
J Optim Theory Appl (2009) 143: 601–618
DOI 10.1007/s10957-009-9572-x

Phenomena in Inverse Stackelberg Games, Part 2:
Dynamic Problems

G.J. Olsder

Published online: 28 May 2009
© The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract Dynamic two-person games are considered, in which the roles of the play-
ers are hierarchical. One player behaves as a leader, the other one as a follower. Such
games are named after Stackelberg. In the current paper, a special type of such games
is considered, known in the literature as inverse Stackelberg games. In such games,
the leader announces his strategy as a mapping from the follower’s decision space
into his own decision space. Arguments for studying such problems are given. This
paper specifically studies dynamic games, i.e. the underlying model is described by
an ordinary differential equation. The decisions of both players have a time compo-
nent. As in the static case, the routine way of analysis, leading to a study of composed
functions, is not very fruitful. Other approaches are given, mainly by studying spe-
cific examples.

Keywords Differential games · Transaction costs · Stackelberg games · Inverse
Stackelberg games · Composed functions

1 Problem Setting and Terminology

This paper deals with dynamic inverse Stackelberg problems and is a follow-up of
[1], which dealt with static inverse Stackelberg problems. Such problems are usually
treated within the context of game theory. In the simplest form, there are two players,
called leader and follower respectively, each having its own cost function,

JL(uL, uF), JF(uL, uF),
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where uL, uF ∈ R. Each player wants to choose its own decision variable in such a
way as to minimize its own cost function. Without giving an equilibrium concept,
the problem as stated so far is not well defined. Such an equilibrium concept could
for instance be one named after Nash or after Pareto [2]. In this paper, the inverse
Stackelberg equilibrium as it was introduced in [3], will be considered. The leader
announces a function γL(·) which maps uF into uL. Examples of games with such
informatiom structures are:

• Think of the leader being the government and of the follower as a citizen. The
government states how much income tax the citizen has to pay and this tax will
depend on the income uF of the citizen. It is up to the citizen as to how much
money to earn (by working harder or not) and thus he can choose uF. The income
tax the government will receive equals γL(uF), where the “rule for taxation” γL(·),
in many countries piecewise linear, was made known ahead of time.

• The leader is the bank and the follower the investor. The investor can buy stocks,
with the bank as intermediator, with the money he has in his savings account.
Suppose he buys stocks worth uF Euros. Then the bank will charge him γL(uF) as
transaction costs. The function γL(·) has been made known by the bank before the
actual transaction takes place [4, 5].

Given the function γL(·), the follower will make his choice uF according to

u∗
F = arg min

uF
JF(γL(uF), uF).

Subsequently the decision of the leader, who is supposed to stick to what he promised,
is then u∗

L = γL(u∗
F). Optimizing quantities will be provided with an asterix. The

leader, before announcing his γL(·), will of course realize how the follower will play
and he should exploit this knowledge in order to choose the best possible γ -function,
such that ultimately his own cost function JL becomes as small as possible. Symbol-
ically, we could write

γ ∗
L (·) = arg min

γL(·) JL(γL(uF(γL(·))), uF(γL(·))).

In this way, one enters the field of composed functions [6], which is known to be a
notoriously complex area.

In [1], we dealt with problems in which each of the players had to make one deci-
sion only. Sometimes such problems are called static. In the current paper, extensions
are considered in which the players must act more often, either in a discrete time or
a continuous time setting, and such problems are called dynamic. In the latter case,
one is usually given a model,

ẋ = f (x,uL, uF), x(0) = x0,

through which the players interact. The state x of this model evolves in time (indi-
cated by t) according to the differential equation ẋ = f . The dot on a variable refers
to the time derivative, i.e. ẋ = dx

dt
. Generally the state is an n-dimensional vector

(written as x ∈ Rn), but in this paper we will confine ourselves to n = 1, and it will
be considered on the interval 0 ≤ t ≤ T , where T represents a fixed final time. The
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vector x0 is the initial condition. The quantities ui, i = L,F, are scalar functions of
time possibly restricted to a certain set: ui(t) ∈ Ui(t). The function ui must be chosen
in such a way as to minimize the cost function

Ji(uL, uF) =
∫ T

0
gi(x,u1, u2)dt + qi(x(T ));

both gi and qi are scalar functions and are assumed to satisfy certain regularity con-
ditions such that the cost functions are well defined. Under suitable conditions on
the function f , the time evolution of x is uniquely determined by the differential
equation. There are no restrictions on x(T ); we deal with so-called free endpoint
problems. With respect to the equilibrium concept, various extensions to the static
situation exist, even within a leader-follower context; see [2] for some possibilities.

In [1], some references with respect to “classic”, i.e. static, Stackelberg games
were given. Some references with respect to the more recently developed dynamic
Stackelberg game theory are [5] and [7–9].

The further content of the paper is as follows. In Sect. 2, the main problem is for-
mulated. In Sects. 3 and 4, two dynamic examples are considered and it is shown what
the difficulties are in obtaining the solutions. The mathematically oriented reader
should be warned somewhat that, at this moment, only little theory is available (with
for instance theorems about existence, uniqueness), and that the theory is still in its
infancy by discovering phenomena by means of examples.

2 Problem Statement

The main problem to be considered is

ẋ = f (x,u), x(0) = x0, (1)

min
u

J c
F = min

u

(
q(x(T )) +

∫ T

0
g(x,u)dt +

∫ T

0
γ (u(t))dt

)
, (2)

max
γ (·)

JL = max
γ (·)

∫ T

0
γ (u(t))dt. (3)

The notation has been changed somewhat here. Instead of uF, we write simply u for
the decision variable of the follower. The function γ is up to the choice of the leader
(we do not write uL anymore) subject to the restriction

γ (0) = 0, γ (·) ≥ 0.

Occasionally, we will also require that γ is nondecreasing with respect to |u|. Also
note that the cost function of the follower, including the integral term with the
γ -function, is indicated by J c

F (the notation JF will be reserved for this cost function
without the integral term containing the γ -function). The inverse Stackelberg equilib-
rium should be recognized easily by means of the notation: the leader announces the
function γ which thus becomes known to the follower who subsequently chooses u.
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A possible interpretation of this model is that the follower is an investor who wants
to maximize his wealth,

−q(x(T )) −
∫ T

0
g(x,u)dt,

equivalently wants to minimize his loss JF
def= q(x(T )) + ∫ T

0 g(x,u)dt . Please note
the difference in the notations J c

F and JF. The term −q(x(T )) in the criterion rep-

resents the wealth of the investor at the final time T and the term − ∫ T

0 g(x,u)dt

represents the consumption during the time interval [0, T ]. The decision variable
u(t) denotes the transactions with the bank at time t (e.g. selling or buying stocks).
To be more precise, u(t) denotes a transaction density, i.e. during the time interval
[t, t + dt] the number of transactions equals u(t)dt . For u = 0, no transaction takes
place (γ (0) = 0). Such transactions cost money and we assume that the bank wants
to maximize these transaction costs as indicated by (3). These costs are added to the
costs of the follower as indicated in (2). Another reasonable restriction on γ is that
γ (u) is nondecreasing with respect to |u|. The higher the number of transactions (ei-
ther buying or selling, one being related to a positive u, the other one to a negative
u), the higher the costs.

In the sections to come, it will become clear that the main problem as stated is
a difficult one. In [5], a variational approach, starting from the Hamiltonian H in
the minimum principle formulation of Pontryagin [10], which lead to a condition
containing composed functions [6], was suggested without much success.

As a direct extension of Theorem 2.1 from [1], we have that an upper bound for
the profit of the bank is JF(u ≡ 0) − JF(u = u∗), where JF is the follower’s pure
cost function, i.e. without the additional banking costs and where u∗ minimizes this
pure cost function (of course subject to the state equation (1)). In [5], the following
conjecture was posed.

Conjecture 2.1 Generic sufficiency conditions for the bank to have its profit arbi-
trarily close to the upper bound given above (this property is referred to as incentive
controllability in [2]) are either one of the following:

• The integrand γ is allowed to depend explicitly on t , i.e. γ (t, u(t));
• γ depends on u only and u∗ is constant.

This conjecture is false as will be shown by the examples to come.

3 First Dynamic Example

The model is

ẋ = u, x(0) = 1,

and the criterion is minu JF, where

JF =
(

1

2

∫ 1

0
u2(t)dt + 1

2
x2(1)

)
.
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In this optimal control problem, the integral term in the cost function is simply part of
this cost function; it is not to be considered as transaction costs (transaction costs will
be added shortly). The optimal solution is obtained through the following formulas:

H = λu + 1

2
u2 → u∗ = −λ,

λ̇ = 0, λ(1) = x(1), u(t) = −x(1), t ∈ [0,1],

and hence,

u∗(t) = −1

2
, x∗(t) = 1 − 1

2
t, JF(u = u∗) = 1

4
, JF(u = 0) = 1

2
.

The notation H stands for Hamiltonian. The minimum principle of Pontryagin dic-
tates that H must be minimized with respect to u.

The above optimal control problem is now extended to a game problem by adding
transaction costs. The criterion is changed into minc

u JF, where

J c
F =

(
1

2

∫ 1

0
u2(t)dt + 1

2
x2(1) +

∫ 1

0
γ (u(t))dt

)
.

The function γ satisfies the by now usual restrictions γ (·) ≥ 0, γ (0) = 0. There is
another criterion for the second player: maxγ (·) JL, where

JL =
∫ 1

0
γ (u(t))dt.

3.1 Ad Hoc Approach

A likely candidate for the optimal γ is γ (u) = −( 1
2 − ε)u(1 + u) on the interval

[−1,0] and γ (u) ≥ 0 elsewhere, with ε an arbitrarily small positive number. (This
choice of γ mimics the idea for the first choice of γ in Example 2.1 of [1].) Here γ

is, if ε would be zero, equal to −H on the essential interval. We now find

H = λu + 1

2
u2 −

(
1

2
− ε

)
u(1 + u) → u∗ = −λ − 1

2 + ε

2ε
,

λ̇ = 0, λ(1) = x(1),

x∗(t) = 1 − 1

2
t, J c

F = 3

8
− 1

4
ε, JL = 1

8
− 1

4
ε.

Note that, with this choice of γ , if it is optimal, Conjecture 2.1 does not hold.
The bank can do better, however, even with a quadratic γ . Let us try

γ (u) = 1

2
βu2 + αu,
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on a certain interval to be determined. Automatically γ (0) = 0. Under the condition
β > −1, it is straightforward to show that

x∗(1) = 1 + β − α

2 + β
, u∗(t) ≡ −1 + α

2 + β
.

Since JF(u = 0) = 1
2 , the parameters α and β must necessarily satisfy J c

F(u = u∗)
≤ 1

2 . This leads to

1

2
((u∗)2 + (x∗(1))2) + γ (u∗) = (2 + β) − (1 + α)2

2(2 + β)
≤ 1

2
,

which is always fulfilled for β > −1. Consider

max
α,β

γ (u∗) = max
α,β

1

2

(
β

(
1 + α

2 + β

)2

− 2α
1 + α

2 + β

)
= max

α,β

β − 4α − (4 + β)α2

2(2 + β)2
.

The maximization with respect to α leads to α = −2
4+β

, which in turn leads to

max
α,β

γ (u∗) = max
β

1

2(4 + β)
.

Based upon this, the best value for β is β = −1 + ε, where ε is an arbitrarily small
positive number. Subsequently, α = − 2

3 + 2
9ε up to first order in ε, and with the same

accuracy, u∗ = − 1
3 + 1

9ε. This leads to

J c
F = 4

9
− 1

27
ε, JL = 1

6
− 1

18
ε,

which is a best result for the bank within the class of quadratic γ functions. Without
the transaction costs for the investor, its costs would be

JF = J c
F − JL = 5

18
+ 1

54
ε,

which is less than what he would have obtained by playing u = 0. Now that α and β

have given values, it must be checked whether γ (u∗) > 0 in a neighborhood of u∗.
This is fortunately true. Further away from u∗, the function γ can be adjusted such
that γ (·) ≥ 0 everywhere.

One might be tempted to think1 that the bank can get its transaction costs arbitrar-
ily close to 1

4 by means of the following nonquadratic choice:

γ (u) =
{

0, if u = 0,

1
4 − ε, if u �= 0.

1As was the case in [5].
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Here ε is an arbitrarily small positive number. We will consider directly the more
general case

γ (u) =
{

0, if u = 0,

δ − ε, if u �= 0,

where δ is a parameter to be chosen by the leader. Without loss of generality, we may
assume that the follower’s answer is of the form

u =
{

0, if 0 ≤ t ≤ 1 − σ,

v, if 1 − σ < t ≤ 1,

for certain parameters 0 ≤ σ ≤ 1 and v. With these parameters, one can easily derive
that, apart from ε-terms,

J c
F = 1

2
σv2 + 1

2
(1 + σv)2 + σδ.

Minimization with respect to both v and σ leads to

σ = −1 + 1√
2δ

, v = √
2δ, J c

F = −δ + √
2δ.

Let us now consider the leader’s role. He wants to maximize JL = σv = δ(−1 +
1√
2δ

), subject to the condition J c
F ≤ JF(u = 0) = 1

2 . If we continue to disregard the

ε-terms, this constraint is always satisfied and maximization of JL leads to δ = 1
8 ,

J ∗
L = 1

8 , J c∗
F = 3

8 . Thus, the profit of the bank turns out to be 1
8 , apart from an ε-term,

which is clearly less than what could be obtained with the best quadratic γ .

3.2 Two Time Steps

Here, we consider a discretized version of the continuous time problem. The model
is

x1 = x0 + 1

2
u1 = 1 + 1

2
u1, x2 = x1 + 1

2
u2 = 1 + 1

2
(u1 + u2), (4)

and the criteria are

J c
F = 1

4
(u2

1 + u2
2) + 1

2

(
1 + 1

2
(u1 + u2)

)2

+ 1

2
(γ (u1) + γ (u2)),

JL = 1

2
(γ (u1) + γ (u2)).

In Sect. 3.3, we will consider the same problem again, but then with more than 2 time
steps.
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3.2.1 First Attempt

With the text immediately above Conjecture 2.1 in mind, a reasonable assumption
seems to be that J c

F is minimized for the ui -values which minimize

JF
def= 1

4
(u2

1 + u2
2) + 1

2

(
1 + 1

2
(u1 + u2)

)2

.

These values are u1 = u2 = − 1
2 . Since

JF

(
u1 = −1

2
, u

)
= JF

(
u,u2 = −1

2

)
= 3

8
u2 + 3

8
u + 11

32
,

we try the γ -function

1

2
γ (u) = −

(
3

8
u2 + 3

8
u

)
(1 − ε), (5)

with a small positive ε. With this γ -function and with u1 = u2 = − 1
2 , it is easily

shown that

J c
F = 1

4
+ 2(1 − ε)

3

32
< JF(u1 = 0, u2 = 0) = 1

2
, JL = 2(1 − ε)

3

32
. (6)

Please note that 1
2 (JF(u1 = 0, u2 = − 1

2 ) − JF(u1 = − 1
2 , u2 = − 1

2 )) exactly equals
3

32 which is the same fraction as which appeared in the previous formula. This is no
coincidence; if the follower only played optimally during the second step, he faces a
half times the total transaction costs as expressed by JL in (6).

As it stands, with the γ chosen, the Hessian of JF with respect to u1 and u2 is
not positive definite at the point ui = − 1

2 , i = 1,2, and therefore the follower can do
better than choosing ui = − 1

2 , i = 1,2. To avoid this deviating behavior on part of
the follower, the leader will adjust the γ -function in such a way that u1 = u2 = − 1

2
is best for the follower as follows. On the interval − 1

2 ≤ u ≤ 0, γ remains as given
by (5). For u < − 1

2 , we choose a decreasing function of u (i.e. increasing with |u|),
which is continuous at u = − 1

2 , e.g.

γ (u) = −u − 1

2
+ (1 − ε)

3

32
.

If we require the function γ to be even, then it is defined for u > 0 also. With this
choice of γ , the best the follower can do is to choose ui = − 1

2 , i = 1,2.

Remark 3.1 A different, discontinuous and nonmonotonous choice for the leader is

γ (u) =

⎧⎪⎨
⎪⎩

0, u = 0,

1
4 − ε, |u| = 1

2 ,

large, elsewhere.
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The reader should contemplate why this choice is not the best one. (Answer: this
choice of γ leads to u1 = 0, u2 = − 1

2 , or the other way around, and JF = 15
32 − ε and

JL = 1
8 − 1

2ε.)

3.2.2 Second Attempt

This is a brute force attempt and starts from the basics of what the leader might
be able to achieve. Inspired by the note in the previous subsection, we (actually the
leader) now try to find α and β values, not to be confused with the same symbols in
Sect. 3.1, that maximize

JF(0, β) − JF(α,β).

Because of the symmetry with respect to u1 and u2, an equivalent problem is to
maximize

JF(α,0) − JF(α,β). (7)

Again using the symmetry (since we can assume u∗
1 = u∗

2), another equivalent prob-
lem is to maximize the sum of these two expressions,

JF(0, β) − JF(α,β) + JF(α,0) − JF(α,β). (8)

This leads to α = β = − 2
5 . Subsequently, the leader chooses γ (u) in such a way that

the follower will indeed choose α = β = − 2
5 . A slightly different reasoning leading

to the same result is that the leader wants to maximize δ = 1
2 (γ (α) + γ (β)), with

α = β , subject to

J c
F(α,β) ≤ J c

F(0, β) → JF(α,β) + 1

2
δ ≤ JF(0, β) → 1

2
δ ≤ JF(0, β) − JF(α,β),

J c
F(α,β) ≤ J c

F(α,0) → JF(α,β) + 1

2
δ ≤ JF(α,0) → 1

2
δ ≤ JF(α,0) − JF(α,β),

J c
F(α,β) ≤ J c

F(0,0) → JF(α,β) + δ ≤ JF(0,0) → δ ≤ JF(0,0) − JF(α,β),

for suitably chosen α = β �= 0. The maximal δ is obtained for α = β = − 2
5 and thus

δ = 1
5 . Please note that this is a better result for the leader than the one obtained with

the first attempt where δ = 3
16 . Conjecture 2.1 does not hold though.

One might be tempted to think that

γ ∗(u) =
{

0, if u = 0,

δ − ε, if u �= 0,
(9)

with δ = 1
5 is the optimal function for the leader. This is not true. The follower,

minimizing

J c
F = 1

4
(u2

1 + u2
2) + 1

2

(
1 + 1

2
(u1 + u2)

)2

+ 1

2
(γ ∗(u1 + γ ∗(u2)),

faces three possibilities:
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1. Suppose that u∗
1 �= 0 and u∗

2 �= 0. Then, the best solution is u∗
1 = u∗

2 = − 1
2 , result-

ing in J c∗
F = 9

20 − ε.
2. Suppose that u∗

1 = 0 and u∗
2 �= 0 (or the other way around). This leads to u∗

2 = − 2
3 ,

resulting in J c∗
F = 13

30 − 1
2ε.

3. Suppose that u∗
1 �= 0 and u∗

2 �= 0. This results in J c∗
F = 1

2 .

The second possibility is the one to be chosen by the follower and this choice is
different from u1 = u2 = − 2

5 which should have been the choice of the follower, at
least in the eyes of the leader. Therefore, γ (u) should not be chosen as in (9), but
rather as

1

2
γ (u) = JF

(
u1 = 0, u2 = −2

5

)
− JF

(
u,−2

5

)
+ 1

2
ε

[(
u + 2

5

)2

− 4

25

]

= −3

8
u2 − 2

5
u + 1

2
ε

(
u2 + 4

5
u

)
.

The first part at this right-hand side makes JF(u,− 2
5 )+ 1

2γ (u) a constant for varying
u; the second part, the term with ε yields a unique minimum for u = − 2

5 and hence
this u will be the follower’s choice.

Unfortunately, this is not the whole story. The Hessian of

J c
F(u1, u2) = 1

4
(u2

1 + u2
2) + 1

2

(
1 + 1

2
(u1 + u2)

)2

+
2∑

i=1

(
−3

8
u2

i − 2

5
ui + 1

2
ε

(
u2

i + 4

5
ui

))

equals
(

ε 1
4

1
4 ε

)

and is not positive definite for ε < 1
4 . For such ε, the situation can be remedied by

choosing a different γ (u) on the interval u < − 2
5 , in the same way as this was done

in Sect. 3.2.1.
If monotonicity of γ with respect to |u|, tacitly assumed above, is not required,

then another candidate strategy for the leader is

γ (u) =

⎧⎪⎨
⎪⎩

0, u = 0,

1
5 − ε, |u| = 2

5 ,

large, elsewhere,

which turns out to be optimal as well.
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3.3 Many Time Steps and Limit to Infinity

In this subsection, we investigate the solution if more than two time steps are used to
approximate the original continuous time problem and what happens if the number
of time steps approaches infinity. Will in the latter case the solution become identical
to the one of Sect. 3.1? We consider the model

xi = xi−1 + 1

N
ui, i = 1,2, . . . ,N, x0 = 1,

and the criteria

JF = 1

2N

N∑
i=1

u2
i + 1

2

(
1 + 1

N

N∑
i=1

ui

)2

, JL = 1

N

N∑
i=1

γ (ui).

The equivalent expression for (8) becomes

1

2

[
1

N

N∑
k=1

( N∑
i=1,i �=k

u2
i

)
+

N∑
k=1

(
1 + 1

N

N∑
i=1,i �=k

ui

)2]

− 1

2

N∑
i=1

u2
i − 1

2
N

(
1 + 1

N

N∑
i=1

ui

)2

.

The derivative of this expression with respect to u1 equals zero. Substitution of u2 =
· · · = uN = u1 subsequently leads to

u∗
i = − N

3N − 1
, i = 1,2, . . . ,N.

For N = 2, this coincides with the results of the previous subsection. For N → ∞,
we get u∗

i = − 1
3 , i = 1,2, . . . ,N . It is easily shown that the profit for the bank is

N
2(3N−1)

. Note that, for N → ∞, this profit equals 1
6 , which equals the result obtained

with the best quadratic γ -function.
Let us consider JF as a function of u1 only and with u2 = · · · = uN = − N

3N−1 ,

JF(u1,∗) = 1

2

[
1

N
u2

1 + N − 1

N

(
N

3N − 1

)2

+
(

1 + 1

N

(
u1 − N(N − 1)

3N − 1

))2]
,

where ∗ is a short-hand notation for u2≤i≤N = − N
3N−1 . For this function,

JF(u1 = 0,∗) − JF

(
u1 = − N

3N − 1
,∗

)

= 1

2

[
N(N − 1) + (2N)2

(3N − 1)2
− N2 + (2N − 1)2

(3N − 1)2

]
,

which is the N -equivalent of (7). If we calculate N(JF(u1 = 0,∗) − JF(u1 =
− N

3N−1 ,∗)), the result is N
2(3N−1)

, which equals the profit of the bank (as already
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obtained earlier). Apart from an ε term, it is necessary from the leader’s point of
view that

JF

(
u1 = − N

3N − 1
,∗

)
+ 1

N
γ ≤ JF(u1 = 0,∗),

or with a quadratic ε term,

JF + 1

N
γ = JF(u1 = 0,∗) + 1

N
ε

[(
u1 + N

3N − 1

)2

−
(

N

3N − 1

)2]
.

Hence,

1

N
γ (u1) = 1

2

[
N(N − 1) + (2N)2

(3N − 1)2
− 1

N
u2

1 − N − 1

N

(
N

3N − 1

)2

−
(

1 + 1

N

(
u1 − N(N − 1)

3N − 1

))2]
+ ε

N

(
u2

1 + 2N

3N − 1
u1

)

= 1

2

[
− 1

N
u2

1 − 1

N2
u2

1 − 4

3N − 1
u1

]
+ ε

N

(
u2

1 + 2N

3N − 1
u1

)
.

For N → ∞, this leads to exactly the optimal quadratic function obtained before.
This is at least true for ε = 0. The terms linear in ε differ, however. We now write

J c
F(u1, . . . , uN) = JF(u1, . . . , uN) + 1

2

[ N∑
i=1

(
− 1

N
u2

i − 1

N2
u2

i − 2

3N − 1
ui

)

+ 2ε

N

(
u2

i + 4N

3N − 1
ui

)]
.

The Hessian equals ⎛
⎜⎜⎜⎜⎜⎝

2ε
N

1
N2 · · · 1

N2

1
N2

. . .
. . .

...

...
. . .

. . . 1
N2

1
N2 · · · 1

N2
2ε
N

⎞
⎟⎟⎟⎟⎟⎠

.

For N > 1
2ε

, all eigenvalues lie in the right half plane. For N ≤ 1
2ε

, however, the
Hessian is not positive definite. In the latter case, one uses the trick of Sect. 3.2.1,
i.e. for − N

3N−1 ≤ u ≤ 0, γ (u) is as above, and for u < − N
3N−1 we choose it as a

decreasing function.

4 Second Dynamic Example

The example treated in Sect. 3 is relatively simple in the sense that the optimal u is a
constant, both for the continuous time and the discrete time problems. The example



J Optim Theory Appl (2009) 143: 601–618 613

of this section is more complicated in the sense that the optimal u varies with time.
The starting point is the dynamic model

ẋ = u, x(0) = 1,

with criterion

min
u

1

2

∫ 1

0
(x2 + u2)dt + 1

2
x2(1).

An essential difference with the problem of the previous section is that the optimal
control is not constant anymore: u∗(t) = −e−t which leads to the minimal value
J c∗

F = 1
2 . In the discretized problems (see the coming subsections) we cannot expect

all u∗
i to be equal anymore. Consequently γ (u) will have to be specified in the neigh-

bourhood of these different u∗
i -values.

The best quadratic γ can be calculated as before for the other example. As in
Sect. 3 we try γ (u) = 1

2βu2 + αu. The value function, to be minimized with respect
to α and β , is (assuming that x(0) = 1)

1

2
S(0) + k(0) + m(0),

where S(t), k(t) and m(t) satisfy, see [2],

Ṡ = S2

1 + β
− 1, S(1) = 1,

k̇ = S

1 + β
(k + α), k(1) = 0,

ṁ = 1

1 + β

(
kα + 1

2
k2

)
, m(1) = 0.

It does not seem a very appetizing exercise to work this out analytically.

4.1 Two Time Steps

The model is as before, (4). The criterion for the leader also remains the same, but
the criterion for the follower is now defined as

J c
F = 1

4
(u2

1 + u2
2 + x2

0 + x2
1) + 1

2
x2

2 + 1

2
(γ (u1) + γ (u2))

= 1

4

(
u2

1 + u2
2 + 1 +

(
1 + 1

2
u1

)2)
+ 1

2

(
1 + 1

2
(u1 + u2)

)2

+ 1

2
(γ (u1) + γ (u2))

= 7

16
u2

1 + 3

8
u2

2 + 1 + 3

4
u1 + 1

2
u2 + 1

4
u1u2 + 1

2
(γ (u1) + γ (u2)).
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The best the leader can hope for is the maximum value of 1
2 (δ1 + δ2), where δ1 =

γ (u1) and δ2 = γ (u2), for which not only the following inequalities must hold for a
suitable choice of α and β:

JF(α,β) + 1

2
(δ1 + δ2) ≤ JF(0, β) + 1

2
δ2, (10)

JF(α,β) + 1

2
(δ1 + δ2) ≤ JF(α,0) + 1

2
δ1, (11)

JF(α,β) + 1

2
(δ1 + δ2) ≤ JF(0,0),

but also

JF(α,β) + 1

2
(δ1 + δ2) ≤ JF(β,β) + δ2,

JF(α,β) + 1

2
(δ1 + δ2) ≤ JF(α,α) + δ1,

JF(α,β) + 1

2
(δ1 + δ2) ≤ JF(0, α) + 1

2
δ1,

JF(α,β) + 1

2
(δ1 + δ2) ≤ JF(β,0) + 1

2
δ2,

JF(α,β) + 1

2
(δ1 + δ2) ≤ JF(β,α) + 1

2
(δ1 + δ2).

Together these inequalities, which are only necessary conditions, lead to

δ1 ≤ −7

8
α2 − 3

2
α − 1

2
αβ,

δ2 ≤ −3

4
β2 − β − 1

2
αβ,

δ1 + δ2 ≤ −7

8
α2 − 3

2
α − 3

4
β2 − β − 1

2
αβ,

δ1 − δ2 ≤ −7

8
α2 + 11

8
β2 − 3

2
α + 3

2
β − 1

2
αβ,

δ2 − δ1 ≤ +5

4
α2 − 3

4
β2 + α − β − 1

2
αβ,

δ2 ≤ −1

8
α2 − 3

4
β2 − 1

2
α − β − 1

2
αβ,

δ1 ≤ −7

8
α2 + 1

8
β2 − 3

2
α − 5

2
β − 1

2
αβ,

0 ≤ − 1

16
α2 + 1

16
β2 − 1

4
α + 1

4
β.

Guided by Sect. 3, one might assume that the first two inequalities determine the
maximizing δi . A simple calculation shows that this is not true unfortunately. Nu-
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merically it was found that the solution, satisfying all inequalities, is δ1 = 9
14 , δ2 = 0,

α = − 6
7 and β = 0. Generally we should have β �= 0, but δ2 = 0 makes β = 0 a valid

answer.

4.2 Three Time Steps

The model is

x1 = 1 + 1

3
u1,

x2 = 1 + 1

3
(u1 + u2),

x3 = 1 + 1

3
(u1 + u2 + u3),

and the criterion is

J c
F = JF(u1, u2, u3) + 1

3

3∑
i=1

δi = 1

2

3∑
i=1

1

3
(x2

i−1 + u2
i ) + 1

2
x2

3 + 1

3

3∑
i=1

δi

= 1

3

(
7

9
u2

1 + 13

18
u2

2 + 2

3
u2

3 + 5

3
u1 + 4

3
u2 + u3 + 4

9
u1u2 + 1

3
u1u3 + 1

3
u2u3 + 3

+
3∑

i=1

δi

)
,

where x0 = 1 and δi = γ (ui). The leader now wants to maximize 1
3

∑3
i=1 δi subject

to

JF(α,β, γ ) + 1

3

3∑
i=1

δi ≤ JF(arg 1, arg 2, arg 3) + 1

3
(combination of some δ′s),

where arg i, i = 1,2,3, can be any of the values 0, α, β , or γ . For an argument α, δ1
is added to “the combination of some” δ’s; similarly for an argument β , δ2 is added,
and for an argument γ , δ3 is added. For the argument 0, nothing is added to the right-
hand side. Altogether we get 63 inequalities (actually 64, but one inequality is the
identity). An optimum (possibly a local one) found numerically is δ1 = 0.893, δ2 =
δ3 = 0, α = −1.071, β = γ = 0.2 In fractions, this is probably δ1 = 25

28 , α = − 15
14 .

4.3 Many Time Steps and Limit to Infinity

The model is

xi = xi−1 + 1

N
ui, i = 1,2, . . . ,N, x0 = 1,

2Etienne de Klerk (Delft) is acknowledged for these numerical calculations and those of the previous
subsection.
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and the criteria are

JF = 1

2N

N∑
i=1

(u2
i + x2

i−1) + 1

2
x2
N

= 1

2N

N∑
i=1

(
u2

i +
(

1 + 1

N

i−1∑
k=1

uk

)2)
+ 1

2

(
1 + 1

N

N∑
i=1

ui

)2

,

JL = 1

N

N∑
i=1

γ (ui).

First, we want to solve minu JF subject to the model equations. This leads to a linear
equation in u,

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

d + ζ1 ζ2 ζ3 . . . ζN

ζ2 d + ζ2 ζ3
...

ζ3 ζ3 d + ζ3
...

...
. . . ζN

ζN . . . . . . ζN d + ζN

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

u1
u2
u3
...

uN

⎞
⎟⎟⎟⎟⎟⎠

= −N

⎛
⎜⎜⎜⎜⎜⎝

ζ1
ζ2
ζ3
...

ζN

⎞
⎟⎟⎟⎟⎟⎠

, (12)

where

d = 1

N
, ζi = 1

N3
(N − i) + 1

N2
. (13)

A numerical exercise indicates that the solution u converges towards −e−t , as it
should, as N → ∞. An upper bound for what the leader can hope for is obtained
via the calculation of the maximum (with respect to ui, i = 1,2, . . . ,N ) of

JF(0, u2, u3, u4, . . . , uN) − JF(u1, u2, u3, . . . , uN)

+ JF(u1,0, u3, u4, . . . , uN) − JF(u1, u2, u3, . . . , uN)

+ JF(u1, u2,0, u4, . . . , uN) − JF(u1, u2, u3, . . . , uN)

...

+ JF(u1, u2, u3, . . . , uN−1,0) − JF(u1, u2, u3, . . . , uN), (14)

(compare the addition of (10) and (11)) provided that all the optimizing ui -values are
different. Written out, this expression becomes

−
(

1

2N
+ 1

2N2

) N∑
l=1

u2
l − 1

2N

N∑
l=1

N∑
i=l+1

(
1

N2
u2

l + 2

N2
ul

i−1∑
k=1,�=l

uk

)

− 1

N2

N∑
l=1

(
ul

N∑
i=1,�=l

ui

)
− 1

2N

N∑
l=1

N∑
i=l+1

2

N
ul − 1

N

N∑
l=1

ul.
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Differentiation with respect to j leads to

−
(

1

N
+ 1

N2

)
uj − 2

N2

N∑
l=1,l �=j

ul − 1

2N

{
2
N − j

N2
uj + 4

N

N∑
l=1

cl,j ul

}

−
(

1

N
+ N − j

N2

)
= 0,

where

cl,j =
{

0, if l = j,

N − max{j, l}, otherwise.

For j = 1,2, . . . ,N , these equations can be written as
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

d + ζ1 2ζ2 2ζ3 . . . 2ζN

2ζ2 d + ζ2 2ζ3
...

2ζ3 2ζ3 d + ζ3
...

...
. . . 2ζN

2ζN . . . . . . 2ζN d + ζN

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

u1
u2
u3
...

uN

⎞
⎟⎟⎟⎟⎟⎠

= −N

⎛
⎜⎜⎜⎜⎜⎝

ζ1
ζ2
ζ3
...

ζN

⎞
⎟⎟⎟⎟⎟⎠

, (15)

with d and ζi defined as in (13). If this linear system of equations is symbolically
written as ( 1

N
I + A)u = −Nζ , I being the identity matrix, then u = −(I − NA +

(NA)2 − · · ·)N2ζ . Some numerical exercises show that the solution u resembles the
one of (12), i.e. the values are negative, |u(i)| decreases with increasing i. The two
solutions are clearly different though.

Above, it was assumed that all ui -values were different (which also followed from
numerical evidence). In case of all ui -values being equal, an upper bound for the best
the leader can hope for is the maximum value of δ for which the following inequalities
hold for a suitable choice of the αi ’s (all being equal):

JF(α1, α2, . . . , αN) + i

N
δ < JF(i α′s are zero, all combinations),

i = 1,2, . . . ,N. (16)

In general, the leader will have to deal with a mixture of the extreme cases (14)
and (16) since he will not know ahead of time what yields the best results for him.
Suppose that all optimal ui ’s are different. Then choose γ(ui) = JF(u1, . . . , ui−1,0,

ui+1, . . . , uN) − JF(u1, u2, u3, . . . , uN) − ε. And, for all other values of u, choose
γ large (except for γ (0) = 0). In general, this function will not be monotone with
respect to |u| and its “usefulness” seems questionable for N → ∞.

5 Conclusions

In [1] it was concluded that inverse Stackelberg problems are very hard to analyze and
in that paper only static problems were considered. That conclusion remains valid for
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the dynamic problems of the current paper. One of the reasons to study dynamic
problems in this context is that they seem to show up in reality more often.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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