Abstract
We propose a relative optimization framework for quasi maximum likelihood blind deconvolution and the relative Newton method as its particular instance. Special Hessian structure allows its fast approximate construction and inversion with complexity comparable to that of gradient methods. The use of rational IIR restoration kernels provides a richer family of filters than the traditionally used FIR kernels. Smoothed absolute value and the smoothed deadzone functions allow accurate and robust deconvolution of super- and sub-Gaussian sources, respectively. Simulation results demonstrate the efficiency of the proposed methods.
Chapter PDF
Similar content being viewed by others
Keywords
- Blind Source Separation
- Relative Optimization
- Blind Deconvolution
- Constant Modulus Algorithm
- Blind Deconvolution Algorithm
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Tong, L., Xu, G., Kailath, T.: Blind identification and equalization based on second-order statistics: A time domain approach. IEEE Trans. Inform. Theory 40, 340–349 (1994)
Gurelli, M., Nikias, C.: EVAM: An eigenvector-based algorithm for multichannel bind deconvolution of input colored signals. IEEE Trans. Signal Processing 43, 134–149 (1995)
Xu, G., Liu, H., Tong, L., Kailath, T.: Least squares approach to blind channel identification. IEEE Trans. Sig. Proc. 43, 2982–2993 (1995)
Hua, Y.: Fast maximum likelihood for blind identification of multiple FIR channels. IEEE Trans. Sig. Proc. 44, 661–672 (1996)
Gorokhov, A., Loubaton, P., Moulines, E.: Second order blind equalization in multiple input multiple output FIR systems: A weighted least squares approach. In: Proc. ICASSP, vol. 5, pp. 2415–2418 (1996)
Godard, D.N.: Self-recovering equalization and carrier tracking in two-dimensional data communication systems. IEEE Trans. Commun. 28, 1867–1875 (1980)
Chi, C.Y., Chen, C.Y., Chen, C.H., Feng, C.C.: Batch processing algorithms for blind equalization using higher-order statistics. IEEE Sig. Proc. Magazine, 25–49 (2003)
Amari, S.I., Cichocki, A., Yang, H.H.: Novel online adaptive learning algorithms for blind deconvolution using the natural gradient approach. In: Proc. SYSID, pp. 1057–1062 (1997)
Cichocki, A., Unbehauen, R., Rummert, E.: Robust learning algorithm for blind separation of signals. Electronics Letters 30, 1386–1387 (1994)
Amari, S.I., Douglas, S.C., Cichocki, A., Yang, H.H.: A new learning algorithm for blind signal separation. Advances in Neural Information Processing Systems 8, 757–763 (1996)
Cardoso, J.F., Laheld, B.: Equivariant adaptive source separation. IEEE Trans. Sig. Proc. 44, 3017–3030 (1996)
Joho, M., Mathis, H., Moschytz, G.S.: On frequency-domain implementations of filteredgradient blind deconvolution algorithms. In: Proc. Asilomar Conf. Signals, Syst., Comput. (2002)
Pham, D., Garrat, P.: Blind separation of a mixture of independent sources through a quasimaximum likelihood approach. IEEE Trans. Sig. Proc. 45, 1712–1725 (1997)
Zibulevsky, M.: Sparse source separation with relative Newton method. In: Proc. ICA 2003, pp. 897–902 (2003)
Bronstein, A.M., Bronstein, M., Zibulevsky, M.: Blind deconvolution with relative Newton method. Technical Report 444, Technion, Israel (2003)
Bronstein, A.M., Bronstein, M.M., Zibulevsky, M.: Relative optimization for blind deconvolution. In: IEEE Sig. Proc. (2004) (submitted), Online http://visl.technion.ac.il/bron/alex
Zibulevsky, M., Pearlmutter, B.A., Bofill, P., Kisilev, P.: Blind source separation by sparse decomposition. In: Roberts, S.J., Everson, R.M. (eds.) Independent Components Analysis: Princeiples and Practice, Cambridge University Press, Cambridge (2001)
Bronstein, A.M., Bronstein, M.M., Zibulevsky, M., Zeevi, Y.Y.: Quasi maximum likelihood blind deconvolution of images using optimal sparse representations. Technical Report 455, Technion, Israel (2003)
Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2003)
Giannakis, G.B., Halford, S.D.: Blind fractionally spaced equalization of noisy FIR channels: Direct and adaptive solutions. IEEE Trans. Sig. Proc. (45)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bronstein, A.M., Bronstein, M.M., Zibulevsky, M. (2004). Blind Deconvolution Using the Relative Newton Method. In: Puntonet, C.G., Prieto, A. (eds) Independent Component Analysis and Blind Signal Separation. ICA 2004. Lecture Notes in Computer Science, vol 3195. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30110-3_71
Download citation
DOI: https://doi.org/10.1007/978-3-540-30110-3_71
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-23056-4
Online ISBN: 978-3-540-30110-3
eBook Packages: Springer Book Archive