
LTL Reactive Synthesis with a Few Hints

Mrudula Balachander1(�), Emmanuel Filiot, and Jean-François Raskin

Université libre de Bruxelles, Brussels, Belgium
mbalacha@ulb.be

Abstract. We study a variant of the problem of synthesizing Mealy ma-
chines that enforce LTL specifications against all possible behaviours of
the environment, including hostile ones. In the variant studied here, the
user provides the high level LTL specification ϕ of the system to design,
and a set E of examples of executions that the solution must produce.
Our synthesis algorithm first generalizes the user-provided examples in
E using tailored extensions of automata learning algorithms, while pre-
serving realizability of ϕ. Second, it turns the (usually) incomplete Mealy
machine obtained by the learning phase into a complete Mealy machine
realizing ϕ. The examples are used to guide the synthesis procedure. We
prove learnability guarantees of our algorithm and prove that our prob-
lem, while generalizing the classical LTL synthesis problem, matches its
worst-case complexity. The additional cost of learning from E is even
polynomial in the size of E and in the size of a symbolic representation of
solutions that realize ϕ, computed by the synthesis tool Acacia-Bonzai.
We illustrate the practical interest of our approach on a set of examples.

1 Introduction

Reactive systems are notoriously difficult to design and even to specify cor-
rectly [1,13]. As a consequence, formal methods have emerged as useful tools to
help designers to built reactive systems that are correct. For instance, model-
checking asks the designer to provide a model, in the form of a Mealy machine
M, that describes the reactions of the system to events generated by its en-
vironment, together with a description of the core correctness properties that
must be enforced. Those properties are expressed in a logical formalism, typi-
cally as an LTL formula ϕCORE. Then an algorithm decides if M |= ϕCORE, i.e.
if all executions of the system in its environment satisfy the specification. Auto-
matic reactive synthesis is more ambitious: it aims at automatically generating
a model from a high level description of the “what” needs to be done instead of
the “how” it has to be done. Thus the user is only required to provide an LTL
specification ϕ and the algorithm automatically generates a Mealy machine M
such that M |= ϕ whenever ϕ is realizable. Unfortunately, it is most of the time
not sufficient to provide the core correctness properties ϕCORE to obtain a Mealy
machine M that is useful in practice, as illustrated next.

Example 1. [Synthesis from ϕCORE - Mutual exclusion] Let us consider the clas-
sical problem of mutual exclusion. In the simplest form of this problem, we
need to design an arbiter that receives requests from two processes, modeled

c© The Author(s) 2023
S. Sankaranarayanan and N. Sharygina (Eds.): TACAS 2023, LNCS 13994, pp. 309–328, 2023.
https://doi.org/10.1007/978-3-031-30820-8 20

https://doi.org/10.1007/978-3-031-30820-8_20
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-30820-8_20&domain=pdf

M. Balachander et al.

by two atomic propositions r1 and r2 controlled by the environment, and that
grants accesses to the critical section, modeled as two atomic propositions g1
and g2 controlled by the system. The core correctness properties (the what) are:
(i) mutual access, i.e. it is never the case that the access is granted to both
processes at the same time, (ii) fairness, i.e. processes that have requested ac-
cess eventually get access to the critical section. These core correctness spec-
ifications for mutual exclusion (ME) are easily expressed in LTL as follows:
ϕME
CORE ≡ �(¬g1 ∨ ¬g2) ∧ �(r1 → ♦g1) ∧ �(r2 → ♦g2). Indeed, this formula

expresses the core correctness properties that we would model check no matter
how M implements mutual exclusion, e.g. Peterson, Dedekker, Backery algo-
rithms, etc. Unfortunately, if we submit ϕME

CORE to an LTL synthesis procedure,
implemented in tools like Acacia-Bonzai [11], BoSy [17], or Strix [25], we
get the solution M depicted in 1-(left) (all three tools return this solution).
While this solution is perfectly correct and realizes the specification ϕME

CORE, the
solution ignores the inputs from the environment and grants access to the criti-
cal sections in a round robin fashion. Arguably, it may not be considered as an
efficient solution to the mutual exclusion problem. This illustrates the limits of
the synthesis algorithm to solve the design problem by providing only the core
correctness specification of the problem, i.e. the what, only. To produce useful
solutions to the mutual exclusion problem, more guidance must be provided.

q0 q1

true/!g1 ∧ g0

true/!g0 ∧ g1

q0 q1 q2

!r0∧!r1/!g0∧!g1
!r0 ∧ r1/!g0 ∧ g1
r0∧!r1/g0∧!g1

r0 ∧ r1/!g0 ∧ g1

!r1/g0∧!g1

r1/g0∧!g1

!r0/!g0 ∧ g1

r0/!g0 ∧ g1

Fig. 1: (Left) The solution of Strix to the mutual exclusion problem for high level
specification ϕME

LOW . Edge labels are of the form ϕ/ψ where ϕ: Boolean formula
on input atomic propositions (Boolean variables controlled by environment) and
ψ: maximally consistent conjunction of literals over set of output propositions
(Boolean variables controlled by system). (Right) A natural solution that could
be drawn by hand, and is automatically produced by our learning/synthesis
algorithm for the same specification plus with two simple examples.

The main question is now: how should we specify these additional properties
? Obviously, if we want to use the ”plain” LTL synthesis algorithm, there is no
choice: we need to reinforce the specification ϕME

CORE with additional lower level
properties ϕME

LOW. Let us go back to our running example.

Example 2. [Synthesis from ϕME
CORE and ϕME

LOW] To avoid solutions with unsolicited
grants, we need to reinforce the core specification. The Strix online demo website
proposes to add the following 3 LTL formulas ϕME

LOW to ϕME
CORE (see Full arbitrer

n = 2, at https://meyerphi.github.io/strix-demo/): (1)
∧
i∈{1,2}�((gi ∧

�¬ri) → ♦¬gi), (2)
∧
i∈{1,2}�(gi ∧ ©(¬ri ∧ ¬gi) → ©(riR¬gi)), and (3)∧

i∈{1,2}(riR¬gi). Strix, on the specification ϕME
CORE ∧ ϕME

LOW, provides us with

310

LTL Reactive Synthesis with a Few Hints

a better solution, but it is more complex than needed (it has 9 states: refer [5])
and clearly does not look like an optimal solution to our mutual exclusion prob-
lem. E.g., the model of Fig. 1-(right) is arguably more natural. How can we get
this model without coding it into the LTL specification, which would diminish
greatly the interest of using a synthesis procedure in the first place?

In general, higher level properties are properties that need to be met by all
implementations, e.g. safety-critical properties. In contrast, lower level properties
are more about a specific implementation, its expected behaviour and efficiency.
At this point, it is legitimate to question the adequacy of LTL as a specification
language for lower level properties, and so as a way to guide the synthesis pro-
cedure towards relevant solutions to realize ϕCORE. In this paper, we introduce
an alternative to guide synthesis toward useful solutions that realize ϕCORE: we
propose to use examples of executions that illustrate behaviors of expected so-
lutions. We then restrict the search to solutions that generalize those examples.
Examples, or scenarios of executions, are accepted in requirement engineering
as an adequate tool to elicit requirements about complex systems [12]. For re-
active system design, examples are particularly well-suited as they are usually
much easier to formulate than full blown solutions, or even partial solutions. It
is because, when formulating examples, the user controls both the inputs and the
outputs, avoiding the main difficulty of reactive system design: having to cope
with all possible environment inputs. We illustrate this on our running example.

Example 3. [Synthesis from ϕME
CORE and examples] Let us keep, as the LTL speci-

fication, ϕME
CORE only, and let us consider the following simple prefix of executions

that illustrate how solutions to mutual exclusion should behave:

(1) {!r1, !r2}.{!g1, !g2}#{r1, !r2}.{g1, !g2}#{!r1, r2}.{!g1, g2}
(2) {r1, r2}.{g1, !g2}#{!r1, !r2}.{!g1, g2}
These trace prefixes prescribe reactions to typical fixed finite input sequences: (1)
if there is no request initially, then no access is granted (note that this excludes
already the round robin solution), if process 1 and 2 request subsequently, process
1 is granted first and then process 2 is granted after, (2) if both process request
simultaneously, then process 1 is granted first and then process 2 is granted after.
Given those two simple traces together with ϕCORE, our algorithm generates the
solution of Fig. 1-(right). Arguably, the solution is now simple and natural.

Contributions First, we provide a synthesis algorithm SynthLearn that,
given an LTL specification ϕCORE and a finite set E of prefixes of executions,
returns a Mealy machine M such that M |= ϕCORE, i.e. M realizes ϕCORE,
and E ⊆ Prefix(L(M)), i.e. M is compatible with the examples in E, if such
a machine M exists. It returns unrealizable otherwise. Additionally, we require
SynthLearn to generalize the decisions illustrated in E. This learnability re-
quirement is usually formalized in automata learning with a completeness cri-
terium that we adapt here as follows: for all specifications ϕCORE, and for all
Mealy machines M such that M |= ϕCORE, there is a small set of examples E
(polynomial in |M|) such that L(SynthLearn(ϕCORE, E)) = L(M). We prove

311

M. Balachander et al.

this completeness result in Theorem 4 for safety specifications and extend it to
ω-regular and LTL specifications in Section 4, by reduction to safety.

Second, we prove that the worst-case execution time of SynthLearn is 2Ex-
pTime (Theorem 7), and this is worst-case optimal as the plain LTL synthesis
problem (when E = ∅) is already known to be 2ExpTime-Complete [27].
SynthLearn first generalizes the examples provided by the user while main-
taining realizability of ϕCORE. This generalization leads to a Mealy machine with
possibly missing transitions (called a preMealy machine). Then, this preMealy
machine is extended into a (full) Mealy machine that realizes ϕCORE against
all behaviors of the environment. During the completion phase, SynthLearn
reuses as much as possible decisions that have been generalized from the exam-
ples. The generalization phase is essential to get the most out of the examples.
Running classical synthesis algorithms on ϕCORE ∧ ϕE , where ϕE is an LTL en-
coding of E, often leads to more complex machines that fail to generalize the
decisions taken along the examples in E. While the overall complexity of Synth-
Learn is 2ExpTime and optimal, we show that it is only polynomial in the size
of E and in a well-chosen symbolic representation a set of Mealy machines that
realize ϕCORE, see Theorem 6. This symbolic representation takes the form of an
antichain of functions and tends to be compact in practice [19]. It is computed
by default when Acacia-Bonzai is solving the plain LTL synthesis problem
of ϕCORE. So, generalizing examples while maintaining realizability only comes
at a marginal polynomial cost. We have implemented our synthesis algorithm
in a prototype, which uses Acacia-Bonzai to compute the symbolic antichain
representation. We report on the results we obtain on several examples.

Related works Scenarios of executions have been advocated by researchers in
requirements engineering to elicit specifications, see e.g. [12,14] and references
therein. In [28], learning techniques are used to transform examples into LTL
formulas that generalize them. Those methods are complementary to our work,
as they can be used to obtain the high level specification ϕCORE.

In non-vacuous synthesis [8], examples are added automatically to an LTL
specification in order to force the synthesis procedure to generate solutions that
are non-vacuous in the sense of [23]. The examples are generated directly from the
syntax of the LTL specification and they cannot be proposed by the user. This
makes our approach and this approach orthogonal and complementary. Indeed,
we could use the examples generated automatically by the non-vacuous approach
and ask the user to validate them as desirable or not. Our method is more flexible,
it is semi-automatic and user centric: the user can provide any example he/she
likes and so it offers more flexibility to drive the synthesis procedure to solutions
that the user deems as interesting. Furthermore, our synthesis procedure is based
on learning algorithms, while the algorithm in [8] is based on constraint solving
and does not offer guarantees of generalization, unlike our algorithm (see Thm 4).

Supplementing the formal specification with additional user-provided infor-
mation is at the core of the syntax-guided synthesis framework (SyGuS [3]),
implemented for instance in program by sketching [31]: in SyGuS, the specifica-
tion is a logical formula and candidate programs are syntactically restricted by a

312

LTL Reactive Synthesis with a Few Hints

user-provided grammar, to limit and guide the search. The search is done by us-
ing counter-example guided inductive synthesis techniques (CEGIS) which rely
on learning [32]. In contrast to our approach, examples are not user-provided
but automatically generated by model-checking the candidate programs against
the specification. The techniques are also orthogonal to ours: SyGuS targets pro-
grams syntactically defined by expressions over a decidable background theory,
and heavily relies on SAT/SMT solvers. Using examples to synthesise programs
(programming by example) has been for instance explored in the context of string
processing programs for spreadsheets, based on learning [30], and is a current
trend in AI (see for example [26] and the citations therein). However this ap-
proach only relies on examples and not on logical specifications.

[4] explores the use of formal specifications and scenarios to synthesize dis-
tributed protocols. Their approach also follows two phases: first, an incomplete
machine is built from the scenarios and second, it is turned into a complete one.
But there are two important differences with our work. First, their first phase
does not rely on learning techniques and does not try to generalize the provided
examples. Second, in their setting, all actions are controllable and there is no
adversarial environment, so they are solving a satisfiability problem and not a
realizability problem as in our case. Their problem is thus computationally less
demanding than the problem we solve: Pspace versus 2ExpTime for LTL specs.

The synthesis problem targeted in this paper extends the LTL synthesis
problem. Modern solutions for this problem use automata constructions that
avoid Safra’s construction as first proposed in [24], and simplified in [29,18], and
more recently in [16]. Efficient implementations of Safraless constructions are
available, see e.g. [9,17,25,15]. Several previous works have proposed alternative
approaches to improve on the quality of solutions that synthesis algorithms can
offer. A popular research direction, orthogonal and complementary to the one
proposed here, is to extend the formal specification with quantitative aspects,
see e.g. [6,10,22,2], and only synthesize solutions that are optimal.

The first phase of our algorithm is inspired by automata learning techniques
based on state merging algorithms like RPNI [21,20]. Those learning algorithms
need to be modified carefully to generate partial solutions that preserve realiz-
ability of ϕCORE. Proving completeness as well as termination of the completion
phase in this context requires particular care.

2 Preliminaries on the reactive synthesis problem

Words, languages and automata An alphabet is a finite set of symbols. A
word u (resp. ω-word) over an alphabet Σ is a finite (resp. infinite sequence) of
symbols from Σ. We write ε for the empty word, and denote by |u| ∈ N ∪ {∞}
the length of u. In particular, |ε| = 0. For 1 ≤ i ≤ j ≤ |u|, we let u[i:j] be the
infix of u from position i to position j, both included, and write u[i] instead of
u[i:i]. The set of finite (resp. ω-) words over Σ is denoted by Σ∗ (resp. Σω). We
let Σ∞ = Σ∗ ∪ Σω. Given two words u ∈ Σ∗ and v ∈ Σ∞, u is a prefix of v,
written u � v, if v = uw for some w ∈ Σ∞. The set of prefixes of v is denoted by
Prefs(v). Finite words are linearly ordered according to the length-lexicographic

313

M. Balachander et al.

order �ll, assuming a linear order <Σ over Σ: u �ll v if |u| < |v| or |u| = |v| and
u = pσ1u

′, v = pσ2v
′ for some p, u′, v′ ∈ Σ∗ and some σ1 <Σ σ2. In this paper,

whenever we refer to the order �ll for words over some alphabet, we implicitly
assume the existence of an arbitrary linear order over that alphabet. A language
(resp. ω-language) over an alphabet Σ is a subset L ⊆ Σ∗ (resp. L ⊆ Σω).

In this paper, we fix two alphabets I and O whose elements are called inputs
and outputs respectively. Given a word u ∈ (IO)∞, we let in(u) ∈ I∞ be the
word obtained by erasing all O-symbols from u. We define out(u) similarly and
naturally extend both functions to languages.

Automata over ω-words A parity automaton is a tuple A = (Q,Qinit, Σ, δ, d)
where Q is a finite non empty set of states, Qinit ⊆ Q is a set of initial states, Σ is
a finite non empty alphabet, δ : Q×Σ → 2Q \{∅} is the transition function, and
d : Q→ N is a parity function. The automaton A is deterministic when |Qinit| = 1
and |δ(q, σ)| = 1 for all q ∈ Q. The transition function is extended naturally into
a function Post∗ : Q × Σ∗ → 2Q \ {∅} inductively as follows: Post∗(q, ε) = {q}
for all q ∈ Q and for all (u, σ) ∈ Σ∗ ×Σ, Post∗(q, uσ) =

⋃
q′∈Post∗(q,u) δ(q

′, σ).
A run of A on an ω-word w = w0w1 . . . is an infinite sequence of states

r = q0q1 . . . such that q0 ∈ Qinit, and for all i ∈ N, qi+1 ∈ δ(qi, wi). The run r
is said to be accepting if the minimal colour it visits infinitely often is even, i.e.
lim inf(d(qi))i≥0 is even. We say that A is a Büchi automaton when dom(d) =
{0, 1} (1-coloured states are called accepting states), a co-Büchi automaton when
dom(d) = {1, 2}, a safety automaton if it is a Büchi automaton such that the
set of 1-coloured states, called unsafe states and denoted Qusf , forms a trap: for
all q ∈ Qusf , for all σ ∈ Σ, δ(q, σ) ⊆ Qusf , and a reachability automaton if it is
{0, 1}-coloured and the set of 0-coloured states forms a trap.

Finally, we consider the existential and universal interpretations of nonde-
terminism: under the existential (resp. universal) interpretation, a word w ∈ Σω

is in the language of A, if there exists a run r on w such that r is accepting
(resp. for all runs r on w, r is accepting). We denote the two languages defined
by these two interpretations L∃(A) and L∀(A) respectively. Note that if A is
deterministic, then the existential and universal interpretations agree, and we
write L(A) for L∀(A) = L∃(A). For a deterministic automaton A, the initial
state is fixed to the singleton {q}.

For a co-Büchi automaton, we also define a strengthening of the acceptance
condition, called K-co-Büchi, which requires, for K ∈ N, that a run visits at most
K times a state labelled with 1 to be accepting. Formally, a run r = q0q1 . . . qn . . .
is accepting for the K-co-Büchi acceptance condition if |{i ≥ 0 | d(qi)) = 1}| ≤
K. The language defined by A for the K-co-Büchi acceptance condition and
universal interpretation is denoted by L∀K(A). Note that this language is a safety
language because if a prefix of a word p ∈ Σ∗ is such that A has a run prefix on
p that visits more than K times a states labelled with color 1, then all possible
extensions w ∈ Σω of p are rejected by A.

(Pre)Mealy machines Given a (partial) function f from a set X to a set Y ,
we denote by dom(f) its domain, i.e. the of elements x ∈ X such that f(x) is
defined. A preMealy machine M on an input alphabet I and output alphabet

314

LTL Reactive Synthesis with a Few Hints

O is a triple (M,minit, ∆) such that M is a non-empty set of states, minit ∈M is
the initial state, ∆ : Q×I → O×M is a partial function. A pair (m, i) is a hole
in M if (m, i) 6∈ dom(∆). A Mealy machine is a preMealy machine such that ∆
is total, i.e., dom(∆) = M × I.

We define two semantics of a preMealy machine M = (M,minit, ∆) in terms
of the languages of finite and infinite words over I∪O they define. First, we define
two (possibly partial functions) PostM : M × I → M and OutM : M × I → O
such that ∆(m, i) = (PostM(m, i),OutM(m, i)) for all (m, i) ∈ M × I if ∆(m, i)
is defined. We naturally extend these two functions to any sequence of inputs
u ∈ I+, denoted Post∗M and Out∗M. In particular, for u ∈ I+, Post∗M(m,u)
is the state reached by M when reading u from m, while Out∗M(m,u) is the
last output in O produced by M when reading u. The subcript M is om-
mitted when M is clear from the context. Now, the language L(M) of finite
words in (IO)∗ accepted by M is defined as L(M) = {i1o1 . . . inon | ∀1 ≤ j ≤
n, Post∗M(minit, i1 . . . ij) is defined and oj = Out∗M(minit, i1 . . . ij)}. The language
Lω(M) of infinite words accepted by M is the topological closure of L(M):
Lω(M) = {w ∈ (IO)ω | Prefs(w) ∩ (IO)∗ ⊆ L(M)}.
The reactive synthesis problem A specification is a language S ⊆ (IO)ω.
The reactive synthesis problem (or just synthesis problem for short) is the prob-
lem of constructing, given a specification S, a Mealy machine M such that
Lω(M) ⊆ S if it exists. Such a machine M is said to realize the specification S,
also written M |= S. We also say that S is realizable if some Mealy machine M
realizes it. The induced decision problem is called the realizability problem.

It is well-known that if S is ω-regular (recognizable by, e.g., a parity au-
tomaton [33]) the realizability problem is decidable [1] and moreover, a Mealy
machine realizing the specification can be effectively constructed. The realizabil-
ity problem is 2ExpTime-Complete if S is given as an LTL formula [27] and
ExpTime-Complete if S is given as a universal coBüchi automaton.

Theorem 1 ([7]). The realizability problem for a specification S given as a
universal coBüchi automaton A is ExpTime-C. Moreover, if S is realizable and
A has n states, then S is realizable by a Mealy machine with 2O(nlog2n) states.

We generalize this result to the following realizability problem which we
describe first informally. Given a specification S and a preMealy machine P,
the goal is to decide whether P can be completed into a Mealy machine which
realizes S. We now define this problem formally. Given two preMealy machines
P1,P2, we write P1 � P2 if P1 is a subgraph of P2 in the following sense: there
exists an injective mapping Φ from the states of P1 to the states of P2 which
preserves the initial state (s0 is the initial state of P1 iff Φ(s0) is the initial state
of P2) and the transitions (∆P1

(p, i) = (o, q) iff ∆P2
(Φ(p), i) = (o, Φ(q)). As a

consequence, L(P1) ⊆ L(P2) and Lω(P1) ⊆ Lω(P2). Given a preMealy machine
P, we say that a specification S is P-realizable if there exists a Mealy machine
M such that P � M and M realizes S. Note that if P is a (complete) Mealy
machine, S is P-realizable iff P realizes S. The next result is proved in [5]:

Theorem 2. Given a universal co-Büchi automaton A with n states defining a
specification S = L∀(A) and a preMealy machine P with m states and nh holes,

315

M. Balachander et al.

deciding whether S is P-realizable is ExpTime-hard and in ExpTime (in n and
polynomial in m). Moreover, if S is P-realizable, it is P-realizable by a Mealy
machine with m + nh2O(nlog2n) states. Hardness holds even if P has two states
and A is a deterministic reachability automaton.

3 Synthesis from safety specifications and examples

In this section, we present the learning framework we use to synthesise Mealy
machines from examples, and safety specifications. Its generalization to any ω-
regular specification is described in Sec. 4 and solved by reduction to safety
specifications. It is a two-phase algorithm: (1) it generalizes the examples while
maintaining realizability of the specification, and outputs a preMealy machine,
(2) it completes the preMealy machine into a full Mealy machine.

Phase 1: Generalizing the examples This phase exploits the examples by
generalizing them as much as possible while maintaining realizability of the
specification. It outputs a preMealy machine which is consistent with the ex-
amples and realizes the specification, if it exists. It is an RPNI-like learning
algorithm [21,20] which includes specific tests to maintain realizability of the
specification. In particular, it first builds a tree-shaped preMealy machine whose
accepted language is exactly the set of prefixes Prefs(E) of the given set of exam-
ples E, called a prefix-tree acceptor (PTA). Then, it tries to merge as many as
possible states of the PTA. The strategy used to select a state to merge another
given state with, is a parameter of the algorithm, and is called a merging strat-
egy σG. Formally, a merging strategy σG is defined over 4-tuples (M,m,E,X)
where M is a preMealy machine, m is a state of M, E is a set of examples and
X is subset of states of M (the candidate states to merge m with), and returns
a state of X, i.e., σG(M,m,E,X) ∈ X.

The pseudo-code is given by alg. 1. Initially, it tests whether the set of ex-
amples E is consistent1and if yes, checks if PTA(E) can be completed into a
Mealy machine realizing the given specification S, thanks to Thm. 2. If that
is the case, then it takes all prefixes of E as the set of examples, and enters a
loop which consists in iteratively coarsening again and again some congruence ∼
over the states of PTA(E), by merging some of its classes. The congruence ∼ is
initially the finest equivalence relation. It does the coarsening in a specific order:
examples (which are states of PTA(E)) are taken in length-lexicographic order.
When entering the loop with example e, the algorithm computes at line 4 all the
states, i.e., all the examples e′ which have been processed already by the loop
(e′ ≺ll e) and whose current class can be merged with the class of e (predicate
Mergeable(PTA(E),∼, e, e′)). State merging is a standard operation in automata
learning algorithms which intuitively means that merging the ∼-class of e and the
∼-class of e′, and propagating this merge to the descendants of e and e′, does not
result any conflict. The formal definition is in [5]. At line 5, it filters the previous
set by keeping only the states which, when merged with e, produce a preMealy

1 E is consistent if outputs uniquely depends on prefixes. Formally, it means for all
prefixes u ∈ Prefs(E) ∩ (IO)∗I, there is a unique output o ∈ O s.t. uo ∈ Prefs(E).

316

LTL Reactive Synthesis with a Few Hints

machine which can be completed into a Mealy machine realizing S (again by
Thm. 2). If after the filtering there are still several candidates for merge, one
of them is selected with the merging strategy σG and the equivalence relation
is then coarsened via class merging (operation MergeClass(PTA(E),∼, e, e′)). At
the end, the algorithm returns the quotient of PTA(E) by the computed Mealy-
congruence. As a side remark, when S is universal, i.e. S = (IO)ω, then it is
realizable by any Mealy machine and therefore line 5 does not filter any of the
candidates for merge. So, when S is universal, Algo 1 can be seen as an RPNI
variant for learning preMealy machines.

Algorithm 1: GEN(E,S,σG) – generalization algorithm

Input: A finite set of examples E ⊆ (I.O)∗, a specification S ⊆ (I.O)ω given
as a deterministic safety automaton, a merging strategy σG

Output: A preMealy machine M s.t. E ⊆ L(M) and S is M-realizable, if it
exists, otherwise UNREAL.

1 if E is not consistent or S is not PTA(E)-realizable then return UNREAL
2 E ← Prefs(E) ∩ (IO)∗; ∼← {(e, e) | e ∈ E}; // ∼= diagE
3 for e ∈ E in length-lexicographic order �ll do
4 mergeCand← {e′ | Mergeable(PTA(E),∼, e, e′) ∧ e′ ≺ll e}
5 mergeCand← {e′ ∈ mergeCand | S is MergeStates(PTA(E),∼

, e, e′)−realizable}
6 if mergeCand 6= ∅ then
7 e′ ← σG(M, e,mergeCand)
8 ∼← MergeClass(PTA(E),∼, e, e′)

9 return PTA(E)/∼

Phase 2: completion of preMealy machines into Mealy machines As it
only constructs the PTA and tries to merge its states, the generalization phase
might not return a (complete) Mealy machine. In other words, the machine it
returns might still contain some holes (missing transitions). The objective of this
second phase is to complete those holes into a Mealy machine, while realizing
the specification. More precisely, when a transition is not defined from some
state m and some input i ∈ I, the algorithm must select an output symbol
o ∈ O and a state m′ to transition to, which can be either an existing state
or a new state to be created (in that case, we write m′ = fresh to denote the
fact that m′ is a fresh state). In our implementation, if it is possible to reuse
a state m′ that was created during the generalization phase, it is favoured over
other states, in order to exploit the examples. However, the algorithm for the
completion phase we describe now does not depend on any particular strategy to
pick states. Therefore, it is parameterized by a completion strategy σC , defined
over all triples (M,m, i, X) where M is a preMealy machine with set of states
M , (m, i) is a hole ofM, and X ⊆ O× (M ∪ {fresh}) is a list of candidate pairs
(o,m′). It returns an element of X, i.e., σC(M,m, i, X) ∈ X.

In addition to σC , the completion algorithm takes as input a preMealy ma-
chineM0 and a specification S, and outputs a Mealy machine whichM0-realizes
S, if it exists. The pseudo-code is given in Algo 2. Initially, it tests whether S

317

M. Balachander et al.

is M0-realizable, otherwise it returns UNREAL. Then, it keeps on completing
holes of M0. The computation of the list of output/state candidates is done
at the loop of line 5. Note that the for-loop iterates over M ∪ {fresh()}, where
fresh() is a procedure that returns a fresh state not in M . The algorithm main-
tains the invariant that at any iteration of the while-loop, S is M-realizable,
thanks to the test at line 7, based on Thm. 2. Therefore, the list of candidates
is necessarily non-empty. Amongst those candidates, a single one is selected and
the transition on (m, i) is added to M accordingly at line 10.

Algorithm 2: Comp(M0,S,σC): preMealy machine completion algo-
rithm
Input: A preMealy machine M0 = (M,minit,∆), a specification S ⊆ (I.O)∗

given as a deterministic safety automaton, a completion strategy σC

Output: A (complete) Mealy machine M such that S is M0-realizable,
otherwise UNREAL.

1 if S is not M0-realizable then return UNREAL
2 M←M0

3 while there exists a hole (m, i) ∈M × I do
4 candidates← ∅
5 for (o,m′) ∈ O × (M ∪ {fresh()}) do

// fresh() denotes a new state not in M
6 Mo,m′ ← (M ∪ {m′},minit,∆ ∪ {(m, i) 7→ (o,m′)})
7 if S is Mo,m′ -realizable then
8 candidates← candidates ∪ {(o,m′)}

9 (o,m′)← σC(M,m, i, candidates)
10 (M,∆)← (M ∪ {m′},∆ ∪ {(m, i) 7→ (o,m′)})
11 M← (M,minit,∆)

12 returnM

Two-phase synthesis algorithm from specifications and examples The
two-phase synthesis algorithm for safety specifications and examples, called Synth-
Safe(E,S, σG, σC) works as follows: it takes as input a set of examples E, a spec-
ification S given as a deterministic safety automaton, a generalizing and comple-
tion strategies σG, σC respectively. It returns a Mealy machineM which realizes
S and such that E ⊆ L(M) if it exists. In a first steps, it calls Gen(E,S, σG). If
this calls returns UNREAL, then SynthSafe return UNREAL as well. Other-
wise, the call to Gen returns a preMealy machineM0. In a second step, Synth-
Safe calls Comp(M0,S, σC). If this call returns UNREAL, so does Synth-
Safe, otherwise SynthSafe returns the Mealy machine computed by Comp.
The pseudo-code of SynthSafe can be found in [5].

The completion procedure may not terminate for some completion strategies.
It is because the completion strategy could for instance keep on selecting pairs of
the form (o,m′) where m′ is a fresh state. However we prove that it always termi-
nates for lazy completion strategies. A completion strategy σC is said to be lazy
if it favours existing states, which formally means that if X \ (O×{fresh}) 6= ∅,
then σC(M,m, i, X) 6∈ O × {fresh}. The 1st theorem states correctness and ter-

318

LTL Reactive Synthesis with a Few Hints

mination of the algorithm for lazy completion strategies (assuming the functions
σG and σC are computable in worst-case exptime in the size of their inputs).

Theorem 3 (termination and correctness). For all finite sets of examples E ⊆
(I.O)∗, all specifications S ⊆ (I.O)ω given as a deterministic safety automaton
A with n states, all merging strategies σG and all completion strategies σC , if
SynthSafe(E,S, σG, σC) terminates then, it returns a Mealy machine M such
that E ⊆ L(M) and M realizes S, if it exists, otherwise it returns UNREAL.
Moreover, SynthSafe(E,S, σG, σC) terminates if σC is lazy, in worst-case ex-
ponential time (polynomial in the size2 of E and exponential in n).

The proof of the latter theorem is a consequence of several results proved on
the generalization and completion phases, and is given in [5].

A Mealy machine T is minimal if for all Mealy machineM such that L(T) =
L(M), the number of states of M is at least that of T . The next result, proved
in [5], states that any minimal Mealy machine realizing a specification S can be
returned by our synthesis algorithm, providing representative examples.

Theorem 4 (Mealy completeness). For all specifications S ⊆ (I.O)ω given as a
deterministic safety automaton, for all minimal Mealy machines M realizing S,
there exists a finite set of examples E ⊆ (I.O)∗, of size polynomial in the size of
M, such that for all generalizing strategies σG and completion strategies σC , and
all sets of examples E′ s.t. E ⊆ E′ ⊆ L(M), SynthSafe(E′,S, σG, σC) =M.

The polynomial upper bound given in the statement of Theorem 4 is more
precisely the following: the cardinality of E is O(m+n2) where n is the number
of states of M while m is its number of transitions. Moreover, each example
e ∈ E has length O(n2). More details can be found in Remark 1 of [5].

4 Synthesis from ω-regular specifications and examples

We now consider the case where the specification S is given as universal coBüchi
automaton, in Section 4. We consider this class of specifications as it is complete
for ω-regular languages and allow for compact symbolic representations. Further
in this section, we consider the case of LTL specifications.

Specifications given as universal coBüchi automata Our solution for ω-
regular specifications relies on a reduction to the safety case treated in Sec. 3. It
relies on previous works that develop so called Safraless algorithms for ω-regular
reactive synthesis [24,29,18]. The main idea is to strengthen the (safety) accep-
tance condition of the automaton from coBüchi to K-coBüchi. It is complete
for the plain synthesis problem (w/o examples) if K is large enough (in the
worst-case exponential in the number of states of the automaton (e.g., see [18])).
Moreover, it allows for incremental synthesis algorithms: if the specification de-
fined by the automaton with a k-coBüchi acceptance condition is realizable, for
k ≤ K, so is the specification defined by taking K-coBüchi acceptance. Here, as
we also take examples into account, we need to slightly adapt the results. The
next theorem is proved in [5] while the next lemma is immediate:

2 The size of E is the sum of the lengths of the examples of E.

319

M. Balachander et al.

Theorem 5. Given a universal co-Büchi automaton A with n states defining a
specification S = L∀(A) and a preMealy machine P with m states, we have that
S is P-realizable iff S ′ = L∀K(A) is P-realizable for K = nm|I|2O(n log2 n).

Lemma 1. For all co-Büchi automata A, for all preMealy machines P, for all
k1 ≤ k2, we have that L∀k1(A) ⊆ L∀k2(A) and so if L∀k1(A) is P-realizable then

L∀k2(A) is P-realizable. Furthermore for all k ≥ 0, if S ′ = L∀k(A) is P-realizable

then S = L∀(A) is P-realizable.

Thanks to the latter two results applied to P = PTA(E) for a set E of
examples of size m, we can design an algorithm for synthesising Mealy machines
from a specification defined by a universal coBüchi automaton A with n states
and E: it calls SynthSafe on the safety specification L∀k(A) and E for increasing
values of k, until it concludes positively, or reach the bound K = 2O(mn log2mn)+
1. In the latter case, it returns UNREAL. However, to apply SynthSafe properly,
L∀k(A) must be represented by a deterministic safety automaton. This is possible
as k-coBüchi automata are determinizable [18].

Determinization The determinization of k-co-Büchi automata A relies on a
simple generalization of the subset construction: in addition to remembering the
set of states that can be reached by a prefix of a run while reading an infi-
nite word, the construction counts the maximal number of times a run prefix
that reaches a given state q has visited states labelled with color 1 (remem-
ber that a run can visit at most k such states to be accepting). The states
of the deterministic automaton are so-called counting functions, formally de-
fined for a co-Büchi automaton A = (Q, qinit, Σ, δ, d) and k ∈ N, as the set
noted CF (A, k) of functions f : Q → {−1, 0, 1, . . . , k, k + 1}. If f(q) = −1
for some state q, it means that q is inactive (no run of A reach q on the cur-
rent prefix). The initial counting function finit maps all 1-colored initial states
to 1, all 0-colored initial states to 0 and all other states to −1. We denote by
D(A, k) = (QD = CF (A, k), qDinit = finit, Σ, δ

D, QDusf) the deterministic automa-
ton obtained by this determinization procedure. It is formally defined in [5]. We
can now give algorithm SynthLearn, in pseudo-code, as Algo 3.

Complexity considerations and improving the upper-bound As the au-
tomaton D(A, k) is in the worst-case exponential in the size of the automaton
A, a direct application of Thm. 3 yields a doubly exponential time procedure.
This complexity is a consequence of the fact that the P-realizability problem is
ExpTime in the size of the deterministic automaton as shown in Thm. 2, and
that the termination of the completion procedure is also worst-case exponential
in the size of the deterministic automaton.

We show that we can improve the complexity of each call to SynthSafe
and obtain an optimal worst-case (single) exponential complexity. We provide
an algorithm to check P-realizability of a specification S = L∀k(A) that runs in
time singly exponential in the size of A and polynomial in k and the size of P.
Second, we provide a finer complexity analysis for the termination of the com-
pletion algorithm, which exhibits a worst case exponential time in |A|. Those
two improvements lead to an overall complexity of SynthLearn which is expo-

320

LTL Reactive Synthesis with a Few Hints

Algorithm 3: SynthLearn(E,A,σG,σC) – synthesis algorithm from
ω-regular specification and examples by a reduction to safety

Input: A universal co-Büchi automaton A with n states, a finite set of
examples E ⊆ (I.O)∗, a generalizing strategy σG and a completion
strategy σC .

Output: A Mealy machine M realizing L∀(A) and such that E ⊆ L(M) if it
exists, otherwise UNREAL.

1 K ← nm|I|2O(n log2 n); k ← 0; // m is the size of E
2 while k ≤ K do
3 if SynthSafe(E,D(A, k), σC , σG) 6= UNREAL then
4 return SynthSafe(E,D(A, k), σC , σG)

5 k ← k + 1;

6 return UNREAL

nential in the size of the specification A and polynomial in the set of examples
E. This is provably worst-case optimal because for E = ∅ the problem is already
ExpTime-Complete. We explain next the first improvement, the upper-bound
for termination is provided in [5].

Checking P-realizability of a specification S = L∀k(A) To obtain a better
complexity, we exploit some structure that exists in the deterministic automaton
D(A, k). First, the set of counting functions CF (A, k) forms a complete lattice
for the partial order � defined by f1 � f2 if f1(q) ≤ f2(q) for all states q.
We denote by f1

⊔
f2 the least upper-bound of f1, f2, and by WAk the set of

counting functions f such that the specification L(D(A, k)[f]) is realizable (i.e.
the specification defined by D(A, k) with initial state f). It is known that WAk
is downward-closed for � [18], because for all f1 � f2, any machine realizing
L(D(A, k)[f2]) also realizes L(D(A, k)[f1]). Therefore, WAk can be represented
compactly by the antichain dWAk e of its �-maximal elements. Now, the first
improvement is obtained thanks to the following result:

Lemma 2. Given a preMealy P = (M,m0, ∆), a co-Büchi automata A, and
k ∈ N. For all states m ∈M , we let F ∗(m) =

⊔
{f | ∃u ∈ (IO)∗ ·Post∗P(m0, u) =

m ∧ PostD(f0, u) = f}. Then, L(D(A, k)) is P-realizable iff there does not exist
m ∈M such that F ∗(m) 6∈WAk .

It is easily shown that the operator F ∗ can be computed in pTime. Thus, the
latter lemma implies that there is a poly-time algorithm in |P|, |A|, k ∈ N, and
the size of dWAk e to check the P-realizability of L∀(A). Formal details in [5].

We end this subsection by summarizing the behavior of our synthesis algo-
rithm for ω-regular specifications defined as universal co-Büchi automata.

Theorem 6. Given a universal coBüchi automaton A and a set of examples E,
the synthesis algorithm SynthLearn returns, if it exists, a Mealy machine M
such that E ⊆ L(M) and Lω(M) ⊆ L∀(A), in worst-case exponential time in
the size of A and polynomial in the size of E. Otherwise, it returns UNREAL.

Specifications given as an LTL formula We are now in position to apply
Alg. 3 to a specification given as LTL formula ϕ. Indeed, thanks to the results

321

M. Balachander et al.

of the subsection above, to provide an algorithm for LTL specifications, we only
need to translate ϕ into a universal co-Büchi automaton. This can be done
according to the next lemma. It is well-known (see [24]), that given an LTL
formula ϕ over two sets of atomic propositions PI and PO, we can construct in
exponential time a universal co-Büchi automaton Aϕ such that L∀(Aϕ) = [[ϕ]],
i.e. A recognizes exactly the set of words w ∈ (2PI2PO)ω that satisfy ϕ. We then
get the following theorem that gives the complexity of our synthesis algorithm
for a set of examples E and an LTL formula ϕ, complexity which is provably
worst-case optimal as deciding if [[ϕ]] is realizable with E = ∅, i.e. the plain LTL
realizability problem, is already 2ExpTime-Complete [27].

Theorem 7. Given an LTL formula ϕ and a set of examples E, the synthesis
algorithm SynthLearn returns a Mealy machine M such that E ⊆ L(M) and
Lω(M) ⊆ [[ϕ]] if it exists, in worst-case doubly exponential time in the size of ϕ
and polynomial in the size of E. Otherwise it returns UNREAL.

5 Implementation and Case study

We have implemented the algorithm SynthLearn of the previous section in a
prototype tool, in Python, using the tool Acacia-Bonzai [11] to manipulate
antichains of counting functions. We first explain the heuristics we have used to
define state-merging and completion strategies, and then demonstrate how our
implementation behaves on a case study whose goal is to synthesize the controller
for an elevator. The interested reader can find in [5] other case studies, including
a controller for an e-bike and two variations on mutual exclusion.

Merging and completion strategies implemented in our prototype Our
tool implements a merging strategy σG where, given an example e that leads
in the current preMealy machine to a state m and a set {m1,m2, . . . ,mk} of
candidates for merging, as computed in line 7 of Algorithm 1, we choose state mi

with a �-minimal counting function F ∗(mi), as defined in Lemma 2. Intuitively,
favouring minimal counting functions preserves as much as possible the set of
behaviors that are possible after the example e.

Our tool also implements a completion strategy σC , where for every hole (m, i)
of the preMealy machine M and out of the list of candidate pairs, selects an
element which again favour states associated with �-minimal counting functions.
For more details, we refer the reader to [5].

Lift Controller Example We illustrate how to use our tool to construct a
suitable controller for a two-floor elevator system.

Considering two floors is sufficient enough to illustrate most of the main
difficulties of a more general elevator. Inputs of the controller are given by two
atomic propositions b0 and b1, which are true whenever the button at floor 0
(resp. floor 1) is pressed by a user. Outputs are given by the atomic propositions
f0 and f1, true whenever the elevator is at floor 0 (resp. floor 1); and ser, true
whenever the elevator is serving the current floor (i.e. doors are opened). This
controller should ensure the following core properties:

322

LTL Reactive Synthesis with a Few Hints

q0 q1 q2 q3

!b0 & !b1/f0 & !f1 & !ser
b0 & !b1/f0 & !f1 & ser

b1/f0 & !f1 & !ser b1/!f0 & f1 & ser

!b0 & b1/!f0 & f1 & ser!b0 & !b1/!f0 & f1 & !ser

b0/!f0 & f1 & !ser

b0/f0 & !f1 & ser

Fig. 2: Machine returned by our tool on the elevator specification w/o examples.
Here, q0, q1, q2, q3 represents the states where f0 is served when required, where
b1 is pending, where f1 is served, the state where b0 is pending respectively.

q0 q1 q2

q3

!b0 & !b1/f0 & !f1 & !ser
b0 & !b1/f0 & !f1 & ser

!b0 & b1/f0 & !f1 & !ser

b0 & b1/f0 & !f1 & ser

!b0 & !b1/!f0 & f1 & !ser
!b0 & b1/!f0 & f1 & ser

b0 & !b1/!f0 & f1 & !ser b0 & b1/!f0 & f1 & ser

b0/!f0 & f1 & !ser

b1/!f0 & f1 & !ser

Fig. 3: Mealy machine returned by our tool on the elevator specification with ad-
ditional examples. The preMealy machine obtained after generalizing the exam-
ples and before completion is highlighted in red. This took 3.10s to be generated.

1. Functional Guarantee: whenever a button of floor 0 (resp. floor 1) is
pressed, the elevator must eventually serve floor 0 (resp. floor 1): G(b0 ->

F (f0 & ser)) & G(b1 -> F (f1 & ser))

2. Safety Guarantee: The elevator is always at one floor exactly: G(f0<->!f1)

3. Safety Guarantee: The elevator cannot transition between two floors when
doors are opened: G((f0 & ser) -> X(!f1)) & G((f1 & ser) -> X(!f0))

4. Initial State: The elevator should be in floor 0 initially: f0

Additionally, we make the following assumption: whenever a button of floor
0 (or floor 1) is pressed, it must remain pressed until the floor has been served,
i.e., G(b0 -> (b0 W (f0 & ser))) & G(b1 -> (b1 W (f1 & ser))).

Before going into the details of this example, let us explain the methodology
that we apply to use our tool on this example. We start by providing only the
high level specification ϕCORE for the elevator given above. We obtain a first
Mealy machine from the tool. We then observe the machine to identify prefix
of behaviours that we are unhappy with, and for which we can provide better
alternative decisions. Then we run the tool on ϕCORE and the examples that we
have identified, and we get a new machine, and we proceed like that up to a
point where we are satisfied with the synthesized Mealy machine.

Let us now give details. When our tool is provided with this specification
without any examples, we get the machine depicted in fig. 2. This solution
makes the controller switch between floor 0 and floor 1, sometimes unnecessarily.
For instance, consider the trace s # {!b0 & !b1}{!f0 & f1 & !ser} # {!b0
& !b1}{f0 & !f1 & !ser}, where we let s = {!b0 & b1}{f0 & !f1 & !ser}

323

M. Balachander et al.

{!b0 & b1}{!f0 & f1 & ser}. Here, we note that the transition goes back to
state q0, where the elevator is at floor 0, when the elevator could have remained
at floor 1 after serving floor 1. The methodology described above allows us to
identify the following three examples:

1. The 1st trace states that after serving floor 1, the elevator must remain
at floor 1 as b0 is false: s # {!b0 & !b1}{!f0 & f1 & !ser} # {!b0 &

!b1}{!f0 & f1 & !ser}
2. The 2nd trace states that the elevator must remain at floor 0, as b1 is false:
{!b0 & !b1}{f0 & !f1 & !ser} # {!b0 & !b1}{f0 & !f1 & !ser}

3. The 3rd trace ensures that after s, there is no unnecessary delay in serving
floor 0 after floor 1 is served in s: s # {b0 & !b1}{!f0 & f1 & !ser} #

{b0 & !b1}{f0 & !f1 & ser}
With those additional examples, our tool outputs the machine of fig. 3, which
generalizes them and now ensures that moves of the elevator occur only when
required. For example, the end of the first trace has been generalized into a loop
on state q1 ensuring that the elevator does not go to floor 0 from floor 1 unless b0
is pressed. We note that the number of examples provided here is much smaller
than the theoretical (polynomial) upper bound proved in Theorem 4.

6 Conclusion

We have introduced synthesis with a few hints, which allows the user to guide
synthesis using examples of expected executions of high quality solutions. Ex-
isting synthesis tools may provide unnatural solutions when fed with high-level
specifications only. As providing complete specifications goes against the very
goal of synthesis, we believe our algorithm has a greater potential in practice.

We have studied the computational complexity of problems that need to be
solved during our synthesis procedure. We have proved our algorithm is complete:
any Mealy machine M realizing a specification ϕ can be obtained from ϕ and a
representative example set E, whose size is bounded polynomially in the size of
M. We have implemented our algorithm in a prototype tool that extends Acacia-
Bonzai [11] with tailored state-merging learning algorithms. We have shown that
only a small number of examples are necessary to obtain high quality machines
from high-level LTL specifications only. The tool is not fully optimized yet. While
this is sufficient to demonstrate the relevance of our approach, we will work on
efficiency aspects of the implementation.

As future works, we will consider extensions of the user interface to interac-
tively and concisely specify sets of (counter-)examples to solutions output by the
tool. In the same line, an interesting future direction is to handle parametric ex-
amples (e.g. elevator with the number of floors given as parameter). This would
require to provide a concise syntax to define parametric examples and to design
efficient synthesis algorithm in this setting. We will also consider the possibility
to formulate negative examples, as our theoretical results readily extend to this
case and their integration in the implementation should be easy.

324

LTL Reactive Synthesis with a Few Hints

References

1. Abadi, M., Lamport, L., Wolper, P.: Realizable and unrealizable specifications of
reactive systems. In: Automata, Languages and Programming, 16th International
Colloquium, ICALP89, Stresa, Italy, July 11-15, 1989, Proceedings. Lecture Notes
in Computer Science, vol. 372, pp. 1–17. Springer (1989)

2. Almagor, S., Kupferman, O., Velner, Y.: Minimizing expected cost under hard
boolean constraints, with applications to quantitative synthesis. In: 27th Interna-
tional Conference on Concurrency Theory, CONCUR 2016, August 23-26, 2016,
Québec City, Canada. LIPIcs, vol. 59, pp. 9:1–9:15. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2016)

3. Alur, R., Bod́ık, R., Dallal, E., Fisman, D., Garg, P., Juniwal, G., Kress-Gazit,
H., Madhusudan, P., Martin, M.M.K., Raghothaman, M., Saha, S., Seshia, S.A.,
Singh, R., Solar-Lezama, A., Torlak, E., Udupa, A.: Syntax-guided synthesis. In:
Dependable Software Systems Engineering, pp. 1–25 (2015)

4. Alur, R., Martin, M.M.K., Raghothaman, M., Stergiou, C., Tripakis, S., Udupa,
A.: Synthesizing finite-state protocols from scenarios and requirements. In: Hard-
ware and Software: Verification and Testing - 10th International Haifa Verification
Conference, HVC 2014, Haifa, Israel, November 18-20, 2014. Proceedings. Lecture
Notes in Computer Science, vol. 8855, pp. 75–91. Springer (2014)

5. Balachander, M., Filiot, E., Raskin, J.F.: Ltl reactive synthesis with a few
hints (2023). https://doi.org/10.48550/ARXIV.2301.10485, https://arxiv.

org/abs/2301.10485

6. Bloem, R., Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Better quality in syn-
thesis through quantitative objectives. In: Computer Aided Verification, 21st In-
ternational Conference, CAV 2009, Grenoble, France, June 26 - July 2, 2009. Pro-
ceedings. Lecture Notes in Computer Science, vol. 5643, pp. 140–156. Springer
(2009)

7. Bloem, R., Chatterjee, K., Jobstmann, B.: Graph games and reactive synthesis.
In: Handbook of Model Checking, pp. 921–962. Springer (2018)

8. Bloem, R., Chockler, H., Ebrahimi, M., Strichman, O.: Synthesizing non-vacuous
systems. In: Bouajjani, A., Monniaux, D. (eds.) Verification, Model Checking,
and Abstract Interpretation. pp. 55–72. Springer International Publishing, Cham
(2017)

9. Bohy, A., Bruyère, V., Filiot, E., Jin, N., Raskin, J.: Acacia+, a tool for LTL
synthesis. In: Computer Aided Verification - 24th International Conference, CAV
2012, Berkeley, CA, USA, July 7-13, 2012 Proceedings. Lecture Notes in Computer
Science, vol. 7358, pp. 652–657. Springer (2012)

10. Bruyère, V., Filiot, E., Randour, M., Raskin, J.: Meet your expectations with guar-
antees: Beyond worst-case synthesis in quantitative games. Inf. Comput. 254, 259–
295 (2017). https://doi.org/10.1016/j.ic.2016.10.011, https://doi.org/10.
1016/j.ic.2016.10.011

11. Cadilhac, M., Pérez, G.A.: Acacia-bonsai: A modern implementation of downset-
based LTL realizability. CoRR abs/2204.06079 (2022). https://doi.org/10.

48550/arXiv.2204.06079, https://doi.org/10.48550/arXiv.2204.06079
12. Damas, C., Lambeau, B., van Lamsweerde, A.: Scenarios, goals, and state ma-

chines: a win-win partnership for model synthesis. In: Proceedings of the 14th
ACM SIGSOFT International Symposium on Foundations of Software Engineer-
ing, FSE 2006, Portland, Oregon, USA, November 5-11, 2006. pp. 197–207. ACM
(2006)

325

https://doi.org/10.48550/ARXIV.2301.10485
https://doi.org/10.48550/ARXIV.2301.10485
https://arxiv.org/abs/2301.10485
https://arxiv.org/abs/2301.10485
https://doi.org/10.1016/j.ic.2016.10.011
https://doi.org/10.1016/j.ic.2016.10.011
https://doi.org/10.1016/j.ic.2016.10.011
https://doi.org/10.1016/j.ic.2016.10.011
https://doi.org/10.48550/arXiv.2204.06079
https://doi.org/10.48550/arXiv.2204.06079
https://doi.org/10.48550/arXiv.2204.06079
https://doi.org/10.48550/arXiv.2204.06079
https://doi.org/10.48550/arXiv.2204.06079

M. Balachander et al.

13. D’Ippolito, N., Braberman, V.A., Piterman, N., Uchitel, S.: Synthesizing
nonanomalous event-based controllers for liveness goals. ACM Trans. Softw. Eng.
Methodol. 22(1), 9:1–9:36 (2013). https://doi.org/10.1145/2430536.2430543,
https://doi.org/10.1145/2430536.2430543

14. Dupont, P., Lambeau, B., Damas, C., van Lamsweerde, A.: The QSM algo-
rithm and its application to software behavior model induction. Appl. Artif.
Intell. 22(1&2), 77–115 (2008). https://doi.org/10.1080/08839510701853200,
https://doi.org/10.1080/08839510701853200

15. Duret-Lutz, A., Renault, E., Colange, M., Renkin, F., Gbaguidi, A., Schlehuber-
Caissier, P., Medioni, T., Martin, A., Dubois, J., Gillard, C., Lauko, H.: From spot
2.0 to spot 2.10: What’s new? CoRR abs/2206.11366 (2022). https://doi.org/
10.48550/arXiv.2206.11366, https://doi.org/10.48550/arXiv.2206.11366

16. Esparza, J., Kret́ınský, J., Raskin, J., Sickert, S.: From LTL and limit-deterministic
Büchi automata to deterministic parity automata. In: Tools and Algorithms for the
Construction and Analysis of Systems - 23rd International Conference, TACAS
2017, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, Part I.
Lecture Notes in Computer Science, vol. 10205, pp. 426–442 (2017)

17. Faymonville, P., Finkbeiner, B., Tentrup, L.: Bosy: An experimentation framework
for bounded synthesis. In: Majumdar, R., Kuncak, V. (eds.) Computer Aided Ver-
ification - 29th International Conference, CAV 2017, Heidelberg, Germany, July
24-28, 2017, Proceedings, Part II. Lecture Notes in Computer Science, vol. 10427,
pp. 325–332. Springer (2017). https://doi.org/10.1007/978-3-319-63390-9_

17, https://doi.org/10.1007/978-3-319-63390-9_17

18. Filiot, E., Jin, N., Raskin, J.: An antichain algorithm for LTL realizability. In:
Computer Aided Verification, 21st International Conference, CAV 2009, Grenoble,
France, June 26 - July 2, 2009. Proceedings. Lecture Notes in Computer Science,
vol. 5643, pp. 263–277. Springer (2009)

19. Filiot, E., Jin, N., Raskin, J.: Antichains and compositional algorithms for LTL
synthesis. Formal Methods Syst. Des. 39(3), 261–296 (2011). https://doi.org/
10.1007/s10703-011-0115-3, https://doi.org/10.1007/s10703-011-0115-3

20. Giantamidis, G., Tripakis, S., Basagiannis, S.: Learning Moore machines from
input-output traces. Int. J. Softw. Tools Technol. Transf. 23(1), 1–29 (2021)

21. Heinz, J., de la Higuera, C., van Zaanen, M.: Grammatical Infer-
ence for Computational Linguistics. Synthesis Lectures on Human Lan-
guage Technologies, Morgan & Claypool Publishers (2015). https:

//doi.org/10.2200/S00643ED1V01Y201504HLT028, https://doi.org/10.2200/

S00643ED1V01Y201504HLT028

22. Kupferman, O.: On high-quality synthesis. In: Computer Science - Theory and Ap-
plications - 11th International Computer Science Symposium in Russia, CSR 2016,
St. Petersburg, Russia, June 9-13, 2016, Proceedings. Lecture Notes in Computer
Science, vol. 9691, pp. 1–15. Springer (2016)

23. Kupferman, O., Vardi, M.Y.: Vacuity detection in temporal model checking. In:
Pierre, L., Kropf, T. (eds.) Correct Hardware Design and Verification Methods.
pp. 82–98. Springer Berlin Heidelberg, Berlin, Heidelberg (1999)

24. Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: 46th Annual IEEE
Symposium on Foundations of Computer Science (FOCS 2005), 23-25 October
2005, Pittsburgh, PA, USA, Proceedings. pp. 531–542. IEEE Computer Society
(2005)

326

https://doi.org/10.1145/2430536.2430543
https://doi.org/10.1145/2430536.2430543
https://doi.org/10.1145/2430536.2430543
https://doi.org/10.1080/08839510701853200
https://doi.org/10.1080/08839510701853200
https://doi.org/10.1080/08839510701853200
https://doi.org/10.48550/arXiv.2206.11366
https://doi.org/10.48550/arXiv.2206.11366
https://doi.org/10.48550/arXiv.2206.11366
https://doi.org/10.48550/arXiv.2206.11366
https://doi.org/10.48550/arXiv.2206.11366
https://doi.org/10.1007/978-3-319-63390-9_17
https://doi.org/10.1007/978-3-319-63390-9_17
https://doi.org/10.1007/978-3-319-63390-9_17
https://doi.org/10.1007/978-3-319-63390-9_17
https://doi.org/10.1007/978-3-319-63390-9_17
https://doi.org/10.1007/s10703-011-0115-3
https://doi.org/10.1007/s10703-011-0115-3
https://doi.org/10.1007/s10703-011-0115-3
https://doi.org/10.1007/s10703-011-0115-3
https://doi.org/10.1007/s10703-011-0115-3
https://doi.org/10.2200/S00643ED1V01Y201504HLT028
https://doi.org/10.2200/S00643ED1V01Y201504HLT028
https://doi.org/10.2200/S00643ED1V01Y201504HLT028
https://doi.org/10.2200/S00643ED1V01Y201504HLT028
https://doi.org/10.2200/S00643ED1V01Y201504HLT028
https://doi.org/10.2200/S00643ED1V01Y201504HLT028

LTL Reactive Synthesis with a Few Hints

25. Meyer, P.J., Sickert, S., Luttenberger, M.: Strix: Explicit reactive synthesis strikes
back! In: Computer Aided Verification - 30th International Conference, CAV 2018,
Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-
17, 2018, Proceedings, Part I. Lecture Notes in Computer Science, vol. 10981, pp.
578–586. Springer (2018)

26. Natarajan, N., Simmons, D., Datha, N., Jain, P., Gulwani, S.: Learning natural
programs from a few examples in real-time. In: Chaudhuri, K., Sugiyama, M. (eds.)
The 22nd International Conference on Artificial Intelligence and Statistics, AIS-
TATS 2019, 16-18 April 2019, Naha, Okinawa, Japan. Proceedings of Machine
Learning Research, vol. 89, pp. 1714–1722. PMLR (2019), http://proceedings.
mlr.press/v89/natarajan19a.html

27. Pnueli, A., Rosner, R.: On the synthesis of an asynchronous reactive mod-
ule. In: Automata, Languages and Programming, 16th International Colloquium,
ICALP89, Stresa, Italy, July 11-15, 1989, Proceedings. Lecture Notes in Computer
Science, vol. 372, pp. 652–671. Springer (1989)

28. Raha, R., Roy, R., Fijalkow, N., Neider, D.: Scalable anytime algorithms for learn-
ing fragments of linear temporal logic. In: Fisman, D., Rosu, G. (eds.) Tools and
Algorithms for the Construction and Analysis of Systems - 28th International
Conference, TACAS 2022, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022,
Proceedings, Part I. Lecture Notes in Computer Science, vol. 13243, pp. 263–
280. Springer (2022). https://doi.org/10.1007/978-3-030-99524-9_14, https:
//doi.org/10.1007/978-3-030-99524-9_14

29. Schewe, S., Finkbeiner, B.: Bounded synthesis. In: Automated Technology for Ver-
ification and Analysis, 5th International Symposium, ATVA 2007, Tokyo, Japan,
October 22-25, 2007, Proceedings. Lecture Notes in Computer Science, vol. 4762,
pp. 474–488. Springer (2007)

30. Singh, R., Gulwani, S.: Transforming spreadsheet data types using examples. In:
Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January
20 - 22, 2016. pp. 343–356 (2016). https://doi.org/10.1145/2837614.2837668,
https://doi.org/10.1145/2837614.2837668

31. Solar-Lezama, A.: Program sketching. STTT 15(5-6), 475–495 (2013), https://
doi.org/10.1007/s10009-012-0249-7

32. Solar-Lezama, A., Tancau, L., Bod́ık, R., Seshia, S.A., Saraswat, V.A.: Combinato-
rial sketching for finite programs. In: Shen, J.P., Martonosi, M. (eds.) Proceedings
of the 12th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2006, San Jose, CA, USA, Octo-
ber 21-25, 2006. pp. 404–415. ACM (2006). https://doi.org/10.1145/1168857.
1168907, https://doi.org/10.1145/1168857.1168907

33. Thomas, W.: Automata on infinite objects. In: Handbook of Theoretical Computer
Science, Volume B: Formal Models and Sematics (1991)

327

http://proceedings.mlr.press/v89/natarajan19a.html
http://proceedings.mlr.press/v89/natarajan19a.html
https://doi.org/10.1007/978-3-030-99524-9_14
https://doi.org/10.1007/978-3-030-99524-9_14
https://doi.org/10.1007/978-3-030-99524-9_14
https://doi.org/10.1007/978-3-030-99524-9_14
https://doi.org/10.1145/2837614.2837668
https://doi.org/10.1145/2837614.2837668
https://doi.org/10.1145/2837614.2837668
https://doi.org/10.1007/s10009-012-0249-7
https://doi.org/10.1007/s10009-012-0249-7
https://doi.org/10.1145/1168857.1168907
https://doi.org/10.1145/1168857.1168907
https://doi.org/10.1145/1168857.1168907
https://doi.org/10.1145/1168857.1168907
https://doi.org/10.1145/1168857.1168907

M. Balachander et al.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

328

http://creativecommons.org/licenses/by/4.0/

	LTL Reactive Synthesis with a Few Hints
	1 Introduction
	2 Preliminaries on the reactive synthesis problem
	3 Synthesis from safety specifications
and examples
	4 Synthesis from
w-regular specifications and examples
	5 Implementation and Case study
	6 Conclusion
	References

