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Abstract. We present the first efficient Identity-Based Encryption (IBE)
scheme that is fully secure without random oracles. We first present our
IBE construction and reduce the security of our scheme to the decisional
Bilinear Diffie-Hellman (BDH) problem. Additionally, we show that our
techniques can be used to build a new signature scheme that is secure
under the computational Diffie-Hellman assumption without random or-
acles.

1 Introduction

Identity-Based Encryption allows for a party to encrypt a message using the
recipient’s identity as a public key. The ability to use identities as public keys
avoids the need to distribute public key certificates. This can be very useful in
applications such as email where the recipient is often off-line and unable to
present a public-key certificate while the sender encrypts a message.

The first efficient and secure method for Identity-Based Encryption was put
forth by Boneh and Franklin [4]. They proposed a solution using efficiently com-
putable bilinear maps that was shown to be secure in the random oracle model.
Since then, there have been schemes shown to be secure without random oracles,
but in a weaker model of security know as the Selective-ID model [9, 1]. Most
recently, Boneh and Boyen [2] described a scheme that was proved to be fully
secure without random oracles; the possibility of such a scheme was to that point
an open problem. However, their scheme is too inefficient to be of practical use.

We present the first efficient Identity-Based Encryption scheme that is fully
secure without random oracles. The proof of our scheme makes use of an algebraic
method first used by Boneh and Boyen [1] and the security of our scheme reduces
to the decisional Bilinear Diffie-Hellman (BDH) assumption.

We additionally show that our IBE scheme implies a secure signature scheme
under the computational Diffie-Hellman assumption without random oracles.
Previous practical signature schemes that were secure in the standard model
relied on the Strong-RSA assumption [12, 11] or the Strong-BDH assumption [3].

1.1 Related Work

Shamir [16] first presented the idea of Identity-Based Encryption as a challenge
to the research community. However, the first secure and efficient scheme of
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Boneh and Franklin[4] did not appear until much later. The authors took a
novel approach in using efficiently computable bilinear maps in order to achieve
their result.

Canetti et. al. [9] describe a weaker model of security for Identity-Based
Encryption that they term the Selective-ID model. In the Selective-ID model
the adversary must first declare which identity it wishes to be challenged on
before the global parameters are generated. The authors provide a scheme that
is provably secure in the Selective-ID model without random oracles. Boneh and
Boyen [1] improve upon this result by describing an efficient scheme that is secure
in the Selective-ID model.

Finally, Boneh and Boyen [2] describe a scheme that is fully secure without ran-
dom oracles. However, their construction is too inefficient to be of practical use.

1.2 Organization

We organize the rest of the paper as follows. In Section 2 we give our security
definition. In Section 3 we describe our complexity assumptions. In Section 4 we
present the construction of our IBE scheme and follow with a proof of security
in Section 5. In Section 6 we discuss how our scheme can be extended to a hier-
archical identity-based encryption scheme and how that can be used to achieve
CCA-security. We discuss the transformation to a signature scheme in Section 7.
Finally, we conclude in Section 8.

2 Security Definitions

In this section we present the definition of semantic security against passive
adversaries for Identity-Based Encryption. This definition was first described by
Boneh and Franklin [4]. Consider the following game played by an adversary.
The game has four distinct phases:

Setup. The challenger generates the master public parameters and gives them
to the adversary.

Phase 1. The adversary is allowed to make a query for a private key, v, where v
is an identity specified by the adversary. The adversary can repeat this multiple
times for different identities.

Challenge. The adversary submits a public key, v∗, and two messages M0 and
M1. The adversary’s choice of v∗ is restricted to the identities that he did not
request a private key for in Phase 1. The challenger flips a fair binary coin,γ,
and returns an encryption of Mγ under the public key v∗.

Phase 2. Phase 1 is repeated with the restriction that the adversary cannot
request the private key for v∗.

Guess. The adversary submits a guess, γ′, of γ.
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Definition 1 (IBE Semantic Security). An Identity-Based Encryption
scheme is (t, q, ε)-semantically secure if all t-time adversaries making at most
q private key queries have at most an ε in breaking our scheme.

3 Complexity Assumptions

We briefly review the facts about groups with efficiently computable bilinear
maps. We refer the reader to previous literature [4] for more details.

Let G, G1 be s groups of prime order p and g be a generator of G1. We say
G1 has an admissible bilinear map, e : G × G → G1, into G1 if the following two
conditions hold. The map is bilinear; for all a, b we have e(ga, gb) = e(g, g)ab.
The map is non-degenerate; we must have that e(g, g) �= 1.

3.1 Decisional Bilinear Diffie-Hellman (BDH) Assumption

The challenger chooses a, b, c, z ∈ Zp at random and then flips a fair binary coin
β. If β = 1 it outputs the tuple (g,A = ga, B = gb, C = gc, Z = e(g, g)abc).
Otherwise, if β = 0, the challenger outputs the tuple (g,A = ga, B = gb, C =
gc, Z = e(g, g)z). The adversary must then output a guess β′ of β.

An adversary, B, has at least an ε advantage in solving the decisional BDH
problem if

∣
∣
∣
∣
Pr

[

B
(

g, ga, gb, gc, e(g, g)abc
)

= 1
]

− Pr
[

B
(

g, g, ga, gb, gc, e(g, g)z
)

= 1
]
∣
∣
∣
∣
≥ 2ε

where the probability is over the randomly chosen a, b, c, z and the random bits
consumed by B. We refer to the left hand side as PBDH and the right hand side
as RBDH .

Definition 2. The decisional (t, ε)-BDH assumption holds if no t-time adver-
sary has at least ε advantage in solving the above game.

3.2 Computational Diffie-Hellman (DH) Assumption

The challenger chooses a, b ∈ Zp at random and outputs (g,A = ga, B = gb).
The adversary then attempts to output gab ∈ G. An adversary, B, has at least
an ε advantage if

Pr
[

B
(

g, ga, gb
)

= gab
]

≥ ε

where the probability is over the randomly chosen a, b and the random bits
consumed by B.

Definition 3. The computational (t, ε)-DH assumption holds if no t-time ad-
versary has at least ε advantage in solving the above game.
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4 Construction

Our construction can be viewed as a modification of the Boneh-Boyen [1] scheme.
We first present our construction then describe its relation to the Boneh-Boyen
scheme.

Let G be a group of prime order, p, for which there exists an efficiently
computable bilinear map into G1. Additionally, let e : G × G → G1 denote
the bilinear map and g be the corresponding generator. The size of the group is
determined by the security parameter. Identities will be represented as bitstrings
of length n, a separate parameter unrelated to p. We can also let identities be
bitstrings of arbitrary length and n be the output length of a collision-resistant
hash function, H : {0, 1}∗ → {0, 1}n. Our construction follows.

Setup. The system parameters are generated as follows. A secret α ∈ Zp is
chosen at random. We choose a random generator, g ∈ G, and set the value
g1 = gα and choose g2 randomly in G. Additionally, the authority chooses a
random value u′ ∈ G and a random n-length vector U = (ui), whose elements
are chosen at random from G. The published public parameters are g,g1, g2,u′,
and U . The master secret is gα

2 .

Key Generation. Let v be an n bit string representing an identity, vi denote the
ith bit of v, and V ⊆ {1, . . . , n} be the set of all i for which vi = 1. (That is V is
the set of indicies for which the bitstring v is set to 1.) A private key for identity
v is generated as follows. First, a random r ∈ Zp is chosen. Then the private key
is constructed as:

dv =

(

gα
2

(

u′ ∏

i∈V
ui

)r

, gr

)

.

Encryption. A message M ∈ G1 is encrypted for an identity v as follows. A
value t ∈ Zp is chosen at random. The ciphertext is then constructed as

C =

⎛

⎝e(g1, g2)tM, gt,

(

u′ ∏

i∈V
ui

)t
⎞

⎠ .

Decryption. Let C = (C1, C2, C3) be a valid encryption of M under the identity
v. Then C can be decrypted by dv = (d1, d2) as:

C1
e(d2, C3)
e(d1, C2)

=
(

e(g1, g2)tM
) e(gr,

(

u′ ∏
i∈V ui

)t)

e(gα
2

(

u′ ∏
i∈V ui

)r
, gt)

=
(

e(g1, g2)tM
) e(g,

(

u′ ∏
i∈V ui

)rt)

e(g1, g2)te(
(

u′ ∏
i∈V ui

)rt
, g)

= M.
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4.1 Efficiency

If the value of e(g1, g2) is cached then encryption requires on average n
2 (and at

most n) group operations in G, two exponentiations in G, one exponentiation
in G1, and one group operation in G1. Decryption requires two bilinear map
computations, one group operation in G1 and one inversion in G1.

4.2 Similarity to Boneh-Boyen

Our construction is a modification of Boneh and Boyen’s [1] in that that for an
identity v we evaluate u′ ∏

i∈V ui whereas in their scheme they evaluate u′gv
1 ,

where v is interpreted as an integer. (We technically are referring to the first
scheme presented in Boneh-Boyen [1] when only a level one hierarchy is used. Al-
though, our scheme can be extended to be a hierarchical scheme in an analogous
manner.) In the next section we show that, remarkably, this small modification
is all that is needed to make the scheme fully secure.

5 Security

We now prove the security of our scheme.

Theorem 1. Our IBE- scheme is (t, q, ε) secure assuming the decisional (t +
O(ε−2 ln(ε−1)λ−1 ln(λ−1)), ε

32(n+1)q ) BDH assumption holds, where λ = 1
8(n+1)q .

Proof. Suppose there exists a (t, q, ε)-adversary, A against our scheme. We con-
struct a simulator, B, to play the decisional BDH game. The simulator will
take BDH challenge (g,A = ga, B = gb, C = gc, Z) and outputs a guess, β′, as
to whether the challenge is a BDH tuple. The simulator runs A executing the
following steps.

5.1 Simulator Description

Setup. The simulator first sets an integer, m = 4q, and chooses an integer, k,
uniformly at random between 0 and n. It then chooses a random n-length vector,
−→x = (xi), where the elements of −→x are chosen uniformly at random from the
integers between 0 and m−1 and a value, x′, chosen uniformly at random between
0 and m− 1. Let X∗ denote the pair (x′,−→x ) Additionally, the simulator chooses
a random y′ ∈ Zp and an n-length vector, −→y = (yi), where the elements of −→y
are chosen at random in Zp. These values are all kept internal to the simulator.

Again, for an identity v we will let V ⊆ {1, . . . , n} be the set of all i for
which vi = 1 For ease of analysis we define three functions. We define F (v) =
(p − mk) + x′ +

∑

i∈V xi and define J(v) = y′ +
∑

i∈V yi. Finally, we define a
binary function K(v) as

K(v) =

{

0, if x′ +
∑

i∈V xi ≡ 0 (mod m)
1, otherwise.
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The simulator assigns g1 = A and g2 = B. It then assigns the public pa-
rameters u′ = gp−km+x′

2 gy′
and U as ui = gxi

2 gyi . From the perspective of the
adversary the distribution of the public parameters is identical to the real con-
struction.

Phase 1. The adversary, A, will issue private key queries. Suppose the adversary
issues a query for an identity v. If K(v) = 0 the simulator aborts and randomly
chooses its guess β′ of the challenger’s value β.

Otherwise, the simulator chooses a random r ∈ Zp. Using the technique
described by Boneh and Boyen [1] it constructs the private key, d, as

d = (d0, d1) =

(

g
−J(v)
F (v)

1 (u′ ∏

i∈V
ui)r, g

−1
F (v)
1 gr

)

.

Let r̃ = r − a
F (v) . Then we have

d0 = g
−J(v)
F (v)

1 (u′ ∏
i∈v ui)r

= g
−J(v)
F (v)

1 (gF (v)
2 gJ(v))r

= ga
2 (gF (v)

2 gJ(v))−
a

F (v) (gF (v)
2 gJ(v))r

= ga
2 (u′ ∏

i∈V ui)
r− a

F (v)

= ga
2 (u′ ∏

i∈V ui)r̃.

Additionally, we have

d1 = g
−1

F (v)
1 gr = gr− a

F (v) = gr̃.

This simulator will be able to perform this computation iff F (v) �= 0 mod p.
For ease of analysis the simulator will only continue (not abort) in the sufficient
condition where K(v) �= 0. (If we have K(v) �= 0 this implies F (v) �= 0 mod p
since we can assume p > nm for any reasonable values of p, n, and m).

Challenge. The adversary next will submit two messages M0,M1 ∈ G1 and an
identity, v∗. If x′+

∑

i∈V∗ xi �= km the simulator will abort and submit a random
guess for β′. Otherwise, we have F (v∗) ≡ 0 (mod p) and the simulator will flip
a fair coin, γ, and construct the ciphertext

T = (ZMγ , C, CJ(v∗)).

Suppose that the simulator was given a BDH tuple, that is Z = e(g, g)abc.
Then we have

T =
(

e(g, g)abcMγ , gc, gcJ(v∗)
)

=

(

e(g1, g2)cMγ , gc, (u′ ∏

i∈V∗

ui)c

)

.

We see that T is a valid encryption of Mγ .
Otherwise, we have that Z is a random element of G. In that case the cipher-

text will give no information about the simulator’s choice of γ.
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Phase 2. The simulator repeats the same method it used in Phase 1.

Guess. Finally, the adversary A outputs a guess γ′ of γ.

Artificial Abort. At this point the simulator is still unable to use the output
from the adversary. An adversary’s probability of success could be correlated
with the probability that the simulator needs to abort. This stems from the
fact that two different sets of q private key queries may cause the simulator
to abort with different probabilities. In the worst case we might worry that
Pr[γ = γ′|abort] − 1

2 = 0 (or some negligible value) in the simulation even if
Pr[γ = γ′] − 1

2 = ε for some non-negligible ε.
The simulator corrects for this by forcing all possible sets of queries of the

adversary to cause the simulator to abort with (almost) the same probability
(1-λ), where (1-λ) is a lower bound on any set of private key queries causing an
abort before this stage.

Let −→v = v1, . . . vq denote the private key queries made in Phase 1 and Phase
2 and let v∗ denote the challenge identity and we let V∗ ⊆ {1, . . . , n} be the
set of all i for which v∗

i = 1. (All of these values are defined at this point in
the simulation.) First, we define the function τ(X ′,−→v , v∗), where X ′ is a set of
simulation values x′, x1, . . . , xn, as

τ(X ′,−→v , v∗) =

{

0, if (
∧q

i=1 K(vi) = 1) ∧ x′ +
∑

i∈V∗ xi = km

1, otherwise.

The function τ(X ′,−→v , v∗) will evaluate to 0 if the private key and challenge
queries −→v , v∗ will not cause an abort for a given choice of simulation values, X ′.
We can now consider the probability over the simulation values for a given set
of queries, −→v , v∗, as η = PrX′ [τ(X ′,−→v , v∗) = 0].

The simulator samples O(ε−2 ln(ε−1)λ−1 ln(λ−1)) times the probability η by
choosing a random X ′ and evaluating τ(X ′,−→v , v∗) to compute an estimate η′.
We emphasize that the sampling does not involve running the adversary again.
Let λ = 1

8nq , be the lower bound on the probability of not aborting for any set of
queries. (We show how to calculate λ below.) Then if η′ ≥ λ the simulator will
abort with probability η′−λ

η′ (not abort with probability λ
η′ ) and take a random

guess β′. Otherwise, the simulator will not abort.
If the simulator has not aborted at this point it will take check to see if the

adversary’s guess, γ′ = γ. If γ′ = γ then the simulator outputs a guess β′ = 1,
otherwise it outputs β = 0.

This concludes the description of the simulator.

5.2 Analysis

Our simulator is difficult to analyze directly since it might abort before all of the
queries are made. For ease of exposition we now describe a second simulation,
which we will use to reason about the output distribution of the first simulation.
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Setup. The simulator chooses the secret key gα
2 as in the construction and then

chooses X∗,−→y as in the first simulation and derives u′, U in the same way. It
then runs the adversary.

Phase 1. The simulator responds to private key queries by using the master key
as in the construction, in this way all queries can be answered.

Challenge. The simulator receives the challenge messages M0,M1. The second
simulator will flip two coins β and γ. If β = 0 then it encrypts a random message
and if β = 1 it encrypts Mγ .

Phase 2. Same as Phase 1.

Guess. The simulator receives a guess γ′ from the adversary. At this point the
simulator has seen as the private key queries and the challenge query (−→v , v∗). It
evaluates the function τ(X∗,−→v , v∗) and aborts if it evaluates to 1, outputting a
random guess of β′.

Artificial Abort. The last step is done in exactly the same way as the first sim-
ulation. This ends the description.

We first equate the probabilities of the both simulators with the following
claim.

Claim. The probabilities Pr[β′ = β] are the same in both the first and second
simulations we described.

Proof. The second simulation runs the adversary completely and receives all of
its queries. In the guess phase it checks if τ(X∗,−→v , v∗) = 1 and aborts if so. The
check decides if there was a point where the first simulator would have needed
to abort during the simulator and take a random guess. If so the second simula-
tor aborts and takes a random guess itself. Additionally, all public parameters,
private key queries, and challenge ciphertexts have the same distribution up to
the point of a possible abortion. The artificial abort stages are also identical.
Therefore, we can reason that the output distributions will be the same. �	

For purpose of exposition, we will now derive the success of the simulator in
terms of the second simulator. However, due to Claim 5.2 the discussion applies
to both simulators equally.

Claim. The probability of the simulation not aborting by the guess phase is at
least λ = 1

8(n+1)q .

Proof. We calculate a lower bound, λ as the lower bound of PrX′ [τ(X ′,−→v , v∗) =
0] for all −→v , v∗. Without loss of generality we can assume the adversary always
makes the maximum number of queries, q. For any set of q queries v1, . . . , vq and
challenge identity, v∗, we have Pr[abort] = Pr[(

∧q
i=1 K(vi) = 1) ∧

∑

i∈V∗ xi =
km]. We can then lower bound the probability of not aborting as follows.
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Pr[(
q

∧

i=1

K(vi) = 1) ∧
∑

i∈V∗

xi = km] (1a)

= (1 − Pr[
q

∨

i=1

K(vi) = 0]) Pr[
∑

i∈V∗

xi = km|
q

∧

i=1

K(vi) = 1] (1b)

≥ (1 −
q

∑

i=1

Pr[K(vi) = 0]) Pr[
∑

i∈V∗

xi = km|
q

∧

i=1

K(vi) = 1] (1c)

= (1 − q

m
) Pr[

∑

i∈V∗

xi = km|
q

∧

i=1

K(vi) = 1] (1d)

=
1

n + 1
(1 − q

m
) Pr[K(v∗) = 0|

q
∧

i=1

K(vi) = 1] (1e)

=
1

n + 1
(1 − q

m
)

Pr[K(v∗) = 0]
Pr[

∧q
i=1 K(vi) = 1]

Pr[
q

∧

i=1

K(vi) = 1|K(v∗) = 0] (1f)

≥ 1
(n + 1)m

(1 − q

m
) Pr[

q
∧

i=1

K(vi) = 1|K(v∗) = 0] (1g)

=
1

(n + 1)m
(1 − q

m
)(1 − Pr[

q
∨

i=1

K(vi) = 0|K(v∗) = 0]) (1h)

≥ 1
(n + 1)m

(1 − q

m
)(1 −

q
∑

i=1

Pr[K(vi) = 0|K(v∗) = 0]) (1i)

=
1

(n + 1)m
(1 − q

m
)2 (1j)

≥ 1
(n + 1)m

(1 − 2
q

m
) (1k)

Equations 1d and 1g come from the fact that Pr[K(v) = 0] = 1
m for any query,

v. The 1
n+1 factor of Equation 1e comes from the simulator taking a guess of k.

Equation 1j is derived from the pairwise independence of the probabilities that
K(v) = 0,K(v′) = 0 for any pair of different queries v, v′. The probabilities are
pairwise independent since the sums x′ +

∑

i∈V xi (mod m) and x′ +
∑

i∈V ′ xi

(mod m) will differ in at least one random xj .
We can optimize the last equation by setting m = 4q (as we did in the

simulation), where q is the maximum number of queries. (If the adversary makes
less queries the probability of not aborting can only be greater). Solving for this
gives us a lower bound λ = 1

8(n+1)q . �	

We now can calculate the distributions PBDH and RBDH . The distribution
RBDH is simply 1

2 . When the simulator is given a random element as the last
term in the tuple the simulator will either abort (and guess β′ = 1 with prob-
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ability 1
2 ) or it will guess β′ = 1 when the adversary is correct in guessing γ.

However, the γ will be completely hidden from the adversary in this case so the
adversary will be correct with probability 1

2 .
The calculation of PBDH is somewhat more complicated. In the second sim-

ulation the adversary’s view of the simulation will be identical to the real game.
We want to know the probability that the guess β′ = 1.

We then break the event into the abort and non-abort cases and see that Pr[β′ =
1] is the sum of Pr[β′ = 1|abort] Pr[abort] and Pr[β′ = 1|abort] Pr[abort]. We
observe that Pr[β′ = 1|abort] = 1

2 and that when the simulator does not abort
β′ = 1 when the adversary correctly guesses γ′ = γ. Then, we have PBDH =
1
2 + 1

2 (Pr[abort|γ′ = γ] Pr[γ′ = γ]−Pr[abort|γ′ �= γ] Pr[γ′ �= γ]). By our assump-
tion, this is equal to 1

2 + 1
2 (Pr[abort|γ′ = γ](1

2 +ε)−Pr[abort|γ′ �= γ](1
2 −ε)). All

that is left to do is to both lower and upper bound the probability of not aborting
in our simulation. We state the following claim.

Claim. If the simulator takes takes O(ε−2 ln(ε−1)λ−1 ln(λ−1)) samples when
computing the estimate η′, then (1

2 + ε) Pr[abort|γ′ = γ]− ( 1
2 − ε) Pr[abort|γ′ =

γ] ≥ 3
2λε.

We prove the claim in Appendix A.
Plugging in the claim we have PBDH ≥ 1

2 + 3
4λε. Then, 1

2 (PBDH −RBDH) ≥
3
4λε ≥ ε

32(n+1)q . �	

We note that if there was a way for the simulator to efficiently compute the
abort probability, η, for a given set of queries (as opposed to sampling) then
we could improve the time component of our reduction could be significantly
improved in addition to simplifying our analysis.

6 Hierarchical IBE and CCA Security

In Section 4 we discussed the similarity of our scheme to the 1-level hierarchical
IBE (HIBE) scheme of Boneh and Boyen [1]. We can further take advantage of
the similarity of our schemes to construct an �-level HIBE scheme in an obvious
manner. (For each level we must generate new parameters u′ and U .)

The problem with using our techniques to construct an HIBE scheme is that
the reduction becomes inefficient for all but small values of �. In particular to
construct a scheme in which any efficient adversary has at most ε advantage it
must be true that all efficient adversaries have at most an O((nq)�ε) advantage
in the decisional BDH game. The intuition behind this is that in the simulation
the setup must be “match” the challenge identity at all � different levels in order
to not abort. (However, our reduction still provides a stronger reduction than
that of Boneh and Boyen [1] for a fully secure HIBE scheme.) For this reason we
still consider the construction of a fully secure HIBE scheme without random
oracles to be an open problem.

Recent results of Canetti et al. [10], further improved upon by Boneh and
Katz [6], show how to build a CCA-secure Identity-Based encryption scheme
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from a 2-level HIBE scheme. We can actually build a hybrid 2-level HIBE [15,
13] scheme that uses our scheme at the first level and the scheme of Boneh
and Boyen [1] at the second level. Since the transformations [10, 6] only require
Selective-ID security at the second level our hybrid construction is CCA secure
without any significant further degradation in the security reduction relative to
our non-hierarchical construction.

7 A Signature Scheme

Boneh and Franklin [5] describe a generic method for converting any Identity-
Based Encryption scheme into a signature scheme. The public key of the signa-
ture scheme corresponds to the global parameters of the IBE scheme. To sign a
message, M , in the signature scheme the signer gives an IBE private key of M
as the signature of M . To verify a signature of M the verifier encrypts a random
value, R, to the identity M , then attempts to decrypt the ciphertext with the
private key. The signature is accepted if the decryption successfully decrypts to
R. We note that this is a randomized verification algorithm.

In the generic transformation the security of the resulting signature scheme
reduces to the security of the Identity-Based Encryption scheme. Thus, we imme-
diately have a signature scheme which is secure as the decisional BDH problem.
However, we can use the bilinear map in order to deterministically verify a sig-
nature and get a signature scheme that reduces to the weaker computational
Diffie-Hellman assumption. We note that similar techniques have been used pre-
viously. For example, the signatures in the scheme of Boneh, Lynn, Shacham [7]
correspond to private keys of the Boneh-Franklin IBE system. We describe our
signature scheme for completeness.

7.1 Construction

Let G be a group of prime order, p, for which there exists an efficiently com-
putable bilinear map into G1. Additionally, let e : G × G → G1 denote the
bilinear map and g be the corresponding generator. The size of the group is
determined by the security parameter. We will sign messages of n bits; again,
we can use a collision-resistant hash function, H : {0, 1}∗ → {0, 1}n, to sign
messages of arbitrary length.

Setup. The public key is generated as follows. A secret α ∈ Zp is chosen at
random. We choose a random generator, g, and set the value g1 = gα and
choose g2 randomly in G. Additionally, the algorithm chooses a random value
u′ ∈ G and a random n-length vector U = (ui), whose elements are chosen at
random from G. The published public key is g,g1, g2,u′, and U . The secret key
is gα

2 .

Signing. Let M be an n-bit message to be signed and Mi denote the ith bit of
M , and M ⊆ {1, . . . , n} be the set of all i for which Mi = 1. A signature of M
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is generated as follows. First, a random r ∈ Zp is chosen. Then the signature is
constructed as:

σM =

(

gα
2

(

u′ ∏

i∈M
ui

)r

, gr

)

.

Verification. Suppose we wish to check if σ = (σ1, σ2) is a signature for a message
M . The signature is accepted if e(σ1, g)/e(σ2, u

′ ∏
i∈M ui) = e(g1, g2).

7.2 Security

Theorem 2. The signature scheme is (t, q, ε) existentially unforgeable assuming
the decisional-(t, ε

16(n+1)q ) BDH assumption holds, where λ = 1
8(n+1)q .

We omit the proof of this theorem, but note that it is analogous to the proof
our IBE scheme. The fact that the adversary returns a forgery results in two im-
portant differences though. First, the forgery is used to solve the computational
Diffie-Hellman problem. Secondly, since a forgery is returned there is no need
for an artificial abort stage as in the previous reduction.

Other efficient schemes that are secure against existential forgery under an
adaptive chosen-message attack [14] in the standard model depend upon the
Strong-RSA assumption [12, 11] or the Strong Diffie-Hellman assumption [3].
Additionally Boneh, Mironov, and Shoup [8] describe a tree-based signature
scheme based on the computational Diffie-Hellman assumption.

8 Conclusions

We presented the first efficient Identity-Based Encryption scheme that is secure
in the full model without random oracles. We proved our the security of our
scheme by reducing it to the decisional Bilinear Diffie-Hellman problem. Addi-
tionally, we showed how our Identity-Based encryption scheme can be converted
to an efficient signature scheme that depends only upon the computational Diffie-
Hellman assumption in the standard model.

This work motivates two interesting open problems. The first is to find an
efficient Identity-Based Encryption system (without random oracles) that has
short public parameters. The second, is to find an IBE system with a tight re-
duction in security. Such a solution would also likely permit an efficient reduction
for an analogous HIBE scheme.
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A Proof of Claim 3

In order to show that (1
2 + ε) Pr[abort|γ′ = γ] − ( 1

2 − ε) Pr[abort|γ′ = γ] ≥ 3
2λε

we first upper bound the term (1
2 + ε) Pr[abort|γ′ = γ].
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Let η be the probability of not aborting associated for a set of private key
queries and challenge query on a particular run where γ′ = γ. The simulator will
make O(ε−2 ln(ε−1)λ−1 ln(λ−1)) samples to calculate η′ and we can use Chernoff
bounds to show that Pr[η′ > η(1 + ε

8 )] < λ ε
8 . We then have

Pr[abort|γ′ = γ] ≥ (1 − λ
ε

8
)η

λ

η(l + ε
8 )

≥ λ(1 − ε

8
)2 ≥ λ(1 − 1

4
ε)

where the probability calculation is taken of the sampling of η. We now have

(
1
2

+ ε) Pr[abort|γ′ = γ] ≥ λ(
1
2

+
3
4
ε).

(Note that the artificial abort stage aborts with probability λ
max(λ,η′) . Since η(1+

ε
8 ) > λ, we were able to ignore the maximum function.)

We now lower bound the term (1
2 + ε) Pr[abort|γ′ �= γ]. The simulator will

make O(ε−2 ln(ε−1)λ−1 ln(λ−1)) samples to calculate the estimate η′ and we can
use Chernoff bounds to show that Pr[η′ < η(1 − ε

8 )] < λ ε
8 . We then have

Pr[abort|γ′ �= γ] ≤ λ
ε

8
+ λ

η

η(1 − ε
8 )

≤ λ
ε

8
+ λ(1 +

2ε

8
) = λ(1 + ε

3
8
)

where the probability calculation is taken of the sampling of η. We now have

(
1
2

− ε) Pr[abort|γ′ = γ] ≤ λ(
1
2

− 3
4
ε).

We now see that ( 1
2 + ε) Pr[abort|γ′ = γ] − ( 1

2 − ε) Pr[abort|γ′ = γ] ≥ 3
2λε.
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