecy by Means of Partial Order Reduction 177

function could require corresponding types of all sub-terms, but a more le-
nient match could, e.g., accept a nonce where a key would be expected and
thus make the protocol susceptible to type flaw attacks. We will come back
on type flaw attacks later.

After. After executing an event, the system comes into a new state. Variables
may become bound and the run whose event executes proceeds one step.
The after function used below models this transition.

3.1 Algorithm

Algorithm 1 describes a simple depth-first search of all system states. Provided
that the input scenario is finite and that the match function always returns a
finite number of matching messages, this algorithm checks whether the protocol
guarantees secrecy on the input scenario.

The recursive procedure traverseFull has three parameters: runs (the input
scenario), know (the intruder knowledge which is a set of closed terms, initialised
with the initial intruder knowledge), secrets (the set of closed terms claimed to
be secret up to now, initialised with the empty set). This procedure works as
follows. If there is a claimed secret known by the intruder, the algorithm halts,
signaling the violation. Otherwise, for every run, it is checked whether its first
event is enabled or not. All these enabled events can be executed in turn and
we recursively check whether the sub-tree resulting after such an execution still
guarantees secrecy. Since there are three types of events we have to determine
the effect of each of these types on the state of the system. If the selected event
is a secrecy claim, we know that its argument is a closed term and we add
this term to the set of claimed secrets. If the selected event is a send event,
we also know that its argument is a closed term and we add this term to the
intruder knowledge. Finally, if the selected event is a read event, it might still
have uninstantiated variables. Executing such an event means that the intruder
constructs a term from his knowledge, that matches the expected structure of the
input term. Since we have to check correctness of the protocol for every possible
behaviour of the intruder, we must recursively check every state resulting from
every possible matching. This explains the for-loop in this case.

3.2 Transforming the Algorithm

In the next step, we transform Algorithm 1 into an equivalent Algorithm 2,
which generates exactly the same traces. The transformation mainly consists of
replacing the outer for-loop by tail recursion. For this purpose, we use a choose
function, that picks any element from the set of enabled events. An element
is chosen, handled as in Algorithm 1, and the remaining elements from the
enabled set will be handled by the recursive call. To make this possible, a new
parameter except : P(Event) is added to the function. This set represents the
events that were already selected by the choose function at this point in the trace
construction. In this way, we have split the subtree in two parts, one containing
the traces starting with the chosen event, and one containing the traces where

178 C.J.F. Cremers and S. Mauw

Algorithm 1: traverseFull (runs,know,secrets)
if any secret in know then

exit (”attack”)
else

for all ev ∈ enabled(runs, know) do
if ev = secret(m) then

traverseFull(after(runs, ev), know, secrets ∪ {m})
end
if ev = send(m) then

traverseFull(after(runs, ev), know ⊕ m, secrets)
end
if ev = read(m) then

for all m′ ∈ match(know, m) do
traverseFull(after(runs, read(m′)), know, secrets)

end
end

end
end

this event is executed later. To facilitate this, we define a restricted enabled
function that captures the remaining set of traces.

enabled2(runs, know, except) = enabled(runs, know) \ except

3.3 The Refined Algorithm

In the final step we reduce the number of traversed traces while retaining cor-
rectness of the algorithm. This results in Algorithm 3. The rationale for this
reduction is that in many cases we can safely execute an event directly whenever
it is enabled, while ignoring traces where this event occurs later.

The following lemma implies that whenever two closed events can be exe-
cuted, it does not matter in which order they are executed. For send events
this is trivial. For read events we use the fact that the intruder knowledge is
non-decreasing, and for secrecy events we use the fact that the set of secrets is
non-decreasing.

Lemma 1. Suppose that in Algorithm 1 at a given state closed events e and f
from different runs can be executed. Then, after executing event e, event f can
still be executed. Likewise, after f , event e can still be executed. Moreover, the
states reached after ef and fe are both equal.

This does not imply that in a trace any two events may be exchanged. If the
second event gets enabled due to execution of the first event (e.g., if the first
event is a send and the second is the corresponding read) it is not possible to
execute the second event first. In conclusion, any event may be shifted towards
the beginning of the trace until the first moment when it was enabled. The above

Checking Secrecy by Means of Partial Order Reduction 179

Algorithm 2: traverseFull2 (runs,know,secrets,except)
if any secret in know then

exit (”attack”)
else

if enabled2(runs, know, except) �= ∅ then
ev = choose(enabled2(runs, know, except))
if ev = secret(m) then

traverseFull2(after(runs, ev), know, secrets ∪ {m}, ∅)
∗ traverseFull2(runs, know, secrets, except ∪ {ev})

end
if ev = send(m) then

traverseFull2(after(runs, ev), know ⊕ m, secrets, ∅)
∗ traverseFull2(runs, know, secrets, except ∪ {ev})

end
if ev = read(m) then

for all m′ ∈ match(know, m) do
traverseFull2(after(runs, read(m′)), know, secrets, ∅)

end
traverseFull2(runs, know, secrets, except ∪ {ev})

end
end

end

lemma states that this can be done without changing the final state. Since the
intruder knowledge and the set of secrets is monotonously non-decreasing we can
simply discard the traces where this same event occurs later.

This motivates why we can simplify Algorithm 2 by omitting the recursive
calls at the lines marked with ∗. Whenever a secrecy claim (which is a closed
event) is enabled we can execute it and leave out the case where it is executed
at a later moment. Likewise for a (closed) send event. Treatment of a read
event is a bit more complex. Although it is safe to directly execute every closed
instance of a read event and discard later occurrences of this instantiation of
the read, it is erroneous to discard of every later occurrence of the read event.
The reason for this is that the set of matching terms depends upon the intruder
knowledge and that this knowledge may increase during the course of execution.
Since these future matches are not possible at the current moment, we must
allow the read to execute at a later moment too. However, we will then only
have to consider new matches. All matches that are already possible in the
current state must be avoided. To this end we introduce an extra parameter
forbidden : Event → Knowledge which assigns the current intruder knowledge
to the considered read event. We limit the possible future matching to the cases
which are not forbidden by this parameter. This is expressed in the following
narrowing of the enabled set:

enabled3(runs, know, forbidden) =
{ev∈enabled(runs, know) | ev=read(m)⇒∃m′∈match(know,m)m

′/∈ forbidden(ev)}

180 C.J.F. Cremers and S. Mauw

In the algorithm, we use forbidden[ev → know] to denote the function that
maps ev to know, and all events e �= ev to forbidden(e).

Algorithm 3: traverse (runs,know,secrets,forbidden)
if any secret in know then

exit (”attack”)
else

if enabled3(runs, know, forbidden) �= ∅ then
ev = choose(enabled3(runs, know, forbidden))
if ev = secret(m) then

traverse(after(runs, ev), know, secrets ∪ {m}, forbidden)
end
if ev = send(m) then

traverse(after(runs, ev), know ⊕ m, secrets, forbidden)
end
if ev = read(m) then

for all m′ ∈ match(know, m) ∧ m′ �∈ forbidden(read(m)) do
traverse(after(runs, read(m′)), know, secrets, forbidden)

end
traverse(runs, know, secrets, forbidden[ev → know])

end
end

end

4 The Scyther Tool

Based on the proposed algorithm, we have developed a tool, called Scyther.
Given a protocol and scenario description, this tool will construct a model and
check it for the secrecy property.

The scenario consists of a number of runs. For each run, we define the protocol
and role, and which agents are involved. The protocol and scenario descriptions
are parsed by the Scyther tool and a model of the protocol with the scenario
is constructed. This model is then checked for any violations of the secrecy
property. Scyther enables the user to select various parameters such as the partial
order reduction to be used, or any pruning behaviour when an attack is found.

When model checking an unknown protocol, choices have to be made for the
scenario. With a small scenario, we will find a short attack quickly, but we can
never be sure. On the other hand, a large scenario can take a long time to model
check, even if there is a short attack. In many cases one would wish to have a
breadth-first search, looking for short attacks first. Scyther’s algorithm traverses
the state space depth-first, to avoid any excessive memory requirements. To
support some sort of breadth-first scan, Scyther allows for pruning the state
space in the number of runs, or the maximum length of the traces. It can also
automatically perform incremental state space searches, ranging over the number
of runs or the maximum length of the traces.

Checking Secrecy by Means of Partial Order Reduction 181

assumes e : R

a : I Intruder
assumes a : I

b : R

creates
ni�0

creates
nr�1, kir�1

knows
ne, e, b, a, h, PK, SK(e)

{ni�0, a}PK(e)

learns
ni�0

{ni�0, a}PK(b)

{h(ni�0), nr�1, kir�1}PK(a)

learns
{h(ni�0), nr�1, kir�1}PK(a)

{h(nr�1),kir�1}PK(e)

learns
h(nr�1),kir�1

{h(nr�1), kir�1}PK(b)

¬secret[kir�1]

msc attack on [bkepk]

Fig. 3. Example output: an attack trace

4.1 Attack Output

If an attack is found in the model, the tool generates an attack trace which is
output in either ASCII format, or optionally in LATEX format. Using the MSC
macro package (see [9]) this can be automatically translated into an attack dia-
gram. An example of the output can be found in Figure 3.

The presented attack is an attack to a slightly modified version of the BKE
protocol from Figure 1. We construct a flawed protocol by replacing the last
message {h(nr)}kir by {h(nr), kir}PKr. This may seem a futile modification,
but it introduces the possibility of a so-called man-in-the-middle attack. This
attack can be exploited using the scenario from Figure 2. There are only two
runs needed for this attack (see Figure 3): a run of agent a executing the initiator
role in a session with compromised agent e, and a run of agent b as a responder
to initiator a. The runs are numbered �0 and �1. This numbering is visible in the
naming of the local constants. So kir�1 means the (unique) key generated in run
�1. The attack goes as follows. First, a sends an initialisation message to e. This
message is intercepted by the intruder and because the intruder knows SKe he
can unpack the message and learn ni�0 (as expressed at the axis representing
the intruder). The intruder then constructs a new message, encrypted with the

182 C.J.F. Cremers and S. Mauw

public key of b and sends it through to b, forging that the message comes from a.
Then b sends a message encrypted with PKa, which the intruder cannot unpack.
However, he can use the run of agent a as an oracle to unpack this message, so
he routes the message unmodified to a, forging sender e. After a’s reply to this
message, the intruder learns key kir�1, which is supposed to be secret for b.

4.2 Some Internals

The model checking algorithm of Scyther mainly relies on term set manipulation.
Send events add terms to the intruder knowledge, and read events try to match
their patterns to the intruder knowledge. A large portion of the model checking
time therefore relies on operations on the intruder knowledge. Any non-empty
intruder knowledge is an infinite set, as it is closed under encryption and tupling.
However, because it is constructed from the empty set only by adding terms, it
can be represented by a finite set of terms.

Scyther is set up in such a way that it is easy to implement various partial
order reductions and compare them. We have used this feature to generate the
various test results.

5 Related Work and Experiments

There exist quite a number of security protocol model checkers. In this section
we will discuss only a small selection of tools, and only those that operate on
finite scenarios.

We have chosen to compare our work to the closely-related Brutus tool, the
Casper/FDR toolchain, and a fairly recent development based on Constraint
Logic programming. We will first explain something about the differences be-
tween these tools and ours, before proceeding to some experimental results.

5.1 Brutus

A tool that is fairly comparable to ours is the Brutus tool [2]. As Scyther, it is
based on partial order reductions, and also just explores a subset of all possible
traces. However, instead of only checking for secrecy, Brutus can check for other
properties as well.

Brutus reduces the set of traces on the basis of three observations:

– Internal events ordering.
– Send events ordering.
– Symmetry in the scenario.

The observations for the first two items can be explained as the fact that it is
not relevant for the security property in which order some internal events occur.
The same holds for send events: the order in which they occur can be neglected.
In comparison to Brutus, Scyther uses a more powerful reduction. Scyther does
not only consider the order of internal and send events, but that of all events.

Checking Secrecy by Means of Partial Order Reduction 183

For the third item, we have that in Brutus symmetry of the scenario is con-
sidered. Suppose in the scenario, there are two identical runs of the initiator
role, with the same parameters. For checking secrecy it is not relevant which run
executes its initial event first, as they are symmetrical. However, after the first
event has occurred, the symmetry is broken. The gain of exploiting symmetry is
considerably less than that of the other observations, as the authors of Brutus
note in [2]. In fact, in the optimal case, the symmetry reduction used in Bru-
tus decreases the number of states by a factor equal to the number of runs in
the scenario. The current version of Scyther does not consider symmetry in the
scenario.

Brutus uses a subset of ML as an input language for the protocol and the
scenarios.

5.2 Casper/FDR

The toolchain Casper/FDR [7] is probably the most well-known tool in security
protocol checking. It has been successfully applied to many protocols and has
an extensive array of features. It can check for various security properties.

Casper is a compiler that will translate a security protocol into a CSP process
algebra model. The requirements are translated into another CSP model. The
model checker FDR is then used to make sure that the protocol model is a
refinement of the requirements model. Any optimizations that FDR applies to
the model checking process are in fact general CSP refinement optimizations. It
is therefore difficult to exploit the specific structure of the problem.

The main problem of using this toolset is that it cannot handle larger pro-
tocols, because large amounts of memory are required to execute the refinement
check algorithm. The other methods that are discussed here exploit depth-first
search, which is very efficient in terms of memory usage.

On the positive side, many protocols have already been checked using this
toolset, and there is currently no other tool that can handle the same range of
security protocols or range of possible requirements as Casper/FDR.

Casper uses a custom input language specifically tailored for security protocol
checking. It is convenient for specifying a protocol, but we found that defining
a very specific scenario can be cumbersome.

The output of FDR consists of an attack trace of the model that was gen-
erated by Casper. This can be interpreted again by Casper, to yield an attack
trace on the same level as the one at which the protocol was specified. For some
attack types, Casper can do a superficial analysis of the attack and give some
hints on its nature, e.g., reporting that “Alice thinks she is talking to Bob”
when authentication is violated. However, in many cases we found it difficult to
interpret the actual attack.

5.3 Constraint Logic Based Approaches

The current developments in approaches based on Constraint Logic [10, 3] are
based on the idea that the instantiation of variables in the construction of a
trace might be postponed. In our model, variables are instantiated when they

184 C.J.F. Cremers and S. Mauw

first occur in a trace. This results in a large number of branches in the model,
one branch for each possible value of the variable.

We can try to postpone this instantiation as long as possible, by defining a
constraint for each variable. We define a simple constraint as a predicate v : K,
expressing that a variable v can be instantiated with any value from a knowledge
set K. The Constraint Logic algorithm postpones instantiation of a variable when
a read event is executed, and introduces a constraint for the message instead.
After a complete trace is constructed, it is checked whether the constraints can
be satisfied.

The algorithm on complete traces was suggested by Millen and Shmatikov in
[10], where they also proved that it terminates. The constraint logic algorithm
was later refined by Corin and Etalle [3] to allow for on-the-fly checking, which
reduces the number of states traversed significantly. It also allows for checking
of attacks in which partial runs are involved.

A strong point of this method is that it performs equally well for detecting a
class of so-called type flaw attacks as it does for non-type flaw attacks. A type
flaw attack occurs when a run is expecting to receive, for instance, a nonce,
but instead it gets sent an agent name, or a tuple (Key, Nonce). The constraint
logic tools currently can detect the class of type errors with the restriction that
tupling is taken to be non-associative. Scyther can only detect a small class of
type flaw attacks, in which one basic type is mistaken for another basic type,
e.g., when an agent name is mistaken for a nonce.

Both constraint logic tools use Prolog as input language for the protocol and
the scenarios. The output of the tools is an uncommented attack trace. It gives
almost no clues as to the nature of the attack, and it is up to the tester to try
and reconstruct what has actually happened.

5.4 Experimental Results

Given that the various approaches have different underlying models, it is quite
difficult to objectively compare them. Minor choices in the protocol or the sce-
nario result in performance changes that can be quite different for each approach.

We note that in general, experimental results are more often than not very
poorly documented, and not reproducible. To make sure our experiments are
reproducible we have set up a web page with all the data we used for our exper-
iments at [4], to make sure that these results may be verified. We are aware that
to give a complete analysis, it would be necessary to test the tools with several
types and sizes of protocols, and invoke each of these with several scenarios. Here
we will only test a single protocol, with scenarios that differ only in the number
of runs defined.

The experiments serve two purposes. The first purpose is to determine the
effect that our proposed algorithm has on the number of states that are traversed
in the system. This directly affects the performance of the tool. The second
purpose is to give some kind of performance comparison between our tool and
others. We will address these two issues in the next sections.

Checking Secrecy by Means of Partial Order Reduction 185

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1 2 3 4 5 6 7

nu
m

be
r

of
 s

ta
te

s
tr

av
er

se
d

number of runs

traverseFull
Brutus

traverse

Fig. 4. State reduction

Partial Order Reduction Effectiveness. One important validation of our
algorithm is the effectiveness of the partial order reduction. As we have men-
tioned already, other tools such as Brutus also use some kind of partial order
reduction. We claim however that our reduction is more effective.

In order to test this, we have conducted experiments with three different
algorithms implemented within the Scyther framework.

As an inefficient algorithm, we implemented traverseFull as in Algorithm 1.
We also implemented an algorithm that is as close as possible to the optimiza-
tions used by the Brutus tool, except that we did not implement the symmetry
reductions. Finally, we implemented our improved traverse as in Algorithm 3.

Using these three algorithms we tested the Bilateral Key Exchange protocol
for secrecy. As this protocol is correct, no attacks are found, and the complete
state space is traversed. At the end of each test, the algorithms report the number
of states traversed.

In Figure 4 the state space sizes are shown for each algorithm on the vertical
axis, using a logarithmic scale. On the horizontal axis we have shown the number
of runs in the scenario. When the running time of a test exceeded 24 hours, we
stopped the test.

These experiments clearly show that the partial order reduction is effective
for reducing the state space. Without any reductions, we could not test more
than three runs in a day. The new algorithm allowed us to check a scenario with
seven runs.

Performance Comparison. The second type of experiment is meant to com-
pare our tool with other tools, and is only measured in terms of computation
time. Please refer to our web page [4] for the details of the machine used.

186 C.J.F. Cremers and S. Mauw

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 2 3 4 5 6 7

tim
e

in
 s

ec
on

ds

number of runs

Constraint Logic Solver
FDR

Scyther

Fig. 5. Performance comparison

When model checking a scenario with a single run, or two runs, the algo-
rithms are generally very fast. In some cases this caused the experiments to be
immeasurable, reporting zero time usage. That is why we did not get sensible
results for one run with Casper/FDR and with one or two runs with Scyther.

For Scyther and the Constraint Logic tool we aborted the test after running
for 40 hours. In the case of Casper/FDR we did not reach this point, as the
machine ran out of memory. This is inherent in the way the tools work. Scyther
and the Constraint Logic tools use depth-first searches, and check each state for
the secrecy property. This results in memory usage that is linear in the number
of runs in the scenario, effectively making time the only limiting factor for check-
ing large protocols. FDR on the other hand constructs two models, and tries to
determine whether one model is a refinement of the other. This causes memory
requirements for FDR to be exponential with respect to the number of runs.

The results are summarized in Figure 5. On the horizontal axis we again find
the number of runs. The vertical axis is now the time taken by each test, on a
logarithmic scale. We can see that Scyther outperforms the other two tools, and
allows for checking larger models.

When we set up these experiments, we expected the constraint logic tools to
outperform Casper/FDR. As it turns out, Casper/FDR gains significant perfor-
mance at the cost of exponential memory usage.

6 Conclusions and Future Work

We have presented a new algorithm for model checking secrecy in security proto-
cols, based on partial order reductions. The new algorithm significantly reduces

Checking Secrecy by Means of Partial Order Reduction 187

the number of states that need to be traversed in model checking. As a results,
it becomes feasible to check more intricate protocol scenarios as well as more
extensive protocols.

The partial order reduction presented here was tailored specifically for the
secrecy property in security protocol verification. For this property the reduction
is sound and complete. However, there are many security properties, such as
synchronisation [5] or agreement [8], for which this reduction is not complete.
In the near future we will look into partial order reductions that are sound and
complete for other security properties. We will investigate whether we can use
these reductions to extend Scyther to be able to check a number of other security
properties as well.

Furthermore, our proposed algorithm has a broader application than only for
checking the secrecy property with a Dolev-Yao intruder. By varying over the
match function, the contents of the system state and the security predicate, we
are able to model check a wide range of security properties. We conjecture that
correctness of our algorithm only requires the following two properties.

1. If closed events e and f can be executed, then after executing e event f can
still be executed and the state reached after executing ef is equal to the
state reached after executing fe.

2. The security predicate P is a monotonous predicate in the state of the sys-
tem. By this we mean that if the system is in state σ and reaches state σ′

after execution of any closed event, then P (σ) ⇒ P (σ′).

In this way we can, for example, strengthen the notion of secrecy as to require
that trusted agents will also never learn the secret (unless they are explicitly al-
lowed to). This generalization also makes it possible to vary over the intruder
model. If we extend the state of the system with a buffer, containing sent mes-
sages and if we redefine the match predicate to take messages from this buffer
rather than from the intruder knowledge, we have defined an intruder with just
eavesdropping capabilities. Future work will examine the application scope of
this algorithm.

In the scenarios checked, the constraint logic approach did not turn out to be
very efficient in our tests. However, it has the advantage of being able to detect a
class of type flaw attacks. We are currently investigating whether the constaint
logic approach can be combined with the partial order reduction. This might
result in a more efficient algorithm for checking secrecy with type flaw attacks.

References

1. Clark, J., Jacob, J.: A survey of authentication protocol literature. Technical
Report 1.0 (1997)

2. Clarke, E., Jha, S., Marrero, W.: Partial order reductions for security protocol
verification. Tools and Algorithms for the Construction and Analysis of Systems.
Volume 1785 of Lecture Notes in Computer Science, Springer (2000) 503–518

188 C.J.F. Cremers and S. Mauw

3. Corin, R., Etalle, S.: An improved constraint-based system for the ver-
ification of security protocols. Hermenegildo, M.V., Puebla, G. (Eds.):
9th Int. Static Analysis Symp. (SAS). Madrid, Spain, Volume 2477
of Lecture Notes in Computer Science, Springer-Verlag (2002) 326–341
http://www.ub.utwente.nl/webdocs/ctit/1/00000096.pdf.

4. Cremers, C.: Scyther documentation (2004) http://www.win.tue.nl/
~ccremers/scyther.

5. Cremers, C., Mauw, S., de Vink, E.: Defining authentication in a trace model. Dim-
itrakos, T., Martinelli, F. (Eds.): FAST 2003. Proceedings of the first international
Workshop on Formal Aspects in Security and Trust, Pisa, IITT-CNR technical
report (2003) 131–145

6. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Transactions
on Information Theory IT-29 (1983) 198–208

7. Lowe, G.: Casper: A compiler for the analysis of security protocols. Proc. 10th
Computer Security Foundations Workshop, IEEE (1997) 18–30

8. Lowe, G.: A hierarchy of authentication specifications. Proc. 10th Computer
Security Foundations Workshop, IEEE (1997) 31–44

9. Mauw, S., Bos, V.: Drawing Message Sequence Charts with LATEX. TUGBoat 22
(2001) 87–92

10. Millen, J., Shmatikov, V.: Constraint solving for bounded-process cryptographic
protocol analysis. ACM Conference on Computer and Communications Security.
(2001) 166–175

11. Peled, D.: Ten years of partial order reduction. Proceedings of the 10th Interna-
tional Conference on Computer Aided Verification, Springer-Verlag (1998) 17–28

Finding Covert Channels in Protocols with
Message Sequence Charts: The Case of RMTP2

Löıc Hélouët

IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France
loic.helouet@irisa.fr

http://www.irisa.fr/distribcom/Personal Pages/helouet/LHengpage.html

Abstract. Covert channels are illegal information flows in systems. Re-
cent research has shown how to detect covert channels in scenario de-
scriptions. This paper recalls these results, and proposes a case study
illustrating how scenarios can be used to detect illegal information flows
from a scenario description of a protocol. Once a covert information flow
is discovered, its bandwidth is computed using the (max, +) algebra.

1 Introduction

The term covert channel has first been introduced by [11], and designates an
illegal information flow inside a system. Covert channels (or CCs for short) are a
threat for security: they allow information passing between parties that are not
allowed to communicate, or for which communications are monitored. Very often,
CCs use resources of a system in an obfuscated way to signal bits of information.
The “disk full channel” is a typical example: a user (called the sender) fills a
disk to pass bit 0, or leaves some free space to pass bit 1. Another user (the
receiver) tries to write on this disk, and decodes the bit stored according to the
occurrence of a disk full exception. Of course, this use of resources can result in
an important penalty for other users, even if the system does not need to fulfill
high security requirements or prevent information leaks.

CCs are often classified as storage channels (i.e., a resource is used to write
data, that can then be read), or timing channels (the response time of a system
can be modified in an observable way to pass bits of information). Clearly, almost
everything in a system can be used to pass information, and closing all covert
channels is considered as an impossible task [14], as it would necessitate to
remove even internal clocks in computers!

CCs are not only characterized by this storage/timing channel classification.
An important characteristics of a covert channel is its bandwidth, i.e., the num-
ber of bits per second that can be transferred using this channel. Usually, CCs
are quite slow when compared to the parasited system. According to the type
of system considered, and to the security level required, some bandwidths can
be considered as acceptable. However, [17] considers that CCs with a bandwidth
greater than 100 bits per second should be closed. Furthermore, the purpose of

D. Amyot and A.W. Williams (Eds.): SAM 2004, LNCS 3319, pp. 189–207, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

190 L. Hélouët

covert channels is not performance, but rather secrecy, synchronization between
several programs attacking a server, or billing systems bypassing.

The usual answer when a covert channel is found is to restrict the access to
the resource used to transfer data. But as already mentioned, this is not always
possible. Fortunately, closing a covert channel is not the only possibility to re-
duce its impact on a system. One can also add noise to reduce its bandwidth, or
monitor a specific channel to ban corrupted users. Several security recommen-
dations [4, 17] ask to perform a reproducible and systematic search for covert
channels, compute their bandwidth, and then apply a solution (closing, noise
insertion, monitoring) according to the system’s security needs. In addition to
this, [17] recommends to document all covert channels found with their scenarios
of use. These recommendations naturally lead to formal modeling and analysis
of systems.

Several model-based approaches to covert channel detection have been pro-
posed. Bell and La Padula [3, 2] propose a definition of legal communications in
a system: a security level is assigned to each object of the system, and there is a
security violation if an object at a level can send information to another object
at a lower level. Several approaches [1, 10] use this model to find unauthorized
communications between systems users. A more recent approach [5] is based on
the non interference relation, that says that A “interferes” with B if what A
does has an influence on what B can observe. Usually, the approach proposed by
non-interference is to partition a system in two levels, namely “high” and “low”,
and to deduce a non-interference property whenever a “low” process can get
information from a “high” process, hence resulting in the possibility to encode a
bit. Several approaches to non-interference have been proposed, through typing
[21](a system contains interferences if it can not be correctly typed), or using
process algebra [15]. These two approaches are based on an a priori definition of
“who is allowed to communicate with whom”, and communication between two
unauthorized parties is immediately translated into a covert channel presence.
However, covert information can also be passed over a legal communication,
which is called “legitimate channels”.

A reproach addressed to formal detection of covert channel is that models
are sometimes too far from the implementation. Indeed, some assumptions and
simplifications are made when a model is built. A formal analysis of a model
can hence exhibit covert behaviors that are not realistic for the implemented
system, or conversely miss some real covert channels. Note that CC search can
not in general be exhaustive, and that model-based approaches only provide an
additional help. As we are in general interested in finding upper bounds to CCs
capacities, one should pay attention that the assumptions made during formal
modeling do not minimize the bandwidth, hence giving an over optimistic view
of a system’s security. For a more complete bibliography on covert channels,
interested readers are referred to [20].

This paper describes an new approach to covert channels detection based
on Message Sequence Charts [8] and (max, +) algebra, and illustrates it with an
example. This approach to CC detection is based on High-level Message Sequence

Finding Covert Channels in Protocols with MSCs: The Case of RMTP2 191

Charts, and was first proposed in [7]. It assumes that covert channel can also
appear inside legal communications, and targets a specific covert communication
mechanism in protocols. Roughly speaking, there is a covert channel between A
and B if causal consequences of decisions of A can be observed infinitely often
and decoded by B to build a message. When a covert scenario is discovered,
its bandwidth is computed with the (max,+) algebra as proposed by [12]. This
approach is applied to a case study, the RMTP2 (Reliable Multicast Transport
Protocol 2) protocol [16, 22]. A covert channel in the data retransmission part of
RMTP2 is first identified, and the bandwidth of this channel is then computed
for a large range of parameters.

This paper is organized as follows: Section 2 roughly defines the approach
proposed in [7] to detect a potential covert channel, section 3 describes the part
of the RMTP2 protocol where a covert channel has been detected. Section 4
explains how to compute a bandwidth from scenarios, and section 5 applies this
method to the covert channel found in section 3. Section 6 concludes this work.

2 Covert Channels Detection

[7] has proposed an algorithm to characterize the presence of a covert channel
in a scenario description. This approach uses a formal representation of Message
Sequence Charts based on partial orders. Since [9], partial orders are an alter-
native representation to the algebraic semantics of MSCs [18, 19]. In fact, basic
MSCs are almost lposets, and the translation is quite natural. Let us recall some
basic notations and principles of this semantics. Basic Message Sequence Charts
are considered as partial orders, and High-level Message Sequence Charts are
seen as automata composing these orders.

Definition 1. A basic Message Sequence Chart is a tuple M = (E, ≤, α, φ, A, I)
where E is a set of events, ≤ is a partial order (reflexive, transitive, antisymmet-
ric) on these events, built from the order defined on instances and the causality
between message emissions and receptions. A is a set of action names, I is a
set of instances, and α : E −→ A associates an action name to each event,
φ : E −→ I associates an instance to each event (φ is the location of an event).

For a bMSC M , let us define by Min(M) the set of minimal events for the
causal order, i.e., the set of events in M that have no predecessor. The projection
of a bMSC M on an instance i ∈ I is noted πi(M), and is the restriction of M to
events situated on i. The main basic operators for Message Sequence charts are
alternative, loop, and sequential composition. Intuitively, sequential composition
merges two basic Message Sequence Charts along their common instance axes.
More formally, sequential composition can be defined as follows:

Definition 2. The sequential composition of two bMSCs M1 and M2 is the
bMSC
M1 ◦ M2 = (E1 � E2,≤1◦2, α1 ∪ α2, φ1 ∪ φ2, A1 ∪ A2, I1 ∪ I2), where
≤1◦2=

(≤1 � ≤2 �{(e, e′) ∈ E1 × E2|φ1(e1) = φ2(e2)}
)∗

192 L. Hélouët

Extending the definition of sequential composition, let us define Mn as the
bMSC Mn = M ◦ Mn−1 (with of course M1 = M) for all n > 1. Sequential
composition can also be defined for sets of bMSCs. Let Fa and Fb be two sets
of bMSCs. Fa ◦ Fb is the set {fa ◦ fb|fa ∈ Fa ∧ fb ∈ Fb}. MSC contain several
operators such as alternative, iteration, etc. These operator can be expressed by
means of inline expressions, or using High-level Message Sequence Charts, which
can be roughly defined as bMSC automata.

Definition 3. A High-level Message Sequence Chart (or HMSC for short) is a
tuple H = (N, −→, n0, F, M) where N is a set of nodes, −→⊆ N × M × N is
a transition relation, M is a set of basic MSCs, F is a set of final nodes. For a
peculiar transition t = (n, M, n′) ∈−→, l(t) = M will be called the label of t.

A path in a HMSC is a sequence of transitions p = t1.t2 . . . tk such that for
all i, the goal of ti is also the origin of ti+1. A bMSC Mp can be associated to
each finite path p = t1.t2 . . . tk by sequential composition of labels, i.e., Mp =
l(t1) ◦ l(t2 . . . l(tk).

A node n with several outgoing transitions is called a choice node. A choice
node is said to be local iff there exists an instance i ∈ I such that for any path
p leaving n, φ(min(Mp)) = {i}. We will say that node n is controlled by i.

The main idea proposed in [7] is to detect information flows from a scenario
description. For the sake of completeness, the whole definition of covert channels
is provided below. However, the readers may skip the rest of this section, and only
keep in mind that a covert channel is characterized by as an information flow from
a sender to a receiver. Several approaches based on non interference suppose that
an unique occasion to share a single bit of information is sufficient to characterize
a covert channel. However, [15] highlights that such covert channels’ bandwidth
tends towards zero, and that to be realistic, a covert channel should allow the
transfer of an unbounded number of bits. This supposes the possibility to iterate
a functionality of a protocol. Hence, in our scenario models, covert channels will
be characterized by a set of cycles of HMSCs, that contain a common choice
node controlled by the sender, and in which the receiver has several different
behaviors.

Several assumptions are made to identify covert channels in scenarios. First,
covert channels are used to transmit messages of arbitrary size. Hence, to trans-
mit a message, a sender should repeat some behaviors, and the notion of covert
channel is linked to cycles in the HMSC. The second idea for the kind of covert
channel detected is to consider that a sending instance performs choices which
causal consequences can be observed by the receiver. Hence, data encoding must
use choices controlled by the sender, and scenarios for which the projection on
receiving instance can be differentiated.

The last requirement is that the sending instance should keep control of the
covert channel during information exchange. For this reason, message transmis-
sion should not be performed through decisions after which the sender may lose
control of the protocol over an unbounded amount of time (either the protocol
reaches a sink node, and the message transmission is definitely broken, or the

Finding Covert Channels in Protocols with MSCs: The Case of RMTP2 193

protocol can stay in a cycle that is not controlled by the sender, and the trans-
mission can be delayed for an unlimited amount of time). These considerations
lead to the following definition:

Definition 4. Let S, R be two instances. There is a potential covert channel
from S to R at node nc if:

– there is a set C of simple cycles from nc to nc such that ∀p ∈ C, πR(Mp) �= ε
(where ε is an empty lposet),

– ∃c1, c2 ∈ C such that πR(Mc1) �= πR(Mc2)
– nc is controlled by S,
– all choice nodes that can enforce a path to leave C are either controlled by S

or by R. Formally, for all q = (n1, M1, n2) . . . (nk, Mk, n1) ∈ C, if there is a
node ni, i ∈ 1..k, which is not controlled by S nor by R, then for any tran-
sition (ni, M, n′

i) ∈−→, the path (n1, M1, n2) . . . (ni−1, Mi−1, ni).(ni, M, n′
i)

is a prefix of some path of C.

Note that C does not need to include all simple cycles from nc to itself.
Note also that a choice node n can be controlled by another instance than S or
R as long as the decision taken does not prevent from eventually getting back
to node nc. The definition of potential covert channels in scenarios only says
that there is a possibility of encoding information of unbounded size. However,
this definition does not mean that this message can be decoded by the receiving
instance. [7] propose a definition of an effective covert channel. A potential covert
channel is effective if one can build a transducer (a formal model of decoding
program) that takes as input an observation of the receiver (i.e., the labeling
of a linearization of (πR(l(C))∗)) and outputs the set of transitions that have
generated this observation, and that this transducer is functional (i.e., there is
no ambiguity for decoding the message read). However, this is out of the scope
of this paper, and for the sequel, one can only remember that the existence of
a covert channel is linked to the possibility of encoding information through
decisions of a sending instance, and to the existence of a decoder.

3 A Case Study: RMTP2

Let us illustrate the approach of previous section on a case study, the RMTP2
protocol. RMTP2 [16, 22] is a reliable multicast transport protocol. It is orga-
nized as a tree. Data sent on the RMTP2 tree originates from a source, which is
not a part of the tree. The root of the tree is called the top node, leaves of the
tree are called receivers. The source multicasts information to the complete
RMTP2 tree on a multicast channel. Receivers are the final recipients of the
information transferred. They are usually grouped according to their geograph-
ical situation. The intermediate nodes are called Control nodes, and mainly
forward packets. Some control nodes called Designated Receivers (or DR for
short) also have a retransmission function. Figure 1 illustrates this architecture.

Let us give an overview of RMTP2 nodes functionalities (mainly data trans-
port, tree integrity and congestion control) as detailed in [16]:

194 L. Hélouët

M
ul

tic
as

t

Source
Top Node

DR

DR

DR

Receiver

Designated
Receiver

Control node

Data flow

Control flow

Fig. 1. The RMTP2 protocol: architecture of the network

Receiver Connection: Receivers have to contact a control node to be con-
nected to a multicast channel. Upon successful connection, receivers are assigned
an identity.

Data Emission: Data packets are assigned a sequence number by the sender
node, and multicast on the data channel. When no data is available, for trans-
mission, the sender node can send Nulldata packets in order to start acknowl-
edgments collection, and maintain the data stream alive. In RMTP2, the data
multicast from the source is not mandatorily sent using the same network as the
control information. For example, data packets can be sent by a satellite while
control and retransmission packets transit through a ground network. However,
for the sake of simplicity, we will assume that the data and control network are
identical.

Data Retransmission: When a node has missed several Data packets, it can
ask a retransmission to its parent. Control nodes only forward retransmission
demands to the upper level. To avoid a congestion of the whole network when
losses occur, some designated receivers (DRs) keep a copy of Data packets, and
retransmit them to their whole subnetwork. Retransmission uses two kind of
packets. Hack packets from a node to its parent are used to send a bitmap
representation of received/lost Data packets in a data window. When packets
are declared lost, two cases can appear. If the parent node receiving hacks is a
simple control node, it aggregates the losses declared by its children, and sends
the result to the upper level in a new Hack packet. If the parent is a designated
receiver, it retransmits the lost data to all its children using Retransmission
packets. A receiver that has not received Data or Nulldata packets from its

Finding Covert Channels in Protocols with MSCs: The Case of RMTP2 195

parent, may consider that the parent has failed, and try to connect to another
branch of the tree. The RMTP2 specification says that data retransmissions have
priority on new data transmissions.

Fault Detection and Congestion Control: RMTP2 control nodes are equipped
with fault detection procedures that signal when a child node is not responding,
or when it loosing too many Data packets. Faulty nodes, that may slow down
the whole network, are ejected from the tree. To avoid congestion, limitations to
retransmission demands are also imposed. First, a receiver that loses too many
Data packets is banned from the RMTP2 tree. This prevents a whole region
from suffering a performance penalty due to a single faulty node. In addition to
this, retransmission demands do not concern a single packet, but a set of Data
packets, encoded as a bitmap. Finally, packets acknowledgment are not system-
atic and are either guided by a turn-based policy (that will be described later)
or by timeouts.

Of course, the description of RMTP2 given in this section is only a summary
of RMTP2 architecture and functionalities. For more complete descriptions, in-
terested readers should consult [16, 22]. This paper takes as example the behavior
of a designated receiver with several leaves as sons, and shows that the retrans-
mission mechanism in RMTP2 can be perverted to create a covert channel.
RMTP2 has several important parameters that influence its behavior:

– B: the branching factor, is the maximal number of children allowed for a
control node. This bound is also used to indicate the frequency of acknowl-
edgments. In order to avoid systematic acknowledgment of Data packets,
every receiver is allowed to send an Hack packet to its father node every B
packet. In fact, to avoid situations where all receivers acknowledge packets
at the same moment, each receiver is assigned an identity id < B, and sends
an acknowledgment upon reception of Data packet with sequence number n
such that n mod B = ID.

– S: the size in bits of the bitmap. S determines the maximal size of the data
window, i.e., the number of packets that can be sent by a source without
receiving an acknowledgment.

– L: Loss rate. The loss rate is the allowed ratio of missed packets. This ratio
is computed from the bitmap received in Hack packets. Faulty receivers that
exceed the maximal loss rate are ejected from the RMTP2 tree.

Let us assume a loss rate of 25% and a bitmap size of 16 bits. Let us denote by
(n)2 the binary representation of a number n, and by |P |1 the number of bits set
to 1 in a binary word. Considering these parameters, the interactions between a
peculiar receiver CR, its parent DR, and all other receivers can be depicted by
the HMSC of Figure 2. This description contains several simplifications. First,
all receivers except CR are gathered as a single instance “Other Receivers”.
Then, multicast messages, which do not exist within MSC are designed as pair
of arrows going from the emitting instance (DR) to receivers (CR and Other
receivers). A more general loop than what is currently proposed in MSC is also
used: it allows for iteration on the elements of a set rather than on a discrete

196 L. Hélouët

msc eject

Eject
CR DR

Receivers
Other

CR

Data

NullData

alt Data

NullData

DR

Hack(P)

msc MyData

Receivers
Other

DRCR

alt DataData

NullData NullData

Hack(P)

loop <0,B-2>

Retransmission

Eject

alt

msc OthersData

P > 0 ∧ |(P)2|1 > 4

P = 0

Eject

OthersData

MyData

P = 0 P > 0 ∧ |(P)2|1 ≤ 4

P > 0 ∧ |(P)2|1 > 4
Retrans

Receivers
Other

loop <n in P>

msc retransmission

CR DR

Retransmission(n)Retransmission(n)

P > 0 ∧ |(P)2|1 ≤ 4

Fig. 2. HMSC for RMTP2 retransmission mechanism

interval, hence allowing the expression loop p in P. However, these new features
can be considered reasonable and minor extension of existing MSCs (a proposal
for multicast definition already appears in [6]).

Several hypotheses are made to model the RMTP2 retransmission mecha-
nism. First, we consider that the multicast channel is the same as the control
tree, hence all Data or Nulldata packets pass through a parent node before
reaching a child. Then, we have considered that a copy of a requested packet
was always available when needed. Our last hypothesis is that Data/Nulldata
transmission by a control node is made after reception of an acknowledgment of
previous packet by a child node. This assumption is discussed with regard to its
influence on the upper bound for covert channels bandwidth in section 5.

The definition of covert channels only deals with HMSCs composing bMSCs
without inline expressions. However, HMSC of Figure 2 can be transformed into
HMSC of Figures 3 and 4 by instantiation of parameter P in all Hack messages
and by unfolding of all inline expressions representing bounded loops. From
now, HackCRi will denote the bMSC depicting an acknowledgment from the
considered receiver CR with bitmap value i. Similarly, HackOi will denote the
bMSC depicting an acknowledgment from another receiver with bitmap value
i. Retransi will denote the retransmissions performed by the designated re-
ceiver for a bitmap value i. Figure 4 shows several examples: Retrans61440 is
the bMSC depicting the retransmission for a bitmap value 61440, which binary
representation is 1111 0000 0000 0000 (the last 4 Data packets are declared lost).

Let us explain the HMSC of Figure 3. A Data/Acknowledgment phase is
performed B − 1 times. This phase consists in an emission of Data or Nulldata
packets, followed by an acknowledgment from one of the receivers. If the ac-
knowledgment contains more than 4 bits set to 1, the receiver is ejected from
the tree. This has no consequence for receiver CR. Otherwise, a retransmission

Finding Covert Channels in Protocols with MSCs: The Case of RMTP2 197

n0

ncr2

ncr3

NullDataData

Retransi

HackCR1HackCR0

Retrans1

HackCRjHackCRi HackCR216−1

Eject Eject

HackOk

Retransk

HackO1HackO0

Retrans1

B-1 times

HackO216−1

n1

n2

n3

ncr1

EjectO

Data NullData

Fig. 3. Instantiation of parameter P

of missed packets is performed. The Bth retransmission starts at node cr1. The
data/Nulldata phase is identical. When data is received, the receiver concerned
(the Bth receiver in our case) sends a Hack packet. If the bitmap contains more
than 4 bits set to 1, then CR is ejected from the tree. This leads to an end node
and CR can not receive the multicast stream any more and use it to maintain
a covert channel. For example, HackCR216 is an acknowledgment with bitmap
1111 1111 1111 1111, which leads to the ejection of CR.

The analysis of HMSC Figure 3 indicates the presence of a covert channel
from CR to other receivers starting at choice node ncr3. Indeed, there is a set
of cycles fulfilling our formal definition : each path starting with an HackCRp

where p is a bitmap with at most 4 bits set to 1 eventually gets back to node
ncr3. The covert channel contains all cycles leaving ncr3, i.e., the scenario for
this covert channel is the HMSC of Figure 3 where all paths from ncr3 to an end
node have been removed. The set of possible scenarios for the RMTP2 covert
channel (Covert) can be defined as:

198 L. Hélouët

Other
Receivers

Other
Receivers

Other
Receivers

Eject Eject

Other
Receivers

Other
Receivers

Other
Receivers

Other
ReceiversDR

bmsc HackO_2

Hack(1)

CRDR

bmsc HackCR_2

Hack(1)

Retransmission(13)

Retransmission(13)

Retransmission(14)

Retransmission(15)

Retransmission(15)

Retransmission(14)

CRDR

bmsc Retrans61440

Retransmission(16)

Retransmission(16)

bmsc Data

DR CR

Data

Data

DR CR

NullData

NullData

bmsc NullData

DR CR

bmsc EjectCR
bmsc EjectO

DR

Retransmission(1)

Retransmission(1)

SenderDR

bmsc Retrans1

DR

bmsc HackO_1

Hack(1)

CRDR

bmsc HackCR_1

Hack(1)

Fig. 4. bMSCs for Figure 3

(⋃
1<i<216,|(i)2|1≤4

HackCRi ◦ Retransi

)
◦ OthersB−1 ◦ {Data, NullData}

where

Others = {Data, NullData} ◦

⎛
⎜⎜⎜⎝

⋃
1<i<216,|(i)2|1≤4

HackOi ◦ Retransi

∪ ⋃
1<i<216,|(i)2|1>4

HackOi ◦ EjectO

∪ HackO0

⎞
⎟⎟⎟⎠

The main principle behind this covert channel is to create ad hoc bitmaps
to force retransmission of packets that are then observed and decoded by the
receiving instance. Every time instance CR has to acknowledge the last 16 Data
packets, it can chose an ad hoc value for the bitmap that is carried by the Hack
packet. This value should not contain too many lost packets, as this would lead to
CR’s ejection. Following this decision, the receiver of the CC, which can be any
of the other receivers, observes several retransmissions following a Data packet.
If the receiver knows the identity of CR in the tree (let us call it idCR), it only
has to observe retransmissions following Data packets with sequence number n
for which n mod idCR = 0. According to the number of packets retransmitted
and to the position in the bitmap of each packet, the corrupted receiver deduces
the value encoded by CR. If the position of CR is unknown, the receiver can
observe in parallel B − 1 flows, and deduce from what happens which flow is the
covert channel.

Finding Covert Channels in Protocols with MSCs: The Case of RMTP2 199

Note that the number of possible encoded values is not |Covert|, as the
corrupted receiver does not control the reactions of other receivers and their
losses. Hence, several observation performed by the receiver may be consequences
of the same value encoded by the sender. Note also that the receiver can be any
of the other receivers, as retransmissions are multicast to the complete subtree
below DR. For RMTP2 parameters B = 20, L = 25%, a corrupted sender is
allowed to create a fake bitmap every 20 Data packet. This bitmap is 16 bits
long, but the losses should not exceed 25% of the data window represented by
this bitmap (hence limiting the number of possible values encoded).

Maximal bandwidth evaluation has to consider pessimistic situations that
maximize the number of bits per second transmitted. Each path chosen from ncr3
encodes the same number of bits, which is computed as the base 2 logarithm of
the number of possible observations in the covert channel. Hence, in the RMTP2
covert channel, a similar number of bits can be sent when asking for up to 4
retransmissions. So, the emission time is not constant. Note also that the sending
instance performs an initial choice, but that other instances may also impose
retransmissions that will delay the next use of the channel. The bandwidth is
maximal when honest receivers do not lose Data packets, data retransmissions
are only due to requests from corrupted receivers, and only concerns a single
data packet. Hence, upon reception of each Data packet, all honest receivers
will answer with an Hack packet containing the empty bitmap. Note that other
receivers’ losses slow down covert transmissions, but do not prevent them. In
fact, they can be considered as noise addition to the covert channel (this issue
is discussed in the conclusion).

4 Bandwidth Evaluation

A bandwidth of the RMTP2 covert channel can be computed from the scenarios
identified in previous section. This is done with the (max,+) techniques for MSCs
proposed in [12, 13]. The main principles of this approach rely on computation
of mean cycle times, and are briefly recalled below.

Definition 5. Let M be a bMSC. One can associate to M two functions δ :
E −→ N and τ : E × E −→ N, that define respectively the duration of an
event and the duration of a message transmission. Abusing our notation, we will
consider that τ(e, e′) = 0 when e and e′ are not the emission and reception of a
message.

When dealing with time, actions, messages and so on do not need to be
considered. The only information of interest is the completion times of all events
on an instance, of a complete scenario, and the constraints between execution
times on instances. This can be expressed by a bipartite timed order, a kind of
timed abstraction of MSC behaviors.

Definition 6. A bipartite timed order(BTO for short) is a tuple O = (I0 ∪ I1,
≤, Δ), where

200 L. Hélouët

– I0 and I1 are copies of a set of instances I
– ≤⊆ I0 × I1
– Δ : I0 × I1 −→ N ∪ −∞. Δ(x, y) indicates the time elapsed between an

instant situated before the execution of the first event on instance x and the
last event on instance y. If there is no causal relation from x to y, then
Δ(x, y) = −∞.

Definition 7. A chain in a bMSC is a sequence of events c = e1 . . . ek such
that ∀i ∈ 1..k − 1, ei < ei+1. The duration of a chain c is the value d(c) =
δ(e1)+τ(e1, e2)+δ(e2)+ . . . τ(ek−1, ek)+δ(ek). Using this value, one can define
the maximal duration md(e, e′) between a pair of events e and e′ that are causally
related as

md(e, e′) = max{d(c)|c chain from e to e′}
To obtain a BTO from a bMSC, one has to compute chains that begin on an

instance and end on another. The timed order associated to a bMSC M = (E, ≤
, α, φ, A, I) with durations τ and δ is the order OM = (I0 � I1,≤O, ΔM), where,
I0 and I1 are disjoint copies of the set of instances I, ≤O= {(x0, y1)|∃e, e′ ∈≤
∧φ(e) = x,φ(e′) = y}, and ΔM is the function defined as follows: for each pair
of instances, x and y, we define

ΔM (x, y) =

{
max

e,e′∈φ−1(x)×φ−1(y)
{md(e, e′)} if ∃e, e′ ∈ φ−1(x) × φ−1(y) | e ≤ e′

−∞ otherwise

Definition 8. The duration D(M) of a bMSC M = (E, ≤, α, φ, A, I) is the
maximal duration for all pairs of instances in M , i.e., D(M) = max

x,y∈I2
{ΔM (x, y)}

Usually, bandwidth is not given by the durations of a single finite scenario,
but rather by mean duration of infinite repetitions of a scenario. The asymptotic
mean duration of an asymptotic behavior is defined by:

m(Mω) = lim
n→+∞

1
n

D(Mn)

The asymptotic delay between two instances x and y is defined similarly, i.e.,

mx,y(Mω) = lim
n→+∞

1
n

ΔMn(x, y)

The (max, +) algebra provides efficient means to compute these values. Note
that the asymptotic mean duration can be lower than the duration of M as
the systems described by MSCs are asynchronous. Hence, before starting a new
iteration of a behavior M , an instance does not need to wait for the termination
of M . Let us get back to our covert channels. Suppose that a MSC M can be
used to transfer b bits of information from x to y. Then, the bandwidth of a
covert channel that sends infinitely often a value encoded by M is:

Bw =
b

mx,y(Mω)

Finding Covert Channels in Protocols with MSCs: The Case of RMTP2 201

5 Application to RMTP2

Let us consider a RMTP2 tree with the following parameters: a bitmap size
of 16 bits, and a maximal loss rate of 25%. The number of 16 bit bitmaps
is 216, but all bitmaps can not be used to encode a value trough retransmis-
sions, as declaring too many lost frames would result in ejecting the sender
from the RMTP2 tree, which must be avoided. Usable bitmaps should con-
tain at most 4 bit set to 1. Hence, the number of possible combinations is∑4

i=1 Ci
16 =

∑4
i=1

16!
i!(16−i)! = 2516. Hence, there are 2516 possible combina-

tions of bits, and each one encodes b = log2(2516) = 11.297 bits of information.
The bandwidth of our covert channel is maximal for an infinite repetition of the
smallest scenario that can encode information. This smallest scenario is obtained
when all receivers except CR send a Hack with no losses (Hack(0)), and when
the fake bitmap created by the corrupted receiver has only one bit set to 1. The
shortest scenario to pass information requires only one retransmission, and is
depicted in Figure 5.

To simplify the calculus, let us suppose that all events (message emissions,
receptions, and actions) have the same duration D, and that message transmis-
sion takes T ms. With these parameters, one can compute symbolic values for
the bipartite timed order associated to scenario of Figure 5. The result is given
Figure 6. Let us comment the values labeling edges of this BTO. The edge from
CR0 to CR1 is labeled by (4B + 1).D + 2B.T . This means that a corrupted
receiver must wait (4B + 1).D + 2B.T ms between two consecutive emissions
of a fake bitmap. Note however that a similar computation can be performed
when each event and each message transmission have a different duration (see
[12] for details).

loop <0,B−2>
Data(n) Data(n)

Hack(0)

Data(n) Data(n)

Retransmission(1) Retransmission(1)

Hack(P)

Receivers
Other

DRCR
bMSC Shortest

Fig. 5. Shortest scenarios

202 L. Hélouët

Other
Receivers 0

CR1 Other
Receivers 1

(4
B

+
1)

.D
 +

 2
B

.T

(4B+1).D + 2B.T

CR0 DR0

(4
B−3)

.D
 +

 (2
B−3)

.T
(4B−2).D

 + (2B−2).T

DR1

(4
B

−
2)

.D
 +

 (
2B

−
2)

.T

(4
B

−
1)

.D
 +

 (
2B

−
2)

.T

4B.D
 + (2B−1).T

4B
.D

 +
 (2

B−1
).T

4B.D + (2B−1).T

Fig. 6. Bipartite timed order for minimal scenario

CR0 DR0
Other
Receivers 0

CR1
DR1

Other
Receivers 1

962
940

940
918

940 916

894

916
962

Fig. 7. Values for B=20, T=20, D=2

Let us assume that all messages are sent within T = 20ms, and that all
internal events are performed in D = 2ms. For a branching factor B = 20, the
bipartite timed order for the minimal scenario of Figure 5 is given in Figure 7.
The average duration mdCR,O(shortestω) is 962 ms. The bandwidth for these
parameters is Bw = 11.29∗1000

962 = 11.74bits/sec.
As one can see, the maximal duration of a scenario is (4B+1).D+(2B).T . The

asymptotic mean duration of a transmission between a corrupted receiver and
another anonymous receiver in the same subtree is also (4B+1).D+(2B).T . Note
that that the mean cycle duration is not always equal to the maximal duration
of the bipartite graph. In our case, as the last Data message must be received
before preparing a new fake bitmap, it creates a kind of acknowledgment. So,
the fact that all instances are synchronized on the rhythm of the CC sender is
not surprising. However, for specifications with more asynchronism, the mean
asymptotic duration between two chosen instances can be much lower than the
maximal duration in the bipartite graph, as transmissions do not need to be
acknowledged and hence can be buffered in the system. Note that dividing B by
2 is equivalent to placing two corrupted receivers instead of one. Figure 8 below
shows how the bandwidth evolves for various values of T and B when D = 2.

Finding Covert Channels in Protocols with MSCs: The Case of RMTP2 203

Bits/sec

B
T

40 50 60 70 80 90 100
20406080100120140160180200

0
100
200
300
400
500
600

302010

Bandwidth

Fig. 8. Covert channel bandwidth for different values of B and T

Data(n) Data(n)
Hack(0)

Data(n) Data(n)

Hack(0)

Data(n) Data(n)

B times

Data(n)
Data(n)

Hack(0)

Hack(P)

Retransmission(1) Retransmission(1)

Receivers
Other

DRCR

bmsc Cov_Concur

Fig. 9. Covert channel behavior without synchronization

So far, we have assumed that data was sent upon reception of an acknowl-
edgment for previous packet. Usually, efficient protocols implement a sliding
window principle, and send several Data packets before receiving acknowledg-
ments. Now, let us assume that Data packets are not sent upon reception of an
acknowledgment of previous packet, but rather that data is sent when possible,
and as long as no retransmission request is received. [16] states that retrans-
missions have priority on data emission. With these considerations, the timed
behavior of our covert channel would have the same timing properties as the
bMSC Cov Concur of Figure 9. This new model uses a general ordering im-

204 L. Hélouët

Hack

DataData

D
D

Hack

DataData

D
D Hack

DataData

D
D

DR

Fig. 10. Partial resynchronization due to data window

CR0 DR0
Other
Receivers 0

CR1 DR1 Other
Receivers 1

(B
+

4)
.D

 +
 2

.T

(B
+3).D

 + T

(B+4).D + 2.T

(B
+5

).D
 +

 3
.T

(B
+

4)
.D

 +
 2

.T

(B
+5).D

 + 3.T

6.D
 + 2.T

5.D
 + T

6.
D

 +
2.

T

Fig. 11. BTO for the asynchronous case

posing an order between message emissions, between data reception and the
corresponding acknowledgment.

For specification of Figure 10, the duration of a covert transmission decreases.
Figure 11 gives the BTO for scenario of Figure 9. Even if the maximal duration

Finding Covert Channels in Protocols with MSCs: The Case of RMTP2 205

B
T30 40 50 60 70 80 90 100

20406080100120140160180200
0

100
200
300
400
500
600
700
800
900

bits/sec

2010

Bandwidth

Fig. 12. Bandwidth for the asynchronous case

for the asynchronous scenario is (B +5).D +3.T , the asymptotic mean duration
of a transmission between CR and O is (B + 4).D + 2.T . So the bandwidth for
such scenario is Bw′ = b∗1000

(B+4).D+2.T .
However, scenario Cov Concur depicts what happens in a single data win-

dow of size B. If Data and Hack packets are not synchronized any more, then
Data packets in the next B-sized data window can be sent before the reception
of the retransmission demand Hack(P) from CR. This means that the effec-
tive bandwidth of our covert channel could be higher than Bw′, depending on
how B-size data windows overlap. However, the RMTP2 specification says that
new Data packets can be created only when past packets are stable, i.e., they
have been acknowledged by a sufficient number of recipients, and retransmis-
sion demands for these packets are not likely to occur. This produces a kind of
resynchronization with Hack packets inside a B-size data window, as depicted in
Figure 10. Within this situation, the duration for the emission of B Data packets
increases. So, the exact bandwidth depends on the respective values of B, S, T
and D, and Bw′ must be considered as an vague approximation. However, this
rough estimation of bandwidth shows that the duration of message transmissions
has a lower influence than in the synchronized case. Figure 12 shows how Bw′

evolves for different values of T and B. In the synchronous case, the bandwidth
rapidly decreases, as in the asynchronous interpretation, for B=100 and T=200,
the bandwidth is still 22.40 bits/sec.

6 Discussion and Conclusion

This paper has shown a scenario based formal approach for covert channel de-
tection. This method was used to detect an illegal information flow in RMTP2
retransmission mechanism. This covert channel seems peculiarly dangerous, as
the recipient of the covert message can be any of the receivers connected to the

206 L. Hélouët

DR node. The bandwidth of this channel rapidly decreases when the size of the
network or the transmission times increase, but the backdoor remains usable
when several synchronized receivers are placed ideally in the RMTP2 tree. Fur-
thermore, this channel imposes a light time penalty to the system, making its
detection at runtime harder. The detection algorithm has been implemented,
but so far only supports HMSCs composing bMSCs without inline expressions.
A desirable extension to this work is to deal with symbolic representations of
parameters and loops. So far, covert channels are defined as the iteration of a
set of behaviors, i.e., the corrupted sender always gets back to the same decision
node that it controls. This encoding strategy is of course limited, and should be
considered as a first step toward covert flows detection. We are currently inves-
tigating more elaborated strategies allowing to encode information from several
decision nodes in a HMSC.

When a subset of the initial scenario description is identified as a covert chan-
nel, a (max, +) analysis of this channel can be performed. So far, this analysis
identifies a minimal scenario and computes an average asymptotic transmission
time. It could be refined to take into account several scenarios and a probabilistic
distribution to compute an average traffic. In the RMTP2 case, for example, one
can assume that all values that can be encoded through retransmission demands
have an identical probability, and define the average bandwidth as the expected
value for the asymptotic mean duration. This average bandwidth can be much
lower than the upper bound, as cycles used to encode data do not have the same
durations. For the RMTP2 example, there are more values encoded with 4 bits
set to 1 than with 3, and the retransmission is longer for 4 data packets than
for 3. Hence, the average bandwidth can be influenced by the set of cycles used
to encode values. Another open subject is to study how MSCs and (max,+)
analysis can be refined to deal with the sliding window effect depicted section 5,
and give at least an upper bound for our bandwidth.

The RMTP2 covert channel identified in this paper only considered ideal
cases, where retransmission packets were not lost, and where no messages could
overtake, and so on. This situation defines a “perfect” covert channel, in the
sense that the information received is exactly the information that was sent.
If messages can overtake one another, or can be lost, or if some behaviors of
the system are consequences of timer expirations, the messages observed by
a receiver may comprise random parts. This can be considered as noise in our
covert channel. The approach proposed in [7] and in this paper does not consider
noisy channels. However, with an appropriate encoding, information can still be
passed in a noisy environment. For such situations, the amount of information
passed is probably better computed using tools such as information theory.

References

1. Andrews, G., Reitmans, R.: An axiomatic approach to information flows in pro-
grams. ACM transactions on Programming Languages and Systems 2 (1980) 56–76.

2. Bell, D., La Padula, J.: Secure computer systems: mathematical foundations. Mitre
technical report 2547, MITRE (1973) Vol I.

Finding Covert Channels in Protocols with MSCs: The Case of RMTP2 207

3. Bell, D., La Padula, J.: Secure computer systems: a mathematical model. MITRE
technical report 2547, MITRE (1973) Vol II.

4. Criteria, C.: Common criteria for information technology security evaluation part
3: Security assurance requirements. Technical Report CCIMB-99-033, CCIMB
(1999).

5. Goguen, J., Meseguer, J.: Security policies and security models. Press, I.C.S. (Ed.)
Proc. of IEEE Symposium on Security and Privacy (1982) 11–20.

6. Hélouët, L.: Distributed system requirements modeling with message sequence
charts: the case of the rmtp2 protocol. Information and Software Technology 45
(2003) 701–714.

7. Hélouët, L., Zeitoun, M., Jard, C.: Covert channels detection in protocols using
scenarios. Proc. of SPV’03 Security Protocols Verification (2003).

8. ITU-T: Recommendation Z.120 (11/99), Message Sequence Charts (MSC). Inter-
national Telecommunication Union, Geneva.

9. Katoen, J.-P., Lambert, L.: Pomsets for message sequence charts. Proceedings of
SAM98: 1st conference on SDL and MSC, Berlin (1998) 281–290.

10. Kemmerer, R.: Shared ressources matrix methodology: an approach to indentifying
storage and timing channels. ACM Transactions on Computer Systems 1 (1983)
256–277.

11. Lampson, B.: A note on the confinement problem. Communication of the ACM
16 (1973) 613–615.

12. Le Maigat, P., Hélouët, L.: A (max,+) approach for time in message sequence
charts. 5th Workshop on Discrete Event Systems (WODES 2000) (2000).

13. Le Maigat, P.: Techniques algébriques Max-Plus pour l’analyse des performances
temporelles de systèmes concurrents. PhD thesis, Université de Rennes 1 (2002).

14. Lipner, S.: A comment on the confinement problem. Proceedings of the Fifth
Symposium on Operating systems Principles (1975).

15. Lowe, G.: Quantifying information flow. Proceedings of the 7th European Sym-
posium on Research in Computer Security(ESORICS) (2002).

16. Montgomery, T., Whetten, B., Basavaiah, M., Paul, S., Rastogi, N., Conlan, J.,
Yeh, T.: The RMTP2 protocol. IETF draft, Internet Engineering Task Force
(1998).

17. NSA/NCSC: A guide to understanding covert channel analysis of trusted systems.
Technical report, NSA/NCSC (1993).

18. Reniers, M.: Message Sequence Charts: Syntax and Semantics. PhD thesis, Eind-
hoven University of Technology (1998).

19. Reniers, M., Mauw, S.: High-level message sequence charts. Cavalli, A., Sarma,
A. (Eds.) SDL97: Time for Testing - SDL, MSC and Trends. Proc. of the 8th SDL
Forum, Evry, France (1997) 291–306.

20. Sabelfeld, A., Myers, A.: Language-based information-flow security. IEEE Journal
on selected areas in communications 21 (2003).

21. Volpano, D., Smith, G.: Eliminating covert flows with minimum typings. Proc.
10th IEEE Computer Security Foundations Workshop (1997) 156–168.

22. Whetten, B., Paul, S., Taskale, G.: RMTP-II overview. Talarian white paper,
Talarian Corporation (1999).

A Metamodel for SDL-2000 in the Context of
Metamodelling ULF

Joachim Fischer, Michael Piefel, and Markus Scheidgen

Humboldt Universität zu Berlin, Institut für Informatik
Unter den Linden 6, 10099 Berlin, Germany

{fischer, piefel, scheidge}@informatik.hu-berlin.de

Abstract. Today the syntax of many languages is defined by using
context-free grammars. These syntax definitions suffer from a major
drawback: grammars do not allow the definition of abstract, reusable
concept definitions. Especially in families of related languages, where
multiple languages often share the same concepts, this limitation leads
to unnecessary reproduction of concept definitions and a missing shared
base for these related languages. Metamodels can contain inheritance
hierarchies of concepts; thus multiple specifications can reuse and re-
fine existing shared concept definitions. Therefore we propose a method
to develop metamodels from existing syntax definitions. We explain our
method by applying it to SDL-2000. The method starts with a map-
ping from BNF grammars into simple preliminary metamodels. Then,
by supplying a relation between elements of these simple metamodels
and abstract concepts, these metamodels are automatically transformed
into metamodels that use existing descriptions of abstract concepts and
thus allow a shared basis of common abstract concepts definitions.

1 Introduction

In the ongoing research on model driven software engineering the relations be-
tween different modelling languages are a key point. The approach in [2] uses
model transformation between eODL [7] and SDL-2000 [6] to drive software
projects from design to implementation. Such a technology requires language
alignment. To build such relations as transformation rules, between these lan-
guages, we needed unified specifications for both of the participating languages.
The need of unifying the SDL-2000 grammar based syntax definition with the
eODL metamodel started our research on developing a metamodel for the SDL-
2000 syntax. But the metamodel of SDL-2000 only attacks the tip of a far more
common problem.

ITU-T recommends a long series of formalized languages, such as MSC,
ASN.1, TTCN and the already mentioned eODL and SDL. These languages were
developed independently using different specification techniques. Unfortunately,
this resulted in languages that are hard to relate to each other. But language
alignment is crucial for model driven engineering. It is important to know where
and how these languages can be used together, how to profit from an integrated

D. Amyot and A.W. Williams (Eds.): SAM 2004, LNCS 3319, pp. 208–223, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Metamodel for SDL-2000 in the Context of Metamodelling ULF 209

use of these languages. Consequently, the ITU-T started the Language Coordi-
nation Project [11] with the goal to unify the mentioned languages, thus to form
the Unified Language Family (ULF). The Language Coordination Project con-
siders two methodologies to achieve a coordinated syntax definition: a common
syntax for BNF grammars (a common meta-metagrammar) and metamodelling.

We figured the metamodelling technology to be more appropriate to define
the abstract syntax of a language, its concepts and its structure, than to use
context free grammars. We give the reasons for this opinion in the following
comparison of BNF grammars and metamodels:

Context free grammars, used in language specifications, are mostly in BNF.
The BNF syntax was developed to specify concrete language syntax. It is a math-
ematicly exact method to determine which words are in the described language
and which are not. To achieve this, grammars use rules; these rules specify a set
of productions; these productions represent a set of words, words that form the
language described by the grammar. However, what grammars do not provide
are means for rule refinement or generalization, they do not allow modulariza-
tion. It is not possible to refine rules to form generalization hierarchies or to build
logical structures by using a namespace mechanism of some sort. Structure and
abstraction hierarchies are always flat.

This is a severe grammar disadvantage. The following two profits, known from
object-oriented languages, cannot be taken from a grammar based specification.
First, generalization, and thus refinement and reuse, as well as logical structures,
provided through mechanisms like namespaces and packages, are vital concepts
for compact and easy to understand language specifications. With these features
not only the words of a language can be specified, but the internal structure of the
described language can be defined. This allows a natural evolution of language
specifications and easy tool development. Second, in the context of language
families, a package of shared abstract concepts, concepts that are refined in
different languages, can directly align the concepts of different languages. This
allows the notation of inter language relations at specification time, and thus
allows unification of the participating languages.

These two points make clear that a modern language specification must offer
more than a pure syntax definition, it must show the language’s internal structure
and make it accessible to other language specifications. This is to allow the
notation of relations between different languages. Therefore we believe that a
syntax specification technique must provide the following two important meta-
meta-concepts. First, generalization; the building blocks of a syntax definition
must be refinable. One must be able to define abstract concepts and one must
be able to use them in multiple concrete refinements in the definition of the
same and in the definition of different languages. Second, structural composition;
to use the same concepts in different language definitions and to allow bigger
language definitions, namespaces for structured specification must be provided.

Both concepts, generalization and structural composition, are provided by
modern metamodelling architectures; Atkinson’s work [1] gives a good introduc-
tion into the subject. As object-oriented modelling platforms, metamodelling

210 J. Fischer, M. Piefel, and M. Scheidgen

architectures provide a generalization mechanism as well as a namespace mech-
anism. Metamodels are designed for abstract syntax, or better static concept
definition. As a side-effect, the meta-language as well as the languages to be
modelled are object oriented modelling languages. Due to that common nature,
an expert in the specified language is often also well trained in the used specifi-
cation technique.

After we were aware of the potential of metamodelling for language specifica-
tion, we faced the problem of providing this metamodelling features to already
existing, grammar based language specifications. Therefore we propose a method
that allows to develop a metamodel from an existing grammar based syntax def-
inition. The method fulfils two requirements: It is partially automated to avoid
the error-prone task of manual grammar to metamodel transformation and the
resulting metamodels use a set of abstract concept definitions. These abstract
concepts are to be identified by a language expert and can be shared in the
specification of different languages or in the specification of a hole family of
languages.

To prove and explain our method, we applied it to a part of the abstract
SDL-2000 [6] syntax. The developed metamodel covers all of SDL’s structural
concepts. The reason for modelling only structural concepts is that structural
concepts are by far the best researched concepts, and various abstract concepts
for many languages are already identified and modelled [9]. Thus, we can fully
concentrate on the method and general metamodelling aspects. But of course the
method is independent from what is modelled; therefore it also works for other
parts of language specifications like the description of behaviour or data concepts.

We tried to stay as general as possible, to make the method applicable with
most existing metamodelling architectures. But a few requirements had to be
made. The metamodelling architecture has to consist of at least four layers [3].
The method is made for a strict [1] metamodelling environment; but that does
not imply that it will not work for a loose metamodelling architecture as well.
The used M3 layer model must include a generalizable class concept, associations,
namespaces and a package concept.

The mentioned properties are fulfilled by the most important metamodelling
architectures: MOF 1.4 [10], UML 2.0 [9], OML [5], and even formal metamod-
elling techniques like VPM [13]. We used the meta-metamodel in [10] and imple-
mented our method by using JMI [8], which is a MOF 1.4 based metamodelling
standard [10].

In section 2 we give an overview over the developed method. The sections 3 and
4 cover the necessary steps of that method. The concluding section 5 compares
the resulting SDL-2000 metamodel with the original grammar based syntax defi-
nition, it summarizes the paper, and it gives some further research perspectives.

2 A Method for Metamodelling Existing Languages

The steps involved in our method are presented in figure 1. The whole process
is based on an already existing syntax and static semantics specification. This

A Metamodel for SDL-2000 in the Context of Metamodelling ULF 211

language defintion BNF grammar

primitive metamodel

metamodel

static semantic

constraints

abstract concepts

mapping application(1)

transient metamodel

model transformation(2)
model transformation(2)model transformation(2)

model transformation

Fig. 1. The steps involved in the presented metamodel development

paper addresses only the grammar part of language definitions; it does not cover
aspects of static semantics. A complete presentation of the method, including
static semantics concerns, can be found in [12].

The development of a metamodel from a BNF grammar includes two steps.
First a preliminary metamodel is generated from the existing BNF grammar.
We required our method to do this step automatically, because a manual trans-
formation from a grammar to a metamodel would be cause to many errors due
to human failure. Metamodels are more expressive than grammars. Thus, it was
easy to find a grammar to metamodel mapping. Section 3 describes this mapping.

Of course, implied by this automatic transformation, the resulting metamodel
only uses meta-concepts already provided by BNF grammars. Therefore, neither
generalization nor structural composition are used. All concept definitions reside
in the same namespace and they form a flat hierarchy.

To use the more advanced concepts generalization and structural composi-
tion some human input is needed. Along our second method requirement two
things have to be provided by a language expert. First, abstract concepts must
be identified and modelled. Of course there are different levels of abstraction.
Some concepts are very abstract and shared by many languages, like general-
ization, namespaces or a type system, others are more specific to the modelled
language like SDL’s instance sets. In section 4.3 we show the models of a package
consisting of general abstract concepts and a package consisting of the abstract
SDL concepts, that we could identify. The second kind of information that must
be provided by a human expert is: Which concrete language concept is a refine-
ment of which identified abstract concept? We call this information a semantic
mapping. A model transformation engine can now use both inputs, abstract con-
cept definitions and semantic mapping, to automatically convert the preliminary

212 J. Fischer, M. Piefel, and M. Scheidgen

primitive metamodel into the final metamodel. The semantic mapping and the
transformation engine are explained in 4.3.

3 Generating Metamodels from BNF Grammars

BNF grammars, primarily used in the definition of computer languages, are
basically context free grammars. The rules of such grammars replace a non-
terminal with a regular expression containing non-terminals and terminals. These
regular expressions may use the composition, alternative, arbitrary, at-least-one
and optional constructs. An example of such rules, taken from the abstract
procedure definition syntax of SDL-2000, is presented in figure 2.

For a better understanding of the concepts used in BNF grammars and their
relationships figure 3 presents a meta-metamodel for BNF grammars. Now we are
modifying this grammar meta-metamodel until it becomes a meta-metamodel
for common metamodelling architectures. Along the modifications made on the

1Procedure definition :: Procedure name
2Procedure formal parameter∗
3[Result]
4Procedure graph;
5

6Procedure name = Name;
7

8Procedure formal parameter = In parameter
9| Inout parameter
10| Out parameter;

Fig. 2. SDL-2000 abstract syntax example

Symbol

Terminal NonTerminal Rule1
1

Alternative

Composition

ArbitraryAtLeastOneOptional

Expression
1

1 1..n

+subexpression

1

+subexpression

Fig. 3. BNF grammar meta-metamodel

A Metamodel for SDL-2000 in the Context of Metamodelling ULF 213

Class Relation1
1

Alternative

Composition

ArbitraryAtLeastOneOptional

Expression
1

1 1..n

+subexpression

1

+subexpression

Fig. 4. Homomorphous modifications

Multiplicity

kind : MultiplicityKind

Class

Generalization

Association

1

 Expression

1

1

MultiplicityKind

Arbitrary
AtLeastOne
Optional
One

«enumaration»

{xor}

1

1

Fig. 5. Associations and generalizations for relations rather than compositions and
alternativs as expressions

meta-meta-level, we show a mapping from BNF concepts to the concepts of
metamodelling. Hence, we are creating transformation rules for the meta-level,
which are used in the automatic grammar to metamodel conversion.

The first modification is to use concepts out of the concept space of object-
oriented metamodelling, as long these concepts can replace the respective gram-
mar concepts isomorphicly. Figure 4 shows a more general model than 3. It uses
the metamodelling concepts class and relation for the grammar concepts symbol,
terminal, non-terminal and rule. Unfortunately, the concept Expression and its
specializations have no equivalent in metamodelling.

When you think about the semantics of Composition and Alternative, they
turn out to be those of Association and Generalization. Associations allow the
linear composition of classes, alias symbols, and specialized classes are alternative
realizations of the general class, alias symbol. This leads to the idea of mapping
compositions and alternatives to associations and generalizations. The expres-

214 J. Fischer, M. Piefel, and M. Scheidgen

MultiplicityKind

Arbitrary
AtLeastOne
Optional

«enumaration»

Multiplicity

kind : MultiplicityKind

Association

1

Generalization

Class
1

1

One

1

1

Fig. 6. A more usual meta-metamodel

sion kinds that describe multiplicities, can be compared to the multiplicity of
association ends in object-oriented metamodelling. A modified meta-metamodel
realizing this ideas is shown in figure 5.

Expressions allow the recursive composition of an unlimited depth of sub-
expressions. To respect that, Class in figure 5 is modelled as a generalization
to Expression, hence allowing Expression to relate with itself. But there is no
reason not to completly identify Class with Expression, see figure 6.

Now it is easy to build transformation rules along the meta-metamodel evo-
lution from figure 3 to figure 6. The only problematic things are the names for
classes that represent sub-expressions. In BNF grammars sub-expressions are
nameless and are only separated by the use of parentheses. But classes in meta-
modelling are named model elements. We simply name the classes that represent
sub-expression rather than symbols with unused new names.

The developed BNF grammar to metamodel transformation rules are:

1. Every symbol is represented through a class.
2. A rule with a single symbol on the right is represented through an association

that associates the class representing the left hand symbol with the class
representing the right hand symbol.

3. A rule with a composition on the right is represented through an association
for every composed sub-expression.

4. A rule with an alternative on the right is represented through a generalization
for every alternated sub-expression.

5. A sub-expression consisting only of a single symbol is represented through
that symbol’s class.

6. A sub-expression that is a composition or an alternative is represented
through a new class, with a so-far unused name. The composition or al-
ternative is transformed as in 2 or 3, but with the new class as the left hand
representative.

7. A sub-expression of multiplicity kind, that is part of a composition, is trans-
formed to an equivalent multiplicity kind of the proper association end.

8. An expression of multiplicity kind or a sub-expression of multiplicity kind,
that is part of an alternative, is represented through a new class with a so far

A Metamodel for SDL-2000 in the Context of Metamodelling ULF 215

In_parameter Out_parameter Inout_parameter

Procedure_formal_parameter

Result

Procedure_definition

0..n

0..1

Procedure_graph

1

Procedure_name1 Name1

Fig. 7. The example grammar part mapped into a metamodel

unused name. An association is introduced between that new class and the
class that represents the multiplied sub-expression, with proper multiplicity.

We implemented a simple tool, consisting of a BNF grammar parser, the im-
plemented transformation rules, and a XML generator, producing the metamodel
in XMI format. XMI is a standard format for metamodel exchange. This tool
called agramm successfully transforms the abstract SDL-2000 grammar. Figure
7 shows a part of it. It shows that syntax part that is shown in the grammar
example in figure 2 at the beginning of this section.

4 The Use of Abstract Concepts

4.1 Beyond the Grammar to Metamodel Mapping

The metamodels one gets by applying the described mapping from a BNF gram-
mar can be called primitive at best. The reason is, of course, that those primitive
metamodels can only be as expressive as the original grammar is. We identified
three categories of problems in that the primitive metamodels must be improved.

First, those primitive metamodels suffer from the same drawback as the orig-
inal grammars: They do not use and reuse abstract concept descriptions. One
example are the structural type concepts in SDL-2000, namely Agent type defini-
tions and Composite-state type definitions. These two concepts are generalizable,
they can be instantiated, they are namespaces for a number of other SDL con-
cepts, and so forth. But these abstract concepts are specified separately for both
of that elements, instead of being defined once and then reused. Especially be-
ing a namespace is a property that even more SDL concepts like procedures and
packages share. Furthermore, namespace is an abstract concept used by many
other languages; take eODL for an example.

The second problem is that grammars are very limited in their meta-meta-
concepts, and so there are many metamodelling features that are not used by
the automatic generated metamodels. In the grammar example in figure 2, both

216 J. Fischer, M. Piefel, and M. Scheidgen

Procedure definition and Procedure name are described by a symbol. Therefore
both concepts are modelled by a class in the generated metamodel. Of course,
that is bad metamodelling technique. The name of a procedure should rather be
modelled through a string attribute. The same problem lies in the modelling of
associations. Metamodelling concepts like navigability, aggregation, etc. cannot
be stated in grammars, and so they are not used in the generated metamodel,
even if their usage would be appropriate.

The third problem is what can be called textual syntax rudiments. These are
concepts like identifier and qualifier. In a text based language they are needed
to identify objects. To do so they represent a logical relation between the ob-
ject definition and its usage, like the definition of a variable and its usage in
an expression. In a metamodel and its model instances these concepts are not
necessary. These relations can be modelled by associations and their instances,
called links. In other words these are concepts that already exist as meta-meta-
concepts and have not to be redefined. Of course, identifier and qualifier are
needed in concrete model notations to represent those relations, but they serve
no purpose in an abstract language definition.

Of course the first problem category and its solution, that is the introduction
of abstract concept definitions, is the most interesting. The usage of abstract
concepts leads to better structured and reusable syntax definitions and thus
presents the biggest advantage in comparison with a grammar based syntax
definition.

In addition to that, it turned out that, in the case of SDL-2000, the most
concepts that cause problems of the second and third category are potentially
abstract concepts. Potential means that these are concrete concepts that should
be replaced by abstract definitions. Thus, these faulty concrete realizations will
vanish when abstract concepts are introduced. For example: The name feature
in the procedure example causes a problem of category two; the concept name
is realised through a class instead a string attribute. But it also is a potentially
abstract feature. There are a lot of SDL concepts that have a name property.
That is why it is most likely that after the introduction of an abstract named
model element concept, the concrete concept procedure definition has lost its
distinctive name property and inherits it from the abstract concept, instead.
The same can be said about identification and qualification. They are often
used by concepts that are potentially abstract, and thus they will not be used
after well modelled abstract concepts have been introduced. In this paper we
concentrate on the more interesting category one: The introduction of abstract
concept definitions.

4.2 Abstract Concept Definitions

First we present the abstract concept definitions that we used for the SDL-
2000 metamodel. There are different levels of abstractions. Some concepts are so
general that they are used in virtually every object-oriented language, others are
more specific and may only be reused among related languages or only within
one language.

A Metamodel for SDL-2000 in the Context of Metamodelling ULF 217

TypedElement

«reference» type : ModelElement

GeneralizableElement

isAbstract : Boolean
«reference» supertypes : GeneralizableElement

allSupertypes()
lookupElementExtended()

0..n

0..n

Generalizes

+supertype

+subtype

Namespace

«reference» contents : ModelElement

lookupElement()

ModelElement

name : String
«reference» container : Namespace

1

0..n

+type

1

+typedElement

IsTypeOf

0..n

1

Contains

+containedElement

+container

Fig. 8. Abstract concepts

Figure 8 shows the abstract structure concepts used by most object-oriented
languages. A detailed explanation and documented development of that model
can be found in [12]. The resemblance to the most known languages might strike
the reader’s eye. They are also used in the successful metamodels of UML and
the meta-metamodel of MOF.

But even more abstract concepts could be obtained from SDL’s syntax itself.
Even if they may turn out to be more specific, perhaps distinctive to SDL, they
still allow a more compact and therefore easier to understand and easier to use
metamodel. Figure 9 presents the additional abstract concepts that we were
able to identify in the SDL-2000 syntax. A few concrete concepts, those that are
marked grey, are shown too. That is to ease the understanding and shorten the
necessary explanations. A few remarks:

– Many SDL concepts reference a body of some sort. Procedures for example
must contain a state automaton defining their behaviour. This state automa-
ton is referred as a body. The same is true for process typed Agents or the
bodies in Composite-state types. To respect the varying nature of bodies,
they are modelled to be the most abstract concept: ModelElement.

– Parameters are used by a variety of SDL concepts. Agent types, Procedures,
Composite-state types have parameters. Even if Procedure uses a special form
of parameter, the parameter itself is a typed element in any case.

– In SDL-2000 two type concepts coexist. A type is something that describes
a set of instances or values. In SDL a type can on the one hand be a data
type, like a Signal definition or a primitive data type and on the other hand
a type can be a structure type like Agent type or Composite-state type.

218 J. Fischer, M. Piefel, and M. Scheidgen

GeneralizableElement

TypedElement

BodiedElement

ModelElement 0..1

+bodiedElement

+body
BodiedElement body

StructureTypedElement

DataTypedElement

StructureType

ParameterizedElement

Parameter

1

0..n

+parameterizedElement

+parameter

Parameter

Procedure_parameter

kind : Procedure_formal_parameter_kind

Procedure_definition

Agent_type_definition

Agent_definition

Variable_definition

Fig. 9. Abstract SDL-2000 concepts

– Structure types are instanciable, generalizable, parameterized types. There-
fore structure types are a combination of the generalizable concept, param-
eterized concept and the body possession concept.

As a reminder: one may criticize that the displayed model allows unwanted in-
stances, that procedure for example may contain a non-procedure parameter, or
a structure-typed element may reference a data type. Obviously some restrictions
have to be added to the model. Actually these constraints are considered static
semantics and are not covered by this paper, but [12] addresses that matter by
using a predicate logic formalism to further limit the set of possible metamodel
instances.

4.3 Combining Primitive Metamodels with Abstract Concept
Definitions

Now we have sets of abstract metamodel elements and a generated primitive
grammar-based metamodel. But how to combine these model elements to form
a single metamodel? Two things must be realized: First, the concrete concepts
must be marked as specializations of the introduced abstract concepts. And

A Metamodel for SDL-2000 in the Context of Metamodelling ULF 219

common abstract
concepts

concrete concepts

metamodel

semantic
mapping

abstract but language specific
concepts

BNF grammar

transformation

represents

primitive
Metamodel

Fig. 10. Transforming the primitive metamodel

second, features and rudiments of concrete elements that are already defined
or realized by the corresponding abstract model element must be removed. To
accomplish this task, we use model transformation.

Figure 10 shows the basic idea of this transformation. We already have the
grammar that is represented by the primitive metamodel, and we already have
common as well as more language specific abstract model elements. To complete
the metamodel, we have to transform the concrete concepts of the primitive
metamodel to actually become specializations of the abstract model elements.

To do so some information from a language expert is needed. That is informa-
tion about the nature of the concrete language concepts, something that can be
given through a semantic mapping between the primitive metamodel elements and
the abstract model elements. This mapping must say which concrete concept is a
specialization of what abstract concept and how it refines the abstract concept.
With this information the transformation itself can be done automatically.

How it works: The semantic mapping is a partial relation that assigns con-
crete metamodel elements to the most appropriate abstract model element. The
mapping of model elements does not only involve a mapping between classes,
but a mapping between relations as well.

As an example figure 11 presents a part of the semantic mapping used for the
SDL-2000 metamodel. The first line assigns Agent type definition to be a spe-
cialization of the abstract concept class StructureType. The third line maps agent
type definition’s association with itself to be a specialization of the generalization
association introduced by one of agent type definition’s new super meta-classes:
GeneralizableElement. Line four maps agent type definition’s association with
state machine definition to be a specialization of the body association intro-
duced by another new super type of agent type definition: BodiedElement. Line
five refines the inherited features of the abstract concept ParameterizedElement,
the other lines refine the inherited features of the abstract concept Namespace.

220 J. Fischer, M. Piefel, and M. Scheidgen

1agentTypeDefinition = new SdlStructureTypeAdaptor(
2”Agent type definition”);
3agentTypeDefinition.addSupertypeType(”Agent type defintion”);
4agentTypeDefinition.addBodyType(”State machine definition”);
5agentTypeDefinition.addParameterType(”Agent formal parameter”);
6agentTypeDefinition.addContainedType(”Agent type definition”);
7agentTypeDefinition.addContainedType(”Procedure definition”);
8agentTypeDefinition.addContainedType(”Agent definition”);
9...

Fig. 11. An example taken from the semantic mapping used for the SDL-2000 meta-
model

This mapping is actually Java code. That is because we realized the trans-
formation using JMI [8] a Java based API for metadata management. For every
abstract concept an adaptor class was written in Java. SdlStructureTypeAdap-
tor is such an adaptor. The inheritance hierarchy of the adaptors is aligned to
the hierarchy form by the corresponding abstract concepts. Therefore, the super
types of SdlStructureTypeAdaptor are GeneralizableElementAdaptor, Parameter-
izedElementAdaptor, BodiedElementAdaptor, NamespaceAdator and ModelEle-
mentAdator.

For every abstract concept class a adaptor class was written, for every con-
crete class a adaptor instance is created by the semantic mapping. The con-
structor that is used maps the concrete concept class to the abstract concept
class. This means the constructor uses JMI to introduce a new generalization
relation between the abstract concept class and the concrete concept class that
is provided through the constructor’s parameter.

For every abstract association or attribute a method was written. The method
is owned by the adaptor class for the abstract concept class, that the associa-
tion or attribute is originated in. For every concrete association a method call is
used. This Java method call maps the concrete association to the corresponding
abstract association. Therefore the Java method deletes the old concrete associ-
ation, originally generated through the grammar to metamodel generator, and
replaces it with a refinement of the abstract association. This refinement is done
through the addition of a constraint. The concrete association is identified by
taking the concrete class for one end and taking the class provided through the
Java method’s parameter for the other end.

For example, look at line three of the previous semantic mapping example 11.
Originated in SDL’s abstract grammar, a concrete association between Agent -
type definition and Agent type definition exists in the primitive metamodel. This
association refers to the inheritance relationship between two agent types. Line
three maps the abstract association Generalizes of StructureType’s and therefore
Agent type definition’s meta- superclass GeneralizableElement. The invoked Java
method removes the original concrete association and replaces it by a constraint
that restricts the abstract inherited Generalizes association to allow only links

A Metamodel for SDL-2000 in the Context of Metamodelling ULF 221

between two instances of Agent type definition. The mapping of StructureType
associations then continues for the abstract associations Contains and Element-
Body.

This way the mapping works as a chain of commands that transforms the
metamodel according to the semantics given by the mapping. After the whole
mapping is applied, all concrete concepts are specializations of abstract ones,
all concrete associations and rudiments have been removed and replaced by
constraints that restrict abstract associations or attributes. The only things left
are a few concrete concepts for which no appropriate abstract concepts could yet
be identified. For these concepts some manual transformations have to be made.

In particular, the explained SDL-2000 metamodel lacks an abstract concept
for the SDL communication concepts channel and gate, as well as the concrete
agent-instance- set concept that uses minimum and maximum instance numbers.
An abstract relation concept may be very useful, because relations occur in
many languages as well as in the behaviour of SDL itself. Therefore it should be
introduced when the metamodel family grows, and the abstract basis becomes
larger. The second left-out concept on instance sets is, as far the authors know,
unique to SDL, and therefore only a concrete description is needed.

5 Conclusions

We presented a method that allows the development of metamodels from existing
syntax definitions. The presented method shows the following characteristics:

– It is partially automatic and thus less error-prone.
– The only human input that is needed is a model of abstract concepts; a

mapping from concrete, grammar originated, model elements to abstract
model elements; and a transformation rule for every abstract concept, that
transforms generated concrete elements to become specializations of abstract
elements.

– Modelled abstract elements and transformation rules are reusable and ex-
tendable and can be used in the development of multiple metamodels. That
is an even bigger advantage in the modelling of language families.

We applied and tested our method on SDL-2000. The resulting metamodel
shows the following characteristics and advantages, when compared to the orig-
inal grammar based syntax definition.

– Due to the extensive usage of abstract model elements and refinement the
resulting SDL metamodel is compact and easy to understand. Abstractions
are already noted in the metamodel itself, they have not to be explained in
additional text. The inheritance hierarchy of concepts can be directly and
naturally used in the development of object-oriented SDL tools.

– The metamodel includes and is based on a reusable and refinable abstract
basis. This basis can easily be reused in metamodels of languages that share
the same concepts. A shared set of abstract concepts can be used in a unified

222 J. Fischer, M. Piefel, and M. Scheidgen

specification of language families and allows a direct alignment of languages
that share the same abstract concepts.

– The concepts of the metamodel are well structured by the use of packages.
Due to such structural concepts like namespaces and packages, metamodels
can be easily combined and related to each other.

These advantages over grammars are mostly based on the metamodelling
concepts generalizability and namespaces. Both are concepts that grammars can
not support.

But even if we see many advantages of the metamodelling side, we have to
admit that metamodels cannot replace grammars in the specification of concrete
syntax. When it comes to the task of defining and parsing textual notation the
formal foundations and exact semantics of grammars cannot be yet replaced. But
in defining the concepts of a language in an abstract manner to derive semantics
definitions, tool development and human understanding from it, the advantages
of metamodels are superior.

We developed a series of tools to support the method application and meta-
model development. A tool called agramm was created that allows automatic
transformation from BNF grammar to MOF metamodels. The API mmm, based
on JMI [8], is a framework for metamodel transformations that uses refinable
transformation rules.

There are a few problems that should be addressed by further research. First,
the metamodelling of behaviour concepts is not yet satisfactory. Abstract be-
haviour concepts must be identified and should be used for the completion of
the SDL-2000 metamodel. Second, with the metamodel for SDL-2000 we started
to build an abstract set of concepts. It should be used and extended in the meta-
modelling of other ULF languages. Third, the relations of abstract ULF concepts
to the concepts used in UML should be researched for easier UML profiling or
other language integration. And fourth and last, the most challenging problem is
metamodelling of dynamics. The formal specification of SDL-2000 showed a way
to specify a language’s dynamic semantics, using Abstract State Machines [4]. In-
tegration of that knowledge into metamodelling architectures could be result in
a unified metamodelling technique for reusable syntax and semantics definition.

References

1. Atkinson, C.: Meta-Modeling for Distributed Object Environments. 1st Interna-
tional Enterprise Distributed Object Computing Conference (1997).

2. Böhme, H., Fischer, J.: eODL and SDL in Combination for Components. Amyot,
D., Williams, A. (Eds.) Fourth SDL and MSC Workshop. Volume 3319 of Lecture
Notes in Computer Science (2004) 19–34.

3. Crawley, S., Davis, S., Indulska, J., McBride, S., Raymond, K.: Meta-meta is
better-better! IFIP WG 6.1 International Working Conference on Distributed Ap-
plications and Interoperable Systems(DAIS’97) (1997).

4. Gurevich, Y.: Evolving Algebras 1993: Lipari Guide. Börger, E. (Ed.) Specification
and Validation Methods. Oxford University Press (1995) 9–36.

A Metamodel for SDL-2000 in the Context of Metamodelling ULF 223

5. Handerson-Sellers, B., Firesmith, D., Graham, I., Page-Jones, M.: OPEN Modeling
Language (OML) Meta-model Specification, Version 1.0. (1996).

6. ITU-T: Recommendation Z.100 (08/02), Specification and Description Language
(SDL). International Telecommunication Union, Geneva (2002).

7. ITU-T: Recommendation Z.130 (07/03), Extended Object Definition Language
(eODL). International Telecommunication Union, Geneva (2003).

8. JMI: The Java Metadata Interface(JMI) Specification(Final Release). Java Com-
munity Process (2002) JSR-000040.

9. OMG: UML 2.0 – Infrastructure Final Adopted Specification. Object Management
Group (2003) ptc/2003-09-15.

10. OMG: MOF 1.4 – Meta Object Facility, Version 1.4. Object Management Group
(2003) formal/2002-04-03.

11. Reed, R.: Language Coordination Project – Revised information – Workshop
results, International Telecommunication Union (2003) TD 3145.

12. Scheidgen, M.: Metamodelle für Sprachen mit formaler Syntaxdefinition, am
Beispiel von SDL-2000. Master thesis, Humboldt Universität zu Berlin, Germany
(2004).

13. Varró, D., Pataricza, A.: VPM: Mathematics of Metamodeling is Metamodeling
Mathematics. Journal of Software and Systems Modelling (2003) 1–24.

A Flexible Micro Protocol Framework�

Ingmar Fliege, Alexander Geraldy, Reinhard Gotzhein, and Philipp Schaible

Computer Science Department, Technical University of Kaiserslautern
Postfach 3049, D-67653 Kaiserslautern, Germany

{fliege, geraldy, gotzhein, schaible}@informatik.uni-kl.de

Abstract. Structuring and reuse are key approaches to the proper de-
velopment and maintenance of software systems. System structuring is
essential to controlling complexity, and is a prerequisite for the extrac-
tion of reuse artifacts. Reuse of solutions is crucial to controlling quality
and productivity. In previous work, we have identified and applied the
structuring unit micro protocol. We extend these results by defining a
flexible micro protocol framework, and by applying it to the design of a
functionally complete communication system, with SDL as design lan-
guage.

1 Introduction

The development and maintenance of large distributed software systems is in-
trinsically difficult. Several key approaches to mastering these difficulties have
been identified, including structuring and reuse. System structuring is essential
to controlling complexity. Reuse of solutions is crucial to controlling quality and
productivity.

Reuse has been thoroughly studied in software engineering, and has led to the
distinction of three main reuse concepts: components, frameworks, and patterns.
Components can be characterized as self-contained ready-to-use building blocks,
which are selected from a component library, and composed. A framework is
the skeleton of a system, to be adapted by the system developer. Patterns de-
scribe generic solutions for recurring problems, to be customized for a particular
context.

To identify and extract reuse artifacts, i.e., components, frameworks, and
patterns, the structuring of a software system plays a key role. Software systems
may have a variety of structures, depending, for instance, on the type of system,
the degree of abstraction, the development paradigm, and the developers view
points. In general, we can distinguish between architectural structuring and the
structuring of behavior and data. More specifically, structuring principles such as
module structuring (e.g., agent modules, object modules, collaboration modules,

� This work has been supported by the Deutsche Forschungsgemeinschaft (DFG) as
part of Sonderforschungsbereich (SFB) 501, Development of Large Systems with
Generic Methods.

D. Amyot and A.W. Williams (Eds.): SAM 2004, LNCS 3319, pp. 224–236, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Flexible Micro Protocol Framework 225

functional modules), hierarchical structuring (e.g., agent hierarchies, class hier-
archies, state hierarchies), conceptual structuring (e.g., reference architectures),
dynamic structuring (e.g., creation and termination of process modules, inter-
action relationships), operational structuring (e.g., system functions), temporal
structuring (e.g., system phases or modes), and physical structuring (e.g., nodes,
resources, topology) can be applied.

In previous work, we have identified and applied the structuring unit micro
protocol, i.e., a communication protocol with a single (distributed) functionality
and the required protocol collaboration [4, 5]. A functionality (e.g., flow control)
is a single aspect of internal system behavior that may be distributed among
a set of system agents, with causality relationships between single events. By
collaboration, we refer to the interaction behavior of a distributed functionality.
From a reuse viewpoint, micro protocols classify as components, they may be
selected from a micro protocol library, and composed. However, it is not obvious
how this composition can be accomplished. In this paper, we propose a flexi-
ble micro protocol framework for this purpose, and apply it to the design of a
functionally complete communication system, with SDL [7] as design language.

The paper is structured as follows. In Sect. 2, we recall the notion of micro
protocol, conceive a flexible micro protocol framework, and introduce a cus-
tomized design process. In Sect. 3, these aspects are illustrated by means of a
complete case study. Conclusions are drawn in Sect. 4.

2 Micro Protocol-Based Development

Micro protocols are structuring units of communication systems that encapsu-
late one single protocol functionality and the required protocol collaboration.
Being ready-to-use building blocks, they can be combined into a component
library, which then serves as a repository for a reuse-oriented communication
system development. In this section, we present the main constituents of this
development, namely micro protocols, a framework for the composition of micro
protocols, and a customized design process.

2.1 Micro Protocols

Communication systems can be structured into smaller constituents in differ-
ent ways. Generally speaking, a communication component is a self-contained,
ready-to-use building block of a communication system. Various kinds of com-
munication components can be distinguished, depending on the viewpoint of the
communication systems engineer, e.g., protocol functionalities, protocol collab-
orations, protocol phases, protocol entities, and protocol layers.

In [4,5], we have introduced and applied a new type of communication com-
ponent, called micro protocol, i.e., a communication protocol with a single (dis-
tributed) protocol functionality and the required protocol collaboration. Here,
a protocol functionality is a single aspect of internal protocol entity behavior
(operational structuring), e.g., flow control, loss control, corruption control. It

226 I. Fliege et al.

is realized by a particular protocol mechanism (e.g., sliding-window, sequence
numbering, checksum), and generally distributed among a set of protocol enti-
ties. A protocol collaboration is a self-contained subset of synchronization and
causality relationships of a set of protocol entities. Because a protocol func-
tionality covers only one single aspect of protocol behavior, a micro protocol is
not decomposable into smaller protocol units. However, several micro protocols
may be combined into a communication system, possibly in a hierarchical way,
yielding macro protocols.

2.2 Micro Protocol Framework

Micro protocols can be composed to form protocols with more complex function-
alities, called macro protocols. As we are dealing with components, no adaptation
is necessary. However, different types of composition may be required to achieve
a correct cooperation of protocol entities. For instance, micro protocol entities
may be composed in sequence, yielding a signal processing pipeline. Also, proto-
col entities may be composed concurrently, if they do not cooperate directly, or
in an interleaving manner by adding appropriate synchronization. To treat com-
position in a more systematical way, we now introduce a generic micro protocol
framework [11, 2].

In a narrower sense, a framework is the skeleton of a system that is common
to all systems of a given product family, i.e., a generic system architecture,
possibly augmented with the behavior of certain system parts. In the context of
communication systems, typical frameworks are defined as layered architectures
(e.g., OSI Basic Reference Model, Internet architecture) that are completed by
adding specific communication protocols, such as FTP (File Transfer Protocol),
TCP (Transmission Control Protocol) and IP (Internet Protocol) in case of the
Internet architecture.

This strict view of a framework is extremely useful, but tends to be rather
inflexible as soon as different types of composition are to be combined. Therefore,
we propose a more general characterization of the notion of framework in the
micro protocol context: a generic micro protocol framework is a set of general
principles and rules for the composition of micro protocols. This means that
the system skeleton is not provided in advance, but is derived based on the
knowledge of a given set of micro protocols and their intended composition. In
other words, a generic micro protocol framework characterizes a set of micro
protocol architectures, namely those architectures that are conforming to the set
of general principles and composition rules. Thus, this notion of framework is
compatible with the strict view, where one such architecture is determined.

In our case studies in the area of communication systems, we have identified
the following types of composition:

• Generic composition:
Often, the assembly of components can be reduced to a few basic operators.
For micro protocols, e.g., concurrent composition, sequential composition,
disruption, pipelining, and hierarchical composition are natural operators,
which imply a precisely defined synchronization among components.

A Flexible Micro Protocol Framework 227

• Problem specific composition:
Generic compositions such as mutual exclusion allow shared state compo-
nents (e.g., a common signal input queue) to be used, but otherwise assume
the functional independence of the composed micro protocols. If as, for in-
stance, in case of composition of tightly coupled protocol phases this assump-
tion is violated, a problem specific composition is required. This composition
may build on a generic composition augmented by additional synchroniza-
tion that refers to internal, problem specific protocol aspects.

2.3 Micro Protocol-Based Development Process

The micro protocol-based development process (see Figure 1) is part of an over-
all development process, and may be integrated in methodologies such as SOMT
[12], SDL+ [10], or TIMe [1]. Starting point for the communication system design
activity is a communication requirements specification, resulting from a thorough
requirements analysis. These requirements are analyzed to identify the commu-
nication functionalities and their dependences, leading to an analysis model. To

functionality analysis

concrete design

abstract design

micro
protocol
library

requirements analysis

communication requirements

functional decomposition

analysis model

micro protocol composition

SDL design

conceptual design

micro protocol composition

micro protocol selection

Fig. 1. Micro protocol-based development process

228 I. Fliege et al.

perform this analysis, thorough domain knowledge as well as analytical abilities
is required.

For the subsequent design activities, the availability of a micro protocol li-
brary is assumed. This library can be understood as a repository of developer
know-how, expressed in terms of communication components that can be selected
and composed to form a particular communication system. The description of
a micro protocol includes the abstract definition of the functionality as well as
the concrete behavior, expressed in SDL, where each SDL micro protocol spec-
ification should be encapsulated into one SDL package. Furthermore, scenarios
illustrate typical micro protocol behavior.

Based on the analysis model, micro protocols are selected from the micro
protocol library and composed suitably, yielding a conceptual design. This design
is still very abstract, and shows micro protocols as building blocks, and how they
are assembled. For the composition, the rules and operators of the generic micro
protocol framework are applied. The conceptual design captures all protocol
functionalities and their dependences, and thus is a suitable starting point for
producing a concrete design in SDL.

Based on the conceptual design, the SDL micro protocol specifications are
extracted from the micro protocol library. More specifically, an SDL system that
includes the corresponding SDL packages is specified. In addition, the depen-
dences among the micro protocols, as expressed in the conceptual design, are to
be represented in SDL. Currently, this is done on a case by case basis. However,
with more experience, SDL composition patterns that define, for each conceptual
composition operator, the corresponding SDL representation, may be provided.

3 The InRes Case Study

To illustrate the micro protocol-based development, we apply it to the Initiator
Responder (InRes) system [6]. The communication requirements are defined by
the InRes service, which is a connection-oriented communication service for the
reliable exchange of messages between two users called initiator and responder.
In addition to being reliable, it preserves the sending order. The InRes service
is asymmetrical: the initiator requests connections and sends data, the respon-
der accepts, refuses, and clears connections, and receives data. The destination
of messages is determined by the architecture; therefore, there are no explicit
addressing mechanisms.

3.1 Functionality Analysis

Functionality analysis is concerned with identifying communication functionali-
ties that satisfy the set of communication requirements, and their dependences,
yielding an analysis model. Starting point is a system architecture that shows
the service users and the service provider. The service provider is then refined
into a set of protocol entities and an underlying medium. The InRes service calls
for connection-oriented communication, therefore, we identify the basic function-
alities connection setup, connection release, and data transfer. Since the InRes

A Flexible Micro Protocol Framework 229

service is asymmetrical, it suffices to support these functionalities in a unidirec-
tional way. To map service data units to the underlying medium, encoding and
decoding is needed. We assume that the underlying medium is order-preserving,
connection-less, and may occasionally lose messages. Therefore, we add loss con-
trol to the set of communication functionalities. Finally, we decide to provide
end-to-end flow control. Apart from identifying these functionalities, the analy-
sis model also contains message scenarios for each functionality and their joint
operation [2].

3.2 Micro Protocols

A micro protocol is specified operationally by defining protocol entity types
that follow the protocol rules such that one protocol functionality and the re-
quired collaboration among protocol entity instances are covered. Methodologi-
cally, protocol functionalities and corresponding collaborations are isolated first,
and then represented in SDL.

Conceptually, we model protocol entities by asynchronously communicating
extended Mealy machines. Obviously, there are several ways to represent them
in SDL, for instance, by specifying SDL block types, SDL process types, SDL
service types1, or SDL procedures. Which one to use depends on the composition
of micro protocols, which in turn depends on the protocol that is to be configured.

Micro protocol definitions are organized using SDL packages. An SDL package
is a collection of type definitions, and is used here to encapsulate SDL types
belonging to the same micro protocol. This way, a micro protocol library can be
expressed as a set of SDL packages, i.e., ready-to-use components. Also, common
parts of a set of micro protocols may be extracted into a package that is imported
by each micro protocol definition. Alternatively, several related micro protocols
may be grouped into one package

In Figure 2, an excerpt of the SDL package ProtocolPhases containing the
definitions of three micro protocols is shown. On the top level, the package
ProtocolPhases contains the following type definitions:

• Process type ProtocolPhases:
In SDL, processes are active objects. Process behavior is specified by an
extended Mealy machine, which is either directly defined, or derived from
the definition of submachines called SDL services.

• Signal (type) definitions ICONreq, DR, etc.:
In SDL, active objects interact via signal exchange and shared variables.
Signals are associated with gates and channels, and may carry parameters.

• Data type definition ISDUtype:
Apart from built-in data types, problem specific data types can be defined
and used, e.g., to declare context variables or signal parameters.

1 In [5], we have proposed to use SDL composite states to specify micro protocols.
However, because there is no tool support for composite states so far, we have decided
to go back to SDL services.

230 I. Fliege et al.

package ProtocolPhases 1(1)

signal ICONreq, ICONind,
ICONresp, ICONconf;

signal CR;

/* type for data transfer */
syntype ISDUtype = Integer
endsyntype;

signal IDATreq(ISDUtype), IDATind(ISDUtype);
signal DT(ISDUtype);

signal IDISreq,IDISind;
signal DR;

This package defines a process
type which consists of three
services (connection establishment,
release and data transfer) and
variables that are shared by these
services.

ProtocolPhases

process type ProtocolPhases 1(1)

/* shared variables. Used for synchronization */

newtype ConnectionStateType
literals Disconnected,Connected,DoReset;

endnewtype;

dcl cState ConnectionStateType:=Disconnected;

ConnectionSetup DataTransfer ConnectionRelease

Fig. 2. SDL package ProtocolPhases (excerpt, part 1)

The InRes protocol phases are executed one protocol phase at a time. There-
fore, the process type ProtocolPhases is refined into three SDL services, each
encapsulating the functionality of a single protocol phase. These service types
ConnectionSetup, ConnectionRelease, and DataTransfer are introduced in Figure 2.

Additionally, a shared variable cState, which is used for synchronization, is
declared. To configure a protocol, SDL services are instantiated and composed
by adding typed channels and connecting them appropriately.

In Figure 3, the complete definition of the micro protocol entity type Data-
Transfer is shown, specified as the state diagram of an extended Mealy machine.
Being in state idle, the automaton can accept signals IDATreq from the service
user and DT from the underlying service, respectively. Depending on the exis-
tence of a connection (cState=connected), these signals are either forwarded to
the recipient, or discarded. Similarly, micro protocol entity types for the remain-
ing protocol phases are defined. A major difficulty here is to encapsulate protocol

A Flexible Micro Protocol Framework 231

service type DataTransfer 1(1)
dcl isdu ISDUtype;

idle

idle

cState=
connected

IGate

IDATind

IDATreq

g1

DTDT

true false

idle

IDATreq(isdu)

DT(isdu) via g1

cState=
connected

true false

idle

DT(isdu)

IDATind(isdu)

idle

Fig. 3. SDL package ProtocolPhases (excerpt, part 2)

behavior in such a way that it can be composed afterwards, that the result of
the composition is free of design errors (e.g., unspecified receptions, deadlocks),
and that it provides a specified communication service.

The encapsulation of protocol phases into SDL services is just one way to
represent micro protocols in SDL. We have found other solutions to express syn-
chronization among protocol phases based on inheritance or usage of procedures,
which will be discussed in Section 3.4.

3.3 Abstract Design

In Section 3.2, we have introduced three protocol functionalities that have been
defined as micro protocols, namely connection setup, connection release, and
data transfer. Conceptually, the data transfer phase is preceded by a connection
setup and terminated by a connection release, which leads back to the connection
setup phase. Furthermore, a connection setup may be disrupted by a connection
release.

To complete the InRes protocol communication functionalities identified dur-
ing functionality analysis, we add further micro protocols:

• leakyBucket realizes a specific flow control mechanism
• singleAck realizes a loss control mechanism, based on a timer and message

repeats
• coDec realizes encoding and decoding of service data units

The conceptual composition of these micro protocol entities is represented in
Figure 4. In the diagram, several generic composition operators are used:

232 I. Fliege et al.

>

connectionSetup dataTransfer

connectionRelease

leakyBucket

coDec_ASN.1

singleAck

coDec_PER

[

>>

>>

@

>

InRes service

flow control

loss control

de/encoding

de/encoding

leakyBucket

coDec_ASN.1

singleAck

coDec_PER

connect..

>>

@

>

base technology

@
<

> [> [

Fig. 4. InRes conceptual composition of micro protocol entities

• PE1 ‖ PE2: protocol entities PE1 and PE2 are executed concurrently, i.e.,
they both possess a thread of control. Concurrency can be reduced by explicit
interaction, e.g., through shared variables or signal exchange. We assume
that protocol entities are composed concurrently by default, unless otherwise
stated. Therefore, we omit this operator, in order to avoid cluttering.

• PE1 � PE2: PE1 enables PE2, passing the thread of control. Thus, PE1
turns inactive, while PE2 is activated and starts or continues operation. Note
that PE1 is not terminated, but may be reactivated at a later point in time.
When and how the enabling takes place is an internal decision of PE1.

• PE1 [> PE2: protocol entity PE2 disrupts PE1, taking the thread of control.
Different from enabling, PE1 plays a passive role when the thread of control
is moved. Again, PE1 is not terminated. When and how the disruption takes
place is an internal decision of PE2.

• PE1 @> PE2: PE1 signals PE2, e.g., the occurrence of an event or an ex-
ception. Different from enabling, PE1 continues operation. This operator is
a likely candidate for problem specific composition, if the type of event has

A Flexible Micro Protocol Framework 233

to be signaled to PE2, which can be expressed by adding parameters to the
operator.

• PE1 → PE2: there is a data flow from PE1 to PE2, either through signal
exchange or through shared variables. In particular, this includes pipelining
of PDU data. If data flow is in both directions, we write PE1 ↔ PE2. Again,
operator parameters may be added to make the type of data flow explicit.

As shown in Figure 4, connectionSetup enables dataTransfer (operator �),
which can be disrupted by connectionRelease (operator [>). Furthermore, there
is bidirectional data flow between these micro protocol entities and the InRes
service user. If message loss exceeds a given threshold, this is detected by sin-
gleAck and signaled to connectionRelease (operator @>). ConnectionRelease in
turn cancels the established connection and signals to singleAck and leakyBucket
(operator @>), thus triggering a reset.

3.4 SDL Design

Based on the conceptual design in Figure 4, a self-contained SDL design specifica-
tion is to be derived. This concrete design specification is obtained by importing
the corresponding micro protocols and by adding SDL representations of the
composition operators (also called ”glue code”) such that the required synchro-
nization is achieved. SDL offers several mechanisms that can be used to compose
micro protocols. For instance, interleaving can be expressed by aggregation of
SDL services (or composite states [5][8]), i.e., submachines of an automaton rep-
resenting micro protocol entities. Pipelining is achieved by instantiating SDL
processes and connecting them in sequence through SDL channels.

To express the conceptual composition of the InRes protocol phases in SDL,
we have devised five different solutions:

• SDL services with shared context variables:
In SDL, the behavior of a process can be decomposed into submachines
(called SDL services) that may share one or more context variables, which
are used to synchronize protocol phases (see Section 3.2).

• SDL services with distributed signal exchange:
SDL services may interact via asynchronous signal exchange. In conjunction
with priority signals, this gives rise to alternative solutions based on subma-
chines. Synchronization functionality is integrated into each micro protocol,
reducing the required glue. In this solution, each micro protocol is defined
in one package.

• SDL services with central signal exchange:
We have devised a solution that encapsulates all glue into one single manag-
ing SDL service realizing the synchronization. This solution is more generic
in the sense that micro protocol specifications are less context-dependent.

• SDL process inheritance with shared states:
In SDL, single inheritance among (block, process, service) types is pro-
vided, which is used here to establish a tight synchronization among protocol
phases.

234 I. Fliege et al.

inherits ProtocolPhases;

process type ProtocolPhasesEntity 1(1)

connectionSetup:
ConnectionSetup

dataTransfer:
DataTransfer

connectionRelease:
ConnectionRelease

IGate

ICONconf,

ICONind,

IDISind,

IDATind

ICONreq,

IConresp,

IDISreq,

IDATreq

1

ICONconf,

ICONind

ICONreq,

ICONresp

IGate

2

IDATind

IDATreq

IGate

3

IDISind

IDISreq

IGate

g1

4

CR

CR

g1

5

DT

DT

g1

6

DR

DR

g1
CR,DR,

DT

CR,DR,

DT

g1

system Example 1(1)

USE ProtocolPhases

<systems declarations area> (omitted)

<block interaction area> (omitted)

USE FlowControl

USE CoDec

USE LossControl

Fig. 5. InRes composition of micro protocols in SDL

• SDL procedures:
SDL procedures are submachines of an SDL process that are executed under
mutual exclusion. Synchronization is achieved by suitable sequencing.

In each of these solutions, a specific syntactical SDL specification of each
micro protocol is required. For instance, if inheritance with shared major states is
applied, each micro protocol is defined as an SDL process that inherits transitions
from further micro protocols2. In general, micro protocols may be encapsulated
into SDL block types, SDL process types, SDL procedures, or SDL service types.
Which one to use depends on the composition of micro protocols, which in
turn depends on the protocol to be configured. This drawback is remedied in
SDL-2000 [8]. Here, micro protocols can be defined as composite state types,

2 Please note that SDL does not support multiple inheritance, which would simplify
this composition style.

A Flexible Micro Protocol Framework 235

which are then instantiated in SDL block types, process types, procedures and
state aggregations as needed. In Figure 5, an excerpt of the solution that uses
SDL services with shared context variables is shown. In this solution, the micro
protocols are composed to yield the protocol entities of a system called Example
in two steps. First, the protocol phases are composed into an SDL process type,
resulting in macro protocol entity. Next, these phases are composed with flow
control, coding, and loss control (not shown). All micro protocols are imported
from the micro protocol library (USE clauses).

In Figure 5, the service types defined in ProtocolPhases are instantiated
and composed, adding signal routes3. Please note that the process type Pro-
tocolPhases including the shared context variable is inherited, supporting the
required synchronization. In fact, Figure 5 represents two different macro pro-
tocols, namely a connection oriented solution (as shown), and a connectionless
protocol that is obtained by removing all dotted symbols. This underlines the
flexibility of the micro protocols defined in ProtocolPhases.

4 Conclusions

In this paper, we have defined a generic micro protocol framework, consisting of
a set of general principles and rules for the composition of micro protocols. By
instantiating this framework, a specific micro protocol architecture is obtained.
Furthermore, we have introduced a micro protocol-based development process,
which starts with a functionality analysis, followed by an abstract design, and
completed by a concrete SDL design. The design activities are supported by a
micro protocol library, from which micro protocols are selected and composed.
All steps have been illustrated by the micro protocol-based development of the
InRes protocol.

For the specification of the concrete design, SDL has been chosen, due to its
suitability for communication systems, its broad dissemination, and the availabil-
ity of tool support. Experience so far shows that SDL is sufficiently expressive to
represent the composition operators used in the abstract design. There even exist
several choices of how to represent a given operator, which adds some flexibility
concerning composition styles, but also requires different representations of the
same micro protocol. We expect that the latter disadvantage can be remedied
with SDL-2000 and the use of composite state types, however, we did not exploit
this option due to the lack of tool support. Currently, the dependences among

3 A complication arises from the asynchronous nature of the signal exchange when
protocol phases are composed. For instance, when a protocol entity releases a con-
nection, the peer entity may still send data until realizing the release. This means
that the entity initiating the connection release must be prepared to discard all
incoming data indications, while being in the connection release phase or the subse-
quent connection setup phase. The solution adopted in Figure 4 is to keep all protocol
phases activated, but to define a behavior that depends on the current phase (see
Figure 3, decision cState=connected).

236 I. Fliege et al.

micro protocols, as expressed in the conceptual design, are represented in SDL
on a case by case basis. With more experience, we plan to define, for each generic
composition operator, an SDL design pattern that captures the corresponding
SDL representation in a generic way.

In the InRes case study, we had to develop micro protocols from scratch. In
the long run, a micro protocol library that contains a set of predefined, reusable
micro protocols is to be built up. During communication system development, the
protocol engineer can select micro protocols from this library, and compose them
according to the micro protocol framework. Current work is directed towards
building a library of routing and quality of service micro protocols.

Finally, it should be pointed out that micro protocols may pave the way to
compositional testing. Here, communication systems are perceived as being built
from components. Each of these components can be tested using well-proven
techniques. However, when these components are put together, the resulting
system is only tested for composition faults.

References

1. Bræk, R., Haugen, Ø.: Engineering Real Time Systems. Prentice Hall, 1993.
2. Fliege, I.: Definition and Application of an SDL Micro Protocol Library and a

Micro Protocol Framework Exemplified by the InRes System. Diploma Thesis,
Technical University of Kaiserslautern, Germany, 2003 (in German).

3. Fliege, I., Geraldy, A., Gotzhein, R., Schaible, P.: Design Reuse in Protocol En-
gineering – Components, Patterns, and Frameworks. SFB 501 Report Nr. 14/03,
Technical University of Kaiserslautern, Germany, 2003.

4. Gotzhein, R., Khendek, F.: Conception avec Micro-Protocoles. Colloque Franco-
phone sur l’Ingénierie des Protocoles, Montréal, Canada. Hermes Science, 2002.

5. Gotzhein, R., Khendek, F., Schaible, P.: Micro Protocol Design: The SNMP Case
Study. E. Sherratt (Ed.) Telecommunications and beyond: The Broader Appli-
cability of SDL and MSC. Volume 2599 of Lecture Notes in Computer Science,
Springer, 2003, 61–73.

6. Hogrefe, D.: OSI Formal Specification Case Study: The InRes Protocol and Service,
revised. Report No. IAM-91-012, University of Berne, May 1992.

7. ITU-T: Recommendation Z.100 (03/93, 10/96 addendum) Specification and
Description Language (SDL). International Telecommunication Union, Geneva
(1996).

8. ITU-T: Recommendation Z.100 (11/99) Specification and Description Language
(SDL). International Telecommunication Union, Geneva (1999).

9. ITU-T: Recommendation Z.120 (11/99) Message Sequence Chart (MSC). Interna-
tional Telecommunication Union, Geneva (1999).

10. Reed, R.: Methodology for Real Time Systems. Computer Networks and ISDN
Systems, Special Issue on SDL and MSC, 28 (1996), 1685–1701.

11. Schaible, P.: Reuse-based Development of Communication Systems. Ph.D. Thesis,
Technical University of Kaiserslautern, Germany, 2004 (in German).

12. Telelogic AB: Tau 3.4 SDT Methodology Guidelines - Part 1: The SOMT Method,
1998.

ICT Convergence: Modeling Issues�

Rolv Bræk1 and Jacqueline Floch2

1 Department of Telematics,
Norwegian University of Science and Technology,

NO-7491 Trondheim, Norway
rolv.braek@item.ntnu.no

2 SINTEF ICT, NO-7465 Trondheim, Norway
jacqueline.floch@sintef.no

Abstract. Even though ICT convergence is a well-established and a-
dopted concept, there is no consensus about the underlying software
engineering approach to convergent ICT systems. Telecom engineers and
software engineers traditionally use different approaches when develop-
ing services and applications. A main question is whether or not the
differences are justified and should be maintained in the context of con-
vergence? In this paper, we seek to answer this question by analyzing
the different nature of the telecom domain and the computing domain.
We identify a few fundamental differences that must be bridged when
making convergent systems and we investigate how UML can be used as
an enabler to build such bridges.

1 Introduction

Since the introduction of software for the control of switching systems in the
1960s, telecommunication systems have increasingly depended on software. The
separation between networks and services initiated by IN [12, 13] and continued
with Parlay/OSA is a significant development in the telecommunication history.
This separation, combined with general Internet access, has enabled services that
integrate and combine traditional communication services with information ser-
vices in innovative ways. It has also opened the network for third-party service
providers (at least in principle). Such novel services encompass much more than
connectivity. Users being exposed to computers and Internet have increasingly
grown to expect more. As a result, service engineering is no longer limited to con-
nectivity services, but will have to deal with a rich range of advanced application
oriented services.

Beyond access to network resources through Parlay/OSA interfaces, there is
no consensus in the telecommunication industry on what future service archi-
tectures will look like and which principles they should build upon. TINA [11]

� Both authors have contributed equally to this paper. Author names are listed in
alphabetic order.

D. Amyot and A.W. Williams (Eds.): SAM 2004, LNCS 3319, pp. 237–256, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

238 R. Bræk and J. Floch

is a unique common trial to that end. Although TINA has not reached indus-
trial strength, it provides concepts that will probably inspire the architects of
the future services. A basic assumption behind TINA is that no solutions to the
challenge posed by the emergence of new information society will be found with-
out putting together the best of telecommunications and information technolo-
gies. Accordingly, TINA proposes software structuring principles using object-
orientation and distributed computing techniques based on the OMG’s object
model [18] and CORBA [19]. Surprisingly, TINA neither discusses the ways con-
currency is handled by objects, nor the nature of object behavior and interac-
tions between objects. In these areas telecom and general software engineers use
fundamentally different approaches for the development of services and appli-
cations. Both approaches have strengths and weaknesses and now that services
are converging it is timely to ask which approach is best suited for the different
classes of problems at hand? Is it possible to identify fundamental properties of
services we may use to determine the right/best service architectures, delivery
platforms and service engineering methods?

In the following we analyze the different nature of the problems solved by
telecom and software engineers, and the differences between the development
approaches and platforms they apply. We discuss bridges between the approaches
and investigate how UML can be used as an enabler to build bridges. We will
use the term “telecom domain” as a general term to designate the problems
and technical solutions the engineers of telecom services typically deal with. We
will focus on service issues and not address network or transport issues here.
Using TINA parlance, we may say that we focus on the service architecture. We
will use the term “computing domain” to designate the problems and technical
solutions IT engineers typically deal with outside the traditional telecom domain.
Note that our aim is to understand important differences in order to find ways of
integrating convergent services. It is not our aim to provide an exact classification
of systems.

2 The Shaping Forces

2.1 Different Domain Characteristics

If we step back and consider the origins of the telecom domain and the computing
domain, the reasons why different approaches and traditions have developed in
the two domains emerge. The original domains may be characterized as follows:

The Computing Domain:

– Information processing by means of data and algorithms (or objects and
methods). Computing originally was, and still is, basically dealing with data
structures and action sequences (algorithms). Encapsulating data in objects
and introducing classes with inheritance does not fundamentally change this.

– Communication by invocation. The basic communication mechanism, apart
from data sharing, is the procedure call or method call, which is tied to a

ICT Convergence: Modeling Issues 239

transfer of control from the calling entity to the called entity. The calling
entity is blocked until control is returned from the called entity. This is
sometimes referred to as synchronous communication1. This means that the
actions of the caller and the called are performed as one thread of actions,
and not as two separate behaviors.

– Asymmetrical or client-server interactions. Request-response types of com-
munication dominate. This is an asymmetrical kind of communication in the
sense that it imposes asymmetric roles on interacting objects; there is one
initiating role and one responding role (or a client and a server).

– Concurrency as add-on. Although concurrency is essential to many applica-
tion domains, it is often suppressed in the computing domain. Few program-
ming languages support it directly 2, and there is a tendency to consider
concurrency as a problem that should be hidden from application develop-
ers. Concurrency in the computing domain has been considered mainly as a
mechanism to achieve performance and to support distribution (a necessary
evil). Operating systems support the sharing of computing resources between
applications, but few applications exhibit internal concurrency. The concept
of multithreading (i.e., concurrent threads of control) is supported in a few
programming languages (e.g., Java), but the concept is not well-understood
by application programmers and often a source of error (“Thread program-
ming can be tricky” [23]).

The Telecommunication Domain:

– Active objects with concurrent behavior. The domain is characterized by real
objects, like users, that behave concurrently and need to interact and to be
served concurrently. These are active objects executing their own behaviors
and possibly taking initiatives independently of each other (without requiring
invocation). Concurrency and communication among concurrent objects is
at the heart of these applications.

– Communication by signaling. It follows from the nature of active objects with
concurrent behavior that they cannot well communicate by control transfer
(invocation). They need explicit communication mechanisms such as signal
sending or messaging to interact. Active objects in the telecom domain are
in general, loosely coupled and autonomous.

– Symmetrical or peer-to-peer interactions. Communication between two ac-
tive objects may generally flow in both directions and concurrently. Initia-
tives may be taken independently and simultaneously and lead to conflicts
that must be resolved. One cannot in general, assume that the objects take
on asymmetrical roles, but must allow objects to communicate on an equal
basis, with few restrictions. This can be achieved by asynchronous message

1 Note that this is different from the notion of synchronous communication used in
process algebras like LOTOS and CCS.

2 CHILL and ADA are notable exceptions.

240 R. Bræk and J. Floch

passing over a network (or other medium) connecting the objects. Asyn-
chronous message passing may be used to implement any meaningful com-
munication pattern, and is therefore the preferred approach in the telecom
(and real-time) domain.

Note that the participants of a telecommunication service normally are dis-
tributed. Therefore, distribution, concurrency and peer-to-peer communication
among users are inherent application domain properties, and not just imple-
mentation issues. Computing applications have, until recently, been primarily
designed to deal with a single user. The main inter-user coordination is to en-
sure mutual exclusion so that only one user at the time may access the same
data. Distribution and concurrency is introduced in order to support many users
(multitasking), achieve better performance and to support physical distribution
of resources.

The different nature of the domains described above, have resulted in different
cultures and approaches to software system development. From time to time,
this appears as a battle between cultures. The interesting question is whether
this is just a matter of opinions and cultures or there are more objective and
fundamental issues behind? We contend that the need to support symmetrical
and concurrent interactions among peers is a fundamental issue! Synchronous
communication by invocation is limited to client-server structures. Asynchronous
communication by messaging may be used for both client-server and peer-to-peer
structures and is necessary to support general peer-to-peer structures.

2.2 Different Modeling Approaches

Systems and service engineering is strongly biased by the concepts we use to
model, understand, communicate and to reason about a problem domain and
its design solutions. Therefore modeling concepts must be carefully chosen to
reflect the domain they are intended for. Since the perspective and the concepts
used in the models strongly influence the way we understand and deal with the
topic domain, unsuitable modeling concepts may well lead to unsuitable system
solutions.

Not surprisingly, the modeling concepts used in the computing and telecom
domains differ both in formality and content (the kind of properties being mod-
eled).

The Main Modeling Concepts in the Computing Domain Are:

– Passive objects. Passive objects represent information entities and their prop-
erties. The target objects being represented may, or may not, have real be-
havior, but this behavior is normally not reflected in the system. It is the
information aspect that is represented.

– Associations. Associations play an important role because the relationships
between objects are central in information models.

– One-way interfaces and operations. The description of object interfaces is
limited to a static declaration of the operations provided over the interface

ICT Convergence: Modeling Issues 241

distributed
resources
distributed
resources

Fig. 1. Typical client-server structure

(operation signatures). Such interface descriptions may facilitate the con-
struction of a system by providing a means for retrieving objects that may
potentially offer a function or feature. They do not describe the interac-
tion semantics, however, and therefore do not provide sufficient support for
building a system that behaves correctly.

– Client-server or asymmetrical interactions with one-way initiatives. Relative
to an interface, there is one active side taking all initiatives and one passive
side that reacts and give responses.

– Communication by invocation is often assumed, but asynchronous commu-
nication by message passing may also be used.

– Tree-like structure. The overall structure of one service session is restricted
by the nature of client-server interactions and synchronous communication
to be tree-like, as illustrated in Figure1.

The Main Modeling Concepts in the Telecom Domain Are:

– Active objects. Active objects are usually modeled as autonomous entities
that may execute their own behaviors without requiring method invocation.
A common conceptual abstraction is communicating extended finite state
machines, as found in SDL and UML.

– Peer-to-peer or symmetrical interactions with multi-way initiatives. Relative
to a link between objects, both sides are active and may take initiatives
independently. Hence it is possible that initiatives may be taken by both
ends simultaneously and collide.

– Two-way interfaces and protocols. Normally signals/messages may flow both
ways across an interface, and the ordering may be defined by a protocol. This
means that interface definitions normally list the signals/messages going
both ways and possibly also specify the protocol.

– Asynchronous communication by message passing. Communication is based
on buffered signal/message passing which means that a sender is not blocked
but may continue working (e.g., reply to some request) as soon as a message is
sent. The degree of asynchrony may be determined by the size of intermediate
queues.

– Explicit states. Interactions between objects may be complex and is often
stateful. Therefore some form of state machine is useful to represent the ob-
ject behaviors. Objects may be involved in several interactions (i.e., interact
with multiple objects), possibly in a concurrent manner.

242 R. Bræk and J. Floch

Fig. 2. Typical peer-to-peer structure

– General network structure. The overall system structure may form a network
without structural limitations, as illustrated in Figure 2.

Traditionally, the computing domain has favored informal/illustrative func-
tionality models that are gradually elaborated and manually transformed into
software realizations. In contrast, abstract and formal modeling has gained a
stronger position in the telecom domain. Here formal models of application func-
tionality that can be understood and analyzed independently from implemen-
tations and then automatically translated into efficient implementations have
been developed. The two approaches have been termed the elaboration approach
and the translation approach respectively in [2]. Many information processing
applications may be modeled and understood quite well in terms closely related
to the computing domain. Therefore, it has not been so necessary, or worth
while, to develop conceptual abstractions that hide their computational nature.
Information models are an exception, not surprisingly since their purpose is
to focus on what information represents rather than how it is represented in
the computing world. In the telecom domain, more has been to gain by devel-
oping conceptual abstractions that are closer to the nature of the domain. A
conceptual abstraction that promotes human understanding and enables formal
analysis of the correctness of complex behaviors has helped considerably to re-
duce the number of errors and hence, increase the quality of systems. The Model
Driven Architecture, MDA [20], of OMG follows the elaboration approach and
bears some promise that the two cultures may meet each other. But it will be
extremely important that the fundamental nature of active entities and peer-to-
peer communication is considered and properly supported if MDA is to succeed
for convergent applications and services.

2.3 Two Notions of Services

In both the computing domain and telecom domain, a service is considered a
partial functionality, but beyond that, there are important and fundamental
differences. In the computing domain, it is common to consider a service as a
computation or information processing operation (or set of operations) that is
accessed through an interface using asymmetrical interactions. A service is pro-

ICT Convergence: Modeling Issues 243

vided by an object or a component. There may be many users accessing the
service, more or less simultaneously, but initiatives come from one side only
(normally from the users) and will not cross each other. Again we find asym-
metry in the computer domain, and will use the term client-server service for
this kind of service. In the telecom domain, services (or telecom services) result
from collaboration between several active objects. Even though each service user
may access the service through one interface, there may be several users and in-
terfaces involved in a service, and several services may be accessed through the
same interface. A telecommunication conference service is a typical case in point.
It entails collaboration between the parties taking part in the conference, and
cannot be understood simply as an interface. There is typically an n:m relation-
ship between services and objects providing the services. We will use the term
peer-to-peer service for this kind.

2.4 Two Application Architectures

There seem to be two main approaches to application system design. We will call
them the server oriented and the agent oriented3 architecture in the following.
In the first approach, the system is decomposed according to the type of func-
tionality it shall provide. This follows the tradition of functional decomposition
often favored by computing professionals. The result is a set of singleton server
classes with internal objects representing users and sessions. In the second ap-
proach, the system is decomposed according to the active environment it shall
serve. This follows the tradition of environment modeling (mirroring) which is
more common in the telecom domain.

The Server Oriented Architecture is Characterized by:

– Computation focus; servers and interfaces are addressed first and then users
and other entities being served. Components are chosen to reflect the services
to be provided.

– The responsibility of a component is to provide one or more services to many
users.

– Users and sessions are represented by data inside a service providing com-
ponent.

– Users may need to access different components to use different services.
– User data and profiles may be spread over different service providing com-

ponents.

The Agent Oriented Architecture is Characterized by:

– Active-world focus, users and other entities being served are addressed first,
and then services. Components (agents) are chosen to reflect the individuals

3 Note that we use the term agent in a general sense here to mean an entity repre-
senting and acting on behalf of other entities, not as a particular construction such
as an intelligent or mobile agent.

244 R. Bræk and J. Floch

server oriented architecture agent oriented architectureserver oriented architecture agent oriented architectureagent oriented architecture

Fig. 3. Two application architectures

(users and other entities) in the environment needing to be represented and
served.

– The responsibility of an agent is to represent a (single) user or other entity
and perform services on its behalf. Agents may be used to represent virtual
entities such as virtual classrooms, hospital rooms, or meeting places as well
as physical entities like users and terminals.

– Services are performed by parts inside, or closely associated with an agent.
– Users may access all services in a service provider domain through one agent.
– User data may be integrated in one user agent.

Note that the server oriented architecture fits well with client-server-services,
while the agent oriented is best fit for peer-to-peer services. Agent oriented archi-
tectures will normally be based on asynchronous communication and therefore
be suitable for general peer-to-peer services as well as client-server services.

It should be noted here that it is possible to implement peer-to-peer services
in a server oriented architecture, if it is supported by asynchronous communica-
tion.

2.5 Computing Platforms

Following from the differences outlined above, the computing platforms devel-
oped for the computing domain have predominantly been client-server oriented
and based on communication by invocation, remote procedure calls (RPC).
CORBA, DCOM and Java-RMI are prominent examples of this. The distri-
bution transparency they provide works fine as long as no errors or delays occur.
Concurrency is not an issue and is usually neither described at the application
level nor well-understood by programmers. The fact that problems invariably
pop up whenever one tries to shoehorn an application into a computing system
that does not fit, or even worse, if one tries to reshape the application problem
to fit the computing platform indicates that there are some fundamental prob-
lems. Computing platforms for the telecom domain (and in fact, most embedded
systems) have been peer-to-peer oriented and based on asynchronous communi-
cation by messaging. Note that asynchronous communication is always required

ICT Convergence: Modeling Issues 245

at the lower level of a distributed system. Communication by invocation in a dis-
tributed system needs to be layered on top of asynchronous communication by
messaging. From a performance point of view, asynchronous communication by
messaging will be the most efficient when it comes to networking. Asynchronous
communication also provides better control for the developer when objects are
distributed or when systems need to be reconfigured dynamically.

3 Foundations for Convergence

We see two important trends in convergence: telecommunication services being
increasingly enhanced by possibilities coming from the computing domain, and
computing applications becoming increasingly networked and distributed. Both
trends have been clear for a long time, but a common understanding of what it
takes in terms of modeling approaches and computing platforms remains to be
developed. The telecom domain traditionally provides good tools for dealing with
distribution and concurrency, but not for information modeling. Conversely the
computing domain is pre-eminent when dealing with sequential programming
and information processing, but less adequate when distribution and concur-
rency are concerned. A common foundation, therefore, should seek to combine
the best from the two domains. The first question then is what should be the
common core? The second is how to combine the best of both and provide in-
teroperability? Given the considerations presented in the previous section, it is
clear that the most general approach must be based on asynchronous commu-
nication by messaging in order to enable general peer-to-peer structures with
active objects and agent oriented architectures. This is essentially the telecom
approach, but it needs to be combined with and interoperate with solutions
from the computing domain both to fit the widest possible range of applications
and to bridge the cultures. A recent trend may prove important here: business
applications are becoming more collaborative and communication oriented. In
order to support this they need to shift from client-server towards peer-to-peer
structures. Consequently, asynchronous communication by messaging is gradu-
ally being introduced into such applications as well.

3.1 Modeling Focus

We argue that modeling - not the computing platforms should be the preferred
starting point when designing solutions to convergence. The concepts used in
the models strongly influence the way we understand and deal with the topic
domain. Therefore modeling tools are proposed as a means to solve convergence
problems.

SDL [14] is widely used in the telecom industry and a number of successful
experiences have been reported [4, 6, 7, 8, 9, 22]. However, SDL versions up to
1996 provide inadequate support for information modeling. In SDL-2000 there
are better means provided by the new data formalism and the possibility to
model data using UML class diagrams. Complex data types may be defined,

246 R. Bræk and J. Floch

but data are always encapsulated within active objects (SDL agents). By way of
contrast UML [21] was initially developed for information modeling and general
software engineering. It was recently extended with SDL-like concepts for active
objects and part structures. Although the semantics of SDL is more completely
and formally defined we assume here that UML is sufficiently well defined for our
purposes. Earlier efforts related to the formalization of the language [5, 10] may
contribute to the process of further formalizing UML (or parts of UML). It is
therefore interesting to assess how the UML language may be used as an enabler
for convergence. In addition to UML, MDA [20] may also help to build bridges
towards convergence. MDA is proposed by the OMG as a means to solve integra-
tion problems. MDA encourages intensive use of modeling (with UML as the first
language pillar) and the separation of application logic from implementations.
It also envisions the automatic transformation of models at different abstraction
levels. Such transformations may be exploited in order to generate glue between
two worlds when needed. To our knowledge there is no tool among the numer-
ous MDA CASE tools [10] that supports a mixed engineering approach and the
modeling of both information processing and behavior providing services. Tools
either focus on the computing domain (e.g., Objecteering [17] or the telecom
domain (e.g., TAU Generation 2 [24]) depending of the domain where the tools
were initially applied.

Further in subsequent sections, we discuss how the main divergences between
the telecom domain and computing domain may be accommodated. We focus
on modeling and also consider some realization issues.

3.2 Asynchronous Communication by Messaging

We contend that asynchronous communication by messaging should be sup-
ported at the core of a mixed engineering approach for three main reasons:

– It is the most general mechanism as it can support both peer-to-peer and
client-server structures without restrictions.

– It is the basic mechanism for information transfer over networks.
– It supports distribution transparency in a natural way.

Synchronous communication by invocation cannot be discarded, though. It is
a necessary programming level mechanism, and is extremely effective given a sin-
gle address space and thread of computing. It is also very convenient seen from an
application programmers point of view, and is supported by many mainstream
middleware and distributed computing platforms. Many client-server applica-
tions and APIs are based on it. Consequently, a platform for convergent services
will need to support both asynchronous communication and synchronous com-
munication by invocation. A natural boundary goes between active objects and
passive objects. Active objects have their own threads of behaviors and oper-
ate concurrently with each other, while passive objects are invoked by external
threads of behavior. Active objects may well contain inner structures of passive
objects being invoked. Structures of passive objects contained within active ob-
jects is therefore a solution which is supported directly by UML and SDL. This is

ICT Convergence: Modeling Issues 247

not always enough, however. It may be necessary to support external invocation
interfaces, typically:

– To interface with legacy systems and APIs.
– For convenience of application programming. Communication by procedure

or method calls is especially convenient for value returning functions.
– When speed is critical. Local interactions within one address space may

sometimes be faster than message passing, but remote interactions are bound
to be slower.

The implication for the computing platform is that asynchronous message
passing should be directly available to applications. Remote invocations should
be available when needed. The implication for modeling is that asynchronous
communication among active objects must be supported, which is the case for
both SDL and UML. This will require that application developers learn to mas-
ter asynchronous communication. Programmers in the computing domain are
usually not familiar with this form of communication, so this will require some
education. From our experience with students, we claim that the concepts of
asynchronous communication are not difficult to master if properly supported
in models and implementations.

3.3 Peer-to-Peer Structures Combined with Client-Server
Structures

Peer-to-peer structures of active objects must be supported in a convergent en-
gineering approach. The main reason being again, that this is the more general
structure. A client-server structure can be realized as a special peer-to-peer struc-
ture, but the opposite is not the case. Client-server structures impose asymmetric
roles on interacting objects, and fail to properly support symmetrical services
(i.e., services resulting from collaborations between agents). It is quite common
to find client-server sub-structures within peer-to-peer structures, however. Such
sub-structures may well be modeled and realized using communication by invo-
cation, given that certain restrictions are satisfied. Since the behavior of such
sub-structures will be threaded into the behavior of the invoking active object,
care must be taken to ensure that timing conditions are satisfied and undesirable
interference with other active objects is avoided. Under what conditions asyn-
chronous messaging at the modeling level (SDL) can be mapped to invocations
at the realization level is explained in [3]. In SDL it is not possible to have passive
objects outside active objects, and so there is no support for invocation of such
objects outside active objects (i.e., Agents in SDL-2000), but the remote pro-
cedure call provides an invocation-like mechanism to use in application models.
This is mapped to a protocol of implicit asynchronous messages in the semantics
of SDL. UML is less restrictive by allowing passive objects to exist outside active
objects and allowing invocation between objects in general. This gives freedom
to mix communication forms as one sees fit, but also to introduce many of the
classical errors associated with concurrency. It is therefore extremely important
that the designer is aware of the concurrency and timing related problems and

248 R. Bræk and J. Floch

what conditions that must be satisfied when directly mixing communication
forms. These issues are further discussed in Section 3.5.

3.4 Agent Oriented Architectures

We argue that agent oriented architectures should be possible in a convergent
engineering approach. Agent oriented architectures enable better service inte-
gration; several services may be accessed through one agent. The agent oriented
architecture also better supports personalization as agents are used to represent
real world entities, for example users. Agent orientation contributes to the clar-
ity of modeling stateful behaviors. (For truly stateless behavior server oriented
architecture works just as well.) Server oriented architectures may be combined
with agent oriented architectures when necessary, for example in the integra-
tion of web-server front-ends with database back-ends. UML has adopted the
ideas introduced by architecture definition languages such as Darwin [16] and
Koala [25] and provides means to describe component based architectures, among
them agent oriented architectures. Agent structures can be described in terms
of hierarchical component structures (components with inner parts), ports and
connectors (communication channels) in a similar way as supported by SDL-2000
agents, gates and channels. Ports may have associated behavior, i.e., protocol
roles. Finally UML also defines concepts for modeling agent collaborations.

3.5 Mixing the Communication Forms

As active and passive objects assume different communication forms, commu-
nication between active and passive objects require special attention. Asyn-
chronous communication simplifies the modeling of concurrent behaviors, while
synchronous invocation simplifies the modeling of simple data operations. There-
fore we propose a transformation based approach where both communication
forms can be combined.

The SDL Solution: Let us initially consider the SDL solution where active
objects may communicate through remote procedure calls. Remote procedure
calls are in SDL mapped to an exchange of implicitly defined signals. This means
that invocation takes place between active objects by means of signal exchange.
Figure 4 illustrates the transformation from remote procedure call to messages
which is built into the language. Note that the transformation applies to models.

The big advantage of this approach is that invocation and messaging may
be combined freely, and that invocation is no longer restricted to client-server
structures. It illustrates well the advantage of having messaging as foundation,
but falls short of providing the convenience of real invocation on passive objects.
A main drawback of using remote procedure calls in this way is that a remote
call needs to be handled in every state, and thus the benefit gained by using
stateful behavior may be lost. It is therefore best suited for stateless, or rather
single state, behaviors.

ICT Convergence: Modeling Issues 249

transform

remote
procedure

call

messages

add state add input

transform

remote
procedure

call

messages

add state add input

Fig. 4. Remote procedure calls in SDL

Invoking Passive Objects from Active Objects in UML: UML does not
define any concept similar to the SDL remote procedure call, but active objects
may provide both operation and message interfaces and it is possible to mix ac-
tive and passive objects in the same diagrams. Let us first consider invocation of
passive objects from active objects. Invoking a passive object from an active ob-
ject is straightforward in UML using the synchronous call action, as illustrated in
Figure 5a. The realization is also straightforward at the programming level since
invocation of passive objects is directly supported by programming languages.

However the simplicity of modeling in UML and programming is misleading.
The designer should be well aware of possible dangers when using direct invo-
cations. In particular it is necessary to ensure mutual exclusion if several active
objects may perform simultaneous invocations. It is possible to indicate in UML
how this is to be achieved by specifying a CallConcurrencyKind {sequential,
guarded, concurrent}. It is also necessary to ensure that the calling object never
blocks too long while waiting for control to be returned. This blocking delay is
increased when calls are guarded or objects are distributed. When several active
objects are implemented in an alternating (run to completion) way, blocking the
caller object will also block other objects. In order to avoid blocking of active
objects, synchronous invocation may be transformed to asynchronous messaging
as illustrated in Figure 5b. Edge objects (also called proxies) are then inserted
that convert between messaging and invocation and the behavior of the active
caller object is modified in a similar way as for remote procedure calls in SDL.
Note that, in order to avoid blocking, the edge object should not run in the same
thread of control as the modified active caller object. It is debatable whether or
not such transformation of UML models should be hidden from the developer.
But in order to decide on the best approach in each case, it is necessary to take
concurrency and timing constraints into account as explained above. For this to
be done automatically it is necessary to add information either to the original
UML model, to a platform dependent model or to a deployment model.

250 R. Bræk and J. Floch

Fig. 5. Invoking passive from active objects

Fig. 6. Invoking active from passive objects

Invoking Active Objects from Passive in UML: Let us now consider com-
munication from passive objects to active objects. Again there are two possibil-
ities: direct invocation and edge mediated invocation as illustrated in Figure 6a
and 6b.

If the passive and active objects run alternating in the same thread of behav-
ior, there are few if any problems with direct invocation. In general we cannot
assume they do, and therefore need to consider the well-known problems of
mutual exclusion and blocking. Mutual exclusion may be ensured at the imple-
mentation level by careful scheduling or by using synchronized method calls. The
latter may well increase the blocking delays, however. In order to avoid block-
ing and synchronization delays we may introduce edge objects that transform
invocation to messaging, as illustrated in Figure 6b.

Note that the two cases illustrated in Figure 5 and 6 may well be combined to
allow for interactions both ways between (sub-) systems using different commu-
nication forms, typically between peer-to-peer and client-server (sub-) systems.

ICT Convergence: Modeling Issues 251

invocation

messaging

translate

a) Direct invocation

b) Invocation by
messaging

add input
add state

invocation

messaging

translate

a) Direct invocation

b) Invocation by
messaging

add input
add state

Fig. 7. Invocation by messaging in UML

Invocation Between Active Objects in UML: Invocation between active
objects is the last case we need to consider. Since active objects may run concur-
rently, the mutual exclusion and blocking delay problems discussed above must
be considered here as well. In special cases where scheduling and timing permits,
direct invocation may be possible. A slightly more general solution is to ensure
mutual exclusion by using synchronized method calls at the implementation
level. One must then carefully consider the blocking delays this introduces and
the deadlock possibilities that may be introduced by two active objects blocking
to wait for each other. A more general option is to use an SDL like transfor-
mation approach whereby direct invocation in high level models is translated
into messaging in more detailed models. This would provide the convenience of
invocation in application models without sacrificing the generality and safeness
of asynchronous messaging in the running system, see Figure 7.

Summary. The main issues determining which solution to use when mixing the
communication forms are:

– Concurrency: are the parties concurrent or not?
– Initiative patterns: one-way or two-way?
– Communication structure: three-like or networked?
– Blocking delays: are they acceptable?
– Synchronization delays: are they acceptable?

4 A Convergent Service Example

In order to experiment with the proposed engineering approach we are devel-
oping a pilot application called AMIGOS [1]. Master students at NTNU have
contributed to the development of AMIGOS and to the assessment of the plat-
form technologies.

252 R. Bræk and J. Floch

Agents manage stateful
behaviours and
collaborations

Passive objects
provide information
to agents

Terminal
Agent

User
Agent

MeetingPlace
Agent

Call
Agent

Terminal
Agent

User
Agent

MeetingPlace
Agent

Call
Agent

UserProfilesBuddyLists

Meeting places provide presence, location awareness, calls, chat, multimedia
conferences, object sharing, … for user groups like work-teams, classrooms, friends

Agents manage stateful
behaviours and
collaborations

Passive objects
provide information
to agents

Terminal
Agent
Terminal
Agent

User
Agent
User
Agent

MeetingPlace
Agent
MeetingPlace
Agent

Call
Agent
Call
Agent

Terminal
Agent
Terminal
Agent

User
Agent
User
Agent

MeetingPlace
Agent
MeetingPlace
Agent

Call
Agent
Call
Agent

UserProfilesBuddyLists

Meeting places provide presence, location awareness, calls, chat, multimedia
conferences, object sharing, … for user groups like work-teams, classrooms, friends

Fig. 8. AMIGOS: a convergent teleservice using a mixed approach

AMIGOS is a meeting place service where different features can be plugged
in dynamically, such as positioning and map information, buddy list support,
presence, etc. The users may establish new meeting places and select the func-
tionalities available in the meeting places. The service may be accessed from
smart phones (e.g., Sony-Ericsson P-800), PDAs and PCs.

AMIGOS requires the capabilities of telecommunication services such as user
co-ordination and call-control as well as the capabilities of information services
such as user profile management, buddy list management, meeting place config-
urations. Profile and buddy list management involve setting of attribute prefer-
ences and are not necessarily time critical. As shown in Figure 8, some elements
of the services may be modeled and realized as active objects, some as passive
objects.

The following aspects have been modeled using UML:
– Collaboration structure, i.e., the agent roles involved in collaboration and

the associations between roles.
– Collaboration sequences, i.e., the interactions between agent roles.
– Role state machine, i.e., the detailed Agent and Role behavior.
– The context and content constraints of Agent and Role types.
– Profiles and other passive objects.

A difficulty encountered during the development of AMIGOS is the lack of
mature UML modeling tools. The lack of transformation tools is also a barrier. A
flexible UML code generator has been developed at NTNU [15] and is currently
being integrated with other tools to help support the student projects. Over and
above tool support, good methodology support also needs to be developed.

The service core is implemented on EJBActorFrame, a service execution
framework developed in the Avantel project [1] by Ericsson in Norway. EJBAc-

ICT Convergence: Modeling Issues 253

m: Meeting
User

p: Positionu

u ps

psm

Meeting with Position

sd pos
subscribe

sd pos
update loop

: Position:Meeting User

Timer

Timer

Get Position

Mobile Position

Current Position

: Pos Server

(a) collaboration structure (b) collaboration sequence

p: Position

ps

p: Position

ps

p

Timer

Timer

Get Position

Mobile Position

pos update

Timer

Timer

Get Position

Mobile Position
m: Meeting
User

p: Positionu

u ps

psm

Meeting with Position

sd pos
subscribe

sd pos
update loop

: Position:Meeting User

Timer

Timer

Get Position

Mobile Position

Current Position

: Pos Server

(a) collaboration structure (b) collaboration sequence

p: Position

ps

p: Position

ps

p

Timer

Timer

Get Position

Mobile Position

pos update

Timer

Timer

Get Position

Mobile Position

Fig. 9. AMIGOS: modeling collaborations

torFrame combines the capabilities of a generic agent-oriented framework and
those of an application server. EJBActorFrame is implemented on the JBOSS
middleware that supports J2EE technologies. J2EE facilitates the integration of
the service core with client applications through JMS, WAP, and Web services
and with other application servers through interfaces such as Web Services and
JMS. In addition there is an ActorFrame version that is not dependent on J2EE.
It can run on terminals and small devices. This enables a homogeneous applica-
tion environment all the way from terminals to application servers. Within the
Avantel project, Telenor has provided a lab environment with access to live net-
work resources over Parlay, Parlay-x and other interfaces. This means that the
application framework (ActorFrame) need to interoperate both with messaging
and invocation based interfaces. The principles outlined in the previous section
are used to provide edge mediated adaptation (Figures 5b and 6b). The core
concept of ActorFrame is the Actor, which is basically an active object accord-
ing to UML2.0 with behavior defined by a state machine and with inner parts.
This is illustrated in Figure 10.

Agents are special Actors that represent environment and domain entities.
Agents may have service profiles and credentials. One big advantage of this envi-
ronment is that it combines the power of application servers to handle persistent
objects and transactions, with the power of collaborating state machines to pro-
vide complex peer-to-peer behaviors.

Using this environment, students have been able to develop and demon-
strate convergent services within the timeframe of a semester. They have mod-
eled using UML drawing tools rather informally, and implemented manually
using the Java classes of ActorFrame. The biggest difficulties they have re-
ported so far have been to make edges and to determine Agent functionali-
ties. Detailed design and implementation has been relatively problem free. We
are now taking measures to reduce their problems by providing standardized
edges, by enabling ActorFrame to run on terminals and by providing design
patterns.

254 R. Bræk and J. Floch

Terminal
Agent

User
Agent

MeetingPlace
Agent

Call
Agent

Terminal
Agent

User
Agent

MeetingPlace
Agent

Call
Agent

JMS

Servlet

WebService
Parlay-X WS IVR WS Location WS Map WS

Parlay-X IVR Location
Server

MapServer

Access and transport networks

IPAQ

P-800

Fixed or
mobile
terminal

edges

edges

Terminal
Agent
Terminal
Agent

User
Agent
User
Agent

MeetingPlace
Agent
MeetingPlace
Agent

Call
Agent
Call
Agent

Terminal
Agent
Terminal
Agent

User
Agent
User
Agent

MeetingPlace
Agent
MeetingPlace
Agent

Call
Agent
Call
Agent

JMSJMS

ServletServlet

WebServiceWebService
Parlay-X WSParlay-X WS IVR WSIVR WS Location WSLocation WS Map WSMap WS

Parlay-XParlay-X IVRIVR Location
Server
Location
Server

MapServerMapServer

Access and transport networks

IPAQIPAQ

P-800P-800

Fixed or
mobile
terminal

Fixed or
mobile
terminal

edges

edges

Fig. 10. ActorFrame illustrated with edges and AMIGOS Agents

5 Conclusions

Telecom and software engineers traditionally use different engineering approaches
when developing services and applications. In this paper we have presented these
differences in terms of domain properties, modeling concepts, services and archi-
tectures. The telecom approach and the computing approach have both strengths
and weaknesses. A convergent approach should exploit these strong sides. We
argue that the telecom concepts used to model and realize behaviors are more
general and should be supported at the core of a convergent approach. Modeling
is considered as an important foundation. Modeling will contribute to a unified
concept framework and to a common understanding of systems. Since UML that
was initially developed for information system modeling, was recently extended
with concepts from the telecom domain, we have studied how UML may be used
as a basis for convergence. By modeling and implementing a number of conver-
gent service examples we have demonstrated that this is feasible, although not
without considerable care. The fundamental nature of active objects and peer-to-
peer communication must be considered and properly supported if an approach
is to succeed for convergent applications and services. This may be achieved by
employing a framework like the one we have presented here. We are currently
elaborating a methodology for incremental development of convergent services,
based on UML and the agent oriented framework outlined above. We seek to de-
fine guidelines that enable the developer to choose the appropriate architecture
and communication concepts depending to the problem to be solved.

ICT Convergence: Modeling Issues 255

References

1. AMIGOS and the Avantel project. Information available at http://www.pats.no
(accessed March 2004)

2. Bræk, R: On Methodology Using the ITU-T Languages and UML. Telektronikk,
vol. 96, no. 4, pp. 96–106, 2000.

3. Bræk, R., Haugen, Ø: Engineering Real Time Systems. An Object Oriented
Methodology using SDL. Hemel Hempstead, Prentice Hall, 1993.

4. Bræk, R., Sarma, A. (Eds.): Proceedings of the 1995 SDL Forum, North-Holland,
1995. ISBN 0-444-82269-0.

5. Bren, R., Hinkel, U., Hofmann, C., Klein,-C., Paech, B., Rumpe, B., Thurner, V.:
Towards a formalization of the Unified Modeling Language. Proc. of ECOOP’97,
11th European Conference on Object-Oriented Programming, 1997, 344-366.

6. Cavalli, A., Sarma, A. (Eds.): Proceedings of the 1997 SDL Forum, Elvesier, 1997.
ISBN 0-444-82816-8.

7. Dssouli, R., Bochmann, G.v., Lahav, Y. (Eds.) Proceedings of the 1999 SDL Forum,
Elvesier, 1999. ISBN 0-444-50228-9.

8. Færgemand, O., Reed, R. (Eds.): Proceedings of the 1991 SDL Forum, North-
Holland, 1991. ISBN 0-444-88976-0.

9. Færgemand, O., Sarma, A. (Eds.): Proceedings of the 1993 SDL Forum, North-
Holland, 1993. ISBN 0-444-81486-8.

10. Fisher, C., Olderog, E.-P., Wehrheim, H.: A CSP View on UML-RT Structure
Diagrams. Proc. of FASE 2001 - Fundamental Approaches to Software Engineering,
4th International Conference. Volume 2029 of Lecture Notes in Computer Science,
Springer 2001, ISBN 3-540-41863-6.

11. Inoue, Y., Lapierre, M. and Mossoto, C. (Eds.): The TINA Book - A co-operative
solution for a competitive world (1999) ISBN 0-13-095400-4.

12. ITU-T: Recommendation I.329/Q.1203 (09/97) Intelligent network - Global func-
tional plane architecture. International Telecommunication Union, Geneva (1997).

13. ITU-T: Recommendation Q.1211 (03/93) Introduction to intelligent network ca-
pability set 1. International Telecommunication Union, Geneva (1993).

14. ITU-T: Recommendation Z.100 (11/99), Specification and Description Language
(SDL). International Telecommunication Union, Geneva (1999).

15. Kræmer, F.: Rapid Service Development for ServiceFrame. M.Sc. thesis, NTNU,
Norway, 2003.

16. Magee, J., Dulay, N., Eisenbach, S., and Kramer, J.: Specifying Distributed Soft-
ware Architectures. Proc. of the Fifth European Software Engineering Conference,
1995.

17. Objecteering. Information available at http://www.objecteering.com (accessed
March 2004).

18. OMG: Object Management Architecture Guide, Revision 2.0. Object Management
Group, December 1993.

19. OMG: The Common Object Request Broker: Architecture and Specification, Re-
vision 2.0. Object Management Group, July 1995.

20. OMG: Model Driven Architecture. Object Management Group,
http://www.omg.org/mda (accessed March 2004).

21. OMG: UML 2.0 specifications. Available at http://www.omg.org/uml (accessed
March 2004).

22. Reed, R., Reed, J. (Eds.): Proceedings of the 10th SDL Forum. Volume 2078 of
Lecture Notes in Computer Science, Springer (2001). ISBN 3-540-42281-1.

256 R. Bræk and J. Floch

23. Sun Microsystems: The Java tutorial. (accessed March 2004) http://
java.sun.com/docs/books/tutorial/essential/threads/

24. Telelogic AB: TAU Generation 2. Information available at http://
www.telelogic.com (accessed March 2004).

25. van Ommering, R., van der Linden, F., Kramer, J., Magee, J.: The Koala com-
ponent model for consumer electronics software. IEEE Computer, Vol. 33, Nr. 3,
March 2000, 78–85.

Dealing with Non-local Choice in
IEEE 1073.2’s Standard for Remote Control�

Arjan J. Mooij and Nicolae Goga

Technische Universiteit Eindhoven,
Department of Mathematics and Computer Science,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

{A.j.Mooij, N.Goga}@tue.nl

Abstract. Currently, communication protocols for medical devices are
being developed for the IEEE 1073.2 standard. The protocol description
in its draft remote control package consists of a collection of intended
behaviors in terms of MSCs. We have contributed to actually construct-
ing the protocol, ranging from determining an hMSC for these MSCs,
via synthesizing process implementations, to integrating it with the basic
underlying IEEE 1073.2 protocol. In this paper we report on the non-
local choice problems we encountered. We present a practical solution
(i.e., an implementation) which on the one hand is close to the behavior
specified in the hMSC, and on the other hand meets correctness proper-
ties such as deadlock freedom. These properties have been checked using
the Spin model checker. We also give some directions for generalizing
and extending this work.

1 Introduction

At the moment of writing, the ISO/IEEE 1073 Standard for Medical Device
Communications is being developed. The network protocols in this family of
standards address the communication of patient-related data necessary for the
treatment of patients or for the documentation of medical procedures. Although
such a communication system in medical use must be extremely reliable under
all circumstances, a formal analysis is no common part of their development.

The development of this standard is a long-term effort of a great number of
parties, including manufacturers, each with a specific interest in this standard.
We have actively participated1 in the working group meetings and in ongoing
discussions with the developers of the standard. The challenge is to successfully
contribute to a yet incomplete standard which is subject to change.

In [14] we reported on our work on analyzing the base communication proto-
cols of ISO/IEEE 1073.2 [11]: we analyzed and extended its draft state tables,

� This research is supported by the NWO under project 016.023.015: “Improving the
Quality of Protocol Standards”.

1 As a recognition of the value of this work, we are in the ballot group and on the
international coordination list.

D. Amyot and A.W. Williams (Eds.): SAM 2004, LNCS 3319, pp. 257–270, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

258 A.J. Mooij and N. Goga

and we proposed modifications to overcome the problems found. In the discus-
sions about the results of this work, we were requested to become involved in
the development of the optional remote control package [12].

The protocol in the current draft of the remote control package is specified by
a collection of message sequence charts and accompanying textual descriptions.
In this paper we describe the results of our attempts to extract and analyze
the intended communication protocol. The resulting formal description of the
protocol will be incorporated in the remote control standard.

In the literature, many algorithms have been proposed for synthesizing a
protocol from a collection of message sequence charts. A well-known problem
in the current protocol synthesis algorithms is dealing with non-local choice. In
case of non-local choice, these algorithms usually introduce deadlocks, resulting
in communication protocols with undesired behavior. We propose a new direction
to solve this problem under some practical assumptions, and we apply it to the
remote control package.

The remainder of this paper is organized as follows. Section 2 gives some
theoretical background on the synthesis of protocols from MSCs and on the non-
local choice phenomenon. Section 3 briefly presents the remote control package
from the ISO/IEEE 1073.2 standard. Section 4 describes our attempts to apply
the existing theory to the creation of the remote control protocol and shows the
non-local choice situation for our case study. Section 5 explains why no existing
algorithm could be fruitfully applied and it describes our solution. Section 6
presents the results of our verification of the remote control protocol. Section 7
outlines the conclusions and further work.

2 Related Work

This section contains a brief introduction to the techniques for extracting a
protocol from a message sequence chart (MSC). A basic message sequence chart
(bMSC) is used to describe a single scenario of system behavior. A collection
of bMSCs can be structured using a high-level message sequence chart (hMSC)
or a message sequence graph (MSG). The basic means to compose bMSCs are
sequential (i.e., vertical) and alternative (i.e., choice) composition and sometimes
parallel (i.e., horizontal) composition.

To increase the value of MSCs in designing a system, the MSCs should not
only be used for describing some intended behaviors. For example, an (initial)
implementation for the processes of the system might be synthesized. Thereto
many algorithms (e.g., [6, 13]) have been proposed. Although they differ in the
formalism that is used for the transformation (process algebra, automata theory,
etc.) and the kind of output that is generated (Petri-net, state chart, etc.), they
usually consist of the following three characteristic phases (see also [9]):

1. project the behavior of each bMSC on the individual processes;
2. compose the projected bMSCs per process as described by the hMSC;
3. minimize the process descriptions.

Dealing with Non-local Choice in IEEE 1073.2’s Standard 259

Composing the bMSC behaviors per process ignores some synchronization
that seems to be imposed by the hMSC. Therefore sequential composition of
bMSCs is usually interpreted as weak sequential composition, i.e., if two bMSCs
are sequentially composed, processes that completed the first bMSC may start
executing the second bMSC, while some other processes may still be execut-
ing the first bMSC. A consequence of using weak sequential composition is the
danger of process divergence [5], in which some processes go on a potentially
unbounded number of bMSCs ahead of other processes.

Another known source of problems are choice nodes in hMSCs, because all
processes must make the same series of choices on these nodes. This problem is
partly solved by interpreting choice in the hMSC as delayed choice [3], which is
called the “wait-and-see” approach. Some synthesis algorithms obtain delayed
choice semantics by first composing using ordinary choice and then applying
some minimization. This is usually the main goal of minimization, but sometimes
also an extra reduction of the size of the protocol description is achieved.

The main remaining problem is non-local choice [5, 8, 9] nodes, where the
first action of the bMSCs that can be chosen is initiated by different processes.
If the processes do not reach agreement on the choice, usual implementations can
reach a deadlock state. In the literature there are three main views on non-local
choice:

– faulty hMSC : non-local choice nodes are only part of erroneous hMSCs, so
methods are needed that detect them (e.g., [9]);

– implicit synchronization: non-local choice nodes implicitly specify additional
synchronization (e.g., a consensus protocol), so additional messages (and
maybe even additional processes) must be explicitly introduced to obtain an
implementation (e.g., [9, 13]);

– implied behavior : non-local choice nodes introduce behavior that must exist
in any implementation that contains at least the intended behaviors, so these
extra behaviors must be revealed and included (e.g., [1, 5, 15]).

For solving the general problem of non-local choice in implementing hMSCs,
extra behavior must be introduced, like communicating extra messages [9] or
accessing a global history variable [13]. In Section 5 we make some additional
assumptions and propose a solution that can be classified as a combination of
the last two views, viz. implicit synchronization and implied behavior.

3 Remote Control in ISO/IEEE 1073.2

After the previous introduction to protocol synthesis algorithms, in this section
we give an overview of the ISO/IEEE 1073.2 standard and its remote control
package. This standard deals with networks of medical devices and managerial
computer systems. The patient-connected medical devices communicate patient-
related physiological data to other devices and to computer systems. In this
context, a manager/agent communication system is defined, in which the agent
process usually incorporates a medical device that provides data, and in which

260 A.J. Mooij and N. Goga

the manager process receives data. The protocols are typically defined for one
manager-agent pair, although a manager can possibly communicate with several
agents.

The main concept that is used in these protocols is the containment tree.
The containment tree, also called Medical Data Information Base (MDIB), is
an abstract object-oriented model of the medical devices in the agent. The root
of the containment tree is the Medical Device System (MDS) object, which
is an abstraction of a device that provides medical information. Initially, the
containment tree is accessible by the agent, and this standard’s base protocols
maintain a copy that is accessible by the manager.

Remote control functionality will be enclosed in ISO/IEEE 1073.2 to enable
performing tasks on a medical device through a communication system. These
tasks include obtaining medical information, and configuring, programming and
operating the device. The base protocols of this standard support some kind
of remote control called remote configuration, but it is considered to be too
restrictive for full remote control.

In the case of remote configuration, the “Set” service of CMDISE (Common
Medical Device Information Service Element) is used to change the values of
attributes of the objects to be controlled. The limitations of this approach are the
same as the ones that let to the inclusion of the encapsulation principle in object-
orientation in general. The remote control package will rely on the “Action”
service of CMDISE to perform operations on the objects to be controlled. A
main requirement on the remote control package is that the extra functionality
is provided as an extension of the existing containment tree.

3.1 Architecture

The remote control package considers an application running at the manager
that must remotely control devices of the agent. Figure 1 shows such a manager
application and four special components needed at the agent side: the context
scanner, the operating scanner, the service and control objects, and the operation
objects. The arrows indicate the directions of the main communication channels
between those components.

The context scanner is inherited from the base standard in order to maintain
the copy of the MDIB under device configuration changes. The newly-introduced
operation objects represent remote controllable items of a medical device. The
operating scanner is added to maintain the collection of operation objects, but
the operation objects are only accessible for the manager application through
the service and control object related to the operation object. Each service and
control object (SCO) manages a group of (dependent) operation objects that
are supported by a medical device, and it provides a locking mechanism for
transaction processing.

3.2 Protocol

In this paper we only describe the remote control extensions of the base pro-
tocol (as described in [14]). After creation of the context scanner by the base

Dealing with Non-local Choice in IEEE 1073.2’s Standard 261

Application Operating Scanner

Context Scanner

Service and Control Object

Operation

Manager Agent

Fig. 1. Overview of the system

protocols, the initialization of the remote control system consists of the following
consecutive phases:

– Object Duplication: The context scanner, right after its creation, copies the
objects (including the SCOs, but excluding the operation objects) of the
containment tree to the manager. Afterwards, the context scanner updates
the active SCO list of the operating scanner.

– Operation Object Duplication: The manager enables the operating scanner
of the agent. In turn, the operating scanner starts copying the available
operations to the manager. Afterwards the operating scanner sends updates
of the operation attributes to the manager.

After these start-up phases, the central Operation phase is reached. From
this phase, four additional phases can be entered after which the components
return to the Operation phase:

– Operation invocation: The manager sends an Operation Invoke message to
the SCO, which in turn confirms the receipt of this message. The SCO deals
with the actual execution of the operation, and with determining whether
execution is allowed according to the locking mechanism. After successfully
completing the execution of the operation, the SCO initiates the Reporting
phase. If an error occurred during execution of the operation, or the execution
was not allowed by the locking mechanism, the SCO sends an error report
to the manager.

– Reporting: Upon completion of an operation or upon a device state change
(possibly by a local user of the device), the Operating Scanner sends updates
of the operation attributes to the manager.

– Refreshing: In case the manager detects an error situation that might have
corrupted its copy of the MDIB, the manager can request the agent to refresh
the set of available operations or their attributes. The agent, in turn, sends
this information in a similar way as in the Operation Object Duplication
start-up phase.

262 A.J. Mooij and N. Goga

– Reconfiguration: Whenever the SCO detects that an operation has been
deleted, it notifies the operating scanner. The operating scanner, in turn,
notifies the manager.

4 Protocol Definition

The remote control draft package describes a communication protocol using a
collection of typical intended behaviors in the form of MSCs and accompanying
textual descriptions. Figure 2 contains some of the bMSCs, with an emphasis
on the communication between the manager and the agent. However, the draft
package contains no formal definition of the protocol. We tried to derive formal
process implementations for this protocol in the form of state transition tables.
In this section we describe the way we did this and the problems we encountered.

Manager Agent

 Operation Deletemsc

delete operation from MDIB

SCO detects Operation deletion

 ‘‘Operation Delete’’ Event Report Result

‘‘Operation Delete’’ Event Report

msc Refresh Operation Context

AgentManager

get information from SCO

‘‘Refresh Operation Context’’ Action Result

 ‘‘Refresh Operation Context’’ Action

Fig. 2. Some of the remote-control bMSCs

Dealing with Non-local Choice in IEEE 1073.2’s Standard 263

Operation Invoke (with SCO lock)

Operation Invoke Refresh Operation Context

Operation DeleteSCO Operation Invoke Error

Refresh Operation Attributes

Start−up

Fig. 3. Initial composed hMSC

We must first decide for which processes we must create an implementation
in order to obtain an appropriate protocol description. For the remote control
package there are roughly two possibilities:

– one combined manager process and one combined agent process;
– all individual processes mentioned in Figure 1.

The first alternative stresses the communication between the two combined
processes, while the second one stresses the roles of the individual processes. The
standard emphasizes the communication between the manager and the agent in
order to leave more freedom for implementing the internal objects of the agent.
Therefore our main interest is in the first alternative, but we also consider the
second alternative.

We tried to apply standard synthesis algorithms to this draft standard, but
we encountered the following problems:

– missing hMSC : the structure on the collection of bMSCs is only described
verbally and not very explicitly;

– missing bMSCs: some intended behaviors are not explicitly mentioned, but
they somewhat follow from the given bMSCs and the accompanying texts;

– non-local choice: the derived hMSC contains non-local choice nodes.

These three problems can easily be classified as omissions and errors in the
draft standard. Nevertheless, we choose to see whether (and how) we can create
a useful protocol that is close to the original intentions.

To overcome the first problem we use the textual descriptions in the standard
to compose an hMSC, see Figure 3. In this way, we also noticed the second
problem. An example of this problem are the operation invocation scenarios.
There are two modes of the SCO’s locking mechanism for invoking an operation,
and there are two possible results (fail and success). However, only three out of
these four combinations are described. We manually included the missing one.
So these first two problems could easily be fixed.

264 A.J. Mooij and N. Goga

 Manager waits for
 ‘‘Refresh Operation Context’’
 Action Result

 Agent waits for

 Event Report Result
 ‘‘Operation Delete’’

SCO detects Operation deletion

AgentManager

 deadlock scenariomsc

‘‘Operation Delete’’ Event Report

 ‘‘Refresh Operation Context’’ Action

Fig. 4. Deadlock scenario

However, the last problem deserves more attention since non-local choice
nodes cannot easily be eliminated without seriously modifying the protocol. In
Figure 3 the most central node is a non-local choice node, since it can be followed
by bMSCs that are initiated by different processes (see Figure 2). As discussed
in Section 2, usual synthesized implementations of hMSCs with non-local choice
nodes can reach a deadlock state, like the one depicted in Figure 4. In Section 5
we propose a way to deal with these non-local choice nodes.

5 A Non-local Choice Solution from Practice

From Section 2 we conclude that there is no standard solution for obtaining a
proper implementation of an hMSC that contains non-local choice nodes. Nev-
ertheless we want to obtain an implementation of the protocol described in this
standard. In terms of the three views on non-local choice, it does not help to de-
clare its hMSC to be faulty. Our composed hMSC is clearly the intended one, and
any attempt to eliminate the non-local choice is likely to yield an unreasonably
complicated hMSC containing parallelism and additional synchronization.

If the non-local choice should be viewed as implicit synchronization, extra
mechanisms should be introduced that are not at all described in the standard.
What remains is to declare it hidden implied behavior that should somehow
be revealed. We will propose a solution to reveal this behavior based on some
hidden synchronization.

After abstracting from the domain specific interpretation of the messages in
the remote control package, it turns out that the non-local choice nodes have an
interesting property. Actually, the initial message communications of the next
bMSCs can be interpreted as the messages of an asymmetric synchronization
protocol. Usual protocol synthesis algorithms do not take this into account,
thereby generating implementations that can reach deadlocks states.

We propose to implement the processes such that these initial messages are
part of a synchronization protocol. Then the behavior that previously led to a

Dealing with Non-local Choice in IEEE 1073.2’s Standard 265

M

L(nl) R(1) R(nr)L(1)

Fig. 5. Restricted non-local choice situation

deadlock remains to exist, but the deadlock itself is eliminated. Although these
implementations deviate from the hMSC, their behavior is still close to it. Note
that these synchronization messages also have an application specific meaning,
so in fact they are combined messages. For each application of this technique,
the validity of the additional behavior must be checked within the application
domain. In the remote control case study, this additional behavior is valid.

In what follows, we abstract from the specifics of the remote control package
to describe our approach in more general terms. Finally we discuss an example
of its use in the remote control package.

5.1 Our Approach

Consider an hMSC as depicted in Figure 5 which contains a non-local choice
node M . Suppose there are two processes called P and Q, and assume that
bMSCs L(1)...L(nl) start with an action of process P and bMSCs R(1)...R(nr)
start with an action of process Q. Whenever the system is in node M , usual
synthesized implementations allow process P to initiate an L-bMSC and process
Q to initiate an R-bMSC. Then both bMSCs have started, which is not allowed
according to the hMSC, and it usually leads to a deadlock state.

To avoid this, we can impose an extra synchronization protocol that forces
the bMSCs to be executed in some sequential order. Since after executing a
bMSC R the same choices can be made as before, for non-local choice situations
we introduce a “temporal” order such that the R bMSCs get priority over the
L bMSCs. If process P wants to start execution of a bMSC L, it must send a
‘request’ message to process Q and wait for a ‘confirmation’ message of process
Q that allows process P to start execution of the L bMSC. While process P is
waiting for this confirmation, it must be able to execute an R bMSC (initiated
by process Q). Process Q, having priority, does not need extra communications
to start execution of a bMSC R. So process Q is a kind of arbiter that ensures
that execution of the bMSCs conforms to the hMSC.

To avoid the introduction of additional message communications for this extra
synchronization, the initial communication actions of the L bMSCs might be re-
used. Then we reuse the first action of the L bMSCs as the ‘request’ message
from P to Q, and the second action as the ‘confirmation’ message from Q to
P . Since these messages are also in the original MSCs, we must show that the
bMSCs are independent in the sense that the first communication of each bMSC
L may be delayed over executions of any bMSC R.

266 A.J. Mooij and N. Goga

In general, such an independency is not guaranteed, but at least in the
ISO/IEEE 1073.2 standard it was the case. Other applicable settings are two
interconnected computers that report (and confirm) data to each other. Or a
more asymmetric situation in which a sensor reports data to a monitor, and a
monitor may send configuration messages to the sensor which are confirmed af-
terwards. It does not easily apply to standard examples that consider interaction
between a human and a machine, because it is undesired to superimpose extra
synchronization or communication on humans.

5.2 Formalization

Consider the situation of Figure 5, and let L denote the set of bMSCs L(1)...L(nl),
and let R denote the set of bMSCs R(1)...R(nr). We consider two processes, viz.
P and Q, which communicate via (non-fifo) buffers. The behavior of process P
in each bMSC R starts with receiving a message from process Q, and the be-
havior of process P in each bMSC L starts with sending a ‘request’ message to
process Q followed by receiving a ‘confirmation’ message from process Q. Finally
we assume that these first two communications of the bMSCs L do not occur in
any bMSC R.

Our formalizations are based on process algebra notation in ACP-style [4],
like it is used by [6]. As formalization of node M in Figure 5 we obtain:

M =
(∑

m∈L m
)

+
(∑

n∈R n · M
)

Here operators
∑

and + are used to denote delayed choice instead of ordinary
choice. The corresponding standard implementations of processes P and Q are:

P = ΠP (M) =
(∑

m∈L ΠP (m)
)

+
(∑

n∈R ΠP (n) · P
)

Q = ΠQ(M) =
(∑

m∈L ΠQ(m)
)

+
(∑

n∈R ΠQ(n) · Q
)

Expression ΠP (m) denotes the projection of an MSC m on a process P . As
we explained before, this implementation may contain deadlocks. Our proposed
implementation of the processes differs in process P , namely:

P =
(∑

m∈L hd(ΠP (m)) · P ′(m)
)

+
(∑

n∈R ΠP (n) · P
)

P ′(m) = tl(ΠP (m)) +
(∑

n∈R ΠP (n) · P ′(m)
)

Q =
(∑

m∈L ΠQ(m)
)

+
(∑

n∈R ΠQ(n) · Q
)

Expression hd(m) denotes the first (communication) action in m, and tl(m)
denotes the remaining actions such that: hd(ΠP (m)) · tl(ΠP (m)) = ΠP (m).

This solution eliminates the deadlock state that is usually introduced when
synthesizing a protocol from an hMSC that contains non-local choice nodes,
while the amount of additional behavior is rather limited. It must be noted that
the current asymmetric solution does allow infinite overtaking of any L bMSC

Dealing with Non-local Choice in IEEE 1073.2’s Standard 267

by the R bMSCs. For further work we want to investigate more properties of
this approach, and to see whether a similar approach can be applied to a more
general situation, e.g., one with more than two processes.

In [7] another implementation is proposed for a situation like non-local choice.
They also break the symmetry between the two processes, by calling them ‘win-
ner’ and ‘loser’ respectively. When the processes detect interference between
behaviors initiated by different processes, the synchronization between them is
restored by discarding the behavior initiated by the loser. Their implementa-
tion also slightly deviates from the original specified behavior, but in a different
way than our solution. In MSC applications like the remote control package, the
implementation according to [7] is not acceptable. This shows again that the
practical validity of such implementations must be checked per application.

5.3 Remote Control Application

Let us now reconsider the non-local choice node in the remote control package.
From Figure 2 it follows that for our approach priority should be given to the
agent process. Then the deadlock scenario of Figure 4 can be avoided by contin-
uing the behavior as depicted in Figure 6. The developers of the remote control
package have agreed with this solution.

 example solutionmsc

delete operation from MDIB

AgentManager

SCO detects Operation deletion

get information from SCO

 ‘‘Operation Delete’’ Event Report Result

‘‘Operation Delete’’ Event Report

 ‘‘Refresh Operation Context’’ Action

‘‘Refresh Operation Context’’ Action Result

Fig. 6. Example solution

268 A.J. Mooij and N. Goga

6 Analysis

In this section we address our analysis of the derived remote control protocols.
Recall from Section 4 that we consider two protocols that differ in the collection
of processes that are considered:

– one combined manager process and one combined agent process;
– all individual processes mentioned in Figure 1.

Also recall that the protocol considers only one manager and one agent. For
systems with multiple managers or agents, or with devices that act as both a
manager and an agent, simply multiple instances of the protocol are used. Hence,
in our verification we also need to consider only one manager-agent pair.

Like in [14], we analyzed them manually and we performed an automated
check for safety properties, viz. deadlocks and unreachable code. Since the re-
quired properties of the protocol are only the bMSCs, we did not verify any
specific additional properties.

For the automated analysis we transform the state transition tables into a
Promela model which we analyze using the Spin [10] model checker. After our
first ‘naive’ application of a protocol synthesis algorithm to this standard, Spin
made us aware of the resulting deadlock scenarios, like the one described in
Figure 4. After introducing our special implementation of the non-local choice
node, the Spin model checker confirms that there are no remaining deadlocks.

The Promela models of the state transition tables are basically rather straight-
forward. To ensure that they are manageable for verification, we applied some
abstractions. As far as it does not influence the protocol, we abstracted from the
contents of messages. Furthermore we abstracted from the details of the SCO’s
locking mechanism; thus invocations of the operations are non-deterministically
accepted or rejected. In this way we can verify all possible locking regimes at
once, and it also reduces the complexity of the model.

The before-mentioned safety properties of these models can be verified using
the Spin model checker in just a couple of seconds. The number of states and
transitions are both less than 7 · 105, and the search depth is less than 7 · 104.
Also the corresponding memory usage is very acceptable, being less than 41 Mb
and using state vector compression even less than 15 Mb.

7 Conclusions and Further Work

This paper describes our work on the remote control package of the ISO/IEEE
1073.2 standard. From a collection of seven bMSCs and accompanying descrip-
tions we have derived an hMSC and a formal description of the protocol in the
form of state transition tables. The state transition tables are currently being
added to the remote control standard to serve as a kernel that incorporates its
base functionalities.

This work is used as a basis for studying the integration of this protocol
within the base communication protocols [11]. Since the remote control package

Dealing with Non-local Choice in IEEE 1073.2’s Standard 269

is still a draft package, various extensions might be proposed. These extensions
will be discussed on the basis of our formal description of the core protocol.

Upon trying to transform an hMSC in a formal protocol, we have encountered
the problem of non-local choice nodes. Because no existing solution could be
employed successfully, we have proposed an alternative approach that turns out
to correspond to the intuition of the developers of the standard. Although this
solution is inspired by the remote control case study, it can be applied in a more
general setting.

In many theories in the literature, hMSCs with non-local choice nodes are
classified as erroneous hMSCs. However, non-local choice nodes can easily (and
almost unnoticed) be introduced in hMSCs. Since non-local choice cannot easily
be eliminated, the attitude of declaring these hMSCs to be erroneous hinders
the practical applicability of many of these theories.

At the moment of writing, we are also trying to extract a protocol from a
collection of bMSCs for the HL7 medical standard [2]. Apart from some non-local
choice problems, in this case study there are also other aspects that hinder the
use of protocol synthesis algorithms. From these two case studies we conclude
that practically modeling systems using MSCs and extracting protocols from
them requires further attention.

We expect that the approach described in this paper is just a witness of a class
of solutions, which needs to be further studied. Also the required assumptions for
this approach needs further investigation, e.g., to generalize it to more than two
processes. For this case study we showed that our approach is free of deadlocks
using a model checker, but for maturing the approach general conditions are
needed under which this property is guaranteed.

Acknowledgements

We thank Judi Romijn for the useful discussions and comments, and for her
work on applying synthesis algorithm [6] to this case study.

References

1. Alur, R., Etessami, K., Yannakakis, M.: Inference of Message Sequence Charts.
22nd International Conference on Software Engineering (2000) 304–313.

2. American National Standard Institute: Health Level Seven HL7.
3. Baeten, J.C.M., Mauw, S.: Delayed choice: an operator for joining Message Se-

quence Charts. Formal Description Techniques (1995) 340–354.
4. Baeten, J.C.M., Weijland, W.P.: Process algebra. Cambridge Tracts in Theoretical

Computer Science 18. Cambridge University Press (1990).
5. Ben-Abdallah, H., Leue, S.: Syntactic detection of process divergence and non-local

choice in Message Sequence Charts. Tools and Algorithms for the Construction and
Analysis of Systems. Volume 1217 of Lecture Notes in Computer Science, Springer
Verlag (1997) 259–274.

6. Feijs, L.M.G.: Generating FSMs from interworkings. Distributed Computing 12
(1999) 31–40.

270 A.J. Mooij and N. Goga

7. Gouda, M.G., Yu, Y.T.: Synthesis of communicating finite-state machines with
guaranteed progress. IEEE Transactions on Communications COM-32 (1984)
779–788.

8. Hélouët, L.: Some pathological message sequence charts and how to detect them.
Reed, R., Reed, j. (Eds.) 10th SDL Forum. Volume 2078 of Lecture Notes in Com-
puter Science (2001) 348–364.

9. Hélouët, L., Jard, C.: Conditions for synthesis of communicating automata from
HMSCs. 5th International Workshop on Formal Methods for Industrial Critical
Systems (2000) 203–224.

10. Holzmann, G.J.: The model checker Spin. IEEE Transactions on Software Engi-
neering 23 (1997) 279–295.

11. Institute of Electrical and Electronics Engineers, Inc.: Health informatics - Point-
of-care medical device communication - Application Profiles. ISO/IEEE 11073-
20000.

12. Institute of Electrical and Electronics Engineers, Inc.: Health informatics - Point-
of-care medical device communication - Application profile - Optional package,
remote control. (2002) Draft Standard IEEE 1073.2.3.1.

13. Leue, S., Ladkin, P.B.: Implementing and verifying MSC specifications using
Promela/XSpin. Grégoire, J.C., Holzmann, G., Peled, D. (Eds.) Proceedings of
the DIMACS Workshop SPIN96. Volume 32 of DIMACS Series (1997).

14. Mooij, A.J., Goga, N., Wesselink, W., Bošnački, D.: An analysis of medical device
communication standard IEEE 1073.2. Salvador, C.E.P. (Ed.) Communication
Systems and Networks, IASTED, ACTA Press (2003) 74–79.

15. Uchitel, S., Kramer, J., Magee, J.: Detecting implied scenarios in message se-
quence chart specifications. Proceedings of the 8th European software engineering
conference, ACM Press (2001) 74–82.

Guidelines for Using SDL in Product
Development

Frank Weil and Thomas Weigert

Motorola Inc., 1303 East Algonquin Road,
Schaumburg, IL 60196 USA

{Frank.Weil, Thomas.Weigert}@motorola.com

Abstract. Over the course of several years working with many diverse
projects using SDL for the design of commercial products, we have de-
veloped several practical guidelines related to creating SDL models for
deployment. This paper discusses the SDL modeling guidelines, cover-
ing general recommendations, specific details about using SDL modeling
features, performance considerations, platform interface considerations,
and portability issues. These guidelines can be used by anyone who is
creating design models that will be implemented, either through hand
coding or automatic code generation.

1 Overview

The Software Design Automation Center, part of Motorola’s Global Software
Group, has been developing tools for model-based automatic code generation
for more than 15 years. For the last seven years, our team has focused on auto-
matically generating C code from SDL models. Over that time, the center has
generated code from many hundreds of thousands of lines of SDL. The code
produced is for telecommunications products that have been deployed in the
field, encompassing many diverse platforms (from embedded components to in-
frastructure network elements) and product groups.

This experience has led to the development of several practical guidelines
related to creating SDL models for deployment. These guidelines are the de
facto standard for most SDL modeling projects within Motorola.

Because the ITU-T developed SDL [3] for use in all up-stream phases of the
typical product development life cycle, not all of its features are appropriate
for design models, especially if automatic code generation will be used. In most
languages, there are many ways to represent the same functionality, and SDL is
no exception. SDL often presents a bewildering array of choices. For example,
functionality in SDL can be represented as processes, procedures, operators, re-
mote procedure calls, external package components, macros, select definitions,
etc., many of which can inherit properties from and specialize other compo-
nents. While such flexibility is helpful for accommodating local conventions and
preferences, unrestrained use of these features leads to a model that is at best
difficult to read and at worst a nightmare of interleaved definitions and unused
and irrelevant code.

D. Amyot and A.W. Williams (Eds.): SAM 2004, LNCS 3319, pp. 271–289, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

272 F. Weil and T. Weigert

For any discussion of modeling for product development, it is difficult to fully
separate the modeling language from the tools that support it. While SDL2000 is
the current standard, these guidelines reference the version of SDL supported by
the most widely deployed tool: Telelogic TAU [5]. At times, for example with ex-
ception handling, SDL2000 provides a more elegant solution that unfortunately
is not supported by most modeling tools. Where appropriate, we will point out
what the SDL2000 construct would be, but we will discuss the practical solutions
as required by tools supporting some mix of SDL’92 and SDL’96.

This paper provides a set of modeling guidelines that are useful in creating
practical models. We begin by presenting general recommendations for design
modeling and then discuss specific constructs in SDL. We then present dis-
cussions on performance considerations, interfacing with target platforms, and
portability issues.

2 General Recommendations

There are a few guiding principles which we have found to be generally applicable
to modeling activities. While these are by no means exclusive to SDL, we will
discuss them in terms of SDL. We also present guidelines related to C or C++ as
the implementation language since those are the most common cases. However,
the guidelines are equally applicable to any implementation language.

2.1 Nondeterminism and Fairness

SDL has several nondeterministic features (e.g., spontaneous transitions). One of
the guiding principles of good design is that nondeterminism should be avoided
since nondeterminism does not imply fairness. This distinction is extremely im-
portant, but is one that is often misunderstood by modelers. Nondeterminism
means that criteria do not exist for determining which choice will be made. A
perfectly valid interpretation is that one choice is always made to the exclusion
of the others. It will rarely, if ever, be the case that this is really the desired
behavior.

2.2 Abstraction

One should start out creating a model of the system instead of immediately
starting to design it. The key is abstraction. Make sure the model captures the
concepts instead of irrelevant details. Two considerations will help guide model
development in this direction: simplicity and efficiency.

To promote simplicity, review each model to look for opportunities to simplify
cluttered graphics using techniques such as combining several sequential tasks
into one, relegating commonly used patterns to procedures, compartmentalizing
calculations into operators, and using textual algorithm forms to capture some
common processing forms more succinctly (especially loops). There is a tool-
related trade-off here, however, because symbol coverage analysis will not equate
to path coverage when there are loops or branches in a text symbol.

Guidelines for Using SDL in Product Development 273

Make some concessions to efficiency, but do not spend much initial effort on
optimizations. It is extremely important to first capture the overall structure,
decomposition, relationships, and data and control flows at the highest levels.
The key is to make sure that the model captures the requirements in a clear
manner. Only then should the developers address the design issues.

A good starting point when entering the design phase is to address the issue of
limited resources in the target hardware. This leads to placing upper bounds on
certain values in the system, such as array indices and the maximum number of
process instances that may be executing simultaneously. Once these constraints
are added, additional fault tolerance functionality can be added to handle the
situations where these limits are reached.

One may also want to examine the manipulation of large data structures.
Since SDL has copy semantics, whenever data is assigned to another variable,
passed as a formal parameter to processes, procedures, or operators, or conveyed
as a signal parameter from one process to another, a large performance overhead
may be incurred due to data copying. To avoid this penalty, one may want to
take careful advantage of the references that are available as part of the SDL2000
standard, and that may be available as tool-specific extensions.

2.3 Reverse-Engineering Code

Do not reverse engineer the architecture of an SDL model from C code. The
structure of the model should be derived from requirements. Legacy code usu-
ally has grown in complexity through evolution, and its structure most likely
contains numerous implementation idiosyncrasies, making it difficult to extract
a clean, flexible foundation for future development. We have seen models where
the number of states in a process was significantly reduced when its overall be-
havior was revisited from a requirements perspective rather than being based on
the implementation that had catered too many other details.

2.4 Unused Signals and Sorts

Only signals and sorts that are used should be included in the model. If the sig-
nals and sorts are created from an externally controlled specification that cannot
be changed (e.g., a protocol description document), there are two solutions:

– Have a process explicitly consume the unused signals. This solution is ac-
ceptable as a temporary measure when the actual functionality associated
with a signal has yet to be filled in. This may be the case early in the design
phase.

– Generate only the signals and sorts needed in the first place. It is often
possible to automatically generate only those signals and sorts needed in
a model. This method will ensure consistency between the model and the
external protocol specifications.

274 F. Weil and T. Weigert

2.5 Exception Handling

There are several types of errors and exceptions that can occur outside of the
realm of the model that, in themselves, make no sense to the model. Examples
of this type of exceptions are: memory allocation failures, signal decode failures,
callback function or platform API errors, platform signals such as SIGERR, etc.
These exceptions can occur, in effect, at random times during the execution of
the model. To handle these conditions, SDL2000 has added exception handling.
However, tool support for this mechanism is limited.

Exception Signals. It is not always an option to simply use signals in place
of exceptions. For example, it would not be useful to try to create a signal to
indicate an out-of-memory exception since there is no more memory to create the
signal. To handle exceptions, either a customer code generator can be used, or
modifications can be made to the existing code generators. The modeler should,
however, define exception signals for individual exceptions where they make
sense. For example, a signal handler thread may inject a specific signal into the
model for each system interrupt that it encounters. This is also useful to allow
the modeler to explicitly raise an exception by sending the signal to handle, for
example, an error code returned by an external function.

Exception States. The mechanism that we have used for general exception
handling is to have the modeler specify in the SDL model how the application
will handle an exception. This is done on a per-process basis by adding spe-
cially named states with continuous signals to each process. The conditions on
these continuous signals are ignored since they are only placeholders to allow a
syntactically correct state. The details of the transition are customized for each
situation, and the generated code ties its exception handling mechanism directly
to these states.

2.6 Data Marshaling

Typically, the underlying representation of data used within a model is different
than that used by code outside the model. This is an issue when the model
needs to exchange data with external entities such as parameters of signals to or
from the environment. Data encoding and decoding (also known as packing and
unpacking, or collectively as marshaling [1]) is common to most applications.
For several reasons, marshaling should not be represented directly in a model:

– SDL does not provide appropriate operations for data marshaling. For exam-
ple, trying to represent low-level bit manipulation algorithms is cumbersome.
Implementation languages such as C have the appropriate operators.

– The format of the external data is independent of the behavior of the model.
– Trying to share existing data format header files with the model can be

problematic. Unless the headers were written in SDL, translating them and
keeping them synchronized with the model is difficult. In addition, as previ-
ously mentioned, one should include only those definitions that are actually
used.

Guidelines for Using SDL in Product Development 275

– Dispatching on signals with nested data types usually makes for very con-
fusing SDL models. The decision graphs that result as the various nested
conditional fields of the input are decoded make for intricate combinations
of SDL transitions that are difficult to follow and understand. Only the ab-
stracted data should be used.

Most such external data handling should be done outside the model, with
appropriate signals being sent into or received from the model for further pro-
cessing.

A typical example of this is the handling of an incoming data stream con-
sisting of bit-encoded messages that make up a protocol. First, the bit streams
are parsed using C routines, often in a thread dedicated to a communications
channel. This results in the extraction of individual messages and their data
values. Next, separate SDL signals are created for each message, and the signals
are injected into the SDL model.

2.7 Testing

Test the model, but do not rely on testing tools (e.g., a model verifier or a simu-
lator) or the code generation process to catch all dynamic errors. Many problems
may be masked in the testing, especially if the underlying implementation lan-
guage is C.

Examples of errors that may not be caught if they occur are accessing an array
or string element out of bounds, data subrange mismatches, and uninitialized
variables.

3 SDL Recommendations

We present guidelines in this section that are specific to individual constructs
in SDL. Examples are mostly in SDL’96 syntax as that is the most common for
tool support.

3.1 Case Sensitivity

Since many implementation languages are case sensitive, it is important to as-
sume case sensitivity for modeling. Even if the modeling tool allows varying case
for SDL keywords, be consistent so that the problems associated with model
searching, metrics reporting, reviewing, etc., are minimized.

3.2 SDL Sorts and Generators

This section focuses on practical guidelines for using the SDL-specific sorts,
giving examples of typical issues that occur both in the models themselves and
in the implementation of the models.

Subrange Compatibility. With any sort that restricts the range of its parent
sort, problems during assignments can occur. For example, consider the following
declarations:

276 F. Weil and T. Weigert

SYNONYM max index = 10;
SYNTYPE index = Natural CONSTANTS 1 : max ENDSYNTYPE;

DCL n Natural, i index;

If the assignment i := n occurs in the model, it may not be possible to tell
whether or not the value in n will actually fit in i. Assignments across sorts with
potentially incompatible data values such as this should be avoided whenever
possible.

A similar but perhaps more insidious problem can occur when using loops.
Consider the following SDL fragment based on the example above:

TASK i := 1;
loop_top: DECISION i <= max;
(true): /* loop body stmt */;

TASK i := i + 1; JOIN loop_top;
else: JOIN loop_break;

loop_break:

By a consistent interpretation of the sort information, there are two problems
with the loop. First, the increment expression i + 1 will take on the value 11
(max + 1), and then attempt to assign the value back to i. This value is clearly
outside of the allowable range. The second problem is that the loop condition
itself could be legitimately optimized away by a code generation system. By the
definition above, i is always less than or equal to max. The Boolean condition,
then, can be replaced by true, which corresponds to an infinite loop. The sim-
plest way to solve the problem is to always check the condition at the end of
the loop, and then only increment and go back to the top of the loop if there is
more to do. For example:

TASK i := 1;
loop_top: /* loop body */
DECISION i < max;
(true): TASK i := i + 1; JOIN loop_top;
else: JOIN loop_break;

loop_break:

Note that the Z.100 specification is a bit counter-intuitive on what should
happen for Integer subranges. The Z.100 definition of syntypes (Section 5.3.1.9
in SDL’96, Section 12.1.9.4 in SDL2000) does not place a restriction on a syntype
that the range condition must fit within the parent sort. Without this restriction,
the specification allows misleading definitions such as:

SYNTYPE parent = Integer CONSTANTS 1 : 10 ENDSYNTYPE;
SYNTYPE child = parent CONSTANTS 100 : 200 ENDSYNTYPE;

Size Constraints. As part of the ASN.1 extensions in Z.105 [2, 4], some ag-
gregate sorts such as String may be given bounds on minimum and maxi-
mum lengths. When supported by the modeling tool, the size bounds should

Guidelines for Using SDL in Product Development 277

be given for these sorts and generators (String, Charstring, Powerset, Bag,
Octet string, Bit string). The final implementation can be chosen to be more
efficient. Without size bounds, it must be assumed that a sort can contain an ar-
bitrarily large number of elements, which is the worst-case assumption in terms
of the allowable implementation.

If the minimum is set to greater than zero, beware of trying to build a String
element by element, or of trying to initialize the String to EMPTY. It may be
better to set the minimum size to zero and then to check the final size explicitly.

Time Literals. The origin of time has no definition in SDL, and varies from
platform to platform. All uses of time should be relative to the NOW expression.

Time Operators. Manipulating Time values directly is typically not needed. A
possible exception is determining relative timing of events. However, appropriate
care must be taken to ensure expectations of time resolution are realistic.

Time and Duration Precision. Values of Time and Duration in SDL have
decimal places, but this may be extremely difficult to implement on a real plat-
form. It is best to use only integer-like values of time and duration within a
model.

Real Comparisons. Although Real numbers in SDL are defined over the ra-
tional numbers, Real arithmetic is not precise using fixed-precision arithmetic
(as with float or double in C). It cannot be guaranteed that two seemingly equal
floating point numbers will actually be equal in the final implementation. For
example, the folowing comparison, while true in SDL, may not evaluate to true
when implemented:

0.1 = ((1.0 / 30.0) * 3.0)

If such a comparison is needed, then use an expected accuracy. For example:

SYNONYM epsilon Real = 0.0001;
PROCEDURE near;
FPAR IN a Real, IN b Real; RETURNS Boolean;
START; RETURN Fix((a - b) / epsilon) = 0;

ENDPROCEDURE;

High-Precision Real Values. Make sure that Real literals are given with a
realistic precision, and be careful when creating values with operations such as
1.0 / 3.0, which cannot be exactly represented in a finite (no less realistic)
number of bits.

Large Integer and Natural Values. SDL Integer and Natural numbers
must stay within the size limits of a realistic implementation used by a target
compiler. Be wary of assumptions made about what a particular C compiler may
support. For example, in C there is no universal standard on what number of

278 F. Weil and T. Weigert

bits correspond to the types int or long int, and some compilers do not even
support long long int.

It would be better if, for a given target compiler, the modeler were to create
a set of definitions that map sorts to various bit sizes. For example:

SYNTYPE unsigned_16_bit = Integer CONSTANTS 0:65535 ENDSYNTYPE;

These sorts can then be equated to the available types in the implementation.
These sorts should be used whenever there is doubt or confusion about what
value ranges are allowed for an Integer. Also, the sort Natural should be used
instead of Integer whenever the data values will be non-negative. Not only does
this give additional information to the reader, it allows larger values to be stored.

ERROR Expressions and Terms. If an ERROR expression or term is encoun-
tered in the execution of a model, the future behavior of the model is undefined.
Error recovery should be implemented explicitly based on the condition that
triggers the error as described previously.

Choice Sorts and Partial Initialization. As part of SDL2000 and the ASN.1
extensions in Z.105, the Choice sort is available. This sort is not the same as a
union in C, however. The selection of the contained sort must be explicit, and
implicit casting is not supported.

A common problem can occur when one has a Choice type containing struc-
tures:

NEWTYPE ch Choice
aa struct1;
bb othertype;

ENDNEWTYPE;

NEWTYPE struct1 STRUCT
f1 Natural;
f2 Natural;

ENDNEWTYPE;

DCL var ch;

The problem occurs with assignments such as the following:

TASK var!aa!f1 := 5;

If the variable is uninitialized before the assignment, or is the bb choice, it
does not have a tag of the aa choice. However, in order for the f1 field to exist in
the choice, the choice type must be aa. It is common practice in implementations
(as well as part of the correct semantics) to check to see if the choice has type
aa in order to know whether or not it has to reset the value.

The proper way to accomplish the above is to assign the choice value as a
whole, which sets the tag without having to check it first:

TASK var!aa := (. 5, 10 .);

Guidelines for Using SDL in Product Development 279

3.3 SDL Components

These guidelines focus on the features of SDL that are not directly sort-related.

Naming. SDL is quite flexible in what can constitute an identifier, including
non-alphanumeric characters. In order to be able to preserve the identifiers as
they exist in the SDL model (which greatly aids in the understanding of the
implementation code), some care should be used in creating SDL identifiers.

We strongly suggest the use of only proper C-style syntax for identifiers.
Note that SDL does not allow an identifier to begin or end with an underscore
character (although some modeling tools allow it), so some external procedures
may not be able to be called directly.

Numbers should not be used as variable names, labels, etc. Identifiers con-
taining numbers as well as other non-numeric characters are acceptable, but
using only numbers is not. For example:

TASK call_911 := true; /* this is okay */
TASK 911 := true; /* this is legal, but not okay */

C does not allow overloading of identifiers, so the same name should not be
used for more than one external entity in the SDL model. External entities
include external procedures, external operators, synonyms, sorts, and literals
derived from external code, and signals and channels that go to or come from
the environment.

Identifiers that clash with a C keyword cannot be left unchanged in the final
code. We recommend that they not be used for the sake of readability of the
generated code. In addition, be careful about naming operators or procedures
with names that already exist as standard C library functions, e.g., free, raise,
putc, etc.

NODELAY Components. In SDL’96, channels, remote variables, and remote
procedures can be marked as NODELAY. In most realistic implementation, the
concept of delay versus no delay has no meaning. Systems do what they do as
fast as they can. This feature is deprecated in SDL2000.

Unbounded Process Instances. A process definition may implicitly state
that an infinite number of process instances may be created. This will happen
if one does not explicitly specify the maximum number in the process definition
header. While this in itself is not a problem, only a finite number of processes
can really be created. It may be difficult to determine the real upper bound for
resource allocation purposes during implementation.

Always provide an explicit maximum number in a process definition header,
and provide the default initial value of one for completeness. For values other
than one, the use of synonyms for maximum and initial values is strongly en-
couraged.

Nondeterministic Decisions. Decision constructs which use the ANY or the
informal text forms should be avoided since they indicate nondeterminism, and

280 F. Weil and T. Weigert

the behavior of the model is subsequently undefined. Alternative: Do not use ANY
or informal text as a decision question, and always use valid, non-overlapping
decision conditions instead of informal text. Create enough answer parts and
possibly an ELSE part to make sure that all possible outcomes of the decision
question are covered.

ANY Expressions. The ANY expression introduces nondeterminism and should
not be used in most cases. Instead, select a single value from the sort. If a random
value is needed, an external procedure can be written to return one. There are
two cases, however, in which it makes sense to use a nondeterministic value, both
related to situations where the data value cannot affect the model:

– Giving a value to a parameter that will not be used. Processes, procedures,
and operators can have parameters. It may be that the return value or an-
other parameter indicates the validity of a parameter. When a parameter is
indicated to be invalid, it does not matter what its value is since it should
never be used. For example:

PROCEDURE next_digit;
FPAR IN/OUT d Character; RETURNS Boolean;
START; DECISION d;

(’0’ : ’8’) : TASK d := chr(num(d) + 1); RETURN true;
(’9’) : TASK d := ’0’; RETURN true;
ELSE : TASK d := ANY(Character); RETURN false;

ENDDECISION;
ENDPROCEDURE;

– Giving a value to a structure field or choice field or a signal parameter that
the model will not use. In general, a field or parameter that is never used
in a model should be removed completely. There are cases, however, where
the fields or parameters are constrained externally. For example, a structure
may be derived from one that is defined in an external C header file, or
a parameter of a signal may be dictated by an external protocol. In these
cases, the ANY expression can be used to indicate that the value is not used
in the model.

Viewed Variables. SDL allows a variable in one process to be manipulated by
another process. This feature is enabled by the REVEALED and VIEWED keywords,
and is accessed using the VIEW keyword. In a sense, this allows global variables
with varying scopes. This feature is deprecated in SDL2000.

Information should be explicitly passed between processes using signals or
shared through imported / exported variables. Note that a positive implication
of not having shared variables is that continuous signals do not require a busy-
wait semantics.

THIS in a Context that is not Type-based. The type-based keyword THIS
used in a procedure call should only be used with a procedure that is inherited.

Guidelines for Using SDL in Product Development 281

While other uses may be technically correct (the keyword is optional in this case
and has no effect), they indicate that there is perhaps a misunderstanding about
their use.

Informal Text. When informal text is encountered in a model, it means that
the future behavior of the model is undefined because the semantics of the infor-
mal text are user-defined. Typically, informal text is initially put into a model
to indicate information that will be filled in later. As such, it should not be in
the completed model. Comments should be used in place of informal text.

Nondeterministic Signal Sends. In SDL, the architecture of interconnecting
signal routes and channels is normally used to guide a signal from a sending pro-
cess to a receiving process. However, there are times when this is insufficient to
determine a unique destination process instance. For these cases, a signal route,
channel, gate, process identifier, or process instance identifier may be specified
as part of the output statement to steer the signal to a unique destination. When
a unique destination process instance can be determined for the output state-
ment, the signal is delivered to that process. When a unique process cannot be
determined, one of three cases applies:

– If the signal can traverse more than one path and each path terminates in
a different process instance, one arbitrary process connected to those paths
will be chosen to receive the signal. This is a form of nondeterminism and
should not be used.

– If the signal encounters more than one process instance at the end of a path
because multiple instances of the receiving process have been created, then
one arbitrary process instance will be chosen to receive the signal. This also
is a form of nondeterminism and should not be used.

– One may wish to broadcast the signal to multiple routes. In this case, use
the VIA ALL form of output, and the signal will be broadcast to the routes
specified as if multiple separate outputs were used. This use is acceptable
since there is no nondeterminism in choosing the initial path, but it would
not be sufficient if the path branches later (in another block) or terminates
in multiple process instances.

If a signal can be on more than one route from a process, do one of the
following:

– Explicitly specify the desired signal path using the VIA form of output and
specifying either a signal route, channel, or gate.

– Explicitly specify the desired receiving process using the TO form of output
and specifying either a process identifier or a Pid value.

– Broadcast the signal using VIA ALL.
– If a signal destination goes to more than one process instance, explicitly

specify the desired receiving process using TO and a Pid value.

A related case is if an input channel is receiving a signal, but there is more
than one possible receiver process and it is not possible to determine which
process will actually receive the signal. This is a form of nondeterminism.

282 F. Weil and T. Weigert

Spontaneous Transitions. A spontaneous transition allows a transition be-
tween states without requiring any input signals. The activation of a spontaneous
transition is independent of the presence of any signals in the input port of the
process. There is also no implied priority between normal transitions and sponta-
neous transitions. Spontaneous transitions therefore represent nondeterministic
behavior. If one needs to make a transition without waiting for an input signal,
a continuous signal can be used.

Ambiguous Continuous Signals. If the value of the Boolean expression is
true for more than one continuous signal, a nondeterministic choice is made as
to which transition will be taken. For example:

STATE SomeState;
PROVIDED v1 > 4; /* transition 1 */
PROVIDED v1 < 6; /* transition 2 */

Instead, add priorities to the overlapping continuous signals or make them
non-overlapping. For example:

STATE SomeState;
PROVIDED v1 > 4; PRIORITY 1; /* transition 1 */
PROVIDED v1 < 6; PRIORITY 2; /* transition 2 */

Automatically Discarded Signals. SDL semantics state that a signal sent to
a process is discarded if the state machine does not explicitly handle the signal
in the current state. While this case may be acceptable, it may also indicate
a missed requirement. It would be better to have an asterisk input explicitly
indicating the desire to discard or specially handle all other signals.

Parameterized Timers with a Large or Infinite Index. Timers may be
parameterized by a sort. In effect, parameterized timers allow the specification
of an infinite number of timers. While this is not inherently a problem, in reality
only a finite number of timers can be active. It may be difficult to determine the
real upper bound for resource allocation purposes during implementation.

If it is helpful to have timers parameterized by a sort, but that sort has
an infinite number of literals (e.g., Integer), then create a new sort that is a
restricted subrange of the original and parameterize the timer by the new sort.
For example, replace:

TIMER delay(Integer);

with:

SYNONYM MaxTimers Integer = 10;
SYNTYPE TimerNumber = Integer
CONSTANTS 1 : MaxTimers

ENDSYNTYPE;
TIMER delay(TimerNumber);

Guidelines for Using SDL in Product Development 283

If there will only be a very small number of timers, consider using separate
timers instead of a single parameterized one which, in most implementations,
will need to become separate timers anyway.

Complex Ground Expressions. SDL allows ground expressions to be arbi-
trarily complex (e.g., when used for the default value of a sort). This makes sense
from a syntactic perspective, but the developer must be able to easily determine
the appropriate value to use in the implementation code. Whenever possible, the
use of ground expressions should be limited to simple operations on literals or
synonyms, such as max + 1.

4 Performance Considerations

While it is important not to overconstrain an implementation of a model, it is also
important not to make an efficient implementation difficult, either. This section
discusses some considerations that will facilitate an efficient implementation.

Large Data Structures. Although SDL2000 supports references, SDL’96 has
copy semantics. At signal sends, assignments, and procedure and operator pa-
rameters that are not IN/OUT, a copy must be made of the original data. Make
sure that all the data that is copied really needs to be. For example, do not pass
entire structures around when only a single field is needed.

Variables declared at the process level can also be a problem. There is no
such concept in SDL as a transition-local variable. That means that the data in
a variable that is used only in a single transition may be kept around even when
it is not needed. Consider the use of a procedure or operator if a large temporary
variable is needed.

Recursive Procedures. By the semantics of SDL, a procedure called from a
process has full access to the input queue of the calling process. While this in itself
does not cause a problem, it can force the system to save a tremendous amount
of state information during context switches. This can disallow some powerful
forms of optimization and makes it difficult to create an efficient implementation.

A recursive procedure that does not access the input queue of the process
does not cause any problems and can be freely used. For a procedure which
does access the input queue of the process, it is best to think of it as merely
a convenient way to refer to some functionality that will be expanded in place
within the calling state machine (similar to a macro).

Note, however, that if the most natural expression for an algorithm is through
recursion, then it can be used. The designer must weigh the performance penalty
in the generated code (in terms of time and dynamic memory) against the main-
tainability and clarity of the specification.

Invalid Pid Values. It is recommended that signals only be sent to processes
that exist. That is, it should always be true that when a signal is sent to a
process, either:

284 F. Weil and T. Weigert

– the process is a static process, or
– the logic of the model ensures that if a process does not exist, the signal is

not sent.

If the above conditions hold, then the implementation can be more efficient.
If the conditions do not hold, then the model is relying on the SDL semantics
of throwing a signal away if the receiver does not exist or the Pid is Null. In
this case, a check for the existence of the receiver must be included everywhere
in the code and the code becomes noticeably larger and slower.

Output to an Unreachable Pid Value. If an OUTPUT statement sends a signal
directly to a Pid that does not correspond to a reachable process (that is, there
are no signal routes which can take the signal from the sender to the designated
receiver), the semantics of SDL states that the signal should be discarded. While
this mechanism will allow the execution of the system to continue, there are two
problems:
– Handling this special case, which should be rare, requires an extra check on

all signal sends. This check takes time and requires a larger executable.
– This situation almost certainly indicates a design error.

One should try to ensure that this situation never happens in the model.

External Procedures. Some operations are inherently difficult in SDL, and
are extremely time consuming. In these cases, it is often better to call out to
external procedures. For example, converting a Charstring containing a hex-
adecimal value into an Integer value is difficult in SDL and could be better
done with a call to sprintf from the C library.

Exported Variables. The semantics of SDL requires that a copy of exported /
imported variables be kept. The exporting process makes changes to a local vari-
able and then explicitly exports it. The export operation copies the local copy to
the visible one. For large data values, this can be an extremely inefficient oper-
ation. For example, profiling on a product model indicated that approximately
20% of the total execution time was being spent in this copy operation. Under
two conditions, this overhead can be eliminated in the implementation:
– Processes within a single SDL system are synchronous (e.g., through data

passing). In this case, the processes can be interleaved. The restriction then
only has to be that the update of the variable by the exporting process is
atomic, such as can be achieved by surrounding the code with a mutex lock.

– The exporting process updates the variable in such a way that the contained
value is always consistent. For example, if the exported variable is a struc-
ture with two fields whose values must be consistent, both fields are always
updated together. This update also needs to be an atomic operation.

If these conditions hold true, the exported variable can be implemented as
a global variable. Note that there is also a deadlock possibility with exported
variables, which can be eliminated by making the exporting process static or
by explicitly ensuring that the exporting process must exist at the time of the
corresponding import.

Guidelines for Using SDL in Product Development 285

Sort Inheritance. In implementation languages that do not support inheri-
tance, it can be very inefficient to implement a sort declared using this feature
of SDL. The näive solution of copying all operations can lead to large amounts
of pointless code.

Dynamic Lists. In the absense of additional information, it must be assumed
that list-like sorts, generators, and parameterized sorts (String, Charstring,
Powerset, and any similar Z.105 or tool-specific extensions) can contain an ar-
bitrarily large number of elements, which is the worst-case assumption in terms
of the allowable implementation. Even the Array generator (or parameterized
sort – we will only use the term “generator” here, but the discussion is equally
applicable to parameterized sorts), which one can easily set to a bounded size
by providing a suitable index sort, may be very wasteful of space if only a small
fraction of the potential values are ever used at one time.

For an efficient implementation, one must be free to choose an appropriate
concrete data type, and one must have sufficient information to be able to make
the choice. Specifications typically require the use of a sort that allows hash-table
functionality. That is, one wants to be able to access some data value through a
domain value (or “index”). In SDL, this mapping is created through the Array
generator. A common use is a mapping of call identifiers with the Pid value of
the process that is handling them. However, there are two major problems with
using the Array generator:

– Size bounds are needed to efficiently implement the functionality in the gen-
erated code. Most often, the maximum number of mappings to be stored in
the map is significantly less than the size of the domain sort. Along with a
size bound, the implementer needs an indication of how “dense” the map-
ping is (i.e., the maximum number of elements that can be in the mapping
versus how many there typically are). This information is rarely apparent
from the model itself, and is often controlled by external factors. From this
information, it can be determined how to efficiently implement the generated
sort (e.g., as a sparse array, a hash table, a regular array, etc.).

– SDL does not provide a convenient way to determine if a mapping is con-
tained in the Array. That is, does a given index correspond to a valid value?

Another common requirement is for more than one domain sort in a given
map. For example, one may need to know a region identifier and a cell identifier
to be able to map a call to its location. While this can be achieved through the
creating of an intermediate structure sort that has these two fields, that leads to
the creation of auxiliary sorts which are not really required. Similarly, one may
need multiple values stored for a single domain value.

Because of these restrictions, a separate Map generator or parameterized sort
should be defined. At a minimum, the Map should allow the explicit specification
of the domain sorts, range sorts, the maximum number of values, and the typical
number of values.

Typical operations include adding a value, deleting a value, updating a value,
retrieving a value, clearing all values, iteration over the mappings, determining

286 F. Weil and T. Weigert

if the map is empty, determining if a value is in the map, and returning the
number of elements in the map.

Consistent Sort Operations. It is important to be consistent in the way that
a particular abstract operation on a sort is used in the model. For example, one
could always build up a String with the // operator. This consistency makes
performance tuning easier and can isolate common cases for special implemen-
tations. To make special implementations even easier, any frequently used set of
operations should be isolated in a separate procedure or operator.

Charstring Literals and Enumerations. Do not use a Charstring literal
when an enumerated sort would be more appropriate. For example, do not use:

SYNONYM signal_err Charstring = ’Signal error’;
SYNONYM range_err Charstring = ’Range error’;
SYNONYM transmit_err Charstring = ’Transmit error’;

when the following can be used instead:

NEWTPYE error_indicator
LITERALS signal_err, range_err, transmit_err

ENDNEWTYPE;

5 Platform Interfaces

On a real system, the implementation code must be well behaved with the plat-
form, platform libraries, and the rest of the applications executing on the system.
This section discusses some considerations to make such an implementation eas-
ier.

Interfacing with External Types. When an SDL sort must interface with an
external data type, it is crucial that they match exactly. This interface occurs
at external procedure and operator calls (parameter types and return types),
external synonyms, and the parameters of signals to and from the environment.

For example, when calling an external C function that has a long int param-
eter, the SDL sort of the actual parameter must have exactly the same number
of bits as the C function expects. This number of bits is platform and compiler
dependent. This problem is made intractable is the same SDL sort is used for
example, to interface to an int parameter which has a different number of bits.

An enumerated sort in SDL’96 is not the same as enum in C, which is, for
all practical purposes equivalent to an integer. In SDL’96, there is no direct
correspondence or conversion between enumerated types and Integer types.
However, see the definition of a “named number” in SDL2000.

A Choice sort in SDL (the Z.105 ASN.1 extension) is different from a union
in C in an important way. The union type provides an implicit cast mechanism.
No such mechanism exists in SDL. A Choice sort allows only one of the choices

Guidelines for Using SDL in Product Development 287

to exist in the variable at a given time. One cannot write the data as one sort
and read it as another, as can be done in C.

A Charstring in SDL is not equivalent to char * in C. The C data structure
is not auto-allocated, and the end-of-string indicator is a NULL character. As SDL
Charstring can grow as needed, and NULL characters can be contained within
the Charstring. The auto-allocation causes extra problems when it is not clear
which entity is responsible for allocating and freeing the memory.

Incompatible Interface Types. It is common for two external interfaces to
have different specifications for essentially the same data. For example, one ex-
ternal specification may declare a cell identifier to be a 32-bit unsigned integer,
while another one may declare the same data as an octet string of length four.
One should handle these different formats at the external marshaling interface
since it would be inefficient to directly convert the values where needed in the
model.

References. When using references at external interfaces, be aware of who is
responsible to allocating and freeing the associated memory.

Asynchronous External Events. External events such as interrupts must be
handled in external code, typically a separate thread, and translated into signals
that are injected into the model.

Callback Functions. There is no easy way to make an SDL procedure or
operator be visible to the external environment and still preserve the execution
semantics of SDL. Because of this, if an external API requires a callback function,
write it outside of the model, execute it in its own thread, and translate the
return values into a signal.

Initializing External Global Memory. In some cases, an external procedure
requires that a global variable be initialized before the procedure can be called.
However, there is no equivalent in SDL to an extern declaration in C for variables,
and there are no truly global variables in SDL itself. In order to initialize the
global variable, create an external C function that only sets the variable to the
proper value. This function can then be declared as an external procedure in
SDL and called as necessary.

Preprocessor Directives. In C code, a preprocessor directive such as #DEFINE
is a purely lexical substitution. In contrast, an SDL SYNONYM must have a sort
and is syntactically restricted. To use common definitions, one must translate
definitions from header files such as:

#DEFINE MAX_CALLS 10

into a value of an appropriate sort in SDL such as:

SYNONYM MAX_CALLS Natural = 10;

288 F. Weil and T. Weigert

6 Portability Issues

One of the benefits of modeling is maintaining the proper abstraction so that
the model can be implemented on any platform. We discuss here some of the
issues that can affect portability.

6.1 Tool-Specific Extensions

As much as is practical avoid tool-specific extensions that limit the conformance
of the model to the Z.100 standard. For example, tools may provide ways to
escape into the underlying implementation language directly in the model, pre-
initialize all memory to zero (whether or not this is a legal value for the sort),
provide special sorts, provide special ways to represent binary, octal, or hexadec-
imal values, etc.

Not only do these extensions limit the use of add-on tools such as metrics
applications, they can force a team to stay with a specific vendor unless they
are willing to invest considerable effort in porting. We have seen both of these
situations occur more than once within product models.

6.2 Target-Specific Implementation Assumptions

Do not assume any particular machine size for references. In particular, do not
try to masquerade an unsigned integer sort of seemingly appropriate size as a
reference. For example, do not use a 32-bit unsigned integer where one would
normally use a reference merely because references happen to be 32 bits wide
on the target. Embedding implementation information causes several problems.
For example:

– It severely limits the portability of the model. If the model ever does need
to be ported, then it is hard to track down and correctly update all such
information. It is also very difficult to identify and analyze the effect such
knowledge had during creation of the model, and whether any influenced
areas need to also be altered.

– This practice of sort interchange can be very confusing during analysis and
usually leads to defects that are very difficult to track down.

– These sort interrelationships inhibit the application of many optimization
techniques.

7 Conclusions

We have presented guidelines for making practical use of SDL for design. The
guidelines presented here should not be taken as a comment on SDL in general.
The focus of the paper, and the experience on which it is based, is on design and
subsequent application generation. Many of the features discussed here (e.g.,
stating a maximum number of process instances) may be perfectly valid for
requirements analysis, protocol modeling, etc. Much of the process of creating

Guidelines for Using SDL in Product Development 289

a design model from an analysis model entails refining the model by removing
unwanted features (e.g., nondeterminism) and adding detail (e.g., a maximum
number of process instances).

These guidelines are based on what is required to deploy a fully functional
application that meets given requirements for performance, code size, platform
interfaces, error handling, etc. Using these guidelines, product groups have been
able to successfully deliver large telecommunications applications on time and
with a reduced defect rate. By carefully balancing portability and reuse concerns
with ease of implementation, the product groups have been able to achieve the
promised benefits of model-driven engineering.

While the guidelines in this paper have been collected over several years
and many projects, large subsets of the guidelines have been applicable to each
project. As such, formulating these guidelines as patterns and antipatterns and
providing tool support in the form of design checking tools and pattern applica-
tors would allow them to be consistently applied.

References

1. Dietz, P., Weigert, T., WeilF.: Formal Techniques for Automatically Generating
Marshalling Code from High-Level Specifications. Second IEEE Workshop on In-
dustrial Strength Formal Specification Techniques, Boca Raton, USA, October 1998.

2. ITU-T: Recommendation X.680 (07/02) Information technology - Abstract Syntax
Notation One (ASN.1): Specification of basic notation. International Telecommuni-
cation Union, Geneva, 2002.

3. ITU-T: Recommendation Z.100 (08/02) Specification and Description Language
(SDL). International Telecommunication Union, Geneva, 2002.

4. ITU-T: Recommendation Z.105 (07/03), SDL combined with ASN.1 modules
(SDL/ASN.1). International Telecommunication Union, Geneva, 2003.

5. Telelogic AB: Tau 4.5 SDL Suite, 2003.

Validating Wireless Protocol Conformance
Test Cases

Paresh Jain and Amresh Nandan

TATA Consultancy Services (TCS),
D4, Sector-3, NOIDA-201301, India

{paresh.jain, amresh.nandan}@tcs.com

Abstract. This paper shares our experiences in using SDL to unit test
TTCN-2 scripts written for the conformance testing of 3G UMTS pro-
tocols. The tool used in this assignment was Telelogic TauTM, which
provided a way of bridging SDL and TTCN-2. Telelogic calls this fea-
ture “co-simulation”, which allows testing SDL applications using TTCN
without the need for writing target adaptation, environment, and en-
coding and decoding parts. This paper describes how the co-simulation
feature was used the other way around, i.e., to check TTCN protocol
conformance test cases. The work was carried out to test a TTCN test
suite for inter system handover protocol conformance (3G to 2G). The
experiment successfully demonstrates the capabilities of co-simulation
and its benefits in developing TTCN test cases, particularly when target
test equipments are under development.

1 Introduction and Motivation

In the 3G UMTS domain, 3GPP controls and implements the development of
conformance scripts from specification to implementation. This implementation
is in the form of Tree and Tabular Combined Notation (TTCN 2.0) [5] scripts,
and test equipment manufacturers use these scripts on their test systems to test
the user equipment (UE) or Network Entities. This whole development cycle
involves contributions from ETSI, test manufacturers, network and UE manu-
facturers, as well as other institutions involved in these activities. In one of the
experiments, which we performed, the script for Inter System Handover between
UMTS and GSM [2] was under development. As part of the TTCN develop-
ment team, it was brought to our attention that the development of hardware
(target test system) would take time and so the TTCN test suite could not be
tested right away. There were two alternatives: one was to wait until the target
test system was ready, the other was to find an approach to test the test cases
before the target test system got ready for use. As scripts for testing the inter
system handover were still raw and since the script development team was not
confident about their correctness, a brainstorming session was carried out and it
was highlighted that there were two aspects of scripts correctness to be tested.
One aspect was to test correctness and completeness of protocol state machines,

D. Amyot and A.W. Williams (Eds.): SAM 2004, LNCS 3319, pp. 290–300, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Validating Wireless Protocol Conformance Test Cases 291

and the other was to test the identification of incorrect parameters used in the
test cases. Further, it was noticed that the TTCN script development tools could
detect most of the syntactical defects, but as these tools were still evolving, some
of these defects might not be detected at compile time and might cause major
problems at run time. Subsequently, it was assumed that there were lots of prob-
lems with the test suite, which could be detected before the target system was
ready.

A test harness was required to be developed which could test the scripts.
There were two options to develop the harness: one option was to develop it in
C/C++, and the other was to develop it in SDL. A quick comparison was carried
out and SDL won over the C/C++ application as detailed further in Section 3.

Several tools [8] and their features were discussed and it was found that Tele-
logic Tau [12] provides a feature called “co-simulation”, which can bridge the
signaling between TTCN and SDL without any need for writing target adap-
tation parts, environments, etc. Telelogic Tau provides this feature to test any
SDL system using the TTCN scripts but we decided to use this feature the other
way round. As TTCN scripts were supposed to be tested for the state flow and
incorrect parameters, it was decided to write a small SDL system, which would
simulate the UMTS and GSM protocol stack for UE side and system simula-
tor (SS) configuration. The idea was to provide a responsive system for TTCN
scripts so that all the TTCN script test paths could be tested [3]. One great
advantage of co-simulation based testing was that it could generate Message Se-
quence Charts (MSC), which proved to be an important instrument in detecting
problems.

After the decision of including co-simulation in the script development pro-
cess, there was a significant change in the development cycle. Traditionally, di-
rectly after development and review of test scripts, the latter were integrated
with the Target Adaptation part (Figure 1). This process involved detecting all
the problems during Target Testing.

In the new process (Figure 2), co-simulation was introduced as part of unit
testing of TTCN scripts. This was helpful in detecting problems related to exe-

Fig. 1. Typical development lifecycle for 3G conformance scripts

292 P. Jain and A. Nandan

Fig. 2. Development lifecycle for 3G conformance scripts with co-simulation

cutions of test paths, protocol correctness, and other errors, which could not be
detected during Target Testing.

The rest of the paper is organised as follows: Section 2 presents the architec-
ture, design, and implementation of the concept. Several key differences in host
testing methods are given in Section 3. In Section 4, we discuss the results gen-
erated out of this exercise, as well as the merits and drawbacks of this approach.
We provide our conclusions in Section 5.

2 Implementation

2.1 Co-simulation Testing Architecture

The very first step in the implementation of the co-simulation concept involved
the development of a small prototype to verify the success of co-simulation test-
ing. Prototyping results were very encouraging and provided the base for steps
involved in the Test Harness development. A single PIXIT file (protocol im-
plementation extra information) was prepared, which was used for the access of
protocol implementation conformance statements (PICS) and PIXIT parameters
from TTCN abstract test suite (ATS) and SDL test harness.

Typically at high level, a test system architecture consists of a TTCN ab-
stract test suite (compiled and converted to an executable test suite with target
adaptor modules) running on test equipment. In the absence of target test equip-
ment, we used the SDL test harness to communicate with TTCN ATS using the
co-simulation feature of Telelogic Tau. The ASN.1 module with message data
structures imported in TTCN ATS was reused without any modification in the
SDL model as well.

Validating Wireless Protocol Conformance Test Cases 293

Fig. 3. (a) Entities involved in co-simulation testing, (b) testing of ATS with target

Data types in TTCN scripts, which were not defined in ASN.1 notation [1],
were mapped to corresponding data types in SDL. Figure 3(a) shows the entities
involved in the testing of scripts with co-simulation whereas Figure 3(b) shows
the entities involved in the target testing of ATS.

2.2 Test Harness

The design of a SDL test harness was done with the goal of testing a UTRAN
to GSM handover test case and thus the SDL system was designed by taking
UMTS and GSM protocol systems into consideration [6]. The SDL system dia-
gram contained UTRAN (UMTS terrestrial Radio Access Network) and GERAN
(GSM/EDGE Radio Access Network) blocks, which were representing system
simulator (SS) as well as user equipment (UE).

Both UTRAN and GERAN blocks contained processes to handle protocol
messages and test case logic. Each block has procedures to handle SS configura-
tion messages coming from the TTCN test suite and appropriate responses for
each of them with logical conditioning. The UTRAN block has procedures for
accepting system information messages, RRC connection, location update proce-
dure and call set up procedure. The GERAN block has procedures for successful
as well as unsuccessful completion of inter-system handover steps as defined in
the 3GPP test specification [2]. A separate block was included in the model for
reading PICS and PIXIT parameters. This block also handles initiating UTRAN
and GERAN processes as well as high-level procedures for test cases.

After the development of this test harness, integration testing was carried
out with the TTCN ATS. There were some minor changes carried out in the
test harness. The test process generated run-time errors if there were problems
with the ATS, so the script was corrected and testing was continued. This whole
process caught a substantial amount of defects, which would have had a larger
impact in the target-testing phase. These figures are discussed in Section 4. A
sample MSC generated using this testing approach is shown in Figure 5.

294 P. Jain and A. Nandan

Fig. 4. SDL test harness system design

An important point to be noted here is that TTCN test suites developed
as per 3GPP test specifications cannot be used directly for co-simulation. This

Validating Wireless Protocol Conformance Test Cases 295

Fig. 5. Message Sequence Chart

is because certain TTCN data types cannot be recognized by SDL and cer-
tain modifications are required in the TTCN test suite before co-simulation.

296 P. Jain and A. Nandan

These changes however do not affect the protocol conformance nature of the
test suite and can be reverted back after host testing. A list of co-simulation
specific changes in the test suite is listed below:

– The PICS and PIXIT files, which form part of the ATS, are consolidated
as one .ttp file (pixit.ttp) for the purpose of co-simulation (this is a tool
requirement).

– SDL does not recognize the HEXSTRING data type, thus all HEXSTRING
data types in pixit.ttp file have been changed to OCTETSTRING.

– Co-simulation does not allow specifying the length of any PICS and PIXIT
variable. This can be handled by defining simple types in TTCN and referring
them as user-defined types in pixit.ttp file.

– Values for a BITSTRING, IA5STRING and OCTETSTRING data types go
between quotes (e.g., ‘00100110’).

– SDL cannot recognize the value ‘-’ as a constraint parameter, these should
be replaced with ‘*’.

– TTCN ASPs with Meta PDU type in their constraint lists should be rede-
fined and constraints should also be modified.

After the development of a test harness, co-simulation was carried out using
Telelogic Tau. The procedure involves the generation of C code from TTCN ATS
as well as from the SDL test harness model, and the generation of a co-simulator
executable for each one of them using Telelogic Tau.

Co-simulation produces three different types of reports from execution of the
test cases, i.e., TTCN report (containing all test steps, assignments and message
transfer details), SDL report (containing execution of each step, procedure and
message transfer details) and Message Sequence Chart (MSC, containing graph-
ical sequences of message transfer from each process to the environment, which
is ATS in this case, and vice-versa).

3 Key Differences in Host Testing Methods

As a result of SDL test harness development and testing using co-simulation, we
observed certain key differences in the two approaches, i.e., co-simulation and
C/C++ test harness approach. These differences are important to be noted while
deciding an approach to perform host testing of protocol conformance test cases
as they can directly impact on the cost and schedule of the activities involved.
Key advantages and disadvantages of both the approaches are listed below.

Advantages of SDL Test Harness and Co-simulation

– SDL enables faster test harness development.
– Co-simulation gives graphical logging in the form of Message Sequence Charts

during testing, which allows easier verification of messages exchanged be-
tween the ATS and the test harness.

Validating Wireless Protocol Conformance Test Cases 297

– Development and testing is independent of external components such as en-
coders/decoders (CODECs), adaptation libraries, and communication mech-
anism modules.

– In 3G conformance test cases, a large percentage of test steps are reused
and so test harness developed in SDL can reuse processes and procedures for
different test cases. This reduces the development effort and the complexity
of the harness when a large number of test cases are to be developed.

Disadvantages of SDL Test Harness and Co-simulation

– Data types are shared between the harness and the ATS in the form of ASN.1
files. This does not allow testing of C/C++ data structures (which would be
used finally after integration with target adaptor modules).

– Development of a SDL test harness requires additional SDL skilled resources
and training on co-simulation.

– Costs of SDL and co-simulator licenses are very high and the required ex-
penditure may not be justified in case of small projects.

Advantages of Using a C/C++ Test Harness

– C/C++ test harnesses enable the testing of additional components (such as
adaptor libraries and CODECs), which are required on the target system,
while ATS testing. This helps reducing the overall testing period of the target
test system.

– Since this approach does not need any external tools (except a suitable com-
piler for development using C/C++, which is required in every approach),
there is no additional license cost involved.

Disadvantages of Using a C/C++ Test Harness

– This approach requires more development effort and time.
– This approach does not provide graphical logging in the form of MSCs, and

the user needs to verify everything using TTCN’s text-based logging.
– A reliable and tested communication mechanism needs to be developed for

communication between the harness and the ATS.
– Additional components such as adaptor libraries and CODECs need to be

developed and tested (at least partially) for use with the C/C++ test har-
ness.

4 Results

One of the important factors to be observed in this exercise was the effort re-
quired for test cases development [10] and testing using co-simulation as com-
pared to the use of traditional test harness methodologies. Based on exercises
done in the past, where a test harness was written using C++ to check TTCN
test cases, the activities and effort required in each activity [11] could be com-
pared with that of the co-simulation approach. The activities involved and effort

298 P. Jain and A. Nandan

Fig. 6. Comparative Effort Chart

required in writing, analyzing and debugging TTCN test cases are the same
for both methodologies, however the efforts required for writing test harnesses,
testing and enhancing a test harness significantly differ. Using an example of typ-
ical UTRAN to GSM test case of medium complexity, the activities and effort
required are as listed and charted below:

Activities:

[a] Design of test harness
[b] Development of communication mechanism between TTCN test suite and

test harness (e.g., socket)
[c] Development of message encoders and decoders
[d] Development of test case
[e] Implementation of error and boundary conditions
[f] Development of PICS & PIXIT files for test harness
[g] Testing
[h] Addition of other similar test cases to the test harness (with logical condi-

tioning for test cases selection).

From Figure 6, we can conclude that development of a C or C++ test harness
with capability to test one test case required nearly 45% more effort than what
was required when using TTCN-SDL co-simulation. The real benefit comes when
lots of test cases are to be implemented in the test harness and SDL reusability
makes it nearly 50% less effort consuming.

Further data was collected to compare the number of errors detected in TTCN
ATS at different stages of development. In this exercise manual review of test
suite was carried out while SDL test harness was under development. The stages
of development and number of errors found during them are summarized in
Table 1.

Validating Wireless Protocol Conformance Test Cases 299

Table 1. Number of errors detected per development stage

No. Development stage and activity Errors
1. Analysis (in Telelogic Tau) of TTCN-2 ATS 7
2. Manual review of ATS with respect to 3GPP test specification

and core specifications
14

3. Host testing using co-simulation 9
Total 30

Thus nearly 30% of the errors found before target testing were detected during
co-simulation, and these were errors which could not get detected during manual
review of the test suite.

From this activity, it can be comfortably said that a comprehensive SDL test
harness can potentially bring out most types of errors in the ATS. Some of the
key errors detected during testing by method of co-simulation are as listed below.

– In some cases, standard protocol procedures were not followed as per the
specifications. Using the test harness, the flow of test cases was corrected.

– Table References were missing in several PICS/PIXIT parameter tables.
– In a few test steps such as ts GSM SS CellRelease, the indentation of rows

was logically incorrect.
– In some of the test steps where timers were being used, the cancel timer step

was missing for the timer started earlier in other test steps.
– A few test case variables were not initialized properly or not at all.
– There was no handling of else / otherwise conditions for some parameters

where certain logical conditions were false.

5 Conclusion

We conclude that SDL-TTCN co-simulation can be a very useful methodology for
testing protocol conformance test suites developed using TTCN-2, when target
test equipments are still under development or not available at all. The test
harness development using SDL takes significantly less effort and time compared
to conventional programming languages. The complexity of a SDL test harness is
considerably less than that of C/C++ test harness, and reusability is very high.
Further use of a co-simulation approach in testing enables the development of
fairly stable test suites in shorter time periods, which can be readily tested
on target test equipments when they are ready. Fairly refined test suites allow
testing of target test systems as well and aids in faster product development.

References

1. 3GPP: User Equipment (UE) conformance specification; Part 3: Abstract Test
Suites (ATSs) (Release 1999). 3rd Generation Partnership Project, TS 34.123-3,
V0.0.0 (2000-03).

300 P. Jain and A. Nandan

2. 3GPP: Technical Specification Group Terminals; User Equipment (UE) confor-
mance specification; Part 1: Protocol conformance specification (Release 1999).
3rd Generation Partnership Project, TS 34.123-1, V3.5.0 (2001-09).

3. Alkhodre, A., Babau, J.-P., Schwarz, J.-J.: Preparing SDL code generation for real-
time embedded systems modeling. IEEE Real-Time Embedded System Workshop,
December 2001.

4. ETSI: Methods for Testing and Specification (MTS); Protocol and profile confor-
mance testing specifications - The Tree and Tabular Combined Notation (TTCN)
style guide. ETSI ETR 141, ETSI TC-MTS Reference: DTR/MTS-00020, October
1994. http://portal.etsi.org/edithelp/pdf/141 r1.pdf

5. ITU-T: Recommendation X.292 (05/02) OSI conformance testing methodology and
framework for protocol Recommendations for ITU-T applications - The Tree And
Tabular Combined Notation (TTCN). International Telecommunication Union,
Geneva, 1998.

6. ITU-T: Recommendation Z.100 (08/02) Specification and Description Language
(SDL). International Telecommunication Union, Geneva, 2002.

7. Mansurov, N., Chernov, A.V., Ragozin, A.S.: Industrial strength code generation
from SDL. Cavalli, A.R., Sarma, A. (Eds.) Proc. 8th International SDL Forum,
Evry, France, September 1997. Elsevier, 415–430.

8. Pohjolainen, P.: Software Testing Tools. University of Kuopio, Finland, March
2002. http://www.cs.uku.fi/research/Teho/SoftwareTestingTools.pdf

9. Saracco, R., Smith, J.R.W., Reed, R.: Telecommunications Systems Engineering
Using SDL. New York, North-Holland, 1989.

10. TCS: Software Development Process Handbook. Tata Consulting Services.
11. TCS: Software Estimation Guidelines Ver. 2.0. Tata Consultancy Services, TCS-

iQMS-103, January 2003.
12. Telelogic AB: Tau v4.4 User’s Guide, http://www.telelogic.com.

Author Index

Böhme, Harald 17
Bræk, Rolv 237
Bristow, Paul 122

Cremers, Cas J.F. 171

de Cabo, Margarita 33
Dorsch, Jörg 50
Dssouli, Rachida 138

Ek, Anders 50

Fischer, Joachim 17, 208
Fliege, Ingmar 224
Floch, Jacqueline 237

Geraldy, Alexander 224
Goga, Nicolae 257
Gotzhein, Reinhard 50, 224

Hélouët, Löıc 189
Hassine, Jameleddine 138
Haugen, Øystein 65
Hoffmann, Andreas 1

Jain, Paresh 290

Khendek, Ferhat 106

Lohr, Christophe 106

Mauw, Sjouke 171
Mitchell, Bill 122
Mooij, Arjan J. 257

Nandan, Amresh 290
Neubauer, Bertram 1

Piefel, Michael 208

Reed, Rick 80
Rilling, Juergen 138
Rinderknecht, Christian 154
Rodŕıguez, Manuel 33

Schaible, Philipp 224
Scheidgen, Markus 208
Sherratt, Edel 96

Thomson, Robert 122

Wang, Li Xin 106
Weigert, Thomas 271
Weil, Frank 271

Zhang, Xiao Jun 106
Zheng, Tong 106

	Frontmatter
	SDL and eODL
	Deployment and Configuration of Distributed Systems
	eODL and SDL in Combination for Components
	Applying eODL and SDL-Patterns for Developing TMN Managed Systems
	SPT -- The SDL Pattern Tool

	Evolution of Languages
	Comparing UML 2.0 Interactions and MSC-2000
	Data Encoding for SDL in ITU-T Rec.~Z.104
	SDL in a Changing World

	Requirements and MSC
	Early Validation of Deployment and Scheduling Constraints for MSC Specifications
	Scenario Synthesis from Imprecise Requirements
	Applying Reduction Techniques to Software Functional Requirement Specifications

	Security
	Proving a Soundness Property for the Joint Design of ASN.1 and the Basic Encoding Rules
	Checking Secrecy by Means of Partial Order Reduction
	Finding Covert Channels in Protocols with Message Sequence Charts: The Case of RMTP2

	SDL and Modelling
	A Metamodel for SDL-2000 in the Context of Metamodelling ULF
	A Flexible Micro Protocol Framework
	ICT Convergence: Modeling Issues

	Experience
	Dealing with Non-local Choice in IEEE 1073.2's Standard for Remote Control
	Guidelines for Using SDL in Product Development
	Validating Wireless Protocol Conformance Test Cases

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

