
LQ-Nets: Learned Quantization
for Highly Accurate and Compact Deep

Neural Networks

Dongqing Zhang1, Jiaolong Yang1(B), Dongqiangzi Ye1, and Gang Hua2

1 Microsoft Research, Beijing, China
zdqzeros@gmail.com, eowinye@gmail.com, jiaoyan@microsoft.com

2 Microsoft Cloud and AI, Redmond, USA
ganghua@microsoft.com

Abstract. Although weight and activation quantization is an effective
approach for Deep Neural Network (DNN) compression and has a lot of
potentials to increase inference speed leveraging bit-operations, there is
still a noticeable gap in terms of prediction accuracy between the quan-
tized model and the full-precision model. To address this gap, we propose
to jointly train a quantized, bit-operation-compatible DNN and its asso-
ciated quantizers, as opposed to using fixed, handcrafted quantization
schemes such as uniform or logarithmic quantization. Our method for
learning the quantizers applies to both network weights and activations
with arbitrary-bit precision, and our quantizers are easy to train. The
comprehensive experiments on CIFAR-10 and ImageNet datasets show
that our method works consistently well for various network structures
such as AlexNet, VGG-Net, GoogLeNet, ResNet, and DenseNet, surpass-
ing previous quantization methods in terms of accuracy by an appreciable
margin. Code available at https://github.com/Microsoft/LQ-Nets.

Keywords: Deep neural networks · Quantization · Compression

1 Introduction

Deep neural networks, especially the deep convolutional neural networks, have
achieved tremendous success in computer vision and the broader artificial intel-
ligence field. However, the large model size and high computation cost remain
great hurdles for many applications, especially on some constrained devices with
limited memory and computational resources.

To address this issue, there has been a surge of interests recently in
reducing the model complexity of DNNs. Representative techniques include
quantization [3,6,9,18,21,22,29,34,39,52–55], pruning [12,13,17,36], low-rank
decomposition [7,8,24,27,38,49,51], hashing [4], and deliberate architecture

D. Zhang, J. Yang and D. Ye—Contributed equally. This work was done when DY
was an intern at MSR.

c© Springer Nature Switzerland AG 2018
V. Ferrari et al. (Eds.): ECCV 2018, LNCS 11212, pp. 373–390, 2018.
https://doi.org/10.1007/978-3-030-01237-3_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01237-3_23&domain=pdf
https://github.com/Microsoft/LQ-Nets

374 D. Zhang et al.

design [19,23,50]. Among these approaches, quantization based methods rep-
resent the network weights with very low precision, thus yielding highly com-
pact DNN models compared to their floating-point counterparts. Moreover, it
has been shown that if both the network weights and activations are properly
quantized, the convolution operations can be efficiently computed via bitwise
operations [21,39], enabling fast inference without GPU.

Notwithstanding the promising results achieved by the existing quantization-
based methods [3,6,9,18,21,22,29,34,39,52–55], there is still a sizeable accuracy
gap between the quantized DNNs and their full-precision counterparts, especially
when quantized with extremely low bit-widths such as 1 bit or 2 bits. For exam-
ple, using the state-of-the-art method of [3], a 50-layer ResNet model [15] with
1-bit weights and 2-bit activations can achieve 64.6% top-1 image classification
accuracy on ImageNet validation set [40]. However, the full-precision reference
is 75.3% [15], i.e., the absolute accuracy drop induced by quantization is as large
as 10.7%.

This work is devoted to pushing the limit of network quantization algorithms
to achieve better accuracy with low precision weights and activations. We found
that existing methods often use simple, hand-crafted quantizers (e.g., uniform or
logarithmic quantization) [11,22,31,37,52,53] or otherwise pre-computed quan-
tizers fixed during network training [3]. However, one can never be sure that the
simple quantizers are the best choices for network quantization. Moreover, the
distributions of weights and activations in different networks and even different
network layers may differ a lot. We believe a better quantizer should be made
adaptive to the weights and activations to gain more flexibility.

To this end, we propose to jointly train a quantized DNN and its associ-
ated quantizers. The proposed method not only makes the quantizers learnable,
but also renders them compatible with bitwise operations so as to keep the fast
inference merit of properly-quantized neural networks. Our quantizer can be
optimized via backpropagation in a standard network training pipeline, and we
further propose an algorithm based on quantization error minimization which
yields better performance. The proposed quantization can be applied to both net-
work weights and activations, and arbitrary bit-width can be achieved. Moreover,
layer-wise quantizers with unshared parameters can be applied to gain further
flexibility. We call the networks quantized by our method the “LQ-Nets”.

We evaluate our LQ-Nets with image classification tasks on the CIFAR-
10 [25] and ImageNet [40] datasets. The experimental results show that they
perform remarkably well across various network structures such as AlexNet [26],
VGG-Net [41], GoogLeNet [42], ResNet [15] and DenseNet [20], surpassing pre-
vious quantization methods by a wide margin.

2 Related Work

A large number of works have been devoted to reducing DNN model size and
improving inference efficiency for practical applications. We briefly review the
existing approaches as follows.

LQ-Nets: Learned Quantization for Highly Accurate and Compact DNNs 375

Compact Network Design: To achieve fast inference, one strategy is to
carefully design a compact network architecture [19,23,32,42,50]. For exam-
ple, Network in Network [32] enhanced the local modeling via the micro
networks and replaced the costly fully-connected layer by global average pooling.
GoogLeNet [42] and SqueezeNet [23] utilized 1×1 convolution layers to compute
reductions before the expensive 3×3 or 5×5 convolutions. Similarly, ResNet [15]
applied “bottleneck” structures with 1×1 convolutions when training deeper nets
with enormous parameters. The recently proposed computation-efficient network
structures MobileNet [19] and ShuffleNet [50] employed depth-wise convolution
or group convolution advocated in [5,48] to reduce the computation cost.

Network Parameter Reduction: Considerable efforts have been devoted to
reducing the number of parameters in an existing network [4,7,8,10,12,13,17,24,
27,28,35,36,38,45,46,49,51]. For example, by exploiting the redundancy of the
filters weights, some methods substitute the pre-trained weights using their low-
rank approximations [7,8,24,27,38,49,51]. Connection pruning was investigated
in [12,13] to reduce the parameters of AlexNet and VGG-Net, where significant
reduction was achieved on fully-connected layers. Promising results on modern
network architectures such as ResNet were achieved recently by [17,36]. Another
similar technique is to regularize the network by structured sparsity to obtain a
hardware-friendly DNN model [28,35,45]. Some other approaches such as hash-
ing and vector quantization [44] have also been explored to reduce DNN model
complexity [4,10,46].

Network Quantization: Another category of existing methods, which our
method also belongs to, train low-precision DNNs via quantization. These meth-
ods can be further divided into two subcategories: those performing quantization
on weights only versus both weights and activations.

For weight-only quantization methods, Courbariaux et al. [6] constrained
the weights to only two possible values of −1 and 1 (i.e., binarization or one-bit
quantization). They obtained promising results on small datasets using stochas-
tic binarization. Rastegari et al. [39] later demonstrated that deterministic bina-
rization with optimized scale factors to approximate the full-precision weights
work better on deeper network structures and larger datasets. To obtain bet-
ter accuracy, ternary and other multi-bit quantization schemes were explored in
[9,18,29,34,52,54]. It was shown in [52] that quantizing a network with five bits
can achieve similar accuracy to its 32-bit floating-point counterpart by incre-
mental group-wise quantization and re-training.

In the latter regard, Hubara et al. [21] and Rastegari et al. [39] proposed to
binarize both weights and activations to −1 and +1. This way, the convolution
operations can be implemented by efficient bit-wise operations for substantial
speed-up. To address the significant accuracy drop, multi-bit quantization was
further studied in [22,30,33,37,43,53]. A popular choice of the quantization func-
tion is the uniform quantization [22,53]. Miyashita et al. [37] used logarithmic
quantization and improve the inference efficiency via the bitshift operation. Cai
et al. [3] proposed to binarize the network weights while quantize the activa-
tions using multiple bits. A single activation quantizer computed by fitting the

376 D. Zhang et al.

probability density function of a half-wave Gaussian distribution is applied to all
network layers and fixed during training. In the multi-bit quantization methods
of Tang et al. [43] and Li et al. [30], each bit is used to binarize the residue
approximation error from previous bits.

Our proposed method can quantize both the weights and the activations with
arbitrary bit-widths. Different from most of the previous methods, our quantizer
is adaptively learned during network training.

3 LQ-Nets: Networks with Learned Quantization

In this section, we first briefly introduce the goal of neural network quantization.
Then we present the details of our quantization method and how to train a
quantized DNN model with it in a standard network training pipeline.

3.1 Preliminaries: Network Quantization

The main operations in deep neural networks are interleaved linear and non-
linear transformations, expressed as

z = σ(wTa), (1)

where w ∈ R
N is the weight vector, a ∈ R

N is the input activation vector
computed by the previous network layer, σ(·) is a non-linear function, and
z is the output activation.1 The convolutional layers are composed by multi-
ple convolution filters wi ∈ R

C·H·W , where C, H and W are the number of
convolution filter channels, kernel height, and kernel width, respectively. Fully-
connected layers can be viewed as a special type of convolutional layer. Mod-
ern deep neural networks often have millions of weight parameters, which incur
large memory footprints. Meanwhile, the large numbers of inner product oper-
ations between the weights and feature vectors lead to high computation cost.
The memory and computation costs are great hurdles for many applications on
resource-constrained devices such as mobile phones.

The goal of network quantization is to represent the floating-point weights
w and/or activations a with few bits. In general, a quantization function is a
piecewise-constant function which can be written as

Q(x) = ql, if x ∈ (tl, tl+1], (2)

where ql, l = 1, ..., L are the quantization levels and (tl, tl+1] are quantization
intervals. The quantization function maps all the input values within a quanti-
zation interval to the corresponding quantization level, and a quantized value
can be encoded by only log2L bits. Perhaps the simplest quantizer is the sign
function used for binary quantization [21,39]: Q(x) = +1 if x ≥ 0 or −1 other-
wise. For quantization with 2 or more bits, the most commonly used quantizer

1 For brevity, we omit the bias term in Eq. (1).

LQ-Nets: Learned Quantization for Highly Accurate and Compact DNNs 377

-0.4 -0.2 0 0.2 0.4
0

10

20

30

40

conv2_1_1, filter#1, mean: 0.00, std: 0.09

-0.1 -0.05 0 0.05 0.1
0

20

40

60

80

100

conv4_3_2, filter#1, mean: 0.00, std: 0.04

0 2 4 6 8

conv2_1_1, mean: 0.76, std: 0.95

0

2

4

6

6 × 107

× 106

0 5 10 15 20

conv4_3_2, mean: 0.48, std: 1.14

0

5

10

3.05

3.1 × 107

× 105

Fig. 1. Distributions of weights (left two columns) and activations (right two columns)
at different layers of the ResNet-20 network trained on CIFAR-10. All the test-set
images are used to get the activation statistics.

is the uniform quantization function where all the quantization steps ql+1 − ql
are equal [22,53]. Some methods use logarithmic quantization which uniformly
quantizes the data in the log-domain [37].

Quantizing the network weights can generate highly compact and memory-
efficient DNN models: using n-bit encoding, the compression rate is 32

n or 64
n

compared to the 32-bit or 64-bit floating point representation. Moreover, if both
weights and activations are quantized properly, the inner product in Eq. (1)
can be computed by bitwise operations such as xnor and popcnt, where xnor is
the exclusive-not-or logical operation and popcnt counts the number of 1’s in a
bit string. Both the two operations can process at least 64 bits in one or few
clock cycle on most general computing platforms such as CPU and GPU, which
potentially leads to 64× speedup.2

3.2 Learnable Quantizers

An optimal quantizer should yield minimal quantization error for the input data
distribution:

Q∗(x) = arg min
Q

∫
p(x)(Q(x) − x)2dx, (3)

where p(x) is the probability density function of x. We can never be sure if the
popular quantizers such as a uniform quantizer are the optimal selections for the
network weights and activations. In Fig. 1 we present the statistical distributions
of the weights and activations (after batch normalization (BN) and Rectified
Linear Unit (ReLU) layers) in a trained floating-point network. It can be seen
that the distributions can be complex and differ across layers, and a uniform
quantizer is not optimal for them. Of course, if we train a quantized network the
weight and activation distributions may change. But again we can never be sure
if any pre-defined quantizer is optimal for our task, and an improper quantizer
can easily jeopardize the final accuracy.

To get better network quantizers and improve the accuracy of a quantized
network, we propose to jointly train the network and its quantizers. The insight
2 We refer the readers to [21,39] for more details regarding the bitwise operations and

speed-up analysis on different hardware platforms.

378 D. Zhang et al.

2 bits: basis v = [v1, v2]T 3 bits: basis v = [v1, v2, v3]T

Bit-1

-1

-1

1

Bit-2

-v1-v2

1

v1-v2

-v1+v2

v1+v2

-v1-v2

-1

1

-1 1
-1

1

-v1-v2-v3 v1-v2-v3

-v1+v2-v3 v1+v2-v3

Bit-1

Bit-2

… …
… …

…
…

…
…

v1-v2

-v1+v2 v1+v2

v1+v2+v3

…

-v1-v2-v3

v1-v2-v3

-v1+v2+v3

Fig. 2. Illustration of our learnable quantizer on the 2-bit (left) and 3-bit (right) cases.
For each case, the left figure shows how quantization levels are generated by the basis
vector, and the right figure illustrates the corresponding quantization function.

behind is that if the optimizers are learnable and optimized through network
training, they can not only minimize the quantization error, but also adapt to
the training goal thus improving the final accuracy. A naive way to train the
quantizers would be directly optimizing the quantization levels {ql} in network
training. However, such a naive strategy would render the quantization functions
not compatible with bitwise operations, which is undesired as we want to keep
the fast inference merit of quantized neural networks.

To resolve this issue, we need to confine our quantization functions into a
subspace which is compatible with bitwise operations. But how to confine the
quantizers into such a space during training? Our solution is inspired by the uni-
form quantization which is bit-op compatible (see [53]). The uniform quantiza-
tion essentially maps floating-point numbers to their nearest fixed-point integers
with a normalization factor, and the key property for it to be bit-op-compatible
is that the quantized values can be decomposed by a linear combination of the
bits. Specifically, an integer q represented by a K-bit binary encoding is actu-
ally the inner product between a basis vector and the binary coding vector
b = [b1, b2, ..., bK]T where bi ∈ {0, 1}, i.e.,

q =

〈⎡
⎢⎢⎣

1
2
...

2K−1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

b1
b2
...
bK

⎤
⎥⎥⎦

〉
. (4)

In order to learn the quantizers while keeping them compatible with bitwise
operations, we can simply learn the basis vector which consists of K scalars.

Concretely, our learnable quantization function is simply in the form of

Qours(x,v) = vTel, if x ∈ (tl, tl+1], (5)

where v ∈ R
K is the learnable floating-point basis and el ∈ {−1, 1}K for

l = 1, . . . , 2K enumerates all the K-bit binary encodings from [−1, . . . ,−1] to
[1, . . . , 1].3 For a K-bit quantization, the 2K quantization levels are generated by
3 Note that ei can be either {0, 1} encodings or {−1, 1} encodings, both of which

can yield quantizers compatible with bitwise operations. In our implementation,
we adopt the {−1, 1} encoding for weights and {0, 1} encoding for activations. For
convenience we will use the {−1, 1} encoding in the remaining text as the example.

LQ-Nets: Learned Quantization for Highly Accurate and Compact DNNs 379

ql = vTel for l = 1, . . . , 2K . Given {ql} and assuming q1 < q2 < ... < q2K , it can
be easily derived that for any x, the optimal {tl} minimizing the error in Eq. (3)
are simply tl = (ql−1 + ql)/2 for l = 2, ..., 2K (note t1 = −∞ and t2K+1 = +∞).
Figure 2 illustrates our quantizer with the 2-bit and 3-bit cases.

We now show how the inner products between our quantized weights and
activations can be computed by bitwise operations. Let a weight vector w ∈ R

N

be encoded by the vectors bw
i ∈ {−1, 1}N , i = 1, . . . , Kw where Kw is the bit-

width for weights and bw
i consists of the encoding of the i-th bit for all the

values in w. Similarly, for activation vector a ∈ R
N we have ba

j ∈ {−1, 1}N ,
j = 1, . . . , Ka. It can be readily derived that

Qours(w,vw)TQours(a,va) =
Kw∑
i=1

Ka∑
j=1

vw
i va

j (bw
i � ba

j) (6)

where vw ∈ R
Kw and va ∈ R

Ka are the learned basis vectors for the weight and
activation quantizers respectively, and � denotes the inner product with bitwise
operations xnor and popcnt.

In practice, we apply layer-wise quantizers for activations (i.e., one quantizer
per layer) and channel-wise quantizers for weights (one quantizer for each conv
filter). The number of extra parameters introduced by the quantizers is negligible
compared to the large volume of network weights.

3.3 Training Algorithm

To train the LQ-Nets, we use floating-point network weights which are quan-
tized before convolution and optimized with error back-propagation (BP) and
gradient descent. After training, they can be discarded and their binary codes
and quantizer bases are kept. We now present how we optimize the quantizers.

Quantizer Optimization: A simple and straightforward way to optimize our
quantizers is through BP similar to weight optimization. Here we present an
algorithm based on quantization error minimization which optimizes our quan-
tizers in the forward passes during training. This algorithm leads to much better
performance as we will show later in the experiments.

Let x = [x1, ..., xN]T ∈ R
N be the full-precision data (weights or activations)

and K be the specified bit number for quantization. Our goal is to find an optimal
quantizer basis v ∈ R

K as well as an encoding B = [b1, ...,bN] ∈ {−1, 1}K×N

that minimize the quantization error:

v∗, B∗ = arg min
v,B

∥∥BTv − x
∥∥2

2
, s.t. B ∈ {−1, 1}K×N . (7)

Equation (7) is complex and to provably solve for the optimal solution via brute-
force search is exponential in the size of B. For efficiency purposes, we alternately
solve for v and B in a block coordinate descent fashion:

380 D. Zhang et al.

Algorithm 1. Training and testing the quantizers in LQ-Nets
1: Parameters: v - the current basis vector of the quantizer
2: Input: x = [x1, x2, ..., xN] - the full-precision data (weights or activations)
3: Output: B = [b1, ...,bN] - the binary encodings for the input data
4: Procedure:
5: if in the training stage then {//quantizer optimization with QEM in forward pass}
6: Set v(0) = v
7: for t = 1 → T do
8: Compute B(t) with v(t−1) per Eq. (5)
9: Compute v(t) with B(t) per (8)

10: end for
11: Output B = B(T); Update current v with v(T) via moving average
12: else {//simple quantization operation in the test stage}
13: Compute B with v per Eq. (5)
14: end if

– Fix v and update B. Given v, the optimal encoding B∗ can be simply found
by looking up the quantization intervals t1, ..., t2K+1.

– Fix B and update v. Given B, Eq. (7) reduces to a linear regression problem
with a closed form solution as

v∗ = (BBT)−1Bx . (8)

We iterate the alternation T times. For brevity, we will refer to the above pro-
cedure as the QEM (Quantization Error Minimization) algorithm.

Network Training: We use the standard mini-batch based approach to train
the LQ-Nets, and our quantizer learning is conducted in the forward passes with
the QEM algorithm. Since, for activation quantization, only part of the input
data is visible in one iteration due to mini-batch sampling, we apply moving aver-
age for the optimized quantizer parameters (i.e., basis vectors). We also apply
the moving average strategy for the weight quantizers to gain more stability.
The operations in our quantizers are summarized in Algorithm 1.

In a backward pass, direct error back-propagation would be problematic as
the gradient of the quantization function is 0 at almost everywhere. To tackle this
issue, we use the Straight-Through Estimator (STE) proposed in [2] to compute
the gradients. Specifically, for activations we set the gradient of the quantization
function to 1 for values between q1 and q2K defined in Eq. (5) and 0 elsewhere; for
weights, the gradient is set to 1 everywhere [3]. The QEM algorithm is unrelated
to the backward pass so the quantizers will remain unchanged (unless BP is used
to train them instead).

4 Experiments

In this section, we evaluate the proposed method on two image classification
datasets: CIFAR-10 [25] and ImageNet (ILSVRC12) [40]. The CIFAR-10 dataset

LQ-Nets: Learned Quantization for Highly Accurate and Compact DNNs 381

consists of 60,000 color images of size 32 × 32 belonging to 10 classes (6,000
images per class). There are 50,000 training and 10,000 test images. ImageNet
ILSVRC12 contains about 1.2 million training and 50K validation images of
1,000 object categories.

Although our method is designed to quantize both weights and activations to
facilitate fast inference through bitwise operations, we also conduct experiments
of weight-only quantization and compare with the prior art.

4.1 Implementation Details

Our LQ-Nets are implemented with TensorFlow [1] and trained with the aid of
the Tensorpack library [47].4 We present our implementation details as follows.

Quantizer Implementation: We apply layer re-ordering to the networks sim-
ilar to [3,39]: the typical Conv→BN→ReLU operations is re-organized as BN→
ReLU (→Quant.)→Conv. Following previous methods [3,21,39,53,54], we quan-
tize all the convolution and fully-connected layers but the first and last layers,
for which the speedup benefited by bitwise operations is low due to their small
channel number or filter size [30,39].

Network Structures: We conduct experiments on AlexNet [26], ResNet [15],
DenseNet [20], two variants of the VGG-Net [41] “VGG-Small”and“VGG-
Variant” from [3], and a variant of GoogLeNet [42] also from [3]. VGG-Small is a
simplified VGG-Net similar to that of [21,39] but with only one fully-connected
layer. VGG-Variant is a smaller version of the model-A in [14]. The GoogLeNet
structure in [3] contains some modifications of the original GoogLeNet (e.g.,
more filters in some 1 × 1 conv layers) and we denote it as “GoogleNet-Variant”
in this paper. Detailed structures of these network variants can be found in [3]’s
publicly-available implementation.5 For ResNet-50, the parameter-free type-A
shortcut [15] is adopted in this paper.

Initialization: In all the experiments, our LQ-Nets are trained from scratch
(random initialization) without leveraging any pre-trained model. Our quantizers
are initialized with uniform quantization (we also tried random initialization and
initializing them via pre-computing the quantization levels using [3], however no
noticeable difference on the results was observed).

Hyper-parameters and Other Setup: To train on various network architec-
tures, we mostly follow the hyper-parameter settings (learning rate, batch size,
training epoch, weight decay, etc.) of their original papers [15,16,20]. For fair
comparisons with the method of [3], we use the hyper-parameters described in
[3] to train all the networks with 1-bit weights and 2-bit activations. The iter-
ation number T in our QEM algorithm is fixed as 1 (no significant benefit was
observed with larger values; see Sect. 4.2). The moving average factor for quan-
tizer learning is fixed as 0.9. Details of all our hyper-parameter settings can be
found in the supplementary material as well as our released source code.

4 Our source code is available at https://github.com/Microsoft/LQ-Nets/.
5 https://github.com/zhaoweicai/hwgq (accessed July 10, 2018).

https://github.com/Microsoft/LQ-Nets/
https://github.com/zhaoweicai/hwgq

382 D. Zhang et al.

Table 1. Optimization
method comparison on the
ResNet-20 model.

Bit-width Optim. Accuracy

(W/A) method (%)

2/32 BP 90.0

2/32 QEM 91.8

2/2 BP 88.2

2/2 QEM 90.2

Fig. 3. Error curves with the two optimization
methods

In the remaining text, we used “W/A” to denote the number of bits used
for weights/activations. A bit-width of 32 indicates using 32-bit floating-point
values without quantization (thus “w/32” with w < 32 indicates weight-only
quantization and “32/32” are“full-precision” (FP) models). For the experiments
on CIFAR-10, we run our method 5 times and report the mean accuracy.

4.2 Performance Analysis

Effectiveness of the QEM Algorithm: Our quantizer can be trained by
either the proposed QEM algorithm or a naive BP procedure. In this experiment,
we evaluate the effectiveness of the QEM algorithm and compare it against BP.
Table 1 shows the performance of the quantized ResNet-20 models on CIFAR-10
test set, and Fig. 3 presents the corresponding training and testing curves. The
quantized network trained using QEM is clearly better than BP for weight-only
quantization as well as weight-and-activation quantization. In all the following
experiments, we use the QEM algorithm to optimize our quantizers.

Table 2. Accuracy w.r.t. QEM iteration number T

Bit-width Accuracy (%; “mean ± std” of 5 runs)

(W/A) T = 1 T = 2 T = 3 T = 4

1/2 88.37±0.26 88.38± 0.11 88.45± 0.12 88.51± 0.20

2/2 90.16± 0.08 9035± 0.12 90.33± 0.20 90.25± 0.14

3/3 91.58± 0.16 91.55± 0.16 91.62± 0.15 91.44± 0.14

Table 2 shows the accu-
racy of quantized ResNet-20
models with different QEM
solver iteration T . As can be
seen, using T = 2, 3 or 4 did
not show significant benefit
compared to T = 1. Note
that each time the solver starts from the result of the last training iteration
(see Line 6 in Algorithm 1) which is a good starting point especially when the
gradients become small after a few epochs. The good performance with T = 1
suggests that the iterations of the alternately-directional optimization can be
effectively substituted by the training iterations. In this paper, we use T = 1 in
all the experiments.

Effectiveness of the Learnable Quantizers: The key idea of our method is
to apply flexible quantizers and optimize them jointly with the network. Table 3
compares the results of our method and two previous methods: DoReFa-Net [53]
and HWGQ [3], the former of which is based on fixed uniform quantizers and
latter pre-computes the quantizer by fitting a half-wave Gaussian distribution. It

LQ-Nets: Learned Quantization for Highly Accurate and Compact DNNs 383

Table 3. Comparison of different quantization methods (ResNet-18 on ImageNet

Method Bit-width Accuracy (%)

(W/A) Top-1 Top-5

Uniform–DoReFa-Net [53] 1/4 59.2 -

Half-wave Gaussian–HWGQ [3] 1/2 59.6 82.2

Ours 1/2 62.6 84.3

Fig. 4. Statistics of the weights (top row) and activations (bottom row) before (i.e., the
floating-point values) and after quantization. A ResNet-20 model trained on CIFAR-10
with “2/2” quantization is used. The orange diamonds indicate the four quantization
levels of our learned quantizers. Note that in the left figures for the floating-point
values, the histogram bins are of equal step size, whereas in the right figures each of
the four bins contains all the values quantized to its corresponding quantization levels.

can be seen that using 1-bit weights and 2-bit activations, the ResNet-18 model
with our learnable quantizers outperformed HWGQ under the same setting and
also outperformed DoReFa-Net with 4-bit activations on ImageNet. More result
comparisons on various network structures can be found in Sect. 4.3.

Figure 4 presents the weight and activation statistics in two layers of a trained
ResNet-20 model before (i.e., the floating-point values) and after quantization
using our method. The network is quantized with “2/2” bits and the floating-
point weights are obtained from the last iteration of training (these values can
be discarded after training and only quantized values are used in the inference
time). The floating-point activations are obtained using all the test images of
CIFAR-10. It can be seen that our learned quantizers are not uniform ones and
they differ at different layers. Statistical results with more bits can be found in
the supplementary material.

384 D. Zhang et al.

Performance w.r.t. Bit-width: We now study the impact of bit-width on
the performance of our LQ-Nets. Table 4 shows the results of three network
structures: ResNet-20, VGG-Small and ResNet-18.

Table 4. Impact of bit-width on our LQ-Nets

ResNet-20 VGG-Small ResNet-18

(CIFAR-10) (CIFAR-10) (ImageNet)

Bit-width

(W/A)

Acc.

(%)

Bit-width

(W/A)

Acc.

(%)

Bit-width

(W/A)

Acc.

(%)

32/32 92.1 32/32 93.8 32/32 70.3

1/32 90.1 1/32 93.5 2/32 68.0

2/32 91.8 2/32 93.8 3/32 69.3

3/32 92.0 3/32 93.8 4/32 70.0

1/2 88.4 1/2 93.4 1/2 62.6

2/2 90.2 2/2 93.5 2/2 64.9

2/3 91.1 2/3 93.8 3/3 68.2

3/3 91.6 3/3 93.8 4/4 69.3

On the CIFAR-10
dataset, high accuracy can be
achieved by our low-precision
networks. The accuracy from
“3/32” quantization has roughly
reached our full-precision result
for both ResNet-20 and VGG-
Small. The accuracy decreases
gracefully with lower bits for
weights, and the absolution
drops are low even with 1-
bit weights: 2.0% for ResNet-20
and 0.3% for VGG-Small. The
accuracy drops are more appreciable when quantizing both weights and acti-
vations, though the largest absolute drop is only 3.7% for the“1/2” ResNet-20
model. Very minor accuracy drops (maximum 0.4%) are observed for VGG-Small
which has many more parameters than ResNet-20.

On the ImageNet dataset which is more challenging, the accuracy drops of the
ResNet-18 model after quantization are relatively larger especially with very low
precision: the largest absolute drop is 7.7% (70.3%→62.6%) with bit-widths of
“1/2”. Nevertheless, our learnable quantizer is particularly beneficial when using
2 or more bits due to its high flexibility. The accuracy of the quantized ResNet-
18 quickly increases with 2 or more bits as shown in Table 4. The accuracy gap is
almost closed with“4/32” bits (0.3% absolute difference only), and the accuracy
drop with the “4/4” case is as low as 1%.

4.3 Comparison with Previous Methods

In this section, we compare the performance of our quantization method with
existing methods including TWN [29], TTQ [54], BNN [21], BWN [39], XNOR-
Net [39], DoReFa-Net [53], HWQG [3] and ABC-Net [33], with various network
architectures tested on CIFAR-10 and ImageNet classification tasks.

Table 5. Comparison of quantized VGG-Small
networks on CIFAR-10

Model Methods Bit-width Acc. (%)

(W/A) (%)

FP-HWGQ[3] 32/32 93.2

FP-ours 32/32 93.8

VGG-Small BNN[21] 1/1 89.9

XNOR-Net[39] 1/1 89.8

HWGQ[3] 1/2 92.5

Ours 1/2 93.4

Comparison on CIFAR-10:
Table 5 presents the results of
the VGG-Small model quantized
using different methods. All these
methods quantize (or binarize)
both weights and activations to
achieve extremely low precision.
With 1-bit weights and 2-bit
activations, the accuracy using
our method is significantly better
than the state-of-the-art method HWGQ (93.4% vs. 92.5%).

LQ-Nets: Learned Quantization for Highly Accurate and Compact DNNs 385

Table 6. Comparison with state-of-the-art quantization methods on ImageNet. “FP”
denotes “Full Precision”; the “W/A” values are the bit-widths of weights/activations.

∗Results of the ResNet models trained in Torch: https://github.com/facebook/fb.
resnet.torch (accessed July 10, 2018)
†Results of ResNet-18B [29] where the filter number in each block is 1.5× of ResNet-18
‡ Results quoted from the method’s official webpage https://github.com/tensorpack/
tensorpack/tree/master/examples/DoReFa-Net (accessed July 10, 2018)
�Results trained by us with the authors’ code (same URL as above)
§Results quoted from [54] for TWN and DoReFa-Net, and [22] for BNN.

https://github.com/facebook/fb.resnet.torch
https://github.com/facebook/fb.resnet.torch
https://github.com/tensorpack/tensorpack/tree/master/examples/DoReFa-Net
https://github.com/tensorpack/tensorpack/tree/master/examples/DoReFa-Net

386 D. Zhang et al.

Comparison on ImageNet: The results on ImageNet validation set are pre-
sented in Table 6. For weight-only quantization, our LQ-Nets outperformed
BWN, TWN, TTQ and DoReFa-Net by large margins.

As for quantizing both weights and activations, our results are significantly
better than DoReFa-Net and HWGQ when using very low bit-widths (1 bit
for weights and few for activations). Our method is even more advantageous
when using larger bit-widths. Table 6 shows that with more bits (2, 3, or 4),
the accuracy can be dramatically improved by our method. For example, with
“4/4” bits, the top-1 accuracy of ResNet-50 is boosted from 68.7% (with“1/2”
bits) to 75.1%. The absolute accuracy increase is as high as 6.4%, and the gap
to its FP counterpart is reduced to 1.3%. According to Table 6, the accuracy of
our LQ-Nets comprehensively surpassed the other competing methods under the
same bit-width settings.

4.4 Training Time

Table 7. Training time

Bit-width Training
(W/A) time

32/32 1.0×
2/32 1.4×
3/32 1.7×
1/2 2.1×
2/2 2.3×
3/3 3.7×

Compared to training floating-point networks, our
extra cost lies in quantizer optimization. In the QEM
algorithm, the cost of solving B is negligible. For
N input scalars, the time complexity of solving v
of length K is O(K2N), which is a relatively small
compared to the conv operations in theory.6 Table 7
shows the total training time comparison based on
our current unoptimized implementation. The net-
work is ResNet-18 and no bitwise operation is used
in all cases. Our training time increases gracefully
with larger bit-widths.

5 Conclusions

We have presented a novel DNN quantization method that led to state-of-the-
art accuracy for various network structures. The key idea is to apply learnable
quantizers which can be jointly trained with the network parameters to gain
more flexibility. Our quantizers can be applied to both weights and activations,
and they are made compatible with bitwise operations facilitating fast inference.
In future, we plan to deploy our LQ-Nets on some resource-constrained devices
such as mobile phones and test their performance.

Acknowledgment. This work is partially supported by the National Natural Science
Foundation of China under Grant 61629301.

6 To solve for v in Eq. (8), we need O(K2N) for matrix multiplication BBT, O(K3)
for matrix inverse, and O(KN) for matrix-vector multiplications. Note K � N .
Let the input and output activation map sizes be (H,W,Cin) and (H,W,Cout). The
input activation number is Na = CinHW . The time complexity of an S × S conv
operation with stride 1 is O(S2CoutCinHW) = O(S2CoutNa), whereas that of the
quantizer optimization is O(K2

aNa) for activations and O(K2
wNw) for weights.

LQ-Nets: Learned Quantization for Highly Accurate and Compact DNNs 387

References

1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous sys-
tems (2015). https://www.tensorflow.org/

2. Bengio, Y., Léonard, N., Courville, A.: Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv:1308.3432 (2013)

3. Cai, Z., He, X., Sun, J., Vasconcelos, N.: Deep learning with low precision by
half-wave Gaussian quantization. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 5918–5926 (2017)

4. Chen, W., Wilson, J.T., Tyree, S., Weinberger, K.Q., Chen, Y.: Compressing neural
networks with the hashing trick. In: International Conference on Machine Learning
(ICML), pp. 2285–2294 (2015)

5. Chollet, F.: Xception: Deep learning with depthwise separable convolutions. In:
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1251–
1258 (2017)

6. Courbariaux, M., Bengio, Y., David, J.P.: BinaryConnect: training deep neural
networks with binary weights during propagations. In: Advances in Neural Infor-
mation Processing Systems (NIPS), pp. 3123–3131 (2015)

7. Denil, M., Shakibi, B., Dinh, L., Ranzato, M., de Freitas, N.: Predicting parameters
in deep learning. In: Advances in Neural Information Processing Systems (NIPS),
pp. 2148–2156 (2013)

8. Denton, E., Zaremba, W., Bruna, J., LeCun, Y., Fergus, R.: Exploiting linear
structure within convolutional networks for efficient evaluation. In: Advances in
Neural Information Processing Systems (NIPS), pp. 1269–1277 (2014)

9. Dong, Y., Ni, R., Li, J., Chen, Y., Zhu, J., Su, H.: Learning accurate low-bit deep
neural networks with stochastic quantization. In: British Machine Vision Confer-
ence (BMVC) (2017)

10. Gong, Y., Liu, L., Yang, M., Bourdev, L.: Compressing deep convolutional networks
using vector quantization. arXiv:1412.6115 (2014)

11. Gupta, S., Agrawal, A., Gopalakrishnan, K., Narayanan, P.: Deep learning with
limited numerical precision. In: International Conference on Machine Learning
(ICML), pp. 1737–1746 (2015)

12. Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural net-
works with pruning, trained quantization and Huffman coding. In: International
Conference on Learning Representations (ICLR) (2016)

13. Han, S., Pool, J., Tran, J., Dally, W.J.: Learning both weights and connections for
efficient neural networks. In: Advances in Neural Information Processing Systems
(NIPS), pp. 1135–1143 (2015)

14. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-
level performance on ImageNet classification. In: International Conference on Com-
puter Vision (ICCV), pp. 1026–1034 (2015)

15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
770–778 (2016)

https://www.tensorflow.org/
http://arxiv.org/abs/1308.3432
http://arxiv.org/abs/1412.6115

388 D. Zhang et al.

16. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In:
Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp.
630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0 38

17. He, Y., Zhang, X., Sun, J.: Channel pruning for accelerating very deep neural
networks. In: International Conference on Computer Vision (ICCV), pp. 1389–
1397 (2017)

18. Hou, L., Kwok, J.T.: Loss-aware weight quantization of deep networks. In: Inter-
national Conference on Learning Representations (ICLR) (2018)

19. Howard, A.G., et al.: Mobilenets: efficient convolutional neural networks for mobile
vision applications. arXiv:1704.04861 (2017)

20. Huang, G., Liu, Z., van der Maaten, L.: Densely connected convolutional networks.
In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
2261–2269 (2017)

21. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural
networks. In: Advances in Neural Information Processing Systems (NIPS), pp.
4107–4115 (2016)

22. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Quantized neu-
ral networks: training neural networks with low precision weights and activations.
arXiv:1609.07061 (2016)

23. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.:
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and ¡0.5MB model
size. arXiv:1602.07360 (2016)

24. Jaderberg, M., Vedaldi, A., Zisserman, A.: Speeding up convolutional neural net-
works with low rank expansions. In: British Machine Vision Conference (BMVC)
(2014)

25. Krizhevsky, A.: Learning multiple layers of features from tiny images. Technical
report (2009)

26. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Systems
(NIPS), pp. 1097–1105 (2012)

27. Lebedev, V., Ganin, Y., Rakhuba, M., Oseledets, I., Lempitsky, V.: Speeding-
up convolutional neural networks using fine-tuned CP-decomposition. In: Interna-
tional Conference on Learning Representations (ICLR) (2015)

28. Lebedev, V., Lempitsky, V.: Fast convnets using group-wise brain damage. In:
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2554–
2564 (2016)

29. Li, F., Zhang, B., Liu, B.: Ternary weight networks. In: NIPS Workshop on Efficient
Methods for Deep Neural Networks (2016)

30. Li, Z., Ni, B., Zhang, W., Yang, X., Gao, W.: Performance guaranteed network
acceleration via high-order residual quantization. In: International Conference on
Computer Vision (ICCV), pp. 2584–2592 (2017)

31. Lin, D., Talathi, S., Annapureddy, S.: Fixed point quantization of deep convolu-
tional networks. In: International Conference on Machine Learning (ICML), pp.
2849–2858 (2016)

32. Lin, M., Chen, Q., Yan, S.: Network in network. In: International Conference on
Learning Representations (ICLR) (2014)

33. Lin, X., Zhao, C., Pan, W.: Towards accurate binary convolutional neural network.
In: Advances in Neural Information Processing Systems (NIPS), pp. 345–353 (2017)

https://doi.org/10.1007/978-3-319-46493-0_38
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1609.07061
http://arxiv.org/abs/1602.07360

LQ-Nets: Learned Quantization for Highly Accurate and Compact DNNs 389

34. Lin, Z., Courbariaux, M., Memisevic, R., Bengio, Y.: Neural networks with few
multiplications. In: International Conference on Learning Representations (ICLR)
(2016)

35. Liu, B., Wang, M., Foroosh, H., Tappen, M., Penksy, M.: Sparse convolutional neu-
ral networks. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 806–814 (2015)

36. Luo, J.H., Wu, J., Lin, W.: Thinet: A filter level pruning method for deep neural
network compression. In: International Conference on Computer Vision (ICCV),
pp. 5058–5066 (2017)

37. Miyashita, D., Lee, E.H., Murmann, B.: Convolutional neural networks using log-
arithmic data representation. arXiv:1603.01025 (2016)

38. Novikov, A., Podoprikhin, D., Osokin, A., Vetrov, D.: Tensorizing neural networks.
In: Advances in Neural Information Processing Systems (NIPS), pp. 442–450 (2015)

39. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: XNOR-Net: ImageNet classi-
fication using binary convolutional neural networks. In: Leibe, B., Matas, J., Sebe,
N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 525–542. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46493-0 32

40. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J.
Comput. Vis. (IJCV) 115(3), 211–252 (2015)

41. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: International Conference on Learning Representations
(ICLR) (2015)

42. Szegedy, C., et al.: Going deeper with convolutions. In: IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 1–9 (2015)

43. Tang, W., Hua, G., Wang, L.: How to train a compact binary neural network
with high accuracy? In: AAAI Conference on Artificial Intelligence (AAAI), pp.
2625–2631 (2017)

44. Wang, J., Zhang, T., Sebe, N., Shen, H.T., et al.: A survey on learning to hash.
IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 40(4), 769–790 (2018)

45. Wen, W., Wu, C., Wang, Y., Chen, Y., Li, H.: Learning structured sparsity in deep
neural networks. In: Advances in Neural Information Processing Systems (NIPS),
pp. 2074–2082 (2016)

46. Wu, J., Leng, C., Wang, Y., Hu, Q., Cheng, J.: Quantized convolutional neural
networks for mobile devices. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 4820–4828 (2016)

47. Wu, Y., et al.: Tensorpack (2016). https://github.com/tensorpack/
48. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations

for deep neural networks. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 1492–1500 (2017)

49. Yu, X., Liu, T., Wang, X., Tao, D.: On compressing deep models by low rank
and sparse decomposition. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 7370–7379 (2017)

50. Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolu-
tional neural network for mobile devices. In: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 6848–6856 (2017)

51. Zhang, X., Zou, J., He, K., Sun, J.: Accelerating very deep convolutional networks
for classification and detection. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI)
38(10), 1943–1955 (2016)

52. Zhou, A., Yao, A., Guo, Y., Xu, L., Chen, Y.: Incremental network quantization:
towards lossless CNNs with low-precision weights. In: International Conference on
Learning Representations (ICLR) (2017)

http://arxiv.org/abs/1603.01025
https://doi.org/10.1007/978-3-319-46493-0_32
https://github.com/tensorpack/

390 D. Zhang et al.

53. Zhou, S., Wu, Y., Ni, Z., Zhou, X., Wen, H., Zou, Y.: DoReFa-Net: Train-
ing low bitwidth convolutional neural networks with low bitwidth gradients.
arXiv:1606.06160 (2016)

54. Zhu, C., Han, S., Mao, H., Dally, W.J.: Trained ternary quantization. In: Interna-
tional Conference on Learning Representations (ICLR) (2017)

55. Zhuang, B., Shen, C., Tan, M., Liu, L., Reid, I.: Towards effective low-bitwidth con-
volutional neural networks. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 7920–7928 (2018)

http://arxiv.org/abs/1606.06160

	LQ-Nets: Learned Quantization for Highly Accurate and Compact Deep Neural Networks
	1 Introduction
	2 Related Work
	3 LQ-Nets: Networks with Learned Quantization
	3.1 Preliminaries: Network Quantization
	3.2 Learnable Quantizers
	3.3 Training Algorithm

	4 Experiments
	4.1 Implementation Details
	4.2 Performance Analysis
	4.3 Comparison with Previous Methods
	4.4 Training Time

	5 Conclusions
	References

