Skip to main content

On Non-elitist Evolutionary Algorithms Optimizing Fitness Functions with a Plateau

  • Conference paper
  • First Online:
Mathematical Optimization Theory and Operations Research (MOTOR 2020)

Abstract

We consider the expected runtime of non-elitist evolutionary algorithms (EAs), when they are applied to a family of fitness functions \(\text {Plateau} _r\) with a plateau of second-best fitness in a Hamming ball of radius r around a unique global optimum. On one hand, using the level-based theorems, we obtain polynomial upper bounds on the expected runtime for some modes of non-elitist EA based on unbiased mutation and the bitwise mutation in particular. On the other hand, we show that the EA with fitness proportionate selection is inefficient if the bitwise mutation is used with the standard settings of mutation probability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Antipov, D., Doerr, B.: Precise runtime analysis for plateaus. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11102, pp. 117–128. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99259-4_10

    Chapter  Google Scholar 

  2. Corus, D., Dang, D., Eremeev, A.V., Lehre, P.K.: Level-based analysis of genetic algorithms and other search processes. IEEE Trans. Evol. Comput. 22(5), 707–719 (2018)

    Article  Google Scholar 

  3. Dang, D.C., Eremeev, A., Lehre, P.K.: Runtime analysis of fitness-proportionate selection on linear functions. ArXiv 1908.08686 [cs.NE] (2019)

    Google Scholar 

  4. Dang, D.C., Lehre, P.K.: Runtime analysis of non-elitist populations: from classical optimisation to partial information. Algorithmica 75(3), 428–461 (2016)

    Article  MathSciNet  Google Scholar 

  5. Dang, D.C., Lehre, P.K.: Self-adaptation of mutation rates in non-elitist populations. In: Proceedings of PPSN 2016, pp. 803–813 (2016)

    Google Scholar 

  6. Doerr, B., Johannsen, D., Kötzing, T., Lehre, P.K., Wagner, M., Winzen, C.: Faster black-box algorithms through higher arity operators. In: Proceedings FOGA 2011, pp. 163–172 (2011)

    Google Scholar 

  7. Doerr, B., Kötzing, T.: Multiplicative up-drift. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2019, Prague, Czech Republic, 13–17 July 2019, pp. 1470–1478 (2019)

    Google Scholar 

  8. Droste, S., Jansen, T., Tinnefeld, K., Wegener, I.: A new framework for the valuation of algorithms for black-box optimization. In: FOGA-7, pp. 253–270. Morgan Kaufmann, San Francisco (2003)

    Google Scholar 

  9. Eremeev, A.: Hitting times of local and global optima in genetic algorithms with very high selection pressure. Yugosl. J. Oper. Res. 27(3), 323–339 (2017)

    Article  MathSciNet  Google Scholar 

  10. Gnedenko, B.V.: Theory of Probability. Gordon and Breach, London (1997)

    MATH  Google Scholar 

  11. Hampson, S., Kibler, D.: Plateaus and plateau search in Boolean satisfiability problems: when to give up searching and start again. In: Proceedings of the second DIMACS Implementation Challenge "Cliques, Coloring and Satisfiability, pp. 437–456. American Mathematical Society (1996)

    Google Scholar 

  12. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58(301), 13–30 (1963)

    Article  MathSciNet  Google Scholar 

  13. Jansen, T., Wegener, I.: On the utility of populations in evolutionary algorithms. In: Proceedings of GECCO 2001, pp. 1034–1041 (2001)

    Google Scholar 

  14. Lehre, P.K.: Negative drift in populations. In: Proceedings of PPSN 2010, pp. 244–253 (2010)

    Google Scholar 

  15. Lehre, P.K.: Fitness-levels for non-elitist populations. In: Proceedings of GECCO 2011, pp. 2075–2082 (2011)

    Google Scholar 

  16. Lehre, P.K., Özcan, E.: A runtime analysis of simple hyper-heuristics: to mix or not to mix operators. In: Proceedings of FOGA 2013, pp. 97–104 (2013)

    Google Scholar 

  17. Lehre, P.K., Witt, C.: Black-box search by unbiased variation. Algorithmica 64, 623–642 (2012)

    Article  MathSciNet  Google Scholar 

  18. van Nimwegen, E., Crutchfield, J.: Optimizing epochal evolutionary search population-size independent theory. Comput. Meth. Appl. Mech. Eng. 186(2—-4), 171–194 (2000)

    Article  Google Scholar 

  19. Sutton, A.M., Howe, A.E., Whitley, L.D.: Directed plateau search for max-k-sat. In: Proceedings of the Third Annual Symposium on Combinatorial Search, SOCS 2010, Stone Mountain, Atlanta, Georgia, USA, 8–10 July 2010 (2010)

    Google Scholar 

  20. Witt, C.: Population size versus runtime of a simple evolutionary algorithm. Theor. Comput. Sci. 403(1), 104–120 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

The work was funded by program of fundamental scientific research of the Russian Academy of Sciences, I.5.1., project 0314-2019-0019. The author is grateful to Duc-Cuong Dang for helpful comments on preliminary version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton V. Eremeev .

Editor information

Editors and Affiliations

Appendices

Appendix A

This appendix contains the formulations of results employed from other works. Some of the formulations are given with slight modifications, which do not require a special proof.

Our lower bound is based on the negative drift theorem for populations [14].

Theorem 6

Consider the EA on \(\mathcal {X} = \{0,1\}^n\) with bitwise mutation rate \(\chi /n\) and population size \(\lambda = {{\,\mathrm{poly}\,}}(n)\), let a(n) and b(n) be positive integers such that \(b(n)\le n/\chi \) and \(d(n) = b(n) - a(n) = \omega (\ln n)\). Given \(x^* \in \{0,1\}^n\), define \(T(n) := \min \{t \mid |P_t \cap \{x \in \mathcal {X} \mid H(x,x^*) \le a(n)\}| > 0\}\). If there exist constants \(\alpha >1\), \(\delta >0\) such that

  1. (1)

    \(\forall t\ge 0\), \(\forall i \in [\lambda ]:\) if \(a(n)< H(P_t(i),x^*) < b(n)\) then \(\alpha _t(i) \le \alpha \),

  2. (2)

    \(\displaystyle \psi := \ln (\alpha )/\chi + \delta < 1\),

  3. (3)

    \(\displaystyle b(n)/n < \min \left\{ 1/5, 1/2 - \sqrt{\psi (2-\psi )/4}\right\} \),

then \(\Pr \left( T(n)\le e^{cd(n)}\right) = e^{-\varOmega (d(n))}\) for some constant \(c>0\).

We also use a corollary of this theorem (Corollary 1 from [14]):

Corollary 1

The probability that a non-elitist EA with population size \(\lambda ={{\,\mathrm{poly}\,}}(n),\) bitwise mutation probability \(\chi /n,\) and maximal reproductive rate bounded by \(\alpha < e^{\chi }-\delta \), for a constant \(\delta > 0,\) optimises any function with a polynomial number of optima within \(e^{cn}\) generations is \(e^{-\varOmega (n)},\) for some constant \(c > 0.\)

To bound the expected optimisation time of Algorithm 1 from above, we use the level-based analysis [2]. The following theorem is a re-formulation of Corollary 7 from [2], tailored to the case of no recombination.

Theorem 7

Given a partition \((A_1,\dots ,\) \(A_{m})\) of \(\mathcal {X}\), if there exist \(s_1,\dots ,s_{m-1}, p_0,\) \({\delta \in (0,1]}\), \(\gamma _0 \in (0,1)\) such that

  1. (M1)

    \(\forall P\in \mathcal {X}^\lambda , \forall j\in [m-1] :\) \(\displaystyle p_\mathrm {mut} \left( y\in A_{\ge j+1} \mid x \in A_j \right) \ge s_j,\)

  2. (M2)

    \(\forall P\in \mathcal {X}^\lambda , \forall j\in [m-1] :\) \(\displaystyle p_\mathrm {mut} \left( y\in A_{\ge j} \mid x\in A_j \right) \ge p_0,\)

  3. (M3)

    \(\forall P \in \left( \mathcal {X}\setminus A_{m}\right) ^\lambda , \forall \gamma \in (0,\gamma _0]:\) \(\displaystyle \beta (\gamma , P) \ge (1+\delta )\gamma /p_0,\)

  4. (M4)

    population size \(\displaystyle \lambda \ge \frac{4}{\gamma _0\delta ^2} \ln \left( \frac{128 m}{\gamma _0s_*\delta ^2}\right) , \text { where } s_*:=\min _{j\in [m-1]} \{s_j\}, \)

then, assuming \(T_0:=\min \{t \mid |P_t \cap A_{m}| \ge \gamma _0 \lambda \},\) we have

$$\begin{aligned} \mathbf {E}\left[ T_0\right] < \left( \frac{8}{\delta ^{2}}\right) \sum _{j=1}^{m-1}\left( \ln \left( \frac{6\delta \lambda }{4+\gamma _0 s_j\delta \lambda }\right) +\frac{1}{\gamma _0 s_j \lambda }\right) . \end{aligned}$$
(3)

Note that literally the formulation of Corollary 2 in [2] gives the bound (3) only for the expected runtime, but it is easy to see from the proof therein that the bound actually holds for the expected number \(T_0\) of the first population that contains at least \(\gamma _0 \lambda \) individuals in level \(A_{m}\) as we put it in Theorem 7. This slight improvement is important in Sect. 3.

As an alternative to Theorem 7 we use the new level-based theorem based on the multiplicative up-drift [7]. Theorem 3.2 from [7] implies the following.

Theorem 8

Given a partition \((A_1,\dots ,\) \(A_{m})\) of \(\mathcal {X}\), define \(T:=\min \{t\lambda \mid |P_t \cap A_{m}| > 0\}.\) If there exist \(s_1,\dots ,s_{m-1},p_0,\delta \in (0,1]\), \(\gamma _0 \in (0,1)\), such that conditions (M1)–(M3) of Theorem 7 hold and

  1. (M4’)

    for some constant \(C>0\), the population size \(\lambda \) satisfies

    $$ \lambda \ge \frac{8}{\gamma _0\delta ^2} \log \left( \frac{C m}{\delta } \left( \log \lambda +\frac{1}{\gamma _0 s_* \lambda }\right) \right) , \text { where } s_*:=\min _{j\in [m-1]} \{s_j\}, $$

then \( \mathbf {E}\left[ T\right] =\mathcal {O} \left( \frac{\lambda m \log (\gamma _0 \lambda )}{\delta } + \frac{1}{\delta } \sum _{j=1}^{m-1}\frac{1}{\gamma _0 s_j}\right) . \ \)

Theorem 8 improves on Theorem 7 in terms of dependence of the runtime bound denominator on \(\delta \), but only gives an asymptotical bound. Its proof is analogous to that of Theorem 7 and may be found in [3].

Theorem 9

Given an f-based partition \(A_1,\ldots ,A_{m}\) of \({\mathcal X}\), if the EA uses the mutation, such that \({\Pr }(\mathtt{mutate} (x)\in A_{\ge j+1})\ge s_*\) for any \(x\in A_{j},\) \(j\in [m-1]\)

  • and a k-tournament selection, \(k\ge \frac{(1+\ln m)e}{s_*}\) with a population of size \(\lambda \ge k\),

  • or \((\mu ,\lambda )\)-selection and \(\lambda \ge \frac{\mu (1+\ln m)}{s_* }\)

then an element from \(A_{m}\) is found in expectation after at most em genetations.

The proof is analogous to that of the main result in [9].

Appendix B

This appendix contains the proofs provided for the sake of completeness.

Proof of Lemma 1. For the initial population, it follows by a Chernoff bound that \(\Pr \left( T=1\right) =e^{-\varOmega (n)}\). We then claim that for all \(t\ge 0\), \(\Pr \left( T=t+1\mid T>t\right) \le e^{-c'n}\) for a constant \(c'>0,\) which by the union bound implies that \(\Pr \left( T<e^{cn}\right) \le e^{cn-c'n}=e^{-\varOmega (n)}\) for any constant \(c<c'\).

In the initial population, the expected number of ones of a k-th individual, \(k\in [\lambda ]\) is \( |P_0(k))|\le n/2. \) It will be more convenient here to consider the number of zeros, rather than the number of ones. We denote \(Z_t^{(j)}:= n - |P_t(j)|\) , for \(t\ge 0,\) \(j\in [\lambda ],\) and \(Z_t:=\lambda n - \sum _{j=1}^{\lambda } |P_t(j)|\). Let \(p_j\) be the probability of selecting the j-th individual when producing the population in generation \(t+1\). For f-monotone selection mechanisms, it holds that \(\sum _{j=1}^\lambda p_j Z_t^{(j)} \le Z_t/\lambda .\)

Let \(P=(x_1,\dots ,x_{\lambda })\) be any deterministic population. Denote the i-th bit of its k-th individual by \(x^{(k,i)},\) \(z_k:= n - |x^{(k)}|\), \(1\le k \le \lambda \), and \(Z(P):=\sum _{k=1}^{\lambda } z_k\).

Let us consider the bitwise mutation first. The expected number of zero-bits in any offspring \(j\in [\lambda ]\) produced from population \(P_t=P\) is

$$ \mathbf {E}\left[ |P_{t+1}(j)|\ | \ P_t=P\right] = \sum _{k=1}^{\lambda } p_k\left[ \sum _{i=1}^n \left( x^{(k,i)} (1-\chi /n) + (1-x^{(k,i)}) \chi /n \right) \right] , $$

so the expected value of \(Z_{t+1}^{(j)}\) for any offspring \(j\in [\lambda ]\) is

$$\begin{aligned}&\mathbf {E}\left[ Z_{t+1}^{(j)} \ | \ P_t=P\right] \le n- \mathbf {E}\left[ |P_{t+1}(j)|\ | \ P_t=P\right] \\&= \sum _{k=1}^{\lambda } p_k\left[ \sum _{i=1}^n \left( x^{(k,i)} (1-\chi /n) + (1-x^{(k,i)}) \chi /n \right) \right] \\&=n-\sum _{k=1}^{\lambda } p_k \left[ \chi + (1-2\chi /n) \sum _{i=1}^n x^{(k,i)} \right] \\&\le n-\chi - (1-2\chi /n) \sum _{k=1}^{\lambda } p_k (n- z_k)\\&=\chi + (1-2\chi /n) \sum _{k=1}^{\lambda } p_k z_k \le \chi + (1-2\chi /n)Z(P)/\lambda . \end{aligned}$$

If \(T>t\) and \(Z(P)<\lambda n(1+\varepsilon )/2\), then

$$\begin{aligned} \mathbf {E}\left[ Z_{t+1}\mid P_t=P\right]&\le \lambda \chi + Z(P)\left( 1-2\chi /n\right) \\&< \lambda \chi + \frac{\lambda n}{2}(1+\varepsilon )\left( 1-2\chi /n\right) = \frac{\lambda n}{2}(1+\varepsilon )-\varepsilon \lambda \chi . \end{aligned}$$

Now \(Z_{t+1}^{(1)}, Z_{t+1}^{(2)}, \dots , Z_{t+1}^{(\lambda )}\) are non-negative independent random variables, each bounded from above by n, so using the Hoeffding’s inequality [12] we obtain

$$ \Pr \left( Z_{t+1} \ge \frac{\lambda n}{2}(1+\varepsilon )\right) \le \Pr \left( Z_{t+1} \ge \mathbf {E}\left[ Z_{t+1}\right] + \varepsilon \lambda \chi \right) \le \exp \left( - \frac{2(\varepsilon \lambda \chi )^2}{\lambda n^2}\right) , $$

which is \(e^{-\varOmega (n^{\delta })}\) since \(\lambda \ge n^{2+\delta }.\)    \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Eremeev, A.V. (2020). On Non-elitist Evolutionary Algorithms Optimizing Fitness Functions with a Plateau. In: Kononov, A., Khachay, M., Kalyagin, V., Pardalos, P. (eds) Mathematical Optimization Theory and Operations Research. MOTOR 2020. Lecture Notes in Computer Science(), vol 12095. Springer, Cham. https://doi.org/10.1007/978-3-030-49988-4_23

Download citation

Publish with us

Policies and ethics